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Abstract

Background

A common approach to sample size calculation for cluster randomised trials (CRTs) is to calculate

the sample size assuming individual randomisation and multiply it by an inflation factor, the design

effect. This approach is well established for binary and continuous outcomes, but less so for ordinal.

As the variety in trial design increases alternative or more complex methods are required. There is

currently no single resource that provides a comprehensive summary of methods. This thesis aims

to provide a unique contribution towards the review and development of sample size methods for

CRTs, with a focus on ordinal outcomes.

Methods

I provide a comprehensive review of sample size methods for CRTs and summarise the method-

ological gaps that remain. Through simulation I evaluate the power performance, under realistic

trial scenarios, of the design effect for ordinal outcomes calculated using a kappa-type intracluster

correlation coefficient (ICC), the ICC on an assumed underlying variable and an ANOVA ICC. I

provide practical guidance for sample size calculation for ordinal outcomes in CRTs.

Results

Simulation results showed when the number of clusters was large the ANOVA and kappa-type es-

timates were equivalent, and smaller than the latent variable ICC. Use of the ANOVA ICC in the

design effect produced adequately powered trials and power was marginally reduced under a minor

deviation from the common assumption of proportional odds used in ordered regression.

Conclusions

For outcomes with three to five categories the ANOVA ICC, calculated by assigning numerical

equally spaced scores to the ordinal categories, can be used in the simple design effect to produce

an adequately powered trial. The method assumes an analysis by random effects ordered regression

with proportional odds, a reasonable number of clusters, and clusters of the same size.
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Cluster-level analysis A summary statistic is calculated for each cluster and then standard sta-

tistical analysis methods applied

Coefficient of variation in outcome An alternative measure to the ICC for estimating the

between-cluster variation

Cohort design The individuals sampled from the cluster at baseline are then measured again at

subsequent time points

CONSORT The CONSORT statement consists of a 25-item checklist for improving and standard-

ising the reporting of clinical trials

Cross sectional design A different sample within the cluster is selected for measurement at each
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Matched pair design Clusters are paired based on similarities such as cluster size, one cluster
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Chapter 1

Introduction

The methodology for conducting sample size calculations for individually randomised trials is well

established. Methods for cluster randomised trials are less developed and can be more complex due

to the clustering inherent to the design. As I show in this chapter the use of cluster randomised

trials has increased in recent years and hence there is now more methodological development around

the design, conduct and analysis of these trials. The focus of this thesis is to provide a unique

contribution towards the review and development of sample size methods for cluster randomised

trials.

Many methods of sample size calculation for cluster randomised trials are extensions of methods

used for individually randomised trials. Hence this chapter starts with a description of sample size

formulae for individually randomised trials with explanation of how these are derived in general.

Cluster randomised trials are the focus of the remainder of the chapter, including the rationale behind

their use and a description of the added complexity they present for sample size calculation. The

most common approach to their sample size calculation is presented and its limitations described.

To place my research in context I provide a brief review of the historical development of sample size

calculations for cluster randomised trials. The chapter concludes with a detailed outline of the aims,

objectives and structure of the thesis.
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1.1. RANDOMISED CONTROLLED TRIALS (RCTS)

1.1 Randomised Controlled Trials (RCTs)

Well designed and conducted Randomised Controlled Trials (RCTs) are seen as the gold standard in

research design for the evaluation of medical interventions to improve participant outcomes. In the

most common design individuals are randomly allocated, with pre-defined probability, to treatment

group and their outcomes compared at a pre-defined time point post-randomisation. The design

usually involves two groups; those that receive the intervention under investigation and those that

receive a control (either the currently accepted standard treatment, no treatment, or a placebo).

This is known as a standard two-arm parallel group design.

1.2 Sample size calculations for RCTs

The aim of an RCT is to provide reliable evidence of whether a treatment is safe and efficacious. In

designing an RCT we must calculate in advance the number of participants required that will provide

sufficient probability of detecting a clinically important treatment difference if such a difference

exists, while also providing reasonable evidence to conclude no treatment difference if none is seen.

An appropriately sized trial allows one to reliably conclude that any difference seen between the

treatment groups can be attributed to a real effect of treatment rather than to chance.

At a minimum calculations require knowledge about 1) the primary outcome measure and a descrip-

tion of its variability, 2) an estimate of the minimally important treatment difference, 3) the analysis

to be performed i.e. the null and alternative hypotheses with associated test statistic, 4) the Type I

error to be tolerated and, 5) the amount of statistical power required.1

The following formulae can be used for sample size calculation for different data types in a two-

arm, parallel group individually randomised trial. The number of individuals required per treatment

group is denoted m.

1.2.1 Continuous outcomes

m =
(z1−α/2 + z1−β)22σ2

δ2
(1.1)
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1.2. SAMPLE SIZE CALCULATIONS FOR RCTS

Where Zx is the x’th percentage point of the standard normal distribution, δ represents the minimally

clinically important difference in treatment means, µ1 − µ2, and σ2 the variance in the outcome.

1.2.2 Binary outcomes

m =
(z1−α/2 + z1−β)2[π1(1− π1) + π2(1− π2)]

δ2
(1.2)

Where π1 is the probability of an event in the experimental group and π2 the probability of an event

in the control group and δ represents the minimally clinically important difference in treatment

proportions, π1 − π2.

1.2.3 Ordinal outcomes

For an ordered categorical outcome with k levels, q = 1, 2, . . . k the formula for m is given by

Whitehead2

m =
6(z1−α/2 + z1−β)2/(logOR)2

1−∑k
q=1 π̄

3
q

(1.3)

π̄q is the mean proportion expected in category q and OR is the odds ratio of a patient being in

a given category or less, in one group compared to the other. Whitehead assumes the lower the

category the better the outcome.

1.2.4 Time-to-event outcomes

For time-to-event outcomes there are two commonly used formulae. The first, as defined by Schoen-

feld is:3

m =
(z1−α/2 + z1−β)2

log2
eθ(1− πc)

(1.4)

Where θ denotes the hazard ratio of group 1 over group 2 and πc the probability of being censored.

The second formula, defined by Freedman,4 provides an estimate of the total number of events

required, E
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E = (z1−α/2 + z1−β)2 (1 + θ)2

(1− θ)2
(1.5)

1.2.5 Count outcomes

m =
[zα/2

√
2 + zβ

√
[1 + e−b̃]]2

eβ0 b̃2
(1.6)

Where β0 represents the event rate in the control group and b is the model parameter related to

treatment effect.

1.2.6 Rate outcomes

The number of person years required in each arm is given by

m =
(z1−α/2 + z1−β)2(λ1 + λ2)

(λ1 − λ2)2
(1.7)

Where λ1 and λ2 are the expected rates in each arm.

1.2.7 Derivation of sample size formula

Regardless of the trial design the process of deriving a sample size formula can be described in four

steps. These steps are illustrated here, assuming a normally distributed continuous outcome and a

standard two-arm, parallel group design.

Step 1: Define the treatment difference and variance

For continuous normally distributed outcomes the mean provides a useful summary statistic to

describe the response in each treatment group. µ1 and µ2 represent the population mean of the

treatment and control groups with associated variance σ2 (assumed to be the same in each group).

These population means will be estimated by sample means x̄1 and x̄2 with standard deviation s

at the end of the trial. For the purpose of sample size calculation estimates of x̄2 and s might be

estimated from previous similar studies and the value of x̄1 is usually chosen on the basis of clinical

expertise. The difference between the means d = x̄1 − x̄2 provides an estimate of the minimal
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clinically important treatment effect. The standard error of this difference is
√

2σ2

m and can be

estimated using the square of the sample standard deviation, s2 in place of σ2.

Step 2: Define the analysis method

In the context of clinical trials the Null hypothesis, denoted H0 is usually that there is no difference

between the two treatment groups.

H0: x̄1 − x̄2 = d = 0

The alternative hypothesis (our hypothesis of interest), denoted H1 is that there is a difference

between treatment groups, usually a difference in either direction is considered (a two-sided test).

H1: x̄1 − x̄2 = d 6= 0 (2-sided)

Step 3: Define the test statistic

In hypothesis testing we assume that the null hypothesis is true and we use the data collected from

the trial, to find evidence against it. A probability value (or P-value) is calculated to say how likely

it is that we would have obtained the observed trial data, or something more extreme, if in fact the

null hypothesis were true. A P-value of less than 5% is usually taken as providing enough evidence

to reject the null hypothesis. However, it has been argued by some that the results of trials should

not be categorised into significant or non-significant on the basis of a P-value cut-off. Instead they

should be interpreted in the context of the type of study and other available evidence.5

In order to derive the P-value we must first calculate a test statistic. The test statistic is a function

of our data and reduces the observed data to a single value. For continuous outcomes this is usually

the z-test:

z =
(x̄1 − x̄2)− d

σ
√

2
m

(1.8)

An important property of the test statistic is that the distribution under the null hypothesis is

known. In this case, under the null hypothesis the test statistic follows a standard normal distribution

Z ∼ N(0, 1).
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Figure 1.1: The probability density function (pdf) of a standard Normal distribution

When the value for z is 1.96, we know that for a standard normal distribution 0.975 of the distribution

lies below this and 0.025 above. Therefore if our test statistic gives a value of 1.96 or greater there

is a 2.5% chance or less that we would have observed our data under the Null hypothesis, and hence

we would reject the null hypothesis, see Figure 1.1. Due to the symmetry of the normal distribution

2.5% of the distribution also lies below -1.96. Therefore for a two-sided hypothesis test at the 5%

significance level a z value less than -1.96 or greater than 1.96 would provide significant evidence to

reject the Null hypothesis.

Step 4: Evaluate the test statistic under the null and alternative hypotheses

When deciding whether to reject the null hypothesis we can potentially make two types of errors

(1) Type I error: We reject the null hypothesis when it is in fact true (2) Type II error: We fail to

reject the null hypothesis when it is false. The acceptable levels for these errors are controlled by

the researcher at the design stage. The convention is to set the probability of a Type I error to 5%

or less (see step 3), referred to as α and the probability of a Type II error, referred to as β to 20%

or less.

Under the Null hypothesis, the hypothesised treatment effect is 0 and the test statistic, Equation

1.8, can be written as:

z =
(x̄1 − x̄2)

σ
√

2
m

(1.9)
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Under the null hypothesis if the value of this test statistic is z1−α or greater we are incorrectly

rejecting the null hypothesis i.e. making a Type I error, see Part A of figure 1.2.

z1−α =
(x̄1 − x̄2)

σ
√

2
m

(x̄1 − x̄2) = z1−α[σ

√
2

m
]

Under the Alternative hypothesis, where the hypothesised treatment effect is δ, if the value of the

test statistic is −z1−β or less we make a Type II error, see Part B of figure 1.2.

−z1−β =
(x̄1 − x̄2)− δ

σ
√

2
m

(x̄1 − x̄2) = δ − z1−β [σ

√
2

m
]

Equating these two expressions

z1−α[σ

√
2

m
] = δ − z1−β [σ

√
2

m
]

upon rearranging we are left with m, the required number of individuals per treatment group for a

continuous outcome and standard parallel group design

m =
2(z1−α+z1−β)2

∆2

Where ∆ = δ
σ . For a two-sided test α should be replaced with α/2.
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Figure 1.2: Graphical illustration of hypothesis testing errors
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1.3 Cluster randomised trials (CRTs)

In some circumstances groups (or clusters) of individuals are randomised together, as a unit, rather

than individually. These clusters are formed by some shared characteristic; they may be members

of the same family or people within a particular geographical location. The cluster may be large,

such as a hospital or General Practice surgery, or smaller like a family. These trials are referred to

as Cluster Randomised Trials (CRTs) and are the focus of this thesis.

1.3.1 Rationale for cluster based randomisation

Broadly speaking the rationale for cluster based randomisation is driven by the nature of the inter-

vention, the minimisation of costs, and/or the logistics of implementing the intervention.6–8

Some interventions are naturally applied at the level of the cluster and hence lend themselves to

cluster-based randomisation. For example a water filtration system to prevent diseases from con-

taminated water must be implemented at the water source either for a community or household and

therefore would affect all those living within that community or household.

It may be more cost efficient to implement an intervention at the cluster level. The IRIS trial

assessed the effectiveness of a training intervention to improve the recognition of domestic violence

by General Practitioners (GPs) working in different areas across the UK.9 Under randomisation of

general practice half of the GP practices were visited and trained in the intervention by trial staff.

This was more efficient than to have visited all practices and trained only half of the GPs within

each practice (as would occur under randomisation of individual GPs).

Avoidance of contamination is one of the advantages often cited for cluster-based randomisation.

Contamination refers to the process by which within at least one of the trial arms there may be an

unwanted presence of another trial arm. Contamination of treatment groups can result in a dilution

of the true treatment effect. In a trial of pain management to reduce behavioural disturbances among

dementia sufferers the care home was the unit of randomisation.10 The authors felt that it would be

difficult to individually randomise dementia suffers. Care staff receiving training in the assessment

and treatment of pain would be required to provide specific support to some participants and to, in
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effect, “unlearn” this training when providing treatment to control participants. Therefore an effect

of the training would likely be present in the control arm. Care staff may also struggle with the

ethical implications of having to do this. Randomisation by cluster in the IRIS trial also reduced the

risk of contamination among health professionals, whereby GPs would likely share aspects of their

training and new knowledge with other GPs in their practice had they been randomised individually.

Randomisation of clusters can also provide advantages in terms of treatment compliance. For example

interventions aimed at smoking cessation are more easily implemented at the level of the general

practice. Participants attending the same practice may know each other or come into contact when

attending the practice. The fact that participants are receiving the same intervention and able

to discuss the intervention and support each other, may actually lead to greater compliance to

the treatment than would be obtained in an individually randomised trial, and hence maximize

the effect of the treatment. Along similar lines, cluster randomised trials are often conducted in

infectious diseases or vaccine trials where the impact of the intervention is maximized when a large

proportion receives the intervention.11

1.3.2 Between-cluster variability

The outcomes among individuals within the same cluster are likely to be more similar than those

from a random sample of individuals. For example individuals attending the same general practice

will live within the practice catchment area and likely share a common environment, education and

economic status as well as being treated by the same health care professionals. These factors will

influence their health outcomes in a similar way, leading to similarity within the cluster.

The intracluster correlation coefficient

The magnitude of this similarity, or clustering, is most commonly quantified by a parameter known

as the intracluster correlation coefficient (ICC), usually denoted by ρ. When ρ = 0 we have, in effect,

statistical independence between members of a cluster. When ρ = 1 the opposite is true and we have

total dependence among members of a cluster.

For continuous outcomes the ICC can be expressed as
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1.3. CLUSTER RANDOMISED TRIALS (CRTS)

ρ =
σ2
b

σ2
b + σ2

w

(1.10)

Where σ2
w is the within-cluster variance and σ2

b the between-cluster variance.

Historically ICCs were not explicitly published in reports of CRT’s. Nowadays, however, there are

many sources of ICC estimates8,12,13 as well as publications which describe the general behaviour

and patterns in ICCs across different therapeutic areas, outcomes and clusters.14–18 For three types

of cluster that vary in size: the spouse pair; general practice and country Donner calculated the

within-cluster correlation for lifestyle outcomes: hypertension; smoking status; alcohol consumption;

and body fat. For all outcomes the within-cluster correlation decreased with the corresponding size

of the cluster.19

The coefficient of variation in outcome

An alternative measure of clustering to the ICC is the coefficient of variation in the outcome. This

is the between-cluster standard deviation divided by the parameter of interest i.e. the proportion,

rate or mean within each cluster.20

k =
σb
µ

(1.11)

This measure is particularly useful when the primary outcome variable is a rate as an ICC cannot

be calculated in that situation.

The relationship between the ICC and coefficient of variation

The clustering of outcomes must be accounted for in the sample size calculation using one of the

two measures of correlation, which will be described in more detail later (Section 1.4). For binary

outcomes a simple relationship exists between the two correlation measures but they make different

assumptions about how the between-cluster variation differs across treatment groups and so will

produce different sample size requirements. The use of the ICC is recommended for sample size
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calculations of binary outcomes unless the proportion is very small, where both methods give similar

results.21

1.3.3 Prevalence of cluster based randomisation

Several reviews of CRTs have been published and are summarised in Table 1.1. Many of these

reviews note that the prevalence of CRTs is increasing over time.22–30 In the review by Eldridge et

al the number of cluster trials identified in primary care in 1997 had almost doubled by 1999.25

This increased use of CRTs is reflected in the increase in the methodological literature. The paper

by Cornfield in 197831 was the first to highlight the fact that randomisation by cluster produces a

less efficient design. Since then five textbooks have been published on cluster trials by: Murray32

in 1998; Donner and Klar6 in 2000; Hayes and Moulton7 in 2009; Eldridge and Kerry21 in 2012;

and Campbell and Walters33 in 2014. The journals Statistics in Medicine, Clinical Trials, Statistical

Methods in Medical Research, and the American Journal of Epidemiology have each had a special

issue dedicated to cluster randomised trials. Most recently, in 2015, the Trials Journal published a

collection of articles on stepped-wedge designs, a type of CRT. Cluster randomised trials is a very

exciting, and rapidly expanding, area of research to work in.
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Table 1.1: Characteristics of 20 published reviews of cluster randomised trials

Author Dates Area Main sources N Review topic

Donner (1990)34 1979-1989 Non therapeutic intervention tri-

als

Lancet, NEJM, AJE, IJE 16 Quality of methods

Simpson (1995)35 1990-1993 Primary prevention trials American Journal of Public Health,

Preventive Medicine

21 Quality of methods

Chuang (2000)36 1974-1998 Computer-based clinical decision

support systems

Medline, Embase, and INSPEC 24 Quality of methods

Hayes (2000)11 1986-1999 infectious diseases Medline database 21 Evaluation of de-

sign features

Isaakidis (2003)23 1973-2001 Trials in Sub-Saharan Africa Medline, Cochrane Controlled Trials

Register, African Published Trials Reg-

ister

51 Quality of methods

and reporting

Puffer (2003)37 1997-2002 General medicine BMJ, Lancet, NEJM 36 Risk of bias

Eldridge (2004)25 1997-2000 Primary care Cochrane Controlled Trials register ,

UK National Research Register and

conference proceedings

152 Quality of methods

Varnell (2004)22 1998-2002 General medicine American Journal of Public Health,

Preventative Medicine

60 Quality of methods

Continued on next page
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Table 1.1 – continued from previous page

Author Dates Area Main sources N Review topic

Bland (2004)26 1983-2003 General medicine BMJ 18 Quality of methods

Murray(2008)38 2002-2006 Oncology Medline, PubMed 75 Quality of methods

Eldridge (2008)39 2004-2005 Primary care BMJ, BJGP, FP, preventive medicine,

Annals of internal medicine, journal of

general internal medicine, Paediatrics

34 Internal and exter-

nal validity

Bowater (2009)40 1998-2007 Tropical parasitic disease Medline database 35 Quality of methods

Handlos (2009)27 1998-2008 Maternal and child health Pubmed, SCOPUS, Cochrane library 35 Quality of methods

Mdege (2010)24 To Jan 2010 Stepped wedge trial Medline, Embase, PsycINFO, HMIC,

CINAHL, Cochrane library, Web of

Knowledge, current controlled trials

register, google scholar

25 Areas of applica-

tion

Ivers (2011)30 2000-2008 General Medicine Medline database 300 Quality of methods

and reporting

Walleser (2011)41 2004-2010 Trials in children Medline, CINAHL, Embase, cochrane

central register

106 Quality of report-

ing

Crespi (2011)42 1995-2010 Cancer screening interventions PubMed, Web of Science 50 quality of analy-

sis/outcome report-

ing

Brierley (2012)43 2008 General Medicine BMJ, Lancet, JAMA, NEJM 24 Bias in recruitment

Continued on next page

39



Table 1.1 – continued from previous page

Author Dates Area Main sources N Review topic

Giraudeau (2012)44 2008 General Medicine Medline database 173 Reporting of in-

formed consent

Froud(2012)45 2005-2009 Oral Health PubMed and experts in the field 23 Quality of methods

and reporting

Diaz-Ordaz

(2013)28

up to 2010 Trials in old age residential facil-

ities

Medline database 73 Quality of methods

and reporting

Diaz-Ordaz

(2013)29

up to 2010 Trials in old age residential facil-

ities

Medline database 73 Reporting of in-

formed consent

Sutton (2013)46 2003-2011 Stroke PubMed 15 Quality of report-

ing
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1.3.4 Guidelines for best practice

Many of the fundamental principles of RCTs such as informed consent, randomisation, sample size

and analysis are more complex with randomisation by cluster. Methodology and guidelines for best

practice are not as well developed as those for individually randomised trials. The guidance that is

available is described in the following sections.

Design, analysis and conduct

In addition to the published textbooks on CRTs there are some additional sources of guidance on

the design, analysis and conduct of cluster randomised trials. In 1999 the methodological literature

around cluster randomised trials was reviewed and synthesized into 12 methodological recommenda-

tions designed to aid investigators designing and conducting these trials. The review covers study

design, measures of between-cluster variation, sample size and analysis.8 With regards to sample

size, the focus of my research, the advice given was to avoid designing studies with less than four

clusters per group and to calculate a sample size appropriate for cluster randomisation. In 2002 the

Medical Research Council (MRC) produced a brief guidance booklet on the methodological and eth-

ical aspects of cluster randomised trials which provides a basic introduction to the main issues to be

aware of when randomising clusters. Their advice on sample size was for a minimum of five clusters

per group. (http://www.cebma.org/wp-content/uploads/Cluster-randomised-trials-Methodological-

and-ethical-considerations.pdf). Guidance has also been developed for specific aspects of the cluster

randomised trial such as consent procedures for trials conducted in residential facilities.29

Reporting

The CONSORT statement consists of a 25-item checklist for improving and standardising the re-

porting of clinical trials. The statement was first published in 199647 and has since gone through

two further revisions.48,49 In 2004 the statement was extended for cluster randomised trials50 and

this extension was updated in 2012 following the update to the main statement in 2010.51

The item which relates to describing the sample size calculation for individually randomised trials

formally recommends the following descriptive elements to be reported (i) the estimated outcomes

in each group (which implies the minimum important treatment effect); (ii) the level of significance
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(or the α (type I) error level); (iii) the statistical power (or the β (type II) error level); and (iv) for

continuous outcomes, the assumed standard deviation of the outcome. For cluster randomised trials

the 2004 CONSORT extension additionally recommends the reporting of two further descriptive ele-

ments (v) the number of clusters or the cluster size(s) and (vi) the intracluster correlation coefficient

(ICC) or coefficient of variation (k), along with a measure of its uncertainty. The 2012 revision

additionally recommends specification of whether equal or unequal cluster sizes are assumed.

1.4 Sample size calculations for cluster randomised trials

For cluster randomised trials there may be several combinations of the number of clusters and cluster

size that produce designs with equivalent power. In these situations, to determine the optimal

design, one may additionally consider the efficiency of these designs in terms of the costs involved

in recruiting and measuring clusters and individuals within clusters. These scenarios are briefly

considered in Chapter Six but the focus of this thesis are scenarios where the cluster size or number

of clusters is fixed, or constrained, at the point of sample size calculation and the trial is designed

to produce a specified level of power.

In this section I briefly describe the most common approach to sample size calculation for cluster

randomised trials and describe recent developments prior to the start of my research and unresolved

issues to place my research in context. In Chapter Six I will return to look in more detail at the

developments and unresolved issues that remain at the end of my research.

1.4.1 Early work

Cornfield31 recognised that randomisation by cluster resulted in a less efficient design and so the

sample size assuming individual randomisation must be inflated to achieve adequate power under

cluster randomisation. Cornfield’s work was followed in 1981 by Donner52 who quantified this infla-

tion factor and described it as the Design effect. Despite being over 30 years old these two papers

still remain highly cited and use of the design effect for sample size calculation remains the most

common approach.
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1.4.2 The Design Effect(DE)

For continuous and binary outcomes the sample size calculated assuming individual randomisation

(Equations 1.1 or 1.2) is multiplied by the design effect to account for randomisation by cluster.

This design effect is given by

DE = 1 + (n− 1)ρ (1.12)

Where n is the number of individuals per cluster (assumed constant) and ρ is the intracluster corre-

lation coefficient. When we conduct a CRT we may sample an entire cluster such as all participants

registered at a General Practice, or take a sub-sample for inclusion into the trial. Throughout this

thesis, when I refer to cluster size, I am specifically referring to the sample of the cluster that is to

be included in the analysis, which may or may not be the entire cluster.

1.4.3 Recent developments

The design effect proposed by Donner was derived for continuous or binary data analysed at the

cluster level assuming a fixed cluster size. In some trials such as those conducted in ophthalmology

where a subject is the cluster and measurements are taken on each eye fixed cluster size may be a

reasonable assumption to make. However, to have variable cluster sizes is more common. In trials

where the cluster size is very variable use of the average cluster size in the design effect will likely

underestimate the required sample size. For cluster-level analysis simple methods are available that

provide an appropriate sample size using the harmonic mean of the sample size in each cluster.7

Recent reviews have shown developments in sample size calculations including methods allowing for:

variable cluster sizes, matched designs, re-estimation using internal pilots, attrition, incorporation of

covariates or multiple time points, time-to-event outcomes, and incorporation of imprecision in the

ICC.8,53–55

1.4.4 Unresolved issues

The methodological reviews indicate that although many sample size methods are being developed

to deal with variations and complexities in trial design the majority are still only applicable to binary

43



1.4. SAMPLE SIZE CALCULATIONS FOR CLUSTER RANDOMISED TRIALS

or continuous outcomes. Methodology for alternative outcomes such as ordinal, count or time-to-

event is in the minority, especially for variations to the standard parallel group trial. However, these

reviews present only selected methods and do not provide a comprehensive review of all available

sample size methods. In Chapter Two I conduct a systematic review to provide a comprehensive

description of published sample size methods for cluster randomised trials.

1.4.5 Quality of methodology and reporting

Despite the simplicity of the design effect many trialists are still unaware of the need to adjust sample

size calculations to account for clustering in cluster randomised trials, or perhaps unaware that the

design they are using induces such clustering. Many of the reviews in Table 1.1 examined the quality

of both the trial methodology and reporting. The proportion of trials that reported a sample size

calculation and the proportion that reported an appropriate calculation can be seen in Table 1.2.

Despite the introduction of the CONSORT Statement many of the reviews showed that the reporting

was inadequate. In the largest review by Ivers et al whose sample is perhaps the most representative

of the health research field just over half of the trials reported a sample size calculation.30

Given that the CONSORT extension for cluster randomised trials was first published in 2004 it is

clear from Table 1.2 that sample sizes that appropriately account for clustering are reported with

low frequency. Much improvement to reporting is needed, poor reporting can make it difficult for

those designing trials to obtain the estimates they need for sample size calculations.

In this section I have described the use of the design effect as the most common method for sample

size calculation in cluster randomised trials. However, as the variety in trial designs increase such

as variable cluster sizes, attrition or repeated measurements the simple design effect may not always

be appropriate. The focus of my research is sample size calculations for ordinal outcomes. In the

following section I provide the definition of an ordinal outcome used throughout this research and

describe some simple and intuitive approaches to sample size calculation and why they may not

always be adequate.

44



1.5. ORDINAL OUTCOMES

Table 1.2: Description of the quality of sample size reporting identified in published reviews of cluster
randomised trials

Author Reported
sample size
calculation

% Reported
appropriate
sample size
calculation

%

Donner (1990)34 NA 3/16 19%
Simpson (1995)35 5/21 24% 4/21 19%
Chuang (2000)36 1/24 4% 0/24 0%
Isaakidis (2003)23 47/51 92% 10/51 20%
Puffer (2003)37 NA 20/36 56%
Eldridge (2004)25 68/152 45% 21/152 14%
Varnell (2004)22 NA 9/60 15%
Murray(2008)38 40/75 53% 18/75 24%
Eldridge (2008)39 29/34 85% 21/34 62%
Bowater (2009)40 17/35 49% 10/35 29%
Handlos (2009)27 33/35 94% 25/35 71%
Mdege (2010)24 8/15 53% 3/15 20%
Ivers (2011)30 164/300 55% 100/300 33%
Walleser (2011)41 87/106 82% 63/106 59%
Froud(2012)45 21/23 91% 15/23 65%
Diaz-Ordaz (2013)28 43/73 59% 20/73 27%
Sutton (2013)46 NA 12/15 80%

1.5 Ordinal outcomes

1.5.1 Definition

An ordinal variable is one which consists of a set of categories which can be ordered or ranked. Disease

severity (mild, moderate, severe) or measures of agreement (completely agree, agree, do not agree,

disagree, do not agree at all) are examples of ordinal variables. The difference between participants

in adjacent categories may not be the same, and are often unmeasurable. For example the difference

in disease severity between moderate and severe could be much greater than the difference between

mild and moderate.

Where the outcome consist of categories which cannot be ordered, therefore each level does not

differ in magnitude for example marital status (single, married, divorced) the variable is referred to

as categorical, or nominal, within this thesis.
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1.5.2 Example of a trial with an ordinal outcome

Encouraging lifestyle changes such as smoking cessation, decreasing fat intake and increasing regular

physical activity can help prevent cardiovascular disease. Visits to primary healthcare can be an

opportunity for those at high risk of coronary heart disease to receive advice about changing their

lifestyle. In a trial by Steptoe et al 20 general practices were randomised to lifestyle counselling or

usual health promotion.56 Patients with one or more risk factors for coronary heart disease were

included in the study. Each patient completed a questionnaire prior to their physician visit and four

and twelve months after. This questionnaire measured a patient’s stage of motivation concerning

regular exercise and patients were categorised into one of five stages of change: Pre-contemplation

(patients are not eating a low-fat diet or currently exercising or are smokers, and they are not seriously

considering changing behaviour), contemplation (patients are considering a change in behaviour but

are not confident they will carry this out within the next month), preparation (patients are seriously

planning to change behaviour and are confident that they will make changes within the next month),

action (patients have changed behaviour within the last 6 months) and maintenance (patients have

maintained the change for at least 6 months).

1.5.3 Sample size approaches

In the Steptoe study the authors chose to dichotomise the ordinal outcome. Those in the action

and maintenance stages were combined and those in the remaining categories were combined. The

benefits of using a binary outcome are: sample size and analysis methods are well established;

parameter estimates are likely to be available; the dichotomised version may be more clinically

relevant; and it avoids problems in the analysis caused by a small number of observations in one of

the ordinal categories.

Had the authors analysed the outcome in its ordinal form they would have likely increased the power

of their study, as dichotomisation of the outcome results in a loss of information. For individually

randomised trials using a sample size calculation appropriate for the ordinal version of the outcome

can result in trials being on average 28% smaller compared to those powered on the dichotomous

version.57 It is unknown how conservative the dichotomous approach would be for the clustered

case. For a cluster randomised trial there is likely to be a large cost associated with recruiting an
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additional cluster as compared to recruiting an additional subject in an individually randomised

trial. Therefore to calculate a conservative estimate of sample size could be considered wasteful.

In addition to the dichotomisation approach there are two other valid approaches that can be taken

to arrive at a sample size estimate. The first is to choose an alternative primary outcome for which

sample size can be calculated easily. In some situations this may be a reasonable approach if several

outcome measures all of clinical relevance are being considered. The Core Outcome Measures in

Effectiveness Trials (COMET) initiative was set up in 2010 to develop a set of standardised core

outcomes that should be measured and reported in all trials of a certain condition. The consistent

use of these core outcomes in trials will ensure that more trials can be included in meta-analyses

and, most importantly, as each set of proposed core outcomes were chosen to be relevant to patients,

clinicians and policy makers the findings from the trial are likely to influence current practice.58

These are important justifications for the choice of outcome measure, convenience for the sample

size calculation is not.

The second method is to calculate the sample size via simulation methods. It can be computationally

intensive but provides a lot of flexibility, allowing full control of all parameters and so giving a closer

representation of real life. The procedure involves simulating a large number of data sets, each

one to represent a potential data set of results from the trial. For each simulated data set the

planned analysis is conducted and the empirical power calculated as the percentage of tests where

the null hypothesis is rejected. Changes in the input parameters can be made until adequate power

is achieved. This is a valid approach to use for ordinal outcomes and user written commands are

available in the statistical computer package Stata to aid the implementation.59 However, this

approach has disadvantages in both the time taken to compile the simulation and its potential

complexity. The aim of my research is to recommend an approach that is simpler to implement,

even if its use is only to provide an initial benchmark estimate that may be further refined with more

complex procedures.

1.5.4 The importance of this research

The literature around sample size calculations for cluster randomised trials has focused heavily on

continuous and binary outcomes. There is little guidance around sample size methods for ordinal
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outcomes. Simple approaches such as calculating a sample size based on the dichotomisation of the

outcome can be used but may be overly conservative and simulation methods require programming

knowledge to implement. Although less common than binary and continuous outcomes the use of

ordinal outcomes is not rare and hence there is a need for appropriate sample size calculations.

In my opinion the use of ordinal outcomes will become more prevalent in the future, particularly

for trials conducted in the UK setting. This is because the National Health Service in the UK is

becoming more patient centred and many Patient Reported Outcome Measures (PROMs) such as

quality of life tend to be ordinal.

1.6 The research aim

The aim of this research is to comprehensively review the existing state of knowledge of sample size

calculations for cluster randomised trials and to focus on the development of methods for ordinal

outcomes. These aims are covered in the following chapters:

• Chapter Two A comprehensive summary of sample size methods available for cluster randomised

trials. The review has two main aims: To identify the prevalence of sample size methods for ordinal

outcomes which will provide evidence for or against the need for development in this area; and to

identify the methods that have been used to derive sample size calculations for cluster randomised

trials, it may be possible to adapt or emulate one of these approaches to derive a sample size formula

for ordinal outcomes.

• Chapter Three A review of 300 published cluster randomised trials to determine the prevalence

and characteristics of trials with ordinal outcomes, providing additional motivation and context for

the development of sample size methods for ordinal outcomes.

• Chapter Four Analysis methods available for clustered ordinal outcomes: their assumptions,

advantages and disadvantages. Several proposed estimates for measuring between-cluster variability

in ordinal data that may be used in sample size calculation are also presented.

• Chapter Five Monte Carlo simulation studies are conducted to explore the relationship between

ICC estimators for ordinal outcomes and to assess the performance of using each of these ICCs in

sample size calculations.
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• Chapter Six A return to the review of sample size methods for cluster randomised trials with the

aim of identifying where there is scope for further development beyond this thesis.

• Chapter Seven A summary and discussion of the main findings from this research.
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Chapter 2

Sample size methods for CRTs

At the time of this research there is no single, up-to-date, published, resource that provides a

comprehensive summary of sample size methods available for cluster randomised trials. In this

chapter I undertake such a review to meet three main aims:

• The first is to identify the current availability of sample size methods for ordinal outcomes, the

results of which will inform the direction of my research.

• The second aim is to identify the different approaches that have been used to derive sample size

calculations for cluster randomised trials. It may be possible to adapt or emulate one of these

approaches, if necessary, to derive new sample size formulae for ordinal outcomes.

• The final aim is to provide researchers with a comprehensive summary of sample size methods for

cluster randomised trials that allows them to easily identify the formula to use for a given design,

outcome and analysis method.

This chapter describes the methods I used to conduct the review followed by the results relevant

to the first two aims: a description of the methods available for ordinal outcomes and a summary

of the approaches that have been used to derive sample size formulae. This chapter concludes with

a discussion of how the findings impact upon the research plan. The results of the third aim will

be provided in Chapter Six where the focus will be on summarising where the methodological gaps
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remain at the end of my research to inform the direction of future work. My review has been

published and can be found in appendix (ix).60

2.1 Review methods

The methods of the review were specified in advance and documented in a protocol (version 1.0

31/03/2011) to be found in appendix (i). SE and AC reviewed the protocol prior to implementation.

The following sections describe the actual conduct of the review, section 2.1.7 provides the detail

and explanation for any differences from the planned protocol.

2.1.1 Data sources

Cluster randomised trials are found within the educational literature as well as within health research.

However, the health research literature is the focus of my review as this is my area of expertise. In

addition CRTs are commonly used in health research and much of their methodological development

is focused around health research.

I conducted the review using electronic online databases, a personal collection of 41 articles on

sample size in CRT’s provided by SE, key text books on cluster randomised trials,6–8,32 and special

issue journals on cluster randomised trials.61–64 For the electronic search I used the online databases

PubMed and Web of Science.

The PubMed database is a free online database developed and maintained by the National Center for

Biotechnology Information (NCBI), at the U.S. National Library of Medicine (NLM). It contains over

20 million citations from the biomedical literature. The MEDLINE database is the largest component

of the PubMed database. Searches conducted in the MEDLINE database cover biomedicine and

health articles dating from 1946 onwards. Articles in the MEDLINE database are indexed using

Medical Subject Heading (MeSH) terms. MeSH terms are used by indexers to provide a consistent

way to index articles that may have used different terminology to describe the same concepts. In

addition to the MEDLINE database, PubMed also contains additional references such as those which

are yet to be indexed with MeSH and citations that precede the date that a journal was selected for

MEDLINE indexing.
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The Web of Science online database contains seven citation databases. The search was conducted

using only the most relevant, the “Science citation index expanded database”. This database contains

articles across 150 scientific disciplines from the year 1970.

2.1.2 Inclusion and exclusion criteria

I included an article in the review if it provided a method of sample size calculation for cluster

randomised trials, via formula, simulation or other approach. The first paper to report a particular

methodology was included in the review; subsequent papers describing the same approach were

excluded. The two electronic databases searched, PubMed and Web of Science contained articles

from 1946 and 1970 onwards respectively, no further date restrictions were applied. I excluded those

papers written in a language other than English. To have conducted this search in other languages

would not have been feasible due to the cost involved in translation of manuscripts.

The following types of paper were excluded from the review as they were considered to be: too general

for the review; unlikely to contain new methodology or sufficient detail on sample size calculation;

or contain information irrelevant to the review aims

• Those reporting a trial protocol or trial results

• Those that provide a very general discussion on the effects of clustering or correlated data

• Papers focusing on non-randomised observational studies

• Those that only discuss the calculation of the within-cluster correlation component of sample

size estimation

• Those describing correlated data but individually randomised, for example:

– Clustering induced by the treatment itself, for example several participants attending a

group therapy intervention, but individually randomised to treatment group

– Clustering present due to centre effects

– Correlated data due to recurrent events occurring to the same subject

– Correlation due to multivariate outcomes
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Development of the inclusion and exclusion criteria

I developed the inclusion and exclusion criteria from a preliminary basic search I conducted of the

sample size literature for CRTs in the PubMed database. This search revealed articles covering a

broad range of topics:

1. Those which derive some or all methodological aspects of sample size formulae, using either a

Bayesian or frequentist approach.

2. Those which provide suggested adaptations or extensions to previously derived formulae.

3. Papers with a broader focus that discuss design features in general for cluster randomised

trials.

4. Overviews or summaries of the current methodology in a particular area.

5. Papers which focus on the calculation/estimation of the intracluster correlation or coefficient

of variation of outcome.

6. Papers evaluating or comparing alternative methods.

7. Papers with a general discussion on the effects of clustering upon sample size and power.

8. Papers describing application tools for implementation of the methodology.

9. Protocols or design papers for specific cluster randomised trials, describing the sample size

calculation, as applied to a specific trial.

10. Reports of results from cluster randomised trials.

To fulfil the objectives of this review I developed the search criteria to target articles of type 1-4.

Papers of type 5-10 were to be excluded due to reasons described at the beginning of this section.

2.1.3 Search terms

To improve the relevancy of results retrieved I chose to base my search terms on only the article title

and MeSH term used to index the paper.
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The list below contains the search terms for the PubMed database. This list includes all changes

which were made after validation of the search terms (see section 2.1.6)

1. cluster analysis[MeSH] AND sample size[MeSH]

2. “sample size” [Title]

3. “design effect”[Title] OR “design effects”[Title] OR “variance inflation factor”[Title]

4. (design*[Title] OR plan*[Title] OR siz*[Title]) AND cluster*[Title] 1

5. power [title] AND cluster*[Title]

6. “intraclass correlation*”[Title] OR “interclass correlation*”[Title] OR “intracluster correla-

tion*”[Title] OR “coefficient of variation”[Title] OR “between cluster”[Title]

7. coefficient[Title] AND variation[Title]

8. (design[Title] OR matching[Title]) AND community[Title]

9. power[Title] AND correlated[Title]

10. number[Title] AND clusters[Title]

11. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10

The Web of Science database does not index articles with MeSH so I did not perform this component

of the search for this database. I additionally refined the searches within Web of Science by limiting

the search to articles only, thereby excluding conference proceedings and letters etc. which are not

listed in the PubMed database.

All articles retrieved using these search terms were assessed for eligibility following the procedure

described in section 2.1.4.

1The “*” is used as a wildcard to search on all words that are formed from the truncated word entered. For example
siz* will find all words formed from siz such as “size” and “sizing”.
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Development of search terms

I developed the search terms using the personal collection of 41 articles from SE to determine (1)

the most common MeSH terms used to index these papers and (2) the terminology commonly used

in the title description.

Thirty five of the papers were available via PubMed and had 199 associated MeSH terms. The most

frequent being “randomized controlled trials as Topic” (n=28), “cluster analysis” (n=20), “research

design” (n=16), and “sample size” (n=20). However, the definition of the MeSH term “Cluster

analysis” is not strictly applicable to cluster randomised trials. MeSH description of cluster analysis

is

“A set of statistical methods used to group variables or observations into strongly inter-

related subgroups. In epidemiology it may be used to analyse a closely grouped series of

events or cases of disease or other health related phenomenon with well-defined distribu-

tion patterns in relation to time or place or both”

The term cluster analysis is unreliable due to its incorrect and inconsistent use for indexing papers.

Therefore its use was combined with the term sample size to reduce retrieval of irrelevant results.

The term “randomized controlled trials as topic” and “research design” are very broad and their

use would retrieve a vast amount of literature irrelevant to this review, including literature related

to individually randomised trials. With this in mind I did not use the MeSH term for randomised

controlled trials or research design. A review of all MeSH terms available for indexing did not identify

any further terms that might be useful to this review.

Due to the inconsistent use of MeSH terms and the lack of terms specific to the needs of this review

the use of MeSH terms alone would likely retrieve a large number of irrelevant results and may miss

some that are relevant. Therefore I supplemented the search by a search for specific text within

the article title only. In the 41 papers of the personal collection the term “sample size” was the

most frequently used. However, the terms “Design effect” and “power” were also frequently used.

As the term power has a large number of meanings, I restricted its search to those papers which

additionally mentioned clustering in some form within the title in order to reduce the number of

irrelevant articles retrieved.
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Within PubMed the word “of” is a stopword and is ignored when searching for a phrase. There-

fore rather than search on the phrase “coefficient of variation” I chose to search on the separate

components, similarly with the phrase “number of clusters”.

Web of Science treats the word “of” as a placeholder when contained in the search for a phrase.

Therefore a search with the phrase “coefficient of variation” will retrieve all results where the two

terms are separated by one word, such as “coefficient and variation” and “coefficient of variation”.

I used this search rather than the search on the two separate components which was required when

searching PubMed. The word “between” is similarly treated as a placeholder in Web of Science.

This means that a search on ”“between cluster” will retrieve any article with the word cluster in

the title. This retrieves a vast number of articles, with many irrelevant articles relating to disease

clusters and laboratory data. Therefore I excluded the search term “between cluster” from the Web

of Science search.

2.1.4 Search strategy

I applied the search terms first to the online databases, this was followed by a hand search of personal

collections, textbooks and special issue journals.

An article was first assessed for inclusion based upon the title. Where eligibility was unclear I then

reviewed the abstract, and if still unclear I reviewed the full text. Any paper where eligibility was

still unclear after examination of the full text was discussed and eligibility agreed with SE and AC.

The references of all papers identified as eligible were searched. Any new eligible articles were added

to the review and the process continued until it was agreed with SE and AC that sufficient saturation

of new methodology or concepts had been achieved.

I sent the final list of included papers to experts who have made significant contribution in the field

for their thoughts upon its coverage: G.J.P. van Breukelen, Mike Campbell, Allan Donner, Steven

Tereenstra, and Obi Ukoumunne. Additional papers suggested by these experts for inclusion or

review were assessed using the process described in this section.
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2.1.5 Data collection and management

All details of the articles retrieved from the search of the electronic databases were imported into a

Microsoft Access 2010 database for storage. I designed and created this database and screen prints

can be found in the protocol (see appendix i). Each article was stored with a unique identifica-

tion number and the information imported from the electronic databases included authors, year,

title, journal, volume, issue, start page, end page, and the abstract. Within the Access database I

categorised each retrieved result for inclusion or exclusion, with associated reason.

For each paper that was identified as eligible I extracted the following information 1) the authors,

title, journal, date of publication and database id 2) the trial design features 3) the formulae described

for each design 4) the correlation measure used 5) the analysis method assumed 6) the assumptions

underpinning the methodology 7) the simulation procedures used to evaluate the methodology 8)

the strengths and weaknesses as stated by the authors and 9) any extensions of the methodology.

This extracted information was collected on a paper based data extraction form which I designed

and can be found in the protocol (appendix i).

Where I made assumptions with regard to information that was not explicitly stated within a paper

I clearly identified as ”assumed” on the data extraction form. For example it was not always explicit

that fixed cluster sizes were assumed but it could be reasonably assumed if the formula clearly

included only an estimate for the average cluster size or a fixed cluster size. Where reasonable

assumptions could not be made the information was recorded as unclear on the data extraction

form. In papers where much of the paper and its methodology was unclear I collected only basic

information about the trial design and relevant sample size formulae, as agreed with SE and AC.

I performed all data extraction and articles with ambiguity were discussed with SE and AC.

2.1.6 Validation

I implemented validation methods at various stages of the review process in order to provide confi-

dence in the quality of the review and its ability to fulfil its intended objectives.

Inclusion/exclusion criteria
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I piloted the inclusion/exclusion criteria on 20 search results in order to identify any need for revision.

No revision was deemed necessary. However, during the review some of the criteria were more

explicitly defined.

Search terms and strategy

At the design stage the appropriateness of the search terms and general strategy to retrieve the

targeted papers was validated in two ways.

First I assessed the titles of the papers included in the personal collection of 41 papers to determine

if they would be identified from the proposed search terms, and in the majority of cases they were.

Those which were not identified were cited by eligible papers and so would have been identified as

eligible for the review from a search of references, alongside the context of the citation in the included

paper.

Secondly I compared the search terms with the retrieved results from a search that could be con-

sidered to be a “gold standard”. A computer based search of the Statistics in Medicine journal was

used as the “gold standard” search as this journal was considered most likely to contain articles on

methodology of sample size calculations. Using PubMed I retrieved all articles published in Statistics

and Medicine from 1982 to March 2011 and included reference to clustered data or cluster randomised

trials. This search produced fewer than 200 results. Based upon an individual assessment of each

title these results were reduced to those which would warrant further examination and compared to

the proposed search terms. Of these 200 results many of the early articles made reference to com-

munity intervention trials rather than cluster randomised trials, as they are now more commonly

known. The term community was therefore added to the search terms in combination with design

or matching to pick up these articles in the main review. “Number of clusters” was also a common

phrase used to describe sample size and was added to the search terms.

Data extraction

Before its implementation I piloted the data extraction form on five papers from the personal collec-

tion of articles. The test papers were selected to cover different styles of article, from those of a very

practical nature to those with detailed information on the mathematical derivations. The extraction

form was then refined based on this pilot.
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The data extraction process was validated by an independent double data extraction for ten articles.

Five were additionally extracted by SE and five by AC. Discussions took place to agree any differences

in interpretation. In the protocol I stated that these ten articles would be randomly selected.

However, during the process of the review it became clear that the ease of data extraction varied

among the papers and that it would be most useful to perform double data extraction on the more

challenging papers.

In addition during the process of preparing the review for publication many of the papers were dis-

cussed with SE and AC which provided further reassurance of my interpretation and understanding

of the methods described and the assumptions made.

2.1.7 Changes in conduct from the planned protocol

In the protocol I stated that monthly email notifications based on the search terms would be set

up within the electronic databases for the duration of the project in order to keep informed of new

developments. However, the email notifications were not received, possibly due to anti-virus or spam

technology. Therefore to identify any new methodological developments since the main search date

I re-ran the search on the two online databases near the end of my research, 27th August 2015.

The additionally identified methods are described in Chapter Six where I provide a comprehensive

summary of sample size methods.

During the course of the review several special issue journals on cluster randomised trials came to

light. All special issue journals were then additionally included as data sources as they contained a

high concentration of articles with potential for eligibility in the review.

I had planned an electronic search based on first authors of papers identified as eligible. After

completion of the electronic searches and reference searches of eligible papers it was agreed with SE

and AC that a search on first authors would not be conducted. Due to the large number of distinct

contributors in the review a search based on first authors would likely retrieve a very large number

of potential results for assessment and, given the time needed to review the results, was unlikely to

identify a significant number of methods that would not have already been identified through the

other data sources.
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In the protocol I stated that

”articles will be eligible for the review if they discuss any aspect relating to the method-

ology of sample size or power. This includes those papers which may discuss or simulate

only components of the sample size.”

During the process of the review I decided to exclude papers that reported only on the calculation

or estimation of the ICC for two reasons. The first being that the definitions of ICCs relevant

for a sample size calculation would be most likely found in the paper that described the sample

size calculation. ICCs calculations without reference to a sample size formula were not likely to be

useful. Secondly the ICC has other uses in addition to its place in CRTs so irrelevant results would be

retrieved. For example it can be used in quantifying the inter-rater reliability of instruments, often

psychometric scales. Inter-rater reliability assesses the degree to which two raters give consistent

observations, if raters do not agree either the scale is defective or the raters need to be trained in its

use. In this context the ICC is high when there is little variability among the raters.

In the protocol sample size calculations for correlated data due to repeated measurements on the

same individual were to be excluded. However, during the review one paper that reported a sample

size method for longitudinal data was included. The reason for its inclusion was that it was one of

very few papers to consider ordinal outcomes and I considered it important to assess its potential to

be applied to cluster randomised trials.

2.2 Results

2.2.1 Description of included papers

I applied the search terms to the online databases on the 31st of March 2011. From 8393 retrieved

records 77 papers were identified as eligible. A further 4 were identified as eligible from the personal

collection of articles on sample size in CRTs provided by SE and special issue journals and 4 were

identified as eligible ad-hoc during the review and collation of results (identified: via colleagues; from

feedback from experts in the field; or published after the initial search). In total 85 papers describing

sample size methodology were included in the review. A list of the included papers can be found in

appendix (ii). Figure 2.1 shows the flow of articles through the review process.
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Records identified in Web of Science (n=5704)
Records identified in PubMed (n=3027)

Records after duplicates removed (n=8393)

Full text articles assessed for eligibility
(n=72)

Excluded (n=11):
a) Results in an earlier included paper (n=1)
b) Not applicable in CRT context (n=2)
c) One sample (n=2)
d) Other form of clustering (n=4)
e) Methodology already included (n=2)

Papers included (n=61) Identified through reference searches (n=15)

Papers included (n=76) Identified through reference searches (n=1)

Total papers included (N=85)
Books, special issue journals, personal collec-
tion search (n=4)

Identified ad-hoc during the review (n=4)

Figure 2.1: Systematic review sample size methods selection: Flow diagram describing number of papers
screened, assessed for eligibility and included

The two journals where the largest number of the included papers were published were Statistics in

Medicine 29 (34%) and Biometrics 7 (8%). The number of sample size methods has increased over

time, with 58 (68%) of papers published since 2000. In terms of the trial characteristics the majority

of sample size methodology was aimed at binary or continuous outcomes, completely randomised,

parallel group superiority designs, see Table 2.1.

The results of the review are now presented according to the initial objectives:

• To identify and describe sample size methods available for ordinal outcomes.

• To identify the approaches used to derive sample size formulae.
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Table 2.1: Characteristics of the 85 published sample size methods for CRTs included in the systematic
review

N (%)

Journal Statistics in Medicine 29 (34%)
Biometrics 7 (8%)
International Journal of Epidemiology 4 (5%)
American Journal of Epidemiology 2 (2%)
Journal of Clinical Epidemiology 3 (4%)
Controlled Clinical Trials 4 (5%)
Clinical trials 3 (4%)
Journal of Biopharmaceutical Statistics 3 (4%)
Journal of Educational and Behavioral Statistics 3 (4%)
Journal of Educational Statistics 1 (1%)
Journal of the Royal Statistical Society 3 (4%)
Other Journals/books 23 (27%)

Year of publication pre 1990 6 (7%)
1990-2000 21 (25%)
2000-2010 43 (51%)
2010 onwards 15 (18%)

Type of outcome *Binary/Continuous 74 (87%)
Time-to-event 5 (6%)
Rates 2 (2%)
Count 2 (2%)
Ordinal 2 (2%)

Randomisation Simple 78 (92%)
Matched 6 (7%)
Stratified 1 (1%)
Minimisation 0 (0%)

Design Parallel group 80 (94%)
Cross-over 3 (3%)
Stepped wedge 2 (2%)

Objective Superiority 83 (98%)
Non-inferiority 1 (1%)
equivalence 1 (1%)

* Notes. Binary and continuous outcomes were often contained within the same paper. They have
been combined here so the denominator is the 85 papers included in the review.
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2.2.2 Objective 1: Sample size methods for ordinal outcomes

Of the 85 sample size methods included there were two that were applicable to clustered ordinal data.

The first method was proposed by Kim et al in 2005.65 It deals with clustered ordinal data occurring

in repeated measurement designs where the individual can be thought of as a cluster and measure-

ments are taken on each individual at several time points. The second method was proposed by

Campbell and Walters in their textbook on the design, analysis and reporting of cluster randomised

trials published in 2014.33 A standard parallel group design is assumed where measurements are

taken on individuals within a cluster.

In the following sections I present the details of each method with a worked example. I start with

the method proposed by Campbell and Walters which is more readily applied to the CRT context

and the simpler of the two methods.

Campbell and Walters sample size method for ordinal outcomes

Notation

Campbell and Walters33 state that the sample size formula for ordinal outcomes in individually

randomised trials, derived by Whitehead,2 can be inflated by the standard design effect to account

for randomisation by cluster. For an ordered categorical outcome with k levels, q = 1, 2, . . . k where

a higher category implies a worse outcome the sample size per group, m, is calculated as:

m =
6[z1−α/2 + z1−β ]2/θ2

[1−∑k
q=1 π̄

3
q ]

[1 + (n− 1)ρ] (2.1)

Where α and β are the overall Type I and Type II errors respectively, z(1−α/2) and z(1−β) the corre-

sponding percentage points of a standard normal distribution. π̄q is the mean proportion expected

in ordinal category q calculated as π̄q = (πq1 +πq2)/2, where πq1 and πq2 are the proportions in cate-

gory q for the intervention and control groups. The number of individuals per cluster, n, is assumed

constant and ρ is the intracluster correlation coefficient. The log-odds-ratio, θq is the probability of

a response q or better (i.e. in a lower category) for a subject in the experimental group relative to

a subject in the control group and is calculated as
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θq = log

(
Pq1(1− Pq2)

Pq2(1− Pq1)

)
(2.2)

Where Pq1 and Pq2 are the cumulative probabilities of an individual in the experimental and control

groups respectively giving a response in category q or better.

The underlying assumption of Whitehead’s method is that of proportional odds, i.e. the log-odds-

ratios for being in each category or better, θq share a common value, θ, which is used in the sample size

calculation. If the observed probabilities do not satisfy the assumption of proportional odds power

may be substantially reduced. Whitehead does not suggest an alternative sample size calculation if

the proportional odds assumption is violated.

The method by Whitehead assumes an eventual analysis by a Mann-Whitney test which is equivalent

to an ordinal regression when only treatment group is fitted in the model.66 Ordinal regression

methods can be extended to deal with clustered data and are more available in statistical packages

than their non-parametric counterparts. It is assumed in this thesis that use of the design effect for

ordinal outcomes assumes a random effects ordinal regression with proportional odds, although this

is not explicitly stated by Campbell and Walters. More detail on the analysis of ordinal outcomes

will be considered in Chapter Four.

Worked example

The use of the formula is illustrated by extending the example provided in the Whitehead paper to

a CRT design.

In a two-arm clinical trial patient response after three months of treatment is measured as a four-level

ordinal outcome (very good, good, moderate, poor). The proportions, πq, and cumulative propor-

tions, Pq, expected in each category are provided in Table 2.2 for the control (2) and experimental

groups (1).

As can be seen in the table the log odds ratio does appear to be reasonably equal across the response

categories, indicating the assumption of proportional odds is reasonable. In this example the reference
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Table 2.2: Sample size calculation for an ordinal outcome example: Expected proportions in each outcome
category for each treatment group of a trial*

Very Good Good Moderate Poor
(q = 1) (q = 2) (q = 3) (q = 4)

πq2 0.2 0.5 0.2 0.1
Pq2 0.2 0.7 0.9 1

πq1 0.378 0.472 0.106 0.044
Pq1 0.378 0.85 0.956 1

π̄q = 1
2 (pq1 + pq2) 0.289 0.486 0.153 0.072

π̄3
q = 0.024 0.115 0.00358 0.000373
θq 0.888 0.887 0.881

* (Source: Whitehead2)

improvement for the sample size calculation was chosen by Whitehead as 0.887, power was set at

90% and a two-sided alpha of 0.05 chosen. For illustration I assume an ICC of 0.05 (a typical value

for outcomes and clusters in health services research21) and cluster size of 5 in the design effect.

Using equation 2.1 the number of individuals required per group for the clustered design is

m =
6[z1−α/2+z1−β ]2/θ2

[1−
∑k
q=1 π̄

3
q ]

[1 + (n− 1)ρ]

= 6[1.96+1.282]2/(0.887)2

[0.857] [1 + (5− 1)× 0.05]

= 93.53× 1.2 =115 people per arm

This corresponds to 23 clusters of size 5 in each treatment group.

Areas for further development

The use of the design effect for ordinal outcomes has been suggested only recently and therefore is

not as well established as it is for binary or continuous outcomes. This means that the reporting of

the relevant estimates required may not be standard practice and it may be difficult for researchers to

implement this formula if they have no good estimates to base their calculations upon. Examples of

the parameter estimates calculated from real data may aid researchers in implementing this method.

It would also be useful to use real datasets to consider how realistic the assumption of proportional

odds might be. I present some real-life estimates in Chapter Four.
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As described in Chapter One there are several papers that describe the calculation of the ICC

for binary or continuous outcomes. The calculation for ordinal outcomes has received much less

attention. For ordinal outcomes there are no recommendations about which ICC estimator to use

in the design effect. Therefore evaluating the performance of this method using several different

estimators of the ICC and under deviations from the underlying assumption of proportional odds is

needed in order to provide clear recommendations for its use. I undertake this work in Chapter Five.

Kim et al sample size method for ordinal outcomes

Notation and model

Kim et al65 propose a sample size calculation based upon an analysis by GEE, with inference based

on the Wald test. Their sample size method is an extension of the method proposed by Rochon67 for

binary outcomes and assumes the analysis method of Lipsitz et al.68 The method by Kim assumes

a longitudinal design where measurements are taken at several time points for each individual. In

the following notation I refer to sub-units within a cluster, in this example these subunits are time

points but within the usual CRT context these would be individuals. At the end of this example I

discuss the application of this method in the CRT context.

For each sub-unit we observe the response on a k-level ordinal outcome with categories q = 1, 2, . . . , k.

A higher category here is used to indicate a better outcome. Let Zij denote the ordinal response

of the j’th sub-unit in the i’th cluster, j = 1, 2, . . . , n and i = 1, 2, . . . C. The size of the cluster is

assumed constant and denoted by n.

We form k indicator variables Yijq, where Yijq = 1 if sub-unit j has response q and Yijq = 0 otherwise.

For each sub-unit we form a k-1 response vector Yij = [Yij1, . . . , Yij(k−1)]
′ formed from the indicator

variables, and for each cluster Yi = [Y′ij, . . . ,Y
′
in]′

The marginal probability of a response in category q is denoted by Pr[Zij = q] = E[Yijq] = Pr[Yijq =

1] = πijq and the corresponding marginal cumulative probabilities by Pr[Zij ≤ q] = Pijq

Lipsitz et al analyse the data using a marginal model based on cumulative logits
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logit[Pijq] = Xβ (2.3)

Where X denotes a (k − 1) × k design matrix for the j′th sub-unit of the i′th cluster and β =

[α1, . . . , αk−1, β]′ denotes a k×1 parameter vector. Where the αq correspond to the q′th cumulative

logit and β denotes the effect of the intervention.

The GEE method assumed for the analysis is taken from Lipsitz et al,68 an extension of Liang and

Zegar’s method for binary data.69 The estimate of the treatment effect, β, is found by solution of

the generalised estimating equation proposed by Lipsitz.68 Calculation requires specification of the

correlation matrix and the working covariance matrix. The significance of the treatment effect is

then determined using the Wald test statistic. The variance of the treatment effect used in the Wald

test can be calculated in two ways: via the model-based estimate of variance or a robust calculation

which is less sensitive to miss-specification of the working covariance matrix. The details of these

calculations will be seen in the worked example that follows and discussed in Chapter Four. The

sample size method is described as being conservative if a maximum likelihood approach is taken.

Worked example

Here I work through the example described in section four of the original paper by Kim. I include

additional detail providing the explicit step by step calculations to implement the method.

A clinical trial was conducted to assess the efficacy of auranofin compared to placebo for rheumatoid

arthritis. Patients were randomly assigned to one of the two groups with equal allocation and

assessed at 1 month, 3 months and 5 months post randomisation. The outcome measurement was a

three-level ordinal outcome measuring self-assessment of arthritis (1) poor, (2) fair, (3) good. In the

paper the power calculation was performed post-hoc with the correlation parameters and observed

proportions in each ordinal category at each time point taken directly from the analysis, power was

identified to be only 68%. In order to replicate the result given in the paper and for illustration

of using this method to calculate a sample size at the design stage of a trial I set the power in

the following worked example to be 68% and assume the observed proportions are those that were

assumed for the trial design , with a two-sided 5% significance level. In this example the authors

plan a test for an overall difference between the two groups for the three timepoints i.e. they assume
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the treatment effect is the same at every time point. This may not be the case for all longitudinal

studies.

There are twelve steps in calculating the sample size.

Step 1: Specify the error rates

α = 0.05

Type II error=β=0.32

∴ power = 0.68

Step 2: Specify the number of treatment groups and their relative sizes

The number of treatment groups, T=2 [t=1 (intervention), t=2 (control)]. The relative size of each

treatment group=1 i.e. equal allocation

Step 3: Specify the number of categories in the ordinal response

Number of categories in the ordinal response, k=3 (poor, fair, good)

Step 4: Specify the cluster size

In this example 3 measurements are taken on each individual at 1 month, 3 month and 5 month

follow-up time points. Therefore the cluster size n=3.

Step 5: For each sub-unit specify the probabilities of a response for each ordinal cate-

gory, by treatment group

The probabilities are described in Table 2.3.

Table 2.3: Sample size calculation for an ordinal outcome example: Observed proportions in each outcome
category for each time-point and treatment group of a trial*

Treatment Response 1 month 3 months 5 months

Placebo Poor 29.7% (πi11) 27.7% (πi21) 25.2% (πi31)
Fair 33.8% (πi12) 42.6% (πi22) 35.4% (πi32)
Good 36.5% (πi13) 29.7% (πi23) 39.5% (πi33)

Auranofin Poor 11.9% (πi11) 20.3% (πi21) 15.1% (πi31)
Fair 51.0% (πi12) 35.1% (πi22) 34.9% (πi32)
Good 37.1% (πi13) 44.6% (πi23) 50.0% (πi33)

* (Source: Kim65)

Step 6: Specify the link function

The link function assumed is the cumulative logit link (clogit)
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Step 7: Specify the design matrix

Assuming a proportional odds model the [Tn(k − 1)× k] design matrix is given as:

X =



1 0 0

0 1 0

1 0 0

0 1 0

1 0 0

0 1 0

1 0 1

0 1 1

1 0 1

0 1 1

1 0 1

0 1 1


This can be defined separately for each treatment group.

X2 =



1 0 0

0 1 0

1 0 0

0 1 0

1 0 0

0 1 0


,X1 =



1 0 1

0 1 1

1 0 1

0 1 1

1 0 1

0 1 1


Step 8: Determine the correlation structure, R

The correlation matrix R is a matrix of n(k − 1) × n(k − 1) dimension. The n diagonal blocks of

R are defined by the (k − 1) × (k − 1) standard correlation matrix of a multinomial variable, the

diagonal elements of which are

corr(Yijq, Yijq) = 1

and the off-diagonal elements are
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corr(Yijq, Yijq′) =
−πijqπijq′√

(πijq(1−πijq)πijq′ (1−πijq′ ))

where q and q′ refer to levels of the response variable and q 6= q′

The remaining unknown elements of R are the elements of the (k − 1)× (k − 1) correlation matrix

of two sub-units from the same cluster. The diagonal elements represent the correlation for pairs

of indicators between two sub-units for the same category (either ‘poor’ or ’fair’). The off-diagonal

elements represent the correlation between two sub-units for two adjacent categories. In this example

the matrix used is that provided in Table V directly from the analysis of this dataset by Lipsitz et

al, as the calculation is being performed post-hoc.68 Exchangeability is assumed among members of

a cluster.

Φ = Corr(Yij ,Yij′) =

Corr(Yij1, Yij′1) Corr(Yij1, Yij′2)

Corr(Yij2, Yij′1) Corr(Yij2, Yij′2)

 =

0.392 0.151

0.151 0.208



Therefore, the correlation matrices for the treatment and control group are defined as:

R1 =



1 −0.37 0.392 0.151 0.392 0.151

−0.37 1 0.151 0.208 0.151 0.208

0.392 0.151 1 −0.371 0.392 0.151

0.151 0.208 −0.371 1 0.151 0.208

0.392 0.151 0.392 0.151 1 −0.308

0.151 0.208 0.151 0.208 −0.308 1



R2 =



1 −0.462 0.392 0.151 0.392 0.151

−0.462 1 0.151 0.208 0.151 0.208

0.392 0.151 1 −0.533 0.392 0.151

0.151 0.208 −0.533 1 0.151 0.208

0.392 0.151 0.392 0.151 1 −0.428

0.151 0.208 0.151 0.208 −0.428 1


Step 9: Derive the working covariance matrix V and the matrix D
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The matrix Vi is the working covariance matrix of Yi, the cluster response vector. Since the marginal

distribution of Yij is multinomial the (k − 1) × (k − 1) diagonal blocks of Vi are the multinomial

covariance matrices. That is each diagonal entry is the variance πijq(1 − πijq) with covariance

−πijqπijq′ on the off diagonal.

The covariance matrix V can be defined for each treatment group as

Vt = A
1/2
t RtA

1/2
t

Where Aij is a diagonal matrix with the binary variances of the indicator variable, var(Yijq), on the

diagonal Aij = Diag[πij1(1− πij1), . . . πij(k−1)(1− πij(k−1))].

∴ A
1/2
it = Diag[πit1(1− πit1)

1/2
, . . . πit(k−1)(1− πit(k−1))

1/2
]

and the matrix At = Diag[Ai1, Ai2, . . . , Ai(k−1)]

Using the matrices R and A the matrix V for the intervention group is calculated as:

V1 =



0.104839 −0.06069 0.0510534 0.0233353 0.0454454 0.0233046

−0.06069 0.2499 0.0303625 0.0496275 0.0270273 0.0495621

0.0510534 0.0303625 0.161791 −0.071253 0.0564554 0.0289506

0.0233353 0.0496275 −0.071253 0.227799 0.0258045 0.0473198

0.0454454 0.0270273 0.0564554 0.0258045 0.128199 −0.052699

0.0233046 0.0495621 0.0289506 0.0473198 −0.052699 0.227199



⇒ V−1
1 =



25.366113 10.094366 −9.066519 −5.892443 −7.66796 −4.19997

10.094366 8.5726621 −4.535907 −3.380871 −3.730698 −2.488696

−9.066519 −4.535907 16.285962 8.3823852 −6.047153 −3.304235

−5.892443 −3.380871 8.3823852 9.313599 −3.812866 −2.550373

−7.66796 −3.730698 −6.047153 −3.812866 17.726874 7.2767969

−4.19997 −2.488696 −3.304235 −2.550373 7.2767969 8.0152027


and the control group
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V2 =



0.208791 −0.100386 0.0801588 0.0341188 0.0777666 0.0329952

−0.100386 0.223756 0.0319649 0.0486532 0.031011 0.047051

0.0801588 0.0319649 0.200271 −0.118002 0.0761634 0.032315

0.0341188 0.0486532 −0.118002 0.244524 0.0324182 0.0491861

0.0777666 0.031011 0.0761634 0.0324182 0.188496 −0.089208

0.0329952 0.047051 0.032315 0.0491861 −0.089208 0.228684



⇒ V−1
2 =



33.168681 24.883259 −29.4581 −23.04584 −2.800597 −1.878367

24.883259 23.892531 −24.02663 −19.19547 −2.02613 −1.77263

−29.4581 −24.02663 56.39634 42.262828 −21.67354 −16.32029

−23.04584 −19.19547 42.262828 36.393116 −16.87288 −13.1071

−2.800597 −2.02613 −21.67354 −16.87288 26.991706 18.041944

−1.878367 −1.77263 −16.32029 −13.1071 18.041944 17.171919


D = ∂π

∂β is a matrix of partial derivatives of the mean of the outcome with respect to the regression

parameters. If we assume η represents the linear predictor using the chain rule Rochon derives:67

∂π
∂β = ∂π

∂η ×
∂η
∂β = ∂π

∂ηX

Therefore the matrix D for each treatment group is defined as:

Dt = ∆tXt

For each treatment group the D matrices are calculated as:

D1 =



0.208791 0 0 0 0 0

0 0.0229840 0 0 0

0 0 0.200271 0 0 0

0 0 0 0.00852 0 0

0 0 0 0 0.188496 0

0 0 0 0 0 0.050268





1 0 0

0 1 0

1 0 0

0 1 0

1 0 0

0 1 0



72



2.2. RESULTS

∴ D1 =



0.208791 0 0

0 0.022984 0

0.200271 0 0

0 0.00852 0

0.188496 0 0

0 0.050268 0



D2 =



0.104839 0 0 0 0 0

0 0.12852 0 0 0 0

0 0 0.161791 0 0 0

0 0 0 0.085293 0 0

0 0 0 0 0.128199 0

0 0 0 0 0 0.121801





1 0 1

0 1 1

1 0 1

0 1 1

1 0 1

0 1 1



∴ D2 =



0.104839 0 0.104839

0 0.12852 0.12852

0.161791 0 0.161791

0 0.085293 0.085293

0.128199 0 0.128199

0 0.121801 0.121801


Step 10: Calculate β̂

The vector of parameters in the model can now be estimated by solution of the following generalised

estimating equation.

β̂ = [
∑
t D
′
tV
−1
t Dt]

−1[
∑
t X
′
tWth(θt)]

Where Wt = ∆tV
−1
t ∆t and h(θt) is a vector of cumulative logits i.e. ln(cumulative probability/(1-

cumulative probability). For the treatment and placebo groups these vectors are:
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h(θ1) =



−2.001934

0.5279292

−1.367649

0.2168457

−1.726779

0


,h(θ2) =



−0.861625

0.5537276

−0.959392

0.8616248

−1.087974

0.4305291


Using the matrices as previously defined

[
∑
t D
′
tV
−1
t Dt]

−1 =


2.7910582 2.1564694 −2.572864

2.1564694 10.146841 −4.90384

−2.572864 −4.90384 6.2484071



W1 =



1.4459449 0.1194111 −1.231784 −0.040996 −0.110221 −0.019714

0.1194111 0.0126216 −0.110595 −0.003759 −0.008778 −0.002048

−1.231784 −0.110595 2.2619711 0.0721134 −0.818182 −0.1643

−0.040996 −0.003759 0.0721134 0.0026418 −0.027098 −0.005614

−0.110221 −0.008778 −0.818182 −0.027098 0.9590353 0.1709531

−0.019714 −0.002048 −0.1643 −0.005614 0.1709531 0.0433912


and in the other treatment group

W2 =



0.2788044 0.1360106 −0.153786 −0.05269 −0.103059 −0.053631

0.1360106 0.141598 −0.094317 −0.037061 −0.061467 −0.038958

−0.153786 −0.094317 0.4263067 0.1156739 −0.125427 −0.065114

−0.05269 −0.037061 0.1156739 0.0677555 −0.041692 −0.026495

−0.103059 −0.061467 −0.125427 −0.041692 0.2913409 0.1136255

−0.053631 −0.038958 −0.065114 −0.026495 0.1136255 0.1189094



∴ β =


−0.9802

0.4783

−0.5032


Therefore the GEE estimate of the treatment effect is -0.5032.

Step 11: Identify the specific hypothesis of interest
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The Null and Alternative hypotheses are defined as:

H0 : Hβ = ho versus H1 : Hβ 6= h0, In this example h0 = 0

H =

[
0 0 1

]
Step 12: Calculate the sample size per group (m)

The sample size calculations are based on the Wald test statistic which is asymptotically distributed

as a χ2
(h),λ random variable with non-centrality parameter λ. In this example, as in most cluster

randomised trials, we conduct a one degree of freedom hypothesis test on the difference between the

two treatments. Therefore h=1.70

The sample size is found by solving the following equation for the minimum number of subjects, m,

required in each treatment group.

1− β =

∫ ∞
χ2
(h),1−α

f(x;h, λ)dx (2.4)

Where β is the type II error rate, χ2
(h),1−α is the critical value from the central χ2

(h) distribution with

h degrees of freedom and f(x;h, λ)dx is the probability density function of the χ2
(h),λ distribution.

In this example from tables of the chi-squared distribution on 1 degree of freedom at the 5% 2-sided

level, the critical value from the central chi-squared distribution is 3.84.

The non-centrality parameter is calculated as

λ ≈ m(Hβ̂ − h0)′[H[
∑
t D
′
tV
−1
t Dt]

−1H′]−1(Hβ̂ − h0)

Using previously defined estimates

λ ≈ m[−0.5032× 0.1600407722×−0.5032] = m[0.04052]

Given h, α and β we can use the CNONCT function in SAS to return the non-negative non-centrality

parameter from a non-central chi-square distribution
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λ=CNONCT(3.84, 1, 0.32)=5.8259921.

Therefore, m per group=5.8259921/0.04052=144. For 90% power m per group increases to 260.

Adaptation to cluster randomised trials

Methods designed for longitudinal data are not always generalizable to CRTs. Often a treatment

interaction with time is the main parameter of interest, the correlation structure is often assumed to

be autoregressive and the cluster sizes tend to be small. In some respects the methodology by Kim

might be transferable to the CRT scenario. The form of the model used in the example presented

here does not include an effect for time and the correlation matrix for two individuals from the same

cluster is assumed to be exchangeable, a common assumption in the CRT context too. However,

there are a number of practical limitations that limit its usefulness in calculating sample size for a

CRT.

In the longitudinal context, for which the method was designed, the number of observations per

person (or cluster size) is usually small. In the cluster randomised trial context the cluster size is

much larger and the definition of matrices and matrix algebra involved in using this method become

increasingly complex with increasing cluster size and the number of ordinal categories. This may

substantially increase the computational time of using this method in the CRT context. Currently

the GEE approach to the analysis of clustered ordinal outcomes assumed in this approach is a less

popular approach and not available in all statistical software packages. The complexity involved in

using this method also means that in practice a statistician would be required to implement it.

Areas for development

Further work could be done on the methodology by Kim to: look at whether this method could

be adapted to be suitable to the CRT design; consider its performance under situations that are

more reflective of a CRT, such as larger cluster sizes; and find appropriate estimates to use in its

calculation. I chose not to look at developing this method further given that it did not seem to offer

any advantages over the design effect approach, the calculations are more complex and the GEE is

not a common approach in the analysis of ordinal outcomes.
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2.2.3 Objective 2: Methods used in the derivation of sample size formulae

The second objective of the review was to identify the different approaches used in the derivation of

sample size formula for cluster randomised trials. In a minority of papers (n=9, 11%) a sample size

method was presented and evaluated but the description of how it was derived was unclear. The

approaches used in the remaining 76 papers could be broadly categorised into one of the following

six methods: calculation of the power function from first principles (n=44, 52%); derivation of the

inflation factor as a ratio of variances of the treatment effect (n=8, 10%); sample size subject to

optimality or cost constraint criteria (n=11, 14%); sample size by simulation (n=5, 6%); Bayesian

methods (n=4, 5%); or adaptation of a pre-existing method (n=3, 4%).

I now describe each of these approaches in more detail.

Calculation of a power function from first principles

The majority of papers, n=44 (52%) took a general approach to sample size derivation, mirroring

the derivation method described in Chapter One for individually randomised trials. The steps in

this approach are as follows:

1. Describe the estimate of the intervention effect

2. Select a test statistic for the intervention effect

3. Express the variance of the intervention effect under the null (and possibly alternative hypothesis)

4. Determine the distribution of the test statistic under the null hypothesis

5. Generate a statement about power or sample size required

In 18 (41%) of these papers the variance of the intervention effect calculated in step 3 simplified to

the variance under individual randomisation multiplied by a factor, termed the design effect. The

sample size formula then simplified to the formula for an individually randomised trial multiplied

by the design effect. The first of these papers was published in 1982 by Donner, Birkett and Buck

for continuous and binary data analysed at the cluster level. Since then design effects have been

established for: time-to-event outcomes;71,72 count outcomes;73 variable cluster sizes;74–76 cross-

over, equivalence, three-level and stepped-wedge designs;77–82analysis by GEE75,83 or analysis of

covariance,84 and adjusting for attrition.85 In the majority of cases the design effect methods were
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derived for cluster-level analysis. For continuous outcomes with fixed cluster sizes this is equivalent

to an individual-level analysis adjusted for clustering.

In the remaining 26 (59%) papers there was no such simplification of the variance into the two

components. These methods were more likely to assume an individual-level analysis where the

estimate of the treatment effect can be more complex.

For derivation based upon a GEE (or marginal model) the estimate of treatment effect became

more complex with the inclusion of covariates,86 more complex correlation structures,87 ordinal

outcomes,65 adaptive designs88 and time-to-event outcomes.89

For a random effects model the treatment effect, β, is usually estimated via maximization of the

likelihood function and the significance of the treatment effect assessed using the likelihood-ratio,

Score or Wald statistics. The use of random effects models appears to have been constrained to

continuous outcomes, where estimation of the treatment effect is more straightforward. For discrete

responses, in particular ordinal outcomes, except in rare cases (the complementary log-log function

with the log of a gamma or inverse Gaussian distribution for the random effects), the likelihood

function cannot be written in closed form and therefore must be approximated.90 The recommended

approximation is via Gauss-Hermite quadrature, a procedure for performing numerical integration of

the likelihood function using a series expansion evaluated at certain quadrature points. An alternative

method is to take a quasi-likelihood approach. A quasi-likelihood approach starts by linearizing and

approximating the nonlinear response model using a Taylor series expansion before maximising the

likelihood. If the Taylor series expansion is based on the fixed parameters only it is referred to as

a marginal quasi-likelihood (MQL), if it is also based on the random effects it is called penalized

quasi-likelihood (PQL) and depending upon the extent of the Taylor approximation it may be first-

or second-order quasi-likelihood.

Ratio of variances

Rather than generating a specific statement about power or sample size requirement some papers

derived inflation factors directly by specification and comparison of the variance of the treatment

effect estimate under two alternative designs.
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These inflation factors are referred to as design effects or measures of relative efficiency. The difference

between the definitions of these two inflation factors is not always clear. In this thesis I use the

following definitions, taken from the Cambridge Dictionary of Statistics91

The design effect is defined as ‘the ratio of the variance of an estimator under the particular sampling

design used in a study to its variance at equivalent sample size under simple random sampling

without replacement’. Therefore, in the context of this thesis, the design effect is a comparison of

the cluster randomised design with the individually randomised design. The sample size required

for the individually randomised design is multiplied by the design effect to calculate the sample size

required for the cluster randomised case.

The relative efficiency is defined as ‘the ratio of the variances of two possible estimates of a parameter,

or the ratio of the sample sizes required by two statistical procedures to achieve the same power’.

Therefore, the relative efficiency can be a comparison of the cluster randomised and individually

randomised designs but can also be used to compare two alternative clustered designs. In the

comparison of cluster and individually randomised trials the reciprocal of the relative efficiency is

equivalent to the design effect. The reciprocal of relative efficiency provides the multiplication factor

by which the sample size must be inflated. Many of the papers identified in the review resulted in

a sample size calculation involving a design effect. However, in only one paper was this calculated

directly as the variance of the cluster summary statistic assuming variable cluster sizes divided by

the equivalent statistic ignoring clustering.92

In the literature relative efficiency inflation factors have been defined to compare: unequal ver-

sus equal cluster sizes;93–95 cross-sectional versus cohort samples;;96 matched versus unmatched

designs;97 and a cross-over versus parallel group design.98

Defining optimality criteria

In cluster randomised trials there may be several combinations of cluster size and number of clusters

that produce designs with equivalent power. In these situations the optimal sample size at each level

may be constrained by the total budget for the trial. This total cost function is fixed and is made

up of the cost of sampling a cluster and the cost of sampling an individual. The optimal allocation
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of clusters and individuals, subject to cost constraints have been derived for binary and continuous

outcomes.99–109

Sample size by simulation

Five papers were identified that described sample size calculation through the use of simulation.110–114

These authors used simulation due to the lack of available simple sample size formula for their design

or because of the inherent complexity in their proposed design.

The general process for sample size by simulation involves simulating a large number of data sets,

most commonly at the level of the individual, each one to represent a potential dataset of results from

the trial. For each simulated data set the planned analysis is conducted and the empirical power

calculated as the percentage of tests where the null hypothesis is rejected. Changes in the input

parameters, such as number of clusters, can be made until adequate power is achieved. Simulation

has the flexibility to incorporate all the complexities of the trial. However, it can be computationally

intensive to implement.

From a more technical viewpoint the simulation procedure starts with generating an observation for

each cluster alongside a variable to indicate which treatment group the cluster belongs to. Within

each cluster an observation is generated for each individual. The number of individuals per cluster can

be chosen to be fixed, randomly selected for each cluster with defined probability from one of several

user-defined cluster size values, or randomly selected from a user-defined probability distribution. It

is also possible to randomly assign covariates at this stage using user-defined probability distributions.

A model is then defined for generating the outcome variable for the dataset, with a user defined

treatment effect, for example a linear or logistic random effects model for continuous or binary

outcomes respectively. The level of the ICC is controlled through the assumed distribution of the

cluster-level random effects and the individual-level residuals. This procedure is repeated to generate

a large number of datasets.

Bayesian methodology

Four papers took a Bayesian perspective to sample size determination.115–118 Bayesian statistics is a

branch of statistics that expresses uncertainty about unknown parameters in terms of a probability

distribution (known as a posterior distribution). This posterior distribution is calculated using both
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prior knowledge and the observed data. In several of these papers the prior knowledge involved

specification of a distribution for the ICC. The probability distribution for the power of the study

reflecting ICC uncertainty would then be derived. Posterior distributions for unknown parameters

can often be computationally complex and in these situations Markov Chain Monte Carlo (MCMC)

simulation methods using specialist Bayesian software such as WinBUGS are needed to find estimates

from the distribution, for example the average power. Bayesian methods are considered by many to be

more complex to implement than classical methods. The development of statistical methodology for

clinical trials and the corresponding statistical software has largely focused on classical, or frequentist,

approaches. Many of the papers that implemented a Bayesian approach to sample size did assume

that the eventual analysis would take a frequentist approach.

Adaptation of a pre-existing method

There were three papers that adapted or extended a previously derived method. Examples included

extending methods used for rates to time-to-event data, methods for re-estimating the sample size

at an interim look and dealing with ICC uncertainty.119–121

2.3 Discussion

2.3.1 Main findings

This review is the most comprehensive and up-to-date review of sample size calculations for cluster

randomised trials. Additional methodology published between the date of this review and the end

of my research is summarised in Chapter Six of this thesis.

The results of this review show that there is a large body of literature available on sample size

methodology for cluster randomised clinical trials, 85 papers were identified. The literature is dom-

inated by methods which are applicable to binary or continuous outcomes. Methods for alternative

outcomes, particularly ordinal outcomes were lacking. In 2005 a paper by Kim discussed sample

size for correlated ordinal outcomes. Their method assumes that the analysis will be by GEE with

the treatment effect evaluated using a Wald test, and that each cluster is of the same size. As it
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currently stands it is not obvious how this method can be transferred to the cluster randomised trial

situation.

A second method proposed by Campbell and Walters proposes multiplication of the sample size

formula for individually randomised trials for ordinal outcomes by the standard design effect.33 This

method offers great benefits of being simple to implement and familiar to researchers. However

its performance has not been formally evaluated and no recommendations are provided to guide

researchers on an appropriate estimate of the ICC to use.

Of the 85 papers the most popular derivation approach was to derive a sample size formula from first

principles. This approach was used in over half of the papers, 52%. For individual-level analyses the

GEE method of analysis was assumed for discrete outcomes. The use of random effects models was

constrained to continuous outcomes.

2.3.2 Strengths and limitations

This review has some limitations. The search results are biased towards methodology that has

been published in the English language. There is also a bias towards methodology published in

the medical/healthcare literature with the choice of the electronic databases chosen for searching.

However, I felt that this is where the majority of cluster randomised trial methodology is published

and health research is my area of expertise. Potential limitations of the search process include the

fact that the search was not performed by two independent researchers and decisions about initial

inclusion of a paper were made by me alone. This means there is potential that some papers may

have been missed during the process. However, the search results were reviewed by experts in the

field and I am therefore confident that no key methods have been excluded.

There is limited guidance available for the conduct and reporting of reviews of methodology such as

this and different methods from those used in more traditional systematic reviews are required. A

strength of this review is that the search procedure was developed to be as systematic as possible

and the methods used mirrored those of a more traditional review where possible to ensure a com-

prehensive summary of the methodology available. The search terms were validated prior to use and
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data abstraction independently reviewed for a select number of articles. The only previous review

of CRT methodology to implement such robust methods was conducted 15 years ago8

2.3.3 Implications for this research

Sample size methodology for ordinal outcomes were set out in only two of the 85 papers, of these

both have scope for further development.

At the beginning of this research I started, in parallel, two approaches to sample size calculation

for ordinal outcomes. The first was to derive a formula from first principles and the second was to

calculate the required sample size using simulation based methods and explore whether any patterns

in the required sample size emerged.

As the most common approach to the analysis of ordinal outcomes for the non-clustered case is by

proportional odds model it seemed most sensible to assume the analysis for the clustered case would

be the random effects extension to this model. However, it became clear from my review that there

would be great difficulty in using a random effects model as the basis for formula derivation from

first principles due to the complexity involved in estimation and inference, an issue that had been

identified for binary outcomes. The alternative was a GEE approach but this had already been used

by Kim et al and is not a popular analysis approach for ordinal outcomes.65

From an initial exploration of sample size by simulation it appeared that some patterns were emerging

and the simple design effect might offer an appropriate approach to sample size calculation for ordinal

outcomes.

While working on the two approaches above the use of the design effect for sample size calculation

with ordinal outcomes was proposed by Campbell and Walters.33 However, the performance of the

method in different scenarios was unknown and there was no guidance around which estimate of the

ICC should be used.

The focus of my research therefore was diverted in order to evaluate the design effect method and

provide guidance for applied researchers around its use. I made this decision because the design effect
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method: has the advantage of simplicity that would likely outweigh any newly derived formula, that

may be a more complex calculation; is already well established for binary and continuous outcomes

and Donner’s paper proposing this method still remains highly cited, despite its age; is familiar to

researchers; and the calculation is easy to perform.
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Chapter 3

Ordinal outcomes in CRTs

In this thesis I concentrate on providing practical guidance for using the sample size method for

clustered ordinal outcomes which suggests multiplication of the sample size derived by Whitehead2

for individual randomisation by the design effect.

In this chapter I establish whether there is sufficient demand for such guidance i.e. a prevalence

of cluster randomised trials with primary outcomes that are ordinal. Using an existing sample of

300 published cluster randomised trials, I estimate the prevalence of ordinal outcomes, look at the

methodological approaches used in their design and analysis, and describe the design characteristics

of these trials. The characteristics of these trials will be used to inform the design of simulation

studies presented in Chapter Five that will evaluate the design effect approach for sample size

calculation in CRTs with ordinal outcomes.

Some of the work within this chapter was undertaken collaboratively. Aspects that were conducted

collaboratively, and my role in the collaboration, are clearly described within the following sections.

3.1 Background

Ivers et al conducted the largest review to date of 300 cluster randomised trials published between

2000 and 2008 with the aim of describing the quality of methods and reporting.30 I planned to use

the same sample of 300 trials to meet the aims of this chapter. My plan was to utilize some of the
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information the Ivers et al group had already collected on this sample such as whether a sample size

was calculated and whether it was appropriately adjusted for clustering. I would then review all

300 papers myself to extract the additional information I required to meet my objectives. However,

the dataset of the information extracted in the original review of these 300 trials was not publicly

available at the time of my research, as the research team were planning further work using these

trials. The statisticians involved in the original review were Monica Taljaard (MT) and Stephanie

Dixon (SDX) who were based at the Ottawa Hospital Research Institute at Ottawa Hospital and

the Schulich School of Medicine and Dentistry at the University of Western Ontario in Canada

respectively. An agreement was reached between us whereby the information previously extracted

would be shared with me and we would combine our resources to extract further information from

each trial to satisfy the planned objectives of my research and that of the Canadian based research

team.

3.2 Methods

3.2.1 Objectives

The review was designed to meet the objectives of my research and that of the Canadian based team.

As the focus of this thesis is my research I have described my objectives as primary and those of the

Canadian research team as secondary to distinguish the two.

The primary objectives:

• To describe the prevalence of ordinal primary outcomes in cluster randomised trials

and for trials with ordinal outcomes:

• To describe the design features of trials using ordinal primary outcomes

• To describe the prevalence of reporting observed estimates required for future sample size calcu-

lations i.e. the proportions in each ordinal category in each treatment group and a measure of the

observed ICC.

• To describe the methodological approach used in the sample size calculation
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• To describe the quality of sample size reporting in comparison to the recommended elements

provided in the CONSORT 2004 extension for cluster randomised trials.50

The CONSORT 2004 statement requires five elements to be included in the description of the sample

size calculation. (1) the type I error rate, (2) power, (3) estimates of outcomes in each group

or minimum important target effect, (4) the number of clusters or average cluster size and, (5)

the assumed measure of intracluster correlation, design effect or coefficient of variation. In 2012

the CONSORT 2004 statement for cluster randomised trials was updated.51 The 2012 version

additionally recommends that it be specified whether equal or variable cluster sizes has been assumed.

In this sample the trials were published between 2000 and 2008 and therefore not expected to report

according to the 2012 extension.

The secondary objectives:

The secondary objectives of this review are restricted to the subset of trials that reported a sample

size calculation. These objectives look at the reporting and methodological quality of sample size

calculations in cluster randomised trials in more detail than was considered in the original review

by Ivers et al. These objectives were generated by the Canadian based research team and jointly

agreed by both research groups.

• To describe the methodological quality of sample size reporting in cluster randomised trials

• To establish which sample size descriptive elements, as recommended in the CONSORT extension

for cluster randomised trials, are best and worst reported

• To determine whether sample size reporting practices have improved since the introduction of the

CONSORT 2004 extension for cluster randomised trials

• To evaluate the accuracy of the a priori estimates used in the sample size calculation by making

comparisons with their observed values at the end of the trial

The methods and results of these secondary objectives have been published, and are not repeated

within this thesis. I took the lead role in the analysis of this data and preparing and submitting the

work for publication.122

In the following sections I describe the methods used to meet the objectives of this review.
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3.2.2 Data source

This review was conducted using the 300 published reports of cluster randomised trials identified by

Ivers et al.30

For trials with ordinal outcomes each primary author was contacted by email to see if their trial

dataset was available, in order to calculate estimates of the ICC and proportions in each ordinal cat-

egory where missing from the trial report. If the primary author could not be reached an alternative

author was contacted.

3.2.3 Justification of data source

I chose trial reports as the data source for this review as I considered them to provide a more

representative sample of clinical trials than other sources, such as published protocols. However, the

level of detail and general reporting quality may be less than ideal given the strict length restrictions

often imposed by journals at the time these trials were reported.

I did consider published trial protocols as a data source. The biggest advantage of the trial protocol

over the trial report is the level of detail is likely to be greater, as they are not subject to the

same length restrictions. The trial protocol may contain detailed information about decisions made

during the course of design, for example possible justification for dichotomising an ordinal outcome,

treating it as continuous, or choosing an alternative outcome. The protocol may provide insight

into whether these decisions were driven by clinical relevance or the availability and complexity

of statistical methods for ordinal outcomes. However, although the publication of trial protocols

appears to be more common in recent years those trials which publish their protocols are more likely

to be of high quality and not a representative sample of all cluster randomised trials. Their use was

not considered further.

In Chapter one twenty-three reviews of cluster randomised trials were summarised in Table 1.1.

The number of trials included in each review ranged from 15 to 300. With the availability of these

existing reviews, and due to the time limitations imposed upon my research, I chose to utilize an

existing review as my data source rather than conduct a new one. I opted to use the review by Ivers

et al for two reasons.30 Firstly it was the largest review to have been conducted and secondly, unlike
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some of the other reviews it was less restrictive in the databases searched and health areas included

and was more likely to provide a representative sample of published cluster randomised trials across

all areas of health research.

3.2.4 Inclusion and exclusion criteria

The search strategy implemented in the review by Ivers et al produced a sample of CRTs that the

authors describe to be representative of all Medline publications. A publication was included if it

was the main study report and was published in an English language journal between the years 2000

and 2008. Trial protocols, pilot studies, or papers that reported only baseline results or secondary

analyses were excluded.

For my research I initially considered all 300 trials and then refined this to the subset reporting

ordinal outcomes. The collaboration work with the Canadian group was restricted to those trials

that reported a sample size calculation.

3.2.5 Data collection

In the original review by Ivers et al 47% of trials did not identify a primary outcome. In these

cases, for the purpose of data extraction an outcome was designated as primary. Where multiple

outcomes were specified the primary outcome was chosen as that which was reported first in the

abstract or analysis. All data extraction in the original review was related to the primary outcome.

The same approach was taken in my review with the exception being those that reported a sample

size calculation. For these trials data extraction was based upon the outcome used in the sample size

calculation if this was different from the originally defined primary outcome. This was not a frequent

occurrence and was done in order to maximise information gained about sample size calculations.

Where several follow-up time points were given data extraction was based on the final time point,

unless an earlier time-point was identified as primary.

Descriptive information collected in the original review was made available to me by the authors. It

included information on year of publication, impact factor, trial design (parallel trial, factorial, cross-
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over, other), method of randomisation (completely randomised, stratified, pair-matched, other), a

description of the primary outcome and whether a sample size calculation had been reported.

The following sections describe the details of what information was additionally extracted and by

whom.

Information extracted collaboratively (by CR, MT, and SDX)

For papers that reported a sample size calculation the following information was collected collabo-

ratively: (the full data extraction form can be found in appendix iii):

Study design:

• The outcome for which the sample size calculation was performed for

Sample size:

• The method, or citation, of sample size calculation

• Data type of the primary outcome (binary, categorical, ordinal, continuous, count, time-to-event

data, other, unclear)

• Type I, Type II error rate, and whether a one or two-sided test assumed

• The estimator used to describe the correlation within clusters, its value and any justification for

its value

• Additional aspects accounted for in the calculation i.e. attrition, variable cluster sizes

• The value of the expected response in the control and treatment arms with a measure of the effect

size and any justification provided for these values

• Target sample size: Total number of clusters and individuals

Analysis:

• The achieved sample size used in the analysis: Total number of clusters and individuals

• The method of analysis used

• Data type at the level (cluster or individual) corresponding to the analysis (binary, categorical,

ordinal, continuous, count, time-to-event data, other, unclear)

• Data type as used in the analysis (binary, categorical, ordinal, continuous, count, time-to-event

data, other, unclear)

• Observed values of: the measure of correlation; the response in the control and treatment arms;
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and unadjusted effect size

Information extracted independently (by CR)

The following information was extracted independently on all articles that did not report a sample

size calculation:

Study design:

• Data type of the primary outcome (binary, categorical, ordinal, continuous, count, time-to-event

data, other, unclear)

For the subset of trials identified with an ordinal primary outcome the following information was

extracted :

Study design:

• Description of the outcome

• Number of ordinal categories, with category description

• Description of the intervention

• Description of the cluster

• Description of the sub-units within a cluster

If a sample size calculation was present the following information was included in the information

collected collaboratively, else this information was extracted independently:

Analysis:

• The achieved sample size used in the analysis: total number of clusters and sub-units

• The method of analysis used

• Data type as used in the analysis (binary, categorical, ordinal, continuous, count, time-to-event

data, other, unclear)

• Observed values of: the measure of correlation; the response in the control and treatment arms;

and unadjusted effect size
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3.2.6 Data management

Collaborative extraction (by CR, MT, and SDX)

I drafted a data extraction form. This was discussed and finalised with MT, SDX, SE, and AC. The

extracted data was transcribed from the data extraction form and stored in an Access database, to

which the data collection from the originally review was also imported. I designed and tested the

database (screen shots available in appendix iv).

CR, MT, SDX extracted the data in pairs for each article that reported a sample size calculation.

The trials were divided into batches of approximately ten trials. Each batch of trials was assigned

to an extracting pair. MT was responsible for the allocation and rotation of extraction pairs. Each

member of the team had a copy of the database and was responsible for storing the paper and

electronic versions for the trials to which they were assigned. After each set of 10 trials had been

extracted the electronic database from each extracting pair was emailed to me. I imported each

set of data into Stata where I used the cf2 command to compare the two datasets and list the

discrepancies. The list of discrepancies was then sent to the extracting pair and were reviewed and

resolved by consensus within the pair.

After the discussion of any discrepancies in the data extraction one member of each extracting pair

was responsible for updating the database. This was MT for all her batches and CR for the batches

marked with SDX. At the end of the project these two datasets were merged to create the final

dataset on which data checking took place, described in the next section.

Individual abstraction (by CR)

The majority of the information I extracted independently was for those trials that had an ordinal

primary outcome. As the number of trials for which this information was extracted was small an

Excel spreadsheet was deemed adequate for its storage.

3.2.7 Validation and data checking

Collaborative extraction

The final version of the data extraction form was tested on five papers selected by MT, who was
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most familiar with the trials included in the sample, with the aim of testing the form on a variety of

trials. No changes to the form were deemed necessary after piloting the form.

After the collection of all the data a data checking plan was agreed to ensure consistent recording

between both extraction pairs and extractions over time. This data checking included some of the

following aspects:

• Agreeing the categorisation of free text responses such as the method of analysis used

• Ensuring consistency in reporting percentages as decimals rather than whole numbers for example

0.85 versus 85%

• Double checking papers where a large discrepancy was seen between target and actual sample size

• Double checking papers where a large discrepancy was seen between target and actual sample size

parameter estimates

• Checking that absolute and relative differences had been calculated correctly

• Part way through data extraction it was agreed that the target total number of clusters required

should be left blank if not explicitly reported in the sample size calculation. All papers where this

question was not missing were double checked to ensure it had been explicitly reported and not

inferred.

• Logical checks, for example, if the sample size does not account for the ICC then no value should

be given for the ICC

Individual extraction

All information I extracted on trials with ordinal outcomes was performed twice, a month apart,

in order to provide a double check of the extraction. A second data extraction was feasible due to

the small number of trials included. As both extractions were performed by me there was some

limitation to the validation provided. However, it was thought that the information to be extracted

would be a key part of the trial report and should be easily identified. If any ambiguity was present

it was discussed with SE and AC.
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3.3 Results

3.3.1 Description of included trials

The characteristics of the 300 trials have previously been described in detail.30 Selected character-

istics are presented in Table 3.1. Just over half of the trials reported a sample size calculation,

N=166 and of these 61% accounted for clustering. This number is larger than the 164 reported in

the original review because that review focused on whether a sample size calculation was present for

the variable defined as primary. In this review the outcome used in the sample size calculation was

deemed primary.

Despite the willingness of authors no datasets for the eleven trials with ordinal outcomes were

available to calculate observed data summaries. The unavailability was due to data being deleted,

archived, corrupt or the research team disbanded and the data location unknown.

3.3.2 Prevalence of ordinal outcomes and design characteristics

There were 11 (4%) trials identified as having an ordinal primary outcome. The design of these trials

were most often parallel group 10 (91%), two-arm 6 (55%), completely randomised 8 (73%), and

used a cohort sample, meaning the same individuals within a cluster are measured at more than one

time point, 9 (82%) (Table 3.2). In all but one of these cohort trials the baseline measure or post

randomisation measurements have been incorporated into the analysis. Use of the design effect for

clustered ordinal data does not allow for the inclusion of baseline or post randomisation measures.

The inclusion of such measurements would introduce additional components of correlation or require

the ICC to be suitably adjusted. For ordinal outcomes estimates of the ICC are not routinely

published and are likely to be difficult to find, estimates of additional or adjusted correlations due

to incorporation of baseline or repeated measures will be more so. Therefore, for the purpose of this

thesis I focus on sample size methods for an analysis of the final time point only, which should be

conservative for analyses that include baseline or repeated measures.

The majority of the interventions being tested within these trials were counselling or skills train-

ing interventions aimed at changing various aspects of behaviour (9/11 (82%) of trials). The ran-
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Table 3.1: Characteristics of the 300 CRTs included in the published review by Ivers*. Figures are numbers
(percentages) of trials unless stated otherwise

Characteristic N %
Publication year:
2000-4 139 (46)
2005-6 93 (31)
2007-8 68 (23)

Journal impact factor (n=294)
Median (IQR) 2.9 (2.1-5.1)
Range 0.45-50.0

Setting:
Clinical 169 (56)
Non-clinical 131 (44)

No. of clusters randomised (n=285)
Median (IQR) 21.0 (12-52)
Range 2-605

Average cluster size (n=271)
Median (IQR) 33.9 (12.5-88.5)
Range 1.7-122 855

No. of participants per arm (n=290)
Median (IQR) 329 (143-866)
Range 20-614 275

Sample size reported 166 (55)
Accounted for clustering
in sample size 102 (61)
* Ivers et al30
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domised units were either health care practices/providers with outcomes measured for each patient

(5/11(45%)) or schools/classrooms with outcomes measured for each pupil (4/11(36%)). Over half

of these ordinal outcomes had either four or five levels, Table 3.2.

The total number of clusters randomised was small, median 18 with inter-quartile range 9 to 61.

Similarly the number of individuals enrolled per trial arm was small, median 128 with interquartile

range 71 to 150, Table 3.2.

In two of the trials a random effects ordinal regression was performed. The outcome was dichotomised

in four trials, treated as continuous in four trials and categorical in one.

3.3.3 Reported values of ICCs and category proportions

Campbell and Walters’ design effect method for sample size calculation for clustered ordinal outcomes

requires estimates for the expected proportions in each category within each treatment group at the

end of the trial as well as a measure of the ICC. These estimates were not routinely reported, only

two of the eleven trials provided information on the observed proportions in each category at the

end of the trial. These two trials and their estimates are summarised below.

The trial by Steptoe et al assessed the impact of a behavioural counselling programme, implemented

at the level of general practice, in changing the state of change in fat reduction of patients at risk

of coronary heart disease.56 State of change was measured on 5-levels (pre-contemplation, contem-

plation, preparation, action and maintenance). The authors combined the action and maintenance

stages since they felt the distinction between the two may be subject to recall bias. After 4 months

the proportions in these categories in the intervention group were 9.9%, 8.9%, 14.1% and 67.1% and

in the control group 17.7%, 10.9%, 17.7% and 53.6%. These figures translate to log-odds ratios of

-0.67, -0.54 and -0.56. At the 12 month time point the proportions in the intervention group were

14.1%, 5.7%, 11.9%, 68.4% and the control group 16.5%, 7.5%, 16.8% and 59.2%. These figures pro-

vide log-odds ratios of -0.19, -0.25, and -0.40. From observation alone the log-odds are not similar

for each dichotomisation indicating that the assumption of proportionality may not be met. The

assumption of proportional odds, what it means and how it can be formally assessed will be explored

further in the next chapter.
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Table 3.2: Design features for 11 CRTs with ordinal primary outcomes identified from the 300 published
CRTs included in the review by Ivers*. Figures are number (percentage) of trials unless stated
otherwise

Trial Design N (%)

Publication year
2000-2004 5 45%
2005-2008 6 55%

Trial design
Parallel trial 10 91%
Factorial trial 0 0%
Cross-over trial 1 9%
Other 0 0%

Randomisation method
Completely randomised 8 73%
Stratified 1 9%
Pair-matched 0 0%
Other 2 18%

Design at patient level
Cross sectional 2 18%
Cohort 9 82%

Number of arms Two 6 55%
Three 4 36%
Four 1 9%

Sample size reported 1 9%

Number of ordinal levels

3 2 18%
4 4 36%
5 3 27%
6 0 0%
7 1 9%
8 0 0%
9 1 9%

No. of clusters randomised
median (IQR) 18 (9 to 61)
Range 7 to 345

No. of participants enrolled per arm
median (IQR) 128 (71 to 150)
Range 30 to 316

* Ivers et al30
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In the second trial by Howlin expert training and consultancy was provided to teachers of children

with autism. The frequency of communication initiations by children was measured on a 4-level

outcome variable.123 Using figure 2 from the trial publication the proportions in each ordinal category

for the two follow up measurements can be estimated. In the immediate treatment group the

proportions observed in each category are 7.7%, 57.7%, 11.5%, 23.1% and in the no treatment group

these are 17.9%, 46.4%, 32.1%, 3.6%. These translate to log-odds ratios of -0.96, 0.05, and -2.08 .

At the third time point the proportions in the immediate treatment group are 16%, 52%, 20% and

12% and in the control group 14.3%, 39.3%, 39.3% and 7.1%. These translate to log-odds ratios

0.13, 0.61, and -0.58. Each of these log-odds are very different and not always in the same direction,

again indicating that the proportional odds assumption may not be reasonable.

3.3.4 Reporting quality according to CONSORT guidelines

Of the 11 trials with ordinal primary outcomes only one paper by Howlin et al reported a sample

size calculation based on an expected odds ratio.123 The paper by Brody did state that an a priori

power analysis based on effect sizes from a previous study informed the sample size but no details of

the calculation were actually reported and the corresponding author did not respond to my e-mail

inquiries about this study.124 The expected proportions in each ordinal category at the design stage

were not provided in any of the eleven papers.

In the Howlin trial all five of the elements recommended by CONSORT were reported (1) the type I

error rate (2) power (3) estimates of outcomes in each group or minimum important target effect, (4)

the number of clusters or average cluster size and (5) the assumed measures of intracluster correlation,

design effect or coefficient of variation. No allowances were made for attrition or possible cluster size

imbalance.

3.3.5 Assessment of methodological approach to sample size calculation

In the Howlin trial the clustered nature of the data was acknowledged and accounted for in the

sample size calculation. The ICC was used as the measure of correlation, but no justifications for

any of the estimates used in the calculation were provided.
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It was agreed through the collaborative extraction that the Howlin paper assumed a binary outcome

and the sample size compares a difference in proportions adjusted for clustering. However, on further

consideration the exact calculation of the sample size is slightly ambiguous as to whether it has been

calculated on the ordinal outcome, or a dichotomous version. The reference quoted for the method

used would allow for both of these options and the description of the method does not include

enough information to recreate the formula in order to check either approach. The authors were not

contactable by email and the study protocol was not available to check the method used.

3.4 Discussion

3.4.1 Main findings

In a random sample of 300 cluster randomised trials 11 (4%) trials had primary outcomes that

were ordinal. Nine (82%) of these outcomes had between 3 and 5 ordinal categories and most often

measured an aspect of behaviour 9/11 (82%).

The design of these trials were most often parallel group (10, 91%), two-arm (6, 55%), completely

randomised (8, 73%), and used a cohort sample (9, 82%). Both the total number of clusters ran-

domised and the number of enrolled participants per arm tended to be small.

Only one paper reported a sample size calculation which incorporated adjustments for clustering

and followed all the CONSORT recommendations for sample size reporting for cluster randomised

trials.

Few trials reported the observed proportions in each category at the end of the trial that might be

used in future sample size calculations. Where provided these proportions did not appear to fulfil the

assumption of proportional odds, a requirement of Whitehead’s sample size formula for individually

randomised trials to which the design effect is applied.

3.4.2 Strengths and limitations

The sample used in this review is unique due to its size and coverage. With 300 cluster randomised

trials included it is the largest review of CRTs that has been conducted to date, with the next largest
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containing 173.44 The majority of other reviews have contained less than 40 trials. Many previous

reviews have focused on particular areas of health such as stroke, oral health, and primary care

or targeted particularly high ranking journals during the search. The way in which the sample of

300 used in this review was selected makes it the most representative of cluster randomised trials

across the medical research field. However it should be acknowledged that the sample contains trials

published between 2000 and 2008. There is a possibility that the inclusion of more recent publications

may have provided a different estimate of ordinal outcome prevalence. The true estimate of demand

for ordinal sample size methods might also be larger as this review does not identify those trials that

chose an alternative outcome due to a lack of available methods for ordinal outcomes and the added

complexity of the analysis.

3.4.3 Comparison with other work

The objectives of previous reviews of cluster randomised trials have mainly focused on assessing the

quality of methods used and the quality of reporting. This is the first review of cluster randomised

trials to focus on the type of outcome used. Some recent research has been conducted on the analysis

of ordinal outcomes for cluster randomised trials by Ruochu Gao, a PhD student of Allan Donner,

whose thesis is available online.125 In this work Gao provides examples of 11 recent cluster ran-

domised trials using ordinal outcomes. The types of outcomes are consistent with those seen in my

review: behavioural outcomes related to tobacco, drug and condom use and satisfaction outcomes

related to patient and physician. The types of clusters are also similar: schools, medical practices

and physicians. In nine (82%) of these trials the number of ordinal categories is between three and

five, the same figure as seen in my review. Gao does not describe how her sample of trials was se-

lected but it provides consistent findings about the characteristics of trials that use ordinal outcomes.

3.4.4 Implications for this research

Four percent of trials were identified as having an ordinal primary outcome. Although less common

than binary or continuous outcomes ordinal outcomes are not especially rare. In only one of these

eleven trials was a sample size calculation reported. It is clear that researchers still need further

100



3.4. DISCUSSION

support and guidance in the design of trials for clustered ordinal outcomes and they need access to

appropriate sample size methodology to do this. The development towards practical guidance for

sample size calculations with ordinal outcomes follows in the proceeding chapters.
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Chapter 4

Analysis of ordinal outcomes

Whitehead’s sample size formula for ordinal outcomes in individually randomised trials assumes

proportional odds and an analysis by Mann-Whitney test, which is equivalent to ordinal regression

when only treatment is included in the model. Ordinal regression methods are more available

in statistical software than their non-parametric counterparts and are a popular approach to the

analysis of ordinal outcomes. The assumed analysis method for Campbell and Walters’ extension of

Whitehead’s method for clustered data is not explicitly stated. The extension of ordinal regression for

clustered data, the random effects ordered logistic regression model, would seem a logical approach

to use.

The aim of this chapter is to describe analysis methods for clustered ordinal data with a focus on

the random effects ordered logistic regression model and its assumptions. As the analysis methods

for clustered data are often extensions of the methods used for non-clustered data the methods

for non-clustered data are described first. Methodological issues surrounding each analysis method

are discussed, providing justification to the decisions made in the design of the simulation studies

to evaluate the design effect approach for sample size calculations for clustered ordinal outcomes,

which follow in the next chapter.

Three proposed ICC estimators for ordinal outcomes are presented in this chapter and their use in

the design effect will be evaluated in the next chapter.
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4.1 Analysis methods for non-clustered data

An ordinal outcome, as defined in chapter one, is a variable which consists of a set of categories that

can be ordered or ranked, for example disease severity (mild, moderate or severe). The absolute

difference between the categories is often unmeasurable or unknown.

Alan Agresti has made a large contribution to the work on the analysis of ordinal outcomes. The

first version of his book on the analysis of ordered categorical data was published in 1984 and a

second edition, published in 2010, included developments for clustered data. Agresti has contributed

to several reviews of methods available to analyse ordinal data with the earliest in 1989 and the

latest in 2005.90,126–128 These articles highlight the substantial methodological development that

has occurred in recent years in the analysis of ordinal outcomes. In the most recent review paper

invited researchers were given the opportunity to discuss the work and give their thoughts on the

future direction of ordinal outcome research, power and sample size calculations for clustered data,

the focus of this thesis, was raised as an area for development. Lall et al have also reviewed ordinal

regression models applied specifically to health-related quality of life outcomes.129

With an ordinal outcome one can either ignore or incorporate the ordinality in the data into the

analysis. Methods which ignore the ordinal nature of the data are described here for completeness,

as they are commonly undertaken, but are not recommended as they will likely give different results

to an analysis that incorporates ordinality.130

4.1.1 Methods which ignore ordinality

If ignoring the ordinal nature of the data the outcome would alternatively be considered to be

nominal, continuous or could be reduced to a binary outcome. Treating the outcome as nominal

means treating the categories as if there is no natural ordering among them. The Pearson’s Chi-

squared test is commonly used to analyse nominal data. However, it has been shown that when used

to analyse an ordinal outcome the Chi-squared test can produce different conclusions to those made

using analyses that take the ordering into account.130

Another simple approach which ignores the ordinality is to combine adjacent categories to reduce the

ordinal outcome to a binary variable, to which standard statistical methods such as the chi-squared
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test or logistic regression can be applied. This produces a valid analysis but dichotomisation of the

outcome results in a loss of information, more power can be gained by retaining the full ordinal

variable. The power of this dichotomisation approach has been examined using data from the

CRASH trial which investigated the efficacy of corticosteroids in traumatic brain injury patients.131

The primary outcome variable in this trial was the 5-point Glasgow Outcome Scale which was

dichotomised as unfavourable (dead, vegetative, severe disability) or favourable (moderate disability,

good recovery). The analysis of the binary outcome was non-significant, yet the analysis of the

ordinal outcome with proportional odds regression was highly significant. The authors attributed

this difference in conclusions to the increased statistical power of the ordinal approach. In previous

simulation studies the authors had also explored the effects of non-proportionality, where a significant

treatment effect was present in only one category cut-off. They reported that surprisingly the results

showed that even when the assumption of proportionality was not met the ordinal analysis assuming

proportional odds had more power than the binary approach (dichotomised at the point of the

significant treatment effect).

According to the authors trials in traumatic brain injury have traditionally been powered on the

dichotomous variable of a favourable versus unfavourable outcome. The increased power from an

ordinal analysis implies that powering on the ordinal outcome could reduce sample sizes. However,

the authors investigating the CRASH data did not advise going down this route because they argue

that trials in critical care medicine are generally under powered due to a systematic overestimate of

the treatment effect size during the design. Instead the increased efficiency of an ordinal analysis

should aid in the detection of smaller treatment effects for the same sample size. However, I would

argue that under powering in the strictest sense refers to a trials inability to recruit and measure

the required number of individuals as indicated by the sample size calculation. The issue here

seems to be that the sample size calculation, in particular the way that the minimum clinically

important difference is chosen, is not adequate. Investigators may be too optimistic about the

expected treatment effect or the treatment effects are chosen to provide a sample size requirement

that is attainable to recruit.

In contrast to the above recommendations on sample size for critical care medicine the recommen-

dation for stroke trials is to conduct the design and analysis using approaches which utilize the
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ordinality of the data, as opposed to a dichotomous approach based on stroke/no stroke, as the re-

duction in sample size can reduce the competition for patients between trials and reduce the cost and

complexity of the trial itself.132 For individually randomised trials Whitehead’s method of sample

size calculation for ordinal outcomes has been shown to produce sample sizes that are on average

28% smaller than those for a binary version of the outcome.57 The impact on power when using

more than two categories is large. However, additional power gains are marginal once the number

of ordinal categories goes beyond five.2

The final approach ignoring the ordinal nature of the data assigns scores to the ordinal categories and

assumes the variable is continuous and analysed using methods such as ANOVA or linear regression.

Most commonly equally spaced scores are used across the ordinal categories, although other scoring

systems may be used. Aside from how to assign scores the biggest problem with this approach

is that the created variable often violates the normality assumption required for many analyses,

more so when the sample size is small. The t-test and ANCOVA however, have been shown to be

robust to the normality assumption (i.e. to produce significance levels close to nominal levels) using

simulation with three-, four- and five-level ordinal data.133,134 To avoid the assumption of normality

non-parametric methods such as the Mann-Whitney-U test can be used.

Walters et al have explored methods for sample size and analysis within the context of quality of

life data. Their results suggest that when the outcome has a limited number of discrete values

(less than 7) and/or the proportion of cases at either of the bounds is high Whiteheads method

of sample size performs well. However, where seven or more populated categories are present and

the proportion of cases at the bounds is low then sample size and analysis methods based on the

simplifying assumption of an assumed continuously distributed variable may be used.135,136

4.1.2 Methods that incorporate ordinality

In this chapter I assume that the ordinal outcome is a discrete measure of an underlying continuous

variable and therefore I focus on the model often most appropriate for this situation, the proportional

odds model (also referred to as ordered logistic regression) which is described by McCullagh.137 Lall

et al have reviewed ordinal regression models applied to health-related quality of life assessments,

and include discussion of the stereotype model that can be useful in situations where the categories
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are not assumed to be a discrete version of an underlying continuous variable. The ordinality of the

response is assessed within the model.129

Model formulation

Let us assume an ordinal response variable with k ordered categories q = 1, 2, . . . , k and Yj be the

categorical response for the j′th individual. Yj takes the value q if the response is in category q.

The probability of an individual j being in category q is πjq and the cumulative probability of being

in category q or below, denoted Pjq is given by

P (Yj ≤ q) = Pjq = πj1 + πj2 + . . .+ πjq

We assume that the ordinal response is a crude measure of some underlying continuous distribution

which is unknown and unmeasurable (referred to as a latent response), Y ∗j . The ordinal variable

is obtained by chopping Y ∗j into categories using a series of cut points αq where q = 1, . . . , k − 1.

Figure 4.1 illustrates an unobserved latent response for a four-level ordinal outcome. A value of

Y ∗ < α1 corresponds to a response in the first category, values between α1 and α2 correspond to

a response in the second category and so on. The cumulative probability of being in category q or

below, denoted Pjq is now given by

P (Y ∗j ≤ αq) = P (Yj ≤ q) = Pjq (q = 1, 2. . . . k − 1)

If we know the distribution of the latent response this cumulative probability can be easily calculated.

The most common choice for the distribution of the latent response is a logistic distribution with

mean µ and variance, π
2

3 . The cumulative distribution function for the standard logistic distribution

is:

F (x) = P (X ≤ x) = 1
1+e−(x−µ) or equivalently F (x) = e(x−µ)

1+e(x−µ)

Therefore if we assume the underlying latent response Y ∗j follows a logistic distribution
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F (y∗j ) = P (Y ∗j ≤ y∗j ) = e
y∗j−µ

1+e
y∗
j
−µ

and so

Pjq = F (αq) = eαq−µ

1+eαq−µ

Applying the logistic transformation it follows that

logit[P (Yj ≤ q)] = log
(

Pjq
1−Pjq

)
= αq − µ

Assuming that µ is a linear combination of the explanatory variables the proportional odds model,

or more specifically the proportional odds version of the cumulative logit model is given as:

logit[P (Yj ≤ q)] = αq − βxj (4.1)

Where β represents the treatment effect, assumed the same across all q (the proportional odds

assumption).

The existence of a latent response is not required for model interpretation. However, if the latent

response can be assumed then the treatment effect is unaffected by the choice of number of categories

and cut points. Therefore when the model fits well different trials using different scales to measure

the treatment effect should agree in their conclusions.

Alternative link functions

The model can be written more generally as

G−1[P (Yj ≤ q)] = αq − βxj (4.2)

Where G−1 is a link function, the inverse of the continuous cumulative distribution G. In the previous

section a logit link was applied, other link functions may be used such as the probit, log-log and

complementary log-log.

The logit link is the most commonly used followed by the probit link. The probit link assumes the

underlying latent response Y ∗j follows a standard normal distribution and the link function G−1 is
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Figure 4.1: Graphical representation of how a 4-level ordinal outcome, Y, can be represented by an assumed
underlying continuous latent variable Y ∗ with cut points α

the inverse of the standard normal distribution. The shape of the normal and logistic distributions

is similar so if the model fits well with logit link it should also fit well with a probit link. The

advantage of the logit link is that the treatment effect can be interpreted as an odds ratio. Under

the probit link the treatment effect relates to an underlying normal latent variable for an ordinary

regression model. The log-log and complementary log-log link functions are appropriate when the

distribution of the underlying continuous variable is non symmetric. For small sample sizes it may

be difficult to assess which link function is most appropriate.128 In this thesis I consider only the

two most frequently used links, the logit and probit links.

Assessment of proportional odds

The proportional odds assumption assumes that the treatment effect is the same for all the possible

ways that the k-category response variable might be collapsed to a binary variable.

One approach to checking the assumption of proportional odds is to fit separate treatment effects

across the categories, replacing β by βq and then compare this model to the single effect model

using methods such as a likelihood ratio test. Another approach proposed by Brant138 views the

proportional odds model as describing a set of k-1 separate binary logistic regression models. Pro-

portionality is assessed by examining and comparing the fit of these binary logistic models. A

goodness-of-fit test statistic, which follows a Chi-squared distribution, formally assesses the propor-

tional odds assumption and is implemented in Stata as part of the user-written omodel command.

Peterson and Harrell139 also propose a formal test of proportional odds via a score test.

If the assumption of proportional odds is not met the main approaches to analysis, which still make
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use of the ordinal nature of the data, include using a more general model which involves fitting

a separate effect for each category or a partial proportional odds model as suggested by Peterson

and Harrell.139 The partial proportional odds model allows the treatment effect to be the same for

some values of the categories and different for others. This method reduces the number of required

estimates in comparison to fitting a separate effect for each category. Partial proportional odds

models can be estimated in Stata using the user-written gologit command.

Methods that do not make use of the ordinal nature of the data but are sometimes considered include

assuming a nominal response or dichotomising the outcome and using logistic regression. However,

different conclusions may be made using these methods compared to those for ordinal data.

4.1.3 Significance testing

Under maximum likelihood estimation significance tests for the treatment effect for the proportional

odds model are usually conducted using the likelihood-ratio, Wald or score test statistics.

The likelihood ratio test compares two nested models, the null and alternative i.e. in this case with

and without a treatment effect fitted. The likelihood ratio statistic follows a Chi-squared distribution

and is calculated as twice the difference in the log-likelihoods from each model. The test produces

similar results to the Wald test for large sample sizes but performs better under smaller sample sizes,

where use of the Wald test can lead to inflated Type I error rates.

The Wald statistic approximates the likelihood ratio test and is used to test the hypothesis that

the estimate of the treatment effect, β, is 0. It is the default in most statistical packages and is

calculated as:

w = β
se(β)

Under the null distribution this statistic follows a normal distribution, and the square of the statistic

follows a Chi-squared distribution. The Wald test is advantageous over the likelihood ratio test in

that it only requires one model to be fitted, but for small sample sizes the Type I error rate can be

inflated meaning a statistically significant treatment effect may be declared when no such difference

exists.
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The score test (also known as the Lagrange multiplier test) is asymptotically equivalent to the

likelihood ratio test. It follows a Chi-squared distribution and is based on the derivative of the

log-likelihood and its standard error evaluated at the null hypothesis value. Both the Wald and

Likelihood ratio tests are easily implemented in statistical software, but the score test less so.

4.2 Analysis of clustered ordinal outcomes

I now consider the extension of these methods to account for clustering.

4.2.1 Non-parametric methods

Rosner and Grove140 have extended the Wilcoxon rank sum test to individual-level analysis of clus-

tered ordinal data. The authors present the variance of the test statistic for both the clustered and

unclustered case, hence a design effect could be calculated, although not of simple form. The authors

propose that where the number of ordinal categories is large their method is more appropriate than

parametric methods, such as the proportional odds model. However their method requires estimates

of four clustering parameters, values for which may not be readily available. The method does not

allow the inclusion of covariates and is not available as standard in statistical packages. Hence, I do

not consider its use further in this thesis.

4.2.2 Random effects model

In a cluster randomised trial the ordinal response is Yij for individual j in cluster i, i = 1, . . . , C,

j = 1, . . . , n. The cumulative logit model with random effects, assuming proportional odds, is given

as141

logit[P (Yij ≤ q)] = αq − βxij ′+ µi, q = 1, 2, . . . , k − 1 (4.3)

Where µi represents a random effect of the cluster and distributed N(0, σ2
b ).

As in the non-clustered case this model can be motivated by the assumption of an underlying

continuously distributed latent response Y ∗ij such that
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Y ∗ij = xijβ + µi + εij

and

yij =



1 if y∗ij ≤ α1

2 if α1 < y∗ij ≤ α2

...

k if αk−1 < y∗ij

The error terms εij are distributed as logistic with mean zero and variance π2/3 and are independent

of µi. Error terms distributed as N(0, 1) correspond to a probit link, see Section 4.1.2

As touched upon in Chapter two, Section 2.2.3 random effects models with discrete outcomes can

be difficult to fit via maximum likelihood and the likelihood function must be approximated by such

methods as Gauss-Hermite quadrature.

4.2.3 Marginal models

In the random effects model (or cluster-specific model) the focus is on modelling a cluster-specific

response and the regression coefficient for treatment represents the average effect of treatment if an

individual stays in the same cluster but moves from the control to the intervention arm. The random

effects model uses maximum likelihood estimation and explicitly models the covariance structure by

introducing cluster-specific random effects into the model.

In a population averaged, or marginal, model the regression coefficient for treatment represents the

effect of treatment if an individual in the population moves from control to intervention arm. The

model does not fully specify the distribution of the population, as in the random effects model,

instead the marginal expectations are modelled and a variance-covariance structure (referred to as

the working or hypothesised correlation) is chosen to describe the correlation between members of a

cluster. The model is not fitted via maximum likelihood; an estimate of the treatment effect can be

found by solution of a generalised estimating equation (GEE).

Generalised Estimating Equation methods for the analysis of ordinal outcomes have been described

by Lipsitz, Kim and Zhao and are summarised here.68

111



4.2. ANALYSIS OF CLUSTERED ORDINAL OUTCOMES

For each individual we observe the response on a k-level ordinal outcome with categories q =

1, 2, . . . , k. To keep with the terminology of Lipsitz et al a higher category here is used to indi-

cate a better outcome. Let Zij denote the ordinal response of the j’th individual in the i’th cluster,

j = 1, 2, . . . , n and i = 1, 2, . . . C. The size of the cluster is assumed fixed and denoted by n.

We form k indicator variables Yijq, where Yijq = 1 if subject j has response q and Yijq = 0 otherwise.

For each subject we form a k-1 response vector of indicator variables Yij = [Yij1, . . . , Yij(k−1)]
′ , and

for each cluster Yi = [Y′ij, . . . ,Y
′
in]′

The marginal probability is denoted by Pr[Zij = q] = E[Yijq] = Pr[Yijq = 1] = πijq and the

corresponding marginal cumulative probabilities by Pr[Zij ≤ q] = Pijq

Lipsitz et al analyse the data using a marginal model based on cumulative logits

logit[Pijq] = Xβ (4.4)

Where X denotes a (k − 1) × k design matrix for the j′th individual of the i′th cluster and β =

[α1, . . . , αk−1, β]′ denotes a k×1 parameter vector. Where the αq corresponds to the q′th cumulative

logit and β denotes the effect of treatment.

In Chapter Two, Section, 2.2.2, I presented a worked example of the sample size methodology

proposed by Kim et al which assumed a GEE model. In Step 10 of their sample size process the

parameter vector β is found by solution of the GEE equation:

β̂ = [
∑
t D
′
tV
−1
t Dt]

−1[
∑
t X
′
tWth(θt)]

Where t is an index representing treatment group, Dt = ∆tXt where ∆t = ∂π
∂η a matrix of partial

derivatives of the mean of the outcome with respect to the regression parameters, η is the linear

predictor Xβ, Xt is the design matrix and Vt is the working covariance matrix and Wt = ∆tV
−1
t ∆t

and h(θt) is a vector of cumulative logits i.e. ln(cumulative probability/(1-cumulative probability).

The Wald test statistic for the model with only treatment fitted with H0 : β = 0 is
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W = β2

var(β) ∼ χ2
1

The variance of the treatment effect can be calculated in two ways. The model-based estimate of

the variance provides valid inferences only if the working covariance matrix is correctly specified.

var(β) =

T∑
t=1

[D′tV
−1
t Dt]

−1 (4.5)

An alternative estimate that is more robust to miss-specification of the working covariance matrix

is calculated by

varr(β) =

T∑
t=1

[D′tV
−1
t Dt]

−1
T∑
t=1

[D′tV
−1
t var(Yt)V

−1
t Dt]

−1
T∑
t=1

[D′tV
−1
t Dt]

−1 (4.6)

4.2.4 Comparison of random effects and marginal models

Of those trials identified in Chapter Three with ordinal outcomes the random effects model was the

most popular choice of analysis.

The GEE, or population averaged (PA) method provides consistent estimation even when the cor-

relation structure is miss-specified and is computationally simple compared to the random effects

(RE) model, where the likelihood function must be approximated. However, because the method

does not specify a full multivariate distribution for the responses the GEE method does not have a

likelihood function. No likelihood function means that the likelihood ratio test and other likelihood

based methods cannot be used to check model fit, compare models or make inferences about the

model parameters. With a GEE model inference about the model parameters must be made via

a Wald test, which can give spurious results, particularly for small samples. The empirical-based

standard errors calculated from a GEE model may be underestimated unless the sample size is very

large.

The two models also differ in the assumptions they make with regard to missing data. Missing

data mechanisms have been described by Little and Rubin and I use their terminology here.142 The

GEE model makes the strongest assumption, that the data are Missing Completely At Random

(MCAR). In simple terms this means that the probability that the observation is missing does not
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depend on the value itself, or any other observed measurement. Maximum likelihood based random

effects methods make a weaker assumption that the data are Missing At Random (MAR), that is

the probability that the observation is missing does not depend upon the value itself but can be

explained by other observed measurements. Violations of these assumptions in either model may

lead to biased results.

The relationship between the treatment effect estimated from a RE model and that estimated from

a PA model have been described by Agresti.130 These relationships are briefly summarised here as

they will be used in the design of the simulation study described in the next chapter.

• The treatment effect from a marginal model will be smaller than that from a random effects model,

the difference increases as the level of within-cluster correlation increases.

•When a probit link is used the treatment effect estimate from the RE model and that from the PA

model can be directly compared, with the RE estimate being
√

(1 +σ2
w) times that of the PA effect.

• For the logit link the relationship between the model estimates is only approximate with the RE

estimate being
√

1 + 0.346σ2
wtimes that of the PA effect.

•Despite the difference in interpretation and magnitude between the random effects and population

averaged models the significance of the treatment effect is likely to be similar.130

• Using the fact that the standard normal cumulative distribution function (cdf) at a point z is well

approximated by the standard logistic cdf at 1.7z the estimates from models with a logit link are

approximately 1.7 times those from probit models.130

4.2.5 Software

In Stata version 13 the xtologit command fits random-effects models via maximum likelihood using

adaptive Gauss-Hermite quadrature as the default for approximating the likelihood. The accuracy

of this quadrature can be checked using the command quadchk. The xtologit command assumes

that larger values of the ordinal response correspond to better outcomes. The command xtoprobit

is available for ordered probit models. The gllamm command is a user-written command that can

also be used to fit these models and pre-dates the inbuilt functions. Currently there is no option

available in Stata to analyse ordinal outcomes with a GEE model.
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The SAS software can accommodate random effects and GEE models using PROC NLMIXED and

PROC GENMOD respectively.

4.2.6 Assessment of proportional odds

For the individually randomised trial formal methods have been proposed to test the assumption

of proportional odds and for cases when the assumption of proportional odds is not valid non-

proportional or partial proportional odds models have been suggested as alternative analysis methods

and have been incorporated into statistical software, see Section 4.1.2.

For the clustered case there has been less development and limited guidance around how to formally

assess proportional odds. As in the individually randomised case to test the assumption of propor-

tional odds one may consider fitting a separate effect for each category and comparing this to the

proportional odds model via a likelihood ratio test. Hedeker and Mermelstein have extended the ran-

dom effects proportional odds model to allow for non-proportional or partial proportional odds.143

Their approach extends Peterson and Harrell’s approach for partial proportional odds for the fixed

effects model.139 The partial proportional odds method described by Hedeker and Mermelstein has

been implemented in an extension to the MIXOR package available in R for mixed effects ordinal

regression.144

The partial proportional odds model of Hedeker and Mermelstein was developed within the context

of behavioural state of change data, where participants are categorised according to their readiness

to change ranging from pre-contemplation to action. The authors considered the assumption of

proportional odds to be unreasonable for this type of data. Of the 11 CRTs with ordinal outcomes

identified in Chapter Three there were three trials that used such an outcome. Therefore non-

proportional odds may be a significant problem in the design and analysis of ordinal outcome trials

with behavioural outcomes.

4.2.7 Significance testing

As in the individual case the Null hypothesis that there is no effect of treatment can be assessed

via a likelihood ratio, Wald or score test for random effects models or Wald test for GEE. However,
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the approximation of the Wald test statistic to the normal distribution is worse in the clustered case

when the number of clusters is small or the cluster size is variable. This tends to inflate the Type

I error rate, so we are likely to see more than 5% of calculated P-values being less than 0.05 under

the null hypothesis. A suggested solution is to compare the Wald statistic to a t-distribution, but

this may reduce the Type I error to below the nominal value.

4.3 The ICC

Estimators of the ICC have been extensively described for binary and continuous data.145,146 The

most common interpretation of the ICC is that it represents the proportion of variance due to

between-cluster variation, for continuous outcomes this is defined as

ρ =
σ2
b

σ2
b+σ2

w

Where σ2
b is the between-cluster variance, σ2

w is the within-cluster variance and the sum of the two

is the total variance.

For binary outcomes the definition is slightly different

ρ =
σ2
b

π(1−π)

The ICC is dependent on π, the prevalence in the population. The total variance is calculated as

π(1−π). The prevalence, and therefore the within-cluster variance will likely vary between clusters.

Therefore the assumption of constant within-cluster variance does not hold for binary outcomes.

This ICC for binary outcomes is referred to as being on the proportions scale and it is this ICC

which should be used in the design effect when calculating sample size for binary outcomes.147

Like ordinal outcomes the model for binary outcomes can be motivated by the existence of an

underlying continuous variable on the logistic scale and an ICC can also be calculated on this logistic

scale. This estimate will be different from the ICC on the proportions scale and there is no easy

formula to convert one to the other, instead simulation must be used.148 Eldridge, Ukoumunne and

Carlin have compared the two estimates through simulation and provide a useful table that shows

the relationship between the ICC on the proportions scale and that on the logistic scale for different
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levels of overall prevalence. The difference between the two values is greatest when the ICC on the

proportions scale is large or the prevalence is further from 50%.

4.3.1 ICC of the latent response

The underlying latent variable, Y ∗ij is assumed to be continuous and follows the random effects model

Y ∗ij = xijβ + µi + εij

with error terms εij distributed as logistic with mean zero and variance π2/3 and are independent

of µi, the random effects for clusters, which are distributed N(0, σ2
b ).

The intracluster correlation coefficient on this underlying (logistic) scale is defined as

ρ(l) =
σ2
b

σ2
b + π2/3

(4.7)

This ICC is relatively straight forward to calculate and is often automatically provided by statistical

software, such as Stata, after model fitting. However, the fact that this ICC relates to the underlying

variable means it is not clear whether its use in the design effect for ordinal outcomes is appropriate.

For the probit link π2/3 is replaced by 1 in the denominator.

4.3.2 Analysis of variance ICC

It is possible to assign numerical values to the ordinal categories and calculate an ICC using a one-

way analysis of variance.146

ρ = MSB−MSW
MSB+(n−1)MSW

Where MSB and MSW are the mean squares between and within clusters estimated from the analysis

of variance and n is the cluster size.

The estimated ICC will be dependent upon how the numerical scores have been assigned. For

example the simplest approach is to assign equally spaced values such as 1, 2, 3 and 4. Alternatively
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if it was felt that the gap between categories 3 and 4 was twice that of other adjacent categories the

scores could be assigned as 1, 2, 3, and 5. If the categorical variable was formed from the grouping

of scores from a health questionnaire, for example, scores may be defined from using mid-points of

the categories. In this thesis I assume equally spaced scores. Departures from equally spaced scores

are heavily dependent upon the nature of the outcome and the ordinal outcome trials reviewed in

Chapter Three provided no evidence against equally spaced scores. Use of equally spaced scores

should therefore apply more widely than alternative scoring methods.

4.3.3 Kappa-type ICC

For discrete outcomes the ICC can be interpreted as a version of the kappa statistic. For binary

outcomes kappa is a measure of agreement corrected for chance, most often used to measure inter-

rater agreement, which is the agreement among a set of raters recording measurements about a

binary trait on the same individual. It is calculated as the observed proportion of agreement minus

that expected by chance, divided by the maximum agreement over chance:

ρ̂k =
π̂O − π̂E
1− π̂E

(4.8)

Where πO and πE are the proportions of observed and expected agreement, respectively. A value of

1 for the statistic represents perfect agreement.

Gao has proposed a kappa-type ICC estimator for ordinal data in the cluster randomised trial

context.125 It is similarly constructed as the proportion of observed agreement among pairs of

observations within clusters minus that expected by chance, divided by the maximum agreement

over chance. However, weighting is used to define the distance between ordinal categories. For

equally spaced scores the weight, wjj′ (termed the square error rate) corresponding to the agreement

between two categories q and q′ is:

wqq′ = 1− (q−q′)2
(k−1)2

wqq′ = 1 if q = q′
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Response
Response 1 2 3 4 Total

1 Yi1(Yi1−1)/2
2 Yi2Yi1 Yi2(Yi2−1)/2
3 Yi3Yi1 Yi3Yi2 Yi3(Yi3−1)/2
4 Yi4Yi1 Yi4Yi2 Yi4Yi3 Yi4(Yi4−1)/2
Total n(n-1)/2

Table 4.1: Intermediate calculations required for estimating the kappa-type ICC for an ordinal outcome:
How to define the number of each possible pairwise response across a 4-level ordinal category
within a cluster

The weighting increases the closer the categories are to each other. For example, for a 4-level ordinal

outcome the two categories furthest apart (1 and 4) are given a weighting of 0. Categories that are

two apart (1 and 3, 2 and 4) are given a weighting of 0.55. Categories that are 1 apart (1 and 2, 2

and 3, 3 and 4) are given a weighting of 0.88 and categories that are the same are given a weighting

of 1.

Table 4.1 provides a visual representation of all possible pairings among two observations from a

cluster for a 4-level ordinal outcome, where Yiq is the number of observations in category q for cluster

i. The table summarises the numbers of each possible pair, with a total of n(n− 1)/2 possible pairs

of observations for a cluster of size n. The details of how the number of each possible pairings is

calculated is as follows:

For each cluster it is straightforward to calculate the number of observations in category q, Yiq. If

we know the number of observations in a given category we can calculate the number of possible

pairs in perfect agreement, i.e. the same category, using standard combination rules Yiq(Yiq − 1)/2.

For two different categories q and q′ we can calculate the total number of possible pairings ([(Yiq +

Yiq′)(Yiq+Yiq′−1)]/2) and then subtract the number of pairings expected to be in perfect agreement

([Yiq(Yiq−1)+Yiq′(Yiq′−1)]/2). This simplifies so that the number of pairs of two different categories

q and q′ i.e. the off-diagonal observations in Table 4.1 is YiqYiq′ .

The estimated proportion of observed agreement for a cluster, π̂O is a weighted summation of those

observations in perfect agreement (on the diagonal in Table 4.1) and the remaining observations on

the lower diagonal, divided by the total number of possible observation pairs:
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1
2

∑k
q=1 wqqYiq(Yiq−1)+

∑k
q=1

∑k
q′>q wqq′YiqYiq′

1
2n(n−1)

Therefore the average weighted proportion of agreement over all the clusters is:

π̂O = 1
c

∑c
i=1

1
2

∑k
q=1 wqqYiq(Yiq−1)+

∑k
q=1

∑k
q>q′ wqq′YiqYiq′

1
2n(n−1)

Using similar calculations the averaged expected (E) proportion of pairwise agreement, π̂E is given

by:

π̂E =
1
2

∑k
q=1 wqqYiq(Yiq−1)+

∑k
q=1

∑k
q>q′ wqq′YiqYiq′

1
2nc(nc−1)

These calculations can be performed separately for each treatment group and the estimates combined

to provide an overall value.

4.3.4 Other ICC estimators for ordinal data

In 1979 Rothery proposed a nonparametric measure of intracluster correlation. Rothery illustrates

the idea with observations taken on individuals within a family (cluster). Take a pair of randomly

selected families, observations xαi and xαj are from two individuals in one family and observation

xβk from one individual from the other family. The ICC ρc is defined to be the complement of the

probability that the outsider xβk falls between the two observations from the same family, xαi and

xαj .
149 Therefore ρc is largest when the two observations from the same family are close together.

When the data is normally distributed this estimate is a monotone function of the parameter from

a one-way ANOVA.150 A similar measure was proposed by Shirahata.151 As these estimates are not

as familiar to interpret or easy to calculate as the ANOVA and kappa-type estimates they are not

considered further.

4.3.5 Relationship between ICC estimators

Gao evaluated the relative bias of the ANOVA and kappa-type ICC estimators via simulation with

parameters defined as follows:125

• Ordinal outcomes with 3 categories
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• Trials with 10 or 20 clusters per arm

• Mean cluster size 50 and 120

• Coefficient of variation in cluster size 0.8 and 1

• Treatment effect (OR) 1 and 1.2

Gao generated clustered ordinal data from a marginal model using a Dirichlet-multinomial distribu-

tion with corresponding fixed ICCs of 0, 0.005 and 0.01. Relative bias was calculated as (average

observed value minus the true value)/true value. Therefore a positive value indicated an overestimate

and a negative value an underestimate in comparison to the ICC from the data generating model.

ANOVA ICCs were calculated by assigning both equally spaced and midrank scores. Negative ICCs

were truncated at zero.

The simulation results showed that both ICC estimates were closer to the true ICC when either

cluster size or the number of clusters was large. When the cluster size was small the ANOVA

estimate was a much larger overestimate of the true ICC than the kappa-type ICC. Truncating the

ICCs at zero may have elevated the resulting average ICC. However, the percentage of negative values

was similar for the two estimates for fixed cluster size. When cluster size was variable the ANOVA

estimate produced a larger proportion of negative values and was less biased than the kappa-type

estimate for variable cluster size.

Although the work by Gao provides an insight into the relationship between the ANOVA and kappa-

type ICC estimates it does not provide information about how these relate to the ICC on the

continuous latent response assumed to underlie the random effects ordered logistic regression model,

the focus of my research, as Gao used a marginal model to generate and analyse her clustered

ordinal data. Also the situations explored by Gao do not reflect the targeted scenarios for my

research identified in Chapter Three.

4.3.6 Estimates of ICC from real-life data

In the next chapter I will formally explore the relationship between the ICC on the latent variable, the

ANOVA ICC and the kappa-type ICC through a simulation study. In order to inform what range of

ICC values should be considered in the simulation study, and to gain some understanding of potential
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patterns in ICC values for different outcomes/trial settings, I had planned to calculate each ICC

estimate using the data from the 11 trials with ordinal outcomes that I identified in Chapter Three.

However, none of their accompanying datasets were available from the authors. Instead I calculated,

where possible, the ANOVA ICC, latent variable (via a random effects ordinal regression) and kappa-

type ICC for three datasets that were available publicly or through the Pragmatic Clinical Trials

Unit (PCTU). The estimates are presented below for each dataset, separately for each treatment

group and pooled where applicable.

The first dataset is the scenario most relevant to this research, a cluster randomised trial, although the

total number of clusters recruited (N=47) was moderate. I was the trial statistician for this trial and

was involved in the planning and conduct of the analysis.152 The second dataset is an observational

study and so the ICC for the latent variable cannot be calculated as there is no treatment effect to

be modelled but this dataset is large with 720 clusters of size two. The final example is a fairly large

longitudinal clinical trial in arthritis with 289 individuals followed up over three time points. This

example was referenced by both Lipsitz and Kim in their respective methods for the analysis and

sample size calculation of clustered ordinal outcomes by GEE.65,68

The EPOS trial: A pragmatic CRT in community care

In the EPOS study clinicians within community mental health teams across three London boroughs

were randomised to receive the intervention, DIALOG+, or no intervention. DIALOG+ is a com-

puter mediated intervention consisting of a structured assessment of patients concerns, combined

with a solution-focused approach to initiate change. Clinicians (n=47) implemented DIALOG+

with their community patients suffering with psychosis (n=147).

All outcomes were measured at baseline, three months, and six months post randomisation. Social

outcomes, including employment, accommodation, and living situation were assessed using the Ob-

jective Social Outcomes Index (SIX) with a total score ranging from 0 to 6. A higher score indicates

a more positive social outcome. To avoid a small number of observations in some categories and for

the purpose of illustration I combined responses to form a 3-level ordinal outcome with the categories

low, medium and high.
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Response Control Intervention Log odds
N (%) N (%)

Low 32 (43%) 26 (36%) -0.29
Medium 32 (43%) 28 (39%) -0.72
High 10 (14%) 19 (26%)

Table 4.2: Real life example results from the EPOS trial of community mental health: 3-level ordinal
outcome of social functioning at 6 months

At the 6 month time point there were 47 clinicians who each treated between 1 and 6 patients, the

average cluster size was 3.13 (SD 1.24) which implies a coefficient of variation in cluster size of 0.40.

The total number of individuals was 147 and the ordinal response at 6 months can be seen in Table

4.2.

I calculated each of the three ICC estimates. The ANOVA estimate of the ICC, accounting for

variable cluster sizes using the method described by Eldridge and Kerry21 was -0.01 in the treatment

group and 0.009 in the control group. The pooled estimate was -0.0001. The pooled Kappa-type

estimate was -0.25 with estimates of -0.163 in the control group and -0.326 in the treatment group.

I fitted a random effects ordinal regression model to the data with treatment included as a covariate.

From this model the estimated ICC for the underlying latent variable was approximately zero with

both logit link and probit link. All the ICCs for this trial were low but also showed some differences

across treatment groups.

An observational study of Diabetic Retinopathy

The Wisconsin Epidemiological Study of Diabetic Retinopathy (WESDR) was a population based

epidemiological study based in southern Wisconsin, USA designed to identify the risk factors of

diabetic retinopathy. The dataset from this study is publicly available,

www.stat.ufl.edu/ aa/ordinal/ord.html. It contains 720 individuals with measurements on the sever-

ity of retinopathy taken on both eyes for each individual.153

Categories of the diabetic retinopathy scale were combined to create a 4-level ordinal outcome of

severity formed of the categories none, mild, moderate and proliferative. The responses from each

eye for each individual can be seen in Table 4.3.
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Right eye
Response None Mild Moderate Proliferative Total

Left eye

None 237 37 1 0 275
Mild 31 200 35 4 270
Moderate 0 39 80 9 128
Proliferative 0 1 11 35 47
Total 268 277 127 48 720

* (Source: Williamson et al153)

Table 4.3: Real life example results from an observational study of Diabetic Retinopathy: 4-level ordinal
outcome of severity for each eye*

I calculated the ANOVA estimate of the ICC to be 0.841, and the value for the kappa-type ICC to be

0.837, indicating a strong correlation between the measurements recorded on each eye. As this is an

observational model there is no treatment estimate to be assessed and therefore it was not possible

to fit a random effects model to calculate the ICC on the underlying variable.

A longitudinal design: An Arthritis clinical Trial

This trial was used in Chapter Two to demonstrate the Kim methodology for sample size calculations

with ordinal outcomes.65 Subjects were randomised to receive the drug Auranofin or placebo for the

treatment of arthritis. The primary outcome was self-assessment of arthritis, measured as poor, fair

or good at baseline, 1, 3, and 5 months post randomisation. The dataset for this trial is publicly

available www.stat.ufl.edu/ aa/ordinal/ord.html.

Eighteen observations were missing in total across the follow-up time points. For the purpose of this

example individuals with any missing data have been excluded. There were 289 subjects included

in the analysis, each with three follow up measurements. Table 4.4 shows the responses over time

for each treatment group.

I calculated the pooled ANOVA estimate of the ICC to be 0.517, 0.559 in the placebo group and

0.447 in the treatment group. Values for the pooled kappa-type ICC were 0.518, 0.577 in the placebo

group and 0.446 in the treatment group. I fitted a random effects ordinal regression model to the

data with treatment included as a covariate. The estimated ICC for the underlying latent variable

was 0.60 with logit link and 0.62 with probit link. These ICCs indicate substantial correlations

among the repeat responses.
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Response Baseline 1 month 3 months 5 months
N (%) N (%) N (%) N (%)

Auranofin
Poor 45 (31%) 17 (12%) 28 (19%) 20 (14%)
Fair 66 (46%) 73 (51%) 51 (35%) 51 (35%)
Good 33 (23%) 54 (38%) 65 (45%) 73 (51%)
Total 144 144 144 144

Placebo
Poor 46 (32%) 43 (30%) 40 (28%) 37 (26%)
Fair 67 (46%) 48 (33%) 61 (42%) 50 (34%)
Good 32 (22%) 54 (37%) 44 (30%) 58 (40%)
Total 145 145 145 145

*(Source: Lipsitz et al68)

Table 4.4: Real life example results from a longitudinal arthritis clinical trial: 4-level ordinal outcome of
self-assessed arthritis over time*

4.4 Discussion

4.4.1 Main findings

Analyses that do not account for the ordinality in the data are not recommended as they can be

less powerful and produce different results to those methods that take account of the ordinal nature

of the data. Two popular approaches to the analysis of clustered ordinal outcomes that account

for the ordinal nature of the outcome are the GEE model and the random effects ordered logistic

model. The ordered logistic model, is an extension of the proportional odds model commonly used

to analyse ordinal outcomes in the non-clustered situation. Both GEE and random effect models

allow incorporation of cluster- and individual-level covariates and can be implemented in standard

statistical software. The GEE model makes the stronger assumption that any missing data is MCAR,

while the random effects model assumes MAR.

Three ICC estimators were considered for ordinal data. The simplest is calculated using the standard

ANOVA method, after assigning equally spaced scores to the ordinal categories. The second ICC is

a kappa-type ICC which, for a large number of clusters, is equivalent to the ANOVA estimate. The

third is the ICC on the latent continuous scale assumed to underlie the ordinal outcome.
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4.4.2 Strengths and limitations

The focus of this chapter has been on the two most well established methods for the analysis of clus-

tered ordinal outcomes. The first is the random effects extension to the cumulative logit model with

proportional odds proposed by McCullagh in 1980 and the second is the marginal GEE model pro-

posed by Lipsitz in 1994.68,137 These two classes of model were the focus of Agresti and Natarajan’s

2001 review on methods for modelling clustered ordinal data.90 Their review also identified some

alternative methods such as Bayesian modelling and semi-parametric random effects models as well

as raising some areas for future research such as the handling of missing data. In this thesis I did not

consider these alternative methods as the random effects method was shown, in Chapter Three, to

be the most popular approach used for the analysis of clustered data, can be easily fitted in current

software, and is appropriate given the assumptions behind Campbell and Walters’ proposed use of

the design effect in sample size calculation. The focus on easy to use available analysis methods is

a strength of my research. Given ten years has passed since Agresti and Natarajan’s review there is

scope for it to be updated. This will be beneficial for future work on sample size methods for ordinal

outcomes in circumstances where the assumptions underlying the use of the design effect may not

be appropriate, for example under extensive deviations from the proportional odds assumption, and

when alternative analysis methods are required.

To find papers describing the calculation of potential estimators of the ICC for ordinal outcomes

I performed a broad search in PubMed using the search terms ”‘ordinal”’ and ”‘cluster*”’. I then

targeted alternative data sources that I thought were most likely to report ICC calculations. These

were: the PhD thesis of Ruochu Gao which looked at the statistical analysis of correlated ordinal

outcomes;125 the PhD thesis by Sandra Eldridge that focused on cluster randomised trials with a

chapter on sample size methods and calculating the ICC; and papers identified during the course of

my research describing ICC estimators.145,147 There may be alternative ICC estimators that were

not identified in this review. However, I expect the possibility of this to be small given ICC estimators

were investigated in the two PhD theses I searched, the most recent of which was completed in 2012.

The ICC estimators that I have considered have the advantages of being simple to calculate and all

three are familiar concepts to statisticians.
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4.4.3 Comparison with other work

Estimates of ICCs for continuous and binary outcomes have been extensively summarised.145,146

The methods available for ordinal outcomes have received little attention. Gao has compared the

ANOVA and kappa-type ICCs for trials with a small number of large clusters and an ordinal outcome

with three categories. The data was generated and analysed using a marginal model, hence the link

between these ICCs and that defined on an assumed underlying continuous variable is unknown. In

my research I plan to evaluate the design effect for sample size calculation which assumes a random-

effects ordered logistic regression model with proportional odds. There is still a need to evaluate the

relationship between the ICC on the assumed underlying variable for this model and the ANOVA and

kappa-type estimators. In this chapter I presented a few real-life examples of these ICCs. However,

further datasets are required to identify any clear patterns. There has been no work that I am aware

of that looks at patterns in ICCs for ordinal data. Future work should focus on providing more real

life estimates and exploring patterns in ICCs.

4.4.4 Implications for this research

This chapter has summarised the main approaches to the analysis of clustered ordinal outcomes and

discussed their advantages and disadvantages. In this thesis I focus on analysis using the random

effects ordered logistic regression, with proportional odds assumption. The random effects model is

the assumed method underlying the use of the design effect for sample size calculations for ordinal

outcomes. The estimated treatment effect from the model can be interpreted easily as an odds ratio

and it is implemented in the majority of statistical software packages. The model is an extension

of the most popular method for analysing ordinal data for the non-clustered case and therefore is

likely to be more familiar and acceptable to researchers. In Chapter Three I identified 11 papers

with ordinal outcomes, of those that accounted for ordinality in the analysis they did so by using a

random effects ordered logistic regression model rather than GEE.

The performance of the ANOVA ICC, Kappa-type ICC, and the ICC on the underlying continuous

variable in the design effect for sample size calculation will be explored in the next chapter.
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Chapter 5

Simulation studies

Although not as common as binary or continuous outcomes the use of ordinal outcomes in CRTs is

not particularly rare. In Chapter Three, using a sample of 300 published cluster randomised trials

I identified 11/300 (4%) trials with ordinal outcomes. The design of these eleven trials were most

often parallel group (10, 91%), two-arm (6, 55%), completely randomised (8, 73%), and used a cohort

sample (9, 82%). Both the total number of clusters randomised (median 18, IQR 9 to 61) and the

number of enrolled participants per arm (median 128, IQR 71 to 150) tended to be small. Nine

(82%) of these trials had outcomes with between 3 and 5 ordinal categories, the remaining trials had

between 6 and 9 categories.

A simple approach to sample size calculation in cluster randomised trials with ordinal outcomes is to

inflate the sample size formula for individually randomised trials by the standard design effect (de-

scribed in Chapter Two). However, the performance of this method under different design scenarios

has not been studied and no recommendations exist for how the ICC in the design effect should be

calculated.

In this chapter Monte Carlo simulation studies are conducted to explore the relationship between the

three possible ICC estimators for ordinal outcomes defined in the previous chapter, (ANOVA, kappa-

type estimate, and the ICC on the underlying continuous variable) and to assess the performance in

terms of the resulting empirical power when using each of these ICCs in the design effect for sample

size calculation. The simulation scenarios were chosen to reflect, as much as possible, the design
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characteristics of the eleven trials identified with ordinal outcomes. However, I chose to exclude

situations where the number of clusters was particularly small as the analysis method is unlikely

to perform adequately in these situations. The use of a cohort design in 9/11 (82%) of these trials

meant that the analysis of these trials incorporated either a baseline measure or post randomisation

measurements of the outcome into the analysis. The effect of such an analysis is to reduce the

between-cluster variance. For simplicity the methods evaluated within this chapter assume analysis

at the final time point only and are expected to provide conservative estimates for designs which

incorporate baseline or repeated measurements.

The chapter concludes with recommendations for implementation of the design effect approach for

sample size calculation for cluster randomised trials with ordinal outcomes. The practicalities around

using this method are discussed in the final chapter of this thesis.

5.1 Aims and objectives

Monte Carlo simulation studies were conducted to meet the following aims:

1. To explore the relationship between three ICC estimators for ordinal data; the ANOVA ICC,

kappa-type ICC and the ICC on the latent continuous response.

2. To determine which ICC provides empirical power closest to the expected nominal value when

used in the design effect for sample size calculation.

3. To determine the effect that minor deviations from the proportional odds assumption has on

power when using an appropriately (identified in objective 2) calculated design effect for sample size

calculation.

4.To determine whether empirical power is consistent when alternative analysis methods are used

(i.e. random effects ordered logistic or probit regression, assuming proportional odds ) when using

an appropriately (identified in objective 2) calculated design effect for sample size calculation.
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5.2 Simulation procedures

The best known guidance on the design and reporting of simulation studies was published in 2006 by

Burton et al.154 The simulations described within this chapter were designed and reported following

this guidance.

The computational time required to run each simulation restricted the number of scenarios I could

reasonably evaluate.

5.2.1 Level of dependence between simulated data sets

The simulations were fully independent, in that a completely different set of independent datasets

was generated for each scenario considered. This was achieved by using a different random seed for

each scenario. For details on selection of the random seed see section 5.2.4.

5.2.2 Treatment of failures

Any simulated data sets for which the analysis model did not converge were discarded and replace-

ment data sets were generated.

5.2.3 Software

The simulations were performed in Stata version 13. The procedure I used was to write a user-

defined command which generated a dataset of clustered ordinal data, performed an appropriate

analysis, or calculation of ICC, and stored the relevant estimates. I then used the Stata command

simulate to replicate my command a large number of times. The details of each of these procedures

are described in the sections that follow, and the Stata code can be found in appendix v.

The simulations were performed using the Queen Mary University of London High Performance

Computing (HPC) cluster, named Apocrita. The aim of the HPC cluster is to enable tasks to be

completed quickly by splitting them across processors. The HPC is accessed remotely and therefore

has the advantage that jobs may be submitted to it from any location, thus leaving the user’s desktop

free to complete other tasks. The HPC uses a Linux operating system with commands entered via
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the command line, therefore some learning and use of Linux commands was required in running these

simulations. Using the HPC meant my simulations were run in parallel and hence the computational

time was substantially reduced compared to running these directly within Stata from a desktop

computer.

5.2.4 Random number generator and starting seeds

Random number generation within Stata is technically pseudo-random in that numbers are not truly

random, but generated by a specific algorithm. Number generation can therefore be replicated by

specification of a starting value for the algorithm, referred to as the starting seed (a number between

0 and 2,147,483,647 in Stata). In my command I needed to generate variables from a Normal

distribution. To do this I used the random number function rnormal (µ, σ) in Stata which returns

a normal variable with mean µ and standard deviation σ.

For each scenario I used a different starting seed. The associated Stata help guide for use of random

number functions states that it does not matter how the seeds are chosen as long as they do not

exhibit any patterns. I chose seeds of varying length and without the use of any systematic selection

that would exhibit patterns. I checked that all the seeds used were different from each other.

5.3 Methods for generating the datasets

At the time of my research there was no universally recommended method for generating clustered

ordinal data. I explored the 85 papers identified in my review of sample size methods to see how

simulation data was generated for binary outcomes but no one method was consistently used. I

explored the literature to evaluate the best approach to use for generating clustered ordinal data.

The generation of ordinal clustered data has been described in the literature in the multivariate

context i.e. several dependent ordinal outcomes that are correlated with each other. To translate

these methods to the cluster randomised trial context we could think of each dependent outcome as

representing an individual within a cluster.

In 1995 Gange proposed a method for generating clustered ordinal outcomes.155 This method sim-

ulates ordinal data with a specified marginal and pairwise probability structure using an iterative
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algorithm. A disadvantage of the algorithm, as stated by the author is, that as cluster size and

the number of ordinal categories increases the required computing power may limit the feasibility of

the approach. With the advances in computing since 1995 it is not clear whether this issue is still

relevant today. The method was used to evaluate the GEE-based sample size method proposed by

Kim et al.65 However, a cluster size of three was assumed and the number of ordinal categories was

four.

In 2004 Biswas proposed an algorithm for data generation for specific correlation structures, namely

first and second order auto-regressive correlations.156 These correlation structures imply that as the

distance between two observations within the same cluster increases their correlation decreases. This

structure is most relevant to longitudinal designs where a cluster is an individual and measurements

are taken at repeated time points, and hence it may be reasonable to assume that the correlation

will decrease as the lag between time points increases. This correlation structure is a less obvious

choice for cluster randomised trials and so this method has limited applicability to my research.

In 2006 Demirtas proposed a data generation procedure which in the first step generates binary

data, using what the authors describe as well-accepted data generation methods, and in the second

step converts these to ordinal outcomes. The authors state that their method is more general than

the methods suggested by Gange155 and Biswas156 in that there are no restrictions on the marginal

distributions and pairwise correlations and that a large number of ordinal categories does not lead

to excessive computational complexity. In 2014 the package ”‘MultiOrd”’ was developed in R to

implement the methods of Demirtas.157 The software makes the method more straightforward to

implement and ensures that the data are generated as intended by the authors. However, my

experience of using this package with large cluster sizes highlighted that the computational time

required was still lengthy.

The method by Gange appears to be the most popular method, with 80 citations in Google Scholar

at the time of writing. A common disadvantage to all of the above methods is the complexity and

computational time involved as the cluster size increases. Given the number of simulations to be

undertaken and the values of the parameters to be investigated in my research it was not feasible to

use these methods.
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Demirtas described an alternative common approach to ordinal data generation; generate the latent

continuous variable and convert to an ordinal outcome by chopping up the continuous outcome into

categories using appropriate threshold values. However, Demirtas states that this latent variable

approach is generally inappropriate as correlations between the ordinal variables are not of simple

form or interpretation, the same comment was also made earlier by Biswas, without any further

elaboration.156 I contacted Demirtas by email and he explained that what he meant by this comment

was that the correlation of the underlying latent variable will be different to that of the ordinal version

of the outcome and that there is no simple formula to convert one to the other. A similar issue exists

for binary data and simulations have been used to link values of the two correlations on the different

scales.147

Although this latent variable approach is described by Demirtas as being common there is no asso-

ciated source that provides any evidence of this. In fact it is unclear how often any of these data

generation methods have been used. The latent variable approach appears to have been used by

Jung and Kang in their evaluation of a score test for clustered ordered categorical data, although

the published description of their approach lacks sufficient detail to replicate it.158 There is scope

for further research looking at the prevalence and evaluation of these data generation methods for

ordinal outcomes.

I chose to simulate clustered ordinal data using the latent variable approach, evaluating the link

between the ICC calculated on the latent continuous variable and the ICCs calculated on the ordinal

outcome (kappa-type and ANOVA) by simulation. This method: appears to most closely reflect the

proportional odds model whose derivation is motivated by the existence of an underlying continuous

variable; the methodology can be easily described and hence replicated by others; the generation can

be easily implemented in any statistical package; and the computational time required to generate a

dataset is reasonable.

5.3.1 Data generating model

Clustered ordinal data was generated using the latent variable approach. Under this approach we

think of the ordinal response categories as being a crude measure of some underlying continuous

scale. A linear random-intercept model describes this underlying continuous response Y ∗ij
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Y ∗ij = βxij + µi + εij

Where µi represents a random effect of the cluster and are independent N(0, σ2
b ). The distribution

of the error term, εij , informs the link function used in the random effects model for the ordinal

response. A standard logistic distribution with mean 0 and variance π2/3 corresponds to a logit

link and a standard normal distribution to the probit link. I used the probit link and fixed the

distribution of the error terms to be Normal with mean 0 and variance 1.

The ordinal variable Yij was determined from a categorisation of the latent response via the following

threshold model

Yij =



1 if Y ∗ij ≤ α1

2 if α1 < Y ∗ij ≤ α2

...
...

c if αc−1 < Y ∗ij

The thresholds were chosen to reflect the proportions expected in each ordinal category in each

treatment group (See sections 5.4.4 and 5.4.5). The Stata function invnormal was used to find the

inverse of the cumulative standard Normal distribution, and hence the appropriate threshold values.

To utilise this function the variable Y ∗ij first had to be standardised (subtraction of the mean and

division by the standard deviation) to follow a standard Normal distribution.

Using the probit link meant that the distribution of Y ∗ij for the control group followed a known Normal

distribution N(0, 1 + σ2
b ) and hence the calculation of appropriate threshold values to achieve the

required proportions in each ordinal category for the ordinal response were much simpler than with

a logit link.

5.4 Scenarios to be investigated

The values of the parameters were chosen to reflect as closely as possible the scenarios identified

from the eleven real life examples of trials with ordinal outcomes described in Chapter Three.
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For all simulations equal allocation to two treatment arms was assumed: 50% of the clusters allocated

to intervention and 50% to the control. The cluster size, number of ordinal categories, ICC on the

underlying scale and treatment effect were controlled and varied across scenarios. A description of

the estimates used are described in the following sections and summarised in Table 5.1

5.4.1 Analysis method

In a cluster randomised trial for an ordered categorical outcome with k levels q = 1, 2, . . . , k the

ordinal response is given by Yij for individual j in cluster i, i = 1, . . . , C, j = 1, . . . , N . Each

simulated dataset was analysed by a random effects ordered regression model, given by

G−1[P (Yij ≤ q)] = αq − βxij ′+ µi, q = 1, 2, . . . , k − 1 (5.1)

Where the µi represent a random effect of the cluster and are distributed N(0, σ2
b ) and G−1 is

the probit link. Although use of the probit link provides simpler calculations in the generation of

clustered ordinal data use of the logit link is a more popular choice for real life analysis, as it allows

the model parameters to be interpreted as odds ratios. The normal and logistic distributions are

similar and therefore I expect the simulation results to be similar if either the probit or logit link were

used in the analysis. To confirm an analysis via logit link was also investigated in the simulations.

The proportional odds assumption for ordinal regression with logit link implies that the value of the

treatment effect does not depend on q, the level of the ordinal response, and therefore the treatment

effect of being in category q or better can be represented by a single value β for each value of q.

For the ordered probit model the treatment effect is also assumed the same for each cumulative

probability. However, as the interpretation of the treatment effect does not relate to odds ratios it

is not appropriate to refer to the ordered probit model as a proportional odds model.130

5.4.2 Number of clusters and cluster size

The relationship between ICC estimators was investigated for both small and large cluster sizes

(5 and 50) and a large number of clusters (100). I conducted sensitivity analysis to look at the

relationship of ICC estimators when the number of clusters was small (10).
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Table 5.1: Summary of the scenarios to be investigated in the Monte Carlo simulations, designed to meet
the following aims (i) to explore the relationship between ICC estimators and (ii) to determine
the empirical power when using each ICC estimator in the design effect for sample size calculation

Parameters Values

Exploration of the relationship between ICC estimators (40 scenarios)

Allocation ratio 50:50
Number of ordinal categories 3,4,5
Cluster size (fixed) 5, 50
Total clusters* 10*, 100
ICC on the underlying scale 0.01, 0.08, 0.16, 0.25, 0.53
Treatment effect (log odds) 0
*investigated only for the 4-level outcome

Investigation of empirical power using each ICC in the DE (120 scenarios)

Allocation ratio 50:50
Number of ordinal categories 3,4,5
Cluster size (fixed) 5, 10, 50
ICC on the underlying scale 0.01, 0.08, 0.16, 0.25, 0.53
ICC in DE ANOVA, underlying ICC*
Treatment effect (log odds) 0.493, 0.887
*investigated only for the 4-level outcome

Investigation the effect of non-proportional odds (30 scenarios)

Allocation ratio 50:50
Number of ordinal categories 4
Cluster size (fixed) 5, 10, 50
ICC on the underlying scale 0.01, 0.08, 0.16, 0.25, 0.53
ICC investigated ANOVA
Treatment effect (log odds) 0.35, 0.45

Investigation of empirical power with ANOVA ICC and logit link (30 scenarios)

Allocation ratio 50:50
Number of ordinal categories 4
Cluster size (fixed) 5, 10, 50
ICC on the underlying scale 0.01, 0.08, 0.16, 0.25, 0.53
ICC investigated ANOVA
Treatment effect (log odds) 0.493, 0.887
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For all other simulations cluster sizes were fixed at 5, 10 and 50. The number of clusters for each

scenario was determined by calculating the sample size required under individual randomisation

using Whitehead’s formula and multiplying by the appropriate design effect for the scenario.

5.4.3 Number of ordinal categories

The simulation studies focused on ordinal outcomes with four levels, the most common number of

levels used in the trials I identified in Chapter Three with ordinal outcomes. The sensitivity of the

main results, the assessment of power when using the design effect for sample size calculation, was

explored for outcomes with three and five levels.

5.4.4 Estimated probabilities in each category

The control group proportions for the four-level ordinal outcome were chosen to be the same as those

used in the example by Whitehead. The four ordinal categories were very good, good, moderate and

poor and the corresponding proportions expected in each category were 0.20, 0.50, 0.20, 0.10. These

proportions correspond to threshold values for the underlying latent response of α1 = −0.84, α2 =

0.52, α3 = 1.28.

For the exploration of relationships amongst ICC estimators I also considered an alternative cate-

gorisation of the four-level ordinal outcome of 0.10, 0.30, 0.40 and 0.20 to determine whether the

relationships are affected by the proportions expected in each category.

For the sensitivity analyses the control proportions for the three-level version of the outcome were

0.20, 0.70 and 0.10 with corresponding threshold values for the underlying latent response of α1 =

−0.84, α2 = 1.28. For the five-level outcome the control proportions were 0.20, 0.20, 0.30, 0.20, and

0.10 with corresponding threshold values for the underlying latent response of α1 = −0.84, α2 =

−0.25, α3 = 0.52, α4 = 1.28. Proportions for the three and five-level versions of the outcome were

chosen by expanding or combining categories from the four-level version of the outcome so as to

introduce minimal changes and maintain the same underlying proportions to maintain comparability

amongst the three-, four-, and five-level versions of the outcome.
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The proportional odds assumption implies that the treatment effect can be represented by a single

value β for each value of q. Violation of the proportional odds assumption may occur in a variety of

ways. The treatment effect may be different for each category q, with the effects being in the same

or alternative directions across the categories. Alternatively one or more of the log odds ratios may

be different for one or two categories only. The magnitude of any differences in the treatment effect

across categories will determine whether proportional odds are still a reasonable assumption. In

situations where proportional odds is unreasonable the partial proportional odds model or nominal

regression may be more suitable analysis methods.

In this simulation I examined the empirical power of the design effect approach, followed by an

analysis by random effects ordinal regression with probit link, under a minor deviation from pro-

portional odds. I considered the deviation where one odds ratio was slightly different from the rest

for a four-level outcome. The log odds ratio for the first dichotomisation was 0.35 and 0.493 for the

other categories. These log-odds were chosen to ensure a relatively large number of clusters per arm

in order to provide reliable empirical power estimates.

To assess the effect of non-proportional odds an initial dataset was generated using the methods

described in this section. In order to adjust the observed proportions to reflect non-proportionality

I generated a uniformly distributed random variable for every observation using Stata’s runiform()

command. The dataset was then sorted by treatment group, ordinal category and the random

variable. In the treatment group the first 10% in the first ordinal category were assigned the category

below. Therefore the proportions in the control group remained as 0.20, 0.50, 0.20 and 0.10 and

in the treatment group the proportions became 0.26, 0.53, 0.14 and 0.06, which correspond to the

required log-odds of 0.35 for the first dichotomisation and 0.493 for the others.

5.4.5 Treatment effect

For the simulations that explored the relationships between ICC estimators I assumed there was

no treatment effect i.e. a log-odds of 0. See the discussion section at the end of this chapter for a

discussion of the implications of this assumption.

The simulations were designed around the example provided in Whitehead’s paper on sample size
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methods for ordinal outcomes in the individually randomised design. Whitehead’s example was used

as a starting point in order to be able to compare the results to the clustered case. In Whitehead’s

example a log-odds of 0.887 (OR 2.43) was assumed, which indicates superiority of the new treatment.

I expanded his example to additionally consider log-odds either side of this, 0.493 (OR 1.6), and

1.207 (OR 3.3) in order to explore patterns for small, medium and large effect sizes. However, the

larger odds ratio was later removed from the simulations as the analysis model did not perform well

on the small number of clusters calculated for the sample size with this treatment effect.

The above estimates of log-odds were based on a proportional odds cumulative logit model. I

used an ordered probit model to generate my data as it provided simpler calculations (see section

5.3.1). Therefore in the data generating process the above log-odds needed to be transformed to

the corresponding treatment effect that would be expected from an ordered probit regression on

this data. Using the fact that the standard normal cumulative distribution function (cdf) at a

point z is well approximated by the standard logistic cdf at 1.7z the estimates (log-odds) from

the logit model are approximately 1.7 times those from ordered probit models.130 Therefore, the

corresponding treatment estimates for the probit model used in data generation were 0.29 and 0.52.

As the treatment effect under a random effects model is proportional to the total variance the

treatment effect was multiplied by the value of
√

(1 + σ2
w) for that particular scenario to account for

an analysis by random effects ordered probit regression. In the presentation of the results I use the

values of the log odds from the logit model, 0.887 and 0.493 as their interpretation is more familiar

and simpler than the treatment effect under a probit link.

When exploring the empirical power for the minor deviation from proportionality for the four-level

outcome the proportions expected in the control group are 0.20, 0.50, 0.20 and 0.10 and in the

treatment group 0.26, 0.53, 0.14 and 0.06. This corresponds to log-odds ratios of 0.35, 0.493 and

0.493 for the three possible dichotomisations of the outcome. Whitehead’s sample size method

requires all expected proportions to be specified and a single estimate for the treatment effect. I

investigated the resulting power under two different scenarios for estimating the treatment effect (i)

summarise the log-odds using the mean, 0.45 (ii) use the smallest log odds ratio of 0.35.
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5.4.6 Incorporation of clustering

It is only the ICC on the underlying continuous variable that can be fixed during the data generation

process. The ICC for the underlying continuous variable, with probit link is defined as

ρl =
σ2
b

σ2
b+1

The relationship between this and other ICC estimators is unknown. The values of ICCs likely to

be observed in practice for ordinal outcomes are relatively unknown, although they are probably

not that dissimilar to those seen for binary and continuous outcomes, particularly if an underlying

continuous variable can be assumed.

Several publications describe the general behaviour and patterns in ICCs across different therapeutic

areas, outcomes and clusters.14–18 These patterns have been summarised by Eldridge and Kerry.21

Process outcomes generally have higher ICC values (median 0.063) than clinical or individual level

outcomes (median 0.03); ICCs are higher in secondary care settings (median 0.061) than primary

care (median 0.045); ICCs are larger when the natural cluster size is small; ICCs are lower for binary

outcomes with extreme prevalence; ICCs over 0.35 are unlikely for binary outcomes. The values of

ICC for the underlying continuous variable considered in the simulation (assumed to be the same in

both treatment arms) were chosen to cover a large range of ICC estimates, 0.01, 0.08, 0.16, 0.25, and

0.53. The reason these specific values were chosen was that in the paper by Eldridge these ICCs on

the underlying latent scale were shown to correspond to ICCs for binary outcomes on the proportions

scale of 0.01, 0.05, 0.1, 0.15, 0.3, when overall prevalence is 0.30.147 Using these values with known

relationship to the binary ICC on the proportions scale allowed scope for some validation of my data

generation (see section 5.7).

5.5 Estimates to be stored

Summary statistics

For each simulated dataset the proportion in each ordinal category and treatment group were calcu-

lated and stored.
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Analysis

For each simulated dataset a random effects ordered probit regression model was fitted to the data

and the estimated treatment effect was stored. The hypothesis of no treatment effect was tested via

the Wald statistic which was calculated as the estimated treatment effect divided by its standard

error. The Wald statistic was compared to a Normal distribution and the P-value stored.

Post-estimation

For each simulated dataset the ANOVA estimate of the ICC was calculated by first assigning equally

spaced scores to the ordinal outcome. The Stata inbuilt commands for calculating the ANOVA ICC

truncate the ICC at zero, inflating the average ANOVA ICC estimate. To avoid this I calculated the

ANOVA ICC from first principles using the estimates of the between and within sums of squares (SSb

and SSw) and associated degrees of freedom (DFb, DFw) that are provided by the Stata command

loneway which performs a one-way analysis of variance . The between-group mean squares MSb is

calculated as SSb/DFb and similarly the within-group mean squares, MSw is calculated as SSw/DFw

and n is the cluster size. The ANOVA ICC is then calculated as:

ρa = MSb−MSw
MSb+(n−1)MSw

The observed ICC on the latent scale was calculated using the between-cluster estimate of the vari-

ance provided directly from the probit model fitted in Stata, input into the following formula

ρl =
σ2
b

σ2
b+1

I programmed the calculation of the kappa-type ICC using the formula described in Chapter Four,

Section 4.3.

Summary statistics over all simulations

Descriptive statistics for ICC estimates calculated over all simulated datasets within a scenario were

mean (SD), median(IQR), minimum and maximum, and the percentage of negative values.

Empirical Power

For each scenario the empirical power was calculated as the proportion of datasets with a P-value
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of less than 0.05. The sample size was deemed appropriate if the empirical power was close to the

calculated power of 90%. In order to determine how others had defined what would be considered to

be sufficiently close I reviewed 18 papers that evaluated their sample size method through simulation,

from the 85 sample size papers identified in Chapter Two. However, in the majority of papers no

formal definition of what constituted sufficiently close was provided. A few papers calculated an

absolute difference between empirical and nominal power, reporting the maximum difference seen or

those that were at least 2% different. One paper reported the relative bias of power calculated as the

calculated power minus empirical power divided by the empirical power. Biases that were greater

than 10% were highlighted. In my simulations I report empirical power, the standard error and the

absolute difference from the calculated power. I consider the design effect approach appropriate if

simulated power is within 2% of nominal power.

5.6 Number and size of simulated datasets

Due to the large number of scenarios studied the number of simulations for each scenario was limited

to 1000. In comparison to the 18 papers identified with simulation studies from my sample of 85

sample size papers the number of simulations conducted were 1000 (n=7), 2000 (n=2), 4000 (n=1),

5000 (n=3) and 10,000 (n=5). In only one of these papers was the number of simulations (10,000)

justified. However, it is unclear whether this justification was post-hoc. The authors state that the

Monte Carlo standard error for the resulting power calculations is no greater than 0.25%.72 The

standard error is presented for each of my simulation scenarios in the results section.

The size of each dataset was dependent upon the scenario being investigated. The sample size was

first calculated using Whitehead’s formula assuming individual randomisation with 90% power and

a 2-sided 5% significance level. Table 5.2 summarises the sample size required under individual

randomisation for the 3-,4- and 5-level ordinal responses under each of the possible treatment effects

and when the assumption of proportional odds is relaxed. The sample size was multiplied by the

standard design effect, 1+(n−1)ρ for each combination of cluster size and ICC estimate investigated.

Estimates were always rounded up to ensure an equal number of clusters, of required size, per

treatment group.
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Table 5.2: Sample size requirements under individual randomisation for ordinal outcomes with 3,4, or 5 categories for various treatment effects

Outcome levels Control proportions Treatment proportions Treatment effect (log OR) Total sample size required
3-level 0.20, 0.70, 0.10 0.29, 0.65, 0.06 0.493 764

0.38, 0.58, 0.04 0.887 226
4-level 0.20, 0.50, 0.20, 0.10 0.29, 0.50, 0.14, 0.06 0.493 608

0.38, 0.47, 0.11, 0.04 0.887 188
non-proportional odds
0.20, 0.50, 0.20, 0.10 0.26, 0.53, 0.14, 0.06 0.35 1200
0.20, 0.50, 0.20, 0.10 0.26, 0.53, 0.14, 0.06 0.45 738

5-level 0.20, 0.20, 0.30, 0.20, 0.10 0.29, 0.23, 0.27, 0.14, 0.06 0.493 550
0.38, 0.24, 0.23, 0.11, 0.04 0.887 172
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5.7 Validation

Data Generating model

After discussion and agreement of the data generating process with SE and AC several strategies

were employed to validate the process and ensure confidence in the results.

I sent a written summary of the data generating process to Alan Agresti, one of the leaders in the

field of ordinal outcomes. However, he did not have experience of generating clustered data and

as he has now retired from academia he did not have any PhD students or colleagues that I might

confirm the process with.

My simulation code was checked by a colleague, Neil Wright, from the PCTU who has experience of

generating clustered binary data using similar methods to mine. No issues for concern were identified.

From the datasets generated for the four-level ordinal outcome to explore the relationships between

ICC estimators I created a binary outcome which combined the first two categories and the last two

categories, resulting in an overall prevalence of 0.30. From the work conducted by Eldridge et al it

is known that for an overall prevalence of 0.30 ICC values on the underlying scale of 0.01, 0.08, 0.16,

0.25, and 0.53 correspond to ICCs on the proportions scale of 0.01, 0.05, 0.1, 0.15 and 0.3.147 This

result was reassuringly replicated in my dataset.

The analysis method

In order to ensure that my test procedure, the Wald test, performed well under the simulation

scenarios I examined the empirical Type I error rate to determine the minimum number of clusters

required in the analysis to provide an empirical Type I error rate close to the nominal error rate of

5%.

Datasets of clustered ordinal outcomes were generated assuming the null hypothesis of no difference

between treatment groups and analysed with a random effects effects ordered probit regression

model. The effect of treatment was tested using a Wald test comparing the test statistic to a normal

distribution and using a Wald test comparing the test statistic to a t-distribution with degrees of

freedom calculated as the number of clusters minus two. One thousand datasets were generated for

a 4-level ordinal outcome with 5, 10, 15, 20, 25 and 40 clusters per arm, cluster sizes of 5, 10 and 50,
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Figure 5.1: Empirical Type I error rates for the Wald test for the treatment effect from a random effects
ordered probit model, compared to both the Normal and t-distributions (varying number of
clusters of size 5)

and ICCs on the underlying latent variable of 0.01, 0.08, 0.16, 0.25, and 0.53. The empirical Type I

error rate was calculated as the proportion of P-values that were less than 0.05.

The results for clusters of size 5, 10 and 50 are presented in figures 5.1, 5.2 and 5.3. These figures

show that the type I error for the Wald test compared to a t-distribution was always lower than that

compared to the normal distribution. The empirical Type I error rate comes closer to the nominal

value as the number of clusters increases, with 40 clusters per arm showing good results.
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Figure 5.2: Empirical Type I error rates for the Wald test the treatment effect from a random effects
ordered probit model, compared to both the Normal and t-distributions (varying number of
clusters of size 10)
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Figure 5.3: Empirical Type I error rates for the Wald test for the treatment effect from a random effects
ordered probit model, compared to both the Normal and t-distributions (varying number of
clusters of size 50)
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5.8. RESULTS

5.8 Results

All scenarios were simulated reliably. The number of analysis models that did not converge was less

than 10 (1%) for all scenarios considered.

5.8.1 Relationship between ICC estimators

For fixed values of the ICC on the latent continuous variable (ρl) 1000 datasets were generated for a

total of 100 clusters of size 5 and 50 for ordinal outcomes with 3,4, and 5 levels. For each dataset the

ANOVA ICC (ρa) and the kappa-type ICC (ρk), were calculated. The ANOVA ICC calculated on

a dichotomised version of the outcome (ρb) was also calculated as validation of the data generating

process, as its relationship with the ICC on the latent scale is known.

The relationship between ICCs for the 3-, 4-, and 5-level outcomes are provided in Tables 5.3, 5.4

and 5.5. The results show the ICC on the latent response to be largest, followed by the ANOVA

and kappa-type ICCs that were almost identical. Both the ANOVA ICC and kappa-type estimates

produced a similar proportion of negative estimates in each scenario. The proportion of negative

estimates decreased as the level of clustering and number of clusters increased. As the number of

ordinal categories increased so too did the estimated ANOVA and Kappa-type ICCs. These observed

patterns were consistent across the 3-, 4- and 5-level outcome variables.

Sensitivity analysis looked at the relationship between ICC estimators for the 4-level outcome when

the number of clusters was small (Table 5.6). Results show that the ICC on the latent response

tended to be largest followed by the ANOVA and kappa-type ICCs, with the ICC on the dichotomised

version of the outcome being the smallest. As the level of clustering increases so too does the differ-

ence between the ANOVA and kappa-type estimates with the ANOVA estimate being consistently

larger. The relationships between ICC estimators for the 4-level outcome with a small and large

number of clusters are displayed in Figures 5.4 and 5.5.

Table 5.7 shows the relationship between ICCs for a four-level ordinal outcome where different

proportions from those used in the main simulations are expected in each category. Comparing

these to the results seen in Table 5.4 shows that for a fixed ICC on the underlying latent variable
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the values of the ANOVA and kappa-type ICC are the same even when the proportions in each

category change if the level of clustering is low. When the level of clustering is larger the values of

the ANOVA and kappa-type ICC are affected by the change in proportions expected in each category.

Table 5.3: Results showing the relationship between the ICC on the underlying continuous latent variable
(ρl) and ICCs calculated on the 3-level ordinal outcome, ANOVA (ρa) and kappa (ρk), when
the number of clusters is large. The dichotomised version of the ordinal outcome assumes an
overall prevalence of 0.2 and its associated ICC is given by (ρb). It was assumed there was no
effect of treatment.

Parameters (1000 simulations) Descriptive statistics
Total Cluster ρl(σ

2
b ) ICC Mean (SD) Median (IQR) min, max % negative

clusters size

100

5

0.01 (0.01)
ρa 0.01 (0.03) 0.01 (-0.02, 0.03) -0.10, 0.13 435 (44%)
ρk 0.01 (0.03) 0.01 (-0.02, 0.03) -0.10, 0.13 435 (44%)
ρb 0.00 (0.03) 0.00 (-0.02, 0.02) -0.08, 0.12 463 (46%)

0.08 (0.09)
ρa 0.06 (0.04) 0.06 (0.03, 0.08) -0.06, 0.16 59 (6%)
ρk 0.06 (0.04) 0.06 (0.03, 0.08) -0.06, 0.16 59 (6%)
ρb 0.04 (0.04) 0.04 (0.01, 0.07) -0.08, 0.19 138 (14%)

0.16 (0.19)
ρa 0.11 (0.04) 0.11 (0.09, 0.14) -0.03, 0.25 3(< 1%)
ρk 0.11 (0.04) 0.11 (0.09, 0.14) -0.03, 0.25 3(< 1%)
ρb 0.08 (0.04) 0.08 (0.05, 0.11) -0.04, 0.21 18 (2%)

0.25 (0.33)
ρa 0.17 (0.05) 0.17 (0.14, 0.21) 0.05, 0.35 0
ρk 0.17 (0.04) 0.17 (0.14, 0.20) 0.05, 0.34 0
ρb 0.13 (0.05) 0.13(0.10, 0.16) -0.00, 0.28 1(< 1%)

0.53 (1.13)
ρa 0.38 (0.05) 0.38 (0.34, 0.42) 0.18, 0.54 0
ρk 0.38 (0.05) 0.38 (0.34, 0.41) 0.17, 0.54 0
ρb 0.32 (0.06) 0.32 (0.27, 0.36) 0.11, 0.52 0

50

0.01 (0.01)
ρa 0.01 (0.00) 0.01 (0.00, 0.01) -0.01, 0.02 31 (3%)
ρk 0.01 (0.00) 0.01 (0.00, 0.01) -0.01, 0.02 31 (3%)
ρb 0.00 (0.00) 0.00 (0.00, 0.01) -0.00, 0.02 88 (9%)

0.08 (0.09)
ρa 0.06 (0.01) 0.06 (0.05, 0.07) 0.03, 0.10 0
ρk 0.06 (0.01) 0.06 (0.05, 0.07) 0.03, 0.09 0
ρb 0.04 (0.01) 0.04 (0.04, 0.05) 0.01, 0.07 0

0.16 (0.19)
ρa 0.11 (0.02) 0.11 (0.10, 0.13) 0.07, 0.17 0
ρk 0.11 (0.02) 0.11 (0.10, 0.12) 0.07, 0.17 0
ρb 0.08 (0.01) 0.08 (0.07, 0.09) 0.05, 0.14 0

0.25 (0.33)
ρa 0.18 (0.02) 0.18 (0.16, 0.19) 0.10, 0.26 0
ρk 0.18 (0.02) 0.17 (0.16, 0.19) 0.10, 0.26 0
ρb 0.13 (0.02) 0.13 (0.12, 0.15) 0.07, 0.20 0

0.53 (1.13)
ρa 0.38 (0.03) 0.38 (0.36, 0.40) 0.27, 0.50 0
ρk 0.38 (0.03) 0.38 (0.36, 0.40) 0.26, 0.49 0
ρb 0.32 (0.04) 0.32 (0.29, 0.34) 0.20, 0.45 0

Notes. The data was generated for a 3-level ordinal outcome with proportions in each category of
0.20, 0.70, and 0.1 for both treatment groups.
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Table 5.4: Results showing the relationship between the ICC on the underlying continuous latent variable
(ρl) and ICCs calculated on the 4-level ordinal outcome, ANOVA (ρa) and kappa (ρk), when
the number of clusters is large. The dichotomised version of the ordinal outcome assumes an
overall prevalence of 0.3 and its associated ICC is given by (ρb). It was assumed there was no
effect of treatment.

Parameters (1000 simulations) Descriptive statistics
Total Cluster ρl(σ

2
b ) ICC Mean (SD) Median (IQR) min, max % negative

clusters size

100

5

0.01 (0.01)
ρa 0.01 (0.03) 0.01 (-0.01, 0.03) -0.10, 0.12 407(41%)
ρk 0.01 (0.03) 0.01 (-0.01, 0.03) -0.10, 0.12 409(41%)
ρb 0.01 (0.03) 0.00 (-0.02, 0.03) -0.10, 0.12 448(45%)

0.08 (0.09)
ρa 0.07 (0.04) 0.07 (0.04, 0.09) -0.05, 0.19 29(3%)
ρk 0.07 (0.04) 0.07 (0.04, 0.09) 0.05, 0.19 29(3%)
ρb 0.05 (0.04) 0.05 (0.02, 0.07) -0.05, 0.18 90(9%)

0.16 (0.19)
ρa 0.14 (0.04) 0.13 (0.11, 0.16) 0.01, 0.30 0(0%)
ρk 0.13 (0.04) 0.13 (0.10, 0.16) 0.01, 0.30 0(0%)
ρb 0.09 (0.04) 0.09 (0.07, 0.12) -0.02, 0.27 9(1%)

0.25 (0.33)
ρa 0.21 (0.05) 0.21 (0.18, 0.24) 0.06, 0.37 0(0%)
ρk 0.21 (0.05) 0.21 (0.18, 0.24) 0.06, 0.36 0(0%)
ρb 0.15 (0.05) 0.15 (0.12, 0.18) -0.03, 0.33 1(< 1%)

0.53 (1.13)
ρa 0.45 (0.05) 0.46 (0.42, 0.49) 0.26, 0.59 0(0%)
ρk 0.45 (0.05) 0.45 (0.41, 0.48) 0.26, 0.59 0(0%)
ρb 0.34 (0.06) 0.34 (0.30, 0.38) 0.15, 0.55 0(0%)

50

0.01 (0.01)
ρa 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 16(2%)
ρk 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 16(2%)
ρb 0.01 (0.00) 0.01 (0.00, 0.01) -0.01, 0.02 46(5%)

0.08 (0.09)
ρa 0.07 (0.01) 0.07 (0.06, 0.08) 0.04, 0.10 0(0%)
ρk 0.07 (0.01) 0.07 (0.06, 0.08) 0.03, 0.10 0(0%)
ρb 0.05 (0.01) 0.05 (0.04, 0.05) 0.02, 0.07 0(0%)

0.16 (0.19)
ρa 0.14 (0.02) 0.14 (0.12, 0.15) 0.08, 0.20 0(0%)
ρk 0.13 (0.02) 0.13 (0.12, 0.15) 0.08, 0.20 0(0%)
ρb 0.09 (0.01) 0.09 (0.08, 0.10) 0.05, 0.14 0(0%)

0.25 (0.33)
ρa 0.21 (0.03) 0.21 (0.19, 0.23) 0.14, 0.30 0(0%)
ρk 0.21 (0.02) 0.21 (0.19, 0.22) 0.14, 0.30 0(0%)
ρb 0.15 (0.02) 0.15 (0.13, 0.16) 0.09, 0.23 0(0%)

0.53 (1.13)
ρa 0.46 (0.04) 0.46 (0.43, 0.48) 0.33, 0.57 0(0%)
ρk 0.45 (0.04) 0.45 (0.43, 0.47) 0.33, 0.56 0(0%)
ρb 0.34 (0.04) 0.34 (0.32, 0.36) 0.23, 0.44 0(0%)

Notes. The data was generated for a 4-level ordinal outcome with proportions in each category of
0.20, 0.50, 0.20 and 0.1 for both treatment groups.

150



5.8. RESULTS

Table 5.5: Results showing the relationship between the ICC on the underlying continuous latent variable
(ρl) and ICCs calculated on the 5-level ordinal outcome, ANOVA (ρa) and kappa (ρk), when
the number of clusters is large. The dichotomised version of the ordinal outcome assumes an
overall prevalence of 0.4 and its associated ICC is given by (ρb). It was assumed there was no
effect of treatment.

Parameters (1000 simulations) Descriptive statistics
Total Cluster ρl(σ

2
b ) ICC Mean (SD) Median (IQR) min, max % negative

clusters size

100

5

0.01 (0.01)
ρa 0.01 (0.03) 0.01 (-0.01, 0.03) -0.09, 0.12 392(39%)
ρk 0.01 (0.03) 0.01 (-0.01, 0.03) -0.09, 0.12 392 (39%)
ρb 0.01 (0.03) 0.01 (-0.02, 0.03) -0.10, 0.14 417 (42%)

0.08 (0.09)
ρa 0.07 (0.04) 0.07 (0.05, 0.10) -0.05, 0.22 20 (2%)
ρk 0.07 (0.04) 0.07 (0.05, 0.10) -0.05, 0.22 20 (2%)
ρb 0.05 (0.04) 0.05 (0.03, 0.08) -0.05, 0.21 81 (8%)

0.16 (0.19)
ρa 0.15 (0.04) 0.15 (0.12, 0.18) 0.01, 0.29 0
ρk 0.15 (0.04) 0.15 (0.12, 0.18) 0.01, 0.29 0
ρb 0.10 (0.04) 0.10 (0.07, 0.13) -0.03, 0.28 3(< 1%)

0.25 (0.33)
ρa 0.23 (0.05) 0.23 (0.19, 0.26) 0.09, 0.37 0
ρk 0.22 (0.05) 0.23 (0.19, 0.25) 0.09, 0.37 0
ρb 0.16 (0.04) 0.16 (0.13, 0.19) 0.02, 0.30 0

0.53 (1.13)
ρa 0.49 (0.05) 0.49 (0.45, 0.52) 0.31, 0.62 0
ρk 0.48 (0.05) 0.49 (0.45, 0.52) 0.31, 0.61 0
ρb 0.35 (0.05) 0.36 (0.32, 0.39) 0.20, 0.53 0

50

0.01 (0.01)
ρa 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 9 (1%)
ρk 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 9(1%)
ρb 0.01 (0.00) 0.01 (0.00, 0.01) -0.00, 0.02 43 (4%)

0.08 (0.09)
ρa 0.08 (0.01) 0.08 (0.07, 0.08) 0.04, 0.12 0
ρk 0.07 (0.01) 0.07 (0.07, 0.08) 0.04, 0.11 0
ρb 0.05 (0.01) 0.05 (0.05, 0.06) 0.02, 0.08 0

0.16 (0.19)
ρa 0.14 (0.02) 0.14 (0.13, 0.16) 0.09, 0.21 0
ρk 0.14 (0.02) 0.14 (0.13, 0.16) 0.08, 0.21 0
ρb 0.10 (0.02) 0.10 (0.09, 0.11) 0.06,0.15 0

0.25 (0.33)
ρa 0.23 (0.03) 0.23 (0.21, 0.24) 0.15, 0.30 0
ρk 0.22 (0.03) 0.22 (0.21, 0.24) 0.15, 0.30 0
ρb 0.16 (0.02) 0.16 (0.14, 0.17) 0.10, 0.21 0

0.53 (1.13)
ρa 0.49 (0.04) 0.49 (0.46, 0.51) 0.39, 0.59 0
ρk 0.48 (0.04) 0.48 (0.46, 0.51) 0.38, 0.59 0
ρb 0.35 (0.03) 0.35 (0.33, 0.38) 0.25, 0.46 0

Notes. The data was generated for a 5-level ordinal outcome with proportions in each category of
0.20, 0.20, 0.30, 0.20 and 0.1 for both treatment groups.
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Table 5.6: Results showing the relationship between the ICC on the underlying continuous latent variable
(ρl) and ICCs calculated on the 4-level ordinal outcome, ANOVA (ρa) and kappa (ρk), when
the number of clusters is small. The dichotomised version of the ordinal outcome assumes an
overall prevalence of 0.3 and its associated ICC is given by (ρb). It was assumed there was no
effect of treatment.

Parameters (1000 simulations) Descriptive statistics
Total Cluster ρl(σ

2
b ) ICC Mean (SD) Median (IQR) min, max % negative

clusters size

10

5

0.01 (0.01)
ρa 0.01 (0.11) 0.01 (-0.06, 0.08) -0.22, 0.45 486(49%)
ρk 0.01 (0.10) 0.00 (-0.06, 0.07) -0.20, 0.43 485(49%)
ρb 0.01 (0.11) -0.00 (-0.08, 0.08) -0.21, 0.44 505(51%)

0.08 (0.09)
ρa 0.06 (0.12) 0.05 (-0.02, 0.14) -0.20, 0.46 320(32%)
ρk 0.06 (0.11) 0.05 (-0.02, 0.13) -0.18, 0.43 321(32%)
ρb 0.04 (0.11) 0.03 (-0.04, 0.11) -0.20, 0.59 381(38%)

0.16 (0.19)
ρa 0.13 (0.14) 0.12 (0.02, 0.22) -0.18, 0.66 189(19%)
ρk 0.12 (0.13) 0.11 (0.02, 0.21) -0.16, 0.63 191(19%)
ρb 0.09 (0.13) 0.09 (-0.01, 0.18) -0.19, 0.56 263(26%)

0.25 (0.33)
ρa 0.20 (0.14) 0.19 (0.09, 0.29) -0.17, 0.64 77(8%)
ρk 0.18 (0.13) 0.18 (0.09, 0.27) -0.15, 0.61 79(8%)
ρb 0.14 (0.14) 0.12 (0.03, 0.23) -0.18, 0.65 153(15%)

0.53 (1.13)
ρa 0.43 (0.16) 0.44 (0.32, 0.55) -0.11, 0.83 6(1%)
ρk 0.40 (0.16) 0.41 (0.30, 0.52) -0.10, 0.81 6(1%)
ρb 0.33 (0.18) 0.33 (0.21, 0.45) -0.14, 0.80 33(3%)

50

0.01 (0.01)
ρa 0.01 (0.01) 0.01 (-0.00, 0.02) -0.02, 0.07 292(29%)
ρk 0.01 (0.01) 0.01 (-0.00, 0.01) -0.01, 0.06 290(29%)
ρb 0.01 (0.01) 0.00 (-0.00, 0.01) -0.02, 0.05 370(37%)

0.08 (0.09)
ρa 0.07 (0.04) 0.07 (0.04, 0.09) -0.01, 0.26 9(1%)
ρk 0.06 (0.03) 0.06 (0.04, 0.08) -0.01, 0.24 9(1%)
ρb 0.05 (0.03) 0.04 (0.02, 0.07) -0.01, 0.22 22(2%)

0.16 (0.19)
ρa 0.13 (0.06) 0.12 (0.09, 0.17) -0.01, 0.44 2(< 1%)
ρk 0.12 (0.06) 0.11 (0.08, 0.15) -0.01, 0.41 2(< 1%)
ρb 0.09 (0.05) 0.08 (0.06, 0.12) -0.01, 0.34 4(< 1%)

0.25 (0.33)
ρa 0.21 (0.08) 0.21 (0.14, 0.26) 0.03, 0.45 0(0%)
ρk 0.19 (0.08) 0.19 (0.13, 0.24) 0.03, 0.42 0(0%)
ρb 0.15 (0.07) 0.14 (0.10, 0.19) 0.01, 0.38 0(0%)

0.53 (1.13)
ρa 0.44 (0.12) 0.44 (0.36, 0.52) 0.07, 0.75 0(0%)
ρk 0.41 (0.12) 0.41 (0.33, 0.49) 0.06, 0.73 0(0%)
ρb 0.33 (0.12) 0.33 (0.24, 0.41) 0.03, 0.66 0(0%)

Notes. The data was generated for a 4-level ordinal outcome with proportions in each category of
0.20, 0.50, 0.20 and 0.1 for both treatment groups.
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Figure 5.4: Relationship between ICC estimators for a 4-level ordinal variable with a total of 10 clusters,
of size 5 or 50. It was assumed there was no effect of treatment.
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Figure 5.5: Relationship between ICC estimators for the 4-level ordinal variable with a total of 100 clusters,
of size 5 or 50. It was assumed there was no effect of treatment.
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Table 5.7: Results showing the relationship between the ICC on the underlying continuous latent variable
(ρl) and ICCs calculated on the 4-level ordinal outcome (different proportions from those used
in main simulations) ANOVA (ρa) and kappa (ρk), when the number of clusters is large. It was
assumed there was no effect of treatment.

Parameters (1000 simulations) Descriptive statistics
Total Cluster ρl(σ

2
b ) ICC Mean (SD) Median (IQR) min, max % negative

clusters size

100

5

0.01 (0.01)
ρa 0.01 (0.03) 0.01 (-0.01, 0.03) -0.09, 0.16 395 (40%)
ρk 0.01 (0.03) 0.01 (-0.01, 0.03) -0.09, 0.16 395 (40%)

0.08 (0.09)
ρa 0.07 (0.04) 0.07 (0.05, 0.10) -0.03, 0.21 22 (2%)
ρk 0.07 (0.04) 0.07 (0.05, 0.10) -0.03, 0.21 21 (2%)

0.16 (0.19)
ρa 0.14 (0.04) 0.14 (0.11, 0.17) 0.00, 0.29 0(0%)
ρk 0.14 (0.04) 0.14 (0.11, 0.17) 0.00, 0.28 0 (0%)

0.25 (0.33)
ρa 0.22 (0.05) 0.22 (0.19, 0.25) 0.08, 0.36 0(0%)
ρk 0.21 (0.04) 0.22 (0.19, 0.24) 0.08, 0.35 0 (0%)

0.53 (1.13)
ρa 0.47 (0.05) 0.47 (0.44, 0.50) 0.30, 0.63 0(0%)
ρk 0.46 (0.05) 0.46 (0.43, 0.49) 0.30, 0.62 0(0%)

50

0.01 (0.01)
ρa 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 11 (1%)
ρk 0.01 (0.00) 0.01 (0.01, 0.01) -0.00, 0.02 11 (1%)

0.08 (0.09)
ρa 0.07 (0.01) 0.07 (0.06, 0.08) 0.04, 0.12 0(0%)
ρk 0.07 (0.01) 0.07 (0.06, 0.08) 0.04, 0.11 0(0%)

0.16 (0.19)
ρa 0.14 (0.02) 0.14 (0.13, 0.15) 0.08, 0.20 0(0%)
ρk 0.14 (0.02) 0.14 (0.12, 0.15) 0.08, 0.20 0(0%)

0.25 (0.33)
ρa 0.22 (0.02) 0.22 (0.20, 0.23) 0.14, 0.29 0(0%)
ρk 0.21 (0.02) 0.21 (0.20, 0.23) 0.14, 0.29 0(0%)

0.53 (1.13)
ρa 0.47 (0.03) 0.47 (0.44, 0.49) 0.37, 0.59 0(0%)
ρk 0.46 (0.03) 0.46 (0.44, 0.48) 0.36, 0.59 0(0%)

Notes. The data was generated for a 4-level ordinal outcome with proportions in each category of
0.10, 0.30, 0.40 and 0.20 for both treatment groups.

5.8.2 Power of a trial designed using the design effect with each ICC

estimate

Tables 5.3, 5.4 and 5.5 show the ANOVA ICC and kappa-type ICCs to be asymptotically equivalent

in samples with a large number of clusters. For this reason it was not necessary to assess the empirical

power of both estimates in the design effect. I chose to only consider use of the ANOVA ICC as it

was seen to be slightly larger than the kappa-type ICC in small samples and hence would provide a

slightly larger sample size estimate in these situations.

For fixed values of the ICC on the latent continuous variable (ρl) 1000 datasets were generated for
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clusters of size 5, 10 and 50 under two estimates of treatment effect for the 3, 4, and 5 level ordinal

outcomes. The size of each dataset was calculated by using Whitehead’s formula for individually

randomised trials multiplied by the design effect. The design effect used the estimate of the ANOVA

ICC that corresponds to the ICC on the latent continuous variable used to generate the data for

that scenario, identified in the previous section.

Tables 5.8, 5.9, and 5.10 summarise the empirical power when using the ANOVA ICC estimate

in the design effect. The evaluation of power is only sensible if the Type I error rate for the test

statistic is controlled at 5%. For the Wald test the Type I error is valid when there are at least 40

clusters per arm. For situations with less than 40 clusters the Type I error is inflated and therefore

the expected power will also be inflated. This phenomenon can be seen in the Tables 5.8, 5.9, and

5.10. In chapter three the eleven trials identified with ordinal outcomes often included only a small

number of clusters. The types of clusters in these trials were health care practices or schools which

would suggest that the number of clusters available would not necessarily be restricted. Only one

trial provided a sample size calculation and therefore the small numbers of clusters used in these

trials may not be typical of future, appropriately designed, cluster randomised trials with ordinal

outcomes. For these reasons I did not evaluate the use of small sample corrections in my simulations

and I am discounting those situations where the number of clusters is less than 40. Future work is

required to generalise my results to situations with a small number of clusters.

For the 3-level ordinal outcome all calculated empirical powers are larger than 90% , the additional

power over 90% ranges from 0.9% to 4.20%. The standard error of the simulated power ranges from

0.73 to 0.91.

For the 4-level outcome the empirical powers are all above or very close to the expected 90%, the

additional power over 90% ranges from 0% to 2.8% . The standard error of the simulated power

ranges from 0.82 to 0.95. For the 5-level outcome we see some situations where the number of clusters

is greater than 40 but 90% power is not achieved. However, the difference in power ranges from -1.4%

to 2.7% which is still within the limit of 2% I specified for empirical power to be considered sufficiently

close to nominal power. The sample size using the ANOVA estimate produces an adequately powered

trial.
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Table 5.8: Empirical power when using the ANOVA estimate of the ICC for the 3-level ordinal outcome in
the design effect for sample size calculation. For each combination of cluster size and ICC: 1000
datasets generated with a 90% target level of power

Fixed Design Parameters log odds=0.493 log odds=0.887
C Empirical power C Empirical power

Cluster size ρa(ρl) Design effect (SE, θ̂ − θ) (SE, θ̂ − θ)

5

0.01 (0.01) 1.04 80 92.7 (0.82, 2.7) 24 92.8 (0.82, 2.8)
0.06 (0.08) 1.24 95 90.2 (0.86, 0.2) 29 92.1 (0.85, 2.1)
0.11 (0.16) 1.44 111 91.7 (0.87, 1.7) 33 92.0 (0.86, 2.0)
0.18 (0.25) 1.72 132 92.4 (0.84, 2.4) 39 91.1 (0.90, 1.1)
0.38 (0.53) 2.52 193 91.8 (0.87, 1.8) 57 90.9 (0.91, 0.9)

10

0.01 (0.01) 1.09 42 92.7 (0.82, 2.7) 13 92.4 (0.84, 2.4)
0.06 (0.08) 1.54 59 94.2 (0.74, 4.2) 18 91.4 (0.89, 1.4)
0.11 (0.16) 1.99 77 91.9 (0.86, 1.9) 23 90.4 (0.93, 0.4)
0.18 (0.25) 2.62 101 92.2 (0.85, 2.2) 30 90.8 (0.91, 0.8)
0.38 (0.53) 4.42 169 91.8 (0.87, 1.8) 50 91.7 (0.87, 1.7)

50

0.01 (0.01) 1.49 12 95.9 (0.63, 5.9) 4 97.4 (0.50, 7.4)
0.06 (0.08) 3.94 31 94.2 (0.74, 4.2) 9 92.6 (0.83, 2.6)
0.11 (0.16) 6.39 49 92.1 (0.85, 2.1) 15 92.5 (0.83, 2.5)
0.18 (0.25) 9.82 76 92.8 (0.82, 2.8) 23 93.2 (0.80, 3.2)
0.38 (0.53) 19.62 150 92.2 (0.85, 2.2) 45 92.3 (0.84, 2.3)

Notes. Assuming a 3-level ordinal outcome with proportions 0.20, 0.70, and 0.1 in the control
group and C clusters per group. Empirical power, θ̂ is calculated as the proportion of fitted
probit models with a treatment effect significant at the 5% level. θ̂ − θ represents the absolute
difference between empirical and nominal power

The ICC on the underlying latent continuous variable was shown to be larger than the ANOVA

ICC and therefore will produce sample sizes that produce more power than required, as can be seen

in Table 5.11 for a 4-level outcome. All calculated empirical powers were larger than 90%, the

additional power over 90% ranges from 1.6% to 5.3%. The standard error of the simulated power

ranges from 0.67 to 0.88.
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Table 5.9: Empirical power when using the ANOVA estimate of the ICC for the 4-level ordinal outcome in
the design effect for sample size calculation. For each combination of cluster size and ICC: 1000
datasets generated with a 90% target level of power

Fixed Design Parameters log odds=0.493 log odds=0.887
C Empirical power C Empirical power

Cluster size ρa(ρl) Design effect (SE, θ̂ − θ) (SE, θ̂ − θ)

5

0.01 (0.01) 1.04 64 90.2 (0.94, 0.2) 20 89.5 (0.97, -0.5)
0.07 (0.08) 1.28 78 92.0 (0.86, 2.0) 25 91.2 (0.90, 1.2)
0.14 (0.16) 1.56 95 90.8 (0.91, 0.8) 30 90.0 (0.95, 0.0)
0.21 (0.25) 1.84 112 90.1 (0.94, 0.1) 35 89.5 (0.97, -0.5)
0.46 (0.53) 2.84 173 90.8 (0.91, 0.8) 54 91.3 (0.89, 1.3)

10

0.01 (0.01) 1.09 34 89.9 (0.95, -0.1) 11 91.5 (0.88, 1.5)
0.07 (0.08) 1.63 50 90.0 (0.95, 0.0) 16 92.4 (0.84, 2.4)
0.14 (0.16) 2.26 69 91.5 (0.88, 1.5) 22 93.5 (0.78, 3.5)
0.21 (0.25) 2.89 88 92.1 (0.85, 2.1) 28 91.2 (0.90, 1.2)
0.46 (0.53) 5.14 157 91.5 (0.88, 1.5) 49 91.6 (0.88, 1.6)

50

0.01 (0.01) 1.49 10 95.5 (0.67, 5.5) 3 94.8 (0.70, 4.8)
0.07 (0.08) 4.43 27 90.9 (0.91, 0.9) 9 94.0 (0.75, 4.0)
0.14 (0.16) 7.86 48 90.2 (0.94, 0.2) 15 90.9 (0.91, 0.9)
0.21 (0.25) 11.29 69 91.9 (0.86, 1.9) 22 91.4 (0.89, 1.4)
0.46 (0.53) 23.54 144 92.0 (0.86, 2.0) 45 92.8 (0.82, 2.8)

Notes. Assuming a 4-level ordinal outcome with proportions 0.20, 0.50, 0.20 and 0.1 in the
control group and C clusters per group. Empirical power, θ̂ is calculated as the proportion of
fitted probit models with a treatment effect significant at the 5% level. θ̂ − θ represents the
absolute difference between empirical and nominal power
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Table 5.10: Empirical power when using the ANOVA estimate of the ICC for the 5-level ordinal outcome
in the design effect for sample size calculation. For each combination of cluster size and ICC:
1000 datasets generated with a 90% target level of power

Fixed Design Parameters log odds=0.493 log odds=0.887
C Empirical power C Empirical power

Cluster size ρa(ρl) Design effect (SE, θ̂ − θ) (SE, θ̂ − θ)

5

0.01 (0.01) 1.04 58 90.1 (0.94, 0.1) 18 89.2 (0.98, -0.8)
0.08 (0.08) 1.32 73 91.8 (0.87, 1.8) 23 92.1 (0.85, 2.1)
0.14 (0.16) 1.56 86 88.6 (1.00, -1.4) 27 90.1 (0.94, 0.1)
0.23 (0.25) 1.92 106 91.1 (0.90, 1.1) 34 90.4 (0.93, 0.4)
0.49 (0.53) 2.96 163 89.8 (0.96, -0.2) 51 88.8 (0.99, -1.2)

10

0.01 (0.01) 1.09 30 88.6 (1.00, -1.4) 10 91.6 (0.88, 1.6)
0.08 (0.08) 1.72 48 92.3 (0.84, 2.3) 15 91.4 (0.89, 1.4)
0.14 (0.16) 2.26 63 89.6 (0.97, -0.4) 20 91.5 (0.88, 1.5)
0.23 (0.25) 3.07 85 90.7 (0.92, 0.7) 27 91.5 (0.88, 1.5)
0.49 (0.53) 5.41 149 89.9 (0.95, -0.1) 47 91.6 (0.88, 1.6)

50

0.01 (0.01) 1.49 9 93.2 (0.80, 3.2) 3 96.5 (0.58, 6.5)
0.08 (0.08) 4.92 28 93.2 (0.79, 3.2) 9 94.0 (0.75, 4.0)
0.14 (0.16) 7.86 44 88.6 (1.00, -1.4) 14 91.7 (0.87, 1.7)
0.23 (0.25) 12.27 68 91.1 (0.90, 1.1) 22 91.3 (0.89, 1.3)
0.49 (0.53) 25.01 138 92.4 (0.84, 2.4) 44 92.7 (0.82, 2.7)

Notes. Assuming a 5-level ordinal outcome with proportions 0.20, 0.20, 0.30, 0.20 and 0.1 in
the control group and C clusters per group. Empirical power, θ̂ is calculated as the proportion
of fitted probit models with a treatment effect significant at the 5% level. θ̂ − θ represents the
absolute difference between empirical and nominal power

159



5.8. RESULTS

Table 5.11: Empirical power when using the ICC estimate for the underlying continuous variable for the
4-level ordinal outcome in the design effect for sample size calculation. For each combination
of cluster size and ICC: 1000 datasets generated with a 90% target level of power

Fixed Design Parameters log odds=0.493 log odds=0.887
C Empirical power C Empirical power

Cluster size ρl Design effect (SE,θ̂ − θ) (SE,θ̂ − θ)

5

0.01 1.04 64 91.7 (0.87, 1.7) 20 89.4 (0.97, -0.6)
0.08 1.32 81 91.6 (0.88, 1.6) 25 90.3 (0.94, 0.3)
0.16 1.64 100 93.1 (0.80, 3.1) 31 93.2 (0.80, 3.2)
0.25 2.00 122 92.0 (0.86, 2.0) 38 93.8 (0.76, 3.8)
0.53 3.12 190 92.4 (0.84, 2.4) 59 94.1 (0.75, 4.1)

10

0.01 1.09 34 91.4 (0.89, 1.4) 11 91.6 (0.88, 1.6)
0.08 1.72 53 92.6 (0.83, 2.6) 17 92.7 (0.82, 2.7)
0.16 2.44 75 93.8 (0.76, 3.8) 23 94.2 (0.74, 4.2)
0.25 3.25 99 94.3 (0.73, 4.3) 31 93.1 (0.80, 3.1)
0.53 5.77 176 93.5 (0.78, 3.5) 55 93.9 (0.76, 3.9)

50

0.01 1.49 10 96.4 (0.59, 6.4) 3 95.7 (0.64, 5.7)
0.08 4.92 30 94.5 (0.72, 4.5) 10 94.7 (0.71, 4.7)
0.16 8.84 54 95.3 (0.67, 5.3) 17 93.8 (0.76, 3.8)
0.25 13.25 81 93.8 (0.76, 3.8) 25 95.4 (0.66, 5.4)
0.53 26.97 164 94.3 (0.73, 4.3) 51 93.4 (0.79, 3.4)

Notes. Assuming a 4-level ordinal outcome with proportions 0.20, 0.50, 0.20 and 0.1
in the control group and C clusters per group. Empirical power, θ̂ is calculated as the
proportion of fitted probit models with a treatment effect significant at the 5% level.
θ̂ − θ represents the absolute difference between empirical and nominal power
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5.8.3 Power of a trial designed using the design effect under minor devi-

ations from the proportional odds assumption

For the four-level outcome Table 5.12 shows the effect on power when there is a minor deviation

from the assumption of proportional odds, in this case the treatment effect for the first category

was assumed to be different (smaller) than for the other categories. Power was calculated using

Whitehead’s formula multiplied by the design effect with the treatment effect based on either the

smallest log-odds, 0.35 or the average log-odds of 0.45.

Use of the smallest log-odds in the power calculation resulted in substantially larger sample sizes

than the average log-odds. The smallest log-odds produced overly conservative designs, the additional

power over 90% ranged from 7.5% to 8.9% and the standard error of the power estimates ranged

from 0.33 to 0.49. Use of the average log-odds resulted in trials which were slightly underpowered

with the difference in power from the expected 90% ranging from -2.6% to 0.3%. The standard error

of the power estimate ranges from 0.94 to 1.05.
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Table 5.12: Empirical power when using the ANOVA estimate of the ICC for the ordinal outcome in the
design effect for sample size calculation when there is a minor violation of the proportional
odds assumption. For each combination of cluster size and ICC: 1000 datasets were generated
with a 90% target level of power

Fixed Design Parameters log odds=0.35 log odds=0.45
Empirical power Empirical power

Cluster size ρa(ρl) Design effect C (SE, θ̂ − θ) C (SE, θ̂ − θ)

5

0.01 (0.01) 1.04 127 97.6 (0.48, 7.6) 77 88.8 (0.99, -1.2)
0.07 (0.08) 1.28 157 98.7 (0.36, 8.7) 95 88.5 (1.00, -1.5)
0.14 (0.16) 1.56 191 98.6 (0.37, 8.6) 116 89.4 (0.97, -0.6)
0.21 (0.25) 1.84 225 98.9 (0.33, 8.9) 136 87.4 (1.05, -2.6)
0.46 (0.53) 2.84 347 98.2 (0.42, 8.2) 210 88.2 (1.02, -1.8)

10

0.01 (0.01) 1.09 67 98.8 (0.34, 8.8) 41 87.8 (1.04, -2.2)
0.07 (0.08) 1.63 100 98.7 (0.36, 8.7) 61 88.8 (0.99, -1.2)
0.14 (0.16) 2.26 138 98.4 (0.40, 8.4) 84 89.8 (0.96, -0.2)
0.21 (0.25) 2.89 177 98.4 (0.40, 8.4) 107 89.5 (0.97, -0.5)
0.46 (0.53) 5.14 314 97.5 (0.49, 7.5) 190 89.4 (0.97, -0.6)

50

0.01 (0.01) 1.49 19 98.8 (0.34, 8.8) 11 91.7 (0.87, 1.7)
0.07 (0.08) 4.43 55 98.2 (0.42, 8.2) 33 90.2 (0.94, 0.2)
0.14 (0.16) 7.86 96 98.4 (0.40, 8.4) 59 89.7 (0.96, -0.3)
0.21 (0.25) 11.29 138 98.2 (0.42, 8.2) 84 90.3 (0.94, 0.3)
0.46 (0.53) 23.54 288 98.7 (0.36, 8.7) 174 87.9 (1.03, -2.1)

Notes. Assuming a 4-level ordinal outcome and C clusters per group. Empirical power, θ̂ is
calculated as the proportion of fitted probit models with a treatment effect significant at the 5%
level. θ̂ − θ represents the absolute difference between empirical and nominal power
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5.8.4 Power of a trial designed using the design effect under alternative

analysis method

The data generation model assumed a probit regression model for simplicity. However, use of the

logit link is a more popular analysis method. Using the ANOVA estimate of the ICC in the design

effect the simulations for the four-level outcome variable were repeated with analysis via a logit link

rather than probit. The results are summarised in Table 5.13. All empirical powers were above or

very close to the calculated 90%. The difference in empirical to expected power ranged from -1.6%

to 2.4% . The standard error of calculated power ranged from 0.84 to 1.01.
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Table 5.13: Empirical power when using the ANOVA estimate of the ICC for the ordinal outcome in the
design effect for sample size calculation followed by an analysis with a logit model. For each
combination of cluster size and ICC: 1000 datasets generated with a 90% target level of power

Fixed Design Parameters log odds=0.493 log odds=0.887
C Empirical power C Empirical power

Cluster size ρa(ρl) Design effect (SE, θ̂ − θ) (SE, θ̂ − θ)

5

0.01 (0.01) 1.04 62 88.4 (1.01, -1.6) 20 89.7 (0.96, -0.3)
0.07 (0.08) 1.28 76 90.8 (0.91, 0.8) 25 91.9 (0.86, 1.9)
0.14 (0.16) 1.56 93 90.9 (0.91, 0.9) 30 91.0 (0.91, 1.0)
0.21 (0.25) 1.84 109 90.6 (0.92, 0.6) 35 92.2 (0.85, 2.2)
0.46 (0.53) 2.84 169 90.2 (0.94, 0.2) 54 89.8 (0.96, -0.2)

10

0.01 (0.01) 1.09 33 91.9 (0.86, 1.9) 11 93.9 (0.76, 3.9)
0.07 (0.08) 1.63 49 91.6 (0.88, 1.6) 16 92.1 (0.85, 2.1)
0.14 (0.16) 2.26 67 90.6 (0.92, 0.6) 22 90.9 (0.91, 0.9)
0.21 (0.25) 2.89 86 92.1 (0.85, 2.1) 28 91.2 (0.90, 1.2)
0.46 (0.53) 5.14 153 88.8 (0.99, -1.2) 49 90.6 (0.92, 0.6)

50

0.01 (0.01) 1.49 9 92.8 (0.82, 2.8) 3 92.7 (0.82, 2.7)
0.07 (0.08) 4.43 27 91.5 (0.88, 1.5) 9 92.2 (0.85, 2.2)
0.14 (0.16) 7.86 47 90.8 (0.91, 0.8) 15 92.1 (0.85, 2.1)
0.21 (0.25) 11.29 67 89.8 (0.96, -0.2) 22 92.5 (0.83, 2.5)
0.46 (0.53) 23.54 140 90.7 (0.92, 0.7) 45 92.4 (0.84, 2.4)

Notes. Assuming a 4-level ordinal outcome with proportions 0.20, 0.50, 0.20 and 0.1 in the
control group and C clusters per group. Empirical power, θ̂ is calculated as the proportion of
fitted probit models with a treatment effect significant at the 5% level. θ̂ − θ represents the
absolute difference between empirical and nominal power
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5.9 Discussion

5.9.1 Main findings

To explore the relationship between ICC estimators

With a small number of clusters results showed that the ICC on the latent response tended to be

largest followed by the ANOVA and kappa-type ICCs. As the level of clustering increased so too

did the difference between the ANOVA and Kappa-type estimates with the ANOVA estimate being

consistently larger. With a large number of clusters results also showed that the ICC on the latent

response was largest, however, the ANOVA and kappa-type ICCs were almost identical. This was

expected as it has been shown that these two estimators are asymptotically equivalent as the number

of clusters increases.125

For each scenario investigated as the number of ordinal categories increased so too did the estimated

ANOVA and kappa-type ICCs. This was expected because as the number of ordinal categories

increases the variable more resembles a continuous variable and therefore we would expect the ICC

to tend towards the ICC calculated on an assumed underlying continuous variable.

By comparing two possible patterns in the expected proportions across categories for a 4-level ordinal

outcome the observed ANOVA ICC was shown to depend upon both the number of categories but

also the proportions observed in each category. The two patterns of proportions explored both had

a fairly even spread in the proportions expected in each category and the difference in observed

ANOVA ICCs for the two categorisations was small. Larger deviations from an even spread of

proportions across categories might have a more substantial impact on the ANOVA ICC.

To determine which ICC results in an adequately powered trial

The use of the ANOVA ICC estimate in the design effect resulted in adequately powered trials. The

empirical power was within 2% for 3-, 4- and 5-level outcomes. The efficiency of Whiteheads method

increases with the number of ordinal categories and is most efficient when the proportions in each

ordinal category are evenly spread. However, once you go beyond five categories further efficiency
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gains are marginal. In my simulations as the number of categories increased the proportions in each

ordinal category subsequently became more evenly spread. The ANOVA ICC estimate appeared

to be conservative when the spread was less even. Hence, I saw a slight decrease in power as the

number of categories increased but became more evenly spread.

The largest differences between nominal and empirical power were in situations with a small number

of clusters, which was expected due to the inflated Type I error rates for these situations.

Use of the ICC of the underlying latent variable in the design effect resulted in overly conservative

sample sizes, having an additional 1.6% to 5.3% power over the required 90%.

To determine the effect of non-proportional odds on power

I considered the situation where a minor deviation to proportional odds occurred. For the 4-level

ordinal outcome, there are three possible ways to dichotomise the outcome to calculate the log-

odds of being in category q or better. I assumed that two of these were the same and one was

slightly lower, but all indicated a beneficial treatment effect. I deemed this a minor deviation to the

proportional odds assumptions. For this situation a sample size based upon an average estimate of

log-odds was shown to result in a marginally underpowered trial. Power calculations based on the

smallest log-odds were overly conservative.

There are alternative situations which might also be classified as minor deviations from proportional

odds for example the situation where one odds ratio is slightly larger than the other two. Use of the

average log odds in the design effect for these situations was not explored and may not necessarily

result in a marginally underpowered trial.

The use of the design effect sample size approach is not recommended for situations in which major

deviations to proportional odds occur such as all the log odds being very different, or some log-odds

showing inconsistency around the effect of treatment.

To determine whether similar conclusions are made with alternative analysis methods
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Sample size using the ANOVA ICC and analysis via a logit link also resulted in adequately powered

trials, analysis with the probit link was slightly more conservative. Due to the similarity in shape of

the logistic and normal distributions the fit of a model using either of these links should be similar

and therefore this result was expected.

Despite the difference in interpretation and magnitude between a random effects and GEE model

the significance of the treatment effect is likely to be similar.130 Therefore I expect the results of my

simulation to be applicable if a GEE model was used to analyse the data. As Stata cannot be used

to fit GEE models for ordinal outcomes I did not test this within my simulations. Given more time

this could have been done using an alternative software package, such as SAS.

5.9.2 Strengths and limitations

There are several strengths to the research described within this chapter. The simulation study was

planned and reported following the most commonly used guidance for reporting simulation studies

and is therefore described in sufficient detail for this work to be fully reproduced by others. The

scenarios chosen for the simulations are largely reflective of the characteristics of real life cluster

randomised trials that have used ordinal outcomes, except that designs with a small number of

clusters were excluded. Appropriate analysis methods when the number of clusters is small require

some adjustment to account for the inflated Type I error and these methods have not been well

established for ordinal outcomes. To explore different analysis methods for clustered ordinal outcomes

when the number of clusters is small was beyond the scope of this thesis. Some approaches that might

be appropriate are discussed in the final chapter of this thesis alongside some practical guidance with

regard to sample size calculation in general for clustered ordinal outcomes.

I explored the relationship between ICC estimators under the simplifying assumption of no treatment

effect. This assumption implies that the ICC is the same in both treatment arms and thus using

these ICC estimates in sample size calculations would be equivalent to using an ICC estimate based

on control data alone. However, like binary data I identified from the simulation study that the value

of the ANOVA ICC for the ordinal outcome was dependent upon the proportions observed in each

ordinal category. This would suggest that in the presence of a treatment effect the ANOVA ICC

estimates would be different across treatment arms and in these situations it is more appropriate to
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use a pooled ANOVA ICC estimate in the sample size calculation.147 To assess the implication that

my assumption of no treatment effect may have had on my simulation results I re-ran one of the

simulation scenarios from Table 5.4 this time assuming the same log-odds values of 0.493 and 0.887

that were used in the later sample size calculations (4-level outcome, 100 clusters of size 50 with

an underlying latent ICC of 0.53). The results showed that for these treatment effects there was

only a minor difference in the observed ANOVA ICCs across the treatment groups and the pooled

ANOVA ICC estimate was the same as, or very close to, the ANOVA ICC estimate calculated when

assuming no treatment effect. Therefore my initial assumption is unlikely to have affected my results

significantly.

My simulations generated clustered ordinal data using the latent variable approach. However, as

discussed in Section 5.3 this is not the only method that might be used for data generation and it

is unclear as to whether a different method would have any impact upon my findings.

The ANOVA ICC was shown to depend upon both the number of ordinal categories and the propor-

tions observed in each category. In this research I have considered scenarios where there is a fairly

even spread in the proportions expected in each category, this is the situation for which Whitehead

states his method is most efficient. In situations where this is not the case the estimate of the

ANOVA ICC may be less similar to the latent variable ICC and therefore the performance of the

ANOVA ICC in the design effect may be affected.

5.9.3 Comparison with other work

Gao125 investigated analysis strategies for clustered ordinal data, with a focus on adjusted Cochran-

Armitage tests. She considered the use of both the kappa-type ICC and ANOVA ICCs in the test

statistic, and showed that the Cochran-Armitage test had greatest power with the kappa-type ICC

estimate. Gao saw similar results to mine in that the ANOVA and kappa-type ICC estimates were

asymptotically equivalent as the number of clusters increased. Her work used datasets generated

using marginal models and hence the relationship with the ICC on the underlying continuous variable

was not included.

There has been no other work which has considered the power of the design effect method for sample
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size calculations with ordinal outcomes analysed via a random effects model.

5.9.4 Implications

In this research I have identified that using the ANOVA estimate of the ICC, calculated by assigning

equally spaced numerical values to the ordinal outcome, within the design effect for sample size

calculations results in adequately powered trials. However, before implementing this method the

researcher must ask themselves two questions: Is a good estimate of the ICC available? and is the

assumption of proportional odds reasonable? Both of these elements will impact upon the power of

the trial. With only minor deviations to the proportional odds assumptions the use of the design

effect and an analysis which assumes proportional odds may result in only marginal over or under

powering. Major deviations are likely to require alternative analysis methods and sample size would

be best estimated through simulation. The sensitivity of the sample size calculation to the range

of plausible ICCs should be examined. If no reasonable estimates are available researchers might

consider a sample size calculation and analysis based upon the dichotomised version of the outcome,

for which ICC estimates may be more readily available.

With binary outcomes the overall prevalence of the observed endpoint is a single proportion. There-

fore in simulation studies of binary outcomes it is straightforward to examine several proportions to

gain insight into emerging patterns as the prevalence increases for example 10%, 30% and 70%. For

ordinal outcomes the situation is less straightforward. The number of ways that the proportions can

occur across the ordinal categories is numerous and it is not easy to try and systematically explore

all possible combinations or identify patterns. In Whitehead’s work for individually randomised

trials he considered two patterns. The first where there was an even spread across categories and

the second where one category was dominant. He showed that an even spread across categories was

a more efficient design. In this research I have focused on scenarios where there is generally an even

spread of the proportions expected in each ordinal category. For situations in which there is a less

even spread, perhaps one or more categories are dominating, the ordinal outcome looks less like a

continuous outcome and hence the ANOVA estimate of the ICC may be less similar to the ICC on

the latent variable. Therefore using the ANOVA estimate of the ICC in the design effect for these

situations may not perform as well. Simulation studies should be conducted in these situations to
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confirm the sample size required.

This work has provided some guidance for sample size calculation for those designing trials with

ordinal outcomes. However, in order to move forward estimates of the required ANOVA ICC are

needed. I would therefore recommend that authors reporting results with ordinal outcomes report

the ANOVA ICC and also provide the estimates of each log-odds in order that the reader may

evaluate the assumption of proportional odds.

My work will impact those working in fields where ordinal outcomes are prevalent. However, there

are still many other design aspects of cluster randomised trials for which the corresponding sample

size development is still lacking. These areas are identified and discussed in the next chapter. In

the final chapter I bring all my research together to discuss the future of sample size calculations for

CRTs and formulate clear practical guidance for sample size calculations with ordinal outcomes.
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Chapter 6

Remaining methodological gaps in

sample size methods for CRTs

In Chapter Two I reviewed the published literature on sample size calculation for cluster randomised

trials up to the year 2011, I identified 85 papers reporting sample size methods. However, of these

only two were applicable to ordinal outcomes, and the development of one of these methods became

the focus of my research. Therefore, there is much scope for developing some of the methods

reported in the remaining papers or identifying new areas for development where there are currently

no published methods available.

In this chapter I return my attention to my review of sample size methods. I provide an update to

the review which additionally includes methods published between 2011 and 2015. The aim of this

chapter is to describe where methods are lacking or need further development to encourage or enable

routine use for a given design, outcome, or analysis.

6.1 Methods

The methods of the review have been described in detail within Chapter Two. In summary the review

was conducted using electronic online databases, a personal collection of 41 articles on sample size in

CRT’s provided by SE, key text books on cluster randomised trials,6–8,32 and special issue journals
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on cluster randomised trials.61–64 The electronic search was conducted using the online databases

PubMed and Web of Science. The initial search was conducted on the 31st March 2011. Given

the time that has elapsed since conducting the review the online databases were searched again in

August 2015 and the additional methods identified are included within this chapter.

An article or method was included in the review if it provided a method of sample size calculation

for cluster randomised trials, via a formula, simulation or other approach. The first paper to report a

particular methodology was included in the review; subsequent papers describing the same approach

were excluded. The two electronic databases searched, PubMed and Web of Science contained articles

from 1946 and 1970 onwards respectively, no further date restrictions were applied.

6.2 Results

The structure of this results section is summarised in Figure 6.1. This structure was chosen to

mirror that of the published version of my initial review, which summarised sample size methods

available for CRTs for a given design, outcome and analysis.60 In contrast to the published review

the focus of this chapter is to highlight where there are gaps in the methodology.

The results start with the simplest and most common design for a cluster randomised trial; the

two-arm, completely randomised, parallel-group trial with fixed cluster sizes.

The methodology gaps for variations or adaptations to the simple design are discussed next. Vari-

ations to the design include: variability in cluster size or attrition; uncertainty around the ICC;

unequal allocation; and inclusion of baseline measurements or repeated measures.

The third section discusses alternative design choices such as the cross-over, stepped-wedge, matched

and three-level designs. The section concludes with a brief description of emerging topics that were

identified in the 2015 update to the review.
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Standard parallel group design 

 

Continuous; binary; count; ordinal; time-to-event; rate outcomes 

Design variations  

 

ICC uncertainty; variable cluster size; internal pilots; unequal 
allocation; small number of clusters; equivalence and non-inferiority; 

attrition; non-compliance, covariates; repeated measures 

Alternative designs 

 

Matched/stratified; cross-over; stepped-wedge; three-level 

 

Emerging themes 

Evidence-based perspective, cost-effectiveness, mediation, three-
arm designs, factorial trials, dog-leg design 

Figure 6.1: Sample size methodology and gaps in the literature for CRTs: Flow diagram describing the
order in which these are presented within the chapter
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6.2.1 Standard parallel-group, two-arm design

Table 6.1 summarises the methodology available by outcome type and analysis method for the

standard parallel-group, completely randomised design with fixed cluster sizes. I consider each of

the outcome types in turn.

Continuous and binary outcomes

The surge in the development of sample size methods for cluster randomised trials started with meth-

ods for binary and continuous outcomes analysed at the cluster-level, described in the seminal paper

by Cornfield in 197831 and the 1981 paper by Donner, Birkett and Buck.52 Cluster-level summaries

can often be considered continuous regardless of the nature of the variable at the individual level.

Therefore these methods are often applicable to alternative types of individual-level outcomes. With

the development of statistical software, individual-level analyses have now become a more popular

analysis and Shih has demonstrated that the simple design effect described by Donner, Birkett and

Buck for binary and continuous outcomes can be used to calculate the sample size when the planned

analysis is by GEE.83 The reason for this is that for continuous outcomes with equal cluster sizes, as

assumed here, the cluster-level and individual-level analyses (population-averaged or cluster-specific

approaches) are equivalent. However, in many situations the assumption of equal sized clusters is

not realistic.

For continuous outcomes it is most common to assume the variable is normally distributed. Rosner

and Glynn161 have presented the only sample size approach for non-normally distributed outcomes

analysed with a clustered version of the Wilcoxon test, but their method requires a large number

of calculations and associated SAS macros for implementation. There is therefore, scope to develop

simpler or alternative methods for non-normally distributed continuous outcomes.

In a cluster randomised design the sample size calculation requires estimates of both the number of

clusters and the cluster size. In the majority of situations there will be constraints on the values

of either of these parameters. For example if the cluster is a GP practice there will be a finite

number available within a specified geographical location. However, in a minority of situations

the values of these may be unconstrained and several different combinations may lead to equally
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Outcome measure Analysis Reference

Continuous Cluster-level 20,52,104,159,160

Adjusted test 161 [162]
Mixed model 99

GEE 83

Binary Cluster-level 20,31,52,104,159,160 [163]
Mixed model 105

GEE 83

Count GEE 73

Ordinal GEE 65

Mixed model 33

Time-to-event Cluster-level 72,110

Mixed model 119[164]
Marginal model 71,89 [165]

Rate Cluster-level 20

Table 6.1: Results from my systematic review of sample size methods for CRTs: Sample size methods for
the standard two-arm, parallel group, equal allocation, fixed cluster sizes completely randomised
design. Those references identified in the update to the review are enclosed in square brackets.
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powered trials. In these situations the cost of each design becomes important. If the total budget for

sampling and measuring clusters and individuals is fixed the optimal design is one that maximises

the precision of the treatment effect and power. If the required power and precision of the treatment

effect are fixed the optimal design is one which minimises the total costs of measuring clusters and

individuals. The total budget constraint is a combination of the cost per subject and cost per cluster.

This optimization problem has been considered by Connelly,104 Moerbeek105 and Raudenbush.99 A

potential limitation of these methods is the simplicity of the cost functions used, which assume fixed

costs over time and in each treatment group. In 2011 Tokola et al opted for a more general approach

which allows costs in each treatment group to be different, both at the cluster and individual level.162

The majority of methods available for binary and continuous outcomes assume the ICC as a measure

of between-cluster variance. The coefficient of variation in outcome, k, has only been proposed for

cluster-level analysis by Hayes and Bennett.20 For continuous outcomes the majority of sample size

calculations make the assumption that the measure of correlation, be it the ICC or coefficient of

variation in outcome, is the same in each treatment group. However, if the coefficient of variation is

the same in each treatment group the ICC will not be, and vice versa.7 Therefore the use of these

different correlation measures will produce different sample size requirements. The assumption of

a constant ICC is reasonable if the intervention effect is likely to be constant across clusters. The

assumption of a constant k is reasonable if the intervention effect is likely to be proportional to the

cluster mean.21

Similarly for binary outcomes different sample size requirements are calculated depending upon

whether the ICC or coefficient of variation is used in the calculation. For binary outcomes there

is an additional complication that the between-cluster variance also depends upon the value of the

overall outcome proportion. The use of the ICC is recommended for sample size calculations of

binary outcomes, unless the proportion is very small.21

Due to the high dependence on prevalence of the ICC for binary outcomes ICC values from one

study may not be generalizable to seemingly similar studies that have different outcome prevalence.

To address this problem in 2011 Crespi et al proposed a parameter which they call R, that helps

to isolate the part of the ICC that measures dependence among responses within a cluster from the
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outcome prevalence ρ = (R−1)π
(1−π) where ρ is the ICC and π the outcome proportion.163 However, this

is not necessarily a new concept as it can be easily shown that R− 1 = k2 where k is the coefficient

of variation used in the sample size methods by Hayes.20

To summarise, for the standard parallel-group trial with binary or continuous outcomes there are few

areas that require future development. Sample size methods for these situations, using a variety of

analysis methods are well established and have also been extended to incorporate budget constraints.

Only one sample size approach considered non-normally distributed continuous outcomes and there

is scope to consider whether this approach might be simplified or alternative methods developed.

Count outcomes

Use of the standard design effect has been shown to be appropriate for count outcomes when analysed

with a GEE model.73 However, the authors did not provide any indication of how this method

might perform for alternative analyses such as the mixed model and so there is scope for some

further research here. The only other sample size approach for count data has been via simulation

for cross-over designs.113

Ordinal outcomes

Methods available for ordinal outcomes and how they might be developed further were described

in detail in Chapter Two and updated in Chapter Five in the light of my research results. These

summaries are not repeated here and no further methods were identified in the update to the review.

Time-to-event outcomes

For the individually randomised trial there are two common formulae used for sample size calculation

for time-to-event outcomes, those by Schoenfeld3 and Freedman.4 Each of these methods has been

adapted for the clustered case for cluster-level analyses, mixed, and marginal models by Gang, Jahn-

Eimermacher, and Xie respectively71,72,119 A further approach assuming an alternative marginal

model was also considered by Manatunga however, it does not result in a simple explicit formula.89

A simulation-based sample size calculation was proposed by Jung which assumed a weighted rank

test with allowance for variable cluster size.166
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Since the publication of my initial review two further sample size methods for time-to-event out-

comes have been proposed by Zhong and Cook in 2014165 and Moerbeek in 2012.164 The method

by Zhong assumes a semi-parametric proportional hazards model fitted under a working indepen-

dence assumption with robust variance estimates. Kendall’s τ is used to describe the association

within clusters and the required number of clusters is calculated for both right-censored and interval-

censored time-to-event outcomes. The method by Moerbeek considers discrete event times based on

a generalised linear mixed model.

The definition of the ICC used within the papers for time-to-event outcomes was not always easy

to determine. There is scope to look at the ICCs for time-to-event data in more detail, perhaps

reviewing the alternative estimators and presenting some real life estimates. The use of time-to-

event outcomes is less common than binary or continuous outcomes. In my published review of 166

CRTs that reported a sample size calculation no papers were identified with time-to-event outcomes,

one was identified to have an ordinal outcome, in thirteen papers the outcome was unclear and in the

remaining papers the outcome was either binary, continuous or a rate.122 Some practical guidance

would be useful to describe the issues common to time-to-event designs and to explain the differences

and appropriateness of the various proposed sample size methods under different circumstances.

Rate outcomes

When it comes to rate outcomes an ICC cannot be defined and therefore the coefficient of variation

in outcome must be used in sample size calculations. In my review there was only one calculation

applicable to rate outcomes for the simple design assuming a cluster-level analysis.20 There is scope

to explore the performance of this method, or develop new methods, for individual-level analysis

methods.

6.2.2 Adaptations to the standard parallel-group design

In this subsection I consider some of the additional aspects related to design or analysis of a parallel-

group trial that one may wish to additionally account for in the sample size calculation. Some of

these aspects may be under the control of the investigators, such as the inclusion of covariates or

repeated measurements in the analysis and others may be less under their control such as variability
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Table 6.2: Results from my systematic review of sample size methods for CRTs: Sample size methodology
for design adaptations to the standard two-arm, parallel-group, completely randomised design.
Those references identified in the update to the review are enclosed in square brackets

Adaptation Outcome measure Analysis Reference

Design

ICC uncertainty Continuous Cluster-level 118

Adjusted test 121

Mixed model 116–118 [167 ]
GEE 117,118

Binary Cluster-level 114

Variable cluster size Continuous Cluster-level 92,168,169

Adjusted test 74

Mixed model 95

GEE 86

Binary Cluster-level 92,112,168

Adjusted test 76

Mixed model 93

GEE 75,86

Time-to-event Cluster-level 110

Internal pilot Continuous Mixed model 120 [170,171]
GEE 88

Binary Cluster-level [172]
GEE 88

Unequal allocation Continuous Cluster-level 169

Mixed model 101

Small number of clusters Continuous Cluster-level 173,174 [175]
Binary Cluster-level 173[175]

Equivalence Continuous Adjusted test 33

Binary Adjusted test 78

Non-inferiority Binary Adjusted test 176

Attrition Continuous Adjusted test 85

Mixed model 177

Binary Adjusted test 85

Non-compliance Binary Adjusted test 176,178
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Table 6.3: Results from my systematic review of sample size methods for CRTs: Sample size methodology
for analysis adaptations to the standard two-arm, parallel-group, completely randomised design.
Those references identified in the update to the review are enclosed in square brackets

Adaptation Outcome measure Analysis Reference

Analysis

Inclusion of covariates Continuous Cluster-level 84,179

Mixed model 96,99,102,109,180,181 [182]
GEE 86,181,183

Binary Mixed model 96,107,180

GEE 86,111,181,183,184

Inclusion of repeated measures Continuous Mixed model 177,185–188[189,190]
GEE 87

Binary Marginal model 87 [191]

in cluster size and attrition.

Tables 6.2 and 6.3 summarise the methodology available for adaptations to the standard parallel-

group design categorised by outcome measure and analysis method. What is immediately striking

from these tables is that all the methods described for these variations are applicable only to binary

and continuous outcomes, the exception being when cluster size is variable with a time-to-event

outcome which has been considered by Jung via simulation methods.110 Given that some of these

variations from the standard design are quite common there is a considerable lack of methods avail-

able to those who wish to perform an individual-level analysis using an outcome that is not binary

or continuous.

I now discuss each adaptation in turn.

Uncertainty around the estimate of the ICC

The estimate of the ICC used in the sample size calculation can have a substantial impact upon the

resulting sample size, yet there is often a large amount of uncertainty surrounding the estimate.

Informal methods to address the problem have been to opt for a conservative estimate, but this may

result in unnecessarily large trials. Turner and Spiegelhalter have described more formal methods

for incorporating ICC uncertainty into the sample size calculation. For continuous outcomes these
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methods make distributional assumptions for one or many previously observed ICC values and from

these calculate a distribution for the power.116–118 These methods adopt a Bayesian perspective but

assume that the analysis will follow a classical approach, mixed model or GEE. ICC uncertainty for

binary outcomes has received less attention, Feng considers the effect of two possible ICC estimators

on sample size via simulation with a cluster-level analysis assumed.114

The sample size formulae based around the coefficient of variation in outcome are not always as

simple as the design effect and therefore the effect of miss-specification of the estimate of coefficient

of variation in outcome is not as obvious. There has been no formal work that considers how potential

uncertainty around the estimate of the coefficient of variation in outcome could be incorporated into

the trial design, or whether the methods described for ICC uncertainty could translate to uncertainty

in the coefficient of variation in outcome.

Where the cluster size and number of clusters are not fixed or constrained for the standard parallel

group design methods have been derived to solve the optimality problem of finding the numbers of

individuals and clusters that will 1) maximise power and precision of the treatment effect under a

fixed budget or 2) minimise total costs given a fixed power and precision of the treatment effect. In

addition to the possible oversimplified cost functions used in these methods they also assume that

the number sampled from each cluster is the same and the ICC is known, assumptions which may

not be realistic. To overcome the issue of unknown ICC van Breukelen derives a Maximin design

based on relative efficiency. This provides a design which is robust against miss-specification of the

ICC and cost-effective.167 The Maximin design is found using a series of steps. First the parameter

space for the ICC is defined and then the design space is defined for the number of clusters and

cluster size. For each ICC value in the parameter space the locally optimal design is calculated using

methods by Raudenbush or Moerbeek.99,105 The relative efficiency (RE) of each design in the design

space is compared to the locally optimal design. For each design in the design space its minimum

RE within the ICC parameter space is calculated. The maximin design is that which has the highest

minimum RE among all designs in the design space.
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Variable cluster sizes

The standard design effect commonly applied to binary and continuous outcomes in the standard

parallel-group design makes the assumption that the number of observations from each cluster in

the analysis is the same. This may be a reasonable assumption in some situations such as trials of

ophthalmology where the cluster is a person and measurements are taken on eyes. However, in other

studies where the cluster might be a GP surgery or hospital and we intend to take measurements

on the entire cluster we are likely to experience drop out within clusters. At the design stage it is

good practice to account for or at least consider the impact of variable clusters. A simple approach

is to replace cluster size in the design effect with the mean cluster size but this will result in an

underestimated sample size, more so as the variation in cluster size increases. Alternatively, using

the maximum cluster size may be overly conservative. Replacement of cluster size with the harmonic

mean of the sample size in each cluster provides an appropriate sample size when using the cluster-

level approach with coefficient of variation described by Hayes.7

Of all the adaptations to the simple parallel-group trial variable cluster sizes has received the most

attention. Methods for continuous and binary variables assuming both cluster-level and individual-

level analyses have been derived. These methods can be divided into those that require each cluster

size to be known in advance75,86,92 and those which require only an estimate of the mean and

standard deviation of cluster size to be known.74,76,93,168 A simple design effect has been derived

for the latter approach.168 Although this design effect has been derived for cluster-level analyses

it provides a conservative estimate in the case of individual-level analyses. However, it has been

argued by van Breukelen that the approximation of efficiency loss used in many of these approaches

is inaccurate and he proposes two simple alternatives95,192

The main development required for the case of variable cluster sizes is towards methods for outcomes

that are not continuous or binary.

Internal and external pilot studies

A pilot study is a small study conducted before the main trial which aims to refine the design and

procedures such as recruitment, randomisation, data collection and follow up to be used in the main
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study. The data from an external pilot is not intended to be included with the data from the main

trial, hence an external pilot provides more flexibility to change and refine the design and procedures.

The sample size for a pilot study should not be calculated as we would for the main trial, i.e. on the

expected difference between treatment groups. Instead it should be powered to meet the aims of the

pilot study which are usually based around the feasibility of the main study, for example whether

the required recruitment rate can be met or the required rate of follow up met. For binary outcomes

Ahn et al consider sample size calculations based upon a hypothesised proportion for a single arm

clustered design with varying cluster size. The authors suggest that their method can be used to

calculate sample sizes for pilot or early stage trials.172

If good estimates of the ICC and other required parameters are not available at the design stage it

may be possible to re-estimate the sample size once the trial is running, using an internal pilot, as

described by Lake et al120 and Yin and Shen.88 The data from an internal pilot will be included in the

analysis of the data from the main trial. An internal pilot is most suited to trials that recruit a large

number of clusters over a relatively long time period. The methods developed so far for sample size

re-estimation using an internal pilot assume analysis by a mixed model with a continuous outcome

or by a GEE model with binary or continuous outcomes. Internal pilots are less common in cluster

randomised trials than they are in the individually randomised setting and there is much scope for

further investigation to establish the best practice for their use, for example determining at what

point an interim estimate of the ICC could be considered stable and hence used to re-estimate the

sample size appropriately.

The method by Lake120 focuses on situations in which there are a large number of small clusters. In

2012 van Schie and Moerbeek proposed sample size re-estimation methods for situations where there

is a limited number of clusters but where the clusters are potentially large and one can continue

to recruit participants in a participating cluster after sample size re-estimation in order to reach

the required sample size.170 In 2012 van Breukelen published simpler guidance for sample size

calculations with unknown ICC and variable cluster sizes. His recommendations were to base initial

sample size calculations upon the midpoint of an assumed ICC range and then re-estimate the ICC

from the data once the trial is running. The sample size is then increased only if the ICC is larger

than the midpoint. The authors state that the final analysis can be conducted without the need to
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account for this interim look.171

Further guidance on the design of pilot studies is provided by Eldridge and Kerry.21

Allocation ratio

Equal allocation provides the most efficient design and was often assumed for simplicity in the

majority of methodology identified in the review. However, if the costs per sampling unit are different

in each treatment group an equal allocation ratio may produce a smaller sample size for a fixed budget

than an unequal allocation. Optimal unequal allocation of clusters to treatment arm can reduce the

overall cost of the study and attain higher power than the equal allocation design.101 Besides cost,

unequal allocation may be desired if we wish to gain more information about one of the treatment

arms. In situations where a design effect is applied directly to the sample size calculation under

individual randomisation unequal allocation may be incorporated in the usual way to the formula

for individual randomisation. There is very little published work which focused on the considerations

of unequal allocation.

Small/fixed number of clusters

Many of the formulae in the review were based upon the normal distribution and therefore are

appropriate when a large number of clusters are to be recruited. When the number of clusters is

small these approximations will underestimate the required sample size.

A simple solution to this problem, suggested by Snedecor and Cochran is to add one cluster per

arm when testing at the 5% level,193 implemented in the formulae by Hayes.20 Alternatively the

normal distribution in the formula can be replaced by the t-distribution, or methods based upon the

non-central t-distribution used.169,173

Campbell first described methods that can aid in calculating the number of subjects per cluster

when the number of clusters is fixed194 Hemming et al has discussed this further for both binary

and continuous outcomes. A trial with a limited number of clusters is feasible if the required power

can be obtained by increasing the number of individuals sampled within the cluster. As a simple

check the trial will be feasible if the number of clusters is greater than the product of the number of
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individuals needed under individual randomisation and the ICC. If the design is not feasible either

the power must be reduced or the detectable difference must be increased.175

It is currently recommended that trials with a small number of clusters be avoided. In addition to

the fact that sample size methods may be inappropriate many analysis methods do not perform well

with a small number of clusters and imbalance in the cluster characteristics is also more likely to

occur when the number of clusters is limited.21 These two issues would indicate that, at present,

further development of sample size calculations that perform well with a small number of clusters

may not be useful. Sample size by simulation may be the best approach in these situations.

Equivalence and non-inferiority

Non-inferiority and equivalence designs are less common in the clustered setting. For equivalence

designs with binary or continuous outcomes the standard design effect can be used to multiply the

sample size calculated under individual randomisation.33,78 There are no methods described for

equivalence designs with alternative outcomes.

For non-inferiority designs Lui and Chang have derived an approach where the treatment effect is

based upon the effect among compliers, along similar lines to the Complier Average Causal Effect

(CACE) analyses sometimes seen for individually randomised trials. The calculation of the variance

for this complier treatment effect is complex meaning this method is not straightforward to imple-

ment.176 Given the role that non-compliance can play in the evaluation of non-inferiority it may not

be sensible to try and simplify this method by ignoring non-compliance. For individually randomised

trials it is well established that an intention to treat (ITT) analysis (i.e. include non-compliers) of

a non inferiority trial may lead to a diluted treatment effect and therefore makes it easier to declare

non-inferiority. A per protocol analysis (i.e. exclude non-compliers) of such a design may be biased

as the benefits of randomisation are lost and the power is reduced.

Non-inferiority designs have also been considered under an evidence-based perspective to sample size

estimation and will be described later in this chapter in the section on emerging themes in sample

size methods.195

185



6.2. RESULTS

Attrition

In cluster randomised trials attrition among members of a cluster is a common problem. If the

proportion that are lost to follow up is θ then the required sample size can be calculated by dividing

CRT sample size formulas by (1− θ). Alternatively, assuming equal drop out per cluster, n can be

replaced by θn in the design effect. However, these methods overestimate and underestimate sample

size respectively.

For continuous and binary outcomes, analysed at the individual level using either the individual-level

t-test or chi-squared test suitably adjusted for clustering,6 a simple design effect has been proposed

by Taljaard to calculate the sample size.85 In addition to the ICC this design effect requires an

estimate of the probability that an outcome is observed and an intracluster correlation coefficient

for the binary missingness indicator, defined as 0 if the outcome is missing and 1 otherwise.

When there is no attrition the individual-level t-test adjusted for clustering is identical to both

the standard two-sample t-test based on cluster means and the test of the regression coefficient

in a mixed-effects regression model with no other covariates. The drawback of this sample size

method is that the analysis does not allow for inclusion of covariates and estimates of the ICC

for the missing data mechanism are not routinely published, making the choice of an appropriate

figure more difficult. Further work could be done to look at the performance of this method under

alternative, and more commonly used, analysis methods and to summarise patterns in the ICC

for the missing data mechanism from real life trials. Although Roy has considered an alternative

approach for mixed models and drop-out for longitudinal clustered designs his method is iterative

and therefore fairly complex.177

In 2014 Corrigan et al considered the impact of cluster composition changes, namely clusters merging

post-randomisation, on the design and analysis of CRTs. The issue is related to variability in cluster

size and loss-to-follow up of clusters; cluster sizes change when clusters merge and we in effect have

drop out of an entire cluster. In their simulation studies merging clusters had a detrimental effect on

study power. However, the merging of clusters in the same treatment group resulted in only a small

loss in power because the ICC decreased with the merge. The authors recommendations are that
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allowance for cluster merges in the sample size calculation should depend on the perceived likelihood

of merges given the costs involved in recruitment of additional clusters.196

Non-compliance

In a truly pragmatic trial the effect of the intervention is usually assessed in the presence of non-

compliance using an ITT analysis and during the trial compliance may not be measured or actively

sought. Therefore accounting for non-compliance at the design stage may not be necessary. An ex-

ception to this is the non-inferiority design where ignoring non-compliance may mean non-inferiority

is declared more easily.

In trials where you wish to estimate the effect of treatment for those who comply a per-protocol

analysis is often conducted. However by excluding participants such an analysis suffers from a

reduction in power and the benefits of randomisation are lost. Complier Average Causal Effect

models have been suggested as a method to estimate the treatment effect under compliance without

the disadvantages of a per protocol analysis. For individually randomised designs CACE analyses are

still not routinely used and hence it may be too early to expect routine use of appropriate analysis

methods for non-compliance in the clustered case. However they have been considered for both

non-inferiority and superiority clustered designs.176,178

Inclusion of baseline measurements

The inclusion of covariates, which are correlated with the outcome, into the analysis will likely reduce

the between-cluster variation, and a reduced ICC leads to a reduction in the required sample size.

Inclusion of the baseline value of the outcome has the biggest effect on reducing the ICC. The inclusion

of a baseline measurement of the primary outcome introduces additional sources of correlation. In

a repeated cross-sectional sample different individuals are measured at each time point. This leads

to two sources of correlation: the correlation of outcomes from individuals within a cluster at the

same time point (our familiar ICC) and the correlation between baseline and follow-up outcomes

for individuals within a cluster (cluster autocorrelation). In a cohort sample the same individuals

are measured at baseline and follow up and therefore an additional correlation is encountered across

time points on the same individual conditional on the cluster (subject autocorrelation). The cohort
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sample is more efficient. However, cohort designs can suffer from larger loss-to-follow up than the

cross-sectional design and therefore their sample size must be inflated to account for this. The relative

efficiency of the cohort design to the cross sectional design has been quantified by Feldman.96

For continuous outcomes and a cluster-level analysis of covariance a simple design effect is derived by

Teerenstra for the sample size calculation that allows either a cohort sample, cross-sectional sample

or a mixture of the two.84,179 Cohort and cross-sectional designs for binary and continuous outcomes

have also been considered by Preisser et al183,184 their sample size method is based upon cluster-level

summary statistics but uses an estimating equations approach to estimate the ICCs.

Like so many other methods the practical use of these methods is dependent upon finding good

estimates of the additional correlation parameters and further work is required to do this.

Inclusion of other covariates

To account for the inclusion of baseline covariates Neuhaus and Segal180 have suggested that in

general multiplying the ICC by the ICC for the individual-level covariate results in an estimate of

the adjusted ICC . This adjusted ICC can then be used in the standard design effect.

When considering the inclusion of covariates other than the baseline measurement of the outcome

much of the work has focused around the cost-benefit of their inclusion. The inclusion of the covariate

being most cost efficient when the cost of measurement is small and the correlation between the

covariate and outcome is large. Raudenbush derived the optimal sample sizes at each level to

minimise the standard error of the treatment effect for a continuous outcome under a fixed budget

for both individual and cluster-level covariates.99 His work has been extended for the three-level

design by Konstantopoulus.182 Moerbeek has been very active in this area defining optimal sample

sizes at each level to minimise the variance of the treatment effect under a given cost constraint for

continuous outcomes108,109 and binary outcomes with a binary covariate.107

Given there is little guidance about how to choose covariates in a cluster randomised trial and

correlation estimates may be difficult to find a conservative approach would be to ignore the covariates

in the sample size calculation.
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Inclusion of repeated measurements

In a longitudinal cluster randomised design there is a three-level structure with outcomes measured

at specific time points within subjects, within clusters. The final analysis model now contains

fixed effects for time and the treatment-by-time interaction. The identified sample size methods

for these trials were considerably more complex than the methods seen for other scenarios, and the

calculations more substantial. The added complexity came from: allowing for different hypothesised

paths of the intervention effect over time by Koepsell;185 incorporation of differential drop-out by

Roy;177 the introduction of random coefficients to the model by Murray;187marginal models by Liu87

and Reboussin,191 testing of the treatment-by-time interaction by Heo186 and testing the treatment

effect at the final time point with incorporation of information from the entire study period by

Heo.188

Since the initial review Heo has continued to develop new methods in this area. In 2013 Heo looked

at including a subject-specific random slope and in 2014 adapted a previously derived method to

allow for anticipated attrition.186,189

This area of sample size methodology would benefit from a detailed evaluation and comparison of

each of these methods in order to provide some explicit guidance about when each approach might

be suitable and the information that is required to implement each method.

6.2.3 Alternative designs

Sample size methodology for alternative designs is summarised in Table 6.4. Like the adaptations

presented in the previous section this methodology has largely focused on continuous and binary

outcomes.

Stratification and matching

Generally speaking cluster randomised trials recruit a smaller number of units than an individually

randomised trial. This means there is potential for baseline imbalances in cluster characteristics

across the treatment groups. Matching or stratification is used is help balance the treatment groups

for characteristics that are thought to affect the outcome. In a matched-pair design similar clusters,
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Table 6.4: Results from my systematic review of sample size methods for CRTs: Sample size methodology
for alternative designs to the standard two-arm, parallel-group, completely randomised design.
Those references identified in the update to the review are enclosed in square brackets.

Trial design Outcome measure Analysis Reference
Matched/stratified Continuous Cluster-level 20,160,197

Mixed model 198

Bayesian 115

Binary Cluster-level 20,97,160,197,199

Mixed model 198

Adjusted test 200

Rate Cluster-level 20,201

Cross-over Continuous Cluster-level 77,113,174

Mixed model 98

Binary Cluster-level 113[202]
Count Cluster-level 113

Stepped-wedge Continuous Mixed model 82,203 [204,205 ]
Binary Mixed model [205 ]
Time-to-event Equivalent to Cox proportional hazards [206]

Three-level continuous Mixed model 79,81,103,106[182,207]
GEE 80

Binary GEE 80

190



6.2. RESULTS

similarities being defined on aspects such as size or geographical location, are matched. One cluster

is allocated to control and the other to the treatment group. The reduction of the between-cluster

variance induced by matching can provide efficiency in sample size. It should be noted that any

potential gain in efficiency may be lost if clusters drop out, which renders the matched pair unusable

in the analysis. However, for trials that recruit a small number of relatively large clusters ignoring

matching in the analysis of a matched design has been shown to be valid and efficient and can avoid

the problem of lost clusters from a matched analysis.208

Analysis of a matched-pair design is conducted at the cluster level and sample size calculations

have been proposed for continuous, binary and rate outcomes using either the coefficient of vari-

ation in outcome within matched pairs,20 direct measures of the between and within-cluster vari-

ances160,198,199,201 or the correlation in the outcome between matched pairs.97 To account for the

small number of clusters randomised two, rather than one, cluster should be added per group to

account for the use of the normal approximation in sample size formulae. This is incorporated into

the formula by Hayes.20

Stratification is related to the matched-pair design in that there are several clusters within a stratum,

rather than two. A simple sample size method has been developed for binary outcomes200 and a less

common Bayesian approach developed for continuous outcomes.115

As the impact of stratification is difficult to ascertain in advance, recommendations are to ignore

it in the sample size calculation for a more conservative estimate.21 Therefore, at present, there is

probably less need for further development of these methods.

Cross-over designs

Cross-over designs are useful when the availability of clusters is limited as these designs require a

smaller number of clusters than a standard parallel-group trial. When different subjects from each

cluster are included in separate periods of the trial the design has a cross-sectional sample. Alter-

natively each subject could be included in both periods within the cluster, a cohort sample. With

the cohort design the treatment effect is calculated within subjects, within clusters so both between-

cluster and between-subject variations are eliminated making this this most efficient of the cluster
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randomised cross-over designs. The relative efficiency of the cross-over design with either cohort or

cross-sectional sample over the parallel group cluster randomised design have been quantified for

continuous outcomes with an assumed analysis by mixed model.98

For the cohort sample a simple design effect has been proposed by Giraudeau for continuous outcomes

analysed at the cluster level.77 In 2015 this methodology was extended to accommodate imbalances

in cluster sizes with a focus on binary outcomes.202

Methods for continuous, binary and count outcomes for the cross-over design have also been explored

via simulation.113

Future extensions for the cross-over design could be to include allowance for covariates.

Stepped-wedge design

In the stepped-wedge design all clusters receive the control intervention at baseline. At points in

the trial one or more clusters will cross-over to receive the treatment intervention, with all clusters

receiving the treatment intervention by the end of the trial. This design is similar to the cross-over

design except that cross-over is in one direction and staggered over time. The point at which a

cluster crosses over is randomly determined at the beginning of the trial. See Figure 6.2.
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Figure 6.2: Graphical representation of the cluster randomised stepped-wedge design

A stepped wedge design might be used when the implementation of the intervention can only be

performed sequentially across clusters or when it is believed the intervention will do more good than

harm and so it is thought to be unethical to deny clusters from receiving the intervention during the

trial.

These designs are increasing in popularity but guidance regarding best practice around their design

and analysis is limited. The first published guidance by Hussey in 2005203 has since been extended

to develop a design effect for the stepped wedge design with continuous outcomes analysed by mixed

model by Woertman et al.82 The appropriate use of this design effect has been further clarified by

Hemming and Girling.209 These calculations have now been implemented in the statistical software

Stata.210

For time-to-event outcomes Moulton et al propose an adaptation of Hayes formula for rates to

account for the stepped-wedge design.206

Power calculations for stepped-wedge designs have assumed a cross-sectional design with equally
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spaced steps, an equal number of clusters randomised at each step and data collected at every step.

Methods to account for some variations to these assumptions have been proposed by Hemming,

Lilford and Girling in 2014.204 The variations dealt with include multiple layers of clustering or

incomplete data i.e. at some steps for some clusters data are not collected or do not contribute to

the analysis. At present only a simulation-based approach has been proposed which can address

some of the more complex variations in design, including a cohort design.205 However, calculations

based on a cross-sectional design are likely to be conservative for the cohort design.

Methodological developments in the design, conduct and analysis of stepped wedge designs appear to

be occurring at a rapid pace and so there is a lot of scope for development of sample size methodology

in parallel.

Three-level cluster randomised trial

Three-level cluster randomised trials commonly occur in educational research where pupils (level 1)

are sampled within classrooms (level 2) and randomisation occurs at the school level (level 3). The

total variance now includes the variance between schools, the variance between classrooms within

schools and the variance of students within classrooms and schools (see Figure 6.3). Aggregating

the data at the classroom or school levels reduces this design to the standard parallel group trial

where sample size methodology is widely available.
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Figure 6.3: Graphical representation of the cluster randomised three-level design

The three-level design lends itself to an individual-level analysis by mixed model or GEE and simple

design effects have been proposed for these methods for binary or continuous outcomes by Teeren-

stra79,80 and Heo.81 For the three-level design two ICCs are required, in this example one for

students within schools and the second for students within classrooms. The calculation of the opti-

mal sample sizes at each level under a cost constraint has also been considered by Moerbeek106 and

Konstantopoulos.103,182

Most methods discussed so far for three-level designs have assumed that randomisation will take

place at the highest level e.g. school. If randomisation were to occur at the second-level these

designs can be thought of as multi-center cluster randomised trials. Cunningham and Johnson have

proposed a simple design effect for randomisation at the lower levels.207 The same is not true for

longitudinal CRTs where outcomes are measured at specific time points within subjects, within

clusters. If randomisation were to occur at the second-level the design would be equivalent to a

longitudinal multi-center trial.
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The most obvious development of the design effect for three-level trials would be to incorporate

variable cluster sizes and other adaptations to the standard design as described in Table 6.2.

6.2.4 Emerging themes

The majority of methods identified in the review derived a sample size calculation to reach a pre-

specified level of power for a superiority analysis of the primary outcome. Exceptions to this were

those methods based on a non-inferiority design or those which optimised the cluster size and number

of clusters to provide the maximum precision under a fixed budget constraint. In the update to the

review four additional motivations to sample size calculations emerged and are briefly described here.

The evidence-based perspective: Rotondi and Donner took an evidence-based approach to sample

size determination. The appropriate sample size is derived based upon its potential impact on the

literature i.e. the trial should be large enough to establish whether there is a treatment effect on its

own but to also provide a definitive answer when used in subsequent meta-analysis.195

Powering for tests of mediation: Mediation analysis is undertaken in order to explain the process

by which the intervention affects response. Using simulation methods Hox et al derive the lowest

number of clusters required to accurately test and estimate mediation in cluster randomised trials

both when maximum likelihood and Bayesian methods are used in estimation.211

Powering for cost-effectiveness: In 2014 Manju et al considered optimal sample sizes at the individual

and cluster levels under a cost constraint where the outcome is the cost-effectiveness of treatments

on a continuous scale.212 Their approach uses a maximin design and therefore is robust to miss-

specification of the parameters such as the ICC.

Powering for a pre-specified confidence interval width : The final approach taken by Pornprasert-

manit and Schneider is described as the accuracy in parameter estimation (AIPE) approach.213

This method helps researchers to find the smallest sample size that will ensure that the confidence

interval around the treatment effect will be sufficiently narrow to be informative. Their methods are

also extended to include a covariate and deal with unequal cluster sizes.
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The remaining emerging themes centred on aspects of the design: three-arm trials; factorial trials;

and the dog-leg design.

Three-arm trial: For a three-arm cluster randomised trial the simplest approach to sample size esti-

mation would be to assume that three independent comparisons between the groups are to be made

and the maximum sample size is then used for each treatment group.33 Methods of calculation based

upon an overall test of treatment effect have recently been proposed.214

Factorial trial: Two methods for factorial designs have been proposed since the original review.

The first by Dziak in 2012 for continuous outcomes can accommodate a pre-test measure of the

outcome.215 The second approach in 2015, also for continuous outcomes, by Lemme et al calculates

the optimal numbers at each unit in order to minimise the variance of the treatment effect estimator

under a total budget constraint and heterogeneous variances across treatment groups. The authors

conclude that the 2x2 factorial design is quite robust against heterogeneity of variance and any loss

in efficiency can be compensated by the addition of one of two clusters per treatment group.

The dog-leg design: The stepped-wedge design is a form of cross forward design where all clusters

cross-over to the intervention arm at some point during the trial. These designs often require a

large number of individuals, as repeated cross sectional samples are taken from each cluster. An

incomplete cross forward design can reduce the number of individuals required as it leaves gaps in

the assessment schedule in some of the arms. The dog-leg design has been proposed as the simplest

incomplete cross forward design by Hooper and Bourke which can potentially reduce the number of

individuals required and aid researchers to meet ethical and financial requirements for limiting the

number of research participants. The name dog-leg comes from the pictorial representation made by

the assessment schedule.216

6.3 Discussion

In the original review of sample size methods 85 papers were identified published over the 33 years

spanning 1978 and 2011. When this review was updated in August 2015 an additional 28 papers

were identified published over the 4 years between 2012 and 2015 (see appendix vi for details). This

shows the methodology is still increasing.
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Papers which made reference to a particular trial as the motivation behind the proposed sample size

method were in the minority. Therefore, this rapid increase in methodology may not necessarily

reflect a trend towards more varied and/or complex designs but instead may indicate that methods

are being developed which are yet to have practical applications.

The focus of my thesis has been on sample size and analysis methods for ordinal outcomes. In this

chapter I have taken a side step from this and presented a very broad overview of all the methodology

available. I now describe some of the gaps in the methodology that I consider most striking or that I

can see would be of interest to the applied statistician. Statisticians with a more detailed knowledge

of specific areas for example time-to-event data or longitudinal designs may identify more specific

issues that I have not raised here.

For the standard parallel group trial methods are available across a range of outcome measures:

continuous, binary, count, ordinal, time-to-event and rates. In this thesis I have further developed

the design effect method for ordinal outcomes to provide guidance around its use. However, for

variations to this design and alternative design choices the methodology almost solely centres on

binary and continuous outcomes.

In the vast majority of methods homogeneity of the between-cluster correlation across treatment

groups is assumed and has rarely been challenged. It would be interesting to look further into this

to see how reasonable this assumption is in different situations.

Cluster randomised trials with longitudinal designs produced some of the most complex sample

size methods. This complexity makes it difficult to identify how they should be implemented and

understand the differences between them and the situations to which they can be applied. Further

work to consider a comparison of these methods and provide simple advice on their use is needed.

For outcomes which are not binary or continuous and designs other than the standard parallel-group

trial many of the sample size methods require estimates of additional parameters. For example

for time-to-event outcomes an ICC must be defined and estimated, when cluster size is variable a

coefficient of variation in cluster size is required, or when attrition is expected an estimate for the

probability that the outcome is missing and an ICC of the missing data mechanism are needed.

198



6.3. DISCUSSION

These parameters are not yet well established or routinely reported. Finding appropriate estimates

to use is therefore one of the biggest barriers to the practical application of these methods. There

is scope for much work to be done in this area. Summaries of these parameters from real life data

across a range of health areas are needed. More awareness amongst researchers and journal reviewers

about the need to report these estimates for the design of future trials would also be helpful.

This is the first comprehensive review of sample size methodology for cluster randomised trials. The

full details, including formulae for the methods identified in this review have been described in the

associated publication.60 Given that sample size methods appear to still be expanding. I plan to

publish future updates to this review. A strength of the results presented here are that the areas

where there is the biggest need for sample size development are immediately highlighted. A thorough

critique and comparison of the methods within each section was beyond the scope of this thesis but

may reveal some further areas that warrant development.

In this chapter I have highlighted several avenues for future exploration in sample size calculations

for cluster randomised trials. One of the most useful aspects of my research on ordinal outcomes was

my review of published clustered randomised trials (Chapter Three). This provided great insight into

whether there was a need to develop methods for ordinal outcomes and the characteristics of these

trials then guided the development of the sample size method, tailoring it to the needs of researchers

to make it more practical. Before embarking on the development of any of the methodological gaps

highlighted in this chapter I would strongly advise researchers to conduct similar reviews of CRTs to

inform their research so that we see more pragmatic methodology, which is actually needed, being

developed. My research into ordinal outcomes also raised several questions about situations which

are not uncommon such as the appropriate analysis method if the number of clusters is small, what

reasonable estimates of the ICC may be and what to do if non-proportional odds are suspected.

These issues will be discussed further in the final chapter but I think they highlight the fact that

there are still many questions of a very practical nature worth exploring before we move on to develop

more complex methods to deal with design variations.
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Discussion and conclusions

The focus of this thesis was to provide a unique contribution towards the review and development

of sample size methods for cluster randomised trials, with particular emphasis on ordinal outcomes.

The specific objectives are provided in Figure 7.1

Prior to my research none of the objectives of this thesis had been fully addressed in the literature.

Several reviews of sample size methodology for CRTs had been published but many of these were

not designed to provide a comprehensive overview of all the methods available and the most recent

of these was published in 2007. At the time of starting my research there was no proposed simple

method for sample size calculations for ordinal outcomes. During the course of the research use of

the design effect was proposed but there was little guidance around best practice for its use, including

which estimate of the ICC should be used and under which circumstances the method should be

used.

Although not in the context of sample size some research had proposed the same ICC estimators as

used in this thesis for ordinal outcomes and explored the relationship between them. However, this

work assumed a marginal model for both data generation and analysis and hence these results were

not directly comparable to the mixed effects context used in my research.

The focus of many of the published reviews of CRTs was the reporting or methodology quality of

the included trials. Mine was the first, which I am aware of, to explore the prevalence of ordinal
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1. Provide a comprehensive summary of sample size methods available for CRTs (Chapter
Two)

2. Identify the distinct processes that have been used to derive sample size methods for
CRTs (Chapter Two)

3. Develop sample size methodology with a particular focus on ordinal outcomes, achieved
via the following steps:

→ Identify the prevalence of sample size methods for ordinal outcomes (Chapter Two)
→ Determine the prevalence and design characteristics of CRTs with ordinal primary
outcomes (Chapter Three)
→ Summarise proposed estimators of the ICC for ordinal outcomes (Chapter Four)
→ Explore the relationship between ICC estimators via simulation (Chapter Five)
→ Determine which ICC provides empirical power closest to the nominal value when used
in the design effect for sample size calculation (Chapter Five)
→ Explore the effect on power under variations of the assumptions underlying use of the
design effect (Chapter Five)

4. Provide a comprehensive summary of the remaining gaps in sample size methodology for
CRTs (Chapter Six)

Figure 7.1: Research objectives of the thesis
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outcomes in cluster designs and summarise the design features common to these trials.

In this chapter I summarise the new knowledge around sample size calculation for cluster randomised

trials generated as a direct result of my research and describe its significance, strengths, and weak-

nesses. The main results of my research are translated into explicit practical guidance for those

wishing to conduct sample size calculations using ordinal outcomes. The chapter concludes with

a description of future research opportunities generated from this work, those specific to ordinal

outcomes and those of a broader nature.

7.1 Main findings

In this section I describe the main findings in relation to the thesis objectives described in Figure

7.1

7.1.1 Sample size methods available for CRTs

My systematic review of sample size methods for cluster randomised trials identified a large body

of literature, 85 papers. In the 2015 update to the review a further 28 papers were identified, which

shows that sample size methodology is still rapidly developing. The literature is dominated by

methods applicable to continuous or binary outcomes. Under the standard, parallel group design

some methods have been developed for alternative outcomes such as rates, time-to-event and ordinal

outcomes but methods available for these types of outcomes under variations or adaptations to the

standard design are considerably lacking.

The intracluster correlation coefficient is more frequently used as a measure of between-cluster corre-

lation than the coefficient of variation in outcome. This is most likely due to the wide availability of

ICC estimates and literature on the patterns in ICCs for different outcomes and cluster types. More

recently an alternative measure of correlation, R, has been proposed specifically for binary outcomes

that is not dependent upon the overall prevalence in the way the ICC is.163

As the complexity in the design increases the sample size methods often require estimates of further

parameters over and above the ICC and cluster size, for example additional measures of correlation
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are needed for the pre- post- design. The opportunity to use any of the sample size methods

identified depends upon the availability and quality of estimates for the required parameters. Many

of the sample size methods papers requested that authors report the required estimates with the

results of their trial. However, for this to happen more awareness by researchers of these sample

size methods and how to calculate the required parameters is needed. It is not clear how this

should be done. Recommendations in the CONSORT guidelines might at first seem the obvious

place to raise awareness. However, the aim of the CONSORT statement extension for CRTs is to

provide a minimum set of reporting requirements, these sample size parameters are additional to the

minimum requirements and often trial specific. To recommend reporting via CONSORT would be

inappropriate.

In 2015 a summary of methodology for sample size calculations in cluster randomised trials was

published by Gao et al.217 In comparison to my review this review focuses on a smaller range of

design situations but additionally includes worked examples of sample size calculations for each type

of outcome.

7.1.2 Approaches to sample size derivation

In the majority of papers the sample size method was derived from first principles (n=44, 52%).

Using this approach the treatment effect, with its corresponding variance, is defined alongside a

definition of the analysis method and an appropriate test statistic, from which a statement about

power or sample size can be generated. Other approaches to derivation included: calculating a ratio

of the variances of alternative treatment effect estimates; defining the optimal allocation of clusters

and cluster size, subject to optimality criteria such as a cost constraint; sample size by simulation;

Bayesian methods; or the adaptation of a pre-existing sample size method.

7.1.3 Sample size methods for ordinal outcomes

In my systematic review of sample size methods two methods were identified relevant to ordinal

outcomes.33,65 The method by Campbell and Walters proposed multiplication of the sample size

assuming individual randomisation by the design effect and was the focus of my research. My aim

was to determine which ICC estimator should be used and explore how this method performed
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under design characteristics common to ordinal outcome trials. These design characteristics were

identified from my review of 300 cluster randomised trials, of which 11 (4%) were found to have

ordinal primary outcomes. Nine (82%) of these outcomes had between 3 and 5 ordinal categories

and these outcomes most often measured an aspect of behaviour 9/11 (82%). The design of these

trials were most often parallel group 10 (91%), two-arm 6 (55%), completely randomised 8 (73%),

and used a cohort sample 9 (82%). Both the total number of clusters randomised and the number

of enrolled participants per arm tended to be small.

Three estimators for the ICC in the design effect were considered. The ICC of an underlying latent

continuous variable, the ANOVA ICC calculated by assigning numerical equally spaced values to the

ordinal categories and a weighted kappa-type ICC measuring chance-corrected agreement.

The results showed that when the number of clusters was large the ICC on the latent response was

largest, the ANOVA and kappa-type ICCs were smaller and almost identical. These observed patterns

were consistent across the 3-, 4- and 5-level outcome variables. For each scenario investigated as the

number of ordinal categories increased the estimated ANOVA and Kappa-type ICCs became closer

to the ICC on the latent response.

The use of the ANOVA ICC estimate in the design effect resulted in adequately powered trials, the

empirical power was never more than 2% below nominal power. Sample size was more conservative

when the proportions in each ordinal category were less evenly spread (see section 5.9.1). Power

was only marginally decreased under a minor deviation from the proportional odds assumption.

7.1.4 The future of sample size methods

In chapter Six I presented a summary of the 85 sample size methods for CRTs that were identified

in my original review and an additional 28 methods identified in an update to the review conducted

in 2015.

For variations to the standard parallel group design such as variability in cluster size, attrition, and

inclusion of baseline covariates or repeated measures there is much scope for further development

for outcomes which are not binary or continuous.
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The practical use of sample size methods rely on the ability to find suitable estimates of the required

parameters. Rather than developing new methods of sample size calculation provision of some real

life estimates required by these existing methods would go a long way to allowing researchers to

implement these methods.

In some papers a particular trial example provided the motivation behind the development of a

sample size method and hence a practical application was clear. Where no motivating example was

given it was difficult to see how or why these methods would be used, particularly when the method

or assumed analysis was computationally complex. Methodologists involved in the development of

these methods and statisticians involved in their implementation may wish to consider whether there

is a future in developing complex formulae that may be inaccessible to many researchers. Perhaps

sample size by simulation may be a better approach to cope with increasing complexity in design,

explore ranges of parameter estimates and most importantly reflect analysis methods for which

software is available.

7.2 Strengths

Limited guidance has been published around the methodological aspects of conducting and reporting

reviews of methodology. My review of sample size methods was implemented using robust methods

that aimed to mirror the approaches used in more conventional systematic reviews. These approaches

included developing and agreeing a protocol and validation of electronic search terms, data collection

and review coverage. This has provided a reliable comprehensive review of sample size methods that

future researchers can use to further develop sample size methods.

In this thesis I chose to extend the design effect approach to sample size calculation for ordinal

outcomes. The design effect is a familiar and simple approach to sample size calculation and the

underlying assumption of analysis via a proportional odds model is the most commonly used method

of analysing ordinal data. Contribution to enabling widespread use of the design effect approach will

likely have a larger impact in improving trial design than developing a new, but potentially more

complicated method.
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One of the greatest strengths of my work is its strong generalisability to real-life ordinal outcome

trials. The design of the simulation studies were informed by the characteristics of trials that have

used ordinal outcomes, identified from a review of 300 cluster randomised trials representative of all

areas of health research. This means the results and recommendations for sample size calculation

can immediately be applied to similar trials with a reasonable number of clusters. As there was

no data available to inform the estimates of ICC investigated in the simulations a wide range of

estimates were used to cover the majority of situations.

7.3 Limitations

Since I conducted the review of sample size methods for CRTs there has been 28 new methods

published. These new methods were described in Chapter Six. However, with such an increase in

sample size methodology over the last five years my review of sample size methods, published in

2015, will quickly be out of date and an update to the published paper will be required.

The prevalence of trials with ordinal primary outcomes was identified from a review of 300 clus-

ter randomised trial results published between 2000 and 2008. Eleven trials with ordinal primary

outcomes were identified. It would have been interesting to gain an understanding of whether inves-

tigators were actively avoiding using ordinal outcomes due to the lack of sample size methodology

available or whether alternative outcomes or methods of analysis were just clinically more relevant.

Some qualitative work interviewing or surveying investigators may have provided some insight here.

The characteristics of the eleven trials with ordinal primary outcomes informed the parameters

under which I evaluated the design effect methodology. A more up-to-date review, or one which

was more focused on areas commonly implementing ordinal outcomes, such as trials in stroke, may

have provided more data on which to base the simulation studies. However, this would have been a

substantial amount of work which was beyond the time frame of this research and the results would

have been less generalizable to all areas of health research.

Despite investigator willingness it was not possible to gain access to the data for any of the 11 trials

with ordinal outcomes. This lack of available data or summaries of ICCs for ordinal outcomes meant
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that a very broad range of possible ICCs were used in the simulation studies and they may not all

be applicable to real life trials.

No single method for generating clustered ordinal outcomes has been recommended. I investigated

several methods and considered alternative statistical software. This process took considerable time

and meant that there was less time for investigating a wider range of scenarios, such as variable

cluster sizes and methods for dealing with a small number of clusters, in the simulation study. It is

not known whether an alternative data generation method would affect the results.

7.4 Comparison to other work

In this research I extended the design effect approach for sample size calculations for ordinal outcomes

to include recommendations on how to calculate an appropriate estimate of the ICC. The calculations

involved in this approach are simple and easy to implement and the assumed analysis is a straight

forward extension of the proportional odds regression model commonly used for ordinal outcomes in

independent data. Kim et al have proposed a sample size method for correlated ordinal outcomes

in the longitudinal setting. Their approach assumes a GEE analysis and involves substantially more

calculations than the design effect approach, as the cluster size increases the calculation burden also

increases. Further work is needed to evaluate this method in the CRT context65

In 2012 Ruochu Gao published her thesis on the statistical analysis of correlated ordinal data in

cluster randomised trials. Her work was restricted to 3-level ordinal outcomes and community

intervention trials, where a small number of large clusters are expected.125 Although her work did

not propose methods for sample size determination she did consider the validity and power of different

analysis methods, the focus being on the non-parametric adjusted Cochran-Armitage test and small

sample adjustments to the Wald test from a GEE model with clustered ordinal data generated using

a marginal model.
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7.5 Implications

In this section I translate the results of my research into a series of recommendations for the design

of cluster randomised trials with ordinal outcomes. These recommendations are summarised at the

end in Figure 7.2.

7.5.1 Choosing the number of categories

When the investigator is in control of the number of categories to use in the ordinal outcome the

method by Whitehead has shown that sample size can be most dramatically reduced when increasing

the number of categories beyond two, but there is little to be gained in increasing the number of

categories beyond five.2 Depending upon the sample size an increased number of categories may also

lead to some categories containing very few observations which may impact the analysis. Whitehead’s

method is most efficient when the proportions are equally spread across all outcome categories and

least efficient when one category is dominant. These results are equally applicable to the clustered

design.

7.5.2 Estimating the ICC

For an ordinal outcome the design effect can be calculated using the ANOVA estimate of the ICC,

assuming equally spaced numerical scores assigned to the ordinal categories. The value of the ANOVA

ICC depends upon the number of categories and the proportions expected within each category. If

a weighted kappa-type estimate is used similar levels of power to the ANOVA will be achieved when

the number of clusters is large or the level of clustering is small. In the remaining situations the

kappa-type estimate is smaller than the ANOVA and hence will lead to reduced statistical power

if used in the design effect. Use of the ICC on the latent scale will always lead to a conservative

estimate of sample size compared to the ANOVA or kappa-type ICC, but less so as the number of

ordinal categories increases. The latent variable ICC is provided in the output from random effects

models fitted in Stata and hence estimates may be more available for this ICC than the ANOVA

and kappa-type ICC. Other approaches to assigning scores to the ordinal outcome should be used

with caution, the performance of the ANOVA ICC estimate in the design effect for these situations
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is not known.

If no estimates of the ICC are available researchers may consider getting an estimate by utilising

estimates or patterns seen for continuous or binary versions of similar outcomes and exploring the

sensitivity of the sample size estimate to a range of values. However, a conservative estimate may

result in an unnecessarily large trial. There have been no methods that have looked at formally

incorporating ICC uncertainty for ordinal outcomes into sample size calculations. Methods developed

for continuous outcomes may provide a starting point for some development in this area.116–118

Researchers could consider re-estimating the ICC value and sample size part way through the trial,

in an internal pilot. However, these methods are only really appropriate when a large number of

clusters are to be recruited over a long period of time.

7.5.3 Dealing with a small numbers of clusters

When the analysis is performed at the cluster level the addition of one cluster per arm has been

suggested to account for a small number of clusters. When an individual-level analysis is planned

it is sensible to also add one cluster per arm which will go some way to reduce the impact of any

clusters dropping out. However, when the number of clusters is small the Wald test of the treatment

effect from an individual-level analysis by random effects regression does not perform well. In

these situations the Type I error is inflated and therefore the possibility of finding a statistically

significant treatment effect when no such effect exists is increased. In Chapter Five I looked at

whether comparison to the t-distribution, rather than the Normal distribution, may improve the

type I error rate of the Wald test for small number of clusters. However, in many situations this

reduced the Type I error below 5%. I removed this issue from my simulations by only considering

scenarios with at least 40 clusters per arm where the Type I error rate was maintained at 5%.

Another approach to correct for the inflated Type I error rate with a small number of clusters

is to use an approximated Wald F test to test the treatment effect in a random effects model.

With this test there are several possibilities for estimating the denominator degrees of freedom

(DDF). Overestimation will lead to an increased Type I error rate and underestimation will lead

to a conservative test and loss of power. Numerous methods have been proposed to approximate
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the DDF, two of the most well-known are the Kenward-Roger and Satterthwaite methods.218,219

The Kenward and Roger method generates a more conservative test than the Satterthwaite method.

These corrections tend to perform best under a balanced design, alternative methods may be required

when cluster sizes vary and have been evaluated for binary and continuous outcomes.220,221 These

correction methods are now part of the Stata 14 update to the mixed command. I am not aware of

any work evaluating these methods for ordinal outcomes or considering the sample size implications

of their use. I would recommend using simulation methods to explore the sample size requirements

for ordinal outcomes employing these analysis corrections.

Although GEE models are not the focus of the thesis I consider their small sample adjustments

briefly here. The Wald test can be similarly applied in the GEE case i.e. the treatment effect di-

vided by its standard deviation and the result compared to a Normal distribution. There are two

possible estimates of the variance from the GEE model: the model based variance or the sandwich

(robust) estimator. The sandwich estimator is considered robust to miss-specification of the corre-

lation structure but is biased downwards when the number of clusters is small. Some bias-corrected

sandwich estimators have been proposed when there are a small number of clusters, such as those

by Kauermann and Carroll, Fay and Graubard, Mancl and DeRouen and Morel and Bokossa.222–225

These approaches have been evaluated via simulation for cluster randomised trials with binary out-

comes.226 The Kauermann and Carroll method works well with moderate variation in cluster size.

The authors also proposed a sample size formula for the minimum number of clusters required when

using the Kauermann and Carroll correction.

In her research on analysis methods for ordinal outcomes Gao explored the power and Type I error

via simulation of the adjusted Cochran-Armitage test and the GEE model with correction and

modification strategies applied to the Wald test and score test. Her recommendations were to use

the bias-corrected sandwich variance estimator of Mancl and DeRouen.125

Brennan Kahan and colleagues from the Pragmatic Clinical Trials Unit (PCTU) at Queen Mary

University of London have been doing some research into how big the issue of increased Type I error

is among cluster randomised trials. Of 100 randomly selected cluster randomised trials 65% were

identified as being at risk from increased Type I error. The majority of these performed an analysis
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at the individual level without an appropriate small-sample correction (work not yet published).

7.5.4 Choosing the analysis method

Due to the similarity between the logistic and normal distributions the design effect approach for

ordinal outcomes can be used when the analysis is via a proportional odds cumulative logit model

or ordered probit regression model. The choice between a random-effects model and marginal model

should not be crucial to inferential conclusions if the variance components are similar in the two

groups.130 Therefore I would expect the design effect to be applicable to a GEE analysis. This was

not tested in my simulations as it is currently not possible to fit a GEE model to ordinal outcomes in

Stata. It should also be remembered that the GEE analysis is only valid under the strong assumption

of Missing Completely At Random (MCAR). When choosing the analysis method one should also

consider the number of clusters to be randomised. If the number of clusters is small small-sample

correction methods will need to be applied and for ordinal outcomes there is no consensus over which

to use, as described in the previous section.

7.5.5 Dealing with non-proportional odds

In order to use Whitehead’s method of sample size calculation the proportions expected in each

ordinal category must be known. From these we can calculate the log odds ratios for dichotomisation

at each ordinal category and make an assessment of whether the assumption of proportional odds

are reasonable.

With the minor deviation from the proportional odds assumption explored in this research use of

the design effect to calculate sample size (with treatment effect estimated as the average log-odds)

followed by a random effects ordinal regression analysis with probit link resulted in a marginally

underpowered trial. Given the difficulty in systematically exploring all possible deviations from

proportionality here I would recommend that sample size requirements be confirmed via simulation

where non-proportional odds are present. Future reporting of trial results should contain the pro-

portions observed in each category across treatment groups and the associated log-odds ratios so

that these estimates may be used in future sample size calculations and the appropriateness of the

proportional odds assumption observed.
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When larger deviations from proportional odds occur the assumptions of the design effect approach

are not met and a simulation approach to sample size is required. However, the alternative analysis

methods required for non-proportional odds, and the software to implement them, have received

little attention for the clustered case. There are three alternative analyses to consider when the

proportional odds assumption is violated i) dichotomise the outcome and carry out a random effects

logistic regression ii) assume the outcome is nominal and conduct a multinomial regression or iii) fit

a model that allows for non-proportional or partial proportional odds. The first of these approaches

is appealing as sample size methods and analysis are well established, but the required sample size

is likely to be substantially larger than if the ordered nature of the data had been accounted for.

The second approach appeals due to the fact that multinomial random effects regression methods

are available in statistical software, but it is not clear whether this method would result in different

conclusions compared to a method that takes the ordinal nature of the data into account, as is the

case for unclustered data. The final approach is appealing as it maintains the ordinal nature of the

data while allowing for non-proportional odds or partial proportional odds and the effects of each

category can be seen within the same model. The partial proportional odds method described by

Hedeker and Mermelstein143 has been implemented in an extension to the MIXOR package available

in R for mixed effects ordinal regression.144

Some simulation methods for sample size are likely to be required when non-proportional odds is

expected. This requires some further research to recommend methods and associated software for

generating clustered ordinal data with non-proportional odds.

7.5.6 Incorporating baseline measurements

Many of the trials with ordinal primary outcomes identified used a cohort design with an analysis that

incorporated baseline measurements. The incorporation of baseline measurements would require an

estimate of an appropriately adjusted ICC value to use in the design effect. As ICCs are not routinely

available and there is likely to be considerable uncertainty around any ICC estimate I suggest that,

at present, baseline measurements are ignored for the purpose of sample size calculations using the

design effect for a conservative estimate.
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7.5.7 Dealing with cluster size variability

As with design effects used in other settings if there is a large amount of variability in cluster size , i.e.

a coefficient of variation greater than 0.23 use of the mean cluster size in the design effect will likely

underestimate the required sample size. A design effect which incorporates cluster size variability

has been proposed for binary and continuous outcomes but its use for ordinal outcomes has not

yet been evaluated.168 If variability in cluster size is expected I would suggest that a simulation

approach to sample size should be taken. If a small number of clusters are to be randomised then

small-sample adjustments to the analysis behave differently under variable cluster sizes and should

also be explored in the simulations.

7.6 Future work

In this section I describe the future work which has been generated from the work conducted in this

thesis.

7.6.1 Guidance on parameter estimation

A common thread throughout this thesis is that the proposed sample size formulae are only useful

if we have good estimates to use with them, finding reasonable estimates is the biggest practical

barrier to their use. The design effect for ordinal outcomes is no exception. Future work is needed

to explore patterns in ICCs for different types of outcomes and clusters to mirror the literature that

is available for binary and continuous outcomes.

When reporting the results of the trial it is imperative to the design of future trials that researchers

report the ICC value for the ordinal outcome alongside an explicit description of the method of

calculation and the proportions observed in each ordinal category for each treatment group.

7.6.2 Research impact

In Chapter Three I identified eleven trials that had an ordinal primary outcome. In only two of

these trials the analysis was performed on the ordinal version of the outcome, in others it was either
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1. Sample size method
Use Whitehead’s formula for individually randomised trials multiplied by the design effect,
1 + (n− 1)ρ

2. Number of categories
Whitehead’s method is most efficient when the proportions are equally spread across all
outcome categories. There is little gain in using more than 5 categories.

3. Estimating the ICC
ICC should be calculated using an ANOVA estimate, assuming equally spaced numerical
scores assigned to the ordinal categories

→ When the number of clusters is large a weighted kappa-type ICC estimate may alterna-
tively be used
→ Use of the ICC on the latent scale will lead to a conservative estimate of sample size, but
less so as the number of categories increases
→ Recommend at present that incorporation of baseline measurements are ignored for a
conservative sample size calculation

4. Clusters
Cluster size is assumed fixed

→ If cluster size variability, measured by the coefficient of variation, is greater than 0.23 I
recommend sample size by simulation instead of the design effect approach

5. Analysis
Assumed analysis is a random-effects ordered regression model assuming proportional odds
and missing data is missing at random. Performs well when the number of clusters is large,
around 40 per group

→ With minor deviations to proportional odds the design effect approach may still be
appropriate
→ With larger deviations to proportional odds alternative analyses are required and sample
size should be calculated by appropriate simulation
→ If the number of clusters is small there is a risk of an inflated Type I error. Small sample
correction methods are required and sample size via simulation is recommended

Figure 7.2: Recommendations and considerations for sample size calculation for cluster randomised trials
with ordinal outcomes
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dichotomised or treated as continuous. It is unclear whether ordinal outcomes are less frequently

used because the sample size and analysis methods are not as well understood as those for binary

and continuous outcomes or that treating the outcome as binary or continuous rather than ordinal

is actually more clinically relevant. The answer to this question was not addressed in this research.

However, if the reason is due to the former then I expect to see an increase in ordinal outcome trials

after the dissemination of the guidance contained within this chapter. Measuring the impact of my

research in this way is something I wish to consider in the future.

7.6.3 Comparison of sample size methods

With such a large number of sample size methods identified for cluster randomised trials in my review

it was often difficult to identify the specific methodological differences between similar methods and

the potential impact these may have on the resulting sample size. It was not easy to determine how

much was gained in sample size efficiency by using a complex approach over a simpler method, and

under which circumstances the gain is maximised. In particular, methods for time-to-event outcomes

or longitudinal designs were very complex. More work is needed to evaluate the performance of

competing approaches under various conditions to aid researchers in sample size decision making.

The need for this work was also recognised by Campbell.55

7.6.4 Reporting guidelines for methodology papers

In conducting this research I read many methodological papers describing proposed sample size

calculations for cluster randomised designs. Despite there being 113 papers describing sample size

methods only a handful of these are highly cited. The reason why some methods are not being used

could be down to the fact that no practical application has yet arisen, or the new methodology may

be considered to provide minimal benefit in light of the added complexity, or no reasonable estimates

can be found for the required parameters. I hypothesise that the way in which many methodologies

are currently reported has a large influence on their accessibility to a wide audience. I found the

reporting quality to be highly variable among the papers and the key assumptions and parameter

definitions underpinning each method were often difficult to locate or comprehend. An improvement

in the reporting quality may lead to increased identification and uptake of new methods.
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Within health research improvements in research reporting are being driven by the creation of

reporting guidelines such as CONSORT.49 Currently there are no guidelines that I am aware of

for the reporting of methodology papers in health research. In future research I intend to examine

more formally the quality of reporting of statistical methodology using the sample from this research

and identify the need for a reporting guideline to be developed. I wish to highlight potential items

for inclusion on any subsequent reporting checklist and provide examples of good reporting practices.

7.6.5 Extending sample size methods for ordinal outcomes

The development of statistical methodology in general commonly starts with continuous or binary

outcomes, as these are the most frequently used and simplest type of data. Extensions for alternative

outcomes and then clustered data follow later, if at all. This is certainly true for ordinal outcomes

with both sample size and analysis methods limited for clustered data. The use of the design effect

in the context of cluster randomised trials with ordinal outcomes assumes: proportional odds; a

reasonable number of clusters; fixed cluster size; and an ANOVA ICC assuming equally spaced

numerical values are assigned to each ordinal category. It is reasonable to say that more often than

not one of these assumptions may not be satisfied. In the future it would be useful to look at

the behaviour of the design effect under different violations of these assumptions and be able to

extend or develop new methods of sample size for these circumstances. In order to do this further

work is required to provide guidance around such aspects as: the analysis method to use under

non-proportional odds with or without variable clusters; which small-sample correction should be

applied in the analysis when the number of clusters is small; and which method should be used for

generating clustered ordinal data under which circumstances.

In addition to undertaking some of the above future research I intend to publish my work from this

thesis on ICC selection when using the design effect for sample size calculation with clustered ordinal

outcomes.
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7.7 Conclusions

A large amount of literature has been dedicated to sample size calculations for cluster randomised

trials. The early work concentrated on the standard parallel group trial with fixed cluster sizes and

binary or continuous outcomes. In recent years the literature has expanded to include alternative

designs and allowance for variations from the standard design such as variable cluster sizes. However,

binary and continuous outcomes still remain the assumption for the vast majority of sample size

methods. Trials with alternative types of outcomes, such as ordinal, are conducted and guidance is

needed in how to calculate their sample size.

In this thesis I focused on ordinal outcomes for which the proposed sample size approach is to

calculate the sample size under individual randomisation and multiply by the standard design effect,

which is a function of the cluster size and intracluster correlation coefficient.

At the start of this research the biggest practical barriers to implementation of this approach were

that there were no recommendations as to how the ICC should be calculated or under which circum-

stances the method performed adequately.

In this thesis I evaluated the empirical power of using three alternative ICC estimators in the design

effect under scenarios common to ordinal outcome trials. I demonstrated that the ANOVA ICC, by

assigning numerical equally spaced values to the ordinal categories, performs sufficiently.

In conclusion, I have provided practical guidance for the strategy to be adopted by researchers

calculating sample sizes for cluster randomised trials with ordinal outcomes which was not previously

available.
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1.1 Background

1.1.1 An introduction to cluster randomised trials

Well designed and conducted Randomised Controlled Trials (RCT’s) are seen as the gold standard

in research design for the evaluation of new interventions for improving participant outcomes. In

this research design we compare the outcomes of those participants who recieve the new intervention

with a control group who receive either standard treatment or a placebo. In order to be able to

reliably conclude the effect of the treatment the characteristics of these two groups of individuals

should be similar so that the only systematic difference between them is the treatment received.

This is acheieved by randomly allocating each individual to one of the treatment arms under study,

this helps to avoid potential selection bias where participants with certain characteristics, such as

severe disease, may end up more likley in one of the treatment arms [7].

There are some circumstances when it becomes necessary to randomise groups of individuals together,

as a unit, rather than individually [4]. This process is known as cluster or group randomisation. The

cluster may be large, such as a hospital or General Practice surgery, or may be smaller like a family.

When we conduct a cluster randomised trial we may sample an entire cluster such as all participants

registered at a General Practice, or take a subsample for inclusion into the trial. Throughout this

report, when we refer to cluster size, we are specifically refering to the sample of the cluster that is

to be included in the analysis, which may or may not be the entire cluster.

1.1.2 Sample size calculations in cluster randomised trials

In designing a randomised controlled trial we must determine the number of participants we need

to recruit in order to be able to make meaningful and precise conclusions about our treatment ef-

fect. This is done through the use of sample size or power calculations. Power calculations require

knowledge or decisions about the primary outcome measure, how the data will be analysed, the

Type I error to be tolerated , the amount of statistical power required, and an estimate of the ex-

pected treatment difference [7]. Randomisation by cluster presents additional complexity in both

APPENDIX i: Protocol for the Systematic review of sample size methodology

243



the design and analysis, compared to individually randomised trials and the sample size calculation

requires estimates of two more parameters, the cluster size and the intracluster correlation coefficient.

The response of individuals within a cluster are likely to be more similar than the responses of those

from different clusters i.e. the data within a cluster is correlated and the data between clusters is

assumed to be independent. The magnitude of this clustering is quantified by a parameter known

as the intracluster correlation coefficient (ICC), usually deoted by ρ. When ρ = 0 we have, in effect,

statistical independence between members of a cluster. When ρ = 1 the opposite is true and we have

total dependence among members of a cluster. An estimate of the ICC is required for the sample

size calculation. For a researcher this presents difficulties as historically ICCs have not always been

explicitly published with the reults of CRT’s. Where ICC’s are provided they are often acompanied

by wide confidence intervals, indicating a lack of precision. Further difficulties arise as to whether

an adjusted or unadjusted ICC has been reported, what if any the adjustments are, and whether

these adjustments are relevent to the reader.

The expected value of the ICC will vary with the choice of outcome measure and the type of unit

under study. The outcomes from small units such as a family are likely to be more correlated than

outcomes from larger units. It is important to note that each unit has an underlying ICC for a

particular outcome. If you increase the number you sample from each unit you will increase the

precision with which you can estimate the ICC but will not impact upon its underlying value.

The effect of clustering is that the information gained is less than an individually randomised trial

of the same size, making it a less efficient design [2]. It was proposed by Donner, Birkett and Buck

[3] that a sample size calculated assuming individual randomisation can be inflated by a Variance

Inflation Factor (VIF), or Design Effect (DE)to provide the sample size required under cluster ran-

domisation to reach the required level of statistical power. This design effect is given by

DE = 1 + (m− 1)ρ (1.1)
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where m is the number of individuals per cluster and ρ is the intracluster correlation coefficient.

1.1.3 Motivation for this review

Donner and Klar [4] describe several methodological reviews of cluster randomised trials. The con-

sensus of these reviews were that between-cluster variation was accounted for in the design of only

around 19% of the CRTs studied and was accounted for at the analysis stage by only 57%.

The authors speculate that the reason why many CRT designs do not include formal sample size

calculations may be due to

1. Inaccesability of formulas

2. Difficulties with estimation of the intracluster correlation, required for the calculation

3. CRTs enrolling large numbers of participants may give the misleading impression of extensive

statistical power

With the recent extension of the CONSORT statement to provide guidelines for the reporting of

cluster randomised trials [1] researchers are becoming more aware of cluster randomised trials and

the need to account for the clustering at both the design and analysis stages. The CONSORT ex-

tension also reccomends that researchers report the ICC for their outcomes. This development will

go some way towards enabling researchers to find appropriate ICC estimates for their sample size

calculations, and ensuring that the appropriate sample size methodology is implemented.

However we still need to tackle the issue of inaccesability of formulae. The widely used methodology

for sample size calculation in cluster randomised trials is to calculate the sample size under the

assumption of an individually randomised trial, with equivalent design features, and multiply this by

the design effect, equation 1.1. This standard methodology is described for trials where the analysis

may be a comparison of means, proportions, or incidence rates and the design may be completely

randomised, matched pair or stratified [4].
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This methodology assumes that the size of each cluster is the same, a condition which does not tend

to hold true for the majority of trial designs.

1.2 Objectives of the review

• To produce a thorough review of the exisiting state of knowledge of sample size calculations

for cluster randomised trials

• To identify gaps in the knowledge, particularly for ordinal, count and time-to-event data.

1.3 Search methodology

1.3.1 Inclusion/exclusion criteria

When searching for papers on sample size calculations in cluster randomised trials, from an exami-

nation of the literature, we are likely to encounter the following main types of paper:

1. Those which derive some or all methodological aspects of sample size formulae. This may be

done using either a Bayesian of frequentist approach.

2. Those which provide suggested adaptations and extensions to previously derived formulae.

3. Papers evaluating or comparing current methodology.

4. Papers which focus on the calculation/use of the intracluster correlation or coefficient of vari-

ation.

5. Papers with a broader focus that discuss design features in general for cluster randomised

trials.

6. Overviews or summaries of the current methodology in a particular area.

7. Papers with a general discussion on the effects of clustering upon sample size and power.

8. Papers describing application tools for implentation of the methodology.
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9. Protocols or design papers for specific cluster randomised trials, describing the sample size

calculation, as applied in the trial design.

10. Reports of results from cluster randomised trials.

To fulfil the objectives of this review we aim to collate articles of type 1-6, papers reporting spe-

cific trials are likely to be numerous and an examination of current practices is beyond the scope

of this review. The above list is not exhaustive, however it does show that the types of paper can

vary greatly making it necessary to take a broad approach to defining inclusion and exclusion criteria.

we have defined inclusion and exclusion criteria based on the following categories:

Data Type: Articles will be eligible for the review if the methods described can be applied to clus-

tered or correlated data, where the correlation of data is present in at least one of the comparison

groups, and hence could be applied to cluster randomised trials.

Content: We shall exclude papers reporting design or results of specific randomised trials, or those

which provide a very general discussion on the effects of clustering or correlated data.

Methodology: Articles will be eligible for the review if they discuss any aspect relating to the method-

ology of sample size or power. This includes those papers which may discuss or simulate only com-

ponents of the sample size.

Methodology may be described under a frequentist or Bayesian approach, both shall be included in

this review.

Language: Papers included in the review will be restricted to those written in English. To conduct

this search in other languages would not be feasible within our resources due to time and cost in-

volved in translation of manuscripts.

All articles retrived during the serach will be examined for eligibility using these criteria, as sum-

marised in table 1.1. The inclusion/exclusion criteria has been piloted on 20 search results in order
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Inclusion Exclusion
Data Clustered data Non-clustered
Content Methodological piece

or simulation study.
Bayesian or frequentist
approach.

Non-methodological. Descrip-
tion of a specific trial.

Methodology Aspect of sample size No sample size
Language English Non-English

Table 1.1: Inclusion/exclusion critera

to identify any need for revision.

1.3.2 Review sources

This review will be conducted using electronic searches, personal collections of articles on sample

size in CRT’s, key text books on cluster randomised trials, and discussions with experts in the field

of cluster randomised trials.

The electronic databases used in the search will be PubMed and Web of Science.

PubMed database:

The MEDLINE database is the largest component of the PubMed database. The subject scope of

searches conducted in the MEDLINE database is biomedicine and health articles dating from 1946

onwards. Articles in the MEDLINE database are indexed using Medical Subject Heading (MeSH)

terms. MeSH terms are used by indexers to provide a consistent way to index articles which may

use different terminology to describe the same concepts.

In addition to the MEDLINE database PubMed also contains additional references such as those

which are yet to be indexed with MeSH and citations that preceed the date that a journal was

selected for MEDLINE indexing.

The search terms for the electronic databases was guided by the personal collection of articles from

APPENDIX i: Protocol for the Systematic review of sample size methodology

248



Professor Sandra Eldridge. I examined the list of 41 papers available in the personal collection of

articles, appendix A.1. Thirty five of these were available via PubMed, and so, had associated MeSH

terms. One hundred and ninety nine MeSH terms were associated with these 35 papers. The most

frequent being “randomized controlled trials as Topic” (n=28), “cluster analysis” (n=20), “research

design” (n=16), and “sample size”(n=20).

Due to the wide variety of terminology we can expect to see in our target papers the use of MeSH

terms would be ideal. However it is clear that the use of MeSH terms alone would not be sufficient

to provide us with a comprehensive review of the literature. Therefore we will suppliment our search

with further search terms based on freetext.

The definition of the MeSH term “Cluster analysis” does not include reference to cluster randomised

trials 1. Instead it describes cluster analysis which is an unrelated method of analysis. However from

an examination of the search results retrieved with only this term it is clear that cluster randomised

trials have been indexed with this term. Therefore a search using the term “cluster analysis” alone

will retrieve some results irrelevant to this review. There is no alternative MeSH term for cluster

randomised trials.

Similarly a search on “randomized controlled trials as topic” will retrieve clinical trial reports, there

may also be instances where papers describe sample size calculations for clustered data which may

not be in the context of clinical trials, but could be applied to them. With these in mind I shall not

restrict the search using the MeSH term for randomised controlled trials or research design.

The MeSH terms I have therefore chosen to search on is the combination of “cluster analysis” and

“sample size”.

The freetext search will be conducted on the article title only. This is to improve the efficency of

1MeSH description of cluster analysis is “A set of statistical methods used to group variables or observations into
strongly inter-related subgroups. In epidemiology it may be used to analyse a closely grouped series of events or cases
of disease or other health related phenonomen with well-defined distribution patterns in relation to time or place or
both”
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our search by avoiding extraction of articles reporting results from clinical trials which are likely to

be identified when using a broader search strategy on title and abstract.

It is expected that the term “sample size” will be the term most frequently used in the title of

relevent articles. However the term “Design effect” is common in cluster randomised trials. The

term “power” is commonly used in discussion of sample size, however as this has a wide number of

meanings, we will retrict its search to those trials which additionaly mention clustering in some form.

The list below is a summary of the search terms for the PubMed database.

Search terms:

1. cluster analysis[MeSH] AND sample size[MeSH]

2. “sample size” [Title]

3. “design effect”[Title] OR “design effects”[Title] OR “variance inflation factor”[Title]

4. (design*[Title] OR plan*[Title] OR siz*[Title]) AND cluster*[Title] 2

5. power [title] AND cluster*[Title]

6. “intraclass correlation*”[Title] OR “interclass correlation*”[Title] OR “intracluster correla-

tion*”[Title] OR “coefficient of variation”[Title] OR “between cluster”[Title]

7. coefficient[Title] AND variation[Title]

8. (design[Title] OR matching[Title]) AND community[Title]

9. power[Title] AND correlated[Title]

10. number[Title] AND clusters[Title]

11. 1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10
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Monthly email notifications based on these search items will be set up within the database for the

duration of the project in order to keep informed of new developments.

Within PubMed the word “of” is a stopword and is ignored when searching for a phrase. Therefore

rather than search on the phrase “coefficient of variation” I have chosen to search on the seperate

components, as described in 7 above. Similarly with the phrase “number of clusters”.

Web of Science:

The Web of Science database contains seven citation databases. We will conduct this search using

the “Science citation index expanded database” only. This database contains articles accross 150

scientific disciplines from the year 1970.

The Web of Science does not index articles with MeSH so this search will not be performed. We

will conduct the search based upon a search of the artice titles using the free text search items as

described for the PubMed search.

Web of Science treats the word “of” as a placeholder when contained in the search for a phrase.

Therefore a search with the phrase “coefficient of variation” will retrieve all results where the two

terms are seperated by one word, such as “coefficient and variation” and “coefficient of variation”.

We shall use this search rather than the search on the two seperate components which was required

when searching Pubmed. The word “between” is similarly treated as a placeholder in Web of Science.

This means that a search on ”“between cluster” will retrieve any article with the word cluster in

the title. This retrieves a vast number of articles, with many irrelevant articles relating to disease

clusters and laborartory data. Therefore the search term “between cluster” will be excluded from

the Web of Science search.

The searches within Web of Science will additionally be refined by limiting the search to articles

2The “*” is used as a wildcard to search on all words that are formed from the truncated word entered. For example
siz* will find all words formed from siz such as “size” and “sizing”.
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only, thereby excluding conference proceedings and letters etc.

Monthly notifications based on these search items will be set up within the database for the duration

of the project in order to keep informed of new developments.

Text books:

There are currently four books on cluster randomised trials, from Donner and Klar [4], Murray [6],

Ukoumunne [8], and Hayes [5]. These will be reviewed, after the electronic search and data extrac-

tion is complete, for any methodology not already present in the review.

Expert opinion:

The following experts in the field will be approached to provide opinion on the final list of included

papers to determine their thoughts upon its coverage. This list of experts may evolve as we conduct

the review and identify other individuals making significant contributions to the field.

Obi Ukoumunne

Mike Campbell

Steven Tereenstra

G.J.P. van Breukelen

Allan Donner

1.3.3 Search strategy

The search strategy is summarised in figure 1.1.

The search terms will be implemented in the electronic databases.The title of each paper will be

examined for inclusion into the review following the inclusion/exclusion criteria described in table

1.1. If eligibility is unclear from the title, the abstract and then full text will be examined until
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eligibility is clear. Any papers where eligibility is still unclear after examination of the full text will

be discussed with Professor Sandra Eldridge and Dr Andrew Copas.

The full text will be extracted for all papers eligible for inclusion in the review.The references pro-

vided in each article will be examined for eligibility into the review following the process described

above.

We will conduct a search in both PubMed and Web of Science on the authors of each paper included

in the review and examine the results against the inclusion and exclusion criteria for potential in-

clusion into the review.

Any new eligible articles will be added to the review and the process of reference and author search-

ing will continue until it is demmed that we have reached sufficient saturation of new methodology

or concepts.

1.3.4 Validation of search methodology

We have attempted to validate the appropriateness of the proposed search strategy in two ways.

First the titles of the papers included in the personal collection were compared to our search terms

to see if the papers would have been identified from the proposed electronic search. In the majority

of cases it was found that the papers would have been identified. For those which were not identified

we examined the citations for these papers, in all cases these articles were cited by a paper that

would have been included in our review based upon the search terms. As we are searching references

of all included papers these papers would have been identified.

For our second validation technique we wanted to compare our search strategy with a “gold standard”

search. We conducted a search of the Statistics in Medicine journal as a “gold standard” search as

it was considered most likely to contain articles on methodology of sample size calculations. Using
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Figure 1.1: Flow diagram of literature search process
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PubMed all articles published in Statistics and Medicine from 1982 to March 2011 were retrieved.

Each article title was examined; any titles with reference to clustered data or cluster randomised

trials were exported. This search produced just less than 200 results. These results were then further

examined, on title alone, to reduce the list to those which would be eligible into the review or would

warrant further examination. These results were then compared to our proposed search terms to see

if they would have been identified. This highlighted the fact that there were a number of articles

about the intracluster correlation coefficient which were currently not included in our search terms.

This was added to the search terms for the review along with its alternative descriptions.

Many of the early articles made reference to community intervention trials rather than cluster ran-

domized trials, for which they are now more commonly known. The term community was added

to the search terms in combination with design or matching to pick up these articles. “Number of

clusters” was also a common phrase used to describe sample size and so was added to the search terms.

1.4 Data management

A database will be created in Microsoft Access 2010 to store and organise the details of all of the

references located as part of the systematic review.

The database contains a data entry form to allow the user to enter additional information, navigate

through the database and categorise the papers for inclusion into the review or for further follow

up or discussion. The variable names, description and entry values can be found in appendix B.1

alongside a screen print of the data entry form.

Naming conventions when exporting the results from the two electronic databases, PubMed and

Web of Science need to be standardised to ensure compatibility with each other and the Access

database. To do this the located references will first be extracted to Excel, where variable names

can be changed to those used in the Access database. The Excel files can then be directly imported

in a batch to the Access database, where each imported result will be given a unique numeric ID
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auto generated in the database.

Within web of science the following variables for each paper can be extracted in separate fields in

a format suitable for importing into Excel: title, authors, journal, publication year, volume, issue,

start page, end page, publication year, and abstract.

PubMed does not provide an easy method with which to export the search results in a format com-

patible with Excel. However they can be imported to Excel using a tool called FLink (Frequency-

weighted Links) provided by the National Center for Biotechnology information.

This tool exports the following variables for each paper into separate columns: PubMed ID; Authors,

Year of publication; month of publication; title; and a summary of all this information in one column.

Duplicates, based upon year and title of publication within the Access database will be located and

removed using the “find duplicates” query in Access. Preference for inclusion will be given to the

more detailed Web of Science entries.

For each record the user will navigate through the database, categorising the papers for inclusion or

exclusion into the review. The reason for exclusion at each stage will be recorded by the user from a

list of options which have been proposed based upon a test sample of 20 search results. Where the

list does not provide an adequate description the user may add a reason using free text.

The information missing from PubMed produced results, in particular the abstract, will only be

added to the database if the paper is eligible for the review or where abstract information is required

to aid determination of eligibility.

Once all original papers have been categorised the full text will be located for all eligible papers.

These will be stored in both hardcopy and electronic format, this may involve scanning of papers

currently not available in electronic format. paper copies will be stored in alphabetical order based

upon the surname of the first author.
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Further searches on the reference lists of each paper will be conducted by hand. As these refer-

ence lists are not always available electronically only those deemed eligible will be entered into the

database.

Further searches on the first author surname with first initial, will be conducted in both PubMed

and Web of Science and these results will be entered into the database following the methodology of

the original search.

This process will continue for new papers found until either no more additional papers are located

or it is deemed that further searching will not significantly improve the methodological coverage of

the review.

The process of data extraction to the Access database and data entry has been tested prior to the

start of the review.

1.5 Data extraction

A data extraction template will be devloped and piloted on 5 papers eligible for inclusion into the

review. The test papers were selected in order to test the extraction template on different types and

styles of article. This highlighted the need for some variation in the extraction template for different

styles of articles. All extraction templates can be found in Appendix C.

The data extraction will be mainly qualitative. The completed data extraction form will be stored

both electronically and in hard copy format with each article and will be linked to the datbase entry

through the inclusion of the database generated identification number.

The data extraction process will be validated by a double data extraction for 10 randomly selected

articles. Five will be extracted by Professor Eldridge and five by Dr Copas. A discussion will take
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place to agree any differences in interpretation.

During the data extraction process any articles with ambiguity will be discussed with SA and AC.

1.6 Synthesis of results

The results of the search strategy will be summarised in a flow diagram as in figure 1.2.

The results of the search will be provided in a narrative form. The discussion will be similarly

structured to the systematic review of organisation-based interventions in health care conducted by

OC Ukoumunne [8]. Each trial design will be discussed in turn (with equal and unequal allocation

ratio handled in turn), and within each design the methodological aspects for different outcome types

will be summarised. Proposed summary tables of the information are provided in appendix E.

• completly randomised design

– Continuous data

Analysis methods, measures of correlation, measures of cluster size

– Binary data

Analysis methods, measures of correlation, measures of cluster size

– Ordinal data

Analysis methods, measures of correlation, measures of cluster size

– Time-to-event data

Analysis methods, measures of correlation, measures of cluster size

– Count data

Analysis methods, measures of correlation, measures of cluster size

• matched-pairs design . . .

• stratfied design . . .

• Other designs (e.g. crossover, factorial) . . .
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Figure 1.2: Flow diagram of literature search results
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Database field Data type Description Field values
id Text Unique numeric identifier for paper
authors Text List of authors
year Number Year of publication
title Text Title of paper
journal Text Name of journal
volume Number Volume
issue Number Issue
bp Number Beginning page
ep Number End page
abstract Text Abstract
exc title Text Exclusion from review based on title Yes/No
exc tit reason Text Reason for exclusion based on title irrelevent subject/methodological area,

not clustered data, not related to sam-
ple size, analysis method, too general,
other

exc tit reason other Text Reason for exclusion based on title, other
exc abs Text Exclusion from review based on abstract Yes/No
exc abs reason Text Reason for exclusion based on abstract irrelevent subject/methodological area,

not clustered data, not related to sam-
ple size, analysis method, too general,
other

exc abs reason other Text Reason for exclusion based on abstract, other
exc ft Text Exclusion from review based on full text Yes/No
exc ft reason Text Reason for exclusion based on full text irrelevent subject/methodological area,

not clustered data, not related to sam-
ple size, analysis method, too general,
other

exc ft reason other Text Reason for exclusion based on full text, other
source Text Search source of paper electronic database, reference search,

author search, book, other
source other Text other source
review Text meets inclusion into the review
comment Text Comments field

Table 1.2: Data base description
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Figure 1.3: Screen print of database
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Appendix D: Data extraction forms
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1.1 Paper details:

database ID:

Paper type: Derivation or adaptation to formulae

First Author Surname:

Year of Publication:

Journal name:

Full title:

1.2 Trial design components:

Id number for trial design:

Outcome type:

Number of groups:

Trial design:

Matching:

Allocation ratio:

Cluster size:

1.3 Formulae described:

1. Id number for trial design: 1

(a) Reference number of the relevent formula in paper or link to previously ex-

tracted formula by database id: id number for method:

(b) Re-produce formula below:

(c) List any relevent references provided for this formula:
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2. Id for trial design: 2

(a) Reference number of the relevent formula in paper or link to previously ex-

tracted formula by database id: id number for method:

(b) Re-produce formula below:

(c) Define components of formula:

(d) List any relevent references provided for this formula:

1.4 Correlation measure:

1. Id for trial design: 1

(a) Name of the term used to estimate correlation:

(b) Reference number of the relevent formula in paper:

(c) Re-produce formula below or name the method used:

(d) Define components of formula:

(e) List any relevent references provided for this formula:

2. Id for trial design: 2
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(a) Name of the term used to estimate correlation:

(b) Reference number of the relevent formula in paper:

(c) Re-produce formula below or name the method used:

(d) Define components of formula:

(e) List any relevent references provided for this formula:

1.5 Analysis method:

1. Id for trial design: 1

(a) Hypothesis to be tested:

(b) Name of the method assumed for analysis:

(c) List any relevent references provided for this method:

2. Id for trial design: 2

(a) Hypothesis to be tested:

(b) Name of the method assumed for analysis:
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(c) List any relevent references provided for this method:

1.6 Assumptions:

1. Id for trial design: 1

(a) State assumptions of the sample size methodology:

2. Id for trial design: 2

(a) State assumptions of the sample size methodology:

1.7 Strengths/weaknesses:

Describe any simulation study of the formulae provided:

Is an example of formula use provided:

1. Id for trial design: 1

(a) Provide the strengths as stated by the author: none provided

(b) Provide the weaknesses as stated by the author: none provided

2. Id for trial design: 2
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(a) Provide the strengths as stated by the author: none provided

(b) Provide the weaknesses as stated by the author: none provided

1.8 Extensions:

1. Id for extension: 1

(a) Id for trial design:

(b) Describe the extension provided:

(c) Reference number of its relevent formula in paper:

(d) Re-produce formula below:

(e) Define components of formula:

(f) List any relevent references provided for this extension:

(g) Provide the strengths of the extension as stated by the author:

(h) Provide the weaknesses of the extension as stated by the author:

2. Id for extension: 2
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(a) Id for trial design:

(b) Describe the extension provided:

(c) Reference number of its relevent formula in paper:

(d) Re-produce formula below:

(e) Define components of formula:

(f) List any relevent references provided for this extension:

(g) Provide the strengths of the extension as stated by the author:

(h) Provide the weaknesses of the extension as stated by the author:
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1.1 Paper details:

Database ID:

Type of paper: Assessment of current methodology

First Author Surname:

Year of Publication:

Journal name:

Full title:

1.2 Methods to be assessed:

1. Id number for method:

(a) Reference number of the relevent formula in paper:

(b) Re-produce or describe formula below:

(c) State assumptions of the methodology:

(d) Define components of formula:

(e) List any relevent references provided for this formula:

2. Id number for method:

(a) Reference number of the relevent formula in paper:
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(b) Re-produce or describe formula below:

(c) State assumptions of the methodology:

(d) Define components of formula:

(e) List any relevent references provided for this formula:

1.3 Simulated data:

1. Id for simulation:

(a) Objective of the simulation:

(b) Model used to simulate the data:

(c) simulation method: Monte Carlo simulations

(d) Range of variables used in the simulations:

(e) Procedure:

(f) Results:

2. Id for simulation:
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(a) Objective of the simulation:

(b) Model used to simulate the data:

(c) simulation method:

(d) Range of variables adjusted in the simulations:

(e) Procedure:

(f) Results:

1.4 Conclusions and Recommendations:

1. Provide the recommendations as stated by the author:

1.5 Strengths/weaknesses:

1. Provide the strengths as stated by the author:

2. Provide the weaknesses as stated by the author:

1.6 Extensions:

1. Id for extension:
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(a) Describe the extension provided:

(b) Reference number of its relevent formula in paper:

(c) Re-produce formula below:

(d) Define components of formula:

(e) List any relevent references provided for this extension:

(f) Provide the strengths of the extension as stated by the author:

(g) Provide the weaknesses of the extension as stated by the author:
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Appendix E: Proposed tables

APPENDIX i: Protocol for the Systematic review of sample size methodology

288



Data Type: Analysis Methods: Corresponding
database ID:

Continuous
Binary
Ordinal
Time-to-event
Count

Table 1.3: Completely randomised design, equal allocation: Description of analysis methods
assumed in sample size calculations

Data Type: Measure of correlation: Corresponding
database ID:

Continuous
Binary
Ordinal
Time-to-event
Count

Table 1.4: Completely randomised design, equal allocation: Description of measures of cor-
relation used in sample size calculations

Data Type: Measure of cluster size: Corresponding
database ID:

Continuous
Binary
Ordinal
Time-to-event
Count

Table 1.5: Completely randomised design, equal allocation: Description of measures of cluster
size used in sample size calculations
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Reporting of sample size calculations in cluster randomised trials. 

Data Abstraction form 

   

Note: Items previously abstracted will be automatically uploaded to the abstraction 

Access database.   

 

1. Study ID (this is the Medline UID number – also the pdf file name)  

2. Reviewer name  

3. Publication year  

4. Journal name  
 

Study Design 

 

Note: For items colored in black the data have been collected previously and will not be 

re-abstracted, although in some cases described below data may need to be updated.  

These items will be automatically uploaded to the abstraction Access database.  They are 

included here to ensure consistency in abstraction of other data, for example when 

talking about the primary outcome, and also included for completeness of information 

regarding sample size reporting. 

 

5. Were primary outcome measure(s) identified by authors? (Authors clearly distinguished 

between main (or primary) and secondary outcomes measures?) (Note: Not acceptable if authors 

merely stated primary objectives without operationalizing in terms of specific variables.) 

1 Yes (specify number)  

2 No 
 

6. For quality control purposes, state the single primary outcome identified during the 

initial review.  NOTE: when multiple outcomes are specified by authors, the main 

outcome will be the first outcome stated in the abstract or the analysis. 
 

 

 

7. If a sample size calculation is not presented for the outcome described in Q6, state the 

single outcome that the sample size calculation has been performed for and data 

abstraction will be based on.  (Note: if more than one outcome possible, choose the first outcome 

described.) 

 

 

  Same as 

above 
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8. Trial design at cluster-level: 

1 Parallel trial (clusters independently randomized to different treatments with or 

without pre-test) 

2 Factorial trial (specify factors and levels) (e.g., 2x2)  

3 Cross-over trial 

4 Other (specify) (e.g., latin squares, split-plot, stepped wedge)  

 

9. Method of random allocation: 

1 Completely randomized design (unrestricted randomization) 

2 Stratified design  

3 Pair-matched design 

4 Other (specify) (e.g., minimization algorithm)  

 

10. Trial design at patient-level (primary outcome): 

1 Nested cross-sectional design (each patient measured only once or different 

patients measured each time point) 

2 Nested cohort design (same patients measured at different time points or in 

continuous surveillance) (NOTE: Patient-level attrition is possible in a cohort design but 

NOT in a cross-sectional design) 

3 Primary outcome evaluated on both cross-sectional and cohort 

components 

 

11. Number of study arms (we need to know if there were multiple intervention or control arms so 

that patient numbers can be divided up appropriately when assessing imbalances): 

a) Intervention arms  

b) Control arms  

 

 

Sample size 

 

Note: The data collected in this section should be based upon the sample size outcome as 

defined in Q7.  Where this is different from Q6 please update previously abstracted data 

i.e. Q12 for this section. 

 

APPENDIX iii: Data abstraction form for review of 300 cluster randomised trials

298



 
 

12. Sample size / power calculations presented? 

1 Not presented or presented for substudy or outcome regarded as 

secondary only 

2 Patient-level accounting for ICC (“Sample size was based on a 

significant effect size of 0.5, incorporated an ICC of 0.05 and was based on 

enrollment of 4 patients per physician”; “Based on a mean (SD) number of 

admission days per resident enrolled, within cluster variance of 2 days and 

between-cluster variance of 3 days and 10 residents per nursing home”. 

Usually will involve stating at least the average cluster size and the ICC/ 

design effect/ overdispersion factor/within-and between-cluster variance or 

stated that accounting for clustering without reporting value of ICC.) 

3 Cluster-level (Should be clear that cluster-level summary data are used for 

calculation e.g., “sample size was based on the hospital as the unit of 

analysis…assuming a rate of episiotomy of 42% at baseline, with a standard 

deviation of 15%, we need 18 hospitals to identify a decrease in episiotomy 

rate.” Use of standard deviation in the case of proportions indicates that binary 

data was summarized at cluster-level and treated as continuous data for the 

purpose of sample size calculation.) 

4 Patient-level without accounting for ICC (usually difficult to tell 

whether at patient- or cluster-level unless specifically stated) 

5 Unclear whether at patient- or cluster-level or whether accounted 

for clustering (e.g., “sample size was calculated to give a power of 80% of 

detecting a difference of 1 SD at 5% significance in mean diagnosis 

concordance score”; “sample size of 500 participants would result in 80% 

power to detect a difference of 10 points between groups”) 

6 Other (specify) (e.g., based on intermediate level of clustering)  

 

 

Note:Questions 13-29 are not applicable for papers which do not report a sample size 

calculation. Not applicable will be automatically generated in the database for all the 

relevant papers, based upon the answer to question 12. Those where question 12 is 

updated will be updated manually 

 

13.  Describe the method or citation of sample size calculation that has been used (for 

example: Hsieh, Donner and Klar, Hayes and Bennett, standard two-sample t-test adjusted for 

clustering): 

 

 

 

14. What type of data has been assumed for the sample size calculation? (Note: this question 

aims to address any occasions where ordinal or count data may have analyzed as a dichotomous or 

continuous variable for simplicity.) 

1 Binary (two categories) 

2 Categorical  

(more than two categories, but no natural ordering to the categories) 

 

3 Ordinal (more than two ordered categories) 

APPENDIX iii: Data abstraction form for review of 300 cluster randomised trials

299



 
 

4 Continuous (normal or non-normal)  

5 Count data  

6 Time to event data  

7 Unclear  

8 Other  

9 Not applicable  

 

 

15. What is the type I error rate that has been assumed for the sample size calculation? 

1 5% 

2 1%  

3 Unclear or not stated  

4 Other  

5 Not applicable  

 

 

16. What is the power (1 minus the Type II error rate) that has been assumed for the 

sample size calculation? (Note: record "at least 80%" as 80%). 

1 80% 

2 90%  

3 Unclear or not stated  

4 Other  

5 Not applicable  

 

 

17. Does the sample size calculation assume a one or two-sided test? 

1 1-sided 

2 2-sided  

3 Unclear or not stated  

4 Other  

5 Not applicable  

 

 

18. How is correlation within clusters described in the sample size calculation? 

1 Intracluster correlation 

2 Coefficient of variation  

3 Unclear or not stated  

4 Other (for example between and within cluster variance)  

5 Not applicable (i.e. sample size does not account for clustering 

or sample size calculation is at cluster level) 
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19. State the value of the assumed correlation 

 

 

  Not provided/Not Applicable 

 

20. Does the sample size account for attrition (either of clusters or individuals)? NOTE: 

if not stated then assume “no”. 

1 Yes 

2 No  

3 Unclear   

4 Other  

5 Not applicable  

 

 

21. Does the sample size account for cluster size imbalance? NOTE: if not stated (even if 

the calculation was at cluster level) then assume “no”. 

 

1 Yes 

2 No  

3 Unclear   

4 Other  

5 Not applicable  

 

 

22. Justification for the ICC or other correlation measure assumed in the sample size 

calculation: 

1 No justification  

2 Results from a previous trial   

3 A preliminary/pilot study  

4 Observational data  

5 Results from a systematic review  

6 Baseline data  

7 Other (please explain)  

8 Not Applicable  

 

23. Justification for the control group effect (e.g., proportion, mean or standard deviation) 

assumed in the sample size calculation: 

1 No justification  

2 Results from a previous trial   

3 A preliminary/pilot study  

4 Observational data  
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5 Results from a systematic review  

6 Baseline data  

7 Other (please explain)  

8 Not applicable  

 

24. Justification for the treatment group effect (e.g., proportion, mean or standard 

deviation) assumed in the sample size calculation: Where multiple treatment groups, quote 

the values for the treatment group which produced/drove the sample size requirement.   

1 No justification  

2 Analogy to another trial or treatment  

3 Clinical relevance  

4 Observational data  

5 Results from a systematic review  

6 Other (please explain)  

7 Not applicable  

 

 

25. State the target total number of clusters required for the analysis. (Note: this is before 

adjustments for attrition.) 

 

 

  Not provided/unclear 

 

26. State the target total number of individuals. (Note: this may need to be calculated: e.g., 

number of clusters multiplied by average cluster size.) 

 

 

  Not provided 

/unclear 

  NA (e.g., sample 

size calculation is 

at cluster level) 

 

27. Assumed effect in the control arm: (Note: for dichotomous and time-to-event outcomes, 

provide the rate of events; for continuous outcomes, provide the mean and standard deviation.)  
 

Proportion 

 

 

  Not provided/unclear 

 

Mean         Standard deviation 
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28. Assumed effect in the treatment arm: (Note: for dichotomous and time-to-event outcomes, 

provide the rate of events; for continuous outcomes, provide the mean and standard deviation. Where 

multiple treatment groups, quote the values for the treatment group which produced/drove the sample 

size requirement.  With papers that do not provide a SD for the treatment arm, we will assume a 

common standard deviation)  
 

Proportion 

 

 

  Not 

provided/unclear 

 

Mean         Standard deviation (if SD not stated, enter the same value as for the 

control arm) 

 

 

   

 

Note: Q29 is only to be completed if Q27 and Q28 are incomplete and only a 

standardized effect size has been provided. 

 

29. State the standardized effect size if provided (e.g.,  the difference in means divided by 

the standard deviation, Relative Risk, or Odds Ratio): 

 

Effect size 

 

 

  Not provided/Not 

applicable 

 

Specify the type of effect (e.g., difference in means, Relative Risk, Odds Ratio) 

 

 

 

 

 

Analysis 

 

Note: The data collected in this section should be based upon the sample size outcome as 

defined in Q7.  Where this is different from Q6 please update previously extracted data 

i.e. Q32 and Q40 for this section. 

 

30. State the total number of clusters used in the analysis of the sample size outcome. 

(Note: try to limit the use of the “unclear” option.) 

 

 

  Not 

provided/unclear 
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31. State the total number of individuals used in the analysis of the sample size outcome. 
(Note: try to limit the use of the “unclear” option.) 

 

 

  Not 

provided/unclear 

 

 

32. Analysis for sample size outcome: (NOTE: primary and sample size outcome will be the same 

if 6 and 7 are the same) 

1 At patient-level accounting for ICC (e.g., using mixed-effects 

logistic regression, GEE taking account of clustering by physician, Chi-

square statistic adjusted for clustering, random effect for physician, 

hierarchical modeling, multi-level modeling, alternating logistic 

regression) 

2 At cluster-level (clearly stated that analysis at cluster-level, e.g., 

“analyses performed using patient-level variables aggregated at the 

provider-level”, analysis was based on hospital rates, t-test weighted by 

inverse variance etc.) 

3 At patient-level not accounting for ICC (more difficult to 

distinguish, e.g., multivariable regression analysis of patient-level data 

with no mention of clustering, or standard 2-sample test on patient-

level data without mention clustering or stated that since ICCs were 

low, clustering was ignored in presentation of results)  

4 Unclear whether at patient-level or cluster-level or whether 

accounted for clustering  

5 Other (specify) (e.g., based on intermediate level of clustering, both 

individual-level and cluster-level analyses used for primary outcome 

analysis) 

 

 

33. Describe the analysis method or citation (e.g. adjusted two-sample test, permutation 

test, GEE, hierarchical model): 
 

 

 

 

34. What type of data is the raw sample size outcome at the level (cluster or individual) 

corresponding to the analysis? (Note: this is a description of the data as it was measured, 

regardless of how it may have been treated at sample size or analysis stages.)  

1 Binary (two categories) 

2 Categorical 

 (more than two categories, but no natural ordering to the categories) 

3 Ordinal (more than two and  <7 ordered categories) 

4 Continuous, normal or non-normal  

5 Count data  
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6 Time to event data  

7 Unclear  

8 Other (specify)  

 

 

35. How has the data for the sample size outcome been used for the analysis? 

1 Binary (two categories) 

2 Categorical  

(more than two categories, but no natural ordering to the categories) 

3 Ordinal (more than two ordered categories) 

4 Continuous, normal or non-normal  

5 Count data  

6 Time to event data  

7 Unclear  

8 Other (specify)  

 

36. State the value of the observed intracluster correlation for the sample size outcome 

(or tick if not provided) 

 

 

  Not 

provided 

 
 

37. Observed effect in the control arm: (Note: for dichotomous and time-to-event outcomes, 

provide the rate of events; for continuous outcomes, provide the mean and standard deviation. Where 

multiple time-points are given use the time-point corresponding to the sample size calculation; if not 

provided use the final time-point.) 
Proportion 

 

 

  Not 

provided 

 

Mean             Standard deviation 

 

 

   

 

 

38. Observed effect in the treatment arm: (Note: for dichotomous and time-to-event outcomes, 

provide the rate of events; for continuous outcomes, provide the mean and standard deviation. Where 

multiple treatment groups, please quote the values for the treatment group which produced the sample 

size requirement, or the treatment group producing the largest difference).  
 

Proportion 

   Not provided 
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Mean        Standard deviation 

 

 

   

 

 

 

 

 

 

 

Note: Q39 is only to be completed if Q37 and Q38 are incomplete and only a 

standardized effect size has been provided. 

 

39. State the unadjusted effect size if provided (e.g.,  the standardized difference in 

means, Relative Risk, or Odds Ratio): 

Effect size 

 

 

  Not provided/Not 

applicable 

 

Specify the type of effect (e.g., standardized difference in means, Relative Risk, 

Odds Ratio) 

 

 

 
 

40. Is the sample size outcome reported as statistically significant?  

1 Yes 

2 No 

 

41. Do authors reference a separate publication which may provide further details on 

items required in this data abstraction form?  (Note: If yes, please refer to the separate 

publication to complete this abstraction form.) 
1 

Yes 
2 

No 

 

 

Comments: 
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log using "de_simulations.log",replace 

*program drop s_cluster_ologit 

program define s_cluster_ologit,rclass 

syntax, CLUSTERSPERGRP(integer) SIGMAV(real) CSIZE(integer)   

drop _all 

clear 

 

set obs `=2*`clusterspergrp'' 

gen group=mod(_n,2) 

 

gen b2=-0.52*sqrt(1+`sigmav') 

 

 

*cluster level errors are normally distributed N(0,sigma^2 v) 

gen ybar=rnormal(b2*group,sqrt(`sigmav')) 

 

gen clusterid=_n 

expand `csize' 

gen outcome=rnormal(ybar,1) 

gen outcome_normal=(outcome)/(sqrt(1+`sigmav')) 

 

gen ordinal=1 if outcome_normal<=-.84162123 
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replace ordinal=2 if outcome_normal<=.52440051 & ordinal==. 

replace ordinal=3 if outcome_normal<=1.2815516 & ordinal==. 

replace ordinal=4 if outcome_normal>1.2815516 & ordinal==. 

 

tab ordinal group,col matcell(freqs) 

 

return scalar cat1_group0=(freqs[1,1]/(`clusterspergrp'*`csize'))*100 

return scalar cat2_group0=(freqs[2,1]/(`clusterspergrp'*`csize'))*100 

return scalar cat3_group0=(freqs[3,1]/(`clusterspergrp'*`csize'))*100 

return scalar cat4_group0=(freqs[4,1]/(`clusterspergrp'*`csize'))*100 

 

return scalar cat1_group1=(freqs[1,2]/(`clusterspergrp'*`csize'))*100 

return scalar cat2_group1=(freqs[2,2]/(`clusterspergrp'*`csize'))*100 

return scalar cat3_group1=(freqs[3,2]/(`clusterspergrp'*`csize'))*100 

return scalar cat4_group1=(freqs[4,2]/(`clusterspergrp'*`csize'))*100 

 

 

xtset clusterid 

capture noisily { 

     xtoprobit ordinal group 

      return scalar p=2*normal(-abs(_b[group]/_se[group])) 

    return scalar p_t=2*t(2*`clusterspergrp'-2,-abs(_b[group]/_se[group])) 
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   matrix b=e(b) 

  return scalar coef=round(b[1,1],0.001) 

  return scalar cor_icc_ord=e(sigma_u)^2/(e(sigma_u)^2+(1)) 

    

**Alternative ICC estimates 

 

*anova-assuming scale assigned to ordinal outcome with equal distance 

loneway ordinal clusterid 

oneway ordinal clusterid 

*calculate the ICC myself as Stata automatically truncates at 0 

return scalar icc_ordinal_anova=((r(mss)/r(df_m))-

(r(rss)/r(df_r)))/((r(mss)/r(df_m))+(`csize'-1)*(r(rss)/r(df_r))) 

 

} 

 

end 

 

clear 

 

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow1) reps(1001) seed(421892): s_cluster_ologit,clusterspergrp(20) 

sigmav(0.01) csize(5)  
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simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow2) reps(1001) seed(136787): s_cluster_ologit,clusterspergrp(25) 

sigmav(0.09) csize(5)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow3) reps(1000) seed(0034525): s_cluster_ologit,clusterspergrp(30) 

sigmav(0.19) csize(5)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow4) reps(1000) seed(422101): s_cluster_ologit,clusterspergrp(35) 

sigmav(0.33) csize(5)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow5) reps(1000) seed(5359235): s_cluster_ologit,clusterspergrp(54) 

sigmav(1.13) csize(5)  

 

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow6) reps(1002) seed(32124): s_cluster_ologit,clusterspergrp(11) sigmav(0.01) 

csize(10)  
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simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow7) reps(1000) seed(689987): s_cluster_ologit,clusterspergrp(16) 

sigmav(0.09) csize(10)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow8) reps(1000) seed(123434): s_cluster_ologit,clusterspergrp(22) 

sigmav(0.19) csize(10)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow9) reps(1000) seed(494329): s_cluster_ologit,clusterspergrp(28) 

sigmav(0.33) csize(10)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow10) reps(1000) seed(56024): s_cluster_ologit,clusterspergrp(49) 

sigmav(1.13) csize(10)  

 

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow11) reps(1003) seed(7458): s_cluster_ologit,clusterspergrp(3) sigmav(0.01) 

csize(50)  
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simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow12) reps(1000) seed(96456): s_cluster_ologit,clusterspergrp(9) sigmav(0.09) 

csize(50)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

,saving(pow13) reps(1000) seed(79002): s_cluster_ologit,clusterspergrp(15) 

sigmav(0.19) csize(50)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow14) reps(1000) seed(57477): s_cluster_ologit,clusterspergrp(22) 

sigmav(0.33) csize(50)  

simulate  anova_ordinalicc=r(icc_ordinal_anova) pvalue=r(p)  pvaluet=r(p_t)  trt=r(coef)  

icc_ordmodel=r(cor_icc_ord) cat1_group0=r(cat1_group0) cat2_group0=r(cat2_group0) 

cat3_group0=r(cat3_group0) cat4_group0=r(cat4_group0) cat1_group1=r(cat1_group1) 

cat2_group1=r(cat2_group1) cat3_group1=r(cat3_group1) cat4_group1=r(cat4_group1) 

, saving(pow15) reps(1000) seed(222234): s_cluster_ologit,clusterspergrp(45) 

sigmav(1.13) csize(50)  

 

 

log close 
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POSTER PRESENTATION Open Access

Inadequate reporting of sample size calculations
in cluster randomised trials: a review
Clare Rutterford1*, Monica Taljaard2, Stephanie Dixon3, Andrew Copas4, Sandra Eldridge1

From 2nd Clinical Trials Methodology Conference: Methodology Matters
Edinburgh, UK. 18-19 November 2013

Objectives
To assess the adequacy of reporting sample size calcula-
tions in published cluster randomised trials (CRTs) and to
evaluate the accuracy and justifications behind the a priori
estimates used.

Methods
A review was conducted of 166 CRTs reporting sample
size calculations published between 2000 and 2008. Each
trial was reviewed independently by two statisticians. The
adequacy of the reporting of key elements in the
CONSORT recommendations for CRTs was evaluated.
Comparisons were made between the authors’ a priori
assumptions and values then observed in the trial.

Results
Of 166 trials, only 56 (34%) reported all key elements of
sample size calculations in line with CONSORT recom-
mendations. Elements specific to CRTs were the worst
reported: the number of clusters or average cluster size
was specified in only 94 (57%) and a measure of intraclus-
ter correlation coefficient (ICC) in only 86 (52%). Only 20
papers (12%) reported a priori and observed ICC values.
In the majority of these reports, the a priori estimate for
the ICC was conservative compared to the observed value.
Few authors provided justifications for their choice of a
priori estimates. Not unexpectedly, trials which reported
no statistically significant difference were more likely to
observe effect sizes smaller than the assumed clinically
important difference.

Conclusions
Even with the CONSORT extension to CRTs, the
reporting of sample size calculations in CRTs remains
below that necessary for transparent reporting. Further

awareness is needed to encourage the reporting of
observed ICCs in order to evaluate the choice of a priori
estimates and interpret the trial results.

Authors’ details
1Queen Mary University of London, London, UK. 2Ottawa Hospital Research
Institute, Ottawa Hospital, Ottawa, Canada. 3Schulich School of Medicine and
Dentistry, University of Western Ontario, London, Canada. 4MRC London Hub
for Trials Methodology Research, London, UK.

Published: 29 November 2013

doi:10.1186/1745-6215-14-S1-P122
Cite this article as: Rutterford et al.: Inadequate reporting of sample size
calculations in cluster randomised trials: a review. Trials 2013
14(Suppl 1):P122.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit1Queen Mary University of London, London, UK

Full list of author information is available at the end of the article

Rutterford et al. Trials 2013, 14(Suppl 1):P122
http://www.trialsjournal.com/content/14/S1/P122 TRIALS

© 2013 Rutterford et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

322



APPENDIX vii: Poster presentations

Reporting of Sample Size Calculations in Cluster 

Randomised trials is Inadequate: a Review 
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INTRODUCTION 
 
 Transparent reporting of the sample size 

calculation is important to show that a trial 

is designed to adequately address the 

research question 

 

 Without transparent reporting the results 

from trials that may be well conducted 

risk having little impact 

 

 The CONSORT statement extension for 

cluster randomised trials (CRTs)1,2 

describes five required elements for the 

transparent reporting of sample size 

calculations.  These include whether/how 

the sample size calculation accounted for 

within cluster correlation. Failure to account 

for clustering in the calculation risks an 

increased Type II error rate 

 

 Using a large sample of published cluster 

randomised trials we review the adequacy 

of sample size reporting in cluster 

randomised trials 

 

Figure 2: Trials with non-significant results have 

larger target difference a-priori 

CONCLUSIONS 
 

 Sample size elements specific to CRTs 

were the worst reported.  There was no real 

improvement seen in the years post 

CONSORT (2005-08) 

 

 55% of trials reported a sample size 

calculation. Of these, only 55%  clearly 

accounted for clustering 

 

 Additional adjustments for attrition and 

variable cluster sizes were made in only 38 

(23%) and 1(1%) of trials.  Failure to 

consider these may lead to an 

underestimate of the sample size required 

 

 The observed treatment difference was 

often smaller than the a-priori target 

difference.  This could be because 

interventions are very often ineffective or 

because in some cases investigators 

choose inappropriately large target 

differences.  Similar discrepancies have 

been seen in individually randomised trials4 

RESULTS 
 

RECOMMENDATIONS 
 
 Journals and peer reviewers should 

implement stricter requirements for authors 

to follow the CONSORT statement and its 

extensions 

 

 More consideration should  be given to the 

choice of the target difference in the 

sample size calculation  
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METHODS 
 
Data source: A previously published3 review 

of 300 published reports of CRTs in primary 

care and public health from 2000-2008  

 

Data abstraction for each trial included:  

 The estimates reported within the sample 

size calculation for target difference, power, 

type I error, number of clusters, and within 

cluster correlation 

 The sample size methodology used  

 The observed values of the estimates at 

the end of the trial 

 

Data validation: Data abstraction was 

conducted independently in pairs (by CR, MT 

and SD) and discrepancies were resolved by 

consensus 

 

Data Analysis:  

 Proportions reporting each CONSORT 

required sample size element 

 Summary of sample size methodology used 

 Discrepancies between a-priori estimates 

and observed data summarised 
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to cluster randomisation are worst reported 
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All results (N=133) Significant (N=71) Non significant (N=62)

Sample size method 
 

N 

166 

% 

55 

Patient level accounting for correlation  91   55 

Cluster level 9  5 

Patient level without accounting for 

correlation 

48  29 

Unclear /Other 18  11 

Accounted for attrition 38  23 

Accounted for variable cluster sizes 1  1 

Table 1: Sample size methodology practices for 

55% of trials that reported a calculation  

323



APPENDIX viii: Oral presentations

viii Oral presentations

324



APPENDIX viii: Oral presentations

ORAL PRESENTATION Open Access

A review of methodology for sample size
calculations in cluster randomised trials
Clare Rutterford1*, Sandra Eldridge1, Andrew Copas2

From Clinical Trials Methodology Conference 2011
Bristol, UK. 4-5 October 2011

Objectives
To produce a thorough review of the existing state of
knowledge on sample size calculations for cluster rando-
mised trials (CRT’s) and to identify gaps in the
knowledge.

Methods
A systematic review is being conducted of sample size
methodology for cluster randomised trials. The sources
for the search include electronic databases PubMed and
Web of Science, key text books on cluster randomised
trials and discussions with experts in the field.
The search strategy involves a compliment of Medical

Subject Headings and free text terms to aid a compre-
hensive search. The references of papers eligible for the
review will also be searched and a search on the first
author conducted. This process will continue until no
more additional papers are located.
This work forms the beginning of a PhD research

project.

Results
Of 8697 citations obtained from PubMed and Web of
Science, the majority have currently been assessed for
eligibility into the review and 57 papers so far identified
for inclusion.
The majority of papers discuss sample size for contin-

uous or binary outcomes, with four papers discussing
time to event outcomes. In terms of the analysis method
used, most assume a random effects analysis (cluster
specific approach) or a cluster level analysis, with fewer
papers assuming a generalized estimating Equation
(population averaged approach) methodology.

An emerging theme, discussed in six papers, is sample
size methodology for 3-level cluster randomised trials,
where we may randomise clinics (level 3) and each clinic
will treat multiple subjects (level 2 units) who in turn
are measured on repeated occasions (level 1 units).
Eight papers consider sample size calculations for

trials with varying cluster sizes. These papers account
for the loss in power due to varying cluster sizes
through an examination of the relative efficiency of
unequal versus equal cluster sizes or by proposing an
appropriate design effect to account for this loss for
both continuous and binary outcomes.
Sample size for alternative trial designs such as cross-

over trials, stepped wedge designs, testing for non-infer-
iority, stratified, and matched designs were identified.
Papers covering adjustments to sample size for dealing
with non-compliance or attrition, accounting for the use
of cluster or person level covariates and dealing with
imprecision in the estimate of the intracluster correla-
tion coefficient (ICC) were identified.

Conclusion
We will provide the results of the search and prelimin-
ary insight into potential gaps in the knowledge.
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Abstract (max 250 words) 

Background 

A common approach to sample size calculation for cluster randomised trials is to calculate 

the sample size assuming individual randomisation and multiply this by the design effect. 

Calculation of the design effect requires knowledge of the cluster size and intracluster 

correlation coefficient (ICC), a measure of the extent of clustering. It is not yet clear how well 

the design effect method works for ordinal outcomes. 

Objectives 

To evaluate the performance of the design effect approach in sample size calculation for 

cluster randomised trials with ordinal outcomes and to provide recommendations for the 

calculation of the ICC. 

Methods 

The performance of the design effect method was evaluated across a range of scenarios, 

chosen to reflect the characteristics of trials using ordinal outcomes. 

For each scenario sample size was calculated using the design effect approach with three 

alternative estimators for the ICC: an ANOVA based estimate, a Kappa type estimate and 

the ICC on the assumed underlying continuous outcome.  A thousand datasets of 

appropriate size were generated and each analysed via a random-effects model. Empirical 

power was calculated as the proportion of datasets with significant result. 

The simulation studies were extended to explore performance under alternative analysis 

methods and variable cluster sizes. 

Conclusions 

The use of the design effect works well with ordinal data, except in the case of a small 

number of clusters.  Power calculations using the ANOVA estimate of the ICC performed 

adequately, and that ICC is simple to calculate. 
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Abstract

Objectives: To assess the quality of reporting and accuracy of a priori estimates used in sample size calculations for cluster randomized
trials (CRTs).

Study Design and Setting: We reviewed 300 CRTs published between 2000 and 2008. The prevalence of reporting sample size ele-
ments from the 2004 CONSORT recommendations was evaluated and a priori estimates compared with those observed in the trial.

Results: Of the 300 trials, 166 (55%) reported a sample size calculation. Only 36 of 166 (22%) reported all recommended descriptive
elements. Elements specific to CRTs were the worst reported: a measure of within-cluster correlation was specified in only 58 of 166 (35%).
Only 18 of 166 articles (11%) reported both a priori and observed within-cluster correlation values. Except in two cases, observed within-
cluster correlation values were either close to or less than a priori values.

Conclusion: Even with the CONSORT extension for cluster randomization, the reporting of sample size elements specific to these trials
remains below that necessary for transparent reporting. Journal editors and peer reviewers should implement stricter requirements for au-
thors to follow CONSORT recommendations. Authors should report observed and a priori within-cluster correlation values to enable com-
parisons between these over a wider range of trials. � 2015 The Authors. Published by Elsevier Inc. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Keywords: CONSORT statement; Reporting; Cluster randomized trial; Sample size; Intracluster correlation coefficient; Statistical methods

1. Introduction

In a cluster randomized trial (CRT), groups or ‘‘clusters,’’
rather than the constituent individuals themselves, are
randomly allocated to interventions [1,2]. A cluster could
be, for example a medical practice, hospital, or community.
Cluster randomization may be deemed necessary when
randomization at individual level is impractical, for example,

when the intervention is necessarily administered at the clus-
ter level. There can also be scientific reasons to adopt cluster
randomization, for example to avoid contamination between
treatment groups or for reasons of administrative conve-
nience or cost. In aCRT, the responses from different individ-
uals within the same cluster are usually more similar than
those from different clusters. The degree of this correlation
is commonly quantified by the intracluster correlation coeffi-
cient (ICC) but can also be quantified using the coefficient of
variation of the outcome, often referred to as k [3]. Sample
size calculations for CRTsmust take correlation into account
to avoid potentially underestimating the required sample
size. Donner et al. [4] proposed that a sample size calculated
assuming individual randomization can be inflated by a
design effect (DE) to reach the required level of statistical
power under cluster randomization. This DE is.
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What is new?

� This is the first article to evaluate sample size re-
porting prevalence for each of the CONSORT
2004 recommended sample size descriptive ele-
ments for cluster randomized trials (CRTs).

� There is much room for improvement in sample
size reporting. Sample size elements specific to
CRTs were the worst reported.

� Comparisons between a small sample of a priori
estimates and observed values of the within-
cluster correlation show the a priori estimates to
be reasonably accurate.

� There seems to be a discrepancy between endorse-
ment of CONSORT by journals and implementa-
tion by authors.

� We recommend journals to consider making adher-
ence to CONSORT guidelines and extension state-
ments a condition of publication.

DE51þ ðn� 1Þr
where n is the number of individuals per cluster and r the
ICC. For example, using this formula, a trial with 35 indi-
viduals per cluster and an anticipated ICC of 0.01 would
require 34% more participants than the equivalent individ-
ually randomized design. When cluster sizes are unequal, n
is usually replaced by the average cluster size, although this
risks potentially underestimating the required sample size
[5]. Since 2001, various methods for accounting for vari-
able cluster size have been published [5e10].

Reporting how the sample size calculation was per-
formed is important from both a scientific and ethical
perspective to show that the trial was designed to
adequately address the research question without wasting
resources or exposing too many participants to potentially
harmful interventions. The CONSORT statement recom-
mends the reporting of 25 items related to the design,
conduct, and analysis of randomized controlled trials. The
statement was first published in 1996 [11] and revised in
2001 [12] and 2010 [13]. This latest revision is referred
to as CONSORT 2010. The CONSORT statement was
developed with the dual aims of standardizing reporting
and facilitating transparency. The transparent reporting of
sample size methods and assumptions provides some reas-
surance to the reader of the quality with which the trial has
been conducted. Ideally, adequate reporting ensures that a
reader can appraise the methodology; identify whether an
appropriate and a priori calculation was performed for the
study design; and assess whether the assumptions made
in the sample size calculation were reasonable.

The item that relates to describing the sample size calcu-
lation in CONSORT 2010 recommends the following
descriptive elements to be reported (1) the estimated out-
comes in each group (which implies the minimum important
treatment effect), (2) the level of significance [or thea (type I)
error level], (3) the statistical power [or the b (type II) error
level], and (4) for continuous outcomes, the assumed stan-
dard deviation of the measurements. The CONSORT state-
ment was extended in 2004 [14] for the reporting of CRTs,
and this was revised in 2012 [15] to be in line with CON-
SORT 2010. This extension includes adaptations to items
relevant to the reporting of CRTs. The item that relates
to describing the sample size calculation additionally recom-
mends the reporting of two further descriptive elements (5)
the number of clusters or the cluster size and (6) the ICC or
coefficient of variation (k), along with a measure of its uncer-
tainty. The 2012 revision additionally recommends specifica-
tion of whether equal or unequal cluster sizes are assumed.

Adherence to all the reporting items provided in the
2004 CONSORT extension for CRTs has been reviewed
in 23 trials in oral health [16], 300 randomly sampled trials
[17], 106 trials in children [18], and 73 trials in residential
facilities [19]. The presence of a sample size calculation in
a trial report is considered an initial indication of reporting
quality in the area of sample size. Across these reviews, the
proportion presenting a calculation was 21 of 23 (91%),
164 of 300 (55%), 87 of 106 (82%), and 43 of 73 (59%),
respectively. The third review also reports that 63 of 87
(72%) of trials reported all 2004 CONSORT recommended
sample size descriptive elements. Unlike our review, none
of these reviews identify which of the six sample size
descriptive elements are reported and which are not.

To ensure methodological quality, a sample size calcula-
tion should be appropriate to the trial design. For a CRT,
this implies a sample size calculation accounting for clus-
tering, either by correctly accounting for the clustered na-
ture of the data using a suitable estimate of within-cluster
correlation or calculating the sample size from cluster-
level measures. A cluster-level sample size provides the
number of clusters required and may be undertaken when
information on cluster size is unavailable at the design
stage and/or the primary outcome itself takes some account
of cluster size [20]. Many reviews of the methodological
conduct of CRTs show that this methodological aspect is
suboptimal: for example, in two reviews mentioned above,
100 of 164 (61%) and 15 of 21 (71%) trials that reported a
sample size calculation also accounted for the clustered na-
ture of the design [16,17].

In addition to using an appropriate methodology, it is
vital that a sample size calculation is realistic and that, in
principle, the required numbers can be recruited. Ideally,
sample size calculations should use a within-cluster corre-
lation based on the best available data and specify a mini-
mum treatment effect that is both clinically important and
is likely to be achievable based on evidence from previous
trials of similar interventions. However, it is recognized

717C. Rutterford et al. / Journal of Clinical Epidemiology 68 (2015) 716e723
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that this is not always achievable as appropriate estimates
may not be available or circumstances outside the investi-
gators’ control may make the same size unobtainable. A
comparison between the estimates used in the sample size
calculations and those observed at the end of the trial in a
sample of individually randomized trials concluded that
sample size calculations are often based on inaccurate as-
sumptions [21]. We are unaware of any previous studies
considering similar discrepancies for CRTs.

The review by Ivers et al. [17] found that the prevalence
of reporting sample size calculations was low and that cal-
culations were not always appropriate for the clustered na-
ture of the trial. In this review, we use the same sample of
trials to look in more detail at sample size calculations in
these trials, assessing adherence to reporting descriptive
sample size elements in the 2004 CONSORT extension.
In particular, we aim to identify which elements are under-
reported, whether reporting has improved since the intro-
duction of the 2004 CONSORT extension, and the
accuracy of the a priori estimates used in the sample size
calculation by making comparisons with their observed
values at the end of the trial.

2. Materials and methods

2.1. Search strategy

We used a previously published review of 300 reports of
CRTs randomly sampled from MEDLINE. The search
strategy and characteristics of the included studies have
been described in detail elsewhere [17]. Briefly, a publica-
tion was included if it was published in an English language
journal between the years 2000 and 2008, and it was the
main report of a CRT; trial protocols, pilot studies, second-
ary analyses of CRTs, and trials with households or families
as clusters, with multistage designs, or presenting only
baseline findings were excluded.

2.2. Data abstraction

We reviewed the sample to identify those that reported
prospective sample size calculations. Data abstraction was
conducted only on these trials. All abstraction relates to
the outcome used in the sample size calculation. This was
the primary outcome in all but 30 trials.

Descriptive information for each journal included year
of publication, impact factor, and whether the journal
endorsed the CONSORT statement (taken from the CON-
SORT Web site [22]). As timing and strength of endorse-
ment are difficult to define, this variable was provided as
a rough indicator of journal quality only and no formal
comparisons of its impact were made. Descriptive informa-
tion for each trial included trial design, method of random-
ization, health area, data type of the sample size outcome,
and whether a statistically significant result was seen for
the sample size outcome (as reported by authors).

For the primary objective of reporting quality, abstracted
information for each trial included the values of the 2004
CONSORT required sample size elements and additionally
whether adjustments had beenmade for variable cluster sizes
or attrition. For the secondary objective of methodological
quality and accuracy, abstracted information included
whether the sample size accounted for clustering, including
anymethodology cited, any justifications provided for the es-
timates of the within-cluster variation and estimates of out-
comes in the control and treatment groups, and the
corresponding observed values of treatment effect and
within-cluster correlation at the end of the trial. No assess-
ment was made of whether the correct formulae had been
referenced or implemented given the particular trial design
or whether the sample size calculation could be reproduced.

The research team developed and piloted a data abstrac-
tion instrument and corresponding Access database for
electronic data storage. Three experienced statisticians
(C.R., M.T., and S.D.) abstracted the data for all the articles
in rotating pairs. After each set of 10 trials had been
abstracted, discrepancies were reviewed within the pair
and resolved by discussion.

2.3. Data analysis

2.3.1. Description of sample
Characteristics of the journals and trials for articles con-

taining sample size calculations are summarized using fre-
quencies and percentages or medians and interquartile
ranges.

2.3.2. Reporting according to CONSORT guidelines
For each trial, we describe the 2004 CONSORT required

elements that were provided for the sample size calculation,
with a maximum of six elements. The required elements
were (1) the type I error rate, (2) power, (3) estimates of
outcomes in each group or minimum important target ef-
fect, (4) the standard deviation for continuous outcomes,
(5) the number of clusters or average cluster size, and (6)
the assumed measure of intracluster correlation, design ef-
fect, or coefficient of variation. Trials that do not have a
continuous sample size outcome would not be expected
to provide a standard deviation, and similarly, trials for
which a cluster-level analysis has been assumed in the sam-
ple size calculation are not required to provide a value of
within-cluster correlation. For each trial, we calculate the
maximum number of possible 2004 CONSORT elements
that could have been reported (given the type of outcome)
and the proportion that were reported. For completeness,
we summarize the number of articles that make adjustments
for attrition and variable cluster sizes, although we expect
the latter to be low given that most publications on the sub-
ject were written after the sample sizes would have been
decided for most of our trials, and the specific 2012 CON-
SORT recommendation for reporting this was introduced
after our sample was collected.
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Adherence to the 2004 CONSORT elements is compared
for those articles published before (2000e2004) and after
(2005e2008) its publication.

2.3.3. Assessment of methodological approach
The sample size methodology and justifications for the

values of a priori estimates are summarized using fre-
quencies and percentages. A scatter plot of a priori esti-
mates and observed values of within-cluster correlations
is presented.

Where possible, discrepancies are calculated between
the minimum important target effect and the observed
effect as (observed effect/minimum important target effect).
The calculation is performed on the scale the authors used
to report the effect, that is, absolute or relative differences,
odds ratio, or hazard ratio. When the observed effect is
smaller than the a priori minimum important target effect,
this value is !1 regardless of measurement scale.

3. Results

Of the 300 articles, 166 trials (55%) reported a priori
sample size calculations and are thus summarized. (This
number differs from the 164 reported in the original review,
which focused on sample size calculation for a particular
variable identified by reviewers as primary.) The vast ma-
jority [155 of 166 (93%)] were parallel group trials, imple-
menting simple or stratified randomization [125 of 166
(75%)], and used binary or continuous primary outcomes
[136 of 166 (82%)] (Table 1).

The median impact factor of included journals was fairly
low (3.6, interquartile range: 2.3e12.1); however, 99 of 166
(60%) of these were journals whose guidance recommends
use of CONSORT. Nearly half (46%) were published in the
years preceding the first publication of the CONSORT
extension for CRTs.

3.1. Reporting according to CONSORT guidelines

Of the CONSORT required elements for sample size
calculation, the most commonly reported were outcome
levels in each group or minimum important target effect
(160 of 166, 96%), power (155 of 166, 93%), and type I er-
ror rate (133 of 166, 80%), Table 2. The elements specific
to CRTs were reported less frequently: number of clusters
or cluster size [94 of 166 (57%)] and a measure of
within-cluster correlation [58 of 166 (35%)].

No articles reported corresponding measures of uncer-
tainty alongside the correlation estimates, although some
[18 of 102 (18%)] assessed sample size sensitivity based
on a range of within-cluster correlation values (Table 3).

The assumed standard deviation was reported in only 18
(32%) of the 56 articles with a continuous outcome. Only
38 (23%) of 166 trials reported explicitly accounting for

attrition, and only one article accounted for variable cluster
sizes (Table 2).

Only 36 of 166 articles (22%) reported all the 2004
CONSORT required elements. There was some improve-
ment in reporting over time with 23 of 89 trials (26%) re-
porting all the CONSORT required elements after the
introduction of the extension, compared with only 13 of
77 (8%) before the 2004 CONSORT extension (Table 2).
In particular, improvements were observed with respect to
the standard deviation for continuous outcomes and the re-
ported value of the within-cluster correlation. Categoriza-
tion of journals as above or below the median impact
factor indicated that articles in higher impact journals
tended to report more CONSORT elements: in lower
impact journals, 13 of 83 (16%) reported all required ele-
ments compared with 23 of 83 (28%) in higher impact
journals.

3.2. Assessment of methodological approach

Of the 166 articles reporting a sample size calculation,
102 of 166 (61%) clearly accounted for the within-cluster

Table 1. Journal and trial characteristics of 166 cluster randomized
trials reporting sample size calculations

Characteristic N (%)

Journal: year of publication
2000e2004 77 (46)
2005e2008 89 (54)

Journal: impact factor, median (IQR) 3.6 (2.3e12.1)
Journal: endorsement of CONSORT 99 (60)
Trial: design
Parallel group 155 (93)
Factorial 5 (3)
Crossover 4 (2)
Stepped wedge 1 (1)
Balanced incomplete block design 1 (1)
Cross sectionala 56 (34)
Cohorta 110 (66)

Trial: method of random allocation:
Completely randomized 61 (37)
Stratified 64 (39)
Within matched sets 31 (19)
Minimization 9 (5)
Other 1 (1)

Trial: health area
Primary or hospital care 116 (70)
Public health 50 (30)

Trial: type of primary outcome
Dichotomous 80 (48)
Continuous 56 (34)
Rate 16 (10)
Ordinal 1 (1)
Categorical 0 (0)
Count 0 (0)
Time to event 0 (0)
Unclear 13 (8)

Abbreviation: IQR, interquartile range.
a In a cohort design, repeated measurements are taken on the

same individuals at each time point, and in a cross-sectional design,
repeated measurements take place on different individuals.
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correlation in the sample size calculation (Table 3). Where
clustering was accounted for, almost three-quarters speci-
fied the ICC as a measure of the correlation [66 of 102
(65%)], others quoted a DE [11 of 102 (11%)] or coefficient
of variation [9 of 102 (9%)]. Only 52 of 166 (31%) cited a
methodology for the calculation.

No justification was provided for the estimate of the
postulated outcome in the control group in 113 of 166 trials
(68%), for the estimated treatment outcome or minimum
important target effect in 127 of 166 (77%), and for the cor-
relation estimate in 52 of 102 (51%). Where justified, the
estimated outcome for the control group was most often
estimated from previous trials, the minimum important
target effect justified by clinical relevance, and the
within-cluster correlation chosen from a plausible range.

Only 18 trials reported a measure of the within-cluster
correlation both a priori and at the end of the trial. With
the exception of two trials, the a priori estimate was close
or slightly larger than the observed estimate. The largest
differences were seen in the smaller trials (Fig. 1).

Comparison of the minimum important target effect and
observed effect was possible for 136 trials (82%). Thirty
trials were excluded from this comparison: 13 due to lack
of reporting a treatment effect, either a priori or observed,
and 17 where it was not possible to abstract comparable
measures of treatment effect at both time points. In most
trials [93 of 136 (68%)], the observed treatment effect
was less than the a priori value used in the sample size
calculation. The median relative reduction was 74% (inter-
quartile range: 25e111%).

4. Discussion

Reporting guidelines such as the CONSORT statement
were developed to aid standardized and transparent report-
ing and to provide the reader with enough information to
critically appraise the design, conduct, and analysis of the
research. It is important to be able to identify whether an
appropriate sample size calculation was performed and
whether the assumptions can be considered reasonable.

Table 2. Reporting of recommended 2004 CONSORT sample size descriptive elements in 166 cluster randomized trials by year of publication

Sample size element

Yr of publication

All yr, N [ 166 (%) 2000e2004, N [ 77 (%) 2005e2008, N [ 89 (%)

(1) Type I error rate (%)
2.5 1 (1)
5 131 (79)
20 1 (1)
Stated 133 (80) 62 (81) 71 (80)
Unclear or not stated 33 (20) 15 (19) 18 (20)

(2) Power (%)
80 115 (69)
85 5 (3)
90 34 (20)
95 1 (1)
Stated 155 (93) 70 (91) 85 (96)
Unclear or not stated 11 (7) 7 (9) 4 (4)

(3) Treatment effect
Outcomes in each treatment group 98 (59)
Minimum important target effect size only 62 (37)
Provided 160 (96) 72 (94) 88 (99)
Not provided 6 (4) 5 (6) 1 (1)

(4) Standard deviationa 18/56 (32) 8/29 (28) 10/27 (37)
(5) Number of clusters or average cluster size 94 (57) 44 (57) 50 (56)
(6) Reported value of ICC, design effect, or coefficient

of variationb
58/93 (62) 26/45 (58) 32/48 (67)

Accounted for attrition 38 (23) 15 (19) 23 (26)
Accounted for variable cluster sizes 1 (1) 1 (1) 0 (0)
Percentage of CONSORT elements reportedc

0 1 (0.6) 1 (1) 0 (0)
1e20 5 (3) 4 (5) 1 (1)
21e40 13 (8) 5 (6) 8 (9)
41e60 54 (33) 21 (27) 33 (37)
61e80 46 (28) 26 (34) 20 (22)
81e99 11 (7) 7 (4) 4 (4)
100 36 (22) 13 (8) 23 (26)

Abbreviation: ICC, intracluster correlation coefficient.
a Standard deviation reported among the 56 trials with a continuous primary outcome.
b Excludes nine trials where the sample size was calculated at the cluster level and hence a measure of correlation is not expected.
c Denominators are 4, 5, or 6 depending on whether values of the standard deviation and correlation are expected given each trial design.
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Among our included trials, adherence to the sample size
recommendations of the 2004 CONSORT extension was
poor, with elements specific to cluster randomized designs
being the worst reportedda phenomenon seen in many re-
views assessing the wider aspects of the 2004 CONSORT
extension recommendations, for example [15]. Twenty-
two percent of trials were compliant with all the 2004
CONSORT extension sample size element recommenda-
tions. This is comparable to results seen for individually

randomized trials: In a review of 215 individually random-
ized trials published in 2005 and 2006 in six high-impact
medical journals, 34% of trials included enough informa-
tion for full replication of the sample size [21]. However,
we are encouraged to see in our review some improvements
over time in the number of trials reporting all the required
CONSORT sample size elements with increases occurring
in the reporting of the within-cluster correlation. This is
particularly important given the large influence that this
parameter has on the required sample size.

Our sample contained only trials published until 2008.
This allowed us to assess the immediate impact of the
CONSORT extension statement in the 4 years after its pub-
lication. This review provides an important baseline with
which to compare the impact of future CONSORT state-
ments. We plan to repeat this review, including more recent
articles, to assess the immediate effects of the 2012 revision
once there has been sufficient time for it to take full effect
and a large number of trials published. A secondary aim of
a future review will be to look at the medium- to long-term
impact of the 2004 CONSORT extension.

We acknowledge the limitation that the current review
does not allow us to assess the medium- to long-term
impact of the 2004 CONSORT extension. However, this
sample is unique in both its size and its coverage of all
medical areas and journals; hence, it provides us with an
important insight into the immediate uptake of the CON-
SORT extension among the medical researcher field in
general. Most of the other reviews of CRTs have contained
less than 40 trials, with the largest containing 173
[16,19,23e33]. This sample of 300 is the largest to date,
with the largest sample of identified sample size calcula-
tions. Previous reviews have also focused on particular
areas of health such as stroke, oral health, or primary care
or targeted particular high ranking journals during the
search. Our sample was designed to be representative of
CRTs across the health research field.

Additional adjustments for attrition and variable cluster
sizes were made in only 38 (23%) and 1 (1%) of trials,
respectively. We expected the latter figure to be low as rele-
vant publications describing how to do this are relatively
recent and the recommendation to report information on
cluster size variability has only recently been included in
CONSORT. Failure to take into account these additional
considerations may lead to an underestimate of the sample
size required, the effect of variable cluster size only being
negligible when the coefficient of variation in cluster size
is small (less than 0.23) [5]. Simple DE approaches to deal
with variable cluster sizes are available [5e8].

Sixty percent of the articles included in our review were
in journals whose recommendations mention CONSORT.
Although we recognize that it is not known at what time
each journal first endorsed CONSORT or whether the
extension statements are similarly endorsed, there does
seem to be a discrepancy between endorsement and use
of CONSORT. The way in which medical journals

Table 3. Sample size approach and justification for values of a priori
estimates for 166 cluster randomized trials

Sample size method N [ 166 (%)

(1) Sample size accounted for clustering 102/166 (61)
Intracluster correlation 66/102 (65)
Design effect 11/102 (11)
Coefficient of variation 9/102 (9)
Unclear or not stated 7/102 (7)
Cluster-level calculation 9/102 (9)

Did not account for clustering 48/166 (29)
Unclear 16/166 (10)
(2) Methodology cited 52/166 (31)
(3) Justification of a priori estimates
(3a) The control group expected outcomes, N 5 166

No justification 113/166 (68)
Results from published data 39/166 (23)
A preliminary/pilot study 6/166 (4)
Conservative estimate 8/166 (5)

(3b) The treatment group expected outcome N 5 166
No justification 127/166 (77)
Results from published data 16/166 (10)
A preliminary/pilot study 3/166 (2)
Clinical relevance (no data referenced) 20/166 (12)

(3c) The within-cluster correlation estimate N 5 102
No justification 52/102 (51)
Results from published data 17/102 (17)
A preliminary/pilot study 6/102 (6)
Plausible range 18/102 (18)
NA due to cluster-level calculation 9/102 (9)

Abbreviation: NA, not applicable.

Fig. 1. A comparison of a priori and observed estimates of the within-
cluster correlation.
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incorporate CONSORT recommendations into their edito-
rial process has been surveyed [34]. That survey found that
38% (62 of 165) and 3% (5 of 165) of journals recommend
that authors comply with CONSORT and the cluster exten-
sion, respectively, within their instructions to authors, but
only 37% (23 of 62) and 60% (3 of 5) make it a require-
ment. These figures are higher when surveying journal ed-
itors directly, with 69% (31 of 45) recommending that
authors comply with the extension for CRTs. However,
we recognize that endorsement of CONSORT by journals
may not be the sole driver behind improving reporting qual-
ity. A recent review of reporting quality in CRTs concluded
that quality of reporting and conduct was influenced more
by the presence of a statistician (or quantitative researcher)
among the authorship than a journal’s endorsement of
CONSORT [19].

From the original sample of 300 trials, only 166 (55%)
presented an a priori sample size calculation. Where a sam-
ple size calculation was reported, clustering was accounted
for in 102 of 166 (61%) of these trials. This figure is quite
poor given the standard trial design adopted by many of the
included studies, for which there are simple sample size
methodologies available. A limitation of our study is that
we did not assess whether each trial was appropriately pow-
ered. We did not reproduce sample size calculations or
assess the assumptions made about cluster size, as a mea-
sure of observed cluster size variability was not collected
and recommendations for reporting this have only been
made recently.

In our sample, only a small number of trials reported
both the a priori and observed correlation estimates. This
was similarly seen in a review of CRTs in cancer screening
where only 7 of 50 (14%) reported both a priori estimated
and observed ICCs, and there was no evidence that its re-
porting improved after the CONSORT statement extension
[35]. Given its influence, it is important for authors to pro-
vide the observed valuednot only to aid the design of
future trials, but also to allow one to assess the accuracy
of the a priori estimates and hence the sample size. Albeit
on a small and possibly unrepresentative sample, compari-
sons between a priori estimates and observed values of the
within-cluster correlation showed that authors tended to as-
sume conservative estimates. Part of the explanation for this
may be that values of ICCs used in sample size calculations
are usually not adjusted for covariates, whereas observed
ICCs may be adjusted for covariates (and hence smaller).
Furthermore, our results are consistent with part of any
discrepancy between observed and assumed ICCs being
due to sampling error; the discrepancy was generally larger
in small trials. Whether our findings remain in a larger,
more representative, sample remains to be seen. The a pri-
ori estimate of the within-cluster correlation may be taken
from a previous trial or alternatively, if using the ICC, there
are published summaries available for ICCs of specific out-
comes [36e39]. In our sample, few authors provided an
explanation for their assumed estimate.

The observed treatment effect was often smaller than the
minimum important target effect used in the sample size
calculation. This could be because interventions are often
ineffective or because in some cases investigators power tri-
als using minimum important target effects that could never
be achieved with the type of intervention under evaluation.
Careful consideration is required in determining the mini-
mally important effect in trials of complex interventions,
both in individually randomized and CRTs [1].

The results from our review show that there is much
room for improvement in the conduct and reporting of sam-
ple size calculations in CRTs. We recommend that journals
consider making adherence to CONSORT guidelines a con-
dition of publication to aid improvement in the quality of
reporting and methodological conduct of CRTs.
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Abstract

Background: The use of cluster randomized trials (CRTs) is increasing, along with the

variety in their design and analysis. The simplest approach for their sample size calcula-

tion is to calculate the sample size assuming individual randomization and inflate this by

a design effect to account for randomization by cluster. The assumptions of a simple

design effect may not always be met; alternative or more complicated approaches are

required.

Methods: We summarise a wide range of sample size methods available for cluster

randomized trials. For those familiar with sample size calculations for individually

randomized trials but with less experience in the clustered case, this manuscript provides

formulae for a wide range of scenarios with associated explanation and recommenda-

tions. For those with more experience, comprehensive summaries are provided that

allow quick identification of methods for a given design, outcome and analysis method.

Results: We present first those methods applicable to the simplest two-arm, parallel

group, completely randomized design followed by methods that incorporate deviations

from this design such as: variability in cluster sizes; attrition; non-compliance; or the

inclusion of baseline covariates or repeated measures. The paper concludes with meth-

ods for alternative designs.

Conclusions: There is a large amount of methodology available for sample size calcula-

tions in CRTs. This paper gives the most comprehensive description of published meth-

odology for sample size calculation and provides an important resource for those design-

ing these trials.

Key words: Sample size, cluster randomization, design effect
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Introduction

Cluster randomized trials

In a cluster randomized trial, groups or clusters, rather

than individuals, are randomly allocated to intervention

groups. This approach may be deemed necessary; if ran-

domization at individual level is impractical, to avoid con-

tamination between treatment groups, i.e. individuals in

the control arm being exposed to the intervention; or for

administrative or cost advantages. The rationale for

cluster randomized trials has been described in detail

elsewhere.1–10

The responses from individuals within a cluster are

likely to be more similar than those from different clusters.

This is because individuals within a cluster may share

similar characteristics or be exposed to the same external

factors associated with membership to a particular cluster.

This lack of independence introduces complexity to the

design and analysis. The degree of similarity, or clustering,

is commonly quantified by the intracluster correlation

coefficient (ICC) denoted in this article as q.

Obtaining a good sample size estimate is particularly

important in cluster randomized trials due to the large cost

that can be associated with recruiting an additional cluster

as compared with recruiting an additional subject in an

individually randomized trial. Equally important are the

ethical implications of over- or under-recruitment where

the addition or loss of one cluster may equate to a large

number of individuals potentially being exposed to the risk

of treatment, or lost.

A simple approach to sample size calculation

A consequence of clustering is that the information gained

is less than that in an individually randomized trial of the

same size, making randomization by cluster less efficient.

This inefficiency was identified in the seminal paper by

Cornfield that sparked the development of methodology

for the design and analysis of cluster randomized trials.11

It has been proposed by Donner, Birkett and Buck that a

sample size calculated assuming individual randomization

can be inflated by a Design Effect (DE) to reach the

required level of statistical power under cluster randomiza-

tion:12

DE ¼ 1þ ðn� 1Þq (1)

where n is the number of individuals per cluster and q the

ICC.

Therefore for a comparison of means, in a two-arm trial

with equal allocation the required the number of individu-

als per group, m, is calculated as:

m ¼
ðZ1�a=2 þ Z1�bÞ2 2r2

D2

�
1þ ðn� 1Þq

�
(2)

where Zx is the x’th percentage point of the standard nor-

mal distribution, D the clinically important difference in

treatment means and r2 the variance in the outcome.

Analyses may be conducted at either the cluster or indi-

vidual level (see Eldridge and Kerry for a full discussion of

analysis methods1)

In cluster-level analyses, a cluster-level summary is cal-

culated for each cluster, effectively reducing the data to

one observation per cluster. The observations can then be

treated as independent, and standard statistical analysis

methods applied. The main advantages of cluster-level

analyses are their simplicity and applicability to different

types of outcomes. Disadvantages of this approach are that

individual-level covariates cannot be included and the

number of observations per group may be small. However,

the two-sample t-test has been shown to be quite robust to

deviations from normality and a small number of clusters

per treatment group.13

Methods that use individual-level data but adjust for

clustering can be used for analysis, such as the adjusted

chi-square method for binary data, the adjusted two-

sample t-test2 or the non-parametric clustered Wilcoxon

test for continuous data.14 In this article, these are referred

to as adjusted tests. The main drawback to these methods

is that they do not allow for the inclusion of covariates.

Commonly individual-level analyses are conducted

using a regression model that accounts for the clustered

nature of the data and may include either cluster or

Key Messages

• There is a large body of literature on sample size calculations for cluster randomized trials.

• There are relatively simple and accessible methods to allow for design complexities such as variable cluster sizes;

time-to-event outcomes; incorporation of baseline values and cross-over, stepped-wedge and matched designs.

• This is the most comprehensive resource to date for sample size methods for cluster randomized trials.

• There is scope for further methodological development.

2 International Journal of Epidemiology, 2015, Vol. 0, No. 0
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individual level covariates. Mixed effects regression models

are a cluster-specific method (henceforth referred to as

mixed models) and Generalised Estimating Equations

(GEE), a type of population-averaged or marginal method.

Both approaches require a sufficient number of clusters for

optimal performance; when the number of clusters is small,

the mixed model is less biased than the GEE. The differ-

ence between these two approaches lies in the interpreta-

tion of the estimated treatment effect.1

In general, sample size requirements depend upon the

proposed analysis method. In this paper we describe each

sample size method alongside the analysis method for

which it was designed. However, alternative analysis

approaches may also be suitable. For example, with con-

tinuous outcomes a cluster-level analysis is equivalent to

an individual-level analysis if all the clusters are the same

size. When cluster size is variable, the assumptions under-

lying the cluster-level t-test are not met and a weighted

t-test must be used to achieve adequate power and preci-

sion. Individual-level analyses naturally incorporate this

weighting and so are more efficient than cluster-level anal-

yses weighted by cluster size.4 For continuous outcomes

and equal-sized clusters, the cluster-specific and popula-

tion-averaged methods for individual-level analyses are

mathematically equivalent.

For binary outcomes, due to the transformation of the

data onto the logistic scale, the treatment effects calculated

under the cluster-specific and population-averaged meth-

ods are different. For binary outcomes, Austin et al.15 com-

pared the performance of three cluster-level methods: the

t-test, the Wilcoxon rank-sum test and the permutation

test, and three individual-level methods: the adjusted chi-

square test, the mixed effects model and the GEE model.

In the scenarios investigated, which included variable clus-

ter sizes, the difference in power between these methods

was negligible.

Measuring variability between clusters

A key parameter common to all sample size calculations for

cluster randomized trials is the extent of similarity between

units within a cluster. The measure used in the majority of

sample size methodology is the ICC, usually denoted by the

Greek letter q. The ICC can be interpreted as the proportion

of variance due to between-cluster variation. When q ¼ 0

there is statistical independence between members of a clus-

ter, whereas when q ¼ 1, all observations within a cluster

are identical. A review of estimators for calculating the ICC

for continuous and dichotomous outcomes can be found in

the papers by Donner16 and Ridout,17 respectively.

Properties of the ICC have been widely investigated and

patterns in ICCs18–22 and sources of ICC estimates5,23–26 are

available in the literature and have been summarized by

Eldridge and Kerry.1 An alternative measure to the ICC is

the coefficient of variation in the outcome, denoted by k.

This is calculated as the between-cluster standard deviation

divided by the parameter of interest, i.e. the proportion, rate

or mean, within each cluster.27 This measure is particularly

useful when the primary outcome variable is a rate, as an

ICC cannot be calculated.27

When choosing an estimate of the ICC, in addition to

the method of calculation, it is also important to identify

whether the estimate has been adjusted for covariates. This

can impact on its value and hence on the calculated sample

size. Inclusion of the baseline value of an outcome as a

covariate is arguably the strongest factor to reduce the

ICC. However, this level of detail is not always explicitly

reported alongside the ICC estimate.

Comparison of ICC and coefficient of variation

Sample size calculations often make the assumption that

the measure of correlation, be it the ICC or k, is the same

in each treatment group. However, if the coefficient of var-

iation is the same in each treatment group the ICC will not

be, and vice versa.4 Therefore the use of these different

measures will produce different sample size requirements.

The assumption of a constant ICC is reasonable if the

intervention effect is likely to be constant across clusters.

The assumption of a constant k is reasonable if the inter-

vention effect is likely to be proportional to the cluster

mean.1

Similarly for binary outcomes, different sample

size requirements are calculated depending upon whether

the ICC or coefficient of variation is used in the calcula-

tion. For binary outcomes there is an additional compli-

cation that the between-cluster variance also depends

upon the value of the overall outcome proportion. The

use of the ICC is recommended for sample size calcula-

tions of binary outcomes, unless the proportion is very

small.1

Trial design features that impact on sample size

The most common and simplest design choice for a cluster

randomized trial is the completely randomized, two-arm

parallel-group design with fixed cluster sizes. In this paper,

the methods appropriate for this design are discussed first.

Variations to this design may be somewhat outside the

investigator’s control, such as variability in cluster size or

attrition, or more within the investigator’s control, such as

choice of outcome measure or analysis method. With these

variations, the assumptions of constant cluster size, binary

International Journal of Epidemiology, 2015, Vol. 0, No. 0 3
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or continuous outcomes, and ICC underpinning the use of

the simple design effect,(1) may not be met; appropriate

approaches are presented. The paper concludes with the

presentation of methods for alternative design choices such

as the cross-over, stepped-wedge, matched and three-level

designs.

Sample size methodology covering some of these aspects

has been summarized1–5,27 and Campbell et al. have dis-

cussed some of the complexities including: methods for

survival data; allowing for imprecision in the estimate of

the ICC; allowing for varying cluster sizes; sample size re-

estimation; empirical investigations of design effect values;

and adjusting for covariates.28 However, currently there is

no single resource for researchers designing cluster

randomized trials that provides a comprehensive descrip-

tion of existing published sample size methodology. Our

work is based on an assessment of the literature. A descrip-

tion of how the papers were identified and included can be

found in our online appendix (available as Supplementary

data at IJE online). This article aims to provide both a

summary of methods and practical guidance around the

use of different methods.

Results: sample size methods

Where possible, sample size formulae have been re-

expressed to use consistent terminology for ease in compa-

rability. Due to limited space within this manuscript, if

implementing some of the more complex methods or those

whose components require detailed description, readers

are advised to refer to original papers for further informa-

tion and to ensure correct implementation and understand-

ing of the methodology.

Sample size methods are now presented, starting with

the standard parallel-group trial, followed by variations to

this design and concluding with alternative designs.

Standard parallel-group, two-arm design

Continuous and binary outcomes

Table 1 summarizes the methodology available for the

standard parallel-group trial with equal sized clusters.

The standard design effect or equivalent has been

developed for continuous and binary outcomes, analysed

at the cluster-level, or at individual level using a GEE

model.

For continuous outcomes, the number of individuals

per arm, m, is calculated as12,29

m ¼
ðZ1�a=2 þ Z1�bÞ2 2r2

D2
½1þ ðn� 1Þq� (3)

where Zx is the x’th percentage point of the standard nor-

mal distribution, D represents the clinically important dif-

ference in treatment means, r2 the total variance in the

outcome, n the cluster size and q the ICC.

Alternatively, the number of clusters per arm, c, for a

cluster-level analysis can be estimated using direct esti-

mates of the between- and within-cluster variances, r2
b and

r2
w.30–32

c ¼
ðZ1�a=2 þ Z1�bÞ2 2ðr2

b þ
r2

w

n Þ
D2

(4)

Rosner and Glynn33 present sample size methods for non-

normally distributed continuous outcomes analysed with

Table 1. Sample size methods for the standard two-arm, parallel group, equal allocation, fixed cluster sizes

completely randomized design

Standard trial design Outcome measure Analysis Reference

Two-arm, parallel-group,

completely randomized design

Continuous Cluster-level 12,27,30–32

Adjusted test 33

Mixed model 76

GEE 29

Binary Cluster-level 11,12,27,30–32

Mixed model 78

GEE 29

Count GEE 34

Ordinal GEE 35

Mixed model 36

Time-to-event Cluster-level 39, 103

Mixed model 40

Marginal model 43

Marginal model 42

Rate Cluster-level 27

4 International Journal of Epidemiology, 2015, Vol. 0, No. 0
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an adjusted test, the clustered Wilcoxon test. This method

requires a large number of calculations but can be imple-

mented using SAS macros provided by the authors.

For binary outcomes, the number of individuals

per arm, assuming a cluster-level analysis, is calculated

as12

m ¼
ðZ1�a=2 þ Z1�bÞ2 ½P1ð1� P1Þ þ P2ð1� P2Þ�

D2

�½1þ ðn� 1Þq�
(5)

where P1 is the probability of an event in the control

group, and P2 the probability of an event in the treatment

group, and D represents the clinically important difference

in treatment proportions, P1 � P2. The design effect can

also be used to inflate the variance for the treatment effect

described by a log odds ratio and assuming a GEE

analysis.29

Alternatively, the number of clusters per group, assum-

ing a cluster-level analysis can be calculated as30,31

c ¼
ðZ1�a=2 þ Z1�bÞ2 ½2r2

b þ
P1ð1�P1ÞþP2ð1�P2Þ

n �
D2

(6)

Simple methods are available for continuous and binary

outcomes that use the coefficient of variation in outcome

as a measure of correlation and assume a cluster-level

analysis.27 For continuous outcomes where l1 and l2

are the means in the control and intervention group,

respectively, and r1 and r2 the associated within-cluster

standard deviations, the number of clusters per group is

shown as

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2

ðr2
1
þr2

2
Þ

n þ k2ðl2
1 þ l2

2Þ
h i
ðl1 � l2Þ2

(7)

Similarly for binary outcomes where P1 and P2 are the pro-

portions in the control and intervention group, respec-

tively,

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2 P1ð1�P1Þ

n þ P2ð1�P2Þ
n þ k2ðP2

1 þ P2
2Þ

h i
ðP1 � P2Þ2

(8)

One cluster per group has been added to account for the

use of the normal approximation in the sample size

calculation.

Count outcomes

For count outcomes, multiplication of the sample size cal-

culation for ordinary Poisson regression by the standard

design effect can be used to calculate the number of

individuals per group, m, assuming fixed cluster size, and

an analysis by GEE34

m ¼
½Za=2

ffiffiffi
2
p
þ Zb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1þ e�

~b�
q

�2

eb0 ~b2
½1þ ðn� 1Þq� (9)

where b0 represents the event rate in the control group and
~b is the treatment effect.

Ordinal outcomes

A method for correlated ordinal outcomes assuming a GEE

analysis has been proposed.35 This method has been

described in the context of longitudinal data where the

number of repeated measurements (or cluster size) is small

and the number of clusters large. Its performance for

smaller numbers of larger clusters is unknown and its

implementation is best done via computer. More recently,

Campbell and Walters36 suggest multiplication of

Whitehead’s sample size calculation for ordinal outcomes

in individually randomized trials by the design effect37

m ¼
6½z1�a=2 þ z1�b�2=ðlog ORÞ2h

1�
XI

i¼1

pi
3
i ½1þ ðn� 1Þq� (10)

pi is the mean proportion expected in ordinal category i

calculated as pi ¼ ðp1i þ p2iÞ=2 where p1i and p2i are the

proportions in category i for the control and intervention

groups. The treatment effect is given by the log odds ratio

and a mixed model analysis is assumed.

Time-to-event outcomes

Methods have been suggested for time-to-event outcomes

that adapt the formulae for individual randomization pro-

vided by Schoenfeld.38

The required number of individuals per group given by

Schoenfeld’s formula for individually randomized trials

assuming equal allocation is

m0 ¼
2ðZ1�a=2 þ Z1�bÞ2

log2
eh ð1� PðCÞÞ

(11)

where PðCÞ is the probability of being censored and h

denotes the hazard ratio.

The standard design effect can be used to inflate the for-

mula of Schoenfeld assuming the cluster-level weighted

log-rank test.39

Jahn-Eimermacher et al.40 present a simple formula

for time-to-event outcomes adjusting Schoenfeld’s formula

and using the coefficient of variation in outcome as a meas-

ure of clustering and assuming a mixed model analysis

using a shared frailty model, a popular method for the

International Journal of Epidemiology, 2015, Vol. 0, No. 0 5

 by guest on July 21, 2015
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

342



APPENDIX ix: Publications

analysis of clustered time-to-event data. The number of

clusters per group is given by

C � m0 þ ðZa=2 þ ZbÞ2k2 1þ h2

ð1� hÞ2
(12)

where m0 is the required number of clusters per group

assuming uncorrelated data according to Schoenfeld (11)

and k is the coefficient of variation in outcome.

Alternatively, Freedman’s formula41 for the number of

events required under individual randomization can be

multiplied by the design effect42

E ¼ ðZ1�a=2 þ Z1�bÞ2
ð1þ hÞ2

ð1� hÞ2
½1þ ðn� 1Þq� (13)

where n is the average cluster size, and analysis by mar-

ginal model is assumed.

Manatunga43 considers time-to-event outcomes also

assuming a marginal model, although the method does not

provide a simple explicit formula.

Rate outcomes

The number of clusters per group, c, for rate outcomes in

an unmatched design with cluster-level analysis is27

c ¼ 1þ
ðZ1�a=2 þ Z1�bÞ2 r1þr2

y þ k2ðr2
1 þ r2

2Þ
h i

ðr1 � r2Þ2
(14)

where y is the number of person-years in each cluster

(assumed equal), k the coefficient of variation in the out-

come and r1 and r2 the rates in the control and intervention

group, respectively.

Variations to the standard parallel-group design

Table 2 provides a summary of all sample size methodol-

ogy for variations to the standard parallel group trial. The

key methods in each area are presented and discussed here.

Uncertainty around the estimate of the ICC

There is often large uncertainty around the estimate of the

ICC, leading to wide confidence intervals. As the value of

the ICC has a large impact upon the required sample size,

it is sensible to consider the impact of its uncertainty.

An informal method to address this problem has been to

use a conservative estimate of the ICC in the sample size

calculation; this provides a quick gauge of the impact of

the ICC but could lead to unnecessarily large trials. Several

authors have proposed formal methods of incorporating

ICC uncertainty into the sample size calculation by making

distributional assumptions for one or many previously

observed ICC values and then calculating the correspond-

ing distribution for the power.44–47 Several of these meth-

ods adopt a Bayesian perspective but assume the analysis

will follow a frequentist approach. Incorporating uncer-

tainty about the ICC into the sample size calculation pro-

duces larger sample sizes than using a single estimate.

There may be situations where there are no good

estimates of the ICC available for sample size calculations.

This occurred in a trial of mental illness because the out-

come measure was a newly adaptive questionnaire with

unknown properties.48 In these situations, several

approaches might be considered: an educated estimate could

be gained from assessment of published ICCs and known

patterns in their behaviour for different outcome types and

clusters; graphical methods that compare competing designs

without requiring knowledge of the ICC49; or an internal

pilot could be considered (see later section).

Variable cluster sizes

The use of the standard design effect assumes that the num-

ber of observations from each cluster to be included in the

analysis is the same. In some situations such as ophthalmol-

ogy studies where the cluster is a person and measurements

are taken on eyes, this may be a reasonable assumption.

However, in trials of primary care where the cluster may be

a general practice or drop out may occur within clusters, it

is more likely that clusters of variable size will be present in

the analysis, and it is good practice to consider the potential

impact of this at the design stage. If cluster sizes are variable,

the use of the mean cluster size in the simple design effect

will underestimate the required sample size, more so as the

variation in cluster sizes increases. Use of the maximum

cluster size as an alternative may be overly conservative.

Methods to account for variable cluster size are recom-

mended when cluster size variability is large, i.e. the coeffi-

cient of variation of cluster size, defined as the ratio of the

standard deviation of cluster size Sn to mean cluster size n, is

greater than 0.23.50

The available methods to account for variable cluster

size can be divided into two groups: I, those that require

the size of each cluster to be known and II, those that

require the mean and standard deviation of the distribution

of cluster size.

Methods that require the size of each cluster to be known:

Here the design effect is given by

DE ¼ ncXc

i¼1

ni

1þðni�1Þq

(15)

where c represents the number of clusters per group, ni the

size of cluster i and n mean cluster size.

6 International Journal of Epidemiology, 2015, Vol. 0, No. 0

 by guest on July 21, 2015
http://ije.oxfordjournals.org/

D
ow

nloaded from
 

343



APPENDIX ix: Publications

This DE is appropriate for a cluster-level analysis with

minimum variance weighting for continuous or binary out-

comes.51 It is also applicable for an analysis by GEE with

exchangeable correlation structure, robust variance estima-

tors and binary outcomes.52 By exchangeable correlation

we mean that every subject within a cluster is equally cor-

related to every other subject and this pair-wise correlation

is denoted q. This is a common and reasonable assumption

to make for cluster randomized trials. An alternative

approach is to assume that the within-cluster correlation

can be specified by an identity matrix, also known as the

working independence model. This correlation offers

advantages, in that for model fitting it is simple and can

aid model convergence. If the working independence

model was assumed but the true correlation was exchange-

able, then the following design effect can account for this

misspecification52

DE ¼
nc
Xc

i¼1

ni

�
1þ ðni � 1Þq

�
 Xc

i¼1

ni

!2
(16)

In the case of equal cluster sizes, this method reduces to the

standard design effect and the use of the working inde-

pendence model results in no loss in efficiency. These GEE

methods may be less appropriate for small samples, as the

robust variance estimator does not perform well in this sit-

uation. Pan52 recommends that potential misspecification

of the correlation structure be explored at the design stage;

please refer to the paper for further examples of alternative

combinations of working and true correlation structures.

A sample size method that can accommodate variable

cluster sizes and allow adjustments for covariates analysed

with a GEE model has been proposed by Liu.53 However,

except in some special cases (equal cluster sizes and only

treatment fitted in the model), there is no closed form

available and the method must be implemented numeri-

cally. For an exchangeable correlation structure with fixed

cluster size, the methods of Liu and Pan can be compared;

Pan’s method has been shown to produce marginally larger

sample sizes.52 The difference comes from the use of the

score test by Liu compared with the Wald test in the deri-

vation by Pan.

Methods that require only the mean and standard

deviation of the distribution of cluster size:

It is not common to have knowledge about each cluster

size at the design stage. Estimates of the distribution (mean

and standard deviation) of cluster size are likely to be more

available. However, it should be noted that, in some cases,

the mean and SD of the sampling distribution may be dif-

ferent from those of the population distribution of all clus-

ters. The design effect is now

DE ¼ 1þ fðCV2 þ 1Þn � 1gq (17)

CV is the coefficient of variation of cluster size.

This design effect can be used with an appropriately

weighted cluster-level analysis for binary or continuous

outcomes.50,54,55As individual-level analyses are more

Table 2. Sample size methodology for adaptations to the

standard two-arm, parallel-group, completely randomized

design

Adaptation Outcome

measure

Analysis Reference

Design

ICC uncertainty Continuous Cluster-level 45

Adjusted test 49

Mixed model 44–46

GEE 45,46

Binary Cluster-level 47

Variable cluster

sizes

Continuous Cluster-level 50,51,61

Adjusted test 55

Mixed model 56

GEE 53

Binary Cluster-level 50,51,105

Adjusted test 54

Mixed model 57

GEE 52,53

Time-to-event Cluster-level 103

Internal pilot Continuous Mixed-model 58

GEE 59

Binary GEE 59

Unequal allocation

ratio

Continuous Cluster-level 61

Mixed model 60

Small number of

clusters

Continuous Cluster-level 13,107

Binary Cluster-level 13

Equivalence Continuous Adjusted test 36

Binary Adjusted test 63

Non-inferiority Binary Adjusted test 64

Conduct

Attrition Continuous Adjusted test 65

Mixed model 66

Binary Adjusted test 65

Non-compliance Binary Adjusted test 64, 67

Analysis

Inclusion of

covariates

Continuous Cluster-level 70,71

Mixed model 69,74–76,79,81,108

GEE 53,73,108

Binary Mixed model 69,74,80

GEE 53,72,73,104 108

Inclusion of

repeated

measures

Continuous Mixed model 66,82–84,86

GEE 85

Binary GEE 85
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efficient, it provides an overestimate of sample size

required for most individual level analyses.

Van Breukelen56 and Candel57 propose the total num-

ber of clusters, as computed assuming equal cluster size

and mixed model analysis, multiplied by the following

design effect to account for variability in cluster size. It

potentially has wide applicability as the authors suggest its

use for correction of sample sizes calculated using any cur-

rent formulae where equal-sized clusters are assumed.

DE � 1

1� CV2 n
nþ1�q

q

h
1� n

nþ1�q
q

i (18)

The above DE is calculated via Taylor approximation but

is considered to provide a good approximation for all rea-

sonable distributions of cluster size. Heterogeneous varian-

ces across treatment groups can also be accommodated.57

Internal pilots

For trials that recruit a relatively large number of clusters

over a fairly long period of time, it may be appropriate to

re-estimate the sample size during the trial once informa-

tion has been gained on the ICC and other nuisance param-

eters.58,59 These methods assume a mixed model analysis

for continuous outcomes and GEE for binary or continu-

ous outcomes. The use of these internal pilots is less com-

mon in clustered trials and further investigation is required

to determine best practice for their use, for example it is

not known at which stage an interim estimate of the ICC

can be considered stable and used to adequately re-esti-

mate the sample size.

Allocation ratio

Design efficiency is maximized with equal allocation to

treatment groups, and this has been assumed in the major-

ity of the methodology presented here. However, there is

an argument that unequal allocation may occasionally be

desirable, particularly in cases where the costs associated

with the intervention are high. Liu studies the optimal allo-

cation of units to treatment group when the cost per cluster

varies across the treatment groups, assuming a mixed

model analysis.60 The optimal cluster allocation ratio

depends upon the cost ratio between the treatment and

control.

Small number of clusters

The majority of the methods assume that a relatively large

number of clusters is to be recruited, making the approxi-

mation to the normal distribution in the formulae appro-

priate. When the number of clusters is small, calculations

based upon these approximations will likely underestimate

the required sample size. In this case the normal

distribution can be replaced by the t-distribution or meth-

ods based on the non-central t used. Donner13 presents a

power calculation based upon the non-central t-distribu-

tion with a simple non-centrality parameter for cluster-

level analyses. Extensions to this non-centrality parameter

can additionally allow for unbalanced designs.61 As the

percentage points of the non-central t-distribution are not

routinely available in statistical texts, these methods are

best implemented with a statistical package using the code

provided by the authors.

Alternatively, Snedecor and Cochran62 suggest adding

one cluster per arm when testing at the 5% level and the

number of clusters is small, which is incorporated into the

formulae described by Hayes (equations 7, 8 and 14)27 or

could be added to the other formulae presented.

In general however, trials with a small number of clus-

ters should be avoided. As well as the difficulties in sample

size estimation, many analysis methods do not perform as

well with a small number of clusters and imbalance in clus-

ter characteristics across treatment groups is more likely to

occur.1

Equivalence and non-inferiority

Non-inferiority and equivalence designs are less commonly

used in cluster randomized trials. The methods presented

here assume an analysis using an adjusted test. For equiva-

lence designs, the standard design effect can be applied to

the sample size calculated under individual randomization

for binary outcomes63

m ¼ 2Pð1� PÞðZ1�a þ Z1�bÞ2

d2
½1þ ðn� 1Þq� (19)

where P is the true event proportion in both groups and d

represents the equivalence limit for the upper limit of the

confidence interval of the difference in intervention pro-

portion, and for continuous outcomes36

m ¼ 2ðZ1�a þ Z1�bÞ2

ðd=rÞ2
½1þ ðn� 1Þq� (20)

Here we have specified one-sided tests. To be conservative,

two-sided tests could be used.

The calculation for the number of clusters per treatment

group, c, in a non-inferiority trial with binary outcome,

is64

c ¼ ðza þ zbÞ2Varðlog ðORÞÞ
ðlogðdÞ � logðORÞÞ2

(21)

where the relative treatment effect is measured by the odds

ratio (OR) of a positive response among compliers and d
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represents the non-inferiority margin of the OR. This

method additionally incorporates non-compliance and,

due to this, the variance of this odds ratio is complex to

calculate (see original paper).

Attrition

In a cluster randomized trial, individuals within a cluster

may withdraw from the trial or an entire cluster may with-

draw or not recruit any participants. Drop-out of entire

clusters is relatively uncommon but could be incorporated

into the sample size calculation by the addition of 1 or 2

extra clusters per treatment group.

Attrition among members of a cluster is a more com-

mon problem, particularly for cohort samples.

Conventional approaches to account for such attrition

are to divide the sample size by the anticipated follow-up

rate or use the anticipated average cluster size in the

calculation. However, these methods overestimate and

underestimate, respectively, when cluster follow-up rates

are highly variable or the cluster size or ICC is large.

A design effect has been proposed for binary or continu-

ous outcomes assuming adjusted tests, i.e. the individual-

level t-test or chi-square test suitably adjusted for cluster-

ing65

DE ¼ ½1þ ðnp� 1Þqþ ð1� pÞ½1þ ðn� 1Þs�q�=p (22)

p represents the probability of the outcome being

observed. A binary missingness indicator variable is 0 if

the outcome is missing and 1 otherwise. s is the intracluster

correlation coefficient for the missingness data mechanism,

i.e. at its minimum s ¼ � 1
n�1 implies that all clusters

have identical follow up rates and s ¼ 1 implies all the

missingness indicators are the same within a cluster

(entire clusters are completely observed or completely

missing). Currently estimates for s are not routinely

published with the results of trials and the authors

recommend a sensitivity analysis using a range of plausible

values.

Roy has also considered attrition for the longitudinal

clustered design, assuming analysis with a mixed effects

regression model.66 The calculation uses an iterative

method and allows for a differential drop-out across treat-

ment groups and over time.

Non-compliance

Sample size requirements increase as the level of non-

compliance increases. Methods which allow for non-

compliance, where analysis is by an adjusted test, have

been proposed for both non-inferiority and superiority

designs.64,67 However, the allowance for non-compliance

makes the variance of the treatment effect more complex

to calculate. These methods may be less applicable in prag-

matic cluster randomized trials where the effect of the

intervention is usually assessed in the presence of non-

compliance. In a truly pragmatic trial, compliance may not

be measured or actively encouraged.68

Inclusion of baseline measurements

Sample size calculations can be adapted to allow covariates

in the analysis, as this may increase power by explaining

variability and reducing the between-cluster variation,

which is particularly important when the number of avail-

able clusters is limited or the cost of recruiting each addi-

tional cluster is high. Covariates may be collected at the

level of the individual or the cluster and they may be demo-

graphic variables, such as age, or baseline measures of the

primary outcome. Neuhaus and Segal69 suggest, in general,

that multiplication of the ICC by the ICC of any individ-

ual-level covariate provides an estimate of an adjusted ICC

that can be used in the standard design effect, assuming a

mixed model analysis.

Pre-post design

Inclusion of the baseline measurement of the primary

outcome into the analysis is referred to as a pre-post

design.

The nature of the correlation in a pre-post design will

depend upon the population being sampled, for which

there are two types: cross-sectional or cohort sample. With

a cross-sectional sample, different individuals are measured

at each time point. Here there are two sources of correla-

tion to be accounted for: the correlation of outcomes from

individuals within a cluster at the same time point (which

can be thought of as the familiar ICC, q) and the correla-

tion between baseline and follow-up outcomes for individ-

uals within a cluster (referred to as the cluster auto

correlation, qc). With a cohort sample, the same individu-

als are measured at baseline and follow-up and the addi-

tional correlation across time points on the same

individual conditional on the cluster is referred to as the

subject autocorrelation, qs.

Assuming a cluster-level ANCOVA, a relatively

straightforward design effect can be used for the pre-post

design.70,71 The design effect can accommodate either the

cross-sectional sample (qs ¼ 0), cohort sample or a mixture

of the two70

DE ¼ ½1þ ðn� 1Þq�

�
 

1�
� nq

1þ ðn� 1Þq qc þ
1� q

1þ ðn� 1Þq qs

�2
!

(23)
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When the analysis is performed on change from baseline

scores the design effect is

DE ¼ ½1þ ðn� 1Þq�

�2

 
1�

� nq
1þ ðn� 1Þqqc þ

1� q
1þ ðn� 1Þqqs

�!

(24)

Preisser72,73 focuses on binary outcomes with a GEE

analysis. The number of clusters for the cross-sectional

pre-post design is given as

c ¼
Z1�a

2
þ Z1�b

� �2
ðr2

1 þ r2
2Þ

nððp11 � p10Þ � ðp21 � p20ÞÞ2
(25)

where

r2
h ¼ ½ph1ð1� ph1Þ þ ph0ð1� ph0Þ�½1� ðn� 1Þq�

�2nqc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph1ð1� ph1Þ þ ph0ð1� ph0Þ

p
and pht is the probability of the outcome for an individual

at time t (0¼ pre-test, 1¼ post-test) from treatment group

h (1¼ control, 2¼ intervention).

In terms of sample size, a cohort sample is more efficient,

although it suffers from several drawbacks. To gain notice-

able precision, the correlation across time points on the same

individual must be fairly substantial. Cohort designs can also

suffer from loss to follow-up and therefore require oversam-

pling at baseline and attentive follow-up of individuals.

The sample size efficiency of the cohort design relative

to the repeated cross-sectional design with 1 measurement

on each individual at each time point, assuming a mixed

model, has been quantified as74,75

RE ¼
nð1� qcÞr2

b þ ð1� qsÞr2
w

nð1� qcÞr2
b þ r2

w

(26)

Inclusion of other covariates

Although the inclusion of covariates can reduce the sample

size requirements, there are costs associated with taking addi-

tional measurements. In a trial without covariates, suppose

the total budget for the trial is summarized via the cost func-

tion T ¼ nCc1 þ Cc2, where C is the total number of clus-

ters, n the cluster size, c1 the costs per individual and c2 the

costs per cluster. The number of clusters, C, and the number

of individuals, n, which minimize the variance of the treat-

ment estimator, given the budget constraint are given as76–78

C ¼ T

ðrw=rbÞ
ffiffiffiffiffiffiffiffiffi
c1c2
p þ c2

; n ¼ rw

rb

ffiffiffiffiffi
c2

c1

r
(27)

A similar approach can be used with the inclusion of cova-

riates.76,79,80 Alternatively, power-based calculations are

provided by Moerbeek, assuming a mixed model.81 The

total number of clusters is calculated as

N � 4
r2

wð1�
n

n� 1
q2

WÞ þ nr2
b ð1� q2

B þ
1

n� 1
q2

WÞ
n

�ð
z1�a=2 þ z1�b

D
Þ2

(28)

where q2
W and q2

B are the within-cluster and between-clus-

ter residual correlations between the outcome and the

covariate. qW ¼ 0 for a cluster level covariate.

The additional cost to measure a covariate at the indi-

vidual level is c�1 and the additional cost of measuring a

covariate at the cluster level is c�2. Therefore the total cost

function for individual level covariates becomes

T ¼ nCðc1 þ c�1Þ þ Cc2

and for cluster level covariates

T ¼ nCc1 þ Cðc2 þ c�2Þ

The costs associated with and without the covariate can be

estimated and compared. The inclusion of covariates is

more cost effective when the cost of measurement is small

and the correlation between covariates and outcome is

large. The formula presented by Moerbeek assumes the

covariates are uncorrelated with the treatment condition.

When the number of clusters is small, this can be achieved

via matching on this covariate, particularly recommended

for covariates that vary at the cluster level.79

Inclusion of repeated measurements

Multiple time points introduce additional components of

correlation, as the observations for each cluster will be cor-

related over time. In a longitudinal cluster randomized trial

we have a three-level structure with outcomes measured at

specific time points within subjects, within clusters.

A three-level mixed effects regression model therefore con-

tains additional fixed effect terms for time and the treat-

ment by time interaction. The sample size methods for

these designs are more complex than others and the

required estimates may be difficult to find. The hypothesis

of interest in these trials is the effect of the intervention

over time. Assuming a mixed model, the calculation by

Koepsell et al.82 is based on the non-central-t distribution,

with the treatment effect adjusted by a design constant

allowing for different hypothesized paths of the interven-

tion effect over time. A formula based upon the Wald test

10 International Journal of Epidemiology, 2015, Vol. 0, No. 0
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of the interaction term for the number of clusters per arm

has been proposed83

n3 ¼
2r2ðz1�a=2 þ z1�bÞ2ð1� q1Þ

n2n1D
2
Xn1

k¼1

ðTk � TÞ2=n1

(29)

where nx is the number of units at level x ðx ¼ 1;2;or 3Þ,
T represents the equally spaced time variable and q1is the

correlation among level-one units (see later section on

three-level trials for definition).

Roy’s iterative method similarly proposes a test of the

treatment by time interaction from a mixed effect model

but additionally allows incorporation for a differential

drop-out across treatment groups and over time.66 Murray

proposed that a mixed model with random coefficients is a

more appropriate analysis for explicitly modelling more

than two time points in the analysis.84 The additional ran-

dom effects make this method more complex than others

and, although the authors have provided parameter esti-

mates to aid planning for some outcomes, investigators

will likely need to spend time and money sourcing suitable

estimates. Sample size formulae for assessing change over

time assuming an analysis by GEE have been derived by

Liu.85 However, except under certain correlation struc-

tures, the calculations involved in this method are

substantial.

If the effect of treatment is expected to diverge over

time, sample size can be calculated for testing the treat-

ment effect at the final time point with incorporation of

information from the entire study period assuming a com-

pound symmetry structure and mixed model. This produ-

ces smaller sample sizes than an assessment at the final

time point only, but the assumptions underpinning this

method may limit its widespread application.86

Alternative designs

The above methods are described for the parallel group

trial and small variations to this standard design. We now

consider methodology for alternative design choices.

Table 3 summarizes the available sample size methodology

for alternative designs.

Stratification and matching

Cluster randomized trials in general recruit a smaller num-

ber of units than an individually randomized trial. This can

potentially lead to baseline imbalances in cluster characteris-

tics across treatment groups. Matching or stratification can

be used to improve similarity in clusters across treatment

groups. In a matched-pair design, similar clusters are paired,

or matched. One cluster from the pair is allocated to the

intervention and the other to the control and a cluster-level

analysis conducted. Similarity may be defined on cluster-

level characteristics that are thought to affect the outcome,

such as size or geographical location. Matching reduces the

variance between clusters (within strata or within matched

pair) and hence can provide efficiency in sample size. The

efficiency gains depend upon the effectiveness of the match-

ing. The sample size for an unmatched cluster randomized

trial must be inflated by the following DE in order to have

the same precision as the matched study87

DE ¼ 1=ð1�qxÞ (30)

Its calculation requires knowledge of the correlation in the

outcome between matched pairs, qx. This correlation can

be estimated from previous studies or from the correspond-

ing correlation for a surrogate variable observed prior to

randomization, if any exist, otherwise a range of plausible

values can be considered.

In planning a matched trial, it is worth noting that any

potential gain in efficiency can be lost if clusters drop out

of the study, rendering the matched pair unuseable in the

analysis. However, ignoring matching and including all

clusters in an unmatched analysis of a matched design has

been shown to be valid and efficient in trials that recruit a

small number of relatively large clusters.88

The required number of cluster pairs, m0, is calculated

using the following formula assuming analysis at the clus-

ter level

m0 ¼
r2ðta=2;m0�1 þ tb;m0�1Þ2

d2
(31)

Table 3. Sample size methodology for alternative designs

Trial design Outcome measure Analysis Reference

Matched/stratified Continuous Cluster-level 27,32,109

Mixed model 89

Bayesian 92

Binary Cluster-level 27,32,41,87,109

Mixed model 89

Adjusted test 91

Rate Cluster-level 27,90

Cross-over Continuous Cluster-level 93,106,107

Mixed model 94

Binary Cluster-level 106

Count Cluster-level 106

Stepped-wedge Continuous Mixed model 95,96

Three-level Continuous Mixed model 77,98,100,101

GEE 99

Binary GEE 99
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This is the familiar formula for the paired t-test, where d is

the expected difference within pairs, r2 the variance of this

difference and tx;m0�1 percentage points of the t distribution

with m0�1 degrees of freedom.

For continuous outcomes the variance is calculated as

2 r2
b þ

r2
w

n

� �
(32)

where r2
b is the between-cluster variance within a

matched pair and r2
w the within-cluster component of

variability.32,89

For binary outcomes the variance is calculated as

P1ð1� P1Þ þ P2ð1� P2Þ
n

þ 2r2
b (33)

where P1 the expected proportion in the control arm and

P2 the expected proportion in the intervention arm.41

The methods by Hayes which use the coefficient of var-

iation in outcome for unmatched trials (equations 7, 8 and

14) can be used for matched trials with two modifica-

tions.27 Two, rather than one, cluster should be added to

account for the use of the normal approximation and k

should be replaced with km, the coefficient of variation

between clusters within the matched pair. The Hayes

method for rates can be shown to be equivalent to an ear-

lier approach by Shipley.90

Stratification is similar to matching, in that we poten-

tially now have several clusters within each stratum, rather

than two as we have in a pair-matched study. This has

been addressed for binary outcomes with a straightforward

calculation.91 For continuous outcomes, Kikuchi and

Gittins92 follow the less common Bayesian approach to

design and analysis. However, as the impact of stratifica-

tion is difficult to ascertain in advance, recommendations

are to ignore it in the sample size calculation, for a more

conservative estimate.1

Cross-over designs

Cross-over designs require a smaller number of clusters

than a parallel-group trial and are therefore useful when

the availability of clusters is limited. A simple design effect

for cluster-level analysis has been presented for the cross-

over design in which entire clusters switch treatments dur-

ing the course of the trial93

DE ¼ 1þ 1

2
n1 � 1

� �
q2

� �
� 1

2
n1g (34)

where n1 is the number of participants recruited within

each cluster across both time periods; q2 is the correlation

between subjects in the same cluster at the same time point

and g is the inter-period correlation. In this design, differ-

ent subjects from each cluster are included in separate peri-

ods of the trial (a cross-sectional sample). The treatment

effect is calculated within clusters and therefore between-

cluster variance is removed and the design is more efficient

than the parallel-group.

Alternatively, each subject could be included in both

periods within a cluster (a cohort sample). Here a mixed

model is assumed. The treatment effect is calculated within

subjects, within clusters, so both between-cluster and

between-subject variations are eliminated, making this the

most efficient cross-over design with cluster level random-

ization. The relative efficiency (RE) of the cross-over

design with cross-sectional sample over the parallel-group

cluster randomized design has been quantified by

Rietbergen94

RE ¼
1þ 1

2 n1 � 1
� �

q2

� �
� 1

2 n1g

1þ ðn1 � 1Þq2

(35)

and similarly for the cohort sample

RE ¼ 1

2

1� q1 � q2

1þ ðn1 � 1Þq2

(36)

where q1 is the intrasubject correlation.

Although cross-over designs can improve efficiency, the

nature of the intervention or condition under study may

make them inappropriate, as occurs in individually

randomized trials.

Stepped-wedge design

The stepped-wedge design is similar to the cross-over

design, except that the cross-over of treatments is all in

one direction and staggered over time. All clusters receive

the control intervention at baseline. At various points

during the trial (referred to as steps), one or more clusters

will cross over to receive the treatment intervention,

with all clusters receiving treatment by the end of the

trial. The point at which a cluster, or group of clusters,

will cross over is randomly determined at the beginning of

the trial.

The main criteria for use of a stepped-wedge design is

when the implementation of the intervention can only be

performed sequentially across clusters, perhaps due to

resource constraints, and when the intervention is believed

to do more good than harm and so it would be considered

unethical for some clusters to not receive the intervention

at some point during the trial. Although these designs are

increasing in popularity, there is little published research

describing best practice in their design and analysis.

Hussey in 200595 provides the first guidance on sample
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size, which has been further developed by Woertman and

assumes analysis by mixed model.96

This recently developed sample-size approach for the

stepped-wedge design with continuous outcomes supposes

that, between each step, one or more cross-sectional sam-

pling waves of the clusters occur and outcome measure-

ments are taken. The total number of individuals required

under individual randomization is multiplied by a DE to

give the number of individuals to be sampled across all

clusters at each sampling wave

Nsw ¼
ðZ1�a=2 þ Z1�bÞ2 4r2

D2

� 1þ qðktnþ bn� 1Þ

1þ q
� 1

2
ktnþ bn� 1

�� 3ð1� qÞ

2t
�

k� 1

k

�
2
64

3
75

(37)

where k is the number of steps, b the number of pre-

randomization sampling waves, t the number of sampling

waves between each step, n the number sampled from each

cluster at each sampling wave and q is the ICC. Nsw is the

total number of individuals required at each time point,

the required number of clusters is calculated as Nsw=n, the

number of clusters switching treatment at each step is cal-

culated by dividing the number of clusters by k and the

total number of individuals required across the entire trial

is Nsw multiplied by (bþkt).

Three-level cluster randomized trials

Additional levels of clustering may occur due to the choice

of cluster. For example, three-level cluster randomized tri-

als are fairly common in educational research where pupils

(level 1 units) are sampled within classrooms (level 2 units)

and randomization takes place at the level of the school

(level 3 units). The total variance is now made up of the

variance between schools, r2
3; the variance between class-

rooms within schools, r2
2; and the variance associated with

students within classrooms and schools, r2
1 . We can define

two ICCs,97 for students within schools

q2 ¼ r2
3=ðr2

3 þ r2
2 þ r2

1Þ (38)

and for students within classrooms

q1 ¼ r2
3 þ r2

2=ðr2
3 þ r2

2 þ r2
1Þ (39)

In a three-level trial, the required sample size is calculated as

n3n2n1 ¼ DE�m (40)

where m is the number of individuals required in each

group in an individual randomized controlled trial

(RCT) and nx is the number of units at level

x ðx ¼ 1;2; or 3Þ.
The Design effect for three levels of clustering is

DE ¼ 1þ n1ðn2 � 1Þq2 þ ðn1 � 1Þq1 (41)

This DE can be used for continuous outcomes with equal

cluster size analysed with either a mixed effects model or

GEE assuming exchangeable correlation, as these methods

are equivalent under equal cluster size.98–100 The design

effect in the original paper by Teerenstra100 has been

re-expressed for the purpose of this paper to use the

Pearson correlations (38 and 39), as these are more famil-

iar quantities and published estimates are more likely than

the variance components described in the original paper.

Following Raudenbush,76 optimization of the sample

sizes at each level can be performed based upon cost

constraints.101,102

Discussion

Sample size calculations for individually randomized trials

must be inflated in order to be used for cluster randomized

trials, to account for the inefficiency introduced by the cor-

relation of outcomes between members of a cluster. A sim-

ple design effect described by Donner, Birkett and Buck12

can be used for parallel-group trials when the cluster size is

assumed constant and the outcome is continuous, binary,

count or time-to-event.

Design effects have been derived for more complex

designs including: variable cluster sizes; individual level

attrition; cross-over trials; stepped-wedge designs; inclu-

sion of baseline measurements; analysis by GEE; and three

levels of clustering. These design effects are relatively

straight forward to calculate. However, the opportunity to

use them may depend upon the availability and quality of

estimates of the parameters required for the calculation.

When incorporating variable cluster size, the choice of

methods depends upon whether every cluster size is known

in advance, or just information on cluster size distribution.

In the case of incorporating stratification, the only method

available requires knowledge about the proportion of indi-

viduals in the stratum as well as the success probabilities in

each, information which is unlikely to be available at the

beginning of the trial. These other parameters, required to

assist others planning future trials, are not currently

reported as part of a trial’s findings, but we hope will

become routinely published in time.

The intracluster correlation coefficient featured more

frequently as a measure of within-cluster correlation than

the coefficient of variation, in our assessment of the sample

size literature. This may be due to the wide availability of
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published reviews of ICC estimates5,23–26 and patterns in

ICCs.18–22

The majority of papers specify binary or continuous

outcomes; few deal with other types of outcome. Simple

approaches for alternative outcomes data potentially war-

rant future development.

Sample size by simulation is an alternative to using an

analytical formula. Although the procedure may be com-

putationally intensive, in some cases it may be preferable

to complex numerical procedures and was used in four

papers identified in the literature.103–106 Many of the

methods proposed recommend validation of the sample

size calculated with a formula through simulation, particu-

larly for time-to-event outcomes or where the number of

clusters is small. However, the type I error is often inflated

when the number of clusters is small, the cluster size is var-

iable and for particular analyses such as the frailty model,

and this should be taken into consideration during the

planning and interpretation of simulations.

We have provided a comprehensive description of sam-

ple size methodology for cluster randomized trials, pre-

sented in a simple way to aid researchers designing future

studies.

With the increasing availability of more advanced meth-

ods to incorporate the full complexity that can arise in the

design of a cluster randomized trial, the researcher may

feel overwhelmed by the volume of methods presented.

However it should be noted that in some situations a sim-

ple formula may perform reasonably well in comparison

with a more complex methodology. For example, when the

coefficient of variation in cluster size is less than 0.23, it is

not deemed necessary to adjust the sample size and the

standard design effect obtained assuming fixed cluster sizes

would suffice.50

For continuous outcomes with equal cluster sizes, the

cluster-level and individual-level analyses are equivalent.

Therefore a sample size calculation assuming either of

these with the same measure of correlation should produce

equivalent results. When cluster size is variable, an individ-

ual-level analysis is more efficient than a cluster-level anal-

ysis weighted by cluster size; therefore a sample size

calculation based upon cluster-level analyses will be some-

what conservative if an individual analysis is then

conducted.

For binary outcomes, if the intervention is designed to

reduce the outcome proportion use of the coefficient of

variation27 will produce marginally smaller sample sizes

than using the ICC.12 When the intervention aims to

increase the outcome proportion, the sample sizes using

the coefficient of variation will be larger. When several

methods may be used, the choice between them is also a

question of practicality. The distribution of the outcome

and whether required estimates are available should be

considered. Further work is required to formally compare

the resulting sample sizes calculated under competing

methods, when alternative analyses are conducted, and to

evaluate the situations in which the simple methods can

provide reasonable results over the more complex. This

was beyond the scope of this paper.

A limitation of this paper is that a full critique and

comparison of the sample size methods were difficult due

to the lack of consistency in reporting across the papers.

No guidelines exist at present to judge the quality of

methodological papers and guide authors in clear and

transparent reporting. We hypothesize that the way in

which these methods are reported can also be a barrier to

their uptake. We hope that their presentation in this

article will improve uptake and research in the perform-

ance of these methods. We are planning further work

looking at developing guidelines for the reporting of

methodology papers.

There is often a large amount of uncertainty associated

with the estimate of the ICC, and the appropriateness of

any of the methods described here will depend upon the

level of uncertainty. In the case of a large amount of uncer-

tainty, we recommend that at a minimum the sample size

sensitivity to a range of ICC values be explored. We recom-

mend that, at the design stage, an appropriate simple for-

mula be used in the first instance to provide the researcher

with a benchmark figure upon which the impact of incor-

porating further complexities can be assessed.
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