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Abstract  
Breast cancer is the most common cancer in the UK and Basal-like breast cancer (a highly 

aggressive subtype) accounts for approximately 8-22% of all cases depending on ethnicity. 

Unlike most human malignancies and indeed other PAM50 breast cancer subtypes, the vast 

majority of Basal-like tumours are positive for wild type p16. This p16 signature is associated 

with a particularly poor prognosis and p16-positive Basal-like breast cancer remains the most 

clinically challenging subtype and is the focus of this project. Pro-senescence therapies are 

gaining momentum as attractive strategies for the treatment of those breast cancers with 

current unmet clinical need. To identify targets for pro-senescence therapy in p16-positive 

Basal-like breast cancer, a genome‐wide siRNA screen and two subsequent validation screens 

using two p16-positive cancer cell lines were performed. Screening revealed 20 siRNAs that 

induced senescence within both cancer cell lines. Strikingly, 11 of these 20 siRNAs targeted 

ribosomal proteins, implicating disrupted ribosomal biosynthesis in senescence activation in 

p16-positive Basal-like breast cancer. Importantly, subsequent experiments in normal human 

mammary epithelial cells established that specific ribosomal protein knockdown is well 

tolerated by normal cells. Analysis of the METABRIC data set showed a high degree of ribosomal 

dysregulation in Basal-like tumours and revealed that all 11 ribosomal hits identified were 

frequently overexpressed in p16-positive Basal-like breast cancers. Kaplan Meier analysis 

confirmed that elevated expression of six of the 11 ribosomal proteins correlates with a reduced 

overall survival in these women, further supporting a role for these proteins as drivers of 

disease. These six ribosomal hits, associated with the poorest patient survival, were prioritised 

for further validation. Senescence induction was found to be highly stable, and associated with 

dramatic changes to nucleolar morphology, reminiscent of the nucleolar signature observed 

upon premature senescence induction in normal human mammary epithelial cells. In addition, 

siRNA rescue experiments indicated that senescence initiation is dependent on p16 and p21 

expression and is accompanied by p16 nuclear translocation and p21 degradation. Further, 

ribosomal protein silencing in MDA-MB-231 cells (p16-null Basal-like breast cancer cell line) 

resulted in a ‘death-like’ phenotype, partially dependent on p21 expression suggesting that, 

within a cancer context, ribosomal protein silencing may induce a differential response 

depending on the status of p16. In conclusion, it is proposed that these six ribosomal candidates 

may form the basis of a novel pro-senescence therapy for p16-positive Basal-like breast cancer. 

They may also represent novel prognostic biomarkers for this disease subset and may help to 

improve disease stratification and future directed personalised therapies.  
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 The Cell Cycle 

 Cell cycle checkpoints and regulation 

The vast majority of cells present within most adult human tissues are kept in a reversible state 

of cell cycle arrest, termed quiescence (G0). However, to enable adequate tissue maintenance 

and repair, those cells with proliferative capacity may be stimulated to re-enter the cell cycle in 

response to coordinated mitotic signalling. The eukaryotic cell cycle is comprised of four phases 

(G1, S phase, G2 and M phase) and three critical checkpoints (G1-S phase, G2-M phase and the 

Spindle checkpoint which controls entry into anaphase). Cell cycle progression is tightly 

controlled and is dictated primarily by the activity of Cyclin Dependent Kinases (CDKs)/Cyclin 

complexes (reviewed in Asghar et al., 2015, also see Figure 1.1). The role of CDK/Cyclin 

complexes within cell cycle control is well established and many of the core concepts of CDK 

biology were described over 20 years ago by Nobel laureates, Leland H. Hartwell, Tim Hunt and 

Sir Paul Nurse (Nurse, 2002, Hunt, 2002). In addition to the evidence demonstrating that the 

phosphorylation of specific substrates by CDK/Cyclin complexes is critical for correct cell cycle 

progression, it has also been suggested that global CDK/Cyclin levels may also play an important 

role within cell cycle control (Coudreuse and Nurse, 2010). For example in Schizosaccharomyces 

pombe, it appears that steadily increasing levels of a single CDK/Cyclin complex from G1-M 

phase may be sufficient to drive cell cycle progression, however, evidence for this phenomenon 

within mammalian cells is currently lacking (Coudreuse and Nurse, 2010, and reviewed in 

Harashima et al., 2013). 

Key cell fate decisions, such as the initiation of cell cycle re-entry or the decision to commit to 

cell division (progression through the Restriction point), are mediated by the E2F family of 

transcription factors, often described as ‘Master regulators’ of the cell cycle (reviewed in Dyson, 

1998). The E2F gene family encodes six individual proteins (E2F-1–E2F-6) that form 

heterodimers with two differentiation regulated transcription factor proteins (DP-1 and DP-2) 

and act to orchestrate transcription of key cell cycle mediators via both activation and repression 

at specific promotor regions (reviewed in Dyson, 1998). Critical E2F transcriptional targets 

include Cyclins A and E (required for cell cycle re-entry and S phase initiation), polo-like kinase 1 

(PLK1) (required for correct mitotic progression) and the mitotic spindle checkpoint protein 

(MAD2) (Dalton, 1992, Schulze et al., 1995, Ohtani et al., 1995, and reviewed in Dyson, 1998). 

regulation of E2F-mediated transcription occurs through the binding of specific Retinoblastoma 

protein (RB) family members including RB, p130 and p107 (Hiebert et al., 1992, Schwarz et al., 

1993, Helin et al., 1993, and reviewed in Dyson, 1998). The RB family proteins are differentially 
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expressed throughout the cell cycle and form stable multi-protein complexes with E2F-1–E2F-5, 

resulting in stringent transcriptional repression due to the recruitment of transcriptional co-

repressors (Brehm et al., 1998, and reviewed in Dyson, 1998). Importantly, E2F-1–E2F-3 bind 

preferentially to RB and these complexes are most evident in cells poised at the Restriction point 

(reviewed in Dyson, 1998). 

Cell cycle re-entry (from G0-S phase) and progression through the Restriction Point (from G1-S 

phase) in response to mitogenic stimuli, such as activated RAS or mitogen-activated protein 

kinase (MAPK), is mediated by CDK4/6/Cyclin D complex activity (Baldin et al., 1993, and 

reviewed in Ortega et al., 2002). Once formed, CDK4/6/Cyclin D complexes phosphorylate RB 

resulting in the disassociation of RB from E2F proteins thereby enabling the E2F-mediated 

transcription of target genes such as Cyclin A and E (Knudsen and Wang, 1997, and reviewed in 

Dyson, 1998, and Ortega et al., 2002). CDK2/Cyclin E/A complexes drive S phase progression and 

amplify initial mitotic signals through additional RB phosphorylation (Ortega et al., 2002). Once 

Deoxyribonucleic acid (DNA) replication is completed, CDK1/Cyclin A/B complexes drive 

progression from G2-M phase and subsequent degradation of Cyclin B enables correct anaphase 

completion followed by cell cycle exit and RB de-phosphorylation (reviewed in in Ortega et al., 

2002, and Harashima et al., 2013, and see also Figure 1.1). 

 

Figure 1.1: Schematic summarising the stages of the cell cycle. Cell cycle progression is mediated by 
CDK/Cyclin complexes. The CDK4/6/Cyclin D/RB/E2F signalling axis modulates cell cycle entry and 
progression through G1. CDK inhibitors are shown in red. 
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The transcriptional regulator, Forkhead box M1 (FOXM1) was recently identified as a critical 

phosphorylation target of CDK4/6/Cyclin D complexes (Anders et al., 2011) and functions to 

promote cell cycle progression by mediating the transcription of a whole host of critical G2 and 

M phase regulators, such as cell division cycle 25B (Cdc25B), PLK1, Cyclin A2, Cyclin B, Aurora B 

kinase, Aurora A kinase and Survivin (reviewed in Bella et al., 2014, and Lam et al., 2013). 

Additionally, downstream FOXM1 targets include S-phase kinase-associated protein 2, E3 

ubiquitin protein ligase (SKP2) and cyclin-dependent protein kinase regulatory subunit (CKS1) 

(components of the Skp1-Cullin 1 F-box (SCF) ubiquitin ligase complex). The SCF complex 

controls the degradation of cyclin-dependent kinase inhibitor (CDKI) proteins (discussed below) 

during the G1-S transition, thereby promoting cell cycle progression (Westbrook et al., 2007, 

and reviewed in Bella et al., 2014). 

In human cells, the INK4 family members p16INK4a (p16), p15INK4b (p15) on chromosome 9p21 (chr 

9p21), p18INK4c (chr 1p32) and p19INK4d (chr 19p13) function to directly inhibit CDK4/6/Cyclin D 

complex formation and high p16 protein expression is a well-established marker of senescence 

induction in normal cells (Serrano et al., 1993, Alcorta et al., 1996, and reviewed in Asghar et al., 

2015). In addition, CDK-interacting protein/kinase inhibitory proteins, including p27KIP1 (p27), 

p57KIP2 (p57) and p21CIP1/WAF1 (p21, downstream of p53), also function to halt cell cycle 

progression by repressing CDK/Cyclin complexes containing Cyclins A, B, D and E (Polyak et al., 

1994, Eldeiry et al., 1993, and reviewed in Sherr and Roberts, 1999). Furthermore, numerous 

studies have shown that in response to cellular stress, such as DNA damage, p53 and p21 

activation may drive senescence initiation in normal cells (see Section 1.2.1). 

 The INK4b-ARF-INK4a locus and p16 regulation 

The INK4b-ARF-INK4a locus is located on chromosome 9p21 within the human genome and 

encodes three individual tumour suppressor proteins termed p15, p16 and p14ARF (p14, p19 in 

mice) (Serrano et al., 1993). As described above, p15 and p16 function to inhibit CDK/Cyclin D 

complex formation while p14 (a distinct protein, translated from an alternate reading frame) 

functions to stabilise p53 via inhibition of the proto-oncogene, E3 ubiquitin protein ligase 

(MDM2) (Stott et al., 1998, and reviewed in Gil and Peters, 2006, and see also Section 1.7.6). 

Activation of the INK4b-ARF-INK4a locus occurs in response to cellular stress, such as the 

overexpression of an oncogene (such as oncogenic harvey rat sarcoma viral oncogene homolog, 

H-RASV12 or B-Raf proto-oncogene, serine/threonine kinase, BRAFV600E) (Serrano et al., 1997, Zhu 

et al., 1998) and increased protein levels of all three tumour suppressors has been associated 

with senescence activation in normal cells (see Section 1.5.1). Additional activators of the locus 
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include members of the Activator-protein 1 (AP1) family of transcription factors, such as JUNB 

and C-JUN, melanocyte-inducing transcription factor (MITF), chromatin-remodelling factor, 

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, 

member 1 (SNF5) and the master regulator, E2F (reviewed in Gil and Peters, 2006). These 

transcription factors exert differential regulatory effects on the three genes within the INK4b-

ARF-INK4a locus in a context dependent manner. For example, the transcription factor, JUNB 

was found to activate p16 expression and growth arrest in mouse embryonic fibroblasts (MEFs), 

whereas a second AP1 family member, JUN-C is associated with p16 repression and p19 

activation in MEFs (Passegue and Wagner, 2000). Additionally, MITF is proposed as a p16-

activator during melanocyte differentiation (Loercher et al., 2005) and similarly SNF5 loss has 

been associated with reduced p16 expression in rhabdoid tumour cells. Further, ectopic SNF5 

expression in rhabdoid tumour cells resulted in increased p16 expression together with cell cycle 

arrest (Betz et al., 2002). Supra-physiological levels of E2F-1–E2F-3 proteins have been shown to 

activate p14 expression, however, at present, evidence demonstrating p16 expression is 

mediated by E2F activity is lacking (Berkovich et al., 2003, and reviewed in Gil and Peters, 2006). 

Given its role within senescence initiation and cell cycle arrest, it is critical that expression of the 

INK4b-ARF-INK4a locus is tightly controlled during normal cell division. There is now evidence to 

suggest that Polycomb repressor group proteins (PcG) (first identified in Drosophila 

melanogaster) (Paro and Hogness, 1991) function to repress the INK4b-ARF-INK4a locus via 

specific epigenetic modifications (Gil et al., 2004, Jacobs et al., 1999, Aguilo et al., 2011). In 

mammals, highly conserved PcG proteins form two large multi-protein complexes termed 

Polycomb repressive complex-1 and 2 (PRC1 and PRC2) that work in a co-ordinated manner to 

achieve transcriptional silencing. The PRC2 complex functions to methylate histone H3 on lysine 

27 and recruit PRC1 complexes to specific promotor regions, resulting in further epigenetic 

modifications and transcriptional silencing (reviewed in Aguilo et al., 2011). Importantly, the 

PRC1 components, BMI1 proto-oncogene, polycomb ring finger (BMI1) protein and Chromobox 

homolog 7 (CBX7) have been found to be associated with INK4b-ARF-INK4a repression and 

senescence bypass in vitro (Jacobs et al., 1999, Gil et al., 2004). Furthermore, small hairpin 

ribonucleic acid (shRNA) silencing of CBX7 in MEFs resulted in premature senescence induction 

(Gil et al., 2004) and data presented within this thesis demonstrates that CBX7 small interfering 

RNA (siRNA) knockdown in normal HMECs results in potent senescence activation accompanied 

with increased nuclear p16 protein levels (see Section 4.4). 
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 Classifying the senescence phenotype 

 Replicative senescence 

Senescence (stable G1 growth arrest) was first formally described in 1961 by Leonard Hayflick, 

who observed the limited ability of fibroblasts to continually proliferate in culture (Hayflick and 

Moorhead, 1961, Hayflick, 1965). Hayflick cultured normal human fibroblasts over many 

doublings, during which he observed a gradual decline in the rate of cellular proliferation across 

the culture (Figure 1.2). Eventually, every cell within the culture lost the ability to divide despite 

ample space, nutrients and growth factors. This phenotype, initially termed the ‘Hayflick limit’, 

is now known as replicative senescence and is thought to be driven primarily by telomere 

shortening (Hemann et al., 2001, Martens et al., 2000). 

 

Figure 1.2: Cartoon depicting the Hayflick limit in cultured fibroblasts. Bright field images are of 
proliferating (passage 14) and senescent (passage 29+3) normal human mammary fibroblasts. Cells were 
cultured and imaged by Eleanor Tyler. Images are at 10X magnification and size bar denotes 100 μm. 

Telomeres are made up of protective regions of repetitive DNA (5’- TTAGGG - 3’ in vertebrates), 

typically 10-15 kilobases  in length in humans, and telomeric repeat-binding factors that cap the 

ends of linear chromosomes (Griffith et al., 1999). The inability of standard polymerases to fully 

replicate DNA ends results in a phenomenon known as the end-replication problem, which 

means every completed cycle of cell division results in the loss of 50-200 base pairs of telomeric 

DNA (Harley et al., 1990). After a pre-defined number of cell divisions, telomeres eventually 

become critically short and dysfunctional, triggering a classical DNA damage response (DDR) 

mediated by p53 (d'Adda di Fagagna et al., 2003, Takai et al., 2003, Herbig et al., 2004). 

Currently, the mechanism by which a cell choses to elicit a transient or a persistent DDR are 
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unknown, however, DNA damage severity is likely to be an important factor (reviewed in 

Campisi and di Fagagna, 2007). A transient DDR often leads to a pause in cell division to allow 

for DNA repair, however, if DNA repair is not possible and the severity of the DNA damage is too 

great, a persistent DDR may develop and trigger the induction of replicative senescence or 

apoptosis (reviewed in Campisi and di Fagagna, 2007). The mechanisms by which a cell decides 

to initiate apoptosis or induce senescence in response to sustained p53 signalling are currently 

unknown, however, it is likely that the cell type and the nature of the damage are important 

(reviewed in Campisi and di Fagagna, 2007). For example, DNA damage in lymphocytes tends to 

induce apoptosis; conversely, in fibroblasts or epithelial cells a senescence response is more 

likely (reviewed in Campisi and di Fagagna, 2007). 

Many proteins are involved in the DDR including the adaptor protein p53-binding protein 1 

(53BP1) and the chromatin modifier phosphorylated gamma histone variant 2AX (ϒH2AX) 

(d'Adda di Fagagna et al., 2003, Takai et al., 2003). These two proteins are widely accepted 

markers of replicative senescence and localise to DNA damage foci present within senescent 

cells (d'Adda di Fagagna et al., 2003, Takai et al., 2003, and reviewed in Campisi and di Fagagna, 

2007). As well as a stable growth arrest, replicative senescence in fibroblasts is often 

accompanied with an increase in cellular and nuclear size, an irregular nuclear morphology, the 

presence of vacuoles, positive staining for β-galactosidase (β-gal), critically short telomeres, a 

DDR and staining for p53 and/or p16 (reviewed in Sikora et al., 2011, and see Table 1.1).  In 

fibroblasts, replicative senescence induction depends strongly on p53 and p21 signalling (Herbig 

et al., 2004), however, the p16/RB pathway may also be activated as a late response to severe 

DNA damage such as double strand breaks (DSBs) or telomeric dysfunction (Jacobs and de Lange, 

2004). As such, a senescent fibroblast culture may be positive for both p53 and p16 as cells may 

express either p53, p16 or both (reviewed in Campisi and di Fagagna, 2007). 

As well as global gene expression changes, replicative senescence in fibroblasts is often 

associated with specific epigenetic changes (Cruickshanks et al., 2013, and reviewed in Sikora et 

al., 2011). Activation of the p16/RB pathway can lead to the formation of senescence-associated 

heterochromatin foci (SAHF) that typically contain hypoacetylated histones, histone H3 lysine 9 

tri methylation and the heterochromatin protein, Heterochromatin Protein 1 (HP1) (Narita et 

al., 2003). SAHF silence the expression of pro-proliferative E2F target genes thereby establishing 

and maintaining cell cycle arrest (Narita et al., 2003). 
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 Epithelial cellular senescence 

Unlike fibroblasts, epithelial cells have a higher propensity to undergo a p16-dependent 

senescence phenotype, at least in vitro, referred to in this thesis as cellular senescence (Brenner 

et al., 1998, Huschtscha et al., 1998). Almost all normal epithelial cells will undergo cellular 

senescence in the absence of telomere shortening, DNA damage and p53 expression in culture 

(Brenner et al., 1998, Huschtscha et al., 1998). For example, sub-optimal culture conditions 

(loosely defined as ‘culture shock’) can induce spontaneous p16 expression and senescence in 

normal human keratinocytes and mammary epithelial cells (HMECs) with long telomeres 

(Ramirez et al., 2001). 

The exact mechanisms of p16 activation in epithelial cells are currently unknown, however, 

there is evidence to suggest that oxidative stress may induce p16 expression and drive cellular 

senescence in epithelial cells (Parrinello et al., 2003). In addition, p16 expression is regulated by 

the polycomb repressors, BMI1 and CBX7 (Bracken et al., 2007, Gil et al., 2004). Reduced 

expression of CBX7 in normal human prostate epithelial cells results in an increase of p16 levels 

together with activation of cellular senescence (Gil et al., 2004). 

Cultured HMECs will typically bypass cellular senescence via p16 promoter methylation or gene 

mutation (Brenner et al., 1998, Huschtscha et al., 1998) and there is now good evidence to show 

that this also occurs in vivo (Holst et al., 2003). Once cellular senescence has been bypassed, 

cells will continue to divide until telomere-dependent replicative senescence is triggered. Unlike 

in fibroblasts, replicative senescence in these cells will be mediated solely by p53. 

In addition to replicative and cellular senescence, premature senescence may also be triggered 

by a range of other stimuli such as non-telomeric DNA-damage or chromatin perturbations 

(Dileonardo et al., 1994, Munro et al., 2004), as well as the overexpression of an oncogene or 

repression of a tumour suppressor gene (termed oncogene-induced senescence, OIS) (Serrano 

et al., 1997, and see Section 1.5). More recent studies have also found senescence to be 

triggered during tissue repair (Krizhanovsky et al., 2008), regeneration (Yun et al., 2015), normal 

embryogenesis (Storer et al., 2013, Munoz-Espin et al., 2013) and placental maturation 

(reviewed in Munoz-Espin and Serrano, 2014 and see Section 1.4). In addition to epithelial cells 

and fibroblasts, senescence has also been observed within a wide range of additional cell types 

including endothelial cells (Minamino et al., 2002, and reviewed in Munoz-Espin and Serrano, 

2014). 
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 Senescence-associated markers 

It is important to recognise that markers of the senescence phenotype are not specific to 

senescence induction and that not all senescent cells will feature every possible senescence-

associated marker (reviewed in Rodier and Campisi, 2011). As such, a panel of markers is 

commonly used in order to identify senescence activation (summarised in Table 1.1). The most 

common hallmarks of senescence activation used to define the phenotype are a stable growth 

arrest together with an enlarged cellular morphology together with increased β-gal staining 

(reviewed in Sikora et al., 2011). It is important to note that increased β-gal activity is also 

associated with contact-inhibition and serum starvation in non-senescent cultures and some 

normal non-senescent cells in vivo (Severino et al., 2000). Further, increased β-gal activity has 

not been implicated in the p16/RB or p53/p21 senescence-associated signalling pathways and 

evidence now suggests that those senescence-associated hallmarks with a causal role in 

senescence activation (such as p16) may be more robust phenotypic markers (reviewed in Sikora 

et al., 2011). In addition, senescent cells commonly secrete a complex cocktail of inflammatory 

chemokines, cytokines, growth factors and proteases, termed the senescence-associated 

secretory phenotype (SASP) (Acosta et al., 2013). Long-term exposure to the SASP is associated 

with chronic inflammation and perturbed tissue architecture and has been linked with 

numerous age-associated pathologies such as cancer, Type 2 diabetes and dementia (see 

Section 1.3.1). More recent evidence has revealed that the SASP may also promote tumour-

suppression via senescence reinforcement in neighbouring cells vulnerable to transformation 

(termed paracrine senescence) (Acosta et al., 2013, Nelson et al., 2012). These opposing effects 

of the SASP are discussed in more detail in Sections 1.3-1.5 of this Chapter. 

At present, many of the senescence-associated markers discussed here need to be fully 

validated in vivo. Further, it is unclear whether this current panel of senescence-associated 

markers may be used to identify senescence across all tissue types. For example, a robust set of 

senescence-associated markers applicable to all tissue types may enable pre-malignant lesions, 

characterised by OIS activation, to be detected regardless of the tissue of origin (reviewed in 

Sikora et al., 2011). In addition, markers that are able to distinguish premature senescence 

induction (such as OIS) from replicative or cellular senescence induction in vivo are currently 

lacking. In addition, the nucleoli signature of prematurely senescent cells versus cellular or 

replicative senescent cells is a key question not yet addressed by the literature. Examination of 

the nucleoli signature within differentially-induced senescent cells may reveal a novel 

senescence marker capable of distinguishing between different senescence subtypes. 
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Preliminary analysis to address this was carried out within this thesis and results are presented 

in Section 5.5.  

Features of the 

senescence 

phenotype 

Senescence-associated 

markers 
Links to references 

Reduced proliferative 

capacity 

 Stable G1 cell cycle arrest, 

characterised by reduced 

5-Bromo-2′-deoxyuridine 

(BrdU) incorporation or 

reduced Ki67 (proliferative 

marker) staining. 

Reviewed in (Rodier and 

Campisi, 2011, Sikora et 

al., 2011) 

Altered cellular, 

nuclear and nucleoli 

morphology 

 Enlarged and flattened 

nuclear and cellular 

morphology.  

 Cells are often 

multinucleated and multi-

vacuolated. 

 Irregular nuclear and 

cellular morphology. 

 Downregulation of Lamin 

B1 expression.  

(Freund et al., 2012) 

 Enlarged and rounded 

nucleoli. 

(Ugrinova et al., 2007) 

Increased lysosomal 

activity 

 Increased β-gal enzymatic 

activity.  

(Dimri et al., 1995) 

Telomeric 

dysfunction/DNA 

damage/chromosomal 

instability 

 Critically short telomeres.  (d'Adda di Fagagna et al., 

2003)  Persistent DDR foci 

characterised by 53BP1 or 

ϒH2AX.  

 Oxidative DNA damage 

characterised by 8-

Oxoguanine. 

(Chen et al., 1995) 

 Chromosomal instability 

and DSBs.  

Reviewed in (Rodier and 

Campisi, 2011, Sikora et 

al., 2011) 

Epigenetic alterations 

 Global hypo-methylation. (Cruickshanks et al., 

2013, Lowe et al., 2015)  Hypermethylation at 

specific CpG-rich DNA 

regions containing pro-

proliferative genes. 

 SAHF characterised by 

Histone 3 Lysine 9 (H3K9) 

tri-methylation and HP1. 

(Narita et al., 2003) 
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 Increased size and number 

of Premyelocytic 

leukaemia protein (PML) 

nuclear bodies.       

Reviewed in (Rodier and 

Campisi, 2011, Sikora et 

al., 2011) 

Expression of tumour 

suppressor genes 

 Increased expression of 

the tumour suppressors, 

p15, p14, and p16 and 

activation of the p16/RB 

pathway.  

(Serrano et al., 1997, Ha 

et al., 2007, Xue et al., 

2007, Krimpenfort et al., 

2007) 

 Activation of the p53/p21 

tumour suppressor 

pathway.   

Senescence-

associated secretory 

phenotype (SASP) 

 Enhanced secretion of 

inflammatory cytokines 

such as interleukin 6 (IL-6) 

and IL-8, chemokine (C-C 

motif) ligand 2 (CCL2), 

matrix metalloproteinases 

(MMPs), transforming 

growth factor beta (TGFβ) 

family ligands and 

Vascular endothelial 

growth factor (VEGF).  

(Acosta et al., 2013, 

Freund et al., 2010) 

 Stabilisation of 

inflammasome-associated 

proteins such as IL-1α, 

Caspase-1 and NRL family, 

pyrin domain containing 3 

(NLRP3). 

(Acosta et al., 2013) 

Table 1.1: Table summarising the most commonly used senescence-associated markers. 

 Senescence, ageing and tissue damage 

 Senescence and ageing 

The world’s elderly population is expanding rapidly with the over 85s now the fastest growing 

cohort in the UK. Age is a major risk factor for a multitude of chronic diseases, such as cancers, 

Type 2 diabetes and dementias, and is often accompanied by frailty and a loss of independence 

(reviewed in Tchkonia et al., 2013). An ever increasing elderly population presents an enormous 

economic and social challenge for governments around the world, and a means of extending 

healthy lifespan remains the focus of intense research (reviewed in Tchkonia et al., 2013). There 

is now good evidence showing that senescent cells accumulate with advancing age and are 

important drivers of age-associated disease in mice (Baker et al., 2011). In addition, a recent 
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review of over 350 genome-wide association studies (GWAS) revealed that polymorphisms 

within the p16 gene were associated with multiple age-associated diseases such as cancer, 

atherosclerosis, glaucoma and Type 2 diabetes (Jeck et al., 2012). However, the exact 

mechanisms by which senescent cells accumulate and promote the development of chronic 

disease are yet to be fully resolved (reviewed in Tchkonia et al., 2013). 

There are three proposed mechanisms by which senescence is able to drive age-related 

pathologies (reviewed in Rodier and Campisi, 2011). The first is the ability of senescent cells to 

deplete stem or progenitor cell populations, compromising tissue repair and regeneration, 

resulting in tissue dysfunction (Liu et al., 2007). Second, is the ability of senescent cells to 

modulate surrounding tissue architecture, cell growth, migration, blood vessel formation and 

differentiation through the secretion of cytokines and (MMPs) resulting in disrupted tissue 

structure and function (reviewed in Rodier and Campisi, 2011). For example, MMP3, secreted 

by senescent fibroblasts has been associated with mammary epithelial cell differentiation (Liu 

and Hornsby, 2007). Third, is the hallmark, low-level chronic inflammation, termed sterile 

inflammation, often associated with senescence (reviewed in Rodier and Campisi, 2011). Sterile 

inflammation is initiated and maintained by the secretion of pro-inflammatory cytokines (such 

as IL-6 and IL-8), Tumour necrosis factor alpha (TNFα), MMPs, monocyte chemoattractant 

protein-1 (MCP-1) and Insulin-like growth factor (IGF) binding proteins, known collectively as 

the SASP (reviewed in Tchkonia et al., 2013). Sustained low-level sterile inflammation and the 

subsequent infiltration of immune cells may result in inflammatory oxidative damage to 

surrounding tissues, tissue remodelling and the depletion of stem cell niches, driving the 

development of chronic disease and age-associated mortality (reviewed in Campisi, 2005). 

Sterile inflammation is the most likely cause of prominent age-associated pathologies and 

elements of the SASP, such as increased IL-6, TNFα and chemokines, increase in multiple tissues 

with advancing age and are associated with dementias, cancers and Type 2 diabetes 

(Bruunsgaard and Pedersen, 2003, Schetter et al., 2010, Pradhan et al., 2001, and reviewed in 

Tchkonia et al., 2013). The presence of chronic inflammation also correlates with muscle wasting 

(sarcopenia), fat tissue loss (cachexia) and age-associated frailty, a major risk factor for increased 

vulnerability to infection, trauma, chronic disease and mortality (reviewed in Tchkonia et al., 

2013). Importantly, there is now evidence that p16-positive senescent cells accumulate with 

increasing age (Wang et al., 2009) and a landmark paper by Baker et al., 2011 provided clear 

evidence that life-long clearance of p16-positive senescent cells can delay the onset of multiple 

age-associated pathologies in mice. This study was the first to show that p16-positive senescent 
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cells are indeed influential drivers of the age-associated phenotype and the development of age-

associated pathologies. 

In addition, there is now strong evidence that senescent fibroblasts are able to create a cancer 

permissive microenvironment, fuelled by the SASP, which promotes the growth and malignancy 

of pre-neoplastic epithelial cells both in vitro and in vivo (Krtolica et al., 2001, and reviewed in 

Campisi, 2005). In support of this, the secretory phenotype of senescent fibroblasts closely 

models that of cancer-associated fibroblasts surrounding ovarian cancer and hepatocellular 

carcinoma (reviewed in Campisi, 2005). Further, recent studies by Cruickshanks et al., 2013, and 

Lowe et al., 2015, showed that the senescence associated epigenetic landscape (characterised 

by global hypomethylation and hypermethylation at specific CpG-rich DNA regions) is retained 

upon senescence bypass and is similar to that observed within cancer cells. As such, it is 

proposed that, if bypassed, senescent cells may represent a cellular pool primed to promote 

human malignancy. Consequently, an ever increasing accumulation of senescent cells 

(associated with advancing age) is likely to elevate the risk of senescence bypass and 

tumourigenesis, linking advancing age with an elevated cancer risk. 

The notion that multiple chronic diseases may be caused by a few basic processes, such as age-

related sterile inflammation (driven, at least, in part by senescence and the SASP) provides an 

exciting therapeutic opportunity for modulating ageing and extending healthy lifespan 

(reviewed in Tchkonia et al., 2013). Selective elimination of senescent cells or the SASP may 

prove to be highly effective at delaying the onset of age-associated pathologies and disrupting 

the link between age and chronic disease (Baker et al., 2011, reviewed in Tchkonia et al., 2013). 

 

  Senescence: a paradoxical phenotype 

The studies discussed above implicate senescence induction and the SASP in ageing and age-

associated pathologies such as cancer (Krtolica et al., 2001). However, somewhat conversely, 

there is now mounting evidence to suggest that senescence may be activated in response to an 

oncogenic event both in vivo and in vitro and is a crucial tumour suppressor mechanism in cells 

vulnerable to transformation (Serrano et al., 1997, see Section 1.5). In addition, recent studies 

have also highlighted the beneficial and potentially instructive role of senescence activation 

within tissue regeneration and wound healing (Demaria et al., 2014), regeneration (Yun et al., 

2015) and normal embryonic development (Storer et al., 2013, Munoz-Espin et al., 2013). 

Consequently, senescence activation and the SASP is frequently referred to as a ‘paradoxical 
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phenotype’ associated with often opposing and contradictory biological mechanisms (reviewed 

in Campisi, 2011). 

 Senescence and tissue repair 

In contrast with the detrimental effects often associated with senescence induction and chronic 

exposure to SASP components (discussed above), more recent studies now provide indisputable 

evidence that senescence is activated during tissue repair and wound healing and may limit 

tissue fibrosis and drive wound closure. For example, Krizhanovsky et al., 2008 showed that in 

response to acute liver injury, mouse hepatic stellate cells initially proliferate and secrete 

extracellular matrix (ECM) components before undergoing a senescence phenotype 

accompanied by MMP secretion and ECM degradation. Further, acute liver injury in mice whose 

stellate cells were unable to initiate senescence activation, resulted in severe fibrosis 

(Krizhanovsky et al., 2008). Similarly, in a mouse model for cutaneous wound healing, tissue 

repair occurred in conjunction with the accumulation of senescent fibroblasts and wounds that 

lacked the wild-type (WT) ECM protein cysteine rich protein 61 (Cyr61, also known as CCN1) 

(binds fibroblasts) were excessively fibrotic (Jun and Lau, 2010). Crucially, topical application of 

WT CCN1 induced senescence and resolved tissue fibrosis, elegantly demonstrating the essential 

role of senescence induction in limiting fibrosis and tissue repair (Jun and Lau, 2010). In addition, 

Demaria et al., 2014 also demonstrated that senescent fibroblasts and endothelial cells 

accumulated at sites of tissue repair within a mouse model for cutaneous wound healing. In line 

with the data discussed above, senescence activation at sites of tissue repair appear to mediate 

myofibroblast differentiation and correct wound healing via the secretion of the novel SASP 

component, Platelet-derived growth factor AA (PDGF-AA) (Demaria et al., 2014). Further, PDGF-

AA treatment of senescence-free wounds (characterised by delayed wound closure) resulted in 

myofibroblast differentiation and wound closure (Demaria et al., 2014). 

 Senescence in limb regeneration and embryogenesis 

In addition to tissue repair, two key studies have shown that tissue remodelling triggered by 

senescence induction occurs at sites of limb regeneration in salamanders (Yun et al., 2015) and 

during normal embryonic development in mice (Storer et al., 2013, Munoz-Espin et al., 2013), 

further implicating senescence induction in normal physiology. Similarly, megakaryocytes and 

placental syncytiotrophoblasts are also thought to undergo senescence, characterised by 

increase β-gal activity, during normal maturation (reviewed in Munoz-Espin and Serrano, 2014). 

Yun et al., 2015 showed that senescence occurs in vivo at sites of recurrent limb regeneration 

within two species of adult salamanders (Notophthalmus viridescens and Ambystoma 
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mexicanum). Upon amputation, β-gal positive senescent cells were transiently observed at the 

amputation plane and at the blastema (mass of de-differentiated cells that will give rise to the 

new limb) and it is proposed that this timely activation of senescence is a critical step within 

normal limb regeneration in salamanders. Implanted senescent cells at sites of regeneration 

appeared to induce paracrine senescence (see Section 1.5.2) in neighbouring cells and, in line 

with mammalian data (see Section 1.5.3), were eliminated via macrophage-mediated immune-

clearance. 

A landmark paper by Storer et al., 2013 elegantly demonstrated that during normal mouse 

development, transient senescence activation (mediated by p21) occurs throughout the embryo 

at specific anatomical structures, including the limbs, the tip of the tail and the brain. These 

senescent cells were non-proliferative, stained positive for β-gal activity, were p21 positive and 

p16 and p19 negative and were characterised by increased PML bodies and H3K9 tri-

methylation. Crucially, qRT-PCR analysis revealed that the gene expression signature associated 

with developmental senescence closely resembles that expressed by oncogene-induced 

senescent fibroblasts, indicating that OIS may have evolved from a primordial mechanism for 

tissue remodelling, still evident during embryogenesis, limb regeneration and tissue repair 

(Storer et al., 2013). 

 Senescence: a double-edged sword 

Although initial studies have focused on the detrimental consequences of senescence activation 

and the SASP on ageing and age-associated pathologies, more recent have outlined a clear role 

for senescence induction within normal physiology (see previous Section). Importantly, the 

senescent phenotype observed within each of these studies was highly transient and senescent 

cells were efficiently targeted and cleared from tissues via the immune system or via apoptosis 

(in the case of developmental senescence, Storer et al., 2013). As such, it is proposed that the 

duration of senescent cell survival and the persistence of the associated SASP may determine 

the impact of senescence induction on neighbouring cells and tissue function (reviewed in 

Campisi, 2011, and Tchkonia et al., 2013). Cellular context, senescence stimuli and SASP 

composition are also likely to impact the opposing consequences of senescence activation in 

vivo. Further, it is unlikely that there is a single SASP universal to all subtypes of senescence. 

More likely is that the components and potency of the SASP will vary depending on the cell type, 

senescence trigger and duration (reviewed in Campisi, 2011, and Tchkonia et al., 2013). In 

addition, it is important to note that much of the work investigating the detrimental effects of 

the SASP (links with tumour promotion and age-associated disease) was performed in fibroblasts 
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and a causal relationship between senescent epithelial cells and tumour promotion has yet to 

be shown. 

Given this, it is hypothesised that, at least in early life, the activation of senescence together 

with a time-restricted localised SASP is critical for correct embryogenesis, effective tissue repair 

and tumour suppression. However, in later life, senescence induction and a persistent SASP has 

been shown to associate with chronic inflammation, age-associated disease and the 

development of a cancer permissive environment (reviewed in van Deursen, 2014). The 

mechanism by which senescent cells accumulate and persist in aged tissues is unclear, however, 

it is well-established that the immune system often weakens with advancing age (Arnold et al., 

2011, and reviewed in Boraschi and Italiani, 2014). Inefficient clearance of senescent cells 

together with increased levels of cellular stress may drive age-associated senescent cell 

accumulation and allow senescent cells to persist within aged tissues and mediate age-

associated pathologies (reviewed in Rodier and Campisi, 2011 and van Deursen, 2014). 

Given this, the evolutionary theory of antagonistic pleiotropy is often used to explain the origins 

of senescence (Kirkwood and Austad, 2000). The theory predicts the existence of biological 

processes beneficial for survival in early life but detrimental in later years. It is hypothesised that 

senescence is a key physiological mechanism critical for correct embryogenesis and tissue 

regeneration that is maintained throughout adulthood to protect cells against tumourigenesis 

in early life at the expense of its age-associated detrimental effects on survival in later years 

(Kirkwood and Austad, 2000). 

Importantly, this thesis is focused on harnessing the beneficial, anti-tumorigenic properties 

associated with OIS induction, activated in response to an oncogenic event (see Sections 1.5-

1.6). 

 

 Oncogene-induced senescence 

 Oncogene-induced senescence: a critical tumour suppressor mechanism 

There is now a growing body of evidence demonstrating that senescence may also be triggered 

in response to oncogenic stress independent of telomere attrition, both in vitro and in vivo.  This 

process is termed OIS and may be activated in both fibroblasts and epithelial cells by the 

overexpression of an oncogene or the suppression of a tumour suppressor gene. Current 

literature implicates p16 as a common mediator of OIS in human epithelial cells, however, p53, 
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p19 and p15 have all been implicated in OIS in mice (Ha et al., 2007, Xue et al., 2007, Krimpenfort 

et al., 2007). 

The first in vitro evidence for OIS was published by Serrano et al., 1997 who showed that 

overexpressing oncogenic H-RASV12 in either normal human or mouse fibroblasts could induce a 

potent G1 growth arrest, together with p53 and p16 accumulation and increased β-gal activity. 

Importantly, the senescence response was acute, with cells arresting within days of continued 

oncogenic exposure, discounting telomeric involvement. Further, senescence induction was not 

activated in rodent cells deficient for either p53 or p16 (MEFs, p53-null or p16-null) implicating 

both signalling pathways in the initiation of senescence in this context. In addition, co-expression 

of H-RASV12 with E1A (viral oncogene) circumvented senescence induction in human fibroblasts 

(Serrano et al., 1997, and reviewed in Prieur and Peeper, 2008). Since this finding, numerous in 

vitro studies have also demonstrated that OIS is not exclusive to mutant RAS overexpression and 

that the overexpression of additional oncogenic components of the RAS signalling pathway, such 

as mitogen-activated protein kinase (MEK) and BRAFV600E, may also elicit a senescence response 

(Lin et al., 1998, Zhu et al., 1998). Importantly, there is now a wealth of evidence to support the 

presence of OIS in vivo and its physiological role as a crucial tumour suppressor mechanism in 

cells vulnerable to transformation. The first evidence of this was reported simultaneously by 

four separate groups in 2005. Collado et al., 2005 showed that mice overexpressing oncogenic 

H-RASV12 developed multiple benign lung adenomas containing cells with a low proliferative 

index that stained positive for β-gal activity and p16. These mice also developed malignant 

adenocarcinomas at a much lower frequency. These lesions did not express the senescence-

associated markers present within the benign lesions. Similarly, Braig et al., 2005 showed that 

OIS was initiated in response to oncogenic RAS using N-RAS transgenic mice and that OIS acted 

as a barrier to lymphoma development in a histone methyltransferase-dependent manner. 

Together, these studies indicate that OIS may be activated in vivo in response to oncogenic 

stimulation and that this critical senescence activation acts as a protective mechanism against 

tumorigenesis (reviewed in Prieur and Peeper, 2008). Further, OIS bypass appears to be an 

essential step for the development of a malignant lesion and in human epithelial cells bypass is 

likely to require disruption within the p16/pRB/E2F signalling axis (see Figure 1.3). 



