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Abstract

Public cloud infrastructures provide flexible hosting for web application providers, but the

rented virtual machines (VMs) often offer unpredictable performance to the deployed appli-

cations. Understanding cloud performance is challenging for application providers, as clouds

provide limited information that would help them have expectations about their application

performance. In this thesis I present a technique to measure the performance of cloud appli-

cations, based on observations of the application latency. I treat the cloud application as a

black box, making no assumption about the underlying platform. From my measurements, I

can observe the varying performance provided by the different VM profiles across well-known

commercial cloud platforms. I also identify a trade-off between the responsiveness and the

load of the measured servers, which can help application providers in their deployment and

provisioning.
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Chapter 1

Introduction

Cloud computing offers on-demand computing available all around the world. Many start-ups

and medium size application providers who do not own any infrastructure tend to deploy their

applications on public cloud infrastructures because of on-demand resources, ease of deployment

and instant scalability of these platforms [VRMCL08].

Choosing public cloud to host the applications introduces new issues as these platforms function

in ways that are significantly different from traditional on-premise servers. In such platforms,

Cloud Service-Level Agreements (SLAs) provide guarantees only on infrastructure reliability.

They contain no performance-related clauses [Ama14a], and Virtual Machine instance types

hide underlying hardware details. Consequently, providers don’t know the expected perfor-

mance of their application as the result of virtualization impact on individual components

when deployed on the cloud infrastructure [WN10, JRM+10].

While this is challenging, one of the major concern of application providers is meeting the

stringent low response times for interactive applications (e.g., customer facing web applications).

Response time is proven to have a direct effect on business revenue. Amazon found that every

100ms of latency costs 1% in sales [Lin06], and eBay and Google have reported similar findings

about the impact of user latency on revenue [Dix09, Ham09, SB09]. Therefore, minimizing the

latency and preserving the delay of serving the users requests under an acceptable latency value

is challenging and important.

1



2 Chapter 1. Introduction

Cloud providers offer different types of servers (VMs) across various geographical locations in

world. Having a geo-distributed service provides potential opportunity to deploy applications on

different locations across the world to benefit from low path latency. Therefore, geo-distributed

applications need an effective way to direct client requests to a particular application replica

in order to minimize user perceived latency.

User-perceived latency consists of two parts at minimum, the network delay to the application

replica a user is connected to; and processing time of requests at application replica. To

guarantee user perceived latency to be within a defined value, any solution must be able to

estimate the above two delays. While estimating the network latency between users and replicas

has been well researched in past, my focus is on application processing time. I aim to propose

techniques and algorithms to estimate the corresponding delay and open the space for future

research to guarantee and control such a delay for a target application.

The research question behind my work is: Is it possible to estimate the load of a server

by observing its response latency from a remote network location?

To be able to answer the above question, first it is necessary to know how many requests my

application can handle and what the corresponding delay will be at different loads. Understand-

ing the performance of an application under load and its effects on application processing delay

is challenging due to the underlying infrastructure that the application is deployed on, e.g., a

more powerful node with more resources (e.g., CPU, Memory and I/O) handles more requests

without causing extra delay and affecting the overall latency. Moreover, in a heterogeneous

platform like cloud where cloud providers offer a variety of VM types that comprise various

combinations of CPU, memory, storage and networking capacity, it is difficult to translate mix

of resources to a value of performance that is meaningful at the application level.

To address the above challenge I propose an algorithm to understand the performance of the

application server. My technique makes no assumption about the underlying infrastructure and

internals of the application and explores the application performance in terms of throughput

with respect to the corresponding response time.
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The proposed technique will answer the following questions: 1) How many requests does the

application handle without affecting the response time? (i.e., it estimates the maximum load

a cloud application can sustain for a given VM while preserving defined latency SLA). 2) How

much the response time will vary at different levels of load? (i.e., it identifies a trade-off between

application performance and server responsiveness).

In conclusion, our contribution can help application provider to estimate the load of an ap-

plication server from a remote network location. In fact using my proposed technique they

can profile application performance by running our designed tool on different types of VMs

on any cloud platforms. Such a profile includes the trade-off information between application

performance and server responsiveness. This data can further be utilized to build a model for

each profile which will be used further on to estimate the load at any time, i.e., having a model

for a node, one can send a request at any time to the server from a remote node and measure

the response time. The response time will then be fed to the model to estimate the server load.

The rest of this thesis is organized as follows :

In Chapter 2, I review some of the related works about performance evaluation of infrastruc-

ture and applications in the cloud as well as commercial and academic solutions that control

and guarantee the server side performance of applications.

In Chapter 3, I propose a black-box methodology to measure cloud application performance.

My methodology estimates the maximum load an application server can sustain at which the la-

tency of the responses increases to an undesirable level. It samples the latency values at various

loads and observes the trade-off between application performance and server responsiveness.

In Chapter 4, I implemented the methodology proposed in chapter 3, and utilized that to

estimate the load a cloud application can sustain when it is deployed on different types of VMs

in various cloud providers. Moreover, I identify trade-off between the throughput and latency

of application servers. I also test different types of workloads and show throughput estimation

in each case.

In Chapter 5, I propose possible avenues for future work based on the present results of this
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thesis..

In Chapter 6 I present the conclusion of this thesis.



Chapter 2

Related Work

In this chapter, I review some of the related works about performance estimation in cloud.

I explain the methods and tools that have been proposed by researcher to benchmark the

performance of the infrastructure and the application. Furthermore, I explain some of the other

efforts to reduce the delay in serving the user requests. Finally, I illustrate the limitations of the

current approaches and explain my contributions toward estimating the performance of cloud

applications.

2.1 Performance Evaluation in the Cloud

Cloud computing offers different types of virtual machines (VMs) with varying combinations

of CPU, memory, storage and networking capacity to choose the appropriate mix of resources

for the applications. My work focuses on understanding the performance of applications on

a given VM in the cloud. In this part I review different types of tools and studies related to

performance evaluation of infrastructure and deployed applications. Different benchmarking

tools exist at various levels of abstraction, from the low level system part like CPU, to the

whole application, e.g., database system. Benchmarking and monitoring tools are used for

evaluating and tracking the performance of both infrastructure and application. I review some

of the benchmarking and monitoring tools and mention the difference between those tools and

5
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my work.

2.1.1 Low level Benchmarking

With the advent of Cloud Computing, more and more providers offer Infrastructure-as-a-Service

(IaaS) platforms. IaaS allows the customers to launch different types of virtual machines

(VMs) with varying combinations of CPU, memory, storage and networking capacity to choose

the appropriate mix of resources for the applications. To measure the performance of a VM

often low level benchmarking tools (or micro-benchmarking) are used. Micro-benchmarks are

mostly designed to stress each of the main computer resources individually (e.g., CPU, disk or

network) provides one score that is used for comparison. Many open source and commercial

tools are employed to evaluate the performance of the CPU, memory, storage devices and

network components of a node (VM) in the cloud.

CPU Memory Disk Network
Ubench Cachebench10 Iozone NetPerf
are Dhrystone STREAM11 bonniee++ Ttcp
Whitestone UnixBench Dbench NetSpec16
Unixbench GeekBench12 Iperf
SPEC CPU 2000 Ubench
SPEC HPC 96

Table 2.1: List of low level benchmarking tools

In Table 2.1, I have listed some of the micro-benchmarking tools that are used by researcher

to benchmark each component of a node (VM) individually. I would show in the following

sections, how these tools have been used by researchers to show the performance variations of

instances in the existing public cloud platforms.

Usage of Low level benchmarking tools in cloud.

Low level benchmarking tools have been used in previous research studies for different purposes

with regard to performance evaluation of VMs in the cloud:

1) Comparison of offered VMs from different cloud providers:



2.1. Performance Evaluation in the Cloud 7

Li et al. [LYKZ10] compare multiple cloud providers using different types of micro-benchmarks.

They ran different micro-benchmarks related to each individual resource like computation met-

rics (CPU, Memory), network metrics (network latency, bandwidth) and compared various

results for various cloud platforms (e.g., Amazon AWS [Ama14b], Microsoft Azure [Azu14],

Google AppEngine [GAE14], and Rackspace CloudServers [Rac14]). They claimed that there

is no single winner on all metrics.

2) Performance variation due to virtualization in cloud:

Schad et al. [SDQR10] have leveraged different types of micro-benchmarks[Ube01, Bon01] and

show high performance variation for most of their metrics related to CPU, disk I/O and network

in Amazon EC2. Farley et al. [FJV+12] have used micro-benchmarks to show that heterogene-

ity in the underlying hardware and contention can cause different performance across even

equivalent instances. They have also explored a heterogeneity-aware placement strategy that

seeks out better performing instances. Wang et al. [WN10] have presented a measurement study

on the impact of virtualization on the Amazon EC2 platform. They show that the network

performance of nodes in EC2 is much more variable than that of non-virtualized clusters due

to virtualization and processor sharing. Ou et al [OZN+] considered hardware heterogeneity

within EC2, and within a single instance type and availability zone. Using micro-benchmarks in

Table 2.1 and verifying hardware for each instance, the variation in performance across different

instances with different hardware for CPU-intensive workloads can be as high as 60%. Barker

et al. [BS10] analyzed the impact of virtualization on the performance of latency sensitive ap-

plications. They have quantified the jitter of CPU, disk, and network performance in regard to

latency-sensitive applications in Amazon EC2 cloud. Studies like [OIY+10, IOY+11, JRM+10]

use micro-benchmarking tools like [spe, Bon01, dbe, uni] to compare the actual performance

difference between cloud computing and traditional high performance clusters so as to evaluate

the applicability of cloud computing to scientific applications.

Overall, low-level benchmarking tools are useful to compare virtual and physical execution

environments. However, such a tools can not measure the performance at the applications.

This aspect complicates the use of low-level benchmarks for guiding deployment decisions of
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applications.

2.1.2 Application level benchmarking

There is a wide range of application-level benchmarks, with each tool focussing on a specific

family of applications. GridMix [gri], HiBench [HHD+10], and Berkeley WL Suite [CGGK11]

are benchmarks designed for evaluating the Hadoop framework. MineBench [NOZ+06] bench-

marks data mining algorithms. CloudRank-D [LZJ+12] offers a benchmark suite for various

machine learning and data mining algorithms. CloudSuite [FAK+12] has collected individual

benchmarking tools for different types of applications e.g. data analytics, and web search.

The above benchmarking tools target batch-style applications, rather than interactive systems

handling user requests. My focus is on user requests and dealing with corresponding response

times to those requests. Cloudstone [SSS+08] is a benchmarking tool that deploys one web 2.0

application composed of front-end and back-end. Cloudstone gives several application-specific

performance metrics (such as how many concurrent users can be logged-in and supported for a

fixed dollar amount) for that specific application. The specific nature of this benchmark makes

its applicability similar to the system level benchmarks previously described.

On-line transaction processing (OLTP) benchmarks are used to evaluate the performance of

back-end databases. For example, TPC-C [tpc14] simulates a few types of transactions against

a database and computes two types of results: pure performance (transactions per minute)

and performance over price. Their main goal is to deliver a single performance number to

compare different database systems and answer the question: which database system is the

best for OLTP?. TPC-C is considered the reference benchmark for transactional databases.

More recently, YCSB [CST+10] aims to fill a similar gap for NoSQL data store systems. These

types of benchmarks are useful for performance comparison between multiple similar products

(such as SQL-compliant databases). Their applicability is still limited to a family of similar

applications.

In contrast, my technique computes an application-level metric (maximum number of requests

per second while fulfilling a SLA) in an application agnostic way (as is demonstrated in the
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evaluation section).

2.1.3 Monitoring tools

Performance monitoring tools usually provide monitoring and analysis of specific parameters of

system and notification about critical changes in their status. Nagios [Nag14] monitors system

metrics, network protocols and services. Processor load, disk usage, system logs, interactions

and connectivity can also be monitored. Zabbix [Zab14] is another monitoring tool that tracks

the status of CPU, memory, network, disk I/O, disk space and log files.

The purpose of monitoring tools is to monitor and alert users about the changes in server

performance elements. Moreover, monitoring tools are by nature white-box, i.e., they have to

access and track the status of internal elements of the system. The results of monitoring tools

are difficult to translate into global application level-performance. However, the focus of my

work is to provide a fine grain behaviour of performance at the application level. My approach

is black-box, i.e., I treat the whole application server as a black-box with no assumption about

internal of application and I employ the external values of latency from a remote node and

explore the performance space of applications.

2.2 Controlling and Minimizing the Response Time

My research is motivated by the use of geo-distributed applications that are capable of being

deployed at different geo-distributed cloud data centers. Keeping the response time under a

desirable value in such scenarios is crucial for application providers. In the following section I

review some of the related work about server selection which is employed to decrease the user

response time when many replicas can serve the user requests around the world.
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2.2.1 Server Selection

The simplest approach to distribute client requests among servers is the use of a round-robin

algorithm [Bri95, CYC98]. But in the case of widely distributed servers across the globe this

approach will end-up with high network latency and unsatisfactory delay for users’ requests.

Previous research focused on minimizing network path latency to user by selecting a server

(among many replicas containing static content) that is closer to the user. The most well-

known approach is DNS-based server selection [SCKB06, DMP+02]. It requires running a

DNS server which tracks where the servers are running and measuring the network latencies

and aims at selecting the replica which has minimum delay to the user. This is the method

widely employed by CDN providers like [Aka14]. The primary objective of CDNs, as well as of

mirroring and caching strategies, is to reduce the network latencies between the clients and the

server they are accessing. This is done in two ways: Firstly, by directing clients to the nearest

server [GS95, FBZA, KLL+97, WPP02, KM02] and secondly, by placing the most popular

content on replicas closer to hot-spots [CKK02, QPV01]. Studies like [PAS+04, STA01], have

shown that the use of DNS-based redirection techniques may lead to very high delays e.g., wrong

approximation of DNS servers and thus may not be suitable for applications which require quick

response to failures. Moreover, DNS-based redirection mechanisms are agnostic of application

structure and unaware of application performance.

Latency estimation methods have been introduced in the past, and they can be employed

in the server selection problem to redirect clients to a server with the lowest estimated la-

tency. (e.g., redirecting clients to the nearest data centers would require Google to maintain

latency from virtually every Web client in the Internet to each of its data centers [BP98]).

The research community offeres a variety of techniques such as: direct network measure-

ments [WSS05, KMS+09, GSG02], virtual coordinates [DCKM04, NZ02], structural models

of path performance [FJJ+01, MIP+06], some hybrid of these approaches [AL09, FRE06] or

commercial IP geo-location database [Neu14, PS01] to estimate network proximity. For ex-

ample, since early 2005, Wikipedia has been using PowerDNS, in combination with the geo-

backends [Geo04] to handle all DNS traffic [Wik05]. By using the geo-backend, incoming clients
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can be directed to the nearest Wikipedia server (based on their geographic locations).

Increasingly, cloud computing provides an attractive alternative where cloud providers offer

servers across the world, while allowing customers to design and implement their own services.

Today, such customers are left largely to handle the replica-selection process on their own, with

a limited support from individual cloud providers [Rou14, WAz14] and third-party DNS hosting

platforms [Dyn14]. For example, cloud providers offer services to redirect clients to a VM server

in a data center with lowest network latency [Rou14, WAz14]. Amazon Route 53 [Rou14] offers

different services for server redirection, e.g., Weighted Round Robin or Latency Based Routing.

Latency Based Routing can automatically route end-users to a cloud data center which has the

lowest network path latency.

While the above research and services purely focus on selecting a replica with the lowest latency

to users, studies like [RKK04] show and exploit the fact that the processing delay of dynamic

content on moderately to highly loaded servers can exceed network delays by an order of

magnitude. Therefore server load should be considered as a metric to select a replica.

Wendell et al. introduced Donar [WJFR10], a distributed approach for server selection which

consists of multiple mapping nodes that is able to handle a diverse mix of clients. The mapping

nodes could be HTTP ingress proxies that route client requests from a given locale to the

appropriate data centers, the model adopted by Google and Yahoo. Or, the mapping nodes

could be authoritative DNS servers that resolve local queries for the names of Web sites, the

model adopted by Akamai and most CDNs. Each mapping node has only a partial view

of the global space of clients. Their contribution is a decentralized algorithm to work with

mapping nodes and redirect clients based on two policies, network latency and server load. This

has not been addressed by the previous heuristic-based solutions [CYD97, CGP00, CCY00].

While valuable they assumed that the load on a server is known to mapping nodes but in fact

estimating the load and its effect on latency (application processing delay) is challenging due

to the heterogeneity of infrastructure, complexity of application structure, workload and the

policy for storing and retrieving data.
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2.3 Summary

In this chapter I have reviewed the methods and tools that have been used by researcher

to benchmark the infrastructure and application performance. While valuable none of the

methods have concentrated on estimating the performance with respect to latency that the

user will perceive. Therefore the ability to estimate any performance value while considering

the latency is crucial for any further solution that is going to be offered to control the response

time of the application based on the its performance.



Chapter 3

Black-Box Latency Based Throughput

Estimation

It is important for application providers to decide about provisioning enough servers to achieve

the desired throughput while preserving acceptable latency. In this chapter I propose a method-

ology that leverages the statistical properties of latency(e.g., median) to detect the behaviour

of a cloud application server under load. My black-box methodology estimates the workload a

cloud application can sustain for a given latency on a given server.

3.1 Methodology

The main goal of my methodology is to observe the trade-off between application perfor-

mance (in terms of operations per second) and server responsiveness (as observed through

request/response latency). I observe the server response time across various workloads by

remotely measuring the end-to-end latency.

13
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3.1.1 Approach

My approach relies on the measured end-to-end latency of individual request/response pairs.

This end-to-end latency includes the network latency, as well as the client and server side

processing latencies. I generate controlled amounts of requests/responses at a constant rate,

while monitoring the corresponding end-to-end latency values. The rationale is the following:

Application servers are typically designed to absorb a given workload of requests. Hence, when

the workload is below a given threshold, I expect the server latency to be low and relatively

constant over time. When the workload increases beyond what the server is able to absorb

on the other hand, I expect the end-to-end latency to increase, at least statistically, i.e., some

responses will take more time to be processed by the server. My methodology is designed

to probe an application server in order to identify the workloads at which the corresponding

latency increases statistically, which I call transition state1.

My server probing algorithm sends requests to the server, at varying request rates (called test

throughput and denoted by Ttest). At the same time, I timestamp requests and responses to

obtain the end-to-end observed latency . As only statistically significant variations in the

observed latency are relevant, each value of the Ttest is probed for a few seconds. This period of

time during which the Ttest is constant is called a sample window . The reason for selecting a

time window is to avoid wrongly inferring that the server is overloaded as the result of artefacts

in the measurements, e.g., if the network path latency increases for a very short period of time

without the server being actually overloaded. Sample window should not be too short or too

long as being too short would be affected by temporary artefacts in measurement whereas being

too long would increase the runtime of the measurement. In out measurement a sample window

between 8-10 seconds results a more stable output.

Roughly speaking, my strategy is to go through increasing workloads, until I reach one for

which the server shows signs of being overloaded, observed through increases in end-to-end

latency.

1The rationale for this terminology is that the application server behaviour changes quantitatively during
the transition state.
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My design is separated into two phases: 1)Fast ramp-up: increasing the Ttest exponentially

until the observed latency shows signs that the server is getting overloaded; 2) Fine-tuning :

roll back and converge slowly towards a value of the Ttest in the transition state where the

observed latency meets the user defined latency threshold.

3.1.2 Design

In both phases a given Ttest is generated, and the observed latency is measured. A pseudocode

overview of my strategy is depicted in Algorithm 1. During the Fast ramp-up phase, the

algorithm searches for a value of Ttest at which the latency starts increasing. So The Fast ramp-

up phase starts with an initial Ttest, with subsequent sample windows exponentially increasing

the Ttest as long as the current window is marked as “accepted”.

Initial Ttest is an arbitrary value. My algorithm is robust enough to reach to an estimation as

long as the initial Ttest is not greater than the estimated throughput. This is because a very

high value of Ttest might end up with a very high measured latency value at the beginning which

results the algorithm not to increase the Ttest at all and not to return any estimation value at

the end. Where the initial Ttest is not known, it is set to 1 request. The downside of defining 1

request at the beginning is that it makes the runtime longer since the fast ramp up phase takes

more time to reach to the overload state of application. Likewise during my first experiment

starting with the initial Ttest of 1, I launched the node with the lowest available resource offered

by cloud providers. The estimation for that run was about 1.2K requests per second. Therefore

I set my initial Ttest value to 800 requests slightly less than the lowest estimation. This value

was my default initial Ttest for any further experiments on the other nodes. Therefore, my

recommendation is to start with less than 1000 requests in cloud environment.

In this thesis, I are interested in the server-side latency only. However, the network delay

component of the end-to-end latency might inflate the end-to-end latency and mislead us to

believe that it is a server-side problem. To mitigate such occurrences, I also measure the

network latency (RTT) using tcpping [tpi]. If the measured network latency during a sample

window increases significantly(more than 20ms) compared to the baseline(tcpping Round Trip
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Time value), I discard the measurements from the corresponding sample window and start new

measurements of the sample window(RTTChanges function at line no. 11 in Algorithm 1).

If the median end-to-end latency is close enough to the measured RTT(not greater than 10ms),

i.e., meaning that the server-side latency is very small, then I assume that the server is able to

handle the current Ttest. The reason behind picking the median is that I consider the majority

and proceed based on that. I repeat that for each second of the sample window and if the

condition is satisfied, this second will be tagged as “Pass”. If more than half the seconds of the

window are flagged as “Pass”, the sample window is marked as “accepted” and the next Ttest

to be probed within the next sample window will be increased (line no. 18 in Algorithm 1).

On the other hand, if a sample window is not marked as “accepted”, it means that I have

entered the transition state and with this, Fine-tuning phase will be started(line no. 20 in

Algorithm 1). Fine-tuning phase of the algorithm tries to refine the value of the Ttest to get

close to the true value of Ttest with which the server gets overloaded. In this phase, I increase

the Ttest linearly instead of exponentially, starting from the highest Ttest that did not show signs

of latency increase, i.e., the Ttest from the previously accepted sample window(line no. 22 in

Algorithm 1). In this phase, the increase in Ttest between consecutive sample windows is a fixed

rate of the gap between the last two Ttest during the ramp-up phase(line no. 23 in Algorithm 1).

The exact rate used defines the degree of fine-tuning for this phase of the algorithm. Picking

the value of rate results in a trade off between runtime and the granularity of the output, i.e., if

a small rate selected, the value of increase in Ttest would be small. Therefore, the output value

would be more accurate and close to actual value that the server can sustain whereas the run

time of the algorithm ends up being high as a result.

At the end of the fine-tuning phase, I will have sampled different Ttest values, the last one

being the one that my algorithm stops at, which I call Testimate. As stopping criterion for the

fine-tuning phase, I rely on a percentile and latency threshold of the response time which are

defined at the start . The reason for this lies in the common use of response time percentiles

for SLA’s [CP09].

If the nth percentile response time of a Ttest crosses the user defined SLA latency threshold dur-
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1 func probServer(Ttest){
/* Probe the server with T test */

/* Return a list of accept or reject values for each second and measured

latency values */

2 }
3 func RTTChanges(){

/* Probe and measure network latency using tcapping to identify network

instability */

/* Return True if network is unstable */

4 }
5 SLA = ‘User Defined V alue‘
6 Percentile = ‘User Defined V alue‘/* Usually 90th percentie */

7 Phase = ‘FastRampUp‘;
8 Ttest = User Defined V alue/* ops/sec , choose 1 if you don’t have any idea */;
9 while TRUE do

10 SampleWindow list = probeServer(Ttest);

11 if RTTChanges() then
12 continue; /* Continue probing as network is not stable */

13 end
14 else
15 switch Phase do
16 case (‘FastRampUp‘)
17 if median(SampleWindow list) == ‘Accept‘ then
18 Ttest=Ttest * 2; /* Ramp-up - exponential increase */

19 end
20 else /* Overloaded server - */

21 Phase = ‘FineTuning‘
22 Ttest = Ttest/2;
23 inc = rate ∗ (Ttest/2);

24 end

25 case (FineTuning)
26 if Percentile(SampleWindow list, SLA) then
27 Ttest = Ttest + inc; /* Linear increase */

28 end
29 else /* Found value of T test */

30 return Ttest − inc; /* Return estimated throughput */

31 end

32 endsw

33 end

34 end
Algorithm 1: Pseudo-code of the methodology.
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Figure 3.1: Time series of a run of the methodology on a Cassandra server deployed in GCE.

ing the fine-tuning phase, the algorithm terminates and the Ttest from the previously accepted

sample window is returned as Testimate. I use Testimate in Chapter 4.3 to evaluate application

performance on various cloud platforms. The specific SLA settings (percentile and latency

threshold) are configurable parameters of my tool, as different applications require various lev-

els of responsiveness. In my experiments, I use as SLA latency the 90th percentile and 150ms.

3.1.3 Example

To illustrate my methodology, I present in Fig. 3.1 the results from a single run of the algorithm

using a server located in the Google Compute Engine cloud platform [gce14]. The top plot

of Fig 3.1 shows the values of the Ttest (in operations per second), as well as the measured

throughput (from the client side).

I observe that the fast ramp-up phase ends at second 52(the exponential increase), followed
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by the fine-tuning phase(the linear increase). I can also see on the top plot of Fig 3.1 the

exponential increase in the values of the Ttest during the fast ramp-up phase, and the linear

increase during the fine-tuning phase.

The lower plot of Fig. 3.1 shows the 50th and 90th percentiles of the end-to-end latency over

time. The median values of RTTs from the client to this server was about 11ms. I observe

that the latency percentile values are in the same range as the RTT during the fast ramp-up

phase(blue and green lines are at the range of 13ms), until the last sample window of the phase

(between seconds 42 and 52). At that sample window, the 50th and 90th percentile values

jump to high values(over 30ms). This is the sign for the algorithm to reduce the Ttest value to

the previous sample window(5200 requests per second). The second part of the algorithm (fine-

tuning phase) starts (between second 52 and 95) and the Ttest values are increase linearly based

on the defined rate(0.2(20%) * 5200). The transition happens at throughput values between 5k

and 10k operations per second. I observe, as expected, that the lower percentiles of the latency

are less sensitive to the changes of Ttest.

3.1.4 Discussion

I have designed my methodology towards estimating the throughput that a server can ab-

sorb without significantly increasing the end-to-end latency. Therefore, the final look of the

algorithm is strongly dependent on my initial goal. Nevertheless, I have tried to limit my as-

sumptions about the application under test, and the server behaviour, making it generic enough

to be applicable to many applications and server platforms.

During the design of the algorithm, I had to choose the ramp-up policies in each phase, and

these policies affect the granularity of the Ttest. I have selected those policies with the goal of

going fast enough through the Ttest values, to find the one at which the latency starts increas-

ing. The exponentially increasing fast ramp-up phase intends to find a rough approximation

of the throughput range of the phase transition, while the linearly increasing fine tuning phase

narrows down to a finer throughput region around this phase transition. While other ways

are possible, e.g., bisection-based approach for the fine tuning phase I believe that my current
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design leads to a reasonable compromise between speed and accuracy of the Ttest estimation.

Methods like bisection-based approach reduce the runtime of the algorithm, however I would

miss the trade off between measured latency and Ttest values in fine tuning phase (I will illus-

trate the benefit in section 4.4).

As already explained, I measure the RTTs and compare them with the end-to-end latency to

decide about the increase of the next Ttest. Moreover, Tcpping values that are captured at the

end of each sample window are monitored and verified so that RTTs are not affected with low

and high volume of load. Figure 3.2a shows the cumulative distribution of tcpping values when

I ran the benchmark for about 24 hours at both low and high loads traffic. It shows that in

both cases the variation is low and RTTs has not been affected by high load.

It is possible that the RTTs may spike during the measurements, e.g., due to routing instabilities

or congestion on the path. Figure 3.2b shows the scatter plot of the tcpping values of same

previous measurements, very few (1.45% out of total) high values of RTT spikes (more than

15msec) are observed but my methodology has been designed to be robust enough not to be

affected by this issue. Indeed, if a statistically significant change of the measured RTTs(20ms

increase over RTT) for half of the seconds across sample windows is observed, I discard the

measurements from the suspicious window and redo the same Ttest. Shorter and burstier network

latency changes are discarded implicitly thanks to the sample window. Smarter approaches are

possible, e.g., by trying to identify the exact time when the change in RTT happened and

removing the corresponding bias in the end-to-end latency. However, given that many routing

events are transient in nature and likely affect the RTTs for relatively short periods of time

[PZMH07], I believe that for my current purpose, the added complexity is not worth the effort.

Finally to ensure better sampling of throughputs and latencies I recommend replaying the

methodology using different values of initial Ttest. Different initial Ttest results in testing more

ranges of Ttest and corresponding latency values.
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Figure 3.2: CDF and Scatter plot of Tcpping values over 24 hours
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3.2 Summary

In this chapter, I have presented a black-box technique that measures the performance of cloud

applications. I probe the application remotely, iteratively adjusting the generated load based

on the measured latency from previous steps. Using my technique, I will be able to estimate the

maximum capacity of an application for a given SLA. This allows us to compare the application

performance within a cloud provider offering various types of nodes with various resources in

the next chapter.



Chapter 4

Throughput Benchmarking in the

Cloud

Public clouds are most likely the first option for small or medium size application providers who

want to either deploy new applications or migrate their existing applications to cloud. There

exist many public providers that offer various on-demand virtual machines with various types

of resources (e.g., AmazonEC2 offers about 25 different types of instances). In this chapter

I have implemented the methodology explained in previous chapter and use my measurement

platform to benchmark an application on various types of VMs using different cloud platforms.

This will allow an application provider to estimate the performance of an application with

respect to predefine latency when it is deployed on any VM type within a cloud provider or

across different cloud providers.

4.1 Building A Measurement Platform

To perform my measurements I have designed and implemented a measurement platform. It

is a client server application that consist of a multi-thread server side program that I called

“controller” and a client side program that is implemented on planetlab nodes across the world.

The controller talks to the clients using JSON-RPC [jso14]. JSON-RPC is a remote procedure

23
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call protocol encoded in JSON. The controller manages the experiments by defining a test

plan. A test plan is a json object consists of 1) Name and ip of Cassandra server that has to

be benchmarked 2) Name and ip address of the planetlab node that runs the test 3) number

of runs 4) Time schedule for run. The controller creates one thread per client and calls a

method on the remote clients (planetlab nodes) by sending the JSON test plan object. Once

the controller sends the test plan, each of the planetlab nodes involved in experiment starts its

own experiments based on the details of its own test plan. Finally, when each client finishes its

experiments, it will return the results to the controller for further analysis. The measurement

platform provides the capability of running multiple experiments at the same time. It is also

deployed across many nodes on the planetlab platform. I have also added the capability of

grouping the nodes, e.g., based on continent so that nodes from a particular continent will

carry out assigned experiments. Figure 4.1 shows the measurement platform and the entities

that are involved in this platform. The application servers (Cassandra in my experiments)

can be deployed in any available public cloud, e.g., Amazon AWS, Microsoft Azure or Google

Compute Engine (GCE).
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Figure 4.1: A view of the measurement platform
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4.2 Methodology Implementation

To Implement the proposed methodology, the first part was either writing a workload gener-

ator from the scratch or finding an available workload generator. I found two benchmarking

tools that both have a workload generator and are suitable for my purpose: 1)Apache JMe-

ter [jme14a], an open-source tool to load test functional behaviour and measure performance.

It was originally designed for testing Web Applications but has since expanded to support a

verity of other applications. JMeter architecture is based on plugins. Most of its ”out of the

box” features are implemented with plugins. Off-site developers can easily extend JMeter with

custom plugins. 2)YCSB[CST+10], an open-source program suite for evaluating retrieval and

maintenance capabilities of datastores. It is often used to compare relative performance of

NoSQL database management systems.

The above tools offer benchmarking applications i.e., they will extremely overload the appli-

cation and return a number as a benchmarking score for that application. Unlike the existing

benchmarking applications, my proposed framework is designed to provide each estimation

based on a defined SLA latency value. In fact my tool is built on top of such benchmarking

applications to benefit from their load generation capability but in line with my requirement

which is taking into account the usage of defined SLA latency value for any estimation(e.g.,

Figure 4.2).

Eventually, the methodology was implemented as a plugin for Apache JMeter. There was two

reasons why JMeter was chosen over YCSB. 1) Load instability was the main reason that I

moved on from YCSB. YCSB is not usually capable of generating the exact number of requests

in each second. This problem is intensified when it compensates the shortcoming load for

a particular second to the subsequent second. For instance, when at second X the load is

designed to be 100 while the actual number of generated requests is 80, YCSB will carry 20

requests to the next subsequent second. This effect will mislead the measurements by increasing

the measured latency values which is the fundamental part of my methodology. 2) YCSB is

designed specifically to benchmark datastores, however JMeter offers benchmarking datastores

as well as other types of applications. In section 4.6 it is shown how my designed tool works
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together with JMeter to estimate the throughput of a stateless web server. Being free of such

obstacles, JMeter was assuring enough to be chosen for implantation of my methodology.

I have implemented the methodology described in Chapter 3.1 as a plugin for Apache JMe-

ter [jme14a] (tested with v2.11). The architecture of JMeter and my implementation is depicted

in Figure 4.2. The lowest part is the core part of JMeter which manages threads, generates and

controls the load.

Figure 4.2: Workload Estimation System Design

JMeter has also been designed with a highly extensible core, meaning that new samplers, timers

and visualisation functionality can be plugged into the core system to extend its capabilities. My

workload estimation tool is designed to be part of the JMeter-plugins standard set [jme14b].

This extensibility helps to attach any applications but only needs to integrate the driver of

application with JMeter. The top part is composed of the interface drivers that integrate the

target application with core JMeter. My workload estimation plugin will work independent of

application as it is injected in plugin part. For my purpose since I was interested in datastore

applications, I have tested Apache Cassandra deployments [LM10] using the CassJMeter [cas14]

0.2 interface driver for JMeter integration.

Apache Cassandra is a distributed key-value storage system for managing large amounts of
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data potentially partitioned and replicated across multiple servers. This type of application

provides on-line read/write access to data in web. Usually when a web user is waiting for a web

page to load, reads and writes to the database are carried out as part of the page construction

and delivery. In all my experiments I consider the simplest operation to be run on each node.

Therefore, I perform read operation for a specific row in database. My plan is to open source the

tool, so that others may use and extend the tool, and contribute new workloads and database

interfaces.

4.3 Throughput Benchmarking

I now use the methodology explained in 3.1 and following the implementation of my tool

explained in 4.2 , I obtain a Testimate for each run. This will be used as a metric to evaluate the

performance of a Cassandra node using various types of VMs in different platforms, ranging

from PlanetLab to well-known public Cloud providers.

PlanetLab

Planetlab [CCR+03] has been used by researchers for more than a decade for network and

distributed services experimentation. With PlanetLab, each user receives a slice equivalent to

a virtual machine. Experiments can be run on the slice without having any control on the

underlying hardware and network infrastructure. Therefore, the performance of applications

deployed in this platform is highly variable. I expected concurrent experiments, and hardware

heterogeneity to drive the observed performance in this platform.
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Figure 4.3: Testimate measured for 193 Planetlab nodes: 109, 59, 9, 13, 3 nodes in Europe, North
and South America, Asia and Australia, respectively

Figure 4.3 shows the distribution of Testimate values for a worldwide sample of 193 nodes.

I have split the nodes across continents to ease the comparison. The CDFs illustrate the

broad spectrum of nodes with different performance ranges across the platform. Surprisingly,

some PlanetLab nodes have a performance equivalent to a high-end node in a public cloud

platform, e.g., a “large” node in EC2 or a “standard2” in GCE. In overall better performance

for European nodes is observed, most likely because the nodes are added more recently and

have more resources compared to old nodes.

Public Cloud platforms

Public cloud platforms typically span multiple geographic regions around the world. Each region

contains several availability zones (AZs) that are physically isolated and have independent

failure probabilities. One AZ is roughly equivalent to one data center. A VM in such platform is

called an instance. Different types of instances come with different performance characteristics

and price tags.

Microsoft Azure. I chose three types of instances among the options offered by Azure (small,

medium and large with 1, 2 and 4 cores and 1.75GB, 3.5GB and 7GB memory, respectively). For
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each instance type, I deployed a Cassandra node in 6 different AZs (2 in US, 2 in Europe, 2 in

Asia). Figure 4.4 shows the box-plot diagram of the returned throughput for each combination

of location and instance type. The node is created and populated with one record. Then, the

memtable1 is cleared to force Cassandra to read the record from disk. Experiments ran for a 24

hour period during which I performed a run every 15 minutes. The node has not been stopped

during the experiment. Figure 4.4 shows a clear differentiation of the Testimate for different

types of instances. Within the same instance type, different locations showcase varying levels

of performance. I expect that one of the main factors explaining the measured performance of

different instances is the type of hardware used, as well as the level of user multiplexing on the

sampled blades.
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Figure 4.4: Benchmarking three types of instances across different datacenters in Microsoft
Azure.

I also observed performance variations on equivalent instances at the same location. In partic-

ular, the figure shows a temporary performance degradation observed in two different instance

types (low throughput data points between 0-2K operations per second), namely the “Large”

instance in Asia East (ASIA-E inside LARGE (A3) in Fig 4.4) and the “Medium” instance in

US East (US-E inside MEDIUM(A2)). My observations show that for a short period of time,

a sudden dip in performance happens, followed by a gradual recovery.

1Please refer to Appendix A for further details about how Cassandra reads and writes the records.
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Amazon EC2. I now look at the results observed on the Amazon EC2 platform. I chose

t.micro, m1.small, m1.medium, m1.large, m1.xlarge instances with 2vCPU, 2ECUs/1VCPU,

2ECUs/1VCPU, 4ECUs/2VCPU, 4vCPU and 1GB, 1.7GB, 3.7GB and 7.5GB 15GB memory,

respectively. Figure 4.5 left side shows the Testimate values achieved from five instance types for

one AZ in Europe.

Measurement shows that my methodology is able to translate the nodes with various resources

to a meaningful value that is recognized at the application level. The Testimate output value

can be a metric for comparing performance of arbitrary selected nodes from a pool of available

resources in cloud. Result shows that a micro instance shows better performance than a small

or medium instance. The reason is that the micro (t series) instances support burstable perfor-

mance ,i.e., they allow utilizing 10% of a full core of a CPU (called baseline level of CPU and

counted as credit balance if 10% usage has not utilized). If at any moment the instance does

not use the 10%, it stores them in its CPU Credit balance for up to 24 hours. Therefore, when

the t1.micro needs to burst to more than 10% of a core, it draws from its CPU Credit balance

to handle this surge seamlessly.

Figure 4.5: Testimate for different types of instances located at Europe’s datacenters in two
public cloud platforms namely Amazon AWS and Google Compute Engine (GCE).

Google Compute Engine (GCE). I provide the result of running the benchmark on Google
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compute Engine platform which I have obtained by running the benchmark on different in-

stances in west Europe ’zone b’ including n1.standard-1, n1.standard-2, n1.standard-3 with

1VCPU with 3.7GB, 2VCPU with 7.5GB, 4VCPU with 15GB respectively. Figure 4.5 (right)

depicts Testimate values for each type of instance.

Overall, the results illustrate that my methodology is useful for cloud users and can help

them to observe performance of application for a given instance in cloud before deciding about

choosing the nodes to deploy the application. Measurements show variation in performance

and the capability of my proposed methodology to detect that. I believe that my methodology

is useful to expose nodes with poor performance, triggering their redeployment to a fresh VM

that exhibits the expected performance.

4.4 Latency/Throughput Trade-off

I have shown in the previous section the estimation of the maximum load an application server

can sustain, under a predefined latency SLA. While valuable, this metric only reflects a partial

view of reality. Application providers might also want to know how a server will behave in

the presence of various workloads. I can also use my methodology to understand this aspect

of application-level performance. In this section I further explore the relationship between

throughput and latency.

My methodology by design, samples multiple values of the Ttest, and for each value it records

the value of different end-to-end latency percentiles. I have picked the output of one run of

benchmark for two different types of instances. I note the observed latency measurements and

calculate different percentiles of latency values ranging from 2 to 99. I plot 3d figure using values

of percentile number, corresponding latency and throughput. Figure 4.7a and 4.6a depict the

scatter plots of the observed median latency at different Ttest for large and medium instances

in Microsoft Azure public cloud platform. Note that for better readability of the graphs, the

very high values at the very right corner are plotted at zero value(marked as high values) for

better visibility and to avoid mixing with the other data points. Figure 4.7b and 4.6b are the
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(a) 3d scatter plot of different throughputs and corresponding latency percentiles
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(b) Surface plot of different throughputs and corresponding latency percentiles

Figure 4.6: Latency/Throughput trade-off for a medium instance (A2) in Microsoft Azure
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(a) 3d scatter plot of different throughputs and corresponding latency percentiles
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(b) Surface plot of different throughputs and corresponding latency percentiles

Figure 4.7: Latency/Throughput trade-off for a large instance (A3) in Microsoft Azure
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corresponding surface planes which interpolate the median latency values that are observed for

the various Ttest. As explained before throughout the experiment I store all the latency values

at each percentile corresponding to different Ttest. This plot can be generated after one run of

experiment. Note that the more the throughput increases the more the corresponding median

end-to-end latency values increase (in particular higher latency percentiles are more sensitive).

The surface shows that the transition state is abrupt beyond certain Ttest in each case, i.e., as

soon as the Ttest reaches values close to the overloaded state of the server, latency increases

significantly for the high percentiles (e.g., typically the 75th and higher). Note that similar node

instances tend to have similar latency/throughput surfaces, with smaller instances (with less

memory and computing power) displaying more abrupt changes at the transition state compared

to larger instances. Moreover, the impact of the design of the ramp up policies is also reflected

in Figure 4.7a and 4.6a. The fast ramp up tends to sparsely sample low throughput values,

while the linear ramp up during the fine-tuning phase covers the higher loads extensively.

4.5 More Complex Workload and Throughput Estima-

tion

While the assumption about the workload in the above sections is simple, i.e., one type of

operation (read) over one record from disk, often application providers intend to test more

complex workloads and observe the performance of an application in those scenarios. Based

on such observations, application providers plan for deployment and provisioning VMs. Perfor-

mance evaluation of an application depends on different elements. Figure 4.8 depicts different

workload elements that each individually might affect the performance estimation of applica-

tion (i.e., Throughput under certain SLA). For instance, each type of operation has its own

functionality and system design and involves different parts of a system. In a read operation,

data is fetched from a location on a disk, where it is already stored by a write operation. These

operations usually involve memory in addition to disk for boosting the overall performance.
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Figure 4.8: Workload elements involved in throughput estimation

Apart from the type of operation, size, number of records, workload distribution might also

affect the throughput estimation. The way the records are being requested(access behaviour)

decides if they should be fetched from memory or disk. Therefore, disk or memory access ulti-

mately affects the overall throughput(one seek request to disk costs 10ms), e.g., some records

are extremely popular and cached in memory and retrieved with a short response time.

Type, Ratio, Distribution and Throughput Estimation

In this part, I generate different workloads with different operation types, ratios and distribu-

tions and show the throughput estimation in each case. I generate different workloads using

both preliminary operations (read and write). I implemented multiple workloads described in

[CST+10], selecting workloads representative of different types of applications. The records are

requested according to both uniform and zipfian distributions (e.g., the Wikipedia articles are

accessed according to a zipfian distribution [UPvS09]). In the case of zipfian when choosing

records, some records are extremely popular while most records are unpopular. I utilized the

implementation of zipfian used in [CST+10] and integrated it with my tool.

Table. 4.1 lists four different workloads that are considered as use-cases. I estimate the through-

put for each case. Apache Cassandra involves both memory and disk to perform read and write

operations.

Figure 4.9 depicts the estimations of throughput for each workload in Table 4.1 on a medium

size node in the Amazon EC2 platform. I observe how the estimated performance changes de-
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Workload Operations Distribution Application Example
W1-only Write Write:100% Uniform A back-end to an Internet of Things

(IOT) application keep writing the in-
coming data where data is fed into a BI
system for further analysis

W2-only Read Read:100% Zipfian User profile cache, where profiles are
constructed elsewhere

W3-Read/Write
Read:95%
Write:5% Zipfian Photo tagging; add a tag or update it,

but most of the operations are read

W3-Read/Write
Read:50%
Write:50% Zipfian Session store recording recent actions

in a user session

Table 4.1: List of Workloads

Figure 4.9: Throughput estimation of different workloads on a medium size VM in EC2

pending on the type of workload the application sustains, including the distribution of requests,

and the ratio of read and write operations. Unlike lower-level benchmarks, my technique helps

dimension the required server resources depending on the specific application scenario. The

differences in performance between these scenarios come from the configuration of Apache Cas-

sandra, and the hit rate of the different Cassandra cache systems to achieve higher throughput

by attending requests in memory. High write performance is not surprising, that being one of

the main design goals of this storage system.

Size Impact on Throughput Estimation
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In this section I analyze the impact of varying the size on throughput estimation of read and

write. I ran my tool and estimated the throughput by varying the size of records ranging

from one character length (which is about one byte+100byte metadata) to 9Kbyte under SLA

latency of 150msec for 90th percentile. Read and write operations are chosen at random and

out of 1000 records for each different record size. Figure 4.10 shows boxplot of Testimate for

read and write operations based on different record sizes ranging from 100byte to 9 Kbytes.

The figure shows that in read, increasing the size of records has less impact on the throughput

returned by my benchmarking tool. The reason behind it is that the sector size on disk is about

4k. So, increasing the size of records does not change the throughput as each time the one or

maximum two sectors will be read. However, write performance in terms of the number will be

degraded but in fact writing to disk happens less frequently so the overall throughput in terms

of byte per second will grow. The purpose of this experiment is to show that my method is

able to estimate the throughput for each type of operations and with different record sizes.

4.6 Throughput Estimation for a Stateless Web Server

To demonstrate that my methodology is general purpose and can be applied to a different

application than a data store, I have deployed an apache web server and examined my technique.

I sent HTTP GET requests to the Apache web server that was deployed on different types of

cloud instances. When a HTTP request comes in, one child process gets the request and reads

the request. Then it parses the URL, finds the file name corresponding to the URL, checks

the file states, performs security checking, opens the file, reads its content and finally sends

the content to the client. The child process then listens for the next request. I measured the

latency values according to the methodology explained in Chapter 3. Using my technique I was

able to estimate the maximum throughput that this particular application can sustain under a

certain defined latency value. For my experiment the Apache web service was deployed on four

types of instances using Microsoft Azure cloud (A0, A1, A2, A3 with shared, 1, 2 and 4 cores

and 768, 1.75, 3.5 and 7GB memory respectively).



4.6. Throughput Estimation for a Stateless Web Server 39

Figure 4.10: Throughput estimation of write and read when size vary in medium size instance
in EC2

Figure 4.11 shows the box plot of Testimate values (HTTP GET requests per second) returned

from each instance based on SLA latency of 100msec for 90th percentile. All the instances

belong to the azure north Europe datacenter. As expected, the figure shows the nodes with

higher resources handle more requests(high cpu, memory). Moreover, the results shows that
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my methodology can be used effectively to identify the maximum throughput a web server can

sustain despite the variety of available types of instance with different profiles in a heterogeneous

environment like the cloud. In fact the throughput estimation results from the current and

previous sections achieved for different applications show the genericity of my technique in

estimating the throughput. In all cases I rely on latency as a sign to identify the maximum

throughput regardless of what application is being examined.

Figure 4.11: Estimated throughput (in terms of httpGet requests per seconds) of an Apache
webserver deployed on four types of instance in Microsoft Azure

4.7 Summary

In this chapter I have implemented the methodology set out in the previous chapter and es-

timated the maximum load a cloud application can sustain on various existing types of VMs

with different hardware specification in various cloud providers. This will translate an instance

with certain profile (hardware specification) to a value of throughput which can be interpreted

directly at the application level. I have also examined more complex workloads that involve

different workload elements. Moreover, I have identified a trade-off between the throughput

and latency of application servers. Finally, I have shown that my methodology can be used

with another type of application.
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Future Work

In this thesis, I have proposed a methodology which provides a trade-off between application

performance and server responsiveness on a given VM in cloud. One potential future area of

research that can benefit from this thesis is the research towards controlling the response time

by proposing techniques and algorithms to guarantee the response time of the application. For

instance, in modern geo-replicated data-store applications [LM10], maintaining consistency1

among replicas adds overhead to the system which will affect the performance of other repli-

cas and results in rising the response time, particularly when the application requires strong

consistency (meaning clients are intolerant to stale data) and the number of replicas is large.

Understanding such scenarios is one potential direction for future work where my tool can help

to analyse throughput latency trade-off in different cases e.g., one might setup application in

multiple locations with different consistency level and run my tool to estimate the throughput

in different situations. Another direction towards controlling the response time is design and

implementation of an autoscale system which will add, move and remove the nodes to the cur-

rent cluster in order to adjust the throughput output and maintain the response time of user

requests under a certain threshold value. My proposed methodology and technique can help

to understand the trade off between throughput and responsiveness of each replica. This can

further lead to building a predictive model that proactively anticipate latency value based on

1Please refer to Appendix B for further details regarding replication and consistency policy in geo-distributed
data store
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observed throughputs. Such a prediction is at the core functionality of the autoscaling system

where decisions to add or remove nodes are made.

Figure 5.1 depicts a high level design of such autoscaler management node. All requests are

received by the autoscaler and despatched to appropriate Cassandra nodes. The management

node can use the techniques proposed in this thesis to measure the capacity of each replica and

the degree of responsiveness based on the trade off between throughput and latency. Based on

that new nodes can be added in order to balance the load and preserve the response time to

be under a predefined value.

Figure 5.1: Cassandra nodes and Autoscaler management node
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Conclusion

In this thesis, I have presented a black-box technique that measures the performance of cloud

applications. I probe the application remotely, iteratively adjusting the generated load based on

the measured latency from previous steps. Using my technique, I have estimated the maximum

capacity of an application for a given SLA over multiple cloud platforms. My results show

that not only I can detect the performance differences between instance types and platforms,

but I can also pinpoint individual VMs that unusually exhibit poor performance. Moreover,

my methodology samples the server behaviour for a range of loads by recording the observed

latencies for each load. From sampling results, I identify trade-off between performance and

latency. I have also demonstrated the generic nature of my technique by testing it with a range

of workloads and two different types of applications.
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Appendix A

Cassandra Architecture for Read /

Write

Cassandra is an open source distributed database management system. It is a massively scal-

able, decentralized data store. It has been designed to handle very large amounts of data

spread out across many commodity servers while providing a highly available service with no

single point of failure. Cassandra is a O(1)-hop routing Distributed Hash Table (DHT) which

is eventually consistent but the consistency level can be tunable. Cassandra brings together the

distributed systems technologies from Dynamo [DHJ+07] and the data model from Google’s

BigTable [CDG+08].

A.1 Model Overview

Cassandra is a key-value data store, i.e., the data structure is a unique key and a collection of

columns associated with a Column family. The primary units of information in Cassandra are

described as follows:

• Column: A column is the atomic unit of information and is of the form name: value.
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• Row: It is the uniquely identifiable data in the system which groups together columns.

Every row in Cassandra is uniquely identifiable by its key.

• Column Family: A Column Family is the unit of abstraction containing keyed rows which

group together columns of highly structured data. They have no defined schema of column

names and types supported. It is equivalent to table in normal DBMS systems.

• Keyspace: The Keyspace is the top level unit of information in Cassandra. Column

families are subordinate to exactly one keyspace. It is equivalent to database in normal

DBMS systems.

A.2 Architecture Elements

Cassandra uses both memory and disk to perform the basic operations, i.e., read and write.

Before going deep into explaining how read and write paths look like, it is important to introduce

memory and disk elements that are involved in read and write operations. Cassandra memory

elements are explained as follows:

• Memtable: A sorted buffer that is created per column family and used at the time of

write to store recent added data. It is also used in read operation and serve the recent

stored data. By default, 1/3 of the heap will be considered to as memtable.

• Bloomfilter: A space-efficient probabilistic data structure that is used to test whether an

element is a member of a set or not. False positives are possible, but false negatives are

not. Bloom filter is used to quickly verify whether an existing disk (SSTable) contains a

particular row without actually approaching the disk.

• Key Cache: A memory space that is used for read operation and hold the location of keys

per-column family basis.

Cassandra disk elements are explained as follows:
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Figure A.1: Write path in Cassandra

• Commit log: This is a log file that is used by write operation. Data is written sequentially

into commit log file. Commit log is important because in case of system crash, Cassandra

would recreate memtables from commit log.

• SSTable (Sorted String Table): SSTable provides a persistent, ordered immutable map

from keys to values, where both keys and values are arbitrary byte strings[CDG+08] and

is maintained per table.

A.3 Write Path

Write operation involves both memory and disk elements. To write a record Cassandra first

store data in commit log and then memtable and reply back to client. Memtable can be seen as

dedicated cache created individually for each column family. Memtable also contains all recent

inserts. Each new insert for the same key and column will overwrite existing one. Multiple

updates on single column will result in multiple entries in commit log, and single entry in

memtable. Memtable will be flushed to disk (SSTable) when 1)it exceed maximum capacity

2)there are too many keys. Commit log is important as at the time of system crash, memtable

would be created based on that. Flushing memtable creates immutable SSTable which simply

save data to disk as sequential write. Compaction process will merge few SSTables into one

to clean up, deleted data and merge together different modifications of single column. Before
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Figure A.2: Read path in Cassandra

compaction, a few SSTables could contain value of single column, after compaction it will be

only one. Once the number of sstable reaches to a number (default is 4) compaction will

happen. figure A.1 shows the write path and various disk and memory elements involved in

this operation.

A.4 Read Path

To read a record, Cassandra search a sequence of memory and disk locations and return a record.

Figure A.2 depicts Cassandra read path. First, memtable is being searched, if requested record

has been recently written, it is available from memtable and there is no need to search it from

disk. This will improve the read performance.

If the data is not available in memtable, the row cache will be checked. If data is available it

will be returned quickly from row cache. In other cases to quickly ensure data is in the disk,

Cassandra use bloom filter. Bloom filters are used to save I/O operation when performing a key

lookup: each SSTable has a bloom filter associated with it. This gives Cassandra the possibility

to quickly verify, whether a given SSTable contains particular row. This will be checked before

doing any disk seeks. Making queries for keys that don’t exist in disk does not add any extra

delay.

Now Cassandra have scanned all possible SSTables within particular column family, and found

those with positive bloom filter for row key. Therefore it will sort them by last modification

time and retrieve the data from most recent SSTable. Before approaching disk, one more check

will happen. Key cache will be checked, a hit will lead directly from row key to column index.
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If it does not exist, index.db file contains sorted row keys will be searched (binary search) for

the column index. Finally the data will be retrieved from disk using the index.



Appendix B

Replication and Consistency in

Geo-Distributed Data store

A number of systems that replicate data across geographically distributed data-centers (DCs)

have emerged in recent years [LM10, DHJ+07, CDE+13, EWS12, CRS+08, LFKA13, BBC+11].

An important requirement on these systems is the need to support consistent updates on

distributed replicas, and ensure both low read and write latencies. This is necessary as those

systems work as back-ends for interactive web applications and serve reads and writes requests of

geographically distributed end users (e.g., Facebook timelines, collaborative editing). Such geo-

distributed applications are more complicated than simple replica servers which contain static

content. Achieving low read and write latencies while meeting the consistency requirements is

challenging. Replication and consistency might affect the overall perceived latency due to extra

cross data-center latency. to maintain consistency across distributed replicas. In this section,

I will provide relevant information about the replication and consistency in geo-distributed

data-stores.

A commonly used scheme for geo-replicated data was to use a master-slave system, with master

and slave replicas located in different DCs, and data asynchronously copied to the slave. How-

ever, slaves may not be completely synchronized with the master when a failure occurs. The

system might serve stale data during the failure, and application-level reconciliation may be
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required once the master recovers [Mor]. On the other hand, synchronized master-slave systems

ensure consistency but face higher write latencies.

To address these limitations with master-slave systems, many geo-distributed cloud storage

systems [CDE+13, BBC+11, LFKA13, BAC+13, SPAL11, KPF+13, LFKA11, EWS12] have

been developed in the recent years. A distinguishing aspect of cloud datastores is the use of

algorithms (e.g., quorum protocols [DHJ+07, LM10]) to maintain consistency across distributed

replicas. Many geo-distributed datastores such as Dynamo [DHJ+07], and Cassandra [LM10]

sacrifice stronger consistency for greater availability. Such systems offer tunable consistency at

the level of operations. For example, consistency level of read (or write) can be set in [LM10]

at different levels from weak level like any (if acknowledgement received from any replica, the

operation is successful), Two (if two acknowledgements received from replicas, the operation

is successful), Three to moderate level like Quorum and strong level like all (if all of replicas

acknowledge, the operation is successful).

Quorum-based datastores : Quorum protocols have been extensively used in the distributed

systems community for managing replicated data [Gif79]. Under quorum replication, the data-

store writes a data item by sending it to a set of replicas (called a write quorum) and reads

a data item by fetching it from a possibly different set of replicas (called a read quorum).

While classical quorum protocols [Gif79] guarantee strong consistency, many geo-distributed

datastores such as Dynamo [DHJ+07], and Cassandra [LM10] employ adapted versions of the

quorum protocol, and sacrifice stronger consistency for greater availability [DHJ+07]. In these

systems, reads (or writes) are sent to all replicas, and the read (or write) is treated successful if

acknowledgements are received from a quorum. In case the replicas do not agree on the value

of the item on a read, typically, the most recent value is returned to the user [DHJ+07, LM10],

and a background process is used to propagate this value to other replicas.

The Quorum level writes to number of nodes that make up a quorum. A quorum is calculated,

and then rounded down to a whole number, as follows:

(Sum of Replication Factors / 2) + 1



51

For example, in a three data centers cluster where each data center set a replication factor of

1, a quorum is 2. It means that read (or write) operation is successful if 2 replicas perform and

return successfully.

The most common way of using the above scenario in such systems is when replication is

configured in order to satisfy the strict quorum property. Strict quorum property, ensures that

any read and write quorum of a data item intersect. Configuring replication with the strict

quorum property in Cassandra and Dynamo guarantees read-your-writes consistency [Vog09].

Further, any read to a data item sees no version older than the last complete successful write

for that item (though it may see any later write that is unsuccessful or is partially complete).

Strict quorum property is defined as follows:

R +W < N

where N is the number of replicas, R and W are the read and write quorum sizes respec-

tively. Furthermore, Dynamo and Cassandra can be explicitly configured with weaker quorum

requirements leading to even weaker consistency guarantees [BVF+12].
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ments in the cloud: observing, analyzing, and reducing variance. Proceedings of

the VLDB Endowment, 3(1-2):460–471, 2010.

[SPAL11] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. Transactional

storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, pages 385–400. ACM, 2011.

[spe] Spec java virtual machine benchmark 2008., http://www.spec.org/jvm2008/.

[SSS+08] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert

Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.



BIBLIOGRAPHY 61

Cloudstone: Multi-platform, multi-language benchmark and measurement tools

for web 2.0. In Proc. of CCA, volume 8, 2008.

[STA01] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. On the effectiveness of dns-

based server selection. In INFOCOM 2001. Twentieth Annual Joint Conference of

the IEEE Computer and Communications Societies. Proceedings. IEEE, volume 3,

pages 1801–1810. IEEE, 2001.

[tpc14] Tpc-c, http://www.tpc.org/tpcc/, 2014.

[tpi] tcpping. http://www.vdberg.org/~richard/tcpping.html/.

[Ube01] Ubench. http://phystech.com/download/ubench.html., 2001.

[uni] Unixbench. http://freecode.com/projects/unixbench/.

[UPvS09] Guido Urdaneta, Guillaume Pierre, and Maarten van Steen. Wikipedia workload

analysis for decentralized hosting. Elsevier Computer Networks, 53(11):1830–1845,

July 2009. http://www.globule.org/publi/WWADH_comnet2009.html.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44,

2009.

[VRMCL08] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A break

in the clouds: towards a cloud definition. ACM SIGCOMM Computer Commu-

nication Review, 39(1):50–55, 2008.

[WAz14] Windows azure traffic manager (watm), http://azure.microsoft.com/en-

us/services/traffic-manager/, 2014.

[Wik05] The technology behind powerdns hosting. https://www.powerdns.net/en/content/dns-

technology.aspx, 2005.

[WJFR10] Patrick Wendell, Joe Wenjie Jiang, Michael J Freedman, and Jennifer Rexford.

Donar: decentralized server selection for cloud services. ACM SIGCOMM Com-

puter Communication Review, 40(4):231–242, 2010.



62 BIBLIOGRAPHY

[WN10] Guohui Wang and TS Eugene Ng. The impact of virtualization on network perfor-

mance of amazon ec2 data center. In INFOCOM, 2010 Proceedings IEEE, pages

1–9. IEEE, 2010.

[WPP02] Limin Wang, Vivek Pai, and Larry Peterson. The effectiveness of request redirec-

tion on cdn robustness. ACM SIGOPS Operating Systems Review, 36(SI):345–360,

2002.

[WSS05] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: A lightweight

network location service without virtual coordinates. ACM SIGCOMM Computer

Communication Review, 35(4):85–96, 2005.

[Zab14] Zabbix. http://www.zabbix.com/, 2014.