35 
 

 

Figure 1.3: Schematic illustrating OIS bypass and p16-positive cancer development in human epithelial 
cells. It is proposed that OIS bypass is an early event within carcinogenesis and in order for a p16-positive 
cancer to arise, a pre-malignant cell must first undergo OIS bypass whilst maintaining high p16 protein 
levels. In this context, OIS bypass may be driven by the expression of viral oncogenes (such as E7 
overexpressed within HeLa cells) or mutations to the p16/RB/E2F signalling axis downstream of p16 (such 
as an RB deletion, present within MDA-MB-468 cells). 

A later study by Dankort et al., 2007 showed that mice expressing mutant BRAFV600E also 

developed numerous benign lung adenomas that were positive for a multitude of senescence-

associated markers which rarely progressed to malignant adenocarcinomas. Here, the lesions 

stained positive for increased p19 (p14 in humans), primarily in the nucleoli, and had reduced 

Ki67 protein expression. Interestingly, the lesions were negative for β-gal activity, elegantly 

demonstrating that this widely accepted senescence-associated marker is not specific nor is it 

always sensitive to senescence induction. It is proposed that the combination of markers present 

upon senescence induction often depends on the cellular context as well as the oncogenic 

trigger (reviewed in Rodier and Campisi, 2011). 

The first evidence of OIS present within a human pre-malignant lesion was reported by 

Michaloglou et al., 2005. Initial in vitro studies showed that sustained expression of mutant 

BRAFV600E induced cell cycle arrest accompanied by p16 expression and β-gal activity in human 

melanocytes. Further, human naevi (benign melanocytic lesions often harbouring mutant 

BRAFV600E were found to stain positive for β-gal activity together with mosaic p16 activation, 

strongly suggesting that OIS is a physiologically relevant event that functions in humans as a 

potent tumour suppressor mechanism. Additional mutations are likely to be required for bypass 

of the OIS program and melanoma development, and similar findings were reported by (Gray-

Schopfer et al., 2006). 
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As well as the overexpression of an oncogene, such as oncogenic RAS, it has also been 

demonstrated that PTEN-loss-induced cellular senescence (PICS) may be triggered in vivo via the 

repression of a key tumour suppressor such as phosphatase and tensin homolog (PTEN) (Chen 

et al., 2005). The loss of PTEN is often associated with a non-lethal prostate cancer that develops 

after a long latency period. Importantly, Chen et al. demonstrated that PTEN loss within the 

mouse prostate induces a p53-mediated growth arrest that is rescued by p53 loss. Further, 

senescence may also be detected within very early stage prostate cancer in humans providing 

additional evidence for OIS as a tumour suppressor mechanism with physiological relevance. 

 Oncogene-induced senescence and the SASP 

As well as activating a potent cell cycle arrest in cells harbouring potentially oncogenic 

mutations, it is now thought that cells that have undergone OIS are able to trigger a tumour 

suppressive response in neighbouring cells via the SASP (reviewed in Kuilman and Peeper, 2009). 

It is proposed that OIS-associated secretory factors may act as ‘danger signals’ and activate a 

protective senescence response in surrounding cells, limiting the chance of transformation in 

damaged cells that may also be vulnerable to malignancy. There is now growing evidence for 

this both in culture and in vivo (Acosta et al., 2013, Nelson et al., 2012). For example, Acosta et 

al., 2013 showed that soluble SASP components, such as TGFβ and CCL2, are able to induce a 

paracrine senescence response in neighbouring normal cells both in vitro and in vivo. In addition, 

Nelson et al., 2012 showed that senescent fibroblasts induce a DNA damage response 

(reminiscent of that associated with senescence) and cell cycle arrest in bystander fibroblasts 

via cell-to-cell contact and increased reactive oxygen species (ROS) production. 

Further, components of the SASP produced by cells that have undergone OIS have also been 

shown to re-enforce the growth arrest of senescent cells by manipulating mitogenic signals from 

surrounding cells (reviewed in Kuilman and Peeper, 2009). For example, elements of the SASP 

may dampen the secretion of growth factors that promotes the proliferation of pre-malignant 

cells. There is also evidence to suggest that components of the SASP may act to block mitogenic 

signalling by direct interference at the receptor level (Gagnon et al., 1998, Mincione et al., 2003). 

For example, TGFβ has been shown to inhibit tyrosine phosphorylation and insulin receptor 

substrate 1 (IRS1) activation (an important mediator of insulin signalling in both mouse 

fibroblasts and epithelial cells) (Gagnon et al., 1998, Mincione et al., 2003). Finally, senescent 

cells may also stimulate surrounding stromal cells to secrete proliferation-inhibitory factors that 

may limit the proliferative potential of nearby pre-malignant cells (reviewed in Kuilman and 

Peeper, 2009). 
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 Immunosurveillance of senescent cells 

There is now growing evidence to suggest that as well as triggering a senescence response in 

potentially vulnerable bystander cells, components of the SASP may also trigger the immuno-

clearance of senescent pre-malignant cells, limiting the risk of bypass and carcinogenesis 

(reviewed in Sagiv and Krizhanovsky, 2013). Crucially, the SASP is composed of multiple immune-

activating components such as chemokines, activating cytokines, adhesion molecules and the 

inflammasome (a caspase-1 activating protein complex) (Acosta et al., 2013). The composition 

of the SASP has been found to vary in a cell type and context-specific manner (reviewed in 

Freund et al., 2010). As such, depending on the chemokines present within the SASP and the 

chemokine receptors present on the cells within the microenvironment, it is hypothesised that 

a distinct subset of immune cells may be recruited to sites of senescence (reviewed in Freund et 

al., 2010). 

Increasing evidence now suggests that as well as immune cell recruitment, senescent cells are 

targeted and cleared via both the innate and adaptive immune systems (Xue et al., 2007, 

Krizhanovsky et al., 2008, Kang et al., 2011, Sagiv et al., 2013). For example, chemokines often 

present within the SASP, including CCL2, chemokine (C-C motif) ligand 5 (CCL5) and IL-8, are 

known to recruit Natural Killer cells (NK cells, rapidly responding cytotoxic lymphocytes). 

Importantly, NK cells have a broad specificity to a wide range of chemokines. As such, it is likely 

that NK cells are recruited to multiple senescent sites including telomere-associated and DNA 

damage-associated senescence induction (reviewed in Sagiv and Krizhanovsky, 2013). In 

addition, IL-15 (often present within the SASP) is known to upregulate natural killer group 2D 

receptor (NKG2D) expression in NK cells (Xue et al., 2007, Krizhanovsky et al., 2008) and NKG2D-

activating ligands are often upregulated within senescent cells (Lanier, 2005, Deng et al., 2015). 

Further, the adhesion molecule, intercellular adhesion molecule 1 (ICAM-1) is also upregulated 

within senescent cells. ICAM-1 binds to the NK cell receptor, CD58, and, interestingly, the 

combined function of ICAM-1 and NKG2D ligands results in enhanced NK cell-mediated killing of 

target cells (Hayakawa and Smyth, 2006). 

NKs have been found within the surrounding microenvironment of senescent hepatocytes (Kang 

et al., 2011) and hepatic stellate cells (Krizhanovsky et al., 2008). NKs have now been found to 

target and eliminate senescent cells associated with tissue repair (Krizhanovsky et al., 2008, 

Sagiv et al., 2013) and tumour suppression (Xue et al., 2007). For example, Sagiv et al. 

demonstrated that granule exocytosis (NK cell directed cell killing) inhibition via perforin 

(enables granzyme influx into target cells) knockdown prevented senescent cell elimination and 
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enhanced liver fibrosis in vivo. In addition, in a mouse model of liver carcinogenesis induced by 

p53 depletion, p53 restoration resulted in senescence induction and the clearance of senescent 

cells mediated by NK cell infiltration (Xue et al., 2007). 

As well as eliciting NK cell-mediated immune-clearance, senescent cells have also been shown 

to recruit and activate macrophages and CD4+ T-cells (Krizhanovsky et al., 2008, Kang et al., 

2011). For example, multiple components of the SASP, including macrophage cationic peptide 

2, 3 and 4 (MCP-2, MCP-3 and MCP-4) act to recruit inflammatory monocytes (macrophage 

precursors) and macrophages, neutrophils and dendritic cells are often found within the 

senescence microenvironment (Krizhanovsky et al., 2008, Xue et al., 2007). In addition, SASP 

components, colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) 

(GM-CSF) and colony stimulating factor 3 receptor (granulocyte) (G-CSF) are known to drive 

monocyte production within the bone marrow (Semerad et al., 1999, Semerad et al., 2002). 

Importantly, Krizhanovsky et al. demonstrated that within a mouse model for liver fibrosis, 

senescent hepatic stellate cells secreted the SASP components, Interferon ϒ (IFN-ϒ) and IL-6 

which drove macrophage polarisation towards M1 (classically activated state associated with 

anti-tumour activity) and, in turn, eliminated p53-positive senescent cells. Additionally, Kang et 

al. demonstrated that pre-malignant senescent hepatocytes are cleared by a CD4+ T-cell-

dependent adaptive immune response in mice. In line with this finding, benign naevi within 

human skin expressing multiple senescence-associated markers often gradually regress over 

many decades supporting the existence of immune-mediated elimination of senescent cells in 

vivo in humans (reviewed in Kuilman and Peeper, 2009). 

 Pro-senescence therapy: an emerging anti-cancer strategy 

 Senescence: a barrier to carcinogenesis 

Increasing evidence now suggests that senescence may be activated in vivo in response to an 

oncogenic event and acts as a crucial protective mechanism against tumourigenesis. 

Consequently, it is proposed that senescence bypass is an essential, early step on the road 

towards carcinogenesis. In line with this, the senescence mediators, p53 and p16 are among the 

most commonly mutated or deleted genes in cancer (Hanahan and Weinberg, 2011). As such, it 

is hypothesised that loss of either the p53/p21 or p16/RB signalling pathways in pre-malignant 

cells may enable senescence bypass and tumourigenesis. 

Whilst the vast majority of human malignancies harbour p16 mutations or gene deletions, a 

handful of tumours (including human papilloma virus (HPV)-positive cervical tumours and a 
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subset of breast tumours) arise whilst maintaining high wild type (WT) p16 protein levels. Within 

breast cancer, this p16 signature confers a highly malignant phenotype and a poor prognosis for 

reasons that are currently not fully understood (Hui et al., 2000) (see Section 1.8). Within these 

tumours it is likely that inactivation of the p16/RB signalling axis render cells insensitive to pro-

senescence p16 signalling, enabling uncontrolled cell division despite high p16 protein levels. 

For example, HPV-positive cervical cancer cells (such as the HeLa cell line) often express the 

transforming viral oncogenes E6 and E7. Crucially, E6 drives p53 protein degradation whilst E7 

competes for binding with active RB, freeing E2F-1 and allowing unchecked cell cycle progression 

and transformation (reviewed in Yim and Park, 2005) Further, overexpression of the viral 

oncogene E2 (repressor of E6 and E7) in HeLa cells results in growth arrest, together with an 

upregulation of p53 and p21 expression (Wells et al., 2000). 

 Senescence activation in cancer: an attractive therapeutic strategy 

There is now a growing body of evidence to show that cancer cells from a wide array of human 

malignancies are able to undergo senescence activation both in vitro and in vivo (discussed in 

Section 1.6.3). An elegant example of this was demonstrated by the Lowe laboratory in 2007, 

who showed that p53 restoration in p53-deficient, H-RASV12 – positive liver carcinomas resulted 

in senescence induction and complete tumour regression in mice (Xue et al., 2007). Further, 

MDM2 inhibitors (such as nutlin) that may stabilise p53 are currently under investigation in 

tumours with WT p53 expression (reviewed in Acosta and Gil, 2012). In addition, it has long been 

known that senescence may be activated in cancer cells both in vitro and in vivo in response to 

specific chemotherapeutic agents (termed Therapy-induced senescence, TIS). In vitro studies 

using the p53 WT human cancer cell lines: MCF-7 (Luminal breast adenocarcinoma), HCT116 

(colorectal carcinoma) and A549 (lung adenocarcinoma) have shown that TIS may be induced by 

cytotoxic agents such as Doxorubicin, Camptothecin and Cisplatin (reviewed in Gonzalez et al., 

2015). Further, Han et al., 2002 showed that TIS activated by Camptothecin application was 

mediated by p53 and p21. Importantly, te Poele et al., 2002 was the first to demonstrate that 

TIS accompanied by increase β-gal activity and elevated p16 expression may be activated in vivo 

in breast tissue, following chemotherapy. 

The effectiveness of radiotherapy and chemotherapeutics have improved greatly since their 

initial application over 60 years ago. However, these agents are often ineffective against highly 

aggressive metastatic disease such as p16-positive Basal-like breast cancer (BLBC) where there 

is a desperate clinical need for more effective alternative treatments (see Section 1.8). Given 
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this, the activation of senescence in cancer is fast becoming a highly attractive therapeutic 

strategy and the evolution of novel pro-senescence agents is gaining momentum. 

 Current pro-senescence approaches 

Perhaps the most clinically successful pro-senescence anti-cancer agent is the selective CDK4/6 

inhibitor, PD0332991 or Palbociclib (Pfizer Inc.) Similarly, Abemaciclib and LEE011 directly inhibit 

Cyclin D1 interaction with CDK4/6, and Palbociclib has recently been approved by the FDA for 

use in combination with Letrozole in post-menopausal metastatic hormone receptor-positive 

human epidermal growth factor receptor (HER2)-negative breast cancer (Harding, 2015). Phase 

II and III clinical trials are currently ongoing, however, a recent phase three PALOMA-3 clinical 

trial revealed that Palbociclib in combination with Fulvestrant (Estrogen receptor (ER) 

antagonist) gave rise to an increase in progression free survival in patients with metastatic 

hormone receptor-positive HER2-negative breast cancer when compared to Fulvestrant alone 

(reviewed in Mayer, 2015). In vitro studies have also found that monotherapy with Palbociclib 

results in growth inhibition in HER2-positive breast cancer cell lines and future planned clinical 

trials will examine the effectiveness of Palbociclib in hormone receptor-positive HER2-positive 

tumours (reviewed in Mayer, 2015). Importantly, an in vitro study that aimed to assess the 

effectiveness of Palbociclib within 47 individual breast cancer cell lines showed that 

responsiveness was associated with elevated ER, RB and Cyclin D1 expression and no or low 

levels of p16 (Finn et al., 2009). Of direct relevance, triple negative (TN) (see Section 1.8) p16-

positive BLBC cell lines, such as MDA-MB-468 cells, were highly resistant to Palbociclib-induced 

cell cycle arrest, suggesting that Palbociclib may prove to be ineffective within highly malignant 

p16-positive BLBCs that are often characterised by RB mutations or deletions (Finn et al., 2009). 

In addition to CDK inhibition, a recent study proposed that progestins (activators of the 

progesterone receptor, PR) may activate senescence via forkhead box O1 (FOXO1) and p21 

activation in PR-positive ovarian cancer (Diep et al., 2013). In line with this, phosphatidylinositol-

4,5-bisphosphate 3-kinase (PI3K) (upstream inhibitor of FOXO1) inhibition and PTEN (PI3K 

inhibitor) overexpression has also been found to induce senescence (reviewed in Acosta and Gil, 

2012). Conversely, PTEN inhibition has been found to induce senescence in PTEN+/- tumours, 

demonstrating that the PTEN/PI3K axis is very finely tuned and modulation of this pathway may 

prove to be prone to unfavourable consequences (reviewed in Acosta and Gil, 2012). 

The inhibition of telomerase (an enzyme acquired by over 90% of human cancers and critical for 

maintaining telomeric length, see Section 1.2.1) has also been proposed as a pro-senescence 

anti-cancer strategy. For example, continuous treatment with the telomerase inhibitor, 
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Imetelstat (GRN163L) has been found to induce both apoptosis and senescence (characterised 

by β-gal activity and ϒH2AX foci) within ten different pancreatic cancer cell lines (Burchett et al., 

2014). In addition, disruption of oncogene-addiction in cancer has also been found to induce 

senescence both in vitro and in vivo. For example, C-MYC inhibition via JQ1 (bromodomain 

inhibitor) in C-MYC-driven medulloblastoma has been found to activate senescence in vivo and 

may represent a novel therapeutic approach in this highly malignant cancer subtype 

(Venkataraman et al., 2014). Finally, given the findings generated by Acosta et al., 2013 on the 

paracrine nature of the SASP (see Section 1.2.3), specific SASP pro-senescence components may 

also have the potential to activate senescence in surrounding cancer cells and may form the 

basis of a novel anti-cancer strategy (reviewed in Acosta and Gil, 2012). 

 The importance of senescent cell clearance and senolytics 

Given the complex and often opposing effects associated with senescence activation, at present 

it is difficult to estimate the long-term consequences of pro-senescence therapies.  It is possible 

that post-treatment, senescent cancer cells may be quickly eliminated via endogenous immuno-

clearance mechanisms (discussed in Section 1.5.3), however, an important study by Sanoff et 

al., 2014 suggested that TIS activation may induce long-lasting effects and may even accelerate 

human ageing. Within this study peripheral blood T-cell p16 expression levels were assessed in 

breast cancer patients prior to and at 12 months post-chemotherapy treatment. Strikingly, 

chemotherapy was associated with a statistically significant increase in p16 expression levels 

equivalent to 14.7 years of chronological ageing. Furthermore, this increase in p16 expression 

appeared to be stable several years after chemotherapy treatment suggesting that therapy-

induced senescent cells may remain within the body many years after cytotoxic regimes. This 

data is in line with the observations that cancer survivors treated with chemotherapy often 

experience a multitude of age-associated pathologies later in life such as frailty, cognitive 

impairment and cardiovascular morbidity (Sanoff et al., 2014, Ness et al., 2015).  

In addition to the potential detrimental impacts on ageing, if left unchecked, senescent cancer 

cells may acquire spontaneous mutations, bypass the senescence programme and propagate 

highly malignant drug-resistant secondary tumours, resulting in disease relapse (reviewed in 

Gonzalez et al., 2015). Given this, it is proposed that in order for a pro-senescence therapy to be 

an effective, non-toxic anti-cancer strategy, senescent cancer cells must be rapidly eliminated 

as part of a two-step therapeutic approach. The field of senescent cell elimination is rapidly 

expanding and exciting novel mechanisms for inducing senescent cell death are currently being 

explored. For example, a recent study conducted by Zhu et al., 2015 identified two potential 
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‘senolytic’ agents (Dasatinib and Quercetin) that preferentially eliminated irradiated senescent 

cells both in vitro and in vivo. Dasatinib disrupts apoptosis suppression while Quercetin is a 

known inhibitor of PI3K (implicated in pro-survival and anti-apoptotic signalling). The two agents 

had differential efficacy depending on the cellular context, however, combined application of 

both senolytics resulted in selective killing across a broader range of senescent cell types (Zhu 

et al., 2015). Additionally, in an Eµ-myc transgenic mouse lymphoma model, TIS following 

chemotherapy was associated with enhanced glucose uptake together with increased ATP 

production. Exploitation of the hypercatabolic nature of the therapy-induced senescent cells 

through blocking glucose uptake resulted in preferential apoptosis activation within the 

senescent cells. Crucially, senescent cell clearance was also associated with tumour regression 

(Doerr et al., 2013). Interestingly, a recent proof-of-concept study also showed that TIS cells may 

be preferentially targeted by oncolytic viruses (Weiland et al., 2014). Taken together, these 

studies suggest that strategies harnessing senescence-associated properties, such as apoptosis 

resistance or altered glucose metabolism, may present novel mechanisms for senescent cell 

clearance following pro-senescence therapy. However, further studies ought to be completed 

in order to assess the efficacy of these strategies within senescent cancer cells that have been 

treated with a specific pro-senescence therapy. 

There is now a wealth of evidence to suggest that senescent cells are targeted and eliminated 

from tissues via stimulation of both the innate and adaptive immune system (see Section 1.5.3). 

As such, it is hypothesised that immuno-boosting agents administered after an initial pro-

senescence therapy may function to enhance immuno-clearance of senescent cancer cells in 

vivo. Interestingly, adjuvants are commonly used within vaccinations in order to enhance their 

efficacy (reviewed in Boraschi and Italiani, 2014). MF59 (oil in water emulsion) is often used 

within Influenza vaccinations and functions to enhance monocyte and macrophage recruitment 

at the vaccination site (O'Hagan et al., 2013). Given this, adjuvants injected directly into 

senescent tumours may enhance the immuno-clearance of senescent cancer cells. 

It is likely that a combination of senolytic and immuno-boosting agents will be required in order 

to fully eliminate senescent cancer cells following an initial pro-senescence therapy. However, 

at present, the full impact of widespread senescent cell elimination on human health is unknown 

and there are currently many unanswered questions in the field. For example, it is unclear how 

far the tumour suppressive paracrine effects of the SASP may reach in vivo, or what the effects 

of senescent cell clearance may be on pre-malignant cells. Importantly, the work by Baker et al., 

2011 suggests that senescent cell clearance may indeed be favourable, however, this study was 
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performed in a progeroid mouse model and findings may not be directly transferable to the 

human context. 

 The 80S mammalian ribosome 

 Mammalian ribosomal structure and function 

Ribosomes are ribonucleoprotein translational machines and the primary sites for protein 

synthesis across all kingdoms of life (Ramakrishnan, 2011). The mammalian 80S structure 

consists of two distinct subunits: the large 60S ribosomal subunit, composed of three ribosomal 

RNA (rRNA) molecules (28S, 5S and 5.8S rRNA) and 47 proteins, and the small 40S subunit, 

formed of just one rRNA molecule (18S rRNA) and 33 proteins (Khatter et al., 2015). The 

ribosomal core functions to catalyse translation and is highly conserved across all species. Here, 

located within the small 40S subunit, is the decoding site (DCS), responsible for mRNA reading 

and decoding. In addition, positioned within the 60S subunit are the catalytic peptidyl 

transferase and GTPase-associated centres, required for charged-tRNA recruitment and 

polypeptide chain generation. The nascent amino acid chain is subsequently relocated to the 

peptidyl (P) site and deacetylated transfer RNA (tRNA) is held at the exit (E) site (both within the 

60S subunit) prior to ejection from the ribosome (Khatter et al., 2015, Fatica and Tollervey, 

2002). siRNA screening (presented in Chapter 3) identified 11 ribosomal proteins (RPs) as 

potential senescence evaders within p16-positive cancer cells and six of these (RPL14, RPL18, 

RPL34, RPL35A, RPS3A and RPS7) were prioritised for further validation. The location of these 

RPs within the human 80S ribosome is depicted in Figure 1.4A-B. 

  

 

 Figure 1.4: Molecular structure of the human 80S ribosome. (A) 40S small ribosomal subunit. (B) Human 
80S ribosome. The location of five of the top six RP hits identified within the siRNA screens is shown. 
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Images were generated by Dr. Sander Granneman, Institute of Structural and Molecular Biology, 
University of Edinburgh.   

Recently, a near atomic structure (with an average resolution of 3.6 angstroms, Å) of the human 

80S ribosome was published (Khatter et al., 2015). This work revealed the ribosome to be a 

highly dynamic multiprotein complex capable of subunit rearrangements and widespread 

conformational changes during translation. For example, during translocation, the 40S subunit 

is reported to undergo three major movements resulting in dramatic alterations to RP 

interactions. This analysis by Khatter et al. has identified all potential ligand-binding pockets 

present within the human ribosome and may facilitate structure-guided in silico drug design of 

compounds designed to target abnormal ribosomal function in diseases such as cancer. 

Recently, a new system for naming the 40S and 60S RPs was proposed (Ban et al., 2014) and 

details of the new nomenclature may be found in Table 1.2 (Ban et al., 2014). In order to 

maintain continuity with the current literature, the old nomenclature is used throughout this 

thesis.   

40S small RPs 60S large RPs 

Old name (human) 
New 
name 

Old name (human) 
New 

name 

SA uS2 P0 uL10 

S2 uS5 P1/P2 (αβ) P1/P2 

S3 uS3 L3 uL3 

S3A eS1 L4 uL4 

S4 eS4 L5 uL18 

S5 uS7 L6 eL6 

S6 eS6 L7 uL30 

S7 eS7 L7A eL8 

S8 eS8 L8 uL2 

S9 uS4 L9 uL6 

S10 eS10 L10 uL16 

S11 uS17 L10A uL1 

S12 eS12 L11 uL5 

S13 uS15 L12 uL11 

S14 uS11 L13 eL13 
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S15 uS19 L13A uL13 

S15A uS8 L14 eL14 

S16 uS9 L15 eL15 

S17 eS17 L17 uL22 

S18 uS13 L18 eL18 

S19 eS19 L18A eL20 

S20 uS10 L19 eL19 

S21 eS21 L21 eL21 

S23 uS12 L22 eL22 

S24 eS24 L23 uL14 

S25 eS25 L23A uL23 

S26 eS26 L24 eL24 

S27 eS27 L26 uL24 

S27A eS31 L27 eL27 

S28 eS28 L27A uL15 

S29 uS14 L28 eL28 

S30 eS30 L29 eL29 

RACK1 RACK1 L30 eL30 

 

L31 eL31 

L32 eL32 

L34 eL34 

L35 uL29 

L35A eL33 

L36 eL36 

L36A eL42 

L37 eL37 

L37A eL43 

L38 eL38 

L39 eL39 

L40 eL40 
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L41 eL41 

 Table 1.2: Table containing the new nomenclature for the small 40S and large 60S RPs. RPs are listed in 
numerical order according to the old nomenclature. ‘u’ denotes a RP universal to bacterium, yeast and 
humans. ‘e’ denotes those RPs present within eukaryotic ribosomes only. Only those RPs present within 
the human ribosome are listed. RPs unique to bacterium are not present within this list. Data taken from 
Ban et al., 2014. 

 The nucleolus: the site for ribosomal assembly 

During the early nineteenth century, German physiologists Rodolph Wagner and Gabriel 

Valentin as well as the Italian pathologist, Giuseppe Pianese were among the first to record their 

observations of the nucleolus (reviewed in Lam and Trinkle-Mulcahy, 2015), however, it wasn’t 

until the mid-1960s that it was discovered to be the site for rRNA transcription and ribosomal 

biosynthesis (Brown and Gurdon, 1964, reviewed in Pederson, 2011). It is now accepted that the 

nucleolus is not simply a feature of the nuclear architecture, but a dynamic non-membrane 

bound organelle that forms at specific chromosomal loci known as nucleolar organising regions, 

containing ribosomal DNA (rDNA) (reviewed in Pederson, 2011 and see Figure 1.5A-C). Further, 

electron microscopy has revealed that the mammalian nucleolus contains three functionally 

distinct compartments: the Fibrillar Centre (FC); the Dense Fibrillar Centre (DFC); and the 

Granular Component (GC) (Miller and Beatty, 1969, and reviewed in Pederson, 2011). The FC 

contains the RNA polymerase I, (RNA Pol I) which is responsible for rRNA transcription. The DFC 

contains early pre-rRNA processing factors and rRNA transcription occurs at the border between 

these two regions. Late pre-rRNA processing and ribosomal subunit assembly occurs within the 

GC region before transportation of the pre-ribosomal subunits into the nucleoplasm (Koberna 

et al., 2002, and reviewed in Pederson, 2011). 
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Figure 1.5: Nucleolar disassembly and reassembly during the cell cycle. (A-B) Transmission electron 
microscopy (TEM) images of proliferating MDA-MB-468 cells. Arrows denote the nucleolus. Images were 
taken by Guilia Mastroianni, The School of Biological and Chemical sciences, Queen Mary, University of 
London. (C) Cartoon depicting nucleolar disassembly and reassembly during the cell cycle. The nucleolus 
is highly dynamic and forms at specific chromosomal loci containing actively transcribing rDNA regions. 
During the early phases of mitosis rDNA transcription is downregulated and the nucleoli disassembles. 
However, during Telophase and G1 the nucleoli reassembles to coincide with rDNA transcription 
activation. During S phase and G2 the nucleoli is often enlarged, reflecting an increase in rDNA 
transcription as the cell prepares to divide once again (Reviewed in Quin et al., 2014). Light red denotes 
the nucleus, dark red denotes the nucleoli.  

Nucleoli purification and mass spectrometry has revealed that the mammalian nucleolus 

contains approximately 4,500 abundant proteins, the vast majority of which are not components 

of the mature ribosome (Andersen et al., 2002, Scherl et al., 2002, Ahmad et al., 2009, Pederson, 

2011). The function of these non-ribosomal nucleolar-associated proteins is yet to be fully 

deciphered, however, a recent study using HeLa cells has identified 286 that are required for 

pre-rRNA processing (Tafforeau et al., 2013). Importantly, 11 of these genes were validated as 

pre-rRNA processors and many are upregulated in malignancies including breast cancer (Butt et 

al., 2008). As such, these genes may represent novel potential biomarkers for ribosomal 

maturation dysfunction within diseases such as cancer or ribosomeopathies (see Section 1.7.5). 

 Pre-rRNA processing and eukaryotic ribosomal biosynthesis 

Mammalian ribosomal biosynthesis is complex and tightly regulated, and accounts for 

approximately 80% of the transcriptional activity of a rapidly dividing cell such as a cancer cell 
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(Warner, 1999, reviewed in de las Heras-Rubio et al., 2014). For example, it is estimated that a 

dividing HeLa cells generates approximately 7,500 ribosomal subunits per minute in order to 

meet its high translational demands (Lewis and Tollervey, 2000, Granneman and Tollervey, 2007, 

and reviewed in Leary and Huang, 2001). Consequently, the process is extremely ‘expensive’ and 

a rate limiting step in the proliferation of a highly transformed cell (reviewed in de las Heras-

Rubio et al., 2014). The process spans the nucleolus, nucleoplasm and cytoplasm and requires 

the synchronised function of RNA pol I, II and III (reviewed in Tschochner and Hurt, 2003). In 

brief, ribosomal biosynthesis involves two key events: multi-step pre-rRNA processing to form 

the four mature rRNA molecules, and the assembly of RPs with each other and the structural 

rRNA to form the final mature ribosome. In order to generate a fully functional 80S mammalian 

ribosome these two processes must be co-ordinately regulated, however, at present, it is not 

clear how the pathways interact and details of the order and timings of these events in vivo is 

lacking. It is likely that alterations to the timing or localisation of RP binding to pre-rRNA could 

severely disrupt the rate of ribosomal biosynthesis, impacting on cell cycle progression and final 

ribosomal composition (reviewed in Tschochner and Hurt, 2003). 

The rate limiting step during ribosomal biosynthesis is the complex process of rRNA maturation 

reviewed in Lafontaine, 2015). In Saccharomyces cerevisiae (S. cerevisiae) the process requires 

over 200 non-ribosomal proteins and approximately 100 small non-coding RNAs (Ferreira-Cerca 

et al., 2007). In higher eukaryotes, the process of pre-rRNA processing is less-well understood, 

however, a consensus model for human pre-rRNA processing has been constructed (Figure 1.6). 

In summary, the mature rRNAs (18S, 5.8S and 28S) are first transcribed as a single ploycistronic 

transcript (47S pre-rRNA) by RNA Pol I within the nucleolus. The 47S pre-rRNA then undergoes 

a complex series of cleavage events via two distinct pathways (Pathway A, a minor pathway or 

Pathway B, see Figure 1.6). Maturation pathways A and B are known to differ in terms of their 

kinetics and order of pre-rRNA cleavage, however many of the pre-rRNA processing sites are 

conserved across both pathways. The 5S rRNA is transcribed separately within the cytoplasm by 

RNA Pol III and is translocated to the nucleolus for assembly. Subsequently, the mature rRNA 

molecules (18S, 5.8S, 28S and 5S) are folded and assembled together with specific RPs to form 

the pre-ribosomal 40S and 60S subunits (reviewed in Lafontaine, 2015). Importantly, studies in 

S. cerevisiae have revealed that 5’ and 3’ cleavage of the 47S pre-rRNA homolog (35S pre-rRNA 

triggers the formation of the pre-ribosomal subunits and initiates the recruitment of specific 

non-ribosomal association factors required for subunit biogenesis (Wehner et al., 2002, and 

reviewed in Tschochner and Hurt, 2003, see Figure 1.7). 
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Figure 1.6: Schematic depicting pre-rRNA processing in human cells. 5’ and 3’ site specific cleavage of 
the 47S pre-rRNA molecule results in the generation of the 45S pre-rRNA. The 45S pre-rRNA is 
subsequently processed via two distinct rRNA maturation pathways, Pathway A (minor pathway) or 
Pathway B (major pathway). Within Pathway A, 41S pre-rRNA undergoes two separate cleavage events to 
form the pre-rRNA molecules, 21S and 32S. The 32S pre-rRNA is then cleaved to generate the two mature 
rRNA molecules, 5.8S and 28S for incorporation into the 60S ribosomal subunit. The 21S pre-rRNA 
molecule is then subsequently cleaved to form the 18S-E intermediate rRNA molecule. The final cleavage 
event resulting in the generation of the mature 18S rRNA molecule occurs within the cytoplasm. Within 
Pathway B, a single cleavage event with the 45S pre-rRNA results in the generation of the 30S and 32S 
pre-rRNA molecules. Subsequently, the 21S and 32S pre-rRNA molecules are processed in the same way 
as Pathway A (Image adapted from Lafontaine, 2015). 
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Figure 1.7: Schematic summarising 80S eukaryotic ribosomal biogenesis in S. cerevisiae. The 90S pre-
ribosomal particle is constructed within the nucleolus at the site of the 35S pre-rRNA and contains 
structural RPs (predominantly 40S RPs), non-ribosomal association factors and the U3 snoRNP 
(ribonucleoprotein made up of the U3 snoRNA and 28 U3-associated proteins). Cleavage of the 35S pre-
rRNA triggers the generation of two pre-ribosomes (the pre-60S and the pre-40S subunits). 60S RPs and 
60S-associated non-ribosomal factors assemble at the 27S pre-rRNA while 40S RPs are assembled at the 
20S pre-rRNA. Specific methyltransferases and kinases, such as Dim1p and RIO2P, assemble at the 40S 
pre-ribosome and are required for 20S pre-rRNA cytoplasmic cleavage. The pre-ribosomes are 
transported through the nucleus and are exported into the cytoplasm via nuclear pores. Once in the 
cytoplasm the non-ribosomal association factors disassociate from the pre-ribosomal subunits and the 
80S mature ribosome is generated. In yeast the mature 18S rRNA molecule is generated within the 
cytoplasm prior to 80S formation, however within mammalian cells, this final cleavage event occurs within 
the nucleus (Schematic adapted from Tschochner and Hurt, 2003). 

At present, the best model for RP assembly has evolved from studies conducted in S. cerevisiae 

(Tschochner and Hurt, 2003, see Figure 1.7). Both structural RPs and associated synthesis factors 

are transcribed and translated in the cytoplasm and are subsequently translocated into the 

nucleolus (reviewed in Tschochner and Hurt, 2003). Here, an early ribonucleoprotein particle, 

known as the 90S pre-ribosomal subunit, is constructed at the site of the 47S pre-rRNA homolog, 

35S pre-rRNA (Udem and Warner, 1972, Trapman et al., 1975). As well as pre-rRNA, the 90S 

particle also contains structural RPs (predominately 40S components) and numerous ribosomal 

synthesis factors, such as endonucleases and methyltransferases, critical for pre-rRNA 

processing (Nissan et al., 2002, Grandi et al., 2002, and reviewed in Tschochner and Hurt, 2003). 

Importantly, encompassed within the 90S particle is the Small Subunit Processome (SSP) that 

assembles co-transcriptionally at the 5’ end of the 35S pre-rRNA. The SSP contains pre-rRNA 

processing factors, including methyltransferases, required for 18S maturation and the small 

nucleolar RNA, U3 snoRNA, required for guided site specific pre-rRNA cleavage (Dragon et al., 

2002, reviewed in Tschochner and Hurt, 2003). Importantly, the SSP mediates a critical early 
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cleavage event at the 5’ and 3’ ends (sites A0 and A1) of the 35S pre-rRNA molecule (Dragon et 

al., 2002, reviewed in Tschochner and Hurt, 2003). This cleavage event triggers the recruitment 

of additional 40S synthesis factors to the 90S particle and the generation of the two pre-

ribosomal subunit particles (Wehner et al., 2002, reviewed in Tschochner and Hurt, 2003). 

Subsequently, 60S structural RPs and synthesis factors are recruited to the 60S pre-ribosomal 

subunit and assembled on the 27S pre-rRNA (Fatica et al., 2002). 60S synthesis factors include: 

pre-rRNA modifiers required for 5.8S and 25S rRNA generation (a pre-requisite for nucleolus 

exit); GTPases and helicases for correct rRNA folding; and transporters essential for subunit 

translocation to the nucleoplasm (Fatica et al., 2002, reviewed in Tschochner and Hurt, 2003, 

and Fatica and Tollervey, 2002). Further conformational changes and quality control checks 

occur within the nucleoplasm before the mature 60S subunit enters the cytoplasm (reviewed in 

Tschochner and Hurt, 2003). Independent of 60S subunit generation, 35S cleavage also triggers 

40S pre-ribosomal subunit processing. Cleavage initiates the majority of the 40S synthesis 

factors (present within the 90S particle) to disassociate from the pre-ribosomal subunit and the 

recruitment of specific methyltransferases and protein kinases such as RIO2P to the 20S pre-

rRNA (Schafer et al., 2003, reviewed in Tschochner and Hurt, 2003). It is important to note that 

in mammalian cells, the 21S cleavage event to generate the 18S-E rRNA molecule occurs within 

the nucleus, unlike in yeast, where 20S cleavage occurs within the cytoplasm (Vanrobays et al., 

2001). Interestingly, the 40S pre-ribosomal subunit translocates much faster through the 

nucleoplasm and undergoes fewer conformational changes than the larger subunit before 

exiting into the cytoplasm.  Within both yeast and mammalian cells, the final 80S ribosome is 

generated within the cytoplasm and remains in the cytosol or is translocated to the rough 

endoplasmic reticulum, where it performs its translational function (reviewed in Tschochner and 

Hurt, 2003, and Fatica and Tollervey, 2002). 

At present, the full hierarchy of RP incorporation into the ribosome is unknown. However, a 

recent study conducted in S. cerevisiae identified RPS5 as a potential early 40S component 

required for pre-rRNA processing and the correct incorporation of eight additional 40S RPs 

including RPS15 and RPS10 (Ferreira-Cerca et al., 2007). Furthermore, the exact function of each 

of the RPs is yet to be deciphered, however, a growing body of evidence suggests that many RPs 

conduct specific functions in addition to their structural role within the mature ribosome. For 

example, RPL10 has recently been implicated in 60S subunit nuclear exit (Gadal et al., 2001, 

reviewed in Fromont-Racine et al., 2003) and many proteins, including RPS18 and RPL35A, have 

been found to play important roles within rRNA processing (Ferreira-Cerca et al., 2005, Babiano 

and de la Cruz, 2010, Ilin et al., 2011). Additionally, both 60S and 40S components have been 



52 
 

found to harbour extra-ribosomal functions such as cell cycle regulation (Fumagalli et al., 2009, 

see Section 1.7.6). Together, these studies suggest that each RP component may play a unique 

biological role either during ribosomal biosynthesis or within a wider cellular pathway and that 

the loss of key RPs (such as RPL10) may be devastating for the generation of functional 

ribosomes. Further, it is likely that there are varying degrees of redundancy within the RP 

population depending on the stage of ribosomal integration (Ferreira-Cerca et al., 2007). As 

such, the loss of a subset of RPs may not be fatal for the cell, but instead, may result in alterations 

to ribosomal conformation and translational capacity. Further studies on the hierarchy of RP 

incorporation may help subcategorise the RPs into ‘early’ and ‘late’ components and identify 

those proteins essential for biogenesis (such as RPS5) and those with greater redundancy. 

It is important to note that the majority of the work to fully elucidate the mechanism of 

ribosomal biogenesis has been performed in the eukaryotic model, S. cerevisiae. Until recently, 

it was assumed that details ascertained using this model could be directly applied to higher 

eukaryotic organisms, however, this is now considered to be a simplistic view as it is highly likely 

that mammalian ribosomal biosynthesis is far more complex than the mechanism described 

here (Tafforeau et al., 2013). For example, the mammalian ribosome is larger and is known to 

contain additional RPs with no known yeast homologs (Tafforeau et al., 2013). In addition, the 

mammalian nucleolus contains three distinct compartments as opposed to just two found in 

yeast and is known to contain at least ten times the amount of abundant proteins (Tafforeau et 

al., 2013). Together, this indicates that, at the very least, far more ribosomal processing factors 

are involved in mammalian ribosomal synthesis than in simpler eukaryotic organisms and future 

work ought to concentrate on fully dissecting ribosomal biogenesis in mammalian cells. 

  Regulating eukaryotic ribosomal biosynthesis 

Ribosomal biosynthesis is tightly regulated at multiple stages including: RP synthesis and 

translocation; rRNA transcription, maturation; and pre-ribosomal subunit assembly (reviewed in 

Leary and Huang, 2001). Crucially, the rate of ribosomal biosynthesis is altered in order to meet 

the cell’s current translational demands and is closely tied to the cell cycle. For example, 

biosynthesis is enhanced in response to proliferative stimuli and reduced in response to 

differentiation, protein synthesis inhibition as well as environmental ques such as nutrient 

starvation, heat shock or DNA damage (Grummt et al., 1976, and reviewed in Ruggero and 

Pandolfi, 2003, and Leary and Huang, 2001). A down-regulation of ribosomal biosynthesis is also 

required during mitosis to ensure correct cell cycle progression (Klein and Grummt, 1999, 

Ruggero and Pandolfi, 2003). In mouse fibroblasts, serum starvation has been shown to inhibit 
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ribosomal biosynthesis as well as downregulating mRNA levels of a key assembly protein, Erb1p 

(Strezoska et al., 2000). Further, heat shock or nutrient depletion in yeast has been shown to 

reduce the expression of snoRNA-binding rRNA-processing protein IMP4 (IMP4P), a key U3 

snoRNP component required for pre-rRNA processing  (Planta et al., 1999). In addition, defective 

cell membrane synthesis in yeast during growth has also been shown to down-regulate pre-

rRNA processing and RP assembly (Tsuno et al., 2000, reviewed in Leary and Huang, 2001). 

However, it is important to note that the mechanisms responsible for mediating such effects in 

response to environmental cues in mammalian cells in vivo remain poorly understood. 

The nucleolar phosphoprotein, nucleolin has also been implicated in eukaryotic ribosomal 

biosynthesis regulation. For example, as well as being required for pre-rRNA processing, the 

protein has also been found to bind to rDNA and enhance rRNA transcription via chromatin 

remodelling (reviewed in Leary and Huang, 2001). Furthermore, mitogenic signals, such as v-

myc avian myelocytomatosis viral oncogene homolog (MYC) (oncogene) activation, have been 

found to increase nucleolin and nucleophosmin (required for ribosomal nuclear export) 

expression (Greasley et al., 2000), and DNA damage in yeast has been reported to induce p53 

stabilisation and downregulate nucleolin and fibrillarin (nucleolar protein involved in pre-rRNA 

processing) expression levels (Jelinsky and Samson, 1999). In addition, MYC has also been shown 

to activate Pol I, II and III transcription, suggesting that MYC may function as a broad regulator 

of ribosomal biosynthesis (Gomez-Roman et al., 2006, and reviewed in de las Heras-Rubio et al., 

2014). 

Importantly, the two key tumour suppressors, RB and p53 are also implicated in mammalian 

ribosomal biosynthesis regulation (reviewed in de las Heras-Rubio et al., 2014, Leary and Huang, 

2001). Importantly, rDNA hypermethylation and histone deacetylation is associated with rDNA 

silencing (Chen and Pikaard, 1997). RB has been found to bind Pol I and may recruit specific 

histone deacetylases to rDNA repeats within the nucleolus which, in turn, may act to condense 

the chromatin and silence rRNA synthesis (reviewed in Leary and Huang, 2001). In addition, RB 

has also been found to bind UBF (rRNA transcription factor) both in vitro and in vivo and inhibit 

rRNA transcription by RNA Pol I (Cavanaugh et al., 1995, Voit et al., 1997). Similarly, p53 has 

been found to bind SL-1 (rRNA transcriptional complex) preventing interaction of the complex 

with UBF and suppressing rRNA transcription initiation (Zhai and Comai, 2000). 

 The cancer ribosome 

The nucleolus is a dynamic structure that disassembles and reassembles in accordance with RNA 

Pol I activity and the cell cycle (Figure 1.5). Disassembly occurs early during mitosis and coincides 
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with the inactivation of rDNA transcription. Reassembly occurs during telophase and G1, and is 

triggered by the activation of rRNA transcription (reviewed in Quin et al., 2014). Given this, 

nucleolar number and morphology is often used to indicate the rate of ribosomal biosynthesis 

as an increase in nucleolar number or size is an indicator of enhanced rRNA transcription 

(Derenzini et al., 2000). Interestingly, this nucleoli signature has long been associated with 

cancer by pathologists and is thought to reflect their enhanced rate of ribosome generation 

required for unchecked proliferation and high translational demands (reviewed in Lam and 

Trinkle-Mulcahy, 2015). Importantly, a more recent study has identified an enlarged and 

irregular nucleoli as a poor prognostic biomarker within breast cancer (see Figure 1.8), linking 

abnormal nucleolar morphology and activity with a highly aggressive cancer phenotype 

(Derenzini et al., 2009). 

 

Figure 1.8: Cartoon depicting nucleoli morphology within breast cancer samples associated with either 
a good or poor prognosis. Cartoon images have been adapted from Derenzini et al., 2009 where breast 
cancer sections were silver stained to highlight the argyro-philic nucleolar organiser region proteins. (A) 
Cartoon representation of the nucleoli morphology within a breast cancer section taken from a slow 
growing, p53 WT, RB WT tumour, associated with a good prognosis. (B) Cartoon representation of the 
nucleoli morphology within a breast cancer section taken from a highly mitotic, p53 mutated, RB-null 
tumour, associated with a poor prognosis. Light red denotes the nucleus, dark red denotes the nucleoli. 

As well as an altered nucleolar morphology, enhanced ribosomal biosynthesis is often associated 

with cancer and multiple RPs have been found to be overexpressed in a wide variety of human 

malignancies (reviewed in Ruggero and Pandolfi, 2003, de las Heras-Rubio et al., 2014). Further, 

the collection of rare diseases known as ribosomeopathies, characterised by mutations within 

RPs, including RPL35A, RPS10 and RPS26, are often associated with an increased cancer risk 

indicating that disrupted ribosomal biosynthesis may indeed drive cellular transformation 

(Doherty et al., 2010, Farrar et al., 2008). In addition, studies have shown that ribosomal 
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biosynthesis is tightly controlled by key tumour suppressor genes to ensure correct cell cycle 

progression (see Section 1.7.4). As such, cells harbouring deletions or inactivating mutations 

within these genes (commonly found in BLBC, see Section 1.8) may be highly vulnerable to 

enhanced ribosomal biosynthesis resulting in unchecked cell cycle progression and 

transformation. Similarly, constitutive activity of oncogenes, such as MYC and mitogen-activated 

protein kinase 1 (ERK) (commonly mutated in cancer), may also act to increase the rate of 

ribosomal biosynthesis and drive transformation (reviewed in de las Heras-Rubio et al., 2014). 

Together, this evidence suggests that in cancer the regulatory mechanisms responsible for 

restricting ribosomal biogenesis are disrupted and the rate of ribosomal biosynthesis is 

dramatically increased in order to support enhanced proliferation (reviewed in Ruggero, 2012). 

It is also hypothesised that cancer ribosomes may have an altered RP composition (driven by 

dysregulated biosynthesis and increased expression of specific RPs) and may direct translation 

to favour a cancer translatome, driving malignancy (van Sluis and McStay, 2014). Consequently, 

targeting the cancer ribosome as a novel anti-cancer strategy is highly favourable and may yield 

effective cancer-specific therapeutic agents. For example, agents that specifically target RNA Pol 

I and inhibit rDNA transcription, such as CX-3543 and CX-5461, have been shown to be highly 

effective anti-cancer agents (reviewed in Quin et al., 2014). CX-3543 has been found to induce 

apoptosis in a panel of cancer cell lines, regardless of p53 status, and to slow tumour growth 

within breast (MDA-MB-231) and pancreatic cancer xenograft models (Drygin et al., 2009). A 

more recent Pol I inhibitor, CX-5461, is currently undergoing Phase I trials and has been found 

to be highly effective in a wide range of human cancers in vitro. Importantly, CX-5461 treatment 

induced senescence in melanoma and pancreatic cancer xenograft models and apoptosis (in a 

p53-dependent manner) in haematological malignancies in vivo (Drygin et al., 2011).  Strikingly, 

these in vivo studies showed that CX-5461 functions in a cancer-specific manner, preferentially 

killing lymphoma and leukemic cells whilst causing no deleterious effects to normal B-cells 

(Bywater et al., 2012). Crucially, the oncogene and master regulator of ribosomal biosynthesis, 

MYC is often overexpressed or amplified within these haematological malignancies, resulting in 

an addiction to enhanced Pol I activity and elevated rDNA transcription (Bywater et al., 2012). 

Further, MYC-driven Eμ-MYC lymphomas are highly sensitive to CX-5461 treatment (Bywater et 

al., 2012). As such, it is proposed that this cancer-associated addiction to enhanced ribosomal 

biosynthesis may enable CX-5461 specificity and can be exploited in order to drive the selective 

killing of cancer cells. Together, these studies provide the first evidence in support of ribosomal 

targeting as an anti-cancer therapeutic strategy. Further, this data also shows that in solid 
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tumours, agents targeting ribosomal biosynthesis may induce senescence, suggesting that this 

strategy could form the basis of a novel pro-senescence therapeutic approach in cancer. 

 Nucleolar-mediated senescence induction 

As well as cancer, the ribosomal machinery is also implicated in cell cycle regulation and 

senescence induction (Chen et al., 2007, Fumagalli et al., 2009). As well as being the site for 

ribosomal biosynthesis, the nucleolus is often described as a ‘stress sensor’ that acts as a critical 

hub integrating stress signals and co-ordinating the activation and stabilisation of p53 (reviewed 

in Boulon et al., 2010). Activation or stabilisation of p53 via the nucleolus often results in a halt 

in cell cycle progression or senescence induction together with a reduction in ribosomal 

biosynthesis (reviewed in Boulon et al., 2010). As such, altered nucleolar morphology (cancer 

hallmark) or composition may underlie a cell’s ability to induce a p53-mediated cell cycle arrest 

and enable senescence evasion. 

The nucleolus is dynamic and proteins are continually translocated to and from it and the 

nucleoplasm (reviewed in Quin et al., 2014). Importantly, nucleolar-associated proteins have 

been found to regulate p53 activity at multiple levels including translation, protein trafficking 

and MDM2-mediated degradation (reviewed in Boulon et al., 2010). For example, nucleolin and 

the large subunit RP, RPL26 have been shown to bind directly to the 5’ UTR of p53 mRNA and 

enhance protein translation (Ofir-Rosenfeld et al., 2008). In addition, ubiquitinated p53 is 

trafficked into the nucleolus. If this translocation occurs in collaboration with components of the 

ribosome, a downregulation of ribosomal biosynthesis and a subsequent reduction in ribosomal 

subunit translocation into the cytoplasm may also result in nuclear p53 accumulation and cell 

cycle arrest (reviewed in Boulon et al., 2010). 

Nucleolar-associated proteins have also been found to inhibit the interaction of p53 and the 

ubiquitin ligase enzyme, MDM2 in response to stress or ribosomal biosynthesis disruption 

(reviewed in Boulon et al., 2010). For example, the predominantly nucleolar protein, p14 is 

known to bind MDM2 and inhibit p53 ubiquitination (Llanos et al., 2001). Studies have shown 

that in response to genotoxic or oncogenic stress, translocation of nucleophosmin (nucleolar 

protein) to the nucleus results in an upregulation of p14 expression and p53 stabilisation (Chen 

et al., 2010). Further, more recent studies have shown that the translocation of key RPs, 

including RPL11; RPL5; RPL23; RPL26; RPL37; RPS7; RPS15; and RPS20, from the nucleolus in 

response to RP knockdown results in p53-dependent senescence induction (reviewed in Boulon 

et al., 2010). For example, a landmark paper in 2009 showed that siRNA knockdown of the small 

ribosomal subunit protein, RPS6 resulted in senescence induction in A549 cells (human lung 
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adenocarcinoma cell line, p53+/+ p16-null) via RPL11-mediated MDM2 inhibition and p53 

stabilisation (Fumagalli et al., 2009). Together, these studies indicate that the translocation of 

specific ribosomal components from the nucleolus may be an important mechanism for p53-

mediated senescence induction in response to cellular stress. Moreover, it is proposed that the 

efficiency of this mechanism may be negatively correlated with transformation, and that within 

a highly proliferative cell RPs may function to synthesise ribosomes and may be unavailable for 

nuclear translocation and MDM2 stabilisation. As such, enhanced ribosomal biosynthesis within 

highly malignant cells may also drive senescence evasion (by disabling the nucleolar stress 

response pathway) as well as increasing translational capacity (reviewed in Boulon et al., 2010). 

 Breast cancer and Basal-like breast cancer 

 Breast cancer is a collection of highly heterogeneous diseases 

The incidence of breast cancer has risen steadily since the mid-1970s and is now the most 

common cancer in the UK with approximately 50,000 newly diagnosed cases every year (Cancer 

Research UK, 2014). Improved adjuvant therapies and earlier diagnoses have dramatically 

improved patient outcomes within the UK, however, breast cancer remains one of the most 

common causes of death from cancer in women in the UK, second only to lung cancer (Cancer 

Research UK, 2014). Breast cancer is a collection of highly heterogeneous diseases and is 

commonly subcategorised upon diagnosis according to a range clinicopathological criteria 

including patient age, tumour size, tumour grade, lymph node invasion, hormone receptor 

status and, more recently, Ki67 staining (reviewed in Harbeck et al., 2014). Molecular profiling 

has revealed the extent of the disease heterogeneity, identifying at least seven intrinsic breast 

cancer subtypes including Luminal A, B and C, HER2-enriched, normal-like, Basal-like and 

Claudin-low/mesenchymal-like tumours (reviewed in Baird and Caldas, 2013). The first of these 

studies, conducted by Parker and colleagues, developed a ‘50-gene subtype predictor’ known as 

the Prediction Analysis of Microarrays (PAM50) gene signature and functions as an indicator of 

intrinsic subtype and patient survival, independent of immunohistochemical staining (Parker et 

al., 2009). The PAM50 gene signature was subsequently validated within over 2,400 breast 

tumour samples and NanoString Technologies recently gained FDA approval for its Prosigna™ 

Breast Cancer Prognostic Gene Signature Assay (based on the PAM50 gene signature) for use as 

a prognostic indicator within post-menopausal hormone receptor-positive breast cancer 

(reviewed in Harbeck et al., 2014). A brief outline of each of the intrinsic breast cancer subtypes 

may be found below. 



58 
 

 Breast cancers may be subcategorised into seven intrinsic subtypes 

Luminal A tumours (account for approximately 40% of all breast cancers) are commonly low 

grade and are associated with the most favourable prognosis of all the disease subtypes. 

Tumours within this subtype express genes associated with the Luminal epithelial layer of the 

mammary gland, such as the ER and PR), and commonly have low levels of Ki67 staining and 

HER2 expression (reviewed in Kittaneh et al., 2013). Both Luminal A and B tumours are regarded 

as hormone-sensitive diseases, however, Luminal B tumours (account for approximately 20% of 

all breast cancers) have a higher incidence of p53 mutations (reviewed in Baird and Caldas, 2013, 

see Table 1.3), are often associated with a more aggressive phenotype, a greater incidence of 

lymph node involvement and an elevated risk of disease relapse (Sorlie et al., 2001). Luminal B 

tumours have varied HER2 expression levels and are associated with a reduced response to ER-

targeted therapies (such as Tamoxifen) together with a poorer prognosis compared to Luminal 

A tumours (Sorlie et al., 2001, and reviewed in Kittaneh et al., 2013). Luminal C tumours (less 

commonly recognised intrinsic subtype) are less well characterised and are associated with 

elevated expression of a particular group of genes including transferrin receptor (CD71), nuclear 

protein p40 and squalene monooxygenase (SQLE) (Sorlie et al., 2001). Interestingly this gene 

signature is also present within Basal-like and HER2-enriched tumours and Luminal C tumours 

are associated with the poorest prognosis of all the Luminal subtypes (Sorlie et al., 2001, and 

reviewed in Kittaneh et al., 2013). 

The HER2-enriched subtype (accounts for 20-30% of all breast cancers) is characterised by HER2 

oncogene overexpression and tumours are often highly proliferative, contain p53 mutations 

(reviewed in Baird and Caldas 2013, see Table 1.3), are hormone receptor-negative and non-

responsive to endocrine therapies (Perou et al., 2000, Sorlie et al., 2001). Tumours within this 

subgroup are commonly of a higher grade when compared with Luminal tumours and are often 

associated with a much poorer prognosis than Luminal tumours (Sorlie et al., 2001, and reviewed 

in Kittaneh et al., 2013). However, since its approval in 1998, the use of Trastuzumab (Herceptin) 

(a monoclonal antibody that binds and inhibits HER2) has significantly improved the prognosis 

of HER2-positive patients (reviewed in Figueroa-Magalhães et al., 2014). Tumours within the 

recently recognised Claudin-low/mesenchymal-like subgroup are characterised by an epithelial-

to-mesenchymal transition gene signature (Prat et al., 2010, reviewed in Kittaneh et al., 2013). 

Here, tumours commonly overexpress genes associated with cellular communication, cellular 

matrix formation, cell differentiation, migration, angiogenesis and may express the stem cell-

like signature, CD44+/CD24-. In addition, tumours are commonly hormone receptor and HER2-

negative and until recently, were often categorised within the Basal-like subgroup  (Prat et al., 
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2010). Tumours within the normal-like subgroup may be ER-positive or negative and are often 

associated with an intermediate prognosis (Parker et al., 2009). Parker and colleagues estimated 

that approximately 10% of breast cancers may be classified as normal-like, however they 

suspected that this subgroup may in fact represent an artefact caused by normal tissue 

contaminants within the tumour specimens (Parker et al., 2009). 

BLBC account for around 8-22% of all breast cancer cases depending on ethnicity and 

characteristically express genes associated with the normal Basal epithelial layer such as 

cytokeratins 5, 6, 14 and 17, laminin, fatty-acid binding protein 7 and integrin-β4 (Perou et al., 

2000, reviewed in Kittaneh et al., 2013). The subtype frequently affects younger patients (below 

the age of 50) and tumours are often HER2, ER and PR negative (TN) therefore, targeted 

treatments such as Trastuzumab or Tamoxifen are not effective within this disease subtype 

(reviewed in Kittaneh et al., 2013). Histological assessment has shown that Basal-like tumours 

are commonly high grade and highly mitotic with pushing borders and a central necrotic zone 

and are often associated with lymphocytic infiltrates (reviewed in Badve et al., 2011). In 

addition, these tumours often harbour p53 mutations (reviewed in Baird and Caldas 2013, see 

Table 1.3), have high mRNA levels of p16 and Cyclin E1 and exhibit RB loss of heterozygosity 

(LOH) together with RB pathway dysregulation (Herschkowitz et al., 2008). Unlike many Luminal 

tumours, BLBCs do not frequently contain phosphatidylinositol-4,5-bisphosphate 3-kinase, 

catalytic subunit alpha (PIK3CA) or GATA binding protein 3 (GATA3) mutations and instead, are 

characterised by a highly heterogeneous mutational landscape (reviewed in Baird and Caldas 

2013, see Table 1.3). Critically, Basal-like tumours are highly aggressive and often metastasise 

(usually to the lungs, liver and central nervous system, CNS) prior to diagnosis and, as a 

consequence, BLBC patients have a much poorer prognosis than women with any other breast 

cancer subtype (reviewed in Toft and Cryns, 2011). For example, approximately 46% of patients 

with metastatic TN BLBC will develop parenchymal CNS metastases, associated with a median 

survival of less than five months (Lin et al., 2008). Due to the lack of validated molecular targets 

in BLBC, currently, Basal-like tumours are treated with conventional chemotherapies, such as 

Doxorubicin (DNA-damaging anthracycline) and Paclitaxel (microtubule-stabilising taxane). 

However, due to their non-specific nature, these agents and are associated with widespread 

dose-limiting cytotoxic side effects and a poor patient outcome in BLBC (reviewed in Toft and 

Cryns, 2011). Consequently, the majority of women with BLBC do not achieve complete 

pathological response and are at significant risk of disease relapse and death within the first two 

to five years of diagnosis (Carey et al., 2007). More recently, inhibition of the epidermal growth 

factor receptor (EGFR) has been explored as a novel targeted treatment strategy in BLBC. 
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However, phase I and II clinical trials of EGFR inhibitors have failed to improve survival in those 

patients with pre-treated TN BLBC (Green et al., 2009).  

 Approximate mutation frequency (%) 

Gene mutation 
Luminal 

A 
Luminal 

B 
HER2-

enriched 
Basal-like 

Phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit alpha 

(PIK3CA) 
40-45 29 39 9 

Tumor protein p53 (TP53) 12 29 72 80 

GATA binding protein 3 (GATA3) 14 15 2 2 

Mitogen-activated protein kinase kinase 
kinase 1, E3 ubiquitin protein ligase 

(MAP3K1) 
13 5 4 0 

Lysine (K)-specific methyltransferase 2C 
(KMT2C) 

8 6 7 5 

Cadherin 1, type 1 (CDH1) 9-10 5 5 0 

Table 1.3: A summary of the most frequently mutated genes within the four most commonly recognised 
intrinsic breast cancer subtypes. Adapted from Baird and Caldas, 2013. 

 p16-positive BLBC is associated with a poor prognosis 

More recent genetic profiling has highlighted the level of heterogeneity within the intrinsic 

subtypes commonly used to sub-classify breast cancer. For example, the Cancer Genome Atlas 

Network (TCGA) (analysis of tumour and germline DNA and RNA from 825 primary breast 

cancers) confirmed the existence of four broad breast cancer subtypes, concluding that there 

was considerable heterogeneity within rather than across these molecular subtypes (Koboldt et 

al., 2012). In addition, Curtis et al., 2012 applied an unbiased approach for the stratification of 

approximately 2,000 matched breast tumour samples and identified ten novel molecular 

subtypes (labelled IntClust 1-10), each associated with a distinct clinical outcome. This analysis 

dissected many of the PAM50 intrinsic subtypes and may prove to be far more effective at 

guiding personalised therapies and predicting prognosis than current stratification methods. 

Interestingly, the vast majority of Basal-like tumours were sub-classified within IntClust 10. 

Tumours within this cluster were associated with the poorest prognosis within the first two to 

five years post-diagnosis and, interestingly, IntClust 10 tumours were also associated with the 

highest level of p16 mRNA expression (Curtis et al., 2012). Importantly, this analysis revealed 

that those tumours with a Basal-like phenotype together with an elevated p16 expression 

signature (p16-positive BLBC) are associated with the very poorest prognosis and represent the 



61 
 

most clinically challenging breast cancer subtype. Further stratification of this disease subset 

together with the identification of novel therapeutic targets and cancer-specific targeted 

therapies may revolutionise the treatment of p16-positive BLBC and dramatically improve 

patient outcomes. 

 Small interfering RNA (siRNA) technology 

RNA interference (RNAi) is a post-transcriptional silencing mechanism (see Figure 1.9) and was 

first discovered in 1998 following studies investigating cellular responses to double stranded 

RNA in Caenorhabditis elegans (C. elegans) (Fire et al., 1998). Initially, synthetic siRNAs were 

used to perform small-scale, loss-of-function studies investigating individual gene function. 

However, following the construction of global siRNA libraries, genome-wide loss-of-function 

screening has revolutionised functional genomics, and has proven to be an extremely powerful 

tool in the dissection of biological processes and identification of therapeutic targets in complex 

disease (reviewed in Boutros and Ahringer, 2008). 

Despite its widespread success, siRNA technology has a number of limitations that must be 

considered. Arguably the biggest consideration when performing siRNA-knockdown is the 

specificity of synthetic siRNAs and the potential for off-target effects (OTEs). As well as silencing 

the gene of interest, synthetic siRNAs can induce degradation of additional mRNA transcripts 

with partial sequence homology and transfection reagents may cause non-specific gene 

expression changes (OTEs) (reviewed in Pan et al., 2012). Therefore, it is vital that sufficient 

validation steps are taken to ensure that quantified phenotypic changes are due to the 

knockdown of the gene of interest and not a consequence of OTEs. siRNA pools (three to four 

siRNAs with different RNA sequences targeting a single mRNA transcript) are frequently used as 

they can increase the knockdown efficiency and reduce the time and costs associated with 

conducting large screening experiments (reviewed in Falschlehner et al., 2010). In addition, this 

approach is likely to reduce OTEs and identify potent siRNAs with high transfection efficiencies 

as each siRNA is used at a relatively low concentration (reviewed in Falschlehner et al., 2010). 

However, deconstructing siRNA pools and transfecting cells with each siRNA individually is a 

more effective method of controlling for OTEs (reviewed in Falschlehner et al., 2010). If at least 

two siRNAs from a given pool induce similar phenotypic changes, the likelihood that the changes 

are a result of an OTE is reduced. Repeating a screen with a second siRNA library purchased from 

an alternative supplier will also help to control for OTEs (reviewed in Boutros and Ahringer, 

2008). It is important that the two libraries are generated using separate algorithms and that 

the siRNAs they contain are sufficiently different from each other. In addition, multiparameter 



62 
 

analysis may also help to control for OTEs. Increasing the number of parameters used to identify 

a particular phenotype (such as senescence) will minimise the risk of the quantified phenotype 

being due to non-specific knockdown. 

It is important to note that siRNA-knockdown cannot be used to investigate the function of every 

gene. For example, genes which encode proteins with long half-lives are very difficult to target 

using this technique. Furthermore, siRNA-knockdown has a non-heritable, transient effect that 

may not be appropriate if the resulting phenotype requires a long time to present itself. In 

addition, siRNA-knockdown is purely a loss-of-function technique. Consequently, a siRNA screen 

will not identify genes that may induce phenotypic changes upon overexpression. Also, 

complete gene knockdown is almost impossible to achieve. The level of knockdown depends 

upon the potency of the siRNA sequence and the transfection conditions. Variability in gene 

knockdown between experimental repeats is common and reduces the reproducibility of siRNA-

knockdown experiments (reviewed in Boutros and Ahringer, 2008), however, adequate 

optimisation steps are often effective at combatting this issue. 

 

 

Figure 1.9: A cartoon summarising the RNAi pathway. Endogenous miRNAs are first processed by Drosha 
(nuclease) to form a pre-miRNA molecule. Once transported to the cytoplasm, the pre-miRNA is processed 
further by Dicer (ribonuclease enzyme) and is incorporated into the RNA-induced silencing complex (RISC). 
Synthetic siRNAs mimic endogenous dicer-processed miRNA at this stage. The RNA is unwound and guides 
the RISC to homologous mRNA substrates. (Adapted from Falschlenhner et al., 2010). 
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Adopting a high-throughput approach to siRNA screening improves cost effectiveness and 

increases the number of gene candidates that can be feasibly tested, increasing the chances of 

pathway dissection and target identification. However, there are many challenges associated 

with this approach that must be considered. A high-throughput siRNA screen must have a clear 

objective and sufficient time must be invested in screen optimisation to ensure robustness and 

reproducibility (reviewed in Boutros and Ahringer, 2008). Large high-throughput siRNA screens 

are often fraught with false negative and false positive results. For example, sub-optimal 

transfection conditions and non-functional siRNAs may increase the number of false negative 

results within a large screen. This number may be reduced by including experimental repeats 

within a single screen and by repeating the siRNA knockdown with a sub-set of hits using an 

alternative transfection reagent, if possible (reviewed in Falschlehner et al., 2010). In addition, 

smaller-scale experiments, such as testing for additional markers of senescence induction, using 

a sub-set of siRNAs will also help to eliminate false positives. Real-Time Quantitative Reverse 

Transcription PCR (qRT-PCR) and immunoblotting are key post-siRNA screen validation steps and 

RNAi rescue experiments may also help to validate a list of the most effective hits. 

  Project aims: pro-senescence therapy in p16-positive BLBC 

The overall aim of this project is to identify genes essential for maintaining senescence evasion 

in p16-positive cancer (‘senescence evaders’) with a view to identifying novel therapeutic 

targets and potential prognostic biomarkers in p16-positive BLBC. 

Previously, a genome-wide siRNA screen was performed in HeLa cells (p16-positive cervical 

cancer cell line, unpublished). A total of 22,010 genes were targeted by pools of three siRNAs 

and the data generated was compared to a previously published screen in HMECs (Bishop et al., 

2010). A significant reduction in cell number, together with a significant increase in cell area was 

used to define senescence activation. Using these phenotypic criteria, the screen revealed 86 

siRNAs that activated senescence in HeLa cells but had no effect on the proliferation or 

morphology of HMECs (data not published). This project will first aim to re-test these 86 

previously identified siRNAs in the HeLa cell line. Second, the most potent activators of 

senescence (in HeLa cells) will be tested in a p16-positive BLBC cell line (MDA-MB-468 cells) and 

senescence evaders in these cells will be identified. 

Once validated, the proteins implicated have the potential to serve as novel therapeutic targets 

in p16-positive BLBC and may provide further insight into the mechanisms that regulate 

senescence evasion in p16-positive cancer.
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 Mammalian Cell culture 

Unless otherwise stated, all reagents and compounds used were purchased from Sigma, UK. 

Cells were cultured as monolayers in T75 cm2 vented flasks (Corning, UK) at 37oC in the presence 

of 5% carbon dioxide (CO2) and 95% relative humidity and were passaged once every 7 days. In 

order to passage the cells, medium was removed and adherent cells were washed with 15 mL 

phosphate-buffered saline (PBS) and treated with 3 mL 1X trypsin-ethylenediaminetetraacetic 

acid (EDTA) (Life Technologies, UK) for 5-8 minutes (mins) at 37oC. In order to neutralise the 

trypsin, 15 millilitres (mL) medium with supplements was added and a cell pellet was formed by 

centrifugation at 1,200 revolutions per minute (rpm) for 5 mins (IEC CL10 centrifuge, Thermo 

Scientific, UK). The cell pellet was then re-suspended in an appropriate volume of medium with 

supplements and cells were counted using the Chemometec Nucleocounter System (Sartorius, 

UK) according to the manufacturer’s protocol. Medium was changed every 2-3 days. 

 Culture of mammalian cancer cell lines 

MDA-MB-468 cells (ATCC® HTB-132™) (p16-positive human BLBC cell line, derived from a 

metastatic plural effusion) and MDA-MB-231 cells (ATCC® HTB-26™) (p16-null human BLBC cell 

line, derived from a metastatic plural effusion) were purchased from ATCC, (USA) while HeLa 

cells (human cervical cancer cell line) were purchased from CRUK, (UK). MDA-MB-468 and MDA-

MB-231 cells were seeded at 10,000 cells/cm2 and 2,500 cells/cm2, respectively and were 

maintained in Dulbecco’s Modified Eagles Medium (DMEM) supplemented with 10% 

volume/volume (v/v) foetal bovine serum (FBS) (Biosera, UK), L-Glutamine (2 mM final 

concentration) (Life Technologies, UK) and Sodium Pyruvate (1 mM final concentration). HeLa 

cells were seeded at 3,000 cells/cm2 and maintained in DMEM supplemented with 5% (v/v) FBS 

and L-Glutamine (2 mM final concentration). 

 Culture of normal human mammary epithelial cells 

Normal HMECs were isolated from reduction mammoplasty tissue and kindly provided by Dr. 

Martha Stampfer (Lawrence Berkeley National Laboratory, Berkeley, CA, USA). Cells were 

seeded at 5,000 cells/cm2 and were maintained in ‘M87A’ medium composed of 50% (v/v) 

Mammary Epithelial Basal Medium (MEBM, Lonza, UK) supplemented with MEGM SingleQuot 

Kit Supplements (excluding gentamycin) (Lonza, UK), 5 micrograms (μg)/mL transferrin, 5 

micromolar (μM) isoproterenol and 2 millimolar (mM) L-glutamine, together with 50% (v/v) 

DMEM Nutrient Mixture F-12 (DMEM/F12) (Life Technologies, UK) supplemented with 10 μg/mL 

insulin, 5% (v/v) FBS, 100 nanograms (ng)/mL hydrocortisone, 10 nanomolar ( nM)  3,3’,5-
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triiodo-L-thyronine, 10  nM β-estradiol, 5 ng/mL epidermal growth factor (Life Technologies, 

UK), 0.1% (v/v) AlbuMAXTM I (Life Technolgies, UK) and 0.1  nM oxytocin (Bachem, Switzerland). 

Cells were cultured from passage 4 (P4) to passage 6 (P6) as described above and siRNA reverse 

transfections were performed with cells at P6 (see Section 2.3.4). 

 siRNA reverse-transfection optimisation 

Before conducting the siRNA screens, the cell seeding density and volume of HiPerFect 

Transfection Reagent (HiPerFect, QIAGEN, UK) used to transfect each of the cancer cell lines was 

optimised in order to produce a high level of transfection efficiency with minimal toxicity. 

 Optimisation of cell seeding density in 384-well plate format 

Cells were seeded at range of concentrations in 384-well plate format (Thermo Scientific Nunc, 

UK) and were incubated at 37oC. Medium was changed after 46 hours (hr) and cells were fixed 

and stained 72 hr later with 4',6-diamidino-2-phenylindole (DAPI) according to Section 2.4. Cells 

were then imaged and quantified according to Section 2.5. HeLa cells were seeded at 7,500-

15,000 cells/cm2, MDA-MB-468 cells were seeded at 10,000–36,000 cells/cm2 and MDA-MB-231 

cells were seeded at 4,000–12,000 cells/cm2 for transfection optimisation. 

 Optimisation of transfection reagent dose 

After completion of a cell seeding density test, cells were reverse transfected with 30  nM control 

siRNAs targeting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Ambion, UK) (negative 

control) or PLK1 (Dharmacon, UK) (Killer control) in 384-well plate format using a range of 

HiPerFect concentrations. siRNA target sequences are shown in Table 2.1. siRNA/HiPerFect 

complexes were incubated at room temperature (RT) for 1.5 hr before cells were seeded. Plates 

were incubated at 37oC and medium was changed after 46 hr. Cells were fixed and stained 72 hr 

later with DAPI and were subsequently imaged and quantified according to Sections 2.4 and 2.5. 

HeLa cells were seeded at either 10,000 or 12,000 cells/cm2 and treated with 0.15 or 0.2 μL/well 

HiPerFect. MDA-MB-468 cells were seeded at 33,000 cells/cm2 and were treated with 0.1-0.4 

μL/well HiPerFect. MDA-MB-231 cells were seeded at 8,000 cells/cm2 and were treated with 0.1-

0.5 μL/well (including 0.025, 0.05 or 0.075 μL/well) HiPerFect.    
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siRNA 
name 

siRNA target 
Accession 
Number 

Supplier siRNA target sequence (5’-3’) 

GAPDH GAPDH NM_002046.4 Ambion, UK GUGGAUAUUGUUGCCAUCAtt 

p16 

Cyclin-
dependent 

kinase 
inhibitor 2A 
(CDKN2A) 

(p16) 

NM_000077 QIAGEN, UK TACCGTAAATGTCCATTTATA 

p21 

cyclin-
dependent 

kinase 
inhibitor 1A 
(CDKN1A) 

(p21) 

NM_078467 

NM_000389 

NM_001220778 

NM_001220777 

NM_001291549 

GE, UK 

CTACCTTGAAGCTGAAACA 

CGCTACCTTGAAGCTGAAA 

GCTACCTTGAAGCTGAAAC 

GCTGACACTACGCGATTAC 

PLK1 PLK1 NM_005030 
Dharmacon, 

UK 
Proprietary pool 

CBX7 
Chromobox 
homolog 7 

(CBX7) 
NM_175709 Ambion, UK GGGTAACACACACCAAGAGT 

siGLO 
Cyclophilin B 

(PPIB) 
NM_000942 

Dharmacon, 
UK 

GAGCCCAGAUCAACCUUUA 

Table 2.1: siRNA target sequences for control siRNAs. 

 

  siRNA reverse transfections 

 siRNA screening in HeLa and MDA-MB-468 cells in 384-well plate format 

Pools of three siRNAs (Ambion, UK) (at a 1:1:1 ratio, final concentration 30  nM)  were used to 

target each gene within the screens together with control siRNAs targeting GAPDH, PLK1, Cyclin-

dependent kinase inhibitor 2A (CDKN2A) (p16) (QIAGEN, UK) or (CBX7) (Ambion, UK). Target 

sequences for control siRNAs are displayed in Table 2.1. HeLa cells were seeded at 12,000 

cells/cm2 and reverse transfected with 30 nM siRNA in 384-well plate format using 0.15 µL/well 

HiPerFect. MDA-MB-468 cells were seeded at 33,000 cells/cm2 and reverse transfected with 30 

nM siRNA in 384-well plate format using 0.2 µL/well HiPerFect. siRNA/HiPerFect complexes were 

incubated at RT for 1.5 hr before cells were seeded. Plates were incubated at 37oC and medium 

changed after 46 hr. Unless otherwise stated, cells were fixed and stained 72 hr later with mouse 

anti-p16 JC2 (Prof. James Koh, Duke Cancer Institute), goat Alexa Fluor-488 conjugated anti-
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mouse (Life Technologies, UK), DAPI and Cell Mask (Invitrogen, UK) according to Section 2.4. 

Cells were then imaged and quantified according to Section 2.5. Two independent screens were 

performed using each cell type and each screen was performed in triplicate. Significant hits were 

identified according to Section 2.5.2. 

 Phenotypic validation of each of the top six RP hits in MDA-MB-468 cells 

Unless otherwise stated, MDA-MB-468 cells were reverse transfected with a pool of three 

siRNAs (Ambion, UK) (each used within the siRNA screens. at a 1:1:1 ratio, final concentration 

30 nM) together with three individual siRNAs (Ambion, UK) (each at 30 nM)  targeting each of 

the top ribosomal hits according to Section 2.3.1. Control siRNAs (30 nM final concentration) 

targeting GAPDH, p16, CBX7 and PLK1 were also used. siRNA target sequences for each of the 

ribosomal siRNAs are listed in Table 2.2.   
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siRNA 
name 

(siRNA ID) 
siRNA target Accession Number siRNA target sequence (5’-3’) 

RPL14_1 
(137435) 

RPL14 
NM_001034996.2 
& NM_003973.4 

CCUUGCACUCAAGUGAGGAtt 

RPL14_2 
(13949) 

RPL14 
NM_001034996.2 
& NM_003973.4 

GGAAAGCCAAGAUGACAGAtt 

RPL14_3 
(13857) 

RPL14 
NM_001034996.2 
& NM_003973.4 

GGCAGACAUCAAUACAAAAtt 

RPL18_1 
(217192) 

RPL18 
NM_000979.3 & 

NM_001270490.1 
CCCUGGAUCCUACUCUCUUtt 

RPL18_2 
(142176) 

RPL18 
NM_000979.3 & 

NM_001270490.1 
GCCGAGGCUACAAAAACUAtt 

RPL18_3 
(9171) 

RPL18 
NM_000979.3 

GGCUGUUGGUCAAGUUAUAtt 

RPL34_1 
(9365) 

RPL34 
NM_000995.3 & 

NM_033625.2 
GGAGCUCUGAUAUAUAUCUtt 

RPL34_2 
(142194) 

RPL34 
NM_000995.3 & 

NM_033625.2 
GGUUAAAUACUACCAGCACtt 

RPL34_3 
(9278) 

RPL34 
NM_000995.3 & 

NM_033625.2 
GGCACAAGCACAGAGUCAGtt 

RPL35A_1 
(45958) 

RPL35A 
NM_000996.2 

GCACACAGCUCUUCUUAAAtt 

RPL35A_2 
(9187) 

RPL35A 
NM_000996.2 

GGGAGCACACAGCUCUUCUtt 

RPL35A_3 
(9279) 

RPL35A 
NM_000996.2 

GGUGUUUACGCCCGAGAUGtt 

RPS3A_1 
(142201) 

RPS3A 
NM_001006.4 

CGAGACAGGUGCUAAAGUUtt 

RPS3A_2 
(142200) 

RPS3A 
NM_001006.4 

GCUCAUGGAGCUUCAUGGUtt 

RPS3A_3 
(142199) 

RPS3A 
NM_001006.4 & 

NM_001267699.1 
GCACCUGCUAUGUUCAAUAtt 

RPS7_1 
(142206) 

RPS7 
NM_001011.3 

GCAUGUCGUCUUUAUCGCUtt 

RPS7_2 
(142207) 

RPS7 
NM_001011.3 

CGGGCAAGGAUGUUAAUUUtt 
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RPS7_3 
(45963) 

RPS7 
NM_001011.3 

GAUGAACUCGGACCUCAAGtt 

PGD_1 
(11865) 

Phosphogluconate 
dehydrogenase (PGD) 

NM_002631.2 
ACCCACCACUUUGGUUCCCtt 

PGD_2 
(112952) 

PGD 
NM_002631.2 

UUUCAUCAGUGGUAUGCCtc 

PGD_3 
(11961) 

PGD 
NM_002631.2 

CACUUUGGUUCCCUUUGCCtc 

Table 2.2: siRNA target sequences used to target the top senescence evaders identified within the siRNA 
screens. All siRNAs were purchased from Ambion, UK. 

 

 siRNA reverse transfection of MDA-MB-231 cells in 384-well plate format 

Unless otherwise stated, MDA-MB-231 cells were seeded at 8,000 cells/cm2 in 384-well plate 

format and were reverse transfected with 30 nM siRNA using 0.075 µL/well HiPerFect. Control 

siRNAs (30 nM final concentration) targeting GAPDH, CBX7 and PLK1 were also used. 

siRNA/HiPerFect complexes were incubated at RT for 1.5 hr before cells were seeded. Plates 

were incubated at 37oC and medium changed after 46 hr. Cells were fixed and stained 72 hr later 

with DAPI and Cell Mask according to Section 2.4. Cells were then imaged and quantified 

according to Section 2.5. 

  siRNA reverse transfection in HMECs in 384-well plate format 

HMECs at P6 were seeded at 5,000 cells/cm2 in 384-well plate format and were reverse 

transfected with 30 nM siRNA using 0.2 µL/well HiPerFect. Control siRNAs included siGLO 

(targeting PPIB), p16 and CBX7 siRNA (30 nM final concentration). siRNA/HiPerFect complexes 

were incubated at RT for 1.5 hr before cells were seeded. Plates were incubated at 37oC and 

medium changed after 46 hr. Cells were fixed and stained 72 hr later with mouse anti-p16 JC2, 

goat Alexa Fluor-488 conjugated anti-mouse, DAPI and Cell Mask according to Section 2.4. Cells 

were then imaged and quantified according to Section 2.5. 

  siRNA reverse transfection of MDA-MB-468 cells in 6-well plate format 

MDA-MB-468 cells were seeded at 7,500 cells/cm2 in 6-well plate format (Corning, UK) and were 

reverse transfected with 30 nM siRNA using 6.9 µL/well HiPerFect. Before adding the 

siRNA/HiPerFect solution to the plate, each well was washed with 1 mL DMEM with 

supplements. siRNA/HiPerFect complexes were incubated at RT for 2 hr before cells were 
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seeded. Cells were harvested for western blotting or RNA extraction according to Sections 2.6 

and 2.7. 

 Immunofluorescence staining 

Cells cultured on 384-well plates were washed with PBS and fixed using 3.7% weight/volume 

(w/v) paraformaldehyde with 5% (w/v) sucrose in PBS for 15 mins at RT. Cells were then washed 

with PBS and permeabilised with 0.1% (v/v) Triton-X100 for 15 mins at RT. When staining for 

NCL, cells were permeabilised with 0.1% (v/v) Triton-X100 for 30 mins at RT. Cells were washed 

with PBS and blocked with PBS supplemented with 0.25% (w/v) Bovine serum albumin (PBS/BSA) 

for 30 mins before incubation with primary antibody for 2 hr at RT. Cells were incubated with 

anti-NCL or anti-p21 antibodies overnight at RT. Cells were then washed with PBS/BSA for 30 

mins at RT and incubated with secondary antibody, DAPI (1:1,000) and Cell Mask Deep Red 

(1:20,000 for MDA-MB-468 and MDA-MB-231 cells and 1:10,000 for HMECs) for 2 hr at RT. Cells 

were washed with PBS/BSA for 30 mins at RT before three final washes with PBS. Cells were then 

imaged and quantified according to Section 2.5. Details of the antibodies used for 

immunofluorescence staining and their working dilutions are shown in Table 2.3. 
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Antibody Species Supplier 
Working 

dilution 
Conditions 

Anti-p16 JC2 Mouse 
Prof. James Koh , Duke 

Cancer Institute, UK 
1:1,000 2 hr at RT 

Anti-p53 Rabbit Cell Signalling, USA 1:250 2 hr at RT 

Anti-p21 Rabbit Cell Signalling, USA 1:250 Overnight at RT 

Anti-53BP1 Rabbit Bethyl, USA 1:200 2 hr at RT 

Anti-nucleolin Rabbit 
Santa Cruz 

Biotechnology, USA 
1:1,000 Overnight at RT 

Alexa Fluor-488 

conjugated anti-mouse 
Goat Life Technologies, UK 1:500 2 hr at RT 

Alexa Fluor-546 

conjugated anti-rabbit 
Donkey Life Technologies, UK 1:500 2 hr at RT 

Alexa Fluor-488 

conjugated anti-rabbit 
Donkey Life Technologies, UK 1:500 2 hr at RT 

Alexa Fluor-546 

conjugated anti-mouse 
Goat Life Technologies, UK 1:500 2 hr at RT 

Table 2.3: Antibodies used for immunofluorescence staining, their working concentrations and 
incubation conditions. All antibodies were diluted in 0.25% (w/v) PBS/BSA with the exception of anti-
nucleolin which was diluted in PBS supplemented with 1% (w/v) BSA. 

 

 High content image analysis 

 High content microscopy 

Cells were seeded in 384-well plate format and were fixed and stained according to Section 2.4. 

Cells were then imaged using the IN Cell 1000 automated microscope (GE, UK) at 10X 

magnification (nine fields/well) using a triChroic mirror (61003bs*), unless otherwise stated. All 

excitation and emission filters were from GE, UK. DAPI staining was visualised using a D360_40X 

excitation filter and a HQ535_50M emission filter (blue), Alexa Fluor-488 staining was visualised 

using a S475_20X excitation filter and a HQ535_50M emission filter (green), Alexa Fluor-546 

staining was visualised using the HQ535_50X excitation filter together with the HQ620_60M 

emission filter (red) and Cell Mask staining was visualised using a HQ620_60X excitation filter 

and a HQ700_75M emission filter (far red). Four colours were visualised using the polyChroic 
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mirror (88100bs*). Image quantitation was then performed using the IN Cell 1000 Developer 

software version 1.8 (GE, UK). 

 Z score generation and hit identification 

Multiparameter analysis was performed using the IN Cell 1000 Developer software version 1.8 

and a list of the measures used are displayed in Table 2.4.  

Name of parameter 

(used within heatmaps) 

Name of the IN Cell 

1000 Developer 

software measure 

Description 

Number Count Total number of targets  

Area Area Target area (μm2) 

Roundness Form Factor 
Target circularity (expressed as a value 

from 0–1, 1 equals a perfect circle) 

Elongation Major/Minor axis ratio 

Major axis length (the longest of two 

perpendicular axes of 

symmetry)/Minor axis length (the 

shortest of two perpendicular axes of 

symmetry) 

Protrusions End nodes 
Total number of end points in a single 

target 

Protein density Mass/Area 
Mass (sum of all pixel values in a 

target)/target area (μm2)   

Protein Intensity Dens Levels 

Mean grey level of the pixels 

contained within a target (expressed 

as a value from 0–4,095 where 0 

equals black and 4,095 equals white) 

Table 2.4: A description of each of the parameters used within the multiparameter analysis. Measures 

were obtained using the IN Cell 1000 Developer software version 1.8. 

Unless otherwise stated, Z scores were generated according to the formula below: 

Z score = (mean value of two independent experiments for experimental siRNA – mean value 

(of two independent experiments) for GAPDH siRNA)/Standard deviation (SD) for GAPDH siRNA 

of two independent experiments. 

For each of the parameters analysed, significance was defined as three Z scores away from the 

GAPDH siRNA mean and senescence activation was defined as a significant decrease in cell 
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number together with a significant increase in cell area. This senescence criteria was used for 

hit identification within the siRNA screens. Importantly, within the siRNA screens each of the 

technical repeats across two independent experiments were combined, and mean values and 

standard deviations were subsequently calculated. This method generated a highly stringent 

significance threshold, ensuring only the strongest hits were identified. 

 

 Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) and western blotting 

 SDS-PAGE 

Adherent cells were first washed with PBS before being lysed using RIPA buffer supplemented 

with 4% (w/v) protease cocktail inhibitor (Roche, UK) at 4oC for 5 mins. Cell lysates were stored 

long-term at -20oC. Protein concentration of the cell lysates was determined using the Bio-Rad 

Protein Assay kit (Bio-Rad, UK) according to the manufacturer’s protocol and an appropriate 

volume of 2X Laemmli Sample Buffer (0.1 M Tris pH 6.8, 20% (v/v) glycerol, 1% (v/v) β-

mercaptoethanol, 1% (w/v) sodium dodecyl sulphate (SDS), 0.01% (v/v) Bromophenol blue) was 

added. Samples were then heated to 95oC for 5 mins and centrifuged using a bench top 

centrifuge (Accuspin micro, Fisher Scientific, UK) at 13,000 rpm for 5 mins before being loaded 

into the stacking gel (5 μg protein per lane). The compositions of the resolving and stacking gels 

used are shown in Table 2.5. Protein separation was achieved using the Bio-Rad Mini-PROTEAN 

III system (Bio-Rad, UK) in running buffer (25 mM Tris (Fisher Scientific, UK), 192 mM Glycine, 

0.1% (w/v) SDS) at 100 V for 1-2 hr. The Precision Plus Protein all blue standards protein ladder 

(Bio-Rad, UK) was loaded alongside the samples to indicate protein size. 
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 5% Stacking gel 12% Resolving gel 

Acrylamide (30%)/Bis Acrylamide (0.8%) 

solution (National Diagnostics, UK) 

1.67 mL 4.15 mL 

1 M Tris pH 8.8  - 3.7 mL 

1 M Tris pH 6.8  1.25 mL - 

20% (w/v) SDS  50 μL 50 μL 

20% (w/v) Amps   50 μL 60 μL 

Temed (Severn Biotech Ltd, UK) 10 μL 10 μL 

dH2O  7.03 mL 2.05 mL 

Table 2.5: Composition of the polyacrylamide gels required for gel electrophoresis. 

  Immunoblot analysis 

Proteins were transferred onto Hybond Enhanced-Chemiluminescence (ECL) nitrocellulose 

membrane (GE, UK) using the western transfer Mini-PROTEAN 3 system (Bio-Rad, UK) in transfer 

buffer (25 mM Tris, 192 mM Glycine, 20% (v/v) methanol (Fisher Chemical, UK)) at RT for 2 hr at 

350 milliamps (mA). The membrane was then blocked in 0.05% (v/v) Tween-20, 5% (w/v) Marvel 

semi-skimmed milk in PBS (PBS-T-M) for 1 hr at RT. The membrane was then incubated with 

primary antibody diluted in 0.05% (v/v) Tween-20 in PBS (PBS-T). The membrane was then 

washed (3X 10 mins) in PBS-T before incubation with an appropriate secondary antibody 

conjugated to horseradish peroxidase. Details of the antibodies used, their incubation 

conditions and working dilutions are shown in Table 2.6. The membrane was then washed (3X 

10 mins) in PBS-T and bands were visualised using ECL (GE, UK) according to the manufacturer’s 

protocol. 
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Antibody Species  Supplier Working 

dilution 

Conditions  

Anti-p16 JC2 Mouse Prof. James Koh , 

Duke Cancer Institute, 

UK 

1:5,000 2 hr at RT 

Anti-p53 Rabbit Cell Signalling, USA 1:1,000 Overnight at 4oC 

Anti-p21 (C-terminus) Rabbit Cell Signalling, USA 1:1,000 Overnight at 4oC 

Anti-p21 [CP74] (N-

terminus) 

Mouse  Abcam, USA 1:500 Overnight at 4oC 

Anti-GAPDH Rabbit Abcam, UK 1:5,000 Overnight at 4oC 

Anti-β tubulin Mouse EnoGene, UK 1:20,000 Overnight at 4oC 

Anti-cyclophilin B Rabbit Abcam, UK 1:1,000 Overnight at 4oC 

Anti-RPS3A Rabbit Abcam, UK 1:5,000 Overnight at 4oC 

Anti-RPS7 Mouse Abcam, UK 1:500 Overnight at 4oC 

Anti-PGD Rabbit Abcam, UK 1:1,000 Overnight at 4oC 

HRP-conjugated anti-

mouse 

Goat Dako, UK 1:5,000 1 hr at RT 

HRP-conjugated anti-

rabbit 

Goat Invitrogen, UK 1:5,000 1 hr at RT 

Table 2.6: Antibodies used for immunoblotting, their working dilutions and conditions. All antibodies 
were diluted in PBS-T. 

 Densitometry 

Protein quantification was performed using Image J software. Density levels were obtained and 

normalised against an appropriate loading control in order to calculate total protein levels. 

Protein levels were then normalised to the GAPDH siRNA control and presented as a bar chart 

+SD of two independent experiments. 

 Membrane stripping 

Membranes were stripped for 30 mins at RT in 25 mL stripping buffer (25 mM Glycine with 1% 

(w/v) SDS) and washed twice for 10 mins with PBS-T at RT before being blocked for 1 hr at RT 

in PBS-T-M and re-probed with additional antibodies. 
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 RNA extraction, cDNA conversion and qRT-PCR 

 RNA extraction and spectrophotometric analysis 

Adherent cells were first washed with PBS before being lysed with 42 μL/cm2 Qiazol lysis reagent 

(QIAGEN, UK) for 5 mins at RT. Cell lysates were subsequently ‘snap frozen’ on dry ice for 5 mins 

before being stored overnight at -80oC. Cell lysates were then defrosted, homogenised (by 

pipetting up and down 5X) and transferred to a pre-prepared MaXtract High Density Phase Lock 

tube (phase lock tube) (QIAGEN, UK). Prior to their use, phase lock tubes were centrifuged using 

a bench top centrifuge at 13,000 rpm at RT for 2 mins. In order to achieve adequate phase 

separation, chloroform (200 μL/1 mL Qiazol lysis reagent) was added and the tubes were 

inverted for 20 seconds (sec). The tubes were then centrifuged using a bench top centrifuge at 

13,000 rpm at 4oC for 15 mins. After centrifugation, the aqueous phase was transferred to a 

RNeasy Mini Spin Column (QIAGEN, UK) and RNA extraction was performed using the miRNeasy 

Mini Kit (QIAGEN, UK) according to the manufacturer’s protocol. RNA was eluted in 30 μL RNase-

free water (Invitrogen) and the RNA concentration and purity were determined by 

spectrophotometric analysis using the Nanodrop ND-1000 before storage at -80oC. Absorbance 

was analysed at 230 nm (A230), 260 nm (A260) and 280 nm (A280) and the A260/A230 and A260/A280 

ratios were calculated. Pure RNA will have a A260/A230 ratio of 2-2.2 and a A260/A280 ratio of ~2. 

RNA precipitation was performed on RNA samples that did not meet this criteria before 

downstream applications were carried out. 

 Ethanol RNA precipitation 

Following spectrophotometric analysis, 3 μL NaOAc, 75 μL 100% (v/v) ethanol (EtOH) and 1 μL 

glycogen (GlycoBlue) (ThermoFisher Scientific, USA) was added to 30 μL RNA sample in a 1.5 mL 

Eppendorf microcentrifuge tube (Eppendorf, UK) and incubated overnight at -20oC. RNA was 

pelleted by centrifugation using a bench top centrifuge at 13,000 rpm at 4oC for 20 mins and the 

supernatant was removed carefully. 500 μL of 80% (v/v) EtOH was added to the tube and the 

RNA was pelleted a second time via centrifugation using a bench top centrifuge at 13,000 rpm 

at 4oC for 10 mins. This step was repeated before the tube was centrifuged for a further 1 min 

at 4oC using a bench top centrifuge at 13,000 rpm. Once all of the EtOH had been carefully 

removed, the pellet was left to air dry for 10 mins at RT. The RNA pellet was then re-suspended 

in 30 μL RNase-free water and spectrophotometric analysis was performed according to Section 

2.7.1. 
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 Reverse transcription of mRNA to cDNA 

 1 μL OligodT18 (MERK, Millipore, UK) (50 μM) and 1 μL deoxynucleotides (dNTPs) (10 mM each) 

(ThermoFisher, USA) were combined with 1 μg RNA and topped up with RNase-free water to 

reach a total of 13 μL before being incubated at 65oC for 5 mins. The mixture was then incubated 

on ice for a further 5 mins. 4 μL 5X first strand buffer (Invitrogen, UK) 1 μL dithiothreitol (DTT) 

(0.1 M) (Invitrogen, UK), 1 μL RNase OUT ribonuclease Inhibitor (40 U/μL) (Invitrogen, UK) 

together with 1 μL Superscript III Reverse Transcriptase (200 U/μL) (Invitrogen, UK) was added 

to form a 20 μL total reaction volume. The reverse transcription reaction was then performed 

using the PeQSTAR thermal cycler (PeQlab, UK) according to Table 2.7. Newly generated cDNA 

was stored long-term at -20oC.  

Time Temperature 

45 mins 50oC 

15 mins 70oC 

Table 2.7: Reverse transcription reaction conditions. 

 qRT-PCR 

qRT-PCR was performed using SYBR Green PCR Master Mix (Applied Biosystems, UK) on a 7500 

Fast System RealTime PCR cycler (Applied Biosystems, UK). Each reaction was setup according 

to Table 2.8. Primer sequences were generated using the Harvard Primer Bank (found at: 

http://pga.mgh.harvard.edu/primerbank/) and were purchased from Eurofins Genomics, UK. A 

list of the primer sequences used may be found in Table 2.9. Cycling conditions may be found in 

Table 2.10. CT values were generated using the 7500 software version 2.0.6 (Applied Biosystems, 

UK) using the ‘Auto threshold’ function and primer efficiencies were calculated using a standard 

curve of cDNA diluted from 1:10 – 1:1,000. CT values were normalised to the values generated 

by the housekeeping control and relative mRNA expression level changes were expressed as a 

fold change relative to the GAPDH siRNA control. 
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Reagent Volume 
(μL) 

Final 
concentration 

Mastermix (2x) 12.5 1x 

Forward primer 20 
μM 

0.2 0.16 μM 

Reverse primer 20 
μM 

0.2 0.16 μM 

dH2O 10.1 - 

Template cDNA 2 - 

Total volume 25 - 

Table 2.8: qRT-PCR reaction setup for each reaction. 

 

Target 
gene 

Forward primer (5’-3') Reverse primer (5’-3') 

GAPDH GGCTGCTTTTAACTCTGG GGAGGGATCTCGCTCC 

HPRT1 ACCAGTCAACAGGGGACATAA CTTCGTGGGGTCCTTTTCACC 

PPIA CCCACCGTGTTCTTCGACATT GGACCCGTATGCTTTAGGATGA 

PPIB AAGTCACCGTCAAGGTGTATTTT TGCTGTTTTTGTAGCCAAATCCT 

TBP CCCGAAACGCCGAATATAATCC AATCAGTGCCGTGGTTCGTG 

RPL14 GACCTTGCACTCAAGTGAGGA CTTGTCGGACATACTTCTGGTG 

RPL18 ATGTGCGGGTTCAGGAGGTA CTGGTCGAAAGTGAGGATCTTG 

RPL34 TGGTGGTTCCATGTGTGCTAA GCTTGTGCCTTCAACACTTTC 

RPL35A TTGAAGGTGTTTACGCCCGAG TGCTTCGGAATTTGGCACGA 

RPS3A GGCAAGAACAAGCGCCTTAC CAGGTGCTTTCACATCATACCAA 

RPS7 GTGAAGCCCAATGGCGAGAA TGAGGTCCGAGTTCATCTCCA 

Table 2.9: A list of the forward and reverse primer sequences used. 

 

Stage Temperature  Time  Number of cycles 

Initial denaturation  95oC  10 mins 1 

Denaturation 
Annealing / 
Extension  

95oC  
60oC  

15 sec 
1 min 

40 

Hold 72oC  5 mins 1 

Melt curve 

95oC  
60oC  
95oC  
60oC  

15 sec 
1 min 
15 sec 
15 sec 

1 
1 
1 
1 

Table 2.10: qRT-PCR reaction conditions. 
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 β-galactosidase activity assay 

Cells seeded in 384-well plate format were washed with PBS and fixed with 0.2% (w/v) 

glutaraldehyde (in PBS) for 5 mins at RT. Cells were washed a second time with PBS and 

incubated with 5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside (X-gal) solution (see 

Table 2.11) for 6 hr at 37oC without additional CO2. Cells were imaged at 4 and 6 hr using a light 

microscope (Nikon) at 20X magnification and single representative image of each well was taken.     

Reagent Volume (to 
make 10 

mL) 

Working 
Concentration 

X-gal 
(ThermoFisher, 

UK) 
(20 mg/mL) 

0.5 mL 1 mg/mL 

NaCl (5 M) 0.3 mL 150 mM 

MgCl2 (1 M) 20 μL 2 mM 

K3Fe (CN)6 

(100 mM) 
0.5 mL 5 mM 

K4Fe(CN)6 

(100 mM) 
0.5 mL 5 mM 

NaPi pH 6.0 
(100 mM) 

4 mL 40 mM 

dH2O 4.18 mL - 

Table 2.11: A table detailing the components of the X-gal solution used. 

 SYTOX assay 

MDA-MB-231 cells were reverse transfected with 30 nM siRNA according to Section 2.3.2. 

Medium was changed after 46 hr and 120 hr (Day 5). At Day 6 cells were incubated with 

SYTOXGreen nucleic acid stain (SYTOX) (Invitrogen, UK) (500 nM final concentration) and 

Hoechst 33342 (Hoechst) (Invitrogen, UK) (1.62 μM final concentration) in DMEM with 

supplements for 2.5 hr at 37oC. Cells were imaged at 30 mins and 2.5 hr using the IN Cell 1000 

automated microscope according to Section 2.5.1. Hoechst was visualised using a D360_40X 

excitation filter and a HQ535_50M emission filter (blue) and SYTOX staining was visualised using 

a S475_20X excitation filter and a HQ535_50M emission filter (green). The percentage of SYTOX-

positive nuclei was calculated using the IN Cell Developer software version 1.8. 
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  Actinomycin D drug treatment 

MDA-MB-468 cells were seeded at 66,000 cells/cm2 in 384-well plate format and after 12 hr cells 

were incubated with 0.001 μg/mL-100 μg/mL Actinomycin D in DMSO (VWR, USA) in DMEM 

with supplements for 8 hr at 37oC. Cells were then fixed and stained with DAPI, rabbit anti-NCL 

and donkey Alexa Fluor-546 conjugated anti-rabbit according to Section 2.4. Cells were then 

image and analysed according to Section 2.5.1. 

  Statistical analysis 

Statistical analysis was performed using the online statistics tool GraphPad Quickcalcs software 

(found at: http://www.graphpad.com/quickcalcs/ttest1/). In order to compare the means of 

two groups, an unpaired t-test was performed. A One-way Analysis of Variance (ANOVA) was 

used to assess western blotting data using GraphPad InStat software. Unless otherwise stated, 

at least two independent experiments were performed in triplicate.      
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 Introduction 

OIS is a potent tumour suppressor mechanism in cells at risk of transformation and is triggered 

by the overexpression of an oncogene or the repression of a tumour suppressor gene (see 

Section 1.5). OIS bypass and continual senescence evasion are thought to be essential for cancer 

initiation and survival. As such, the activation of senescence in cancer is a highly attractive 

therapeutic strategy and one that is gaining momentum (see Section 1.6). In epithelial cells (the 

primary origin of most human malignancies) OIS can be mediated by the tumour suppressor, 

p16. p16 is one of the most frequently mutated or deleted genes in cancer (Hanahan and 

Weinberg, 2011) and disruption to the p16/RB signalling pathway may result in OIS bypass in 

pre-malignant cells, an early step on the path towards carcinogenesis (see Section 1.5). 

Breast cancer is the most common cancer in the UK and BLBC (a highly aggressive subtype) 

accounts for approximately 8-22% of all cases depending on ethnicity (see Section 1.8). Unlike 

most human malignancies and indeed other PAM50 breast cancer subtypes, the vast majority 

of BLBCs are positive for WT p16. This p16 signature in BLBC is associated with a particularly 

poor prognosis and as discussed earlier, p16-positive BLBC remains the most clinically 

challenging subtype and is the focus of this project. 

The overarching aim of this project is to activate senescence in p16-positive BLBC cells using 

siRNA screening as a route to identifying those proteins responsible for maintaining senescence 

evasion (termed ‘senescence evaders’). Once validated, the proteins implicated may serve as 

novel potential therapeutic targets in this disease subtype. The longer-term hope is that the 

newly identified senescence evaders may also act as suitable prognostic biomarkers in p16-

positive BLBC and may help to further stratify the disease subset and inform better personalised 

therapeutic regimes. 

In order to identify siRNAs capable of senescence activation in p16-positive cancer cells, a 

previously performed genome-wide siRNA screen, conducted in HeLa cells (p16-positive human 

cervical cancer cell line) was re-mined. Here, 22,010 genes were targeted by pools of three 

siRNAs. A significant reduction in cell number, together with a significant increase in cell area 

was used to define senescence activation in these cells. These phenotypic criteria were based 

on well-established markers of senescence induction (a reduction in proliferation together with 

an increase in cell size). Here, significance was defined as a change of more than three Z scores 

from the negative control mean as this level of stringency is an accepted means of defining hits 

in a screen of this size (see Section 2.5.1). Implementing this relatively high level of stringency 

when defining the senescence phenotype ensured that only the most potent siRNAs were 
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classified as hits. This significance threshold was applied to each of the phenotypic parameters 

analysed within each of the siRNA screens presented within this Chapter. 

In order to identify those cancer-specific activators of senescence, the data generated by the 

HeLa genome-wide siRNA screen was compared to a previously published screen in normal, 

finite lifespan HMECs. Using the phenotypic criteria for senescence outlined above, this cross-

referencing exercise revealed 86 siRNAs that were able to activate senescence in the HeLa cell 

line but, importantly, had no significant effect on the proliferation or morphology of HMECs 

(data not shown, see Figure 3.1). 

 

Figure 3.1: Cartoon summarising the criteria used to select the 86 siRNAs to be included in the 
validation screens presented within this Chapter. 

 

 Chapter aims 

1. To perform a validation siRNA screen in the HeLa cell line that will aim to re-test the 86 

siRNAs previously identified within the genome-wide siRNA screen.  

2. To test the most potent activators of senescence (within the HeLa cell line) in a second 

p16-positive cancer cell line, MDA-MB-468 (p16+/+, p53R273H, RB-null BLBC cell line) in 

order to identify novel potential senescence evaders in p16-positive BLBC. 

3. To conduct multiparameter analysis across both the HeLa and MDA-MB-468 siRNA 

screens in order to explore the complexities of the senescence phenotype and to enable 

sub-categorisation of the significant activators of senescence. 

4. To investigate whether senescence activation is accompanied by an increase in nuclear 

p16 levels. 
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The MDA-MB-468 BLBC cell line will be used to model p16-positve BLBC throughout this thesis. 

This cell line was isolated from a pleural effusion in a 51 year old woman with metastatic 

adenocarcinoma of the breast. Despite their metastatic origin, MDA-MB-468 cells contain many 

of the gene signatures associated with primary BLBC tumours (see Section 1.8). For example the 

cells are documented to contain the p53R273H gain-of-function mutation, are RB-null and 

crucially, the cells stain positive for WT p16. 

 Transfection optimisation in 384-well plate format 

 Optimisation of siRNA reverse transfection in HeLa and MDA-MB-468 cells 

Before conducting the siRNA screens, the transfection reagent dose and cell seeding density 

were first optimised for each cell type in order to produce maximal transfection efficiency with 

minimal cytotoxicity (see Section 2.2.1). When conducting a siRNA screen to identify activators 

of senescence, an ideal seeding density is one at which there are enough cells to detect a 

significant reduction in proliferation (induction of senescence) and one where the control cells 

remain sub-confluent after 120 h (experimental endpoint) to ensure accurate quantitation. With 

this in mind, a seeding density of 12,000 cells/cm2 was selected for the HeLa siRNA screens and 

cells were seeded at 33,000 cells/cm2 for the MDA-MB-468 screens to allow the detection of as 

many significant hits as possible. 

GAPDH siRNA was used throughout this thesis as a negative control for the siRNA reverse 

transfections. The GAPDH siRNA mean was also used as a baseline for Z score generation and 

significance thresholding (outlined in Section 2.5.2). PLK1 is a Serine-threonine kinase that plays 

an essential role in numerous aspects of mitosis such as mitosis initiation, centrosome 

maturation, spindle formation and cytokinesis (reviewed in Archambault et al., 2015) As such, 

PLK1 is critical for correct mitotic progression and cancer cells transfected with PLK1 siRNA 

undergo apoptosis as they attempt to enter the cell cycle. Consequently, PLK1 siRNA was used 

as a ‘killer control’ during siRNA transfection optimisation. The transfection reagent, HiPerFect, 

was selected as it was used to conduct the previously performed HeLa (unpublished) and HMEC 

genome-wide siRNA screens (Bishop et al., 2010).  

Using the seeding densities outlined above, reverse transfection with 30 nM siRNA targeting 

GAPDH or PLK1 was optimised for HeLas (data not shown) and MDA-MB-468 cells (Figure 3.2A-

B) such that maximum transfection efficiency with minimal toxicity was achieved (see Section 

2.2.2). MDA-MB-468 cells were seeded at 33,000 cells/cm2 and reverse transfected with 30 nM 

siRNA targeting GAPDH or PLK1 using 0.1-0.4 μL/well HiPerFect according to Section 2.2.2. 
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HiPerFect doses 0.15-0.25 μL/well produced a high level of transfection efficiency (as indicated 

by the PLK1 siRNA) with a relatively low level of cytotoxicity (5.02% +/- 6.41% cytotoxicity at 0.15 

μL/well and 14.09% +/- 4.67% cytotoxicity at 0.25 μL/well) (Figure 3.2A-B). In addition, HiPerFect 

doses above 0.3 μL/well induced an unacceptably high level of cytotoxicity (0.3 μL/well induced 

cytotoxicity of 27.9% +/- 6.54%) and so an optimal HiperFect dose range of 0.15-0.25 μL/well 

was identified.  

 

 

Figure 3.2: Optimisation of HiPerFect dose in MDA-MB-468 cells. MDA-MB-468 cells were seeded at 
33,000 cells/cm2 and transfected with 30 nM siRNA targeting GAPDH or PLK1 using 0.1-0.4 μL/well 
HiPerFect according to Section 2.2.2. Cells were then fixed and stained with DAPI and imaged and 
quantified according to Sections 2.4 and 2.5. (A) Mean cell number/well of cells transfected with either 
30 nM GAPDH siRNA or PLK1 siRNA using 0.1-0.4 μL/well HiPerFect. (B) Mean cell number/well of cells 
treated with 0.1-0.4 μL/well HiPerFect alone. Bars denote mean +SD of a single representative experiment 
containing five technical repeats.  

 Validation of the mouse anti-p16 JC2 antibody and siRNA knockdown of p16 in HeLa and 

MDA-MB-468 cells 

Protein knockdown following siRNA transfection using p16 siRNA was then assessed at each of 

the HiPerFect doses within the optimal dose range identified (0.15-0.25 μL/well) for both HeLas 

and MDA-MB-468 cells. First the mouse anti-p16 JC2 antibody was validated via western 

blotting. HeLa and MDA-MB-468 cell lysates (p16-positive cancer cell lines) were run alongside 

MDA-MB-231 cell lysate (p16-null BLBC cell line) and all three samples were probed for p16 

according to Section 2.6. Western blot analysis revealed one clean band at approximately 16KDa 

in the p16-positive cell lines and no band in the MDA-MB-231 cells, confirming that the antibody 

was suitable for immunofluorescence staining (Appendix, Figure A.1A). 

Subsequently, HeLas and MDA-MB-468 cells were reverse transfected with siRNA targeting 

either GAPDH or p16 at 0.15, 0.2 and 0.25 μL/well HiPerFect and cellular p16 protein levels were 

quantified via immunofluorescence staining according to Sections 2.4 and 2.5. A HiPerFect dose 
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of 0.15 μL/well produced a reduction in cellular p16 protein levels together with minimal toxicity 

in HeLa cells and was selected for future siRNA screening (Figure 3.3A-B). In MDA-MB-468 cells, 

a HiPerFect dose of 0.2 μL/well produced a greater level of p16 protein knockdown following 

p16 siRNA transfection when compared to 0.15 μL/well HiPerFect and a dose of 0.25 μL/well 

was not able to increase the level of p16 protein knockdown any further (Figure 3.3C-D). As such, 

0.2 μL/well HiPerFect was selected for the future MDA-MB-468 siRNA screens.  

 

Figure 3.3: siRNA knockdown of p16 in HeLa and MDA-MB-468 cells. (A) Representative frequency 
distribution of cellular p16 intensity levels following reverse transfection of HeLa cells with 30 nM siRNA 
targeting either GAPDH or p16. HeLa cells were seeded at 12,000 cells/cm2 in 384-well plate format and 
were reverse transfected with 30 nM siRNA using 0.15 μL/well HiPerFect. Cells were fixed and stained 
with mouse anti-p16 JC2, goat Alexa Fluor-488 conjugated anti-mouse, DAPI and Cell Mask and were then 
imaged and quantified according to Sections 2.4 and 2.5. (B) Representative immunofluorescence images 
of HeLa cells treated with either GAPDH siRNA or p16 siRNA. DAPI (blue), p16 (green). (C) Representative 
frequency distribution of cellular p16 intensity levels following reverse transfection of MDA-MB-468 cells 
with 30 nM siRNA targeting either GAPDH or p16. MDA-MB-468 cells were seeded at 33,000 cells/cm2 in 
384-well plate format and were reverse transfected with 30 nM siRNA using 0.15, 0.2 and 0.25 μL/well 
HiPerFect. Cells were fixed and stained with mouse anti-p16 JC2, goat Alexa Fluor-488 conjugated anti-
mouse, DAPI and Cell Mask and were then imaged and quantified according to Sections 2.4 and 2.5. (D) 
Representative immunofluorescence images of MDA-MB-468 cells treated with either GAPDH siRNA or 
p16 siRNA. DAPI (blue), p16 (green). Images are at 10X magnification and size bar denotes 100 μm.   
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 siRNA screening to activate senescence in p16-positive cancer 

 Identification of 28 senescence evaders in HeLa cells 

A previous genome-wide siRNA screen revealed 86 siRNAs (see Appendix, Figure A.2) that 

activated senescence in HeLa cells (data not shown) but had no effect on the proliferation or 

morphology of normal, finite lifespan HMECs. Due to the large-scale nature of the genome-wide 

siRNA screen, each siRNA was tested just once. Therefore, to further validate these 86 siRNAs 

as activators of senescence, HeLa cells were reverse transfected with the previously identified 

86 siRNAs and control siRNAs targeting GAPDH or PLK1 according to Section 2.3.1. Two 

independent siRNA screens were performed, each in triplicate. 

The level of cytotoxicity induced by the transfection protocol was at an acceptable level (15.63% 

+/- 7.94%) (Figure 3.4A). Further, PLK1 siRNA induced 93.11% +/- 9.29% cell death when 

compared to cells treated with GAPDH siRNA, indicating that optimal transfection efficiency had 

been achieved (Figure 3.4A). As such, the data generated by the GAPDH siRNA was used as a 

baseline for Z score generation (see Section 2.5.2) to determine the effects of each of the 86 

siRNAs on proliferation and morphology in the HeLa cells (Figure 3.4A-B). As described in Section 

3.1, a significant reduction in cell number, together with a significant increase in cell area was 

used to define senescence activation and identify a group of reproducible senescence evaders 

in this p16-positive cancer cell line. According to these phenotypic criteria, the siRNA screens 

identified 28 siRNAs that were able to activate senescence in the HeLa cell line (Figure 3.4C). In 

addition, it was further confirmed that GAPDH siRNA was an appropriate negative control as 

there was no significant change in the proliferation or morphology of HeLa cells treated with 

GAPDH siRNA when compared with cells treated with HiPerFect alone (Figure 3.4A-B). 
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Figure 3.4: Two independent siRNA screens reveal 28 siRNAs that activate senescence in HeLa cells. 
HeLa cells were seeded at 12,000 cells/cm2 and transfected with 30  nM siRNA targeting 86 genes together 
with control siRNAs targeting GAPDH or PLK1 in 384-well plate format according to Section 2.3.1. Cells 
were fixed and stained with DAPI and Cell Mask and then imaged and quantified according to Sections 2.4 
and 2.5. (A) Mean cell number/well for the control siRNAs. (B) Mean cell area for the control siRNAs. Bars 
denote mean +SD of two independent screens, each performed in triplicate. (C) Scatter plot of mean cell 
number versus mean cell area generated by each of the 86 siRNAs within the two independent siRNA 
screens. The mean data generated by the GAPDH siRNA is shown in dark grey. Non-significant siRNAs are 
shown in light grey and significant siRNAs are depicted in blue. Throughout, the dotted lines denote the 
significance thresholds at three Z scores away from the GAPDH siRNA negative control mean.  

 

 Identification of 25 senescence evaders in MDA-MB-468 cells 

In order to address the second aim of this Chapter, MDA-MB-468 cells were reverse transfected 

with the top 50 siRNAs identified within the previously performed HeLa screens according to 
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Section 2.3.1. So as to be as inclusive as possible, the 86 siRNAs tested in the HeLa cells were 

ranked according to their Z score for cell number and the 50 siRNAs that produced a reduction 

in cell number together with an increase in cell area of at least one Z score were selected for 

screening in the MDA-MB-468 cells. 

Interestingly, of the 28 significant hits identified within the HeLa screen, 11 siRNAs targeted 

genes encoding RPs. These 11 hits were also among the most potent senescence activators to 

be identified. Furthermore, of the top 50 siRNAs identified within the HeLa screen, two 

mitochondrial ribosomal proteins (MRPs) were present (MRPL13 and MRPS24). As such, it was 

hypothesised that siRNA silencing of RPs or MRPs may also activate senescence in the MDA-MB-

468 cells. Therefore, the HeLa genome-wide siRNA screen was re-mined for siRNAs targeting RPs 

or MRPs. In total, 182 ribosomal siRNAs were tested, of which 90 siRNAs induced a reduction in 

cell number of at least one Z score. Once the 13 RP hits identified above had been excluded, 77 

ribosomal siRNAs remained. Next, the HMEC siRNA screen was subsequently re-mined. Only 

seven out of these 77 ribosomal siRNAs did not induced any significant change to cellular 

proliferation or morphology in the HMECs (data not shown). Interestingly, all seven of these 

additional siRNAs targeted genes encoding MRPs. In summary, a total of 57 siRNAs were 

selected for testing within the MDA-MB-468s (Appendix, Figure A.3). These were significantly 

enriched for siRNAs targeting either RPs (11 siRNAs) or MRPs (nine siRNAs) (Figure 3.5). 

 

Figure 3.5: A schematic illustrating how the siRNAs were selected for the MDA-MB-468 screens. 
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Before siRNA screening in the MDA-MB-468s, it was first established whether or not senescence 

could be activated in these cells. In order to test this, MDA-MB-468 cells were reverse 

transfected with either GAPDH siRNA or CBX7 siRNA according to Section 2.3.2. CBX7 is a 

polycomb group repressor of the INK4b-ARF-INK4a locus and the Bishop laboratory has 

previously demonstrated that siRNA knockdown of CBX7 in HMECs causes an increase in p16 

protein levels together with senescence induction (Bishop et al., 2010). Further details on the 

regulatory function of CBX7 may be found in Section 1.1.2. Interestingly, reverse transfection of 

MDA-MB-468 cells with CBX7 siRNA resulted in a decrease in cell number together with an 

increase in both cell and nuclear area suggesting that these cells are vulnerable to senescence 

activation despite their highly aggressive malignant phenotype (Figure 3.6A-D). As such, CBX7 

siRNA was used as a positive control for senescence activation in the MDA-MB-468 siRNA 

screens. 

 

Figure 3.6: Activation of senescence in MDA-MB-468 cells with CBX7 siRNA. MDA-MB-468 cells were 
transfected with 30 nM siRNA targeting GAPDH or CBX7 according to Section 2.3.2. Cells were fixed and 
stained with mouse anti-p16 JC2, goat Alexa Fluor-488 conjugated anti-mouse, DAPI and Cell Mask and 
cells were then imaged and quantified according to Sections 2.4 and 2.5. (A) Mean cell number/well. (B) 
Mean cell area. (C) Mean nuclear area. Bars denote mean +SD of a single representative experiment 
containing six technical repeats. (D) Representative immunofluorescence images of MDA-MB-468 cells 
transfected with either 30 nM GAPDH siRNA or CBX7 siRNA and stained for DAPI (blue) and p16 (green). 
Size bar denotes 100 μm. 
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Once it had been established that the MDA-MB-468 cells were capable of senescence activation, 

two independent siRNA screens were performed, each in triplicate. As in the HeLa screens, 

GAPDH siRNA was used to determine the level of cytotoxicity induced by the transfection 

protocol and was also used as a baseline for Z score generation (see Section 2.5.2). CBX7 siRNA 

was used as a positive control for senescence activation and PLK1 siRNA was used as a ‘killer 

control’ to determine transfection efficiency. 

The cell numbers produced by each of the control siRNAs were in line with previous data and, 

as in the HeLa screens, the level of cytotoxicity induced by the transfection protocol was at an 

acceptable level (17.80% +/- 8.55%, see Figure 3.7A). Furthermore, PLK1 siRNA induced 88.65% 

+/- 13.40% cell death indicating that optimal transfection efficiency had been achieved across 

the two screens (Figure 3.7A). Therefore, the data generated from the screens was used to 

determine the effects of each of the 57 siRNAs on the proliferation and morphology of the MDA-

MB-468 cells. The same phenotypic criteria (outlined in Section 3.1) used within the HeLa 

screens for hit detection was applied to define senescence activation in the MDA-MB-468 cells 

(Figure 3.7A-B). According to these parameters, the siRNA screens revealed 25 siRNAs capable 

of activating senescence in the MDA-MB-468 cells (Figure 3.7C). 

In line with the data generated by the genome-wide siRNA screen in HeLa cells, five of the seven 

additional MRP siRNAs induced a non-significant reduction in cell number together with a non-

significant increase in cell area in the MDA-MB-468 cells (data not shown). However, in contrast 

to the HeLa cell line, two siRNAs (targeting MRPL10 and MRPS31) caused significant changes in 

both cell number and cell area in the MDA-MB-468s (Figure 3.8B) These findings suggest a 

possible cell type-specific role for MRPL10 and MRPS31 in senescence evasion. It is possible that 

MDA-MB-468s may be more reliant upon MRPL10 and MRPS31 expression for senescence 

evasion and that siRNA silencing of these genes in MDA-MB-468s may induced a more potent 

senescence induction when compared to silencing in HeLa cells. 
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Figure 3.7: Two independent siRNA screens reveal 25 siRNAs that activate senescence in MDA-MB-468 
cells. MDA-MB-468 cells were transfected with 30 nM siRNA targeting 57 genes together with control 
siRNA targeting GAPDH, CBX7 or PLK1 according to Section 2.3.1. Cells were fixed and stained with DAPI 
and Cell Mask and were then imaged and quantified according to Section 2.4 and 2.5. (A) Mean cell 
number/well for the control siRNAs. (B) Mean cell area for the control siRNAs. Bars denote mean +SD of 
two independent screens, each performed in triplicate. (C) Scatter plot of mean cell number and mean 
cell area generated by each of the 57 siRNAs within two independent siRNA screens, each performed in 
triplicate. The mean data generated by the GAPDH siRNA is shown in dark grey. Non-significant siRNAs 
are shown in light grey and significant siRNAs are depicted in blue. Throughout, the dotted lines denote 
the significance thresholds at three Z scores away from the GAPDH siRNA negative control mean. 
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  Multiparameter analysis of the top senescence evaders 

Across both siRNA screens, senescence activation was often accompanied by multiple additional 

morphological changes characteristic of the senescent phenotype. Further, the senescence 

phenotype induced by each of the top siRNAs appeared to vary depending on the cell type and 

the siRNA used. In order to quantify these observed morphological changes and to explore the 

complexities of the activated senescence phenotype, multiparameter analysis was performed 

across both siRNA screens. Importantly, this approach was also used to assess whether the top 

siRNAs could be sub-classified according to the morphological changes induced and to 

determine whether different morphological features had been activated. In addition, it was 

hypothesised that siRNAs targeting genes encoding proteins of the same biological complex (i.e. 

the ribosome) would induce similar morphological changes upon senescence activation. It has 

previously been shown that siRNA silencing of CBX7 in HMECs causes potent senescence 

induction, together with significant changes to cellular and nuclear morphology (Bishop et al., 

2010). Furthermore, siRNA silencing of CBX7 in MDA-MB-468s resulted in senescence activation 

(Figure 3.6A-D). As such, CBX7 siRNA was used as an initial basis to select additional senescence-

associated parameters for quantitation. Multiparameter analysis was then performed across 

both siRNA screens and results for the significant senescence evaders are displayed in the form 

of a heatmap in Figure 3.8A-D. 

This analysis showed that many of the top siRNAs from both screens induced significant changes 

in multiple senescence-associated parameters (Figure 3.8A-D). For example, within the HeLa 

screen all but one (distal-less homeobox 5 (DLX5) siRNA) of the 28 significant siRNAs induced a 

significant change in at least one additional senescence-associated parameter. Furthermore, ten 

of the top 11 siRNAs (classified as strong activators of senescence as they caused a reduction in 

cell number of more than six Z scores from the GAPDH siRNA negative control mean) induced 

significant changes in at least three additional parameters. 

This approach allowed the top siRNAs from each screen to be sub-classified according to the 

various morphological changes observed and the significant siRNAs were grouped into seven 

broad categories, suggesting multiple routes to senescence induction had been activated. Many 

of the siRNAs induced similar morphological changes across both screens (including siRNAs 

targeting interleukin 13 receptor, alpha 1 (IL13RA1) and sperm adhesion molecule 1 (PH-20 

hyaluronidase, zona pellucida binding), SPAM1) and were sub-classified into the same category 

(Category 2) within each cell type. Further, many of the most potent siRNAs (including siRNAs 

targeting RPS3A and RPL35A) induced a significant increase in both nuclear area and nuclear 
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roundness within both cell types. However, two of the strongest hits across both screens 

(targeting RPLP2 and RPL34) induced opposing changes to nuclear morphology upon senescence 

induction within the two cell types. These siRNAs induced a significant reduction to nuclear 

elongation in the MDA-MB-468 cell line (rounded phenotype, Category 1), while inducing a 

significant increase to nuclear elongation in the HeLa cells (Category 4). Together, these finding 

suggests that RPLP2 and RPL34 may have cell type-specific roles in senescence evasion and 

phenotypic changes associated with the activation of senescence in p16-positive cancer cells 

may also be cell-type specific. In addition, many of the siRNAs that activated senescence in both 

cell types, including those targeting ubiquitin A-52 residue ribosomal protein fusion product 1 

(UBA52) (HeLa: Category 6, MDA-MB-468: no significant change to cellular or nuclear 

morphology, Category 7), 6-phosphogluconate dehydrogenase (PGD) (HeLa: category 2, MDA-

MB-468: Category 7) and Topoisomerase II beta (TOP2B) (HeLa: Category 4, MDA-MB-468: 

Category 7) induced shifts in more additional senescence-associated parameters in the HeLa cell 

line when compared to the MDA-MB-468 screen. This data suggests that UBA52, PGD and TOP2B 

may also play cell type-specific roles in senescence evasion in p16-positive cancer cells and that 

phenotypic changes associated with senescence activation may differ depending on the cell 

type. 

Notably, in contrast to the senescence phenotype observed in the HeLa cells, senescence 

activation in the MDA-MB-468 cells was largely associated with a reduction in cellular 

elongation. Arrested MDA-MB-468 cells developed a more rounded morphology (Category 1), 

while senescence activation in the HeLa cells by many of the siRNAs caused the cells to become 

significantly more elongated (Category 5). For example, of the top 28 siRNAs identified within 

the HeLa screens, nine siRNAs induced a significant increase in cellular elongation, while just one 

siRNA achieved this in the MDA-MB-468 cells. Again, this data also indicates a possible tissue-

specific role for these senescence evaders and suggests, under certain conditions, the 

senescence phenotype may also be cell-type dependent. 



96 
 

 

Figure 3.8: Sub-categorisation of the top siRNAs in HeLa and MDA-MB-468 cells according to 
multiparameter analysis. Two independent siRNA screens, each in triplicate were performed in HeLa and 
MDA-MB-468 cells according to Section 2.3.1. Cells were then fixed and stained with mouse anti-p16 JC2, 
goat Alexa Fluor-488 conjugated anti-mouse, DAPI and Cell Mask according to Section 2.4. Cells were then 
imaged and quantified according to Section 2.5 and multiparameter analysis was performed on the 
significant siRNAs using the IN Cell 1000 Developer software version 1.8. Z scores were generated 
according to Section 2.5.2. (A-B) Heatmaps depicting significant changes in each of the senescence-
associated parameters selected for quantification for the significant siRNAs from two independent siRNA 
screens. Scores highlighted in red denote a significant shift in the parameter in the opposite direction to 
that shown in the (C) Key. The top 25 siRNAs were then sub-categorised into seven categories. (D) A Venn 
diagram summarising the results of siRNA screening in the HeLa cell line and the MDA-MB-468 cell line. 
50 genes were targeted by pools of three siRNAs in two p16-positive cancer cell lines. 20 genes were 
classified as senescence evaders in both cell lines. 
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There was considerable overlap between the senescence evaders identified across the two 

screens. Of the 50 siRNAs tested in both cell lines, 20 scored significantly in both the HeLa cells 

and the MDA-MB-468 cells for cell number and cell area. Strikingly, of these 20 siRNAs, 11 target 

genes that encode for both 40S and 60S RPs and will form the basis of future study (see Chapter 

4). Importantly, these 11 ribosomal siRNAs were among the most potent activators of 

senescence across both screens. Within the HeLa cell line the majority of these siRNAs fell into 

Category 2 (rounded nuclear morphology) or 6 (rounded nuclear morphology and increased 

cellular protrusions) with the exception of RPS18 siRNA (Category 1, rounded cellular and 

nuclear morphology) and siRNAs targeting RPLP2 and RPL34 (Category 4, elongated nuclear 

morphology). As in the HeLa screen, the majority of these ribosomal siRNAs induced a rounded 

nuclear morphology in the MDA-MB-468s, however, unlike in the HeLa cells, senescence 

activation was often associated with a significant increase in cellular roundness with the majority 

of the ribosomal siRNAs falling into Category 1 or 3.  Strikingly, just one siRNA targeting RPS18 

gave rise to an increase in the number of cellular protrusions, a defining feature of the activated 

senescence phenotype in HeLa cells. Together, this data suggests that some morphological 

changes, such as increased nuclei roundness, may characterise senescence activation via RP 

silencing in p16-positive cancer regardless of cell type. By contrast, additional senescence-

associated features such as increased cellular protrusions or increased cellular roundness may 

be cell-type specific. 

 Activation of senescence in p16-positive cancer cells is associated with increased nuclear 

p16 protein levels 

In order to address the fourth aim of this Chapter, the original HeLa and MDA-MB-468 siRNA 

screening plates were stained with p16 antibody according to Sections 2.4 and 2.5 . Within the 

HeLa screen, p16 staining identified three siRNAs (targeting UBA52, RPS18 and RPLP2) that 

activated senescence together with a significant increase in nuclear p16 density (Figure 3.8A). 

In addition, a further four siRNAs (targeting RPL14, RPS7, RPS3A and RPL34) induced an increase 

in nuclear p16 density of more than two Z scores above the GAPDH siRNA control mean. 

Interestingly, all seven of these siRNAs were potent activators of senescence and targeted genes 

that encode RPs. As in the HeLa screen, RPS18 siRNA induced a significant increase in nuclear 

p16 density (Figure 3.8B) while many other RP siRNAs (including RPLP2) siRNA induced a 

reproducible, although not significant increase in nuclear p16 protein levels (see Chapter 5). 

Together, these findings suggest that the knockdown of specific RPs in p16-positive cancer may 

re-sensitise these cells to p16 signalling, allowing the activation of senescence. The mechanisms 
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by which silencing of these RPs drives senescence activation in cancer together with the p16-

dependency of the senescence induction will be explored in more detail in Chapter 5. 

The HeLa cell line expresses the viral oncoprotein E7, which, in turn, acts to inhibit RB. Further, 

MDA-MB-468 cells are predicted to be RB-null. Given this, together with the p16 and p53 status 

of these cells and the data that suggests that, under certain circumstances, nuclear p16 levels 

increase upon senescence activation, it was hypothesised that senescence activation is 

mediated by p16 signalling independent of RB. Interestingly, the transcriptional regulator, 

FOXM1 was recently identified as a critical phosphorylation target of CDK4/6–cyclin D complexes 

(Anders et al., 2011)and is often overexpressed in breast cancer (see Section below). As such, it 

was hypothesised that the senescence evaders identified above may be novel downstream 

transcriptional targets of FOXM1 and that aberrant FOXM1 activity may mediate senescence 

evasion in MDA-MB-468 cells. In order to explore these questions, a collaboration was 

established with the Lam laboratory (Imperial College, London). 

 FOXM1 knockdown does not activate senescence in MDA-MB-

468 cells 

FOXM1 is a key transcription factor that functions to regulate the expression of a plethora of 

genes involved in embryonic and foetal development as well as adult tissue homeostasis and 

repair (reviewed in Bella et al., 2014). Although FOXM1 is highly expressed during 

embryogenesis and plays an essential role in ensuring the correct development of a multitude 

of tissues, such as the heart, liver, intestines and oesophagus (Ye et al., 1997), during adulthood, 

FOXM1 is tightly controlled and expression is restricted to proliferating cells, often at sites of 

tissue damage (liver, heart and spinal cord) (Ye et al., 1999, Bolte et al., 2012, Zhang et al., 2013). 

Here, FOXM1 expression enhances cellular proliferative capacity to ensure sufficient tissue 

repair is achieved. Downstream target genes of FOXM1 include a wide array of cell cycle 

regulators (see Section 1.1.1). 

FOXM1 has also been found to be overexpressed in a diverse collection of cancers, including 

lung, cervical, gastric and pancreatic cancers and the role of FOXM1 within cancer initiation is 

now well established (reviewed in Lam et al., 2013). In addition, FOXM1 expression in cancer 

has been linked with epithelial-mesenchymal transition, enhanced tumour growth, cancer 

angiogenesis and metastasis (Bao et al., 2011, Wang et al., 2007, Huang et al., 2012). 

Importantly, FOXM1 has also been found to be highly expressed within breast cancers and 

elevated expression of FOXM1 within these tumours is associated with a reduced prognosis 
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(Bektas et al., 2008). Crucially, there is now a growing body of evidence to suggest that FOXM1 

expression in cancer mediates senescence evasion and promotes genotoxic agent resistance 

(Tao et al., 2014, Li et al., 2008, Zeng et al., 2009, Liu et al., 2014, Kwok et al., 2010). Although 

targeting FOXM1 directly would have widespread detrimental effects on normal cells (given its 

crucial role within the cell cycle), tempering its pro-tumorigenic effects within cancer cells by 

modulating specific downstream FOXM1 targets may be highly beneficial (reviewed in Bella et 

al., 2014). 

In order to explore the upstream transcriptional regulation of the senescence evaders identified 

and to further investigate the mechanism of senescence evasion in p16-positive BLBC cancer, a 

collaboration was established with the Lam laboratory (Imperial College, London). Given the 

regulatory role of p16 via CDK4/6–cyclin D complexes over FOXM1 activity, it was hypothesised 

that a sub-group of the senescence evaders identified here may be novel downstream 

transcriptional targets of FOXM1 and that p16-insensitivity through aberrant FOXM1 activity 

may drive senescence evasion in MDA-MB-468 cells. It was also proposed that this analysis 

would allow further sub-classification of the senescence evaders according to whether their 

transcriptional regulation was under FOXM1 control.  

To test this, chromatin immunoprecipitation sequencing (ChIP-seq) for FOXM1 target genes 

performed by the Lam laboratory (Imperial College, London) identified 1,462 potential FOXM1 

targets. In order to select putative FOXM1 targets for further investigation, the genome-wide 

HeLa and HMEC screens were re-mined. This cross-comparison exercise identified seven siRNAs 

(including those targeting the MRPs, MRPL13 and MRPS24) that activated senescence in the 

HeLa cells but, crucially, were non-toxic to the HMECs. Just three of these siRNAs (targeting 

lysine-rich nucleolar protein 1 (KNOP1), MRPS24 and gem (nuclear organelle) associated protein 

6, GEMIN6) gave rise to a reduction in cell number (>1 Z score) within the two HeLa validation 

screens and were selected for further investigation. Notably, these three putative FOXM1 

targets all encode ribosomal biosynthesis-associated proteins. As such, the genome-wide 

screens were re-mined a second time for ribosomal siRNAs that induced a reduction in cell 

number (>1 Z score) within the HeLa screens and were non-toxic to the HMECs. Of these, two 

hits (MRPL13 and MRPL55) were found to be putative FOXM1 targets and therefore a total of 

five candidates were included in further investigations. In order to test the hypothesis that these 

five putative FOXM1 transcriptional targets may mediate senescence evasion in p16-positive 

cancer cells, MDA-MB-468 cells were transfected with siRNA targeting each of these five genes.  
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These experiments identified just one siRNA, targeting KNOP1, that activated senescence in the 

MDA-MB-468s accompanied by a subtle non-significant (<1 Z score) increase in nuclear p16-

protein levels. Two additional siRNAs targeting MRPs, MRPS24 and MRPL55, also induced small 

shifts (2 Z scores from the GAPDH siRNA negative control mean) in both cell number and cell 

area suggesting these putative FOXM1 targets may function as weak senescence evaders in 

these cells (Figure 3.9).  

 

Figure 3.9: siRNA knockdown of five potential FOXM1 target genes in MDA-MB-468 cells. MDA-MB-468 
cells were reverse transfected with 30 nM siRNA targeting five potential FOXM1 target genes, GAPDH or 
CBX7 according to Section 2.3.2. Cells were then fixed and stained with mouse anti-p16 JC2, goat Alexa 
Fluor-488 conjugated anti-mouse, DAPI and Cell Mask according to Section 2.4. Cells were then imaged 
and quantified according to Section 2.5.  

Together, this data suggests that for the majority of the senescence evaders identified here, 

transcriptional control is not mediated by FOXM1. However, three putative FOXM1 targets were 

identified as potential senescence evaders in MDA-MB-468 cells.  Given this, it is possible that 

enhanced FOXM1 activity and increased expression of target genes KNOP1, MRPS24 and 

MRPL55 may mediate senescence evasion in these cells. As such, it was hypothesised that 

FOXM1 may also mediate senescence evasion in p16-positive BLBC cells. To test this, MDA-MB-

468 cells were subsequently transfected with a previously validated FOXM1 siRNA (kind gift from 

Prof. Eric Lam, Imperial College London) at 30, 60 or 90  nM in order to achieve maximal 

knockdown and senescence activation was assessed (Figure 3.10A-C). Interestingly, FOXM1 

siRNA transfection did not induce senescence in the MDA-MB-468s at either of the three siRNA 

concentrations tested, suggesting that FOXM1 does not mediate senescence evasion within 

these cells. Further, this data suggests that the potential regulatory control of FOXM1 over the 

putative target genes (KNOP1, MRPS24 and MRPL55) identified above is not present or has been 

lost within the MDA-MB-468 cells. 
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Figure 3.10: FOXM1 siRNA transfection of MDA-MB-468 cells. MDA-MB-468 cells were transfected with 
30, 60 or 90 nM siRNA targeting FOXM1 together with control siRNA targeting GAPDH or CBX7 according 
to Section 2.3.2. Cells were fixed and stained with DAPI and Cell Mask according to Section 2.4. Cells were 
then imaged and quantified according to Section 2.5. (A) Mean cell number/well and mean cell area at 30 
nM. (B) 60 nM (C) 90 nM. Bars denote mean +SD of a single representative experiment. 

 

 Validation of 6-phosphogluconate dehydrogenase (PGD) siRNA 

knockdown in MDA-MB-468 cells 

As stated previously, of the 20 siRNAs to activate senescence within both p16-positive cancer 

cell lines, 11 targeted RPs and six of these were prioritised for further investigation (see Chapter 
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4). Of the remaining nine non-ribosomal hits, PGD was selected for further validation as Kaplan 

Meier analysis together with recent studies within the literature suggest PGD may be a poor 

prognostic marker in BLBC and implicate PGD in senescence evasion in the non-small cell lung 

adenocarcinoma cell line (H1975, p53 and p16 mutated) (Sukhatme and Chan, 2012, Chan et al., 

2013). This work formed the basis of an MRes student research project and the data shown in 

Figure 3.11A-B was obtained by Daniel Yee (an MRes student in the Bishop Laboratory, May 

2014-September 2014). 

PGD is the second enzyme in the oxidative branch of the pentose phosphate pathway (PPP), 

sometimes referred to as the hexose monophosphate shunt. The oxidative PPP is a glucose 

metabolising pathway in which glucose-6-phosphate is converted to ribulose-5-phosphate 

(essential for nucleic acid synthesis) to produce nicotinamide adenine dinucleotide phosphate 

(NADPH) and CO2 (reviewed in Stanton, 2012). It is well known that the PPP rate-limiting enzyme, 

glucose-6-phosphate dehydrogenase (G6PD), is often upregulated in cancer and that PPP 

activity is thought to be vital for the survival of hyper-proliferative cells (Boros et al., 1998, Tian 

et al., 1998). Importantly, the PPP has been found to be up-regulated in breast cancer 

metastases and Kaplan Meier analysis revealed that elevated PGD expression in BLBC is 

associated with a poor prognosis (HR=1.4, p=0.012, 10 year relapse free survival, N=580). More 

recently, it has also been shown that shRNA knockdown of PGD in H1975 cells resulted in a 

senescence-like phenotype together with reduced cell migration (Sukhatme and Chan, 2012, 

Chan et al., 2013). 

In order to validate PGD siRNA knockdown at the protein level in MDA-MB-468 cells, the rabbit 

anti-PGD antibody was first examined via western blotting. MDA-MB-468 and HMEC cell lysates 

were probed for PGD according to Section 2.6. Western blot analysis revealed one clean band 

at approximately 45KDa in both cell lysates, confirming the specificity of the antibody (data not 

shown). Subsequently, MDA-MB-468 cells were reverse transfected in 6-well plate format with 

a pool of three siRNAs targeting PGD or each of these three PGD siRNAs individually, according 

to Section 2.3.5. After 48 hr, the cells were harvested for western blotting and the lysates were 

probed for PGD according to Section 2.6 (Figure 3.11A-B). After 48 hrs, all three PGD siRNAs 

together with the siRNA pool induced a significant reduction in PGD protein levels of more than 

50%, validating each of the siRNAs used within the siRNA screens. 



103 
 

 

Figure 3.11: Validation of PGD siRNA knockdown in MDA-MB-468 cells. MDA-MB-468 cells were reverse 
transfected with three individual siRNAs or a 30 nM siRNA pool targeting PGD or 30 nM GAPDH siRNA 
according to Section 2.3.5. After 48 hrs cells, were lysed for western blotting and probed for PGD 
according to Section 2.6. (A) Representative western blots depicting PGD levels in MDA-MB-468 cells. 
Lysates were probed for rabbit anti-PGD and the rabbit anti-cyclophilin B antibody was used as a loading 
control. Antibody dilutions and conditions may be found in Section 2.6. (B) Densitometry analysis of PGD 
levels post siRNA transfection in MDA-MB-468s. Analysis was performed using ImageJ software according 
to Section 2.6.3. Bars denote mean density levels +SD normalised to GAPDH siRNA of two independent 
experiments. * = p<0.05. The data displayed within this figure was generated by Daniel Yee, MSc student 
within the Bishop laboratory. 

 

 Discussion and future work 

 siRNA screening identified 20 siRNAs that activate senescence within two p16-positive 

cancer cell lines 

In summary, siRNA screening identified 20 siRNAs that activated senescence within two p16-

positive cancer cell lines but did not affect the viability of normal HMECs. Strikingly, 11 of these 

20 siRNAs targeted RPs (see Section 3.3.3) and a detailed discussion of the mammalian ribosome 

may be found within Chapter 1, Section 1.7. Of the 11 RPs identified here, six (RPL14, RPL18, 

RPL34, RPL35A, RPS3A and RPS7) were prioritised for further validation (see Chapter 4) and a 

discussion of each of these hits and their links with cancer may be found in Section 6.2. In 

addition, screening identified PGD as a potential senescence evader within p16-positive cancer 

and a discussion of PGD and its links with cancer and senescence induction may be found in 

Section 3.5. A brief summary of the current literature linking each of the remaining eight non-

ribosomal senescence evaders identified within this thesis with cancer is outlined below. 

Glutathione peroxidase 3 (GPX3) is expressed in a wide variety of normal tissues and functions 

to detoxify ROS and maintain ROS homeostasis (reviewed in Chen et al., 2011). Excessive ROS 
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levels are potentially cytotoxic and it is well established that elevated ROS plays a critical role in 

cancer initiation through chromosomal aberrations and point mutations in both oncogenes and 

tumour suppressor genes (reviewed in Waris and Ahsan, 2006). In addition, ROS can modulate 

gene expression via direct interaction with both proteins and RNA (reviewed in Chen et al., 

2011). However, the exact effect of ROS imbalance on cancer cell survival remains unclear and 

altered expression of antioxidant enzymes in human cancers has not been widely documented. 

Interestingly, there is now evidence to suggest that GPX3 may function as a putative tumour 

suppressor gene that is often silenced in solid tumours. For example, a review of GPX3 

expression across 63 cancer cell lines found that the GPX3 promotor was often hypermethylated 

and that GPX3 expression was down-regulated within many different human malignancies 

including bladder and head and neck cancers (Chen et al., 2011). In line with this finding, GPX3 

has been found to be hypermethylated in prostate cancer (Yu et al., 2007) and oesophageal 

squamous cell carcinoma (He et al., 2011) and down-regulated in cervical cancer tissue (Zhang 

et al., 2014). Further, this down-regulation of GPX3 expression in cervical cancer was 

significantly associated with lymph node metastases and a reduced prognosis (Zhang et al., 

2014). By contrast, Herault et al., 2012 showed that increased GPX3 expression correlated with 

an increased leukemic stem cell frequency (marker of poor prognosis in leukaemia) and a poor 

prognosis within acute myeloid leukaemia (AML), suggesting that GPX3 may represent a 

potential therapeutic drug target within AML. Lee et al., 2011 also found GPX3 to be 

overexpressed in clear cell type ovarian cancer (highly malignant disease subtype associated 

with a reduced overall survival) when compared with normal ovarian tissue and three additional 

ovarian cancer subtypes. Together these studies indicate that GPX3 may function in a tissue-

specific manner and that in a subset of cancers (such as a 36% of breast cancers, according to 

the Human Protein Atlas database, available at: http://www.proteinatlas.org/cancer), where 

GPX3 is expressed, this potential senescence evader may act to protect cells from the cytotoxic 

effects of excessive ROS levels, enabling proliferation and senescence evasion. In addition, 

Kaplan Meier analysis indicated that elevated GPX3 expression may be associated with a 

reduced prognosis in BLBC (N=580, HR=1.23 and p=0.11, data not shown) suggesting GPX3 

targeting may hold therapeutic potential within this disease subset. 

SPAM1 (sometimes referred to as PH-20) is a hyaluronidase enzyme that functions to degrade 

hyaluronic acid (HA) located within the ECM of connective tissues. HA is a high molecular mass 

(HMM) glycosaminoglycan formed of 2,000-25,000 disaccharide units and is important for ECM 

maintenance (reviewed in Veiseh and Turley, 2011). High molecular mass HA (HMM-HA) is 

associated with healthy tissue, whereas low molecular mass HA (LMM-HA) (produced by 
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excessive hyaluronidase activity) is often associated with angiogenesis and tumour 

dissemination (Bouga et al., 2010). To date, there is no literature implicating SPAM1 activity in 

senescence evasion in cancer, however, there are multiple studies that have found SPAM1 to be 

overexpressed in a variety of human malignancies including laryngeal, colorectal and breast 

cancers (Godin et al., 2000, Bouga et al., 2010, Beech et al., 2002). Interestingly, Beech et al. 

found SPAM1 levels to be increased in tumours of African American women with metastatic 

breast cancer compared with Caucasian women with equivalent disease. This finding suggests 

SPAM1 expression and its role within metastatic breast cancer may differ depending on patient 

ethnicity. Importantly, increased SPAM1 expression appears to be associate with cancer 

progression and metastatic disease and multiple studies have shown SPAM1 elevation in 

secondary metastases compared with primary tumours (Goodin et al., 2000 and Beech et al., 

2002). In line with these studies, Wang et al., 2004 found SPAM1 expression was elevated in 

breast tumours when compared to normal breast tissue and SPAM1 expression was identified 

in 83.3% of metastatic secondary tumours compared with just 58.4% of primary breast tumours, 

implicating SPAM1 in metastatic disease. 

IL13RA1 is a subunit of the interleukin receptor 13 (IL13R) (important mediator of the 

inflammatory response) and is the primary interleukin 13 (IL13) binding site within the receptor. 

IL13 and its receptor have been found to be overexpressed in many human malignancies, 

including breast cancer (Kapp et al., 1999, Debinski et al., 1999, Srabovic et al., 2011). Further, 

Srabovici et al. noted that increased IL13 expression was associated with increased tumour size 

in patients with lymph node negative disease. There was no direct correlation, however, in 

patients with metastatic disease. Conversely, Formentini et al., 2012 showed elevated IL13R 

expression was associated with a reduced metastasis rate in patients with colorectal tumours. 

Furthermore, low IL13 levels were associated with a poorer prognosis in these patients, 

suggesting a tissue-specific role for IL13 signalling within cancer progression. 

The topoisomerase enzyme, DNA topoisomerase II (TOP2) mediates the induction of DSBs in an 

ATP-dependent manner and plays an important role in regulating DNA topology and protecting 

it from harmful over-winding or under-winding during DNA replication and transcription 

(reviewed in Chen et al., 2012). Consequently, TOP2 enzymes are exploited by numerous highly 

effective chemotherapeutics such as Etoposide, Teniposide and Doxorubicin, often referred to 

as topoisomerase poisons (Osheroff, 1989). TOP2B is expressed in both proliferating and 

quiescent cells in almost all human tissues and, importantly, is not required for normal cell 

survival (Woessner et al., 1991, reviewed in Chen et al., 2012). Currently, there is no evidence 

implicating TOP2B in senescence evasion in cancer and the effect of TOP2B silencing in p16-
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positive cancer is a question not yet addressed by the literature. It is possible that within a hyper-

proliferative cancer setting, cells may become more heavily reliant upon TOP2B activity to meet 

the demands of enhanced transcription and DNA replication. Consequently, TOP2B silencing 

may activate senescence in a cancer-specific manner through disrupted DNA topology. 

A literature search for the four remaining non-ribosomal hits: Coiled-coil domain containing 82 

(CCDC82), DnaJ (Hsp40) homolog, subfamily C, member 5 gamma (DNAJC5G), Lysine-rich 

nucleolar protein 1 (KNOP1) and NHS-like 2 (NHSL2) revealed that the function of these proteins 

is largely unknown and, at present, there are no studies linking any of these candidates to 

carcinogenesis or senescence evasion. 

In order to validate these non-ribosomal hits as novel senescence evaders within p16-positive 

BLBC cells, further validation experiments, such as those outlined in Chapter 4, ought to be 

conducted. It is important to note that initial selection of the 86 siRNAs tested within this 

Chapter was based on a genome-wide siRNA screen performed in HeLa cells that pre-dated this 

project. Although this strategy identified 20 siRNAs functional within both HeLa and MDA-MB-

468 cells, an initial genome-wide based approach within two p16-positive BLBC cell lines such as 

MDA-MB-468 and BT549 cells (human breast carcinoma, p16+/+, p53R249S mutated and RB-null) 

may have identified additional hits functional within a p16-positive BLBC setting. 

 Deciphering the mechanism of senescence activation 

Immunofluorescence staining for p16 identified three siRNAs (targeting RPS18, RPLP2 and 

UBA52) that induced a significant increase in nuclear p16 protein levels upon senescence 

activation in HeLa cells (see Section 3.3.4). Subsequent immunofluorescence staining in MDA-

MB-468 cells also demonstrated that the activation of senescence via RPS18 knockdown was 

accompanied by a significant increase in nuclear p16 protein levels and that siRNA targeting of 

many of the remaining RP hits (including the top six selected for further validation) induced a 

reproducible, although non-significant increase in nuclear p16 protein levels in these cells. 

Together, these results suggest that the activation of senescence via RP silencing may be 

mediated by p16. In addition, the HeLa cells used within this study were confirmed to be p53-

negative (see Section 5.1.2) and MDA-MB-468 cells are known to contain the p53R273H gain-of-

function mutation, severely reducing the likelihood of a p53-mediated senescence response in 

these cells. Given this, it is hypothesised that senescence activation following RP silencing in 

p16-positive cancer cells may be mediated by p16 re-sensitisation. The role of p16 within 

senescence initiation and maintenance following RP silencing is explored further within Chapter 

5. 
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Recently, FOXM1 was identified as a critical phosphorylation target of CDK4/6/Cyclin D 

complexes (Anders et al., 2011) and it was hypothesised that in MDA-MB-468 cells 

CDK4/6/Cyclin D-mediated phosphorylation of FOXM1 may promote cell cycle progression and 

senescence evasion. Importantly, three potential FOXM1 transcriptional targets identified by 

the Lam laboratory were also found to be weak senescence evaders within the MDA-MB-468 

cell line (see Section 3.4). With this in mind, it was proposed that senescence activation in the 

MDA-MB-468 cells may be mediated by p16-dependent FOXM1 inhibition. However, siRNA 

silencing of FOXM1 in MDA-MB-468 cells did not result in senescence induction, suggesting that 

FOXM1 is not a master regulator of senescence evasion within these cells and that senescence 

activation following RP silencing is unlikely to be mediated by a downregulation of FOXM1 

transcriptional activity (see Section 3.4). 

The most well characterised mechanism of p16-dependent senescence induction is via the 

p16/RB/E2F signalling axis (see Section 1.1.1). However, the MDA-MB-468 cell line is predicted 

to be RB-null, severely reducing the likelihood of a p16/RB/E2F mediated senescence response. 

Given this and the data discussed above, it is hypothesised that senescence activation following 

RP silencing may be mediated by an alternative p16-dependent signalling pathway and future 

work to explore the involvement of additional RB family members (p107 and p130) downstream 

of p16 is discussed in Chapter 6. 
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  Introduction 

 Chapter aims 

1. To investigate the patient relevance of the top 11 ribosomal hits identified within breast, lung, 

gastric and ovarian cancer using the Molecular Taxonomy of Breast Cancer International 

Consortium (METABRIC) and Kaplan Meier datasets. 

2. To validate a subset of ribosomal hits as senescence evaders within p16-positive BLBC cells 

using three individual siRNAs targeting each candidate. 

3. To determine whether siRNA knockdown of the ribosomal hits induces any effect on the 

proliferation or morphology of normal HMECs. 

4. To further characterise the senescence phenotype and assess whether senescence induction 

is associated with elevated β-gal activity. 

5. To investigate the long-term stability of the induced senescence phenotype. 
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 In silico analysis of the ribosome in breast cancer 

 Analysis of the METABRIC data set reveals extensive ribosomal dysregulation in BLBC 

Data from the siRNA screens implicates the cancer ribosome in senescence evasion and suggests 

that senescence can be activated in p16-positive cancer cells through the precise targeting of 

specific RPs (see Chapter 3). Importantly, growing evidence now points towards the cancer 

ribosome being severely disrupted, favouring the maintenance of a highly proliferative 

malignant state (see Section 1.7.5). For example, RPs have often been found to be 

overexpressed in a multitude of human cancers (reviewed in Ruggero and Pandolfi, 2003, de las 

Heras-Rubio et al., 2014), including breast, and key tumour suppressor genes, such as RB and 

p53, responsible for regulating ribosomal biosynthesis, are commonly mutated in cancer 

resulting in unchecked ribosomal assembly and activity (see Sections 1.7.4 and 1.7.5). 

In order to investigate the degree of ribosomal dysregulation within BLBC, and, crucially, to 

ascertain the patient relevance of the ribosomal hits identified here, the publically available 

METABRIC dataset was mined for ribosomal transcript expression level changes. The METABRIC 

dataset compiles gene expression and prognostic data (such as tumour subtype and grade) for 

over 2,000 matched breast tumour samples. The average expression level for each of the 

ribosomal transcripts within the normal samples was compared to the level in each of the five 

PAM50 breast cancer subtypes. Expression levels were also assessed in the p16-high tumours 

(top 50% of p16-positive tumours) regardless of subtype and the results are displayed in Figure 

4.1A. 

This analysis revealed considerable dysregulation across the entire ribosome in each of the five 

breast cancer subsets, with many of the ribosomal transcripts (encoding both 40S and 60S 

components) up-regulated in the cancer setting. Strikingly, the ribosome appears to be the most 

disrupted in the Basal-like tumours and this pattern of dysregulation is mirrored in the p16-high 

tumours, unsurprisingly given the p16 status of the vast majority of BLBCs. Importantly, all 11 

ribosomal hits identified by the siRNA screens were frequently upregulated in both the BLBC and 

p16-high subsets. This is highlighted by an example frequency distribution plot for one of the 

siRNA screen hits, RPL34 (Figure 4.1B). 
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Figure 4.1: In silico analysis of ribosomal transcript expression within breast cancer. (A) Heatmap 
depicting dysregulated ribosomal transcript expression (Log2) within Basal-like tumours and p16-high 
tumours relative to the total METABRIC dataset. Expression levels for each of the ribosomal transcripts 
was also assessed in the Luminal A, Luminal B, HER2+ and Normal-like PAM50 subtypes. (B) Frequency 
distribution plots depicting Log2 fold changes in RPL34 expression within Basal-like versus Non-Basal-like 
tumours and p16-high tumours versus p16-low tumours.  
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 Analysis of the Kaplan Meier database reveals elevated expression of a subset of 

ribosomal transcripts is associated with a reduced prognosis in BLBC 

Next, the Kaplan Meier database was mined to ascertain whether the dysregulation in the 

expression of the RP hits observed within the METABRIC dataset influenced patient outcome 

(Kaplan Meier database found at: http://kmplot.com/analysis/). The Hazard Risk (HR) for 

elevated expression of each of the ribosomal hits was examined across all breast cancers and 

within four of the five PAM50 subtypes (Normal-like tumours are not annotated within the 

Kaplan Meier database). The data obtained for all available Affymetrix probes for each transcript 

is show in Figure 4.2A. For the pseudogenes RPL32P7 and RPL32P36, there were no probes 

available. Therefore, probes targeting RPL32 were analysed instead. Interestingly, elevated 

expression of a subset of the ribosomal hits resulted in a protective effect on prognosis within 

the Luminal A and Luminal B subsets, however, for many of the genes, this protective effect was 

lost within the Basal-like tumours (Figure 4.2A). Crucially, within the Basal-like tumours, elevated 

expression of six of the 11 ribosomal hits (RPL14, RPL18, RPL34, RPL35A, RPS3A and RPS7)) 

resulted in a poorer prognosis (indicated by at least one probe) therefore, these genes were 

prioritised for further investigation and will form the focus of all future work presented in this 

thesis (Figure 4.2B). These findings are in line with previous studies linking dysregulated 

ribosomal gene expression and cancer (reviewed in Ruggero and Pandolfi, 2003, de las Heras-

Rubio et al., 2014) and provide important in vivo support for these ribosomal hits as potential 

therapeutic targets in BLBC cancer. Further, this data strengthens the rationale for further 

investigation into the therapeutic and prognostic utility of these hits in BLBC. 

 Elevated expression of a subset of ribosomal transcripts is associated with a poor 

prognosis in lung and gastric cancer 

Given the data obtained for BLBC and the fact that RP dysregulation is a cancer hallmark 

observed across a wide array of human malignancies, it was hypothesised that elevated 

expression of a subset of the ribosomal hits may also predict a negative prognostic outcome in 

lung, gastric and ovarian cancers. The Kaplan Meier databases for these cancers were also mined 

in order to investigate the HR for elevated expression of the ribosomal candidates within other 

tumour types as described above (Figure 4.3A-B). As well as examining all lung cancer cases as a 

whole, cases where patients had previously smoked and cases where patients had never smoked 

were also analysed individually. 
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Strikingly, this analysis revealed that elevated expression of the ribosomal hits assessed is 

associated with a poor prognosis in lung cancer regardless of whether patients had previously 

smoked. The single exception to this is RPL14 (elevated expression is associated with a 

protective effect). The negative impact on patient survival is increased in non-smoking patients. 

Within this subtype, elevated RPL14 expression remains a predictor of a more favourable 

prognosis, however, importantly, elevated expression of four ribosomal hits (RPL34, RPL35A, 

RPS7 and RPL32) is associated with a stark, fourfold increased risk of death within ten years of 

diagnosis compared to a 20-50% increased risk in patients who had previously smoked (Figure 

4.3A-B). 

Together, this data suggests that, with the exception of RPL14, all ten of the ribosomal hits 

analysed here may act as novel prognostic biomarkers within lung cancer, with elevated 

expression a predictor of a negative patient outcome. Moreover, the potency of these potential 

biomarkers may be increased in non-smoking patients, where elevation of expression may 

predict an even greater risk of death. Further, this analysis has identified a novel molecular 

subgroup within non-smoking-associated lung cancer, characterised by high RP expression and 

a particularly poor patient outcome. It is possible that these tumours may exhibit a greater 

dependency on ribosomal dysregulation in order to maintain their malignant state. In addition, 

this data indicates that a subset of the ribosomal hits identified here may also be effective 

therapeutic targets within lung cancer and in particular, within non-smoking-associated cases. 

However, validation of these potential targets within lung cancer cells needs to be performed 

before further conclusions may be drawn. 

This data mining exercise also revealed that elevated expression of six of the ribosomal hits 

(RPL14, RPL18, RPL35A, RPS7, RPLP2 and RPS18) is associated with a reduced prognosis in gastric 

cancer (Figure 4.3A-B). By contrast, assessment of HRs across the ovarian cancer dataset showed 

that elevated expression of each of the ribosomal hits within this cancer type had no impact on 

patient outcome (Figure 4.3A-B). This data highlights that despite having potential clinical 

relevance within breast, lung and gastric cancers, the RPs identified here are unlikely to hold any 

prognostic or therapeutic application within ovarian cancer. Together, the findings indicate an 

intrinsic difference between ovarian and the other cancer types examined here. The data 

suggests that tumours derived from differing tissues may exhibit varying degrees of ribosomal 

dysregulation and that ovarian tumours may not be as dependent upon RP upregulation for the 

maintenance of their malignant state as BLBC or non-smoking-associated lung cancer, for 

example.   
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Figure 4.2: Analysis of HR for elevated expression of ten RPs in breast cancer. (A) Heatmap displaying 
the HR with a logrank p value <0.05 for ten ribosomal hits identified within the siRNA screens for All breast 
cancer cases (N=3,455), Basal-like (N=581), Luminal A (N=1,680), Luminal B (N=987) and HER2+ (N=207). 
Data shows 10 year relapse free survival generated by kmplot. Data was split by median expression levels. 
(B) Representative survival plots for the top six ribosomal hits in BLBC cases. Data shows 10 year relapse 
free survival generated by kmplot. Data was split by median expression levels. 
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Figure 4.3: Analysis of HR for elevated expression of ten RPs in lung, gastric and ovarian cancer. (A) 
Heatmap displaying the HR with a logrank p value <0.05 for ten ribosomal hits identified within the siRNA 
screens for All (N=1,926), those who had previously smoked (N=821) and those who had never smoked 
(N=205) lung cancer cases, All gastric cancer cases (N=593) and All ovarian cancer cases (N=1,581). Data 
shows 10 year overall survival generated by kmplot. Data was split by median expression levels. (B) 
Representative survival plots for the top six ribosomal hits in lung cancer cases where patients had never 
smoked. Data shows 10 year overall survival generated by kmplot. Data was split by median expression 
levels.    
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 Analysis of the METABRIC data set reveals co-ordinated dysregulation of ribosomal 

transcripts in BLBC 

Analysis of the METABRIC dataset revealed considerable dysregulation across the ribosome in 

BLBC (Figure 4.1A) and analysis of the Kaplan Meir database showed that the elevated 

expression of a subset of six ribosomal hits was associated with a negative effect on prognosis 

in the disease subtype (Figure 4.2A-B). Given the structure of the ribosome and the fact that its 

regulation is finely tuned, it was hypothesised that transcriptional regulation is co-ordinately 

regulated across the ribosome and that the ribosome may be co-ordinately dysregulated in 

BLBC. For example, in an instance where one ribosomal transcript is elevated, it was predicted 

that all other ribosomal transcripts would also be increased. In order to ascertain whether the 

top six ribosomal hits were co-ordinately dysregulated within Basal-like tumours the expression 

level of each of the top six ribosomal transcripts was cross compared with each other within 329 

Basal-like tumours using the METABRIC dataset. Example scatter plots depicting the correlation 

between two of the strongest RP hits (RPS3A and RPS7) (R2=0.533) and RPS3A versus an 

additional 40S subunit protein (RPS5) (R2=0.0811) are shown in Figure 4.4A-B. The R2 coefficient 

for each cross comparison was calculated and are presented in the form of a heatmap. It was 

also established that in each case the correlation was positive (in Figure 4.4C). 

By contrast with the initial hypothesis, this analysis revealed that the top six RP hits are not co-

ordinately dysregulated in BLBC but instead fall into one of two distinct clusters (Figure 4.4D). 

For example, RPS3A and RPS7 together with (but to a lesser extent) RPL14 and RPL34 appear to 

be upregulated in BLBC together (Group 1, red) while RPL18 and RPL35A are co-ordinately 

dysregulated and form the second cluster (Group 2, dark green). Importantly, the expression of 

Group 1 versus Group 2 transcripts are poorly correlated suggesting that BLBCs may be 

subdivided into at least two novel molecular subtypes according to their ribosomal signature. 

Next, this analysis was expanded to encompass the entire ribosome. The expression level of 

each of the top six RP hits was compared with the expression level of each of the remaining 

ribosomal transcripts as described above and R2 coefficients were calculated and are displayed 

in the form of a heatmap (Figure 4.5 and Figure 4.6). Multiple probes were available for many 

of the transcripts and so a total of 222 probes were examined. This analysis revealed that the 

pattern of differential transcriptional regulation is conserved across the entire ribosome and the 

previously identified clusters (Group 1 and Group 2) were maintained. For example, a subset of 

27 unique ribosomal transcripts (17 encoding 60S subunit proteins and ten encoding 40S subunit 

proteins) were co-ordinately dysregulated together with Group 1 members: RPL14, RPS3A and 
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RPS7 but were not co-regulated with RPL18 (Group 2) (Figure 4.5).  In addition, a sub-cluster 

within Group 2 (Group 2b, light green) containing 21 unique probes (13 60S and eight 40S 

subunit proteins) was identified and transcripts here were co-ordinately regulated with RPL18 

only (Figure 4.6). This analysis also revealed two additional clusters (Group 3 (orange) containing 

8 transcripts (five 60S and three 40S subunit proteins) co-ordinately regulated with RPL14, 

RPL18, RPL34, RPL35A and RPS3A but not RPS7) and Group 4 containing those ribosomal 

transcripts that showed no co-ordinated regulation with any of the top six RP hits (see Appendix, 

Figure A.4). 

This analysis showed that the ribosome as a whole is elevated in BLBC but appears to be 

dysregulated on a subunit basis. Further, this data suggests that there may not simply be more 

ribosomes in BLBC cells, instead, a specific subset of RP transcripts appear upregulated according 

to the tumour context raising the possibility that the cancer-associated ribosome is differentially 

dysregulated across the disease subtype as indicated by the five novel molecular subtypes 

identified. The data also suggests that by silencing one ribosomal component (such as RPS3A) 

there may be widespread effects on the remaining RPs within a given group. Furthermore, the 

impact of silencing RPS3A may be similar to the knockdown of additional Group 1 RPs (such as 

RPS7) but may differ to RPL18 (Group 2 component) silencing. In addition, this data also suggests 

that divergent pathways to senescence activation upon RP silencing may exist. For example, 

RPS3A silencing may activate an alternative pathway to senescence induction when compared 

to RPL18 knockdown (see Section 4.7 for further discussion). 
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Figure 4.4: Assessment of the correlation of transcript levels between the top six RP hits within BLBC. 
(A) Scatter plot for RPS7 versus RPS3A transcript expression (Log2) within 329 Basal-like tumours. (B) 
Scatter plot for RPS5 versus RPS3A transcript expression (Log2) within 329 Basal-like tumours. R2 
coefficients are shown for (A) and (B). (C) A heatmap depicting the R2 coefficients for the cross comparison 
of each of the top six RP hits within 329 Basal-like tumours. In each case, the correlation was positive. The 
red and green boxes denote R2 coefficients>0.3. R2 coefficients were determined from the METABRIC 
dataset. (D) Cartoon to show the sub-categorisation of the top six RP hits according to their co-regulation 
within Basal-like tumours. The RP hits are divided into two groups. Group 1 contains RPS3A, RPS7, RPL14 
and RPL34 (red) and Group 2 contains RPL35A and RPL18 (dark green).    
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Figure 4.5: Assessment of the correlation of RP transcript levels within BLBC. A heatmap depicting the 
R2 coefficients for the cross comparison of each of the top six RP hits with each of the RP transcripts within 
329 Basal-like tumours. In each case, the correlation was positive. R2 coefficients were determined from 
the METABRIC dataset. The red box highlights those transcripts that correlate with Group 1 RP transcripts 
(RPS3A, RPS7, RPL14 and RPL34). The orange box highlights those transcripts that correlate with RPL14, 
RPL18, RPL34, RPL35A and RPS3A (Group 3). 
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Figure 4.6: Assessment of the correlation of RP transcript levels within BLBC (continued). A heatmap 
depicting the R2 coefficients for the cross comparison of each of the top six RP hits with each of the RP 
transcripts within 329 Basal-like tumours. In each case, the correlation was positive. R2 coefficients were 
determined from the METABRIC dataset. The dark green box highlights those transcripts that correlate 
with Group 2 RP transcripts (RPL18 and RPL35A). The light green box highlights those transcripts that 
correlate with RPL18 only (Group 2b).  
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 Phenotypic validation of six ribosomal hits in MDA-MB-468 

cells 

 qRT-PCR analysis indicates mRNA knockdown of six ribosomal hits in MDA-MB-468s in 

response to siRNA transfection 

As described in Section 4.2, six RP hits (RPL14, RPL18, RPL34, RPL35A, RPS3A and RPS7) were 

selected for validation and further investigation. 

An important post-screening validation step is to establish whether or not knockdown of specific 

transcripts is achieved following siRNA transfection. Therefore, to assess the level of siRNA 

silencing of the top six RP hits, MDA-MB-468 cells were reverse transfected with siRNA pools 

and gene expression level changes were assessed via qRT-PCR according to Section 2.7. Before 

gene expression levels of each of the RP transcripts could be investigated, an appropriate 

housekeeping gene was first identified. A panel of routinely used housekeeping genes 

(hypoxanthine phosphoribosyltransferase 1 (HPRT1), TATA box binding protein (TBP), 

cyclophilin A (PPIA) and cyclophilin B, PPIB) were selected for analysis on the basis that their 

relative gene expression levels did not change upon the induction of cellular senescence in 

HMECs (Bishop, unpublished). GAPDH was not included in this panel as GAPDH siRNA was used 

as a negative control within the siRNA transfections. The relative expression level of each of the 

housekeeping transcripts was assessed in MDA-MB-468 cells treated with 30 nM siRNA targeting 

GAPDH or RPS3A (Figure 4.7A). This analysis revealed HPRT1, TBP and PPIA expression remained 

relatively stable (less than 10% change in expression levels) upon senescence activation. Further 

N=2 analysis of HPRT1 relative expression in MDA-MB-468 cells 72 hr after GAPDH or RPS3A 

siRNA transfection confirmed HPRT1 mRNA levels remain stable (7.03% +/- 1.46% reduction in 

RPS3A siRNA sample compared to the GAPDH siRNA treated cells) upon senescence activation 

(data not shown). As such, HPRT1 was selected to be used for normalisation within all future 

qRT-PCR analysis (see Section 2.7.4 for further details on qRT-PCR data analysis). 

Examination of RP expression levels following siRNA transfection in MDA-MB-468 cells showed 

that each siRNA pool reduced its corresponding target gene expression by at least 43% when 

compared to the GAPDH siRNA control (Figure 4.7B). Crucially, this data indicates that at least 

one siRNA within each siRNA pool is functional against its specific ribosomal target gene. In 

addition the siRNA pools targeting either RPS3A or RPS7 gave rise to the greatest level of gene 

expression knockdown (64% and 76.6%, respectively) and were also found to be among the 

strongest inducers of senescence within the previously performed siRNA screens. This data 
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indicates that senescence induction following RP siRNA silencing is likely to be a direct result of 

specific ribosomal gene knockdown rather than the result of an OTE. 

 

Figure 4.7: Relative mRNA expression levels in MDA-MB-468 cells. (A) MDA-MB-468 cells were reverse 
transfected with 30 nM siRNA targeting GAPDH or RPS3A according to Section 2.3.2. After 72 hr cells were 
harvested for RNA extraction, and cDNA conversion and qRT-PCR was performed according to Section 2.7. 
CT values were normalised to the PPIA standard curve and mRNA expression levels were normalised to 
GAPDH siRNA. Bars denote relative mRNA expression from a single experiment containing one technical 
repeat. (B) MDA-MB-468 cells were reverse transfected with 30 nM siRNA pools targeting each of the top 
six ribosomal hits or GAPDH siRNA according to Section 2.3.2. After 72 hr cells were harvested for RNA 
extraction, and cDNA conversion and qRT-PCR was performed according to Section 2.7. CT values were 
normalised to the HPRT1 standard curve and mRNA expression levels were normalised to GAPDH siRNA. 
Bars denote mean mRNA expression levels +SD within a single experiment containing two technical 
repeats. 

 Phenotypic validation of six ribosomal hits in MDA-MB-468 cells 

Once it was confirmed that siRNA knockdown of each of the top six ribosomal hits had been 

achieved, the siRNA pools were de-convoluted and the three individual siRNAs targeting each 

ribosomal candidate were validated phenotypically in the MDA-MB-468 cells. MDA-MB-468 cells 

were reverse transfected with three individual siRNAs targeting each of the top six ribosomal 

hits and senescence induction was assessed phenotypically according to Section 2.3.2. 

Multiparameter analysis was also performed in order to ascertain whether or not each of the 

three individual siRNAs directed against the same ribosomal transcript induced a similar 

senescence phenotype with shared morphological characteristics. 

This analysis revealed that siRNA pools targeting RPL14, RPL18, RPL35A and RPS3A each 

contained three functional siRNAs, while the pool targeting RPS7 contained two functional 

siRNAs and just one functional siRNA was identified for RPL34. (Figure 4.8A-C).  Multiparameter 

analysis showed that the individual siRNAs targeting the same RP transcript induced a 

senescence phenotype with similar phenotypic characteristics, and helps to control for OTEs. 

For example, it is highly unlikely that an OTE generated by three unique siRNAs (targeting the 
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same RP transcript) could induce a similar phenotype characterised by eight individual 

parameters. Interestingly, the majority of the siRNAs tested may be grouped together within 

Category 6 and is in line with the previous screening data, where the RP siRNAs induced similar 

phenotypic changes to nuclear and cellular morphology (see Section 3.3.3). However, in contrast 

with the siRNA screens, this validation exercise showed that RP silencing by each of the 

functional siRNAs (excluding RPL35A 3) resulted in a significant increase in the number of cellular 

protrusions (Z scores=6.6, 10.2, 5.7, 9.6, 4.8 and 5.2 for RPL14, RPL18, RPL34, RPL35A, RPS3A 

and RPS7, respectively). Within the siRNA screens, silencing of RPL18, RPL35A, RPS3A and RPS7 

did induce a small, non-significant increase in cellular protrusions (Z scores=0.7, 0.6, 0.7 and 0.4, 

respectively) and it is proposed that the small-scale nature of the validation experiments has 

allowed this subtle phenotypic change to be accentuated and better detected. 
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Figure 4.8: Phenotypic validation of the top six ribosomal hits in MDA-MB-468 cells. (A) Scale bar 
depicting the number of Z scores that correspond to the colours within the heatmap and the directionality 
of the quantified senescence-associated changes. (B) Heatmap depicting the mean Z score for each of the 
senescence-associated parameters selected for quantification. Data is from two independent 
experiments. MDA-MB-468 cells were reverse transfected with 30 nM of three individual siRNAs together 
with a siRNA pool targeting each of the top six RP hits as well as control siRNAs targeting GAPDH or CBX7 
according to Section 2.3.2. After 5 days, cells were fixed, stained and multiparameter analysis was 
performed according to Section 2.5. (C). Representative immunofluorescence images of MDA-MB-468 
cells treated with either GAPDH siRNA or three individual siRNAs targeting RPL14. DAPI (blue), p16 (green). 
Size bar denotes 50 μm. 
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 Confirmation of RPS3A and RPS7 protein knockdown via western blotting analysis 

Once siRNA knockdown of the top six RP hits had been confirmed via qRT-PCR and individual 

siRNAs targeting each of the ribosomal hits had been validated phenotypically, protein 

knockdown following siRNA knockdown of two of the top six RP hits (RPS3A and RPS7) was 

assessed via western blotting. MDA-MB-468 cells were reverse transfected with siRNA targeting 

either GAPDH, RPS3A or RPS7 according to Section 2.3.5. After 5 days, the cells were harvested 

and cell lysates were probed for RPS3A and RPS7 according to Section 2.6.  For both antibodies, 

western blot analysis revealed one clean band at the appropriate height (approximately 30KDa 

for RPS3A and approximately 22KDa for RPS7) within the GAPDH siRNA treated lysates (Figure 

4.9A). Importantly, quantification, performed according to Section 2.6.3, revealed a 56.67% (+/- 

28.37%) reduction in RPS3A levels upon transfection with RPS3A siRNA and a 70.2% (+/- 15.26%) 

reduction in RPS7 levels upon RPS7 siRNA transfection relative to the GAPDH siRNA control 

(Figure 4.9B). Together with the qRT-PCR and phenotypic data, this analysis indicates that the 

siRNA pools targeting RPS3A and RPS7 are specific for their target genes of interest and are able 

to induce RP knockdown in MDA-MB-468 cells 5 days post transfection. 

Interestingly, this data also showed that siRNA knockdown of RPS3A resulted in a statistically 

significant 79.56% (+/- 12.53%) reduction in RPS7 levels (p=0.0108) and silencing of RPS7 

resulted in a 23.87% (+/- 27.61%) reduction in RPS3A protein levels (although not statistically 

significant, p=0.1776), indicating a potential degree of interplay may exist between these two 

RPs (Figure 4.9A-B). This finding is in line with the METABRIC data presented previously (Figure 

4.4A), which shows the expression of RPS3A is co-ordinately dysregulated (R2=0.533) with RPS7 

within BLBC. Further, this finding suggests that by silencing one RP there may be a knock-on 

effect for other members of the ribosome that may eventually leave the ‘cancer ribosome’ 

unable to translate the proteins required to maintain a highly proliferative phenotype. Given 

that the p value generated for RPS3A protein levels following RPS7 siRNA knockdown is greater 

than 0.05, these experiments ought to be repeated with an improved level of transfection 

efficiency and at a range of time points to attempt to achieve statistically significant knockdown 

at the protein level. This potential interplay is explored further in Section 4.7. 
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Figure 4.9: Western blot analysis of RPS3A and RPS7 levels post siRNA transfection in MDA-MB-468 
cells. (A) Representative western blots depicting RPS3A and RPS7 levels in MDA-MB-468 cells. Cells were 
reverse transfected with 30 nM siRNA targeting either GAPDH, RPS3A or RPS7 according to Section 2.3.5 
and cell lysates were then harvested for western blotting according to Section 2.6. Lysates were probed 
for either rabbit anti-RPS3A or mouse anti-RPS7 and the mouse anti-β-tubulin antibody was used as a 
loading control. Antibody dilutions and conditions may be found in Section 2.6. (B) Densitometry analysis 
of RPS3A and RPS7 levels post siRNA transfection in MDA-MB-468s. Analysis was performed using ImageJ 
software according to Section 2.6.3. Bars denote mean density levels +SD normalised to GAPDH siRNA of 
two independent experiments. * = p<0.05. 

 

 siRNA knockdown of six RP hits does not induce senescence in 

normal HMECs 

In order for the RP hits to remain potential cancer-specific drug targets for BLBC, it is vital that 

their manipulation does not impact the viability of normal cells. Importantly, the original 86 

candidates identified for siRNA knockdown within the initial validation screens (see Chapter 3) 

were selected on the basis that knockdown of these candidates in HMECs did not induce any 

significant changes to proliferation or cellular morphology (N=1, Bishop et al., 2010). As such, it 

was hypothesised that siRNA knockdown of these hits in HMECs, as part of a small-scale 

validation experiment, would not result in any significant impact on proliferation or morphology. 

* 
* 
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In order to test this, HMECs were reverse transfected with three individual siRNAs, together with 

a siRNA pool targeting each of the top six RP hits as well as control siRNAs targeting PPIB (siGLO) 

or CBX7. The transfection step was performed by Dr. Cleo Bishop according to Section 2.3.4, and 

all subsequent steps were performed by Madeleine Moore. After 5 days, the cells were fixed, 

stained and imaged according to Sections 2.4 and 2.5. Multiparameter analysis was 

subsequently performed in order to detect any possible changes in as many senescence-

associated parameters as possible. 

The positive control siRNA targeting CBX7 induced a premature senescence phenotype 

characterised by significant shifts in multiple senescence-associated parameters such as a 

reduction in proliferation, an increase in nuclear p16 protein levels and an increase in cellular 

and nuclear area (Figure 4.10A). Crucially, none of the ribosomal siRNAs tested induced a 

significant reduction in proliferation or increase in cell area indicating that, unlike the HeLa and 

MDA-MB-468 cells, normal HMECs are able to tolerate siRNA silencing of these specific RPs and 

that their knockdown does not result in senescence induction (Figure 4.10B). However, although 

RP silencing did not result in any changes to nuclear morphology, this analysis did reveal a 

significant increase in nuclear area (commonly 3-4 Z scores greater than the siGLO mean), often 

associated with senescence induction. It is important to note that this increase was less 

pronounced than that induced by CBX7 siRNA (11.77 Z scores greater than the siGLO mean) and 

was significantly smaller than the increase observed in MDA-MB-468 cells, where RP silencing 

induced an increase in nuclear area of 7-9 Z scores above the GAPDH siRNA mean (See Section 

4.3.2). In addition, preliminary p16 immunofluorescence staining (N=1) suggested that four RP 

siRNAs (RPL34 1, 2 and 3 and RPL35A 2) increased nuclear p16 protein levels by 3-4 Z scores 

above the siGLO mean. Once again, this increase was not as pronounced as that induced by CBX7 

silencing (Z score=5.1 above the siGLO mean) but does indicate that RPL34 and RPL35A may be 

less cancer-specific therapeutic targets. 

Together, this data suggests that, unlike within the cancer setting, silencing of certain RPs in 

normal HMECs does not affect proliferation or cell survival but instead, may result in an increase 

in nuclear size and for RPL34 and RP35A, an increase in nuclear p16 protein levels. In summary, 

these findings offer promising support for at least four (RPL14, RPL18, RPS3A and RPS7) of the 

six ribosomal candidates as potential cancer-specific therapeutic targets in BLBC. However, 

further investigation into the impact and duration of increased nuclear area and nuclear p16 

protein levels on the cell population ought to be conducted. For example, inducible shRNA 

constructs for each of the top six RP hits could be generated and used to stably silencing the RPs 
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in HMECs. By employing this strategy, longer-term studies could be conducted and would enable 

the effects of RP silencing in normal cells to be investigated further.           
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Figure 4.10: siRNA knockdown of the top six ribosomal hits in HMECs. (A) Scale bar depicting the number 
of Z scores that correspond to the colours within the heatmap and the directionality of the quantified 
senescence-associated changes induced by CBX7 siRNA. (B) Heatmap depicting the mean Z score for each 
of the senescence-associated parameters selected for quantification. The parameters were selected as 
senescence induction in HeLa and MDA-MB-468 cells was characterised by significant shifts in each of 
these measures. For each morphological measure data is from two independent experiments, each 
containing three technical repeats. Nuclear p16 density is from one single experiment. HMECs were 
reverse transfected with 30 nM of three individual siRNAs together with a siRNA pool targeting each of 
the top six RP hits as well as control siRNAs targeting PPIB (siGLO) or CBX7 according to Section 2.3.4. 
After 5 days, cells were fixed, stained and multiparameter analysis was performed according to Sections 
2.4 and 2.5. The siRNA transfection step was performed by Dr. Cleo Bishop. 
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 Senescence induction is not associated with increased β-

galactosidase activity 

In order to further characterise the senescence phenotype, an additional senescence-associated 

marker was assessed. β-gal staining was selected for investigation as increased β-gal enzymatic 

activity is a well-established marker of classical senescence in normal cells (see Section 1.2.3). 

Further, it is known that siRNA knockdown of CBX7 in normal HMECs triggers the induction of 

senescence accompanied by increased β-gal activity (Bishop, unpublished). In addition, data 

presented within this thesis implicates CBX7 as a potent senescence evader within MDA-MB-

468 cells and its knockdown induces a senescence response phenotypically similar to that 

triggered by RP siRNA silencing (see Chapter 3). As such, it was hypothesised that the induction 

of senescence via both CBX7 and RP knockdown would be accompanied by elevated β-gal 

enzymatic activity. In order to test this, an appropriate incubation time point for assessing β-gal 

activity in MDA-MB-468 cells was first optimised. Proliferating MDA-MB-468 cells were seeded 

in 384-well plate format and after 5 days, cells were fixed and stained for β-gal activity according 

to Section 2.8. Cells were imaged every 2 hr over an 8 hr time course and at 24 hr post fixation. 

After 8 hr the majority of the culture stained positive for β-gal activity and, as predicted, at the 

24 hr time point, 100% of the culture was β-gal-positive (data not shown). Given this, an imaging 

window of 4-6 hr (where proliferating MDA-MB-468 cells have minimal detectable β-gal activity) 

was identified. Subsequently, MDA-MB-468 cells were reverse transfected with 30 nM siRNA 

targeting each of the top six RPs, GAPDH or CBX7 and after 5 days, the cells were fixed and 

stained for β-gal activity according to Section 2.8. Cells were imaged at 4 and 6 hr post fixation 

and there were no observed differences between these two time points. As such, representative 

images from the 6 hr time point only are shown (Figure 4.11). 

Interestingly, this analysis showed that, unlike classical senescence, the ‘cancer-associated’ 

senescence phenotype induced via either CBX7 or RP silencing in MDA-MB-468 cells is not 

characterised by any increase in β-gal activity (Figure 4.11). Further, this data is in line with 

literature that has shown that immortalised cultures often express high β-gal levels (Severino et 

al., 2000). High baseline levels of β-gal activity within these cells during proliferation may 

prevent any further increase in expression upon senescence induction and offers an explanation 

as to why levels have been found to not increase here. Additionally, it is important to note that 

increased β-gal staining is not a fail-safe senescence biomarker. For example, Dankort et al., 

2007 showed that OIS cells in mice expressing mutant BRAFV600E were negative for increase β-

gal activity (see Section 1.5.1). 
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Figure 4.11: MDA-MB-468 cells stained for β-gal enzymatic activity. MDA-MB-468 cells were reverse 
transfected with 30 nM siRNA targeting GAPDH, CBX7 or each of the top six ribosomal hits according to 
Section 2.3.2. After 5 days, cells were fixed and stained for β-gal activity according to Section 2.8 and cells 
were imaged using a light microscope at 20X magnification. Size bar denotes 50 μm. Images were taken 
at 6 hr after fixation and are representative of two independent experiments, each performed in triplicate. 
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 RP siRNA silencing induces a stable senescence phenotype 

Senescence is characterised by a stable cell cycle arrest. As such, the long-term stability of the 

senescence phenotype following RP silencing was explored. MDA-MB-468 cells were reverse 

transfected with 30 nM siRNA targeting GAPDH, PLK1 or each of the top six RP hits and after 16 

days cells were fixed and cell numbers were quantified according to Section 2.5. The data 

generated was then compared to a previously performed siRNA screen where MDA-MB-468 

cells were fixed and quantified after 5 days (Figure 4.12A). This analysis revealed that by day 16, 

cell numbers following RP silencing were more than 30 times lower than the value calculated for 

the GAPDH siRNA, indicating potent cell cycle arrest. Further, for RPL35A, RPS3A and RPS7 

siRNA, there was no statistically significant difference between the cell numbers quantified at 

the 5 or 16 day time points, indicating that senescence induction following RPL35A, RPS3A or 

RPS7 knockdown is stable for at least 16 days. 

However, closer scrutiny of the data revealed that for each of the RP siRNAs there was a subtle 

increase in cell number from the 5 day to the 16 day time point, indicating a small degree of 

proliferation had occurred during the longer time course experiment. Furthermore, this increase 

was statistically significant for siRNAs targeting RPL14, RPL18 and RPL34, suggesting senescence 

induced by silencing of these three RPs may be less stable than the phenotype following RPL35A, 

RPS3A or RPS7 knockdown. Importantly, detailed examination of the images acquired at day 16 

indicated that, following RP silencing, the majority of the culture was stably arrested while a 

small subset of cells appeared proliferative in clusters and may have been driving the slight 

increases in cell number quantified at day 16 (Figure 4.12B). Given this, it was hypothesised that 

this localised proliferation following RP knockdown may be due to insufficient transcript 

knockdown in a subpopulation of cells. Previous experiments performed in the Bishop 

laboratory have shown that by increasing p16 siRNA dose, greater transcript knockdown may be 

achieved in HMECs (data not shown). As such, MDA-MB-468 cells were transfected with 30-90 

nM siRNA targeting GAPDH, PLK1 and each of the top six RP hits and cell numbers were 

quantified at day 16. Data generated was then compared to a previously performed siRNA 

screen as described above (N=1, Figure 4.12C-D). Interestingly, this analysis showed that 

increased RP siRNA did not act to reduce the small degree of cellular proliferation observed 

during the longer time course experiments and suggests that insufficient transcript knockdown 

does not drive senescence escape in these cells. 

A more likely explanation for this observed localised proliferation following RP silencing is a less 

than 100% transfection efficiency. MDA-MB-468 cells are highly proliferative and if left 
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untransfected, a single cell could potentially continue to proliferate, diluting the senescent 

culture and result in isolated areas of highly proliferative cells. The level of cell death induced by 

the PLK1 siRNA after 5 days (88.65% +/- 13.40%) indicates the transfection efficiency is high but 

is unlikely to 100%. Interestingly, there is also an increase (although statistically insignificant) in 

total cell numbers from the 5 to the 16 day time point following PLK1 siRNA, further indicating 

a less than 100% transfection efficiency. A second dose of RP siRNA at day 5, following an initial 

reverse transfection with RP siRNA may boost the transfection efficiency and result in a stably 

arrested culture. Alternatively, an inducible shRNA construct for each of the RP hits would 

enable the stability of the senescence phenotype to be better investigated and evade the issues 

discussed here, commonly associated with siRNA transfection. Further investigation into the 

stability of the senescence phenotype and the rate of senescence bypass in vivo would hold 

important clinical relevance and may help to establish a therapeutic window for the 

administration of secondary senolytic therapies. A third possibility is that a subpopulation of the 

MDA-MB-468 culture may be resistant to RP knockdown. Combination siRNA knockdowns of 

multiple RPs may circumvent any potential resistance and result in a stably arrested culture. 

In addition to a stable growth arrest, senescent cells commonly increase in size over time. With 

this in mind, MDA-MB-468 cells were reverse transfected with 30 nM siRNA targeting GAPDH, 

PLK1 or each of the top six RP hits and after 16 days cells were stained with Cell Mask and cell 

area was quantified according to Section 2.5. The data generated was then compared to a 

previously performed siRNA screen where MDA-MB-468 cells were fixed and quantified after 5 

days (Figure 4.13A-B). It should be noted that, this Cell Mask staining was only performed once 

and ought to be repeated. However, this preliminary data indicated that cells transfected with 

siRNA targeting RPS3A or RPS7 may increase in size over time, indicative of a stable cell cycle 

arrest. Together, these long-term studies have allowed the top six RP hits to be sub-classified 

into ‘weak’ less stable inducers of senescence (RPL14, RPL18, RPL34 and to a lesser extent, 

RPL35A) and ‘strong’ more stable hits (RPS3A and RPS7). 
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Figure 4.12: Analysis of the long-term stability of the senescence phenotype following RP siRNA 
transfection. MDA-MB-468 cells were reverse transfected with 30 nM siRNA targeting GAPDH, PLK1 or 
each of the top six RP hits according to Section 2.3.2 and after 5 or 16 days cells were fixed and cell 
numbers were quantified according to Sections 2.4 and 2.5. Cell numbers in GAPDH siRNA treated wells 
could not be quantified as the wells were completely overgrown. Instead, day 16 cell number for the 
GAPDH siRNA control was calculated based on known population doubling times. (A) Mean cell 
numbers/well at 5 or 16 days post 30 nM siRNA transfection. Bars denote mean +SD of two independent 
experiments, each performed in triplicate. ** = p<0.01. (B) Representative images of MDA-MB-468 cells 
transfected with 30 nM GAPDH or RPS7 siRNA fixed and stained with Cell Mask at either 5 or 16 days post 
transfection. Images are at 10X magnification, size bar denotes 100 μm. Cell Mask staining was performed 
once. (C-D) Mean cell number/well at 5 or 16 days post siRNA transfection. MDA-MB-468 cells were 
transfected with 30, 60 or 90 nM siRNA. 5 day transfections at 60 or 90 nM were not performed (indicated 
by ‘ND’ on the bar charts). Bars denote mean +SD of a single experiment performed in triplicate.   
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Figure 4.13: Analysis of cell area at 5 or 16 days following RP siRNA silencing in MDA-MB-468 cells. (A) 
MDA-MB-468 cells were reverse transfected with 30 nM siRNA targeting GAPDH, PLK1 or each of the top 
six RP hits according to Section 2.3.2 and after 5 or 16 days cells were fixed and cell area was quantified 
according to Sections 2.4 and 2.5. Cell area in GAPDH siRNA treated wells could not be quantified as the 
wells were completely overgrown. Bars denote mean cell area +SD of a single experiment performed in 
triplicate. (B) Representative images of MDA-MB-468 cells transfected with 30 nM GAPDH or RPS3A siRNA 
fixed and stained with Cell Mask at either 5 or 16 days post siRNA transfection. Images are at 10X 
magnification, size bar denotes 100 μm. Cell Mask staining was performed once. 

 

 Discussion and Future work 

Within this Chapter the clinical relevance of the top RP hits was investigated using the METABRIC 

dataset and the Kaplan Meier database for breast, lung, gastric and ovarian cancer (see Section 

4.2). Following this analysis, six RPs were prioritised for further validation (see Section 4.3) and 

testing in normal HMECs offered support for at least four (RPL14, RPL18, RPS3A and RPS7) of 

the six ribosomal candidates as potential cancer-specific therapeutic targets in BLBC (see Section 

4.4). In addition, long-term studies showed that silencing of at least three of the top six RP hits 

(RPL35A, RPS3A and RPS7) induced a stable growth arrest associated with a slight increase in 
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cell area over time (for siRNA targeting RPS3A and RPS7). Together these studies have enabled 

the sub-classification of the top six RPs and have identified RPS3A and RPS7 as the strongest hits. 

Further discussion of the in silico data presented within this Chapter is outlined in Sections 4.7.1 

- 4.7.3 and the wider role of each of the top six RPs within cancer is discussed more thoroughly 

in Chapter 6. 

 In silico analysis of the Kaplan Meier database identified six novel potential biomarkers in 

BLBC 

Analysis of the Kaplan Meier database showed that elevated expression of six RP hits was 

associated with a poor prognosis in BLBC and suggests that these RPs may represent novel 

prognostic biomarkers in BLBC (see Section 4.2.2). A tissue microarray (TMA) whereby tumour 

protein levels of each of the top six RP hits are cross compared with patient information 

(including p16 status, tumour grade and response to therapy) may support the in silico findings 

presented here and help to further validate these top six RP hits as effective prognostic 

biomarkers in BLBC. This strategy is disused in more detail in Chapter 6. 

Additionally, this analysis also indicated that elevated expression of a subset of the RPs identified 

may predict a poor prognosis in lung and gastric cancer. Future in vitro validation (such as those 

experiments described in Section 4.3) of these RP candidates in lung and gastric cancer cells lines 

may provide evidence for these hits as potential therapeutic targets in lung and gastric cancer. 

Importantly, no correlation between RP expression and prognosis was observed for ovarian 

cancer indicating that ribosomal dysregulation in cancer may hold an element of tissue-

specificity and that the RP identified here are unlikely to be of any prognostic value in ovarian 

cancer. Given this, Kaplan Meier analysis of all remaining RPs within the breast, lung, gastric and 

ovarian datasets is a logical next step and may identify additional predictors of disease outcome 

within these human malignancies. 

 In silico analysis of the METABRIC dataset revealed five ribosomal gene signatures in BLBC 

In silico analysis of the METABRIC dataset demonstrated that components of the ribosome are 

co-ordinately dysregulated on a subunit basis in BLBC and that the disease subtype may be sub-

classified into at least five novel molecular clusters (Figure 4.14) according to a tumour’s 

ribosomal signature (see Section 4.2.4). As discussed in Section 4.7.3, this analysis suggests that 

the silencing of a single RP may impact the expression of additional RPs within the same cluster 

and that siRNA knockdown of each of the top six RPs may result in differing ribosomal expression 
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signatures. Future work aiming to explore this potential interplay between specific ribosomal 

components is discussed in Section 4.7.3. 

Disease stratification within a clinical setting based on a tumour’s ribosomal expression 

signature may enable sophisticated personalisation of novel pro-senescent therapies resulting 

in improved patient outcomes. In addition, profiling the ribosomal signature in BLBC may also 

be a useful prognostic tool. Stratification of the METABRIC dataset based on the ribosomal 

expression signature and subsequent analysis of the patient data (tumour grade, p16 expression 

status, response to therapy) associated with each of the newly identified molecular clusters will 

help to assess the impact of a particular ribosomal signature on patient prognosis. 

 

Figure 4.14: Schematic depicting each of the five ribosomal clusters identified within 329 Basal-like 
tumours following analysis of the METABRIC dataset. 

 

 Western blot analysis revealed a novel interplay between the senescence evaders, RPS3A 

and RPS7 upon senescence induction 

Interestingly, western blot analysis (presented in Section 4.3.3) clearly demonstrated that a 

degree of interplay exists between two of the strongest RP hits (RPS3A and RPS7) upon 

senescence activation. For example, siRNA knockdown of RPS3A in MDA-MB-468 cells resulted 

in a statistically significant reduction in RPS7 protein levels and, in turn, a modest decrease 
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(23.87%, +/- 27.61%) in RPS3A protein levels was observed following RPS7 knockdown and 

senescence induction. Importantly, this data is in line with the METABRIC data presented in 

Section 4.2.4  that showed RPS3A and RP7 gene expression is co-ordinately dysregulated in BLBC 

and suggests that silencing of a single RP may impact the expression of multiple other ribosomal 

components. Given the western blotting data discussed here and the findings from the 

METABRIC dataset that showed RPS3A is co-ordinately dysregulated with multiple other RPs in 

BLBC, gene expression analysis was performed for each of the top six RP hits following RPS3A 

knockdown in order to assess whether these in silico findings could be replicated in vitro. MDA-

MB-468 cells were reverse transfected with siRNA targeting GAPDH or RPS3A and relative mRNA 

expression levels of each of the top six RP hits was assessed via qRT-PCR (Figure 4.15). 

Importantly, this analysis was performed only once and needs to be repeated and experiments 

using individual siRNAs should also be performed. Interestingly, and in line with data presented 

previously, this preliminary data suggests that a degree of interplay exists between RPS3A and 

four of the top six RP hits. For example, RPS3A silencing resulted in a 30.62% (+/- 4.19%) 

decrease in RPS7 mRNA expression together with a 15.4% (+/- 2.52%), 13.35% (+/- 1.15%) and 

16.99% (+/- 4.3%) decrease in RPL14, RPL34 and RPL35A expression, respectively. Excitingly, 

RPS3A silencing did not result in a decrease in RPL18 expression levels suggesting that (unlike 

RPS3A, RPS7, RPL14, RPL34 and RPL35A) these two senescence evaders do not share any 

reciprocal interplay. Together, these findings further support the METABRIC data presented in 

Section 4.2.4 and strengthens the case for differential regulation across the ribosome. 

A PCR array whereby the gene expression level of every RP component is assessed following 

siRNA RP silencing would enable this potential RP interplay to be explored in greater detail and 

would allow further investigation into the impact of senescence activation on the ribosome as a 

whole. Following siRNA silencing of each of the top six RP hits in MDA-MB-468 cells, the RT² 

Profiler™ PCR Array System could be used profile the expression of 86 RPs and establish the 

ribosome’s expression signature upon senescence activation. Crucially, this analysis may 

validate the in silico findings discussed in Section 4.2.4 and may unify or subdivide the top six RP 

hits depending on their ribosomal profiles generated upon senescence activation. In addition, 

profiling the senescent ribosome may also help to decipher the mechanism of senescence 

induction following RP silencing in p16-positive cancer and may reveal additional senescence 

evaders and potential drug targets in BLBC. 
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Figure 4.15: Relative mRNA expression levels in MDA-MB-468 cells. MDA-MB-468 cells were reverse 
transfected with 30 nM siRNA targeting GAPDH or RPS3A according to Section 2.3.5. After 5 days, cells 
were harvested for RNA extraction and cDNA conversion and qRT-PCR analysis was performed according 
to Section 2.7. CT values were normalised to the HPRT standard curve and mRNA expression levels were 
normalised to GAPDH siRNA. Bars denote relative mRNA expression from a single experiment containing 
two technical repeats. 
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 Introduction 

 Chapter aims 

1. To confirm the protein status of three key senescence mediators (p53, p16 and p21) within 

the HeLa, MDA-MB-468 and MDA-MB-231 cell lines, used throughout this thesis. 

2. To investigate the role of p53, p16 and p21 in senescence initiation following RP silencing in 

MDA-MB-468 cells. 

3. To further probe the role of p16 expression in senescence initiation following RP silencing 

using the p16-null BLBC cell line, MDA-MB-231. 

4. To investigate the impacts of RP silencing and senescence activation on the nucleolus (site 

for ribosomal assembly) in both normal HMECs and in MDA-MB-468 cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142 
 

 Western blotting to demonstrate the p53, p16 and p21 status in HeLa, MDA-MB-468 and 

MDA-MB-231 cells 

Before conducting studies to investigate the mechanism of senescence activation following RP 

silencing, first the status of three key senescence mediators was determined in each of the 

cancer cell lines used throughout this thesis. HeLa, MDA-MB-468 and MDA-MB-231 (p16-null 

BLBC cell line) cells were harvested and cell lysates were probed for p16, p53 and p21 according 

to Section 2.6 (Figure 5.1). Importantly, each of the antibodies generated a single clean band at 

the appropriate height, validating the use of these antibodies for future immunofluorescence 

staining (uncropped blots may be found in the Appendix, Figure A.1A-C). This analysis confirmed 

the p16 positivity of the HeLa and MDA-MB-468 cell lines and, as predicted, the MDA-MB-231 

cell line was established as p16-null. In addition, the MDA-MB-468 and 231 cell lines were 

confirmed as p53-positive, whilst the HeLa cell line was found to be negative for p53 protein 

expression. This finding may be explained by the activity of the viral oncogene, E6, which 

functions to drive p53 protein degradation via MDM2 upregulation and is commonly expressed 

by HeLa cells (see Section 1.6.1). Interestingly, all of the cell lines probed were positive for p21. 

 

Figure 5.1: Western blot analysis of p16, p53 and p21 levels in HeLa, MDA-MB-231 and MDA-MB-468 
cells. Representative western blots depicting (A) p16, (B) p53 and (C) p21 levels in HeLa, MDA-MB-231 
and MDA-MB-468 cells. Cell lysates were harvested for western blotting according to Section 2.6. Lysates 
were probed for mouse anti-p16, rabbit anti-p53 and rabbit anti-p21. Rabbit anti-Cyclophilin B or rabbit 
anti-GAPDH were used as loading controls. Antibody dilutions and conditions may be found in Section 2.6. 

 Senescence activation in MDA-MB-468 cells is independent of 

increased nuclear p53 protein levels 

 Senescence induction in MDA-MB-468 is not associated with a significant increase in 

nuclear p53 protein levels 

The tumour suppressor protein, p53 is a well-established mediator of telomere-associated 

senescence and has also been implicated in the induction of OIS in mice (see Section 1.5). The 

stabilisation of p53 has been associated with nucleolar-mediated senescence induction and a 
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key paper by Fumagalli et al., 2009 demonstrated that the knockdown of specific RPs in A549 

cells (p16-null, p53 WT) results in senescence induction together with p53 stabilisation (see 

Section 1.7.6). Given this, it was hypothesised that senescence activation following RP silencing 

in MDA-MB-468 cells may be associated with a significant increase in nuclear p53 protein levels 

and that p53 stabilisation may mediate senescence activation in this context. In order to assess 

this, the rabbit anti-p53 antibody was first validated via western blotting and optimised for 

immunofluorescence staining (Appendix, Figure A.1B). Subsequently, MDA-MB-468 cells were 

reverse transfected with GAPDH siRNA or three individual siRNAs together with a siRNA pool 

targeting each of the top six ribosomal hits according to Section 2.3.2. Cells were then fixed and 

stained with DAPI, rabbit anti-p53 and donkey anti-rabbit Alexa Fluor-546 conjugated antibody 

and nuclear p53 protein levels were quantified according to Section 2.5 (Figure 5.2). 

In contrast with the study conducted by Fumagalli et al. this analysis showed that senescence 

induction in MDA-MB-468 cells via specific RP silencing is not associated with a significant 

increase in nuclear p53 protein levels. In addition, plates from the original HeLa screen (p53-

negative) that were subsequently re-stained for p53 revealed that senescence induction within 

these cells occurs in the absence of p53 activation (data not shown). Together, this data suggests 

that within a p16-positive cancer setting, RP silencing results in senescence induction in the 

absence of significant nuclear p53 stabilisation or activation and that senescence initiation in 

this context may be mediated via a p53-independent mechanism. 
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Figure 5.2: Nuclear p53 density levels following RP siRNA transfection of MDA-MB-468 cells. MDA-MB-
468 cells were reverse transfected with 30 nM of three individual siRNAs together with a siRNA pool 
targeting each of the top six RP hits as well as control siRNA targeting GAPDH according to Section 2.3.2. 
After 5 days, cells were fixed and stained with DAPI, rabbit anti-p53 and donkey Alexa Fluor-546 
conjugated anti-rabbit and nuclear p53 density levels were calculated according to Sections 2.4 and 2.5. 
Bars denote mean +SD of two independent experiments each containing three technical repeats. Dotted 
line denotes significance threshold at three Z scores above the GAPDH mean.  
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 Investigating the role of p16 and p21 in senescence initiation 

 Senescence activation in MDA-MB-468 cells is associated with p16 nuclear translocation 

Given the data presented in the previous Section which suggests senescence activation in a p16-

positive context may be independent of p53 stabilisation, it was hypothesised that senescence 

induction following RP silencing in MDA-MB-468 cells may be mediated by a re-sensitisation to 

endogenous p16 signalling. The original MDA-MB-468 screening plates were stained with mouse 

anti-p16 antibody and p16 protein levels were quantified according to Sections 2.4 and 2.5 (see 

Chapter 3, Section 3.3.4). In addition, MDA-MB-468 validation plates (cells transfected with 

three individual siRNAs targeting each of the top six RP hits) were also stained for p16 according 

to Section 2.4 (see Chapter 4, Section 4.3.2). Together, these studies indicated that senescence 

activation via knockdown of each of the top six RP hits or CBX7 silencing was not associated with 

a significant increase in total p16 protein levels (data not shown) and this finding was 

subsequently confirmed via western blotting for two of the strongest RP hits, RPS3A and RPS7 

(Figure 5.3A-B). 

 

Figure 5.3: Western blot analysis of p16 levels post siRNA transfection in MDA-MB-468 cells. (A) 
Representative western blot analysis of p16 levels in MDA-MB-468 cells reverse transfected with 30 nM 
GAPDH siRNA, RPS3A siRNA pool or RPS7 siRNA pool (see Section 2.3.2). Cell lysates were then harvested 
for western blotting and lysates were probed for mouse anti-p16 according to Section 2.6. Mouse anti-β-
tubulin was used as a loading control. Antibody dilutions and conditions may be found in Section 2.6 . (B) 
Densitometry analysis of p16 levels post siRNA transfection in MDA-MB-468s. Analysis was performed 
using ImageJ software. Bars denote mean density levels +SD normalised to GAPDH siRNA of two 
independent experiments. 

However, re-examination of the images acquired indicated that senescence activation appears 

to be associated with an increase in nuclear p16 protein levels. Importantly, quantitation of 

nuclear p16 protein levels within the original MDA-MB-468 screens revealed that senescence 

induction via RPS18 silencing was associated with a significant increase in nuclear p16 protein 
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levels (Chapter 3, Section 3.3.4) whilst knockdown of the top six RPs was associated with a non-

significant but reproducible increase in nuclear p16 protein levels (data not shown). 

Given the data discussed above, it was hypothesised that senescence activation via knockdown 

of the top six RPs is associated with no overall change to total p16 protein levels but instead, 

may be associated with a translocation of p16 from the cytoplasm into the nucleus. In order to 

assess this, MDA-MB-468 cells were reverse transfected with GAPDH siRNA, CBX7 siRNA or 

siRNA pools targeting each of the top six RP hits and cells were stained with mouse anti-p16 

according to Section 2.4. Nuclear and cytoplasmic p16 protein levels were quantified and the 

p16 nuclear/cytoplasmic ratio was generated on a cell by cell basis according to Section 2.5 

(Figure 5.4A-B). 

Interestingly, this analysis revealed that the induction of senescence via CBX7 siRNA resulted in 

a small reduction in cytoplasmic p16 protein levels together with an increase in nuclear p16 

protein levels. Further, the p16 nuclear/cytoplasmic ratio was significantly increased when 

compared to the GAPDH siRNA control, indicating a translocation of p16 protein from the 

cytoplasm to the nucleus upon senescence induction. Crucially, silencing of two of the strongest 

senescence evaders, RPS3A and RPS7, also resulted in a decrease in cytoplasmic p16 levels 

together with an increase in nuclear p16 protein levels and a statistically significant increase in 

the p16 nuclear/cytoplasmic ratio, indicating a translocation of p16 protein from the cytoplasm 

to the nucleus. It is proposed that this translocation event may enable a re-sensitisation to p16 

signalling upon RP silencing and that senescence initiation and/or maintenance may be 

dependent on the presence of WT p16 protein within the nucleus. However, further work must 

be performed in order to investigate the kinetics of this translocation event and to establish 

whether or not senescence initiation and/or maintenance is dependent on nuclear p16 

abundance. 
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Figure 5.4:  Nuclear and cytoplasmic p16 protein levels in MDA-MB-468 cells after RPS3A or RPS7 siRNA 
transfection. Representative frequency distribution plots of nuclear or cytoplasmic p16 protein levels 
together with a frequency distribution plot for the p16 Nuclear/Cytoplasmic ratio for MDA-MB-468 cells 
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transfected with siRNA targeting GAPDH, CBX7 and (A) RPS3A or (B) RPS7. Cells were reverse transfected 
with 30 nM siRNA and were fixed and stained with DAPI, Cell Mask, mouse anti-p16 and Alexa Fluor-488 
conjugated anti-mouse and nuclear and cytoplasmic p16 protein levels were quantified according to 
Sections 2.4 and 2.5. Two independent experiments, each containing three technical repeats, were 
performed. Representative immunofluorescence images depict MDA-MB-468 cells transfected with 30 
nM RPS3A siRNA and stained with Cell Mask together with the nuclear or cytoplasmic segmentation 
overlay. Images are at 10X magnification, size bar denotes 100 μm. * = p<0.05.  

  Senescence initiation is dependent on p16 expression 

The data presented previously within this Chapter suggests that senescence activation in p16-

positive cancer cells following RP silencing may be independent of p53 activation (HeLa 

screening, p53-negative) or stabilisation (MDA-MB-468s, p53+/+) and is associated with a nuclear 

translocation of p16 protein. As such, it was hypothesised that senescence initiation may be 

dependent on p16 expression and, in contrast to Fumagalli et al., 2009, RP silencing in a p16-

positive cancer setting may result in senescence induction mediated by p16 signalling. 

In order to investigate this, double transfections were performed. MDA-MB-468 cells were 

simultaneously reverse transfected with 30 nM siRNA targeting p16 (previously validated, see 

Chapter 3, Section 3.2.2), together with siRNA pools targeting each of the top six RP hits 

according to Section 2.3.2 (Figure 5.5A-B). Given the potency of the senescence induction 

previously achieved with 30 nM RP siRNA (see Chapter 4, Section 4.3.2), a range of RP siRNA 

doses (0.3-30  nM)  was used in order to maximise the possibility of senescence rescue. GAPDH 

siRNA at 30 nM or 60 nM was used as a negative control. Importantly, 60 nM GAPDH siRNA was 

well tolerated and there was no significant difference in proliferation or cellular morphology 

between the two doses. After 5 days, cells were fixed and stained with DAPI and Cell Mask and 

cell number and area were quantified according to Sections 2.4 and 2.5. 

Interestingly, the combination of 30 nM p16 siRNA and 30 nM RP siRNA was not sufficient to 

fully rescue senescence induction, suggesting that senescence initiation may still be triggered in 

the absence of p16. However, double transfection of 30 nM p16 siRNA with 3 nM siRNA targeting 

RPL34 and RPL35A resulted in a significant (RPL34 p=0.0287, RPL35A p=0.007) rescue of cellular 

proliferation together with a reduction in cell area compared with 3 nM RP siRNA alone (RPL34 

p=0.035, RPL35A p=0.055) (Figure 5.5A-B). In addition, for each of the remaining RP hits, p16 

silencing resulted in a partial (non-significant) rescue of the senescence phenotype. Importantly, 

senescence activation following 30 nM or 3 nM RP siRNA transfection was comparable and there 

was no significant difference in cell number or cell area generated by each of the two doses. 

Together, this data indicates that senescence rescue may be achieved via p16 silencing and that 

p16 signalling may mediate senescence initiation following RP siRNA knockdown in these cells. 
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Figure 5.5: MDA-MB-468 cells reverse transfected with 0.3 nM, 3 nM or 30 nM RP siRNA +/- 30 nM p16 
siRNA. MDA-MB-468 cells were reverse transfected with 30 nM or 60 nM GAPDH siRNA or 0.3, 3 or 30 
nM siRNA pools targeting each of the top six RP hits alone and in combination with 30 nM p16 siRNA 
according to Section 2.3.2. After 5 days, cells were fixed and stained with DAPI and Cell Mask and cell 
number and cell area were quantified according to Sections 2.4 and 2.5. Bars denote (A) mean cell number 
or (B) mean cell area +SD of two independent experiments each containing three technical repeats.               
* = p<0.05, ** = p<0.01.   

 

Although the combination of 30 nM p16 siRNA and 3 nM RP siRNA achieved a significant rescue 

for two of the top six RP hits, 30 nM p16 siRNA did not restore cell numbers or cell area to that 

of the GAPDH siRNA control for the remaining hits. This may be due to a variety of factors such 

as the potency of the p16 siRNA, the abundancy of the p16 transcript and protein, the half-life 

of the p16 protein and the kinetics of the experimental setup (simultaneous siRNA transfection). 
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As such, it was hypothesised that by increasing the p16 siRNA dose from 30 nM to 60 nM, 

thereby potentially increasing the level of p16 knockdown, a greater rescue of the senescence 

phenotype may be achieved. 

In order to investigate this, MDA-MB-468 cells were reverse transfected with 60 nM p16 siRNA 

together with a pool of three siRNAs (total concentration 3 nM) targeting each of the top RP hits 

according to Section 2.3.2 (N=1). After 5 days, cells were fixed and stained with DAPI and Cell 

Mask and multiparameter analysis was performed according to Sections 2.4 and 2.5 (Figure 

5.6A-C). Multiparameter analysis revealed that (with the exception of RPS7) p16 silencing fully 

rescued the senescence phenotype and restored cell numbers and all other senescence-

associated parameters to match those generated by GAPDH siRNA. A partial senescence rescue 

was achieved in the case of RPS7. This is most likely due to the kinetics of the experimental setup 

and the highly rapid nature of RPS7 siRNA-mediated senescence induction. In order to 

circumvent this issue, often associated with simultaneous siRNA transfection, an inducible p16 

shRNA construct could be used to stably silence p16 in MDA-MB-468 cells. Subsequent RP siRNA 

transfection within a p16 shRNA context would better determine whether or not p16 expression 

is required for senescence initiation (see Section 5.6 for further discussion). 
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Figure 5.6: MDA-MB-468 cells reverse transfected with 3 nM RP siRNA and 60 nM p16 siRNA. MDA-MB-
468 cells were reverse transfected with 60 nM control siRNAs targeting GAPDH or p16 as well as 3 nM 
siRNA pools targeting each of the top six RP hits +/- 60 nM p16 siRNA according to Section 2.3.2. After 5 
days, cells were fixed and stained with DAPI and Cell Mask and multiparameter analysis was performed 
according to Sections 2.4 and 2.5. (A) Mean cell number. Bars denote mean +SD of a single experiment 
containing three technical repeats. (B) Heatmap depicting the mean Z score for each of the senescence-

Cell Mask 
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associated parameters selected for quantification. The scale bar shows the number of Z scores that 
correspond to the colours within the heatmap and the directionality of the quantified senescence-
associated changes. Dark grey indicates a significant change in the opposite direction to that expected 
and is associated with a proliferative phenotype. (C) Representative immunofluorescence images of MDA-
MB-468 cells transfected with 60 nM GAPDH siRNA, 3 nM RPS3A siRNA pool or 3 nM RPS3A siRNA pool 
and 60 nM p16 siRNA and stained with Cell Mask. Images are at 10X magnification and size bar denotes 
100 μm.    

Taken together, these findings suggest that senescence activation is associated with nuclear 

translocation of p16 and that initiation of the phenotype is dependent on p16 expression. As 

such, it is hypothesised that p16 is a crucial mediator of senescence activation and that RP 

silencing may drive p16 nuclear translocation, enabling a re-sensitisation to p16 signalling and 

senescence initiation and/or maintenance (Figure 5.7). However, this experiment needs to be 

repeated and further work must be performed in order to establish whether p16 nuclear 

translocation is a driver or simply, a consequence of senescence initiation and/or maintenance 

within these cells (see Section 5.6 for further discussion). 

 

 

Figure 5.7: Schematic summarising the proposed route to senescence initiation in MDA-MB-468 cells. 
Data presented above has shown that RP silencing results in senescence activation in MDA-MB-468 cells 
and that senescence initation in these cells requires p16 expression. Further, it has also been 
demonstrated that senescence activation is not associated with a significant increase in nuclear p53 
protein levels or a change in total p16 protein levels. As such it is hypothesised that senescence initiation 
is independent of p53 signalling but instead, may require p16 nuclear translocation and re-sensitisation. 
Solid lines are supported by in vitro evidence and dashed lines denote a hypothesis. 
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 Senescence activation is associated with a potent decrease in nuclear and cytoplasmic p21 

protein levels 

Given the p21 (key senescence-mediator downstream of p53, see Section 1.1.1) protein status 

of the MDA-MB-468 cell line (Figure 5.1), it was hypothesised that RP silencing may trigger p21 

stabilisation and re-sensitisation in a p53-independent manner and that, in addition to p16, p21 

may function to mediate senescence initiation and/or maintenance in these cells. In order to 

investigate this, the rabbit anti-p21 antibody was first validated and optimised for 

immunofluorescence staining (Appendix, Figure A.1C). Subsequently, MDA-MB-468 cells were 

reverse transfected with GAPDH siRNA or a pool of three siRNAs targeting each of the top six RP 

hits according to Section 2.3.2. After 5 days, cells were then fixed and stained with DAPI, Cell 

Mask, rabbit anti-p21 and donkey Alexa Fluor-488 conjugated anti-rabbit and nuclear and 

cytoplasmic p21 protein levels were quantified according to Sections 2.4 and 2.5 (Figure 5.8A-

C).  

Unexpectedly, this analysis revealed a non-significant decrease in both nuclear and cytoplasmic 

p21 protein levels in response to siRNA knockdown of each of the top six RPs and senescence 

activation in MDA-MB-468 cells. Additionally, this decrease in p21 protein levels was 

subsequently validated via western blotting for two of the strongest senescence evaders, RPS3A 

and RPS7 (Figure 5.9A-B). This analysis indicated that at 5 days post-transfection, senescence 

activation resulted in a 65% (+/- 2.3%) and a 54% (+/- 33.5%) reduction in total p21 protein levels 

following RPS3A and RPS7 silencing, respectively. Crucially, given the decrease in p21 protein 

levels associated with the establishment of senescence, it is highly unlikely that p21 expression 

or protein activity is required for the maintenance of the senescence phenotype in this context, 

although further work ought to be conducted to investigate this. 
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Figure 5.8: Nuclear and cytoplasmic p21 protein levels in MDA-MB-468 cells following RP silencing. 
Representative frequency distribution plots of (A) nuclear or (B) cytoplasmic p21 protein levels for MDA-
MB-468 cells transfected with 30 nM siRNA targeting GAPDH or each of the top six RP hits. Cells were 
reverse transfected with 30 nM siRNA and were fixed and stained with DAPI, rabbit anti-p21 and Alexa 
Fluor-488 conjugated anti-rabbit and nuclear and cytoplasmic p21 protein levels were quantified 
according to Sections 2.4 and 2.5. Two independent experiments, each containing three technical repeats, 
were performed. Statistical analysis revealed none of the shifts in p21 protein levels to be statistically 
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significant. (C) Representative immunofluorescence images of MDA-MB-468 cells transfected with 30 nM 
GAPDH siRNA or 30 nM siRNA pool targeting RPS3A or RPS7 and stained for DAPI (blue) and p21 (green). 
Images are at 10X magnification and size bar denotes 100 μm.     

 

 

Figure 5.9: Western blot analysis of p21 levels post siRNA transfection in MDA-MB-468 cells. (A) 
Representative western blot analysis of p21 levels in MDA-MB-468 cells transfected with GAPDH, RPS3A 
or RPS7 siRNA. Cells were reverse transfected with 30 nM GAPDH siRNA or siRNA pools targeting RPS3A 
or RPS7 according to Section 2.3.5. Cell lysates were then harvested for western blotting and lysates were 
probed for rabbit anti-p21 according to Section 2.6. Mouse anti-β-tubulin was used as a loading control. 
Antibody dilutions and conditions may be found in Section 2.6. (B) Densitometry analysis of p21 levels 
post siRNA transfection in MDA-MB-468s. Analysis was performed using ImageJ software. Bars denote 
mean density levels +SD normalised to GAPDH siRNA of two independent experiments. Statistical analysis 
showed the decreases in p21 protein levels to be non-significant.  

 Senescence initiation is dependent on p21 expression 

The data presented above demonstrates that senescence establishment via RP silencing is 

associated with a dramatic reduction in both nuclear and cytoplasmic p21 levels, reducing the 

likelihood of p21 involvement in senescence maintenance. However, the role of p21 signalling 

in senescence initiation has yet to be deciphered. It is proposed that, in addition to p16, p21 

expression may also be required for the initiation of senescence following RP silencing and may 

be subsequently degraded as the phenotype is established. 

In order to investigate this, siRNA targeting p21 was first validated via immunofluorescence 

staining using a previously validated rabbit anti-p21 antibody (data not shown). Subsequently, 

double transfections were performed and MDA-MB-468 cells were simultaneously reverse 

transfected with 30 nM siRNA targeting p21 together with a pool of three siRNAs (30 nM final 

concentration) targeting each of the top six RP hits according to Section 2.3.2. GAPDH siRNA was 

used as a negative control and cells were also transfected with 30 nM p21 siRNA alone. 

Importantly, transfection with p21 siRNA did not result in a significant increase in cell number 

when compared to the GAPDH control indicating that proliferating MDA-MB-468 cells are non-
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responsive to p21 signalling. After 5 days, cells were fixed and stained with DAPI and cell number 

was quantified according to Sections 2.4 and 2.5 (Figure 5.10A-B). Interestingly, knockdown of 

each of the RPs (excluding RPL18, where statistical analysis could not be performed) in 

combination with p21 silencing resulted in a significant rescue of cellular proliferation, 

implicating p21 signalling in senescence initiation (Figure 5.10A-B). With this in mind, it is 

proposed that both p16 and p21 expression are required for senescence initiation following RP 

silencing and that p21 protein degradation may be a consequence of senescence establishment. 

However, the exact mechanism by which p21 and p16 may interact and function to mediate 

senescence induction is still yet to be deciphered. The findings presented so far within this 

Chapter are summarised in the schematic below (Figure 5.11).   
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Figure 5.10: MDA-MB-468 cells reverse transfected with 30 nM RP siRNA +/- 30 nM p21 siRNA. MDA-
MB-468 cells were reverse transfected with 60 nM control siRNAs targeting GAPDH or p21 as well as 30 
nM siRNA pools targeting each of the top six RP hits +/- 30 nM p21 siRNA according to Section 2.3.2. After 
5 days, cells were fixed and stained with DAPI and nuclei number was quantified according to Sections 2.4 
and 2.5. (A) Bars denote mean cell number +SD of two independent experiments each containing three 
technical repeats. ** = p<0.01. Statistical analysis was not performed on RPL18+p21 siRNA as this dataset 
failed the F-test. (B) Representative immunofluorescence images of MDA-MB-468 cells transfected with 
GAPDH siRNA, RPS3A siRNA or RPS3A siRNA and p21 siRNA and stained with DAPI. Images are at 10X 
magnification and size bar denotes 100 μm.  

DAPI 
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Figure 5.11: Cartoon summarising the role of p16 and p21 during senescence initiation and 
establishment following RP siRNA knockdown in MDA-MB-468 cells. In vitro experiments presented 
within this Chapter suggest that both p16 and p21 are required for senescence initiation (Day 1) in MDA-
MB-468 cells and that by Day 5 (senescence establishment) p16 has translocated to the nucleus while 
nuclear and cytoplasmic p21 protein levels are reduced.  

It is important to note that the order of events following RP silencing in MDA-MB-468 cells has 

not yet been fully deciphered. However, given the data presented above, it is hypothesised that 

RP silencing may trigger p21 re-sensitisation and p16 nuclear translocation resulting in p16-

resensitisation, p21 degradation and senescence initiation (Figure 5.12A). Alternatively, it is also 

possible that p21 degradation may occur as an early event during senescence initiation and drive 

p16 nuclear translocation and senescence establishment (Figure 5.12B). In this instance, p16 

nuclear translocation may function solely to mediate senescence maintenance. However, given 

the data that suggests p21 is required for initiation of the senescence phenotype, the hypothesis 

outlined in Figure 5.12A is thought to be the most likely. Time course experiments to investigate 

the kinetics of p16 nuclear translocation and p21 degradation following RP silencing ought to be 

performed in order to fully elucidate the role of p16 and p21 in senescence initiation and 

maintenance and to assess a possible interplay between these two key proteins. Further future 

work proposals may be found in Section 5.6.   
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Figure 5.12: Cartoon depicting two possible mechanisms for p16 and p21 interaction following RP 
silencing in MDA-MB-468 cells. (A) RP silencing may trigger p16 to translocate to the nucleus, mediating 
senescence activation and subsequent p21 protein degradation. (B) RP silencing may first result in p21 
protein degradation which, in turn, results in p16 nuclear translocation and senescence activation.   

 

 Ribosomal silencing in MDA-MB-231 cells results in cell death 

not senescence 

 RP silencing in MDA-MB-231 cells is associated with a decrease in nuclear p21 protein 

levels 

A second BLBC model (MDA-MB-231 cell line) was selected in order to further examine the role 

of tumour suppressors, p16 and p21, in senescence initiation following RP silencing. First, MDA-

MB-231 cells were confirmed to be p16-null, p53+/+ and p21+/+ via western blotting (see Figure 

5.1). Given the data presented previously within this Chapter which implicates p16 expression 

in senescence initiation in MDA-MB-468 cells, it was hypothesised that RP silencing in MDA-MB-

231 cells (p16-null setting) would not result in senescence activation, further supporting the 

requirement for p16 in senescence initiation. In order to test this, siRNA transfection of MDA-

MB-231s was optimised according to Section 2.2 (data not shown) and MDA-MB-231 cells were 

subsequently reverse transfected with GAPDH siRNA or a pool of three siRNAs targeting each of 

the top six RP hits. After 5 days, cells were fixed and stained with DAPI and cell numbers were 

quantified according to Sections 2.4 and 2.5 (Figure 5.17A-B). 
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Unexpectedly, silencing of each of the top six RP hits within MDA-MB-231 cells resulted in a 

decrease in cell number, suggestive of a highly potent reduction in cell proliferation. The tumour 

suppressor, p21 is an important repressor of the cell cycle (see Section 1.1.1). As such, it was 

hypothesised that, in the absence of p16, the reduction in cellular proliferation following RP 

silencing in MDA-MB-231 cells may be p21-dependent and may also be associated with an 

increase in nuclear p21 protein levels. In order to investigate this, MDA-MB-231 cells were 

reverse transfected with siRNA pools targeting each of the top six RP hits or control siRNAs 

targeting GAPDH or p21, and were stained for p21 protein levels (Figure 5.13). Interestingly, RP 

knockdown was not associated with nuclear p21 stabilisation. Instead, knockdown of small 

ribosomal subunit proteins, RPS3A and RPS7, resulted in no change to nuclear p21 protein levels 

whilst, silencing of RPL14, RPL18, RPL34 and RPL35A induced a reproducible reduction in nuclear 

p21 protein levels. In the absence of p16 expression or p21 nuclear stabilisation, it was proposed 

that an alternative phenotype, such as apoptosis, may be driving the observed reduction in cell 

number in response to RP silencing in these cells. 
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Figure 5.13: Nuclear p21 protein levels in MDA-MB-231 cells following RP silencing. Representative 
frequency distribution plots of nuclear p21 protein levels for MDA-MB-231 cells transfected with 30 nM 
siRNA targeting GAPDH, p21 or each of the top six RP hits. After 5 days, cells were fixed and stained with 
DAPI, rabbit anti-p21 and Alexa Fluor-488 conjugated anti-rabbit and nuclear p21 protein levels were 
quantified according to Sections 2.4 and 2.5. Two independent experiments, each containing three 
technical repeats, were performed. Statistical analysis revealed none of the shifts in p21 protein levels to 
be statistically significant. 

 

 RP silencing induces a ‘death-like’ phenotype in MDA-MB-231 cells 

Closer examination of immunofluorescence and bright field images following siRNA transfection 

revealed that RP silencing may activate a ‘death-like’ phenotype rather than senescence 

initiation in MDA-MB-231 cells (Figure 5.14 and Figure 5.15). For example, at five or even eight 

days post-transfection, the majority of the culture appeared to be dying in response to RP 

knockdown. Furthermore, preliminary quantitation of key senescence-associated parameters 

such as nuclear and cellular area following RP silencing, revealed that knockdown of two of the 

strongest senescence evaders, RPS7 and RPS3A (identified within MDA-MB-468 cells), was 
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associated with a reduction in nuclear and cellular area, characteristic of cell death (data not 

shown). Interestingly, preliminary data also suggests that CBX7 siRNA (positive control for 

senescence induction in MDA-MB-468 cells) induces senescence in MDA-MB-231s (Figure 5.15), 

indicating that senescence activation in this cellular context is possible. Further, the data 

indicates that, in addition to p16, CBX7 functions to repress other downstream targets that may 

be critical for senescence activation in the MDA-MB-231 cells. Intriguingly, in contrast to RP 

silencing, CBX7 silencing in MDA-MB-231s was associated with an increase in nuclear p21 

protein levels (Appendix, Figure A.5), indicating that p21 nuclear stabilisation may mediate 

senescence activation in response to CBX7 silencing, in the absence of p16 expression. 

 

Figure 5.14: Representative bright field images depicting MDA-MB-231 cells transfected with each of 
the top six RP siRNAs together with GAPDH siRNA. MDA-MB-231 cells were reverse transfected 
according to Section 2.3.2 with 30 nM siRNA targeting GAPDH or 30 nM siRNA pools targeting each of the 
top six RPs. Cells were imaged at Day 8 using the IN Cell 1000 automated microscope. Images are at 10X 
magnification and are taken from a single experiment containing three technical repeats. Size bar denotes 
100 μm. 
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Figure 5.15: Representative immunofluorescence images of MDA-MB-231 cells transfected with each of 
the top six RP siRNAs together with control siRNAs targeting GAPDH and CBX7. MDA-MB-231 cells were 
reverse transfected according to Section 2.3.2 with 30 nM siRNA targeting GAPDH, CBX7 or 30 nM siRNA 
pools targeting each of the top six RPs. After 5 days, cells were fixed and stained with DAPI (blue) and Cell 
Mask (red) and imaged according to Sections 2.4 and 2.5. Images are at 10X magnification and size bar 
denotes 100 μm.     
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In order to assess whether RP silencing in MDA-MB-231 cells resulted in cell death, a direct cell 

death assay using the nucleic acid stain, SYTOX was performed. SYTOX is a live-cell stain that is 

only able to penetrate cells with compromised plasma membranes. As such, SYTOX staining can 

be used to indicate dead or dying cells within a culture. First, the SYTOX dose and incubation 

time was optimised within MDA-MB-231 cells using PLK1 siRNA as a positive control for cell 

death (data not shown). Subsequently, MDA-MB-231 cells were reverse transfected with 

GAPDH, PLK1 or CBX7 control siRNAs as well as pools of three siRNAs targeting each of the top 

six RP hits, according to Section 2.3.3. After 6 days, live cells were stained with SYTOX and 

Hoechst (nuclear stain) and were imaged according to Sections 2.9 and 2.5. The percentage of 

SYTOX-positive nuclei was then calculated in order to indicate the level of cell death within the 

culture (Figure 5.16A-B). 

Strikingly, this analysis revealed that siRNA silencing of each of the top six RP hits induced an 

increase in the number of SYTOX-positive nuclei when compared to the GAPDH or CBX7 siRNA 

controls. Moreover, knockdown of the strongest senescence evaders (RPS3A and RPS7, 

identified within the MDA-MB-468 screens) induced the highest level of toxicity in the MDA-MB-

231 cells (RPS3A=42.09% +/- 13.47% and RPS7=43.36% +/- 11.25% SYTOX positive nuclei). Taken 

together, these preliminary findings suggest that, in contrast to MDA-MB-468 cells, within a p16-

null context, RP silencing may induce a death-like phenotype accompanied by a decrease in 

nuclear p21 protein levels. 

 

Figure 5.16: Percentage of SYTOX-positive nuclei in MDA-MB-231 cells transfected with RP siRNA. MDA-
MB-231 cells were reverse transfected with 30 nM control siRNAs targeting GAPDH, PLK1 or CBX7 
together with 30 nM siRNA pools targeting each of the top six RP hits according to Section 2.3.3. After 6 
days, cells were incubated with SYTOX and Hoechst for 2.5 hr and were imaged accoring to Sections 2.9 
and 2.5. (A) Bars denote mean percentage of SYTOX-positive nuclei +SD within a single experiment 

100 μm 

100 μm 

DAPI/SYTOX 
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containing three technical repeats. (B) Representative immunofluorescence images of MDA-MB-231 cells 
transfected with 30 nM GAPDH siRNA or RPS7 siRNA and stained with Hoechst (blue) and SYTOX (green). 
Images are at 10X magnification and size bar denotes 100 μm.    

 

 Initiation of cell death in MDA-MB-231s following RP silencing is dependent on p21 

expression 

In order to investigate whether p21 is required for the initiation of the death-like phenotype in 

MDA-MB-231 cells following RP silencing, MDA-MB-231 cells were simultaneously reverse 

transfected with 30 nM siRNA targeting p21 together with a pool of three siRNAs targeting each 

of the top six RP hits, according to Section 2.3.3. Doses of 3 or 30 nM RP siRNA were used in 

order to maximise the possibility of phenotypic rescue. GAPDH siRNA was used as a negative 

control and cells were also transfected with 30 nM p21 siRNA alone. Importantly, transfection 

with p21 siRNA did not result in a significant increase in cell number when compared to the 

GAPDH control indicating that proliferating MDA-MB-231s are non-responsive to p21 signalling. 

CBX7 siRNA was used as a positive control for senescence induction and PKL1 siRNA was used 

as an indicator of transfection efficiency. After 5 days, cells were fixed and stained with DAPI 

and cell number was quantified according to Sections 2.4 and 2.5 (Figure 5.17A-B). 

Interestingly, p21 silencing partially rescued the ‘death-like’ phenotype induced by each of the 

top six RP siRNAs. Of note, the inter-experimental variability within the ‘rescued’ conditions was 

particularly high for the most potent siRNAs, RPS3A and RPS7, indicating p21 knockdown was 

insufficient to reproducibly rescue the ‘death-like’ phenotype here. Increasing the concentration 

of p21 siRNA to 60 nM in future experiments may result in a more reproducible rescue for each 

of the six RP hits. Together, this data suggests that p21 expression is required to initiate a full 

cytotoxic response following RP silencing in MDA-MB-231 cells (Figure 5.18A), however, the role 

that p21 plays in the activation of cell death in this context is yet to be deciphered. 
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Figure 5.17: MDA-MB-231 cells reverse transfected with 3 or 30 nM RP siRNA and 30 nM p21 siRNA. 
MDA-MB-231 cells were reverse transfected with (A) control siRNAs (B) or 3 or 30 nM siRNA pools 
targeting each of the top six RP hits +/- 30 nM p21 siRNA according to Section 2.3.3. After 5 days, cells 
were fixed and stained with DAPI and cell number was quantified according to Sections 2.4 and 2.5. Bars 
denote mean cell number +SD of a single representative experiment containing three technical repeats. 
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p21 is a CDK inhibitor that functions to repress CDK1/2 activity (see Section 1.1.1). As such, p21 

plays an instrumental role in regulating cell cycle progression and there is now a wealth of 

evidence implicating p21 within senescence initiation. In addition to this, studies have also 

demonstrated that p21 may also mediate apoptosis via a specific C-terminus cleavage event 

(Schreiber et al., 1999, Levkau et al., 1998) (Figure 5.18B). Importantly, Levkau et al., 1998 

showed that apoptotic HUVECs (human umbilical vein endothelial cells) were negative for full 

length p21 protein but contained a truncated form of the protein (approximately 14KDa). It was 

proposed that this truncated form is generated via a specific cleavage event within the C-

terminus of p21 protein, mediated by caspase 3, apoptosis-related cysteine peptidase (CPP32) 

caspase enzyme. Further, the authors also demonstrated that upon cleavage, truncated p21 

exits the nucleus due to the loss of its nuclear localisation sequence, present with the C-

terminus. This mechanism of p21 C-terminal cleavage and nuclear exit has been shown to drive 

apoptosis activation, possibly via enhanced CDK2 activity and reduced p21-mediated DNA repair 

(Levkau et al., 1998). In support of this, mutated p21, resistant to C-terminal cleavage, was 

protective against apoptosis in HUVEC cells in response to growth factor deprivation. Therefore, 

this data reveals a mechanism by which p21 is able to mediate apoptosis activation in response 

to cellular stress. With this in mind, it is hypothesised that in MDA-MB-231 cells, RP silencing 

may trigger a specific C-terminal cleavage event within native p21 protein, resulting in 

cytoplasmic translocation of truncated p21 and apoptosis activation. 

This work by Levkau et al. supports our hypothesis presented herein. For example, data 

presented within this Chapter has shown that activation of a death-like phenotype following RP 

silencing in MDA-MB-231 cells is partially dependent on p21 expression and is associated with a 

subtle reduction in full length nuclear p21 protein levels. The epitope for the rabbit anti-p21 

antibody, used within this thesis to detect nuclear full length p21 levels, sits within the cleaved 

C-terminal region of the native p21 protein. As such, this antibody is only able to detect full 

length p21 and is unable to detect the truncated form of the protein. Immunofluorescence 

staining with this antibody presented here (Figure 5.13) demonstrated that RP silencing in MDA-

MB-231s resulted in a slight reduction in full length nuclear p21 protein levels and it is 

hypothesised that this reduction could be due to p21 C-terminal cleavage. Further 

immunofluorescence staining, using a second p21 antibody with an epitope located within the 

protein’s N-terminus, would determine whether or not truncated p21 is translocated to the 

cytoplasm upon RP silencing in these cells. In addition, western blot analysis using an N-terminal 

binding anti-p21 antibody would also help to determine whether or not p21 is cleaved in 

response to RP silencing. Truncated p21 (14KDa) would run slightly below full length p21 protein 
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on a western blot and two bands may be detectable if the cleavage event has occurred. Further 

experiments, such as immunofluorescence staining for CPP32 caspase enzyme, would also help 

determine whether apoptosis is activated in response to RP silencing in the absence of p16 

expression (see Section 5.6 for further discussion). 

 

 

Figure 5.18: Schematic summarising the proposed mechanism of cell death in MDA-MB-231 cells 
following RP silencing. (A) Schematic summarising the findings presented within this Chapter. Solid lines 
are supported by in vitro data and dashed lines denote a hypothesis. (B) It is hypothesised that RP silencing 
in MDA-MB-231 cells may trigger p21 C-terminal cleavage, followed by truncated p21 nuclear exit and 
apoptosis activation.    

 

 RP silencing and senescence induction in MDA-MB-468 cells is not associated with C-

terminal p21 cleavage 

Previous data presented above showed that in MDA-MB-468 cells (p16-positive), RP silencing 

resulted in senescence induction accompanied by a reduction in full length p21 protein levels. 

As such, it was hypothesised that RP silencing in MDA-MB-468 cells does not result in p21 C-

terminal cleavage and apoptosis activation, but instead, induces senescence together with full 

length p21 protein degradation. In order to investigate this, MDA-MB-468 cells were reverse 

transfected with GAPDH siRNA or pools of three siRNA targeting either RPS3A or RPS7 (two of 

the strongest senescence evaders) according to Section 2.3.2. After 5 days, cells were harvested 

and cell lysates were probed for p21 using an N-terminal binding mouse anti-p21 antibody 
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according to Section 2.6 (Figure 5.19A-B). If p21 protein had been cleaved within its C-terminus, 

in response to RPS3A or RPS7 silencing, a band running at approximately 14KDa would be visible 

on the western blot. Interestingly, this analysis revealed just one single band at approximately 

21KDa for each of the cell lysates, indicating p21 protein is not cleaved in response to RPS3A or 

RPS7 silencing in MDA-MB-468 cells. Further, this analysis also showed that full length p21 

protein levels are reduced in response to RP silencing (RPS3A=37.6% +/- 7.16% and 

RPS7=61.87% +/- 30.32%) and is in line with the data presented previously within this Chapter. 

Taken together, these studies indicate that in MDA-MB-468 cells, RP silencing and senescence 

induction is not accompanied by p21 C-terminal cleavage, instead, senescence activation is 

associated with nuclear and cytoplasmic p21 protein degradation. However, the mechanism by 

which RP silencing drives p21 protein degradation is not yet clear. 

 

Figure 5.19: Western blot analysis of p21 levels post siRNA transfection in MDA-MB-468 cells. (A) 
Representative western blot analysis of p21 levels in MDA-MB-468 cells transfected with 30 nM GAPDH, 
RPS3A or RPS7 siRNA. Cells were reverse transfected with 30 nM GAPDH siRNA or siRNA pools targeting 
RPS3A or RPS7 according to Section 2.3.5. Cell lysates were then harvested for western blotting and 
lysates were probed for mouse anti-p21 according to Section 2.6. Mouse anti-β-tubulin was used as a 
loading control. Antibody dilutions and conditions may be found in Section 2.6. (B) Densitometry analysis 
of p21 levels post siRNA transfection in MDA-MB-468s. Analysis was performed using ImageJ software. 
Bars denote mean density levels +SD normalised to GAPDH siRNA of two independent experiments. 
Statistical analysis showed the decreases in p21 protein levels to be non-significant.   
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 Senescence induction in MDA-MB-468 cells is associated with 

dramatic changes to nucleoli number and morphology 

 Actinomycin D treatment induces cytotoxicity and nucleoli disruption in MDA-MB-468 cells 

The nucleolus is the site for ribosomal assembly and is known to function as a ‘stress sensor’ co-

ordinating the induction of p53-mediated senescence in normal cells (see Section 1.7.6). 

Furthermore, the nucleolus is a dynamic structure that disassembles and reassembles in 

accordance with rRNA transcription and nucleoli number and morphology is often used to 

indicate the rate of ribosomal biosynthesis within a cell (see Section 1.7.5). In addition, recent 

studies have shown that nucleoli morphology is altered upon senescence induction and arrested 

cells are associated with a single enlarged nucleoli (Ugrinova et al., 2007). As such, it is 

hypothesised that senescence induction following RP silencing in MDA-MB-468 cells may be 

accompanied by disrupted ribosomal biosynthesis together with dramatic alterations to nucleoli 

morphology and number. 

NCL (key structural nucleolar protein also involved in rRNA synthesis, see Section 1.7.4) 

immunofluorescence staining is an established approach for examining nucleolar morphology in 

vitro. Importantly, nucleoli disruption driven by low doses of agents such as Actinomycin D (Pol 

I inhibitor) is associated with senescence induction (Montanaro et al., 2007). In addition, 

genome-wide siRNA screening revealed that knockdown of NCL resulted in senescence 

induction in normal HMECs (Bishop et al., 2010). As such, it was further hypothesised that those 

siRNAs that are able to activate senescence independently of nucleolus disruption may target 

the most cancer-specific senescence evaders and that those ribosomal siRNAs capable of 

nucleolus disruption in normal HMECs would not represent suitable therapeutic targets. 

Consequently, examination of nucleoli morphology following senescence activation may enable 

the top six RP hits to be sub-categorised into two subgroups (nucleoli disruptors and non-

nucleoli disruptors) and may highlight those most cancer-specific hits for further validation.   

Analysis of the METABRIC data set revealed that BLBCs and p16-positive breast cancers, 

regardless of subtype, are enriched for increased NCL expression (Figure 5.20A). In addition, 

Kaplan Meier analysis revealed that this elevated expression is also associated with a poor 

prognosis in breast cancer (where all intrinsic subtypes are considered within a single category, 

HR=1.18, p=0.0054). Elevated NCL expression is also associated with a reduced prognosis in 

BLBCs (HR=1.09, p=0.51), however this effect was not statistically significant (Figure 5.20B). 
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Consequently, NCL immunofluorescence staining was selected as a means of examining nucleoli 

morphology following senescence initiation in MDA-MB-468 cells. 

 

Figure 5.20: In silico analysis of NCL transcript expression in breast cancer. (A) Frequency distribution 
plots depicting log2 fold changes in NCL expression (NCL ILMN_2121437) within each of the PAM50 breast 
cancer subtypes (left) and within p16-high tumours versus p16-low tumours (right, CDKN2AHigh212 and 
CDKN2ALow212 respectively). (B) Representative survival plots for NCL within all breast cancer cases 
(N=3,554) (left) and within Basal-like tumours only (N=580) (right). Data shows 10 year relapse free 
survival generated by kmplot. Data was split by median expression levels. 

Before the nucleoli morphology of senescent MDA-MB-468 cells could be examined, a rabbit 

anti-NCL antibody was first optimised for immunofluorescence staining (data not shown). 

Actinomycin D treatment (known inducer of nucleoli disruption and senescence) was selected 

as a positive control for nucleoli disruption and was used to profile nucleoli disruption in MDA-

MB-468 cells. Following optimisation (data not shown), proliferating MDA-MB-468 cells were 

treated with 10 μg/mL Actinomycin D or DMSO only for 8 hours before being fixed and stained 

with DAPI, rabbit anti-nucleolin and donkey Alexa Fluor-546 conjugated anti-rabbit according to 

Sections 2.10 and 2.4. Cells were then imaged and cell number was quantified according to 
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Section 2.5 (Figure 5.21A-B). In line with the literature, this analysis demonstrated that 

Actinomycin D drug treatment of MDA-MB-468 cells resulted in diffuse nuclear NCL 

immunofluorescence staining, characteristic of potent nucleoli disruption. Further, this 

observed nucleoli disruption was associated with a small reduction in cell proliferation, 

indicating possible cytotoxicity or senescence induction. 

 

Figure 5.21: Cell number and nucleoli morphology of MDA-MB-468 cells treated with Actinomycin D. 
MDA-MB-468 cells were incubated with DMSO only or 10 μg/mL Actinomycin D for 8 hours before being 
fixed and stained with DAPI, rabbit anti-nucleolin and donkey Alexa Fluor-546 conjugated anti-rabbit 
according to Sections 2.10 and 2.4. Cells were then imaged and cell number was quantified according to 
Section 2.5. (A) Bars denote mean cell number +SD of a single representative experiment containing six 
technical repeats. (B)  Representative immunofluorescence images of MDA-MB-468 cells treated with 
either DMSO (vehicle only) or 10 μg/mL Actinomycin D and stained for NCL. Images are at 20X 
magnification. Size bar denotes 100 μm on original image and 10 μm on digital zoom. 

 Premature senescence activation is associated with dramatic changes to nucleoli 

morphology in HMECs 

Before the nucleoli were examined within the cancer setting, nucleoli morphology was 

examined within both proliferating, senescent, and prematurely senescent HMECs with the aim 

of profiling the senescence-associated nucleoli signature in these contexts. It was hypothesised 

that senescent HMECs (irrespective of the trigger), would be associated with nucleoli alterations 

characteristic of cell cycle arrest, i.e. a single enlarged nucleoli (Ugrinova et al., 2007). In order 

to investigate this, HMECs were transfected with either siGLO (negative control), p16 or CBX7 

(positive control for premature senescence activation) siRNA according to Section 2.3.4. 

Transfection were performed by Dr. Cleo Bishop. After 5 days, cells were fixed and stained for 

NCL and p16 and nucleoli number and morphology were quantified according to Sections 2.4 

and 2.5 (Figure 5.22A-B). 
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Interestingly, this quantitation demonstrated that proliferative HMECs treated with p16 siRNA 

(‘young’ highly proliferative population) were characterised by rounded, highly uniform nucleoli. 

Wells treated with siGLO siRNA contained a mixed population of proliferative and cellular 

senescent cells, characterised by high p16 protein expression levels and an enlarged nuclear and 

cellular area. In line with the literature, the majority of these cellular senescent cells (Figure 

5.22A, second panel) contained a single enlarged rounded nucleoli, characteristic of cell cycle 

arrest. However, perhaps most striking was the nucleoli phenotype observed upon CBX7 

silencing.  In contrast with highly proliferative and cellular senescent cells, prematurely arrested 

HMECs were associated with an extremely irregular nucleoli signature, characterised by 

significant increases in nucleoli number, area and elongation. 

Together, this data established the ‘nucleoli signature’ within both proliferating, cellular 

senescent and prematurely senescent HMECs. These findings strongly suggest that alterations 

to nucleoli morphology may be used to identify senescence activation in normal cells and unlike 

current markers, may also be able to distinguish between different subtypes of senescence 

induction. Further, given the highly irregular nucleoli morphology associated with CBX7 

silencing, it is possible that, in contrast to cellular senescence, premature senescence induction 

(such as OIS) may be associated with perturbed nucleolar function and disrupted ribosomal 

biosynthesis. Examination of the nucleoli morphology upon cellular senescence, replicative 

senescence and OIS activation in these cells would help to investigate this. 

 RP silencing in HMECs is not associated with significant changes to nucleoli morphology 

Previously presented data demonstrated that RP siRNA knockdown in HMECs does not result in 

senescence activation (see Section 4.4). In parallel, it was therefore hypothesised that RP 

silencing in HMECs would not result in any significant changes to nucleoli number or 

morphology. In order to investigate this, HMECs were also transfected with three individual 

siRNAs as well as a siRNA pool targeting each of the top six RP hits and were stained for NCL 

according to Section 2.4 (Figure 5.22C). Interestingly, siRNA knockdown of each of the top six RP 

hits in HMECs did not result in any significant change to nucleoli number or morphology, 

suggesting that specific RP silencing in these cells is not sufficient to induce significant ribosomal 

biosynthesis disruption or nucleoli dysfunction. Further, this data also suggests that in normal 

cells, altered nucleoli morphology may be a senescence-specific marker and not simply a direct 

consequence of RP silencing.  
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Figure 5.22: Nucleoli morphology in proliferating, cellular senescent and prematurely senescent HMECs. 
Normal primary HMECs were reverse transfected with 30 nM siRNA targeting p16, PPIB (siGLO) or CBX7 
as well as three individual siRNAs and a siRNA pool targeting each of the top six RPs accoring to Section 
2.3.4. After 5 days, cells were fixed and stained with DAPI, rabbit anti-NCL and donkey Alexa Fluor-546 
conjugated anti-rabbit according to Section 2.4. Nuclei were then imaged and nucleoli morphology was 
quantified according to Section 2.5. Transfections were performed by Dr Cleo Bishop. (A) Representative 
immunofluorescence images and digitally zoomed images of HMECs transfected with either p16, siGLO or 
CBX7 siRNA and stained for NCL (red) and p16 (green). Images are at 20X magnification. Size bar denotes 
100 or 50 μm. (B) Heatmap depicting mean Z scores for nucleoli number/cell, nucleoli area, roundness 
and elongation. p16 siRNA resulted in a highly proliferative phenotype characterised by a decrease in 
nucleoli number, size and elongation together with an increase in nucleoli roundness. These changes are 
denoted by dark grey boxes. CBX7 siRNA-induced senescence was associated with an increase in nucleoli 
number, size and elongation together with a reduction in nucleoli roundness. (C) Heatmap depicting 
nucleoli morphology in HMECs transfected with 30 nM siRNA targeting each of the top six RP hits.   
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 Senescence induction in MDA-MB-468 cells following RP silencing is associated with 

dramatic changes to nucleoli morphology 

As stated earlier in Section 5.5.1, it was hypothesised that in MDA-MB-468s, senescence 

activation may be associated with dramatic alterations to nucleoli morphology, similar to those 

observed during premature senescence induction in normal cells and indicative of disrupted 

ribosomal biosynthesis. Further, those siRNAs that induce senescence in the absence of 

complete nucleoli disruption may target the most cancer-specific senescence evaders and will 

be prioritised for further validation. In order to examine the nucleoli morphology upon 

senescence induction in MDA-MB-468 cells, cells were reverse transfected with three individual 

siRNAs together with a siRNA pool targeting each of the top six RP hits as well as control siRNAs 

targeting GAPDH or CBX7 according to Section 2.3.2. After 5 days, cells were fixed and stained 

with DAPI, rabbit anti-NCL and donkey Alexa Fluor-546 conjugated anti-rabbit and nucleoli 

number and morphology was quantified according to Sections 2.4 and 2.5 (Figure 5.23A-B). 

This analysis revealed that senescence activation following RP silencing was not associated with 

complete nucleoli disruption but was associated with dramatic changes to nucleoli number and 

morphology. Importantly, each of the siRNAs tested (with the exception of RPL34 1 and RPL34 

2, previously found to be non-functional, see Section, 4.3.2) induced a significant increase in 

nucleoli number and elongation together with a significant decrease in nucleoli roundness. 

Strikingly, this irregular senescence-associated nucleoli phenotype was also observed in MDA-

MB-468 cells transfected with CBX7 siRNA and was reminiscent of the nucleoli signature 

observed in prematurely senescent HMECs. As such, it is proposed that cancer-associated 

senescence following RP silencing may resemble a premature senescence phenotype as 

opposed to a replicative or a cellular senescence state. 

Together, these studies suggest that specific changes to nucleoli morphology may be used to 

define senescence induction both in normal epithelial cells and in cancer cells. Examination and 

quantification of nucleoli morphology in p16-positive BLBC cells in vivo may be a useful 

prognostic tool when assessing responses to pro-senescence therapy. In support of this, recent 

literature has also shown that an enlarged and irregular nucleoli phenotype is associated with a 

poor prognosis in breast cancer (Derenzini et al., 2009). With this in mind, it is proposed that 

examination of nucleoli morphology in combination with p16, RP and NCL protein expression 

data in BLBC may enable the identification of novel molecular subtypes and more effective 

personalised treatment regimes (see Section 5.6 for further discussion). 
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Figure 5.23: Nucleoli morphology in MDA-MB-468 cells transfected with siRNA targeting each of the top 
six RP hits. MDA-MB-468 cells were reverse transfected with 30 nM control siRNA targeting GAPDH or 
CBX7 as well as three individual siRNAs and a siRNA pool targeting each of the top six RP hits according to 
Section 2.3.2. After 5 days, cells were fixed and stained with DAPI, rabbit anti-NCL and donkey Alexa Fluor-
546 conjugated anti-rabbit according to Section 2.4. Cells were then imaged and nucleoli morphology was 
quantified according to Section 2.5. (A) Heatmap depicting mean Z scores for nucleoli number/cell, 
nucleoli roundness and elongation from two independent experiments, each containing three technical 
repeats. Senescence was associated with an increase in nucleoli number and elongation together with a 
reduction in nucleoli roundness. (B) Representative immunofluorescence images and digitally zoomed 
images of MDA-MB-468 cells transfected with either 30 nM GAPDH siRNA or RPL34 siRNA pool and stained 
for NCL. Images are at 20X magnification. Size bar denotes 100 μm on original images and 10 μm on 
zoomed images. 
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 Discussion and future work 

 RP siRNA silencing in MDA-MB-468 cells is associated with p16 nuclear translocation and 

p21 degradation 

In summary, the data presented within this Chapter has attempted to decipher the mechanism 

by which RP silencing drives senescence activation in p16-positive BLBC cells. In contrast to the 

study performed by Fumagalli et al., 2009, data in Section 5.2 demonstrated that senescence 

initiation in MDA-MB-468 or HeLa cells is not associated with significant p53 stabilisation or 

activation, suggesting that in a p16-positive context, senescence activation, following RP 

silencing may be independent of p53 signalling. Crucially, senescence initiation in MDA-MB-468 

cells was found to be dependent on p16 and p21 expression and it is proposed that RP silencing 

drives p16 and p21 re-sensitisation via a novel mechanism, not yet fully resolved. In order to 

fully elucidate the role of tumour suppressors p53, p16 and p21 in senescence initiation and 

maintenance in p16-positive BLBC cells, inducible shRNA constructs for p53, p16 and p21 ought 

to be generated. RP siRNA transfection within a MDA-MB-468 p53, p16 or p21 shRNA context 

would better determine whether or not each of these proteins are required for senescence 

initiation in the cellular model of p16-positive BLBC. 

Senescence activation was associated with p16 nuclear translocation and it is hypothesised that 

this may be mediated by p21 signalling. RP silencing +/- p21 shRNA in MDA-MB-468 cells 

followed by western blotting analysis for p16 within both the nuclear and cytoplasmic cellular 

fractions would further test whether RP silencing induces p16 nuclear translocation in a p21 

dependent manner. In addition, immunofluorescence staining for p16 followed by confocal 

microscopy analysis following RP silencing +/- p21 shRNA in MDA-MB-468 cells would also help 

to further validate the findings presented within Section 5.3.1. 

Senescence activation in MDA-MB-468 cells was also found to be associated with potent p21 

degradation. Given the role of p21 within senescence initiation in these cells, it is hypothesised 

that p21 is degraded as a consequence of senescence induction and may be a consequence of 

p16 nuclear translocation. As such, it is proposed that a potential novel interplay may exist 

between p16 and p21 that may be critical for senescence initiation and maintenance following 

RP silencing in p16-positive cancer cells. A time course experiment where nuclear and 

cytoplasmic p21 and p16 protein levels are quantified via western blotting at 24 hour time points 

for 5 days following RP silencing would determine whether or not p21 degradation is a driver or 

a consequence of p16 nuclear translocation and senescence activation. In addition, RP silencing 
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+/- p16 or p21 shRNA followed by p21 and p16 immunofluorescence staining would help 

determine whether an interplay between these two senescence mediators exists in MDA-MB-

468 cells following RP silencing. 

Additionally, inducible shRNA constructs for each of the top six RPs would also help to determine 

the role of p53, p16 and p21 within senescence maintenance. For example, given the potent p21 

degradation following senescence induction in MDA-MB-468 cells, it is hypothesised that p16 is 

required for the maintenance of the senescence phenotype. In order to test this, senescence 

ought to be stably induced in MDA-MB-468 cells via shRNA RP silencing. Following this, p16 

siRNA transfection of senescent MDA-MB-468 cells would determine whether or not senescence 

maintenance is mediated by p16. 

 RP siRNA knockdown induces a ‘death-like’ phenotype in MDA-MB-231 cells 

In contrast to the studies conducted in the p16-positive cell line, MDA-MB-468, data presented 

within Section 5.4 shows that RP silencing in MDA-MB-231 cells (p16-null) induces a ‘death-like’ 

phenotype as opposed to senescence activation. As such, it is hypothesised that RP silencing in 

BLBC cancer cells activates a ‘cell fate decision fork’ with the outcome determined by p16 status. 

For example, where p16 is expressed, RP silencing activates senescence in a p16 and p21 

dependent manner accompanied by p21 degradation and p16 nuclear translocation. However 

in a p16-null setting, it is hypothesised that RP silencing induces apoptosis mediated by specific 

C-terminal p21 cleavage (Figure 5.24). Interestingly, RP and p16 silencing in MDA-MB-468 cells 

did not result in cell death. Instead the senescence phenotype was rescued (Figure 5.6A-C) 

suggesting that, in these cells, p21 may be mutated and resistant to C-terminal cleavage 

preventing apoptosis activation following RP silencing. Sequencing of the p21 gene in MDA-MB-

468 cells would help to validate this hypothesis. 

As discussed in Section 5.4.3, RP silencing in MDA-MB-231 cells followed by 

immunofluorescence staining and western blot analysis using an N-terminal binding anti-p21 

antibody would help to determine whether p21 is cleaved and translocated to the cytoplasm in 

response to RP silencing in these cells. Additionally, the SYTOX death assay ought to be repeated 

in the MDA-MB-231 and 468 cells following RP silencing in order confirm a cytotoxic response 

in activated only in the absence of p16 expression. Further experiments, such as 

immunofluorescence staining for CPP32 caspase enzyme, or a Terminal deoxynucleotidyl 

transferase dUTP nick end labelling (TUNEL) assay would also help determine whether apoptosis 

is activated in response to RP silencing in the absence of p16 expression. 
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The suggestion that RP silencing in cancer cells may elicit differing cellular responses depending 

upon p16 status has significant clinical implications when considering RP silencing as a potential 

pro-senescence anti-cancer therapy for BLBC. For example, it is predicted that RP silencing in 

p16-positive tumours would result in senescence induction. In these cases senolytics or immune 

system-boosting agents may also be required in order to fully clear the senescent cancer cells 

and prevent disease relapse. Alternatively, given the data presented in Section 5.4, it is also 

predicted that RP silencing in p16-negative BLBC tumours would also be an effective therapeutic 

strategy. In this context, it is possible that RP silencing would activate apoptosis within the 

tumour and that a secondary senolytic therapy would not be required. 

 

 

Figure 5.24: Schematic summarising the differential responses to RP silencing within HMECs, MDA-MB-
468 and MDA-MB-231 cells. Data presented within this thesis has shown that RP silencing is well tolerated 
within HMECs. However, within the cancer setting, RP silencing induces a ‘decision fork’ whereby 
senescence or a ‘cell death-like’ phenotype is activated.    

 Senescence activation was associated with dramatic alterations to nucleoli morphology 

In addition to the data discussed above, studies presented within this Chapter also aimed to 

investigate the impact of senescence activation on the nucleolus in both HMECs and MDA-MB-

468 cells. In summary, dramatic changes to nucleoli morphology were associated with 

senescence induction in normal HMECs and, unlike current markers, nucleoli morphology may 

be used to distinguish between different subtypes of senescence initiation. Importantly, RP 

silencing in HMECs did not induce significant alterations to nucleoli number or morphology 
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suggesting that silencing of the top six RP hits in these cells does not result in significant 

ribosomal biosynthesis disruption or nucleoli dysfunction. Further, examination of the nucleolus 

within p16-positive BLBC may be a useful prognostic tool when assessing response to pro-

senescence therapies. 
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Discussion 
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 RP silencing induces a cancer-specific senescence response in 

p16-positive BLBC cells 

 RP silencing has previously been shown to activate senescence in A549 cells 

In summary, data presented within this thesis has identified six novel senescence evaders within 

two p16-positive cancer cell lines, including the BLBC cell line, MDA-MB-468. Knockdown of 

these hits in MDA-MB-468 cells resulted in senescence activation and long-term experiments 

revealed RPS3A and RPS7 siRNA as the strongest and most stable inducers of senescence. In 

order to further validate the top six RPs as senescence evaders in p16-positive BLBC cells, 

analysis of RP silencing ought to be expanded to encompass additional p16-positive BLBC cell 

lines such as BT549 cells (human breast carcinoma, p16+/+ p53R249S mutated and RB-null) and 

HCC1937 (human ductal carcinoma, p16+/+  p53R306STOP mutated and RB mutated, in frame 

deletion). It may also be interesting to explore the effects of RP silencing within non-malignant 

hTERT immortalised HMECs (p53 WT). This analysis may help pinpoint the cellular context along 

the road to carcinogenesis where specific RP silencing is no longer tolerated. 

Fumagalli et al., 2009 demonstrated that siRNA knockdown of the 40S RP, RPS6 resulted in 

senescence induction in A549 cells (lung adenocarcinoma cell line, p16-null, p53 WT) 

characterised by decreased BrdU integration and an accumulation of cells in G1. Here, Fumagalli 

et al. presented data in line with an earlier study by Volarević et al., 2000 who showed that 

conditional deletion of the RPS6 gene in mice resulted in reduced Cyclin E and CDK2 (crucial for 

S phase progression) mRNA and protein expression within extracted liver samples. Together, 

these studies provide good evidence for senescence activation within cancer cells following RP 

silencing both in vitro and in vivo. 

It should be noted that the mechanism by which senescence is activated following RPS6 

knockdown (as outlined by Fumagalli et al.) differs substantially to that elucidated within this 

thesis. Fumagalli et al. showed that senescence activation, following RPS6 siRNA knockdown, 

was accompanied by an increase in both p53 and p21 protein levels as well as an increase in 

RPL11 translation. Free RPL11 was found to interact with MDM2 and it is proposed that RPL11 

may inhibit MDM2 activity, driving p53 stabilisation and senescence induction following RPS6 

knockdown. p53 and p21 induction was impaired following RPL11 siRNA knockdown and 

senescence activation was rescued by p53 siRNA, demonstrating the p53-dependency of the 

phenotype in this cellular context. Interestingly, siRNA knockdown of RPS6 in MDA-MB-468 cells 

resulted in potent senescence induction with a subtle (non-significant) increase in nuclear p16 
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protein levels (data not shown) suggesting RPS6 may also activate senescence in the absence of 

functional p53 in a p16-positive cancer setting. By contrast, immunofluorescence staining and 

western blot analysis presented in Sections 5.2 and 5.3.3 showed that senescence activation in 

MDA-MB-468 cells following knockdown of each of the top six RPs was not accompanied by a 

significant increase in nuclear p53 or p21 protein levels, but instead, was associated with p21 

protein degradation. Further, siRNA rescue experiments presented in Chapter 5 showed that 

both p16 and p21 were required for senescence initiation in MDA-MB-468 cells following RP 

knockdown and that, crucially, senescence activation was associated with a translocation of p16 

to the nucleus following RPS3A and RPS7 silencing (see Section 5.3). Unlike A549 cells, MDA-MB-

468 cells are known to contain the p53R273H gain-of-function mutation, severely reducing the 

likelihood of a p53-mediated senescence response in these cells. Therefore, it is hypothesised 

that in a p16-positive, p53-mutated cancer setting, RP silencing may initiate a re-sensitisation to 

p16 signalling and elicit a p16-dependent senescence response, independent of p53 signalling. 

 Exploring the mechanism of senescence downstream of p16 

The mechanism by which RP silencing is able to drive a p16-mediated senescence response in 

cancer is an exciting question not yet addressed within the literature. In a normal cellular 

context, p16 functions to block the CDK4/6/Cyclin D-mediated phosphorylation of RB family 

members, RB, p130 and p107, resulting in cell cycle arrest (see Section 1.1). MDA-MB-468 cells 

are known to be RB-null, however, studies have shown that the additional RB family members, 

p130 and p107 may also mediate senescence activation in BLBC cells (Bazarov et al., 2012). Given 

this, it is hypothesised that following RP silencing in MDA-MB-468 cells, p16 may function to 

inhibit the phosphorylation of RB family members, p130 and p107, resulting in E2F-mediated 

transcriptional repression and senescence activation. In order to test this, future work ought to 

investigate whether senescence activation following RP silencing, is dependent on the activity 

of hypo-phosphorylated p130 or p107. First, the RB, p130 and p107 status of the MDA-MB-468 

cells used within this project ought to be confirmed via western blotting. Subsequently, the 

phosphorylation status of p130 and p107 should be ascertained before and after RP silencing in 

MDA-MB-468 cells via western blotting. An increase in the level of hypo-phosphorylated p130 

or p107 following RP silencing would implicate the p16/p130/p107/E2F signalling axis in 

senescence activation in a p16-positive cancer setting. In addition, siRNA knockdown of the top 

six RPs, together with p130 or p107 silencing, in MDA-MB-468 cells would also help to determine 

the role (and relative contribution) of hypo-phosphorylated p130 or p107 in senescence 

activation. 
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 siRNA screening has identified six potential cancer-specific therapeutic targets 

Kaplan Meier analysis showed that elevated expression of RPS6, RPS23 or RPL7A (also identified 

as potential senescence evaders in A549 cells by Fumagalli et al.) is associated with a poor 

prognosis in lung cancer (RPS6 HR=1.36, p=0.0000038, RPS23 HR=1.33, p=0.000014 and RPL7A 

HR=1.41 p=0.00000012, N=1,926, data not shown) however, by contrast, elevated expression of 

these RPs in breast cancer (when Luminal A, Luminal B, HER2-enriched and Basal-like tumours 

are considered together) is associated with a favourable prognosis (RPS6 HR=0.7, 

p=0.0000000012, RPS23 HR=0.77, p=0.0014 and RPL7A HR=0.84, p=0.0023, N=1,660, data not 

shown) highlighting a potential tissue-dependent role for these RPs. Despite the fact that 

elevated expression of RPS6, RPS23 and RPL7A is associated with a poor prognosis in lung 

cancer, these three RPs are unlikely to represent cancer-specific therapeutic targets. Crucially, 

the effect of RPS6, RPS23 and RPL7A silencing within normal cells was not explored by Fumagalli 

et al., however, genome-wide siRNA screening performed within the Bishop laboratory showed 

that knockdown of RPS6, RPS23 and RPL7A in normal, HMECs resulted in senescence activation 

(Bishop et al., 2010). By contrast, work presented within this thesis has identified six novel 

cancer-specific senescence evaders functional within two p16-positive cancer cell lines. 

Importantly, siRNA knockdown of these top six RPs did not affect the viability or nucleoli 

signature of normal HMECs. Therefore, unlike the RPs identified within the literature, 

knockdown of the top six RPs identified here appears to be well-tolerated in normal cells and 

these RPs may represent novel cancer-specific drug targets for future pro-senescence therapies. 

 RP silencing induces a differential response depending on the cellular context 

The data presented in Section 5.4 demonstrated that RP silencing in MDA-MB-231 cells (p16-

null, p53R280K gain-of-function mutation) resulted in cell death and contrasts with the findings 

obtained by Fumagalli et al. who showed RPS6 silencing in a p16-null cancer cell line (A549) 

resulted in senescence activation. Given this, it is hypothesised that RP silencing may drive a 

cancer cell to reach a ‘decision fork’ whereby the cellular context may determine cell fate. 

Following RP silencing, senescence may be activated via the activity of either p53 or p16, 

potentially dependent on the tissue type (lung versus breast) and the p16 and p53 mutational 

status. However, where neither WT p16 nor p53 are functional (as is the case for MDA-MB-231 

cells), RP silencing may activate apoptosis via p21 C-terminal cleavage (see Section 5.4.2). In 

order to investigate this hypothesis further, siRNAs targeting each of the 82 RPs should to be 

tested within a panel of BLBC cell lines including BT549 cells (human breast carcinoma, p16+/+ 

p53R249S mutated and RB-null), HCC1937 (human ductal carcinoma, p16+/+  p53R306STOP mutated 
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and RB mutated, in frame deletion), DU-4475 cells (human breast carcinoma cell line, p53 WT, 

methylated INK4a), and MDA-MB-231 cells (p16-null, p53R280K gain-of-function mutation) and 

senescence or apoptosis induction together with p16, p53 and p21 activation ought to be 

established. This approach may sub-categorise the RPs based on the route by which their 

silencing activates senescence and may identify both p53 and p16-dependent mechanisms of 

senescence induction. 

 Future work to further profile the senescence phenotype following RP silencing 

Interestingly, a recent study by Teng et al., 2013 showed that siRNA silencing of the 60S RPs, 

RPL5 and RPL11 in MRC5 cells (primary human lung fibroblasts) impaired cellular proliferation 

in the absence of p53 activation or cell cycle arrest. By contrast, preliminary cell cycle profile 

analysis performed here (N=1, data not shown) suggested that RPS3A and RPS7 silencing in 

MDA-MB-468 cells is associated an accumulation of cells in G1. Further, data presented within 

this thesis demonstrated that RPS3A and RPS7 silencing in MDA-MB-468 cells is associated with 

nuclear p16 translocation and a stable cell cycle arrest, indicative of senescence induction rather 

than simply a slowing of cell cycle progression (see Sections 5.3.1 and 4.6, respectively). RP 

silencing in MDA-MB-468 cells followed by flow cytometry analysis and cell cycle profile analysis 

would better determine whether or not knockdown of the top six RP hits identified here results 

in a true G1 cell cycle arrest. Inducible shRNA constructs for each of the top six RP hits could be 

generated and used to stably silencing the RPs in MDA-MB-468 cells. Cells could then be fixed 

and stained with a DNA-binding dye such as propidium iodide or 7-aminoactinomycin-D and cell 

cycle analysis could be performed before and after RP silencing. 

To further profile the senescence phenotype, additional biomarkers of senescence induction 

ought to be examined. For example, immunofluorescence staining for H3K9 methyl marks and 

PML nuclear bodies at 5 days and 16 days post-RP silencing in MDA-MB-468 cells may help to 

determine the presence of SAHF following RP knockdown. Examination of the nucleoli 

morphology revealed that the nucleoli signature of senescent MDA-MB-468 cells was similar to 

that displayed by senescent HMECs treated with CBX7 siRNA (see Section 5.5). Given this, it is 

hypothesised that the senescence phenotype generated via RP silencing in p16-positive cancer 

cells may resemble a protective/premature senescence response triggered in normal cells. In 

order to further investigate this, RNA-sequencing (RNA-seq) could be performed on proliferating 

and senescent MDA-MB-468 cells following knockdown of CBX7 or each of the top six RPs. The 

data generated could then be compared to RNA-seq performed on proliferating, prematurely 

senescent HMECs (following CBX7 knockdown), and HMECs that have undergone normal cellular 
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senescence. Subsequent pathway analysis may provide further mechanistic insight into the 

routes to senescence activation in p16-positive BLBC cells and may also help to determine 

whether or not the cancer RNA expression profile (following RP silencing) resembles a 

premature or more ‘normal-like’ senescence signature. The data generated could then be cross-

compared with additional publically available senescence RNA-seq datasets, such as those 

generated for OIS, UV-irradiated or replicative senescent cells. This approach may also help to 

determine whether the cancer RNA expression profile (following RP silencing) resembles a 

premature (OIS/DNA-damaged induced) or more a more classical replicative senescence 

signature. Alternatively, this analysis may also reveal a novel senescence activation pathway, 

unique to the cancer setting. In addition, this strategy may enable further sub-categorisation of 

the top six RP hits according to their senescence-associated expression signatures and may also 

identify additional potential therapeutic targets (downregulated upon senescence induction) in 

p16-positive BLBC, downstream of RP silencing. The clinical relevance of these additional 

downstream hits within BLBC could then be explored using the METABRIC dataset.        

The senescence-associated methylome within fibroblasts and HMECs is now well-established 

(Cruickshanks et al., 2013, Lowe et al., 2015). Analysis of the senescence-associated methylome 

in MDA-MB-468 cells following RP silencing using an Illumina 450K array would enable profiling 

of the methylome dynamics upon senescence initiation within a cancer cell, and the 

identification of differentially methylated positions and their location within the genome. The 

data generated here could be cross-compared with the RNA-seq data (outlined above), the 

methylome profiles associated with both proliferating and senescent HMECs (Lowe et al., 2015) 

and the cancer-associated Illumina 450K array data available within TCGA database. This 

strategy may help to further stratify the top six RP hits according to their methylome profiles 

and determine whether or not the cancer methylome (following RP silencing) resembles a 

premature or more a more ‘normal-like’ cellular senescent signature.  

Together, these studies will further characterise the senescence phenotype following RP 

silencing in p16-positive BLBC and may help to elucidate the exact mechanism by which siRNA 

knockdown of specific RPs results in p16 nuclear translocation, p21 degradation and senescence 

activation in MDA-MB-468 cells. 
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 The ribosome is severely disrupted in cancer and may drive 

cancer cell survival and senescence evasion 

 The ribosome is often disrupted in cancer 

Analysis of the current literature and data mining of the Human Protein Atlas database revealed 

that the top six RPs identified by siRNA screening are highly expressed within a wide array of 

human malignancies, including breast and cervical cancer (see Figure 6.1). Further, analysis of 

the METABRIC dataset (see Section 4.2.1) also showed that the ribosome is severely disrupted 

in BLBC and each of the top six RPs are overexpressed in both BLBC and p16-high tumours. 

However, at present, the exact role of each of the top six RPs in cancer initiation or senescence 

evasion is unknown. The key studies linking RP overexpression with cancer initiation and survival 

are summarised below. 

 

Figure 6.1: Heatmap summarising the level of antibody staining for the top six RP hits within breast and 
cervical cancer as well as five of the most common cancers in the UK. Data was taken from the Human 
Protein Atlas database (available at: http://www.proteinatlas.org/cancer). Data for RPL35A was not 
available. CRUK cancer incidence statistics were used to select the five most common malignancies in the 
UK (excluding breast cancer) for analysis. 

Numerous studies have found RPS3A to be overexpressed in a wide variety of malignancies 

including squamous cell lung carcinoma and simian immunodeficiency virus-associated monkey 

lymphoma, (Slizhikova et al., 2005, Tarantul et al., 2000). In addition, Goodin and Rutherford, 

2002 found that RPS3A expression was inversely correlated with cellular differentiation in 

prostate cancer and that RPS3A expression was highest in undifferentiated prostate cancer cells. 
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Further, cellular transformation of human and rodent cells is often associated with increased 

RPS3A expression and monoallelic disruption of the gene encoding RPS3A has been found to 

cause a loss of the transformed phenotype in v-fos-transformed Rat-I fibroblasts (Kho et al., 

1996). In addition, Kho et al. showed that RPS3A levels were highest in synchronised human 

fibroblasts undergoing DNA synthesis, suggesting elevated RPS3A expression is required for S 

phase progression. Interestingly, RPS3A has been found to be up-regulated upon Epstein-Barr 

virus (EBV)-induced transformation of B-cells and has been identified as a binding partner of EBV 

encoded nuclear antigen (EBNA-5). It is proposed that EBNA-5 may facilitate B-cell 

transformation via direct binding to RPS3A, resulting in disrupted cell cycle control (Kashuba et 

al., 2005). In addition, RPS3A has also been found to be overexpressed in Hepatitis B virus (HBV)-

induced hepatocellular carcinoma when compared with normal tissue and is implicated in the 

initiation of HBV-induced hepatocellular carcinoma (Lim et al., 2011). 

In line with the findings presented within this thesis, Armakolas et al., 2012 found RPS7 to be 

overexpressed in blood samples taken from 88 primary breast cancer patients when compared 

to samples taken from matched healthy controls. Elevated RPS7 expression was also proposed 

as a prognostic biomarker within the HER2+ breast cancer subtype (Armakolas et al., 2012). In 

addition, RPS7 missense mutations have been identified in 50-60% of patients with the cancer 

susceptibility syndrome, Diamond Blackfan anaemia (reviewed in Farrar and Dahl, 2011). There 

is also evidence to suggest that elevated RPS7 levels may contribute to the initiation and 

progression of human malignancy. For example, treatment of a human hepatoma cell line with 

hepatic growth factor (HGF) resulted in c-Myc induction as well as upregulated RPS7 expression. 

This suggests RPS7 may be a novel c-Myc target gene, whose overexpression contributes to 

carcinogenesis (Hunecke et al., 2012). Contradictory to the data previously discussed, shRNA 

silencing of RPS7 in epithelial ovarian cancer cells resulted in enhanced proliferation and cell 

cycle progression together with an increase in ovarian cancer cell invasion and migration (Wang 

et al., 2013) suggesting that, unlike in BLBC, RPS7 may not be a suitable therapeutic target in 

ovarian cancer. 

RPL14 is highly expressed in almost all human malignancies including breast and cervical cancer 

(Figure 6.1). However, by contrast, multiple studies have also reported RPL14 LOH in cancer 

(including squamous cell carcinoma of the head and neck and squamous cell oesophageal 

cancer) (Shriver et al., 1998, Huang et al., 2006, He et al., 2008), suggesting that in some tissue 

types RPL14 may perform a tumour suppressive function and is lost during the early stages of 

cancer development. This data is also in line with the Kaplan Meier data presented in Section 
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4.2.3 that shows elevated RPL14 expression is associated with a poor prognosis in BLBC and 

gastric cancer but is protective in lung cancer. 

Currently, there is very little literature linking RPL18 or RPL34 to cancer, however, analysis of 

the Protein Atlas database revealed both RPL18 and RPL34 to be expressed in most human 

malignancies, including breast and cervical cancer (Figure 6.1). 

Interestingly, RPL35A has also been implicated in the cancer susceptibility syndrome, Diamond 

Blackfan anaemia and RPL35A silencing within a leukemic cell line used to model Diamond 

Blackfan anaemia resulted in reduced cellular proliferation together with a reduction in 60S 

ribosomal subunit biogenesis (Farrar et al., 2008). In addition, RPL35A expression has been 

found to be elevated in human osteosarcoma cell lines compared with normal osteoblasts 

(Olstad et al., 2003) and increased expression has also been associated with malignant brain 

tumour formation (Kroes et al., 2000). Importantly, Lopez et al., 2002 showed that RPL35A 

overexpression in Jurkat cells (immortalised T-lymphocytes) was associated with resistance to 

UV irradiation and doxorubicin resistance. Interestingly, this resistance to cytotoxic therapies 

was not associated with enhanced expression of P-glycoprotein (drug efflux pump) or elevated 

expression of anti-apoptotic factors. These findings suggest that RPL35A may protect cancer 

cells from cytotoxic damage and, in doing so, mediate senescence evasion in cancer. 

The exact mechanism by which the ribosome is grossly dysregulated in cancer is an important 

question not yet fully addressed within the literature and future work ought to investigate the 

key transcription factors, miRNAs or epigenetic events responsible for regulating RP expression. 

It is highly likely that these regulatory mechanisms are disrupted in p16-positive BLBC and 

perhaps dysregulation within these key pathways may represent early diagnostic biomarkers 

within this disease subset. 

 Does RP silencing and senescence activation alter the cancer translatome? 

Given the level of RP dysregulation associated with BLBC (See Section 4.2) and numerous other 

human malignancies (see previous Section), it is hypothesised that the cancer ribosome may 

have an altered composition compared to non-malignant cells and may direct the translation of 

cancer-promoting transcripts. Importantly, a recent study by Zhang et al., 2015 demonstrated 

that the cancer ribosome is highly dynamic and may adopt an alternative composition in 

response to cellular stress such as heat shock. Here, Zhang et al. showed that in response to an 

elevation in temperature, an alternative cytosolic form of MRPL18 was translated and integrated 

into the 80S ribosome in HeLa cells. The authors then went on to show that cytosolic MRPL18 

expression facilitated the translation of Heat shock Protein 70 (Hsp70) in MEFs and proposes 
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that perhaps ‘specialised ribosomes’ are required for the selective translation of a subset of 

transcripts in response to cellular stress. With this in mind, it is hypothesised that the highly 

dysregulated cancer ribosome may favour the translation of cancer-promoting transcripts and 

may mediate senescence evasion and cancer cell survival. Data presented within this thesis 

suggests that RP silencing in MDA-MB-468 cells induces significant ribosomal biosynthesis 

dysfunction, reflected by the dramatic alterations to nucleoli number and morphology observed 

upon senescence activation (see Section 5.5). Furthermore, in silico and in vitro data presented 

within Sections 4.2.4 and 4.3.3, respectively, suggests that specific RP silencing may influence 

the expression of multiple RPs and may alter the cancer-associated ‘ribosomal profile’, resulting 

in ribosomes with an altered composition and translational preference. As such, it is 

hypothesised that knockdown of each of the top six RPs in MDA-MB-468 cells may result in key 

alterations to the cancer-associated translatome, enabling p16-resensitsation and subsequent 

senescence activation. Importantly, data presented in Section 4.4 showed that siRNA 

knockdown of each of the top RP hits did not induce senescence in normal HMECs suggesting 

that in normal cells, the ribosomal profile may be less vulnerable to the loss of these RPs. 

However, genome-wide siRNA screening also revealed that most RPs, including RPS6, are 

essential for both cancer and normal cell proliferation, suggesting that there may be a varied 

degree of redundancy across the ribosome in normal cells. 

In order to confirm that the ribosomes are still intact in cancer cells following RP silencing, TEM 

could be used to image the ribosomes of MDA-MB-468 cells before and after siRNA knockdown 

of CBX7 and each of the top six RP hits. In addition, Ribosomal-Sequencing, of both proliferating 

and senescent MDA-MB-468 cells (following silencing of CBX7 or each of the top six RPs) will 

enable changes to the translatome upon senescence activation to be explored and may reveal 

mechanistic insight into the route of p16 re-sensitisation following RP silencing in p16-positive 

BLBC cells. The data generated here may unite or subcategorise the top six RP hits and may also 

identify additional potential therapeutic targets downstream of RP silencing. For example, 

following further validation, those transcripts whose translation is severely reduced upon 

senescence induction may represent effective drug targets in p16-positive BLBC. Further, the 

expression level of each of these newly identified transcripts could be assessed in cancer using 

both the METABRIC and TCGA databases. Those transcripts that are highly expressed in cancer 

may represent the most suitable therapeutic targets and ought to be prioritised for further 

validation.  

Further experiments, such as protein labelling with radioactive [35S] methionine of both 

proliferating and senescent MDA-MB-468 cells, would help determine the effect of senescence 
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activation following RP silencing on global translation levels. In addition, polysome profiling and 

quantification of rRNAs and their precursors via qRT-PCR within both proliferating and senescent 

MDA-MB-468s would help elucidate the impact of specific RP silencing on ribosomal biogenesis. 

 The top six RP hits may represent novel therapeutic targets in 

p16-positive BLBC 

 Can the ribosome be targeted in cancer? 

Analysis of the METABRIC data set (presented in Section 4.2) revealed that the ribosome is 

severely dysregulated in BLBC and that elevated expression of each of the top six RPs in BLBC is 

associated with a poor prognosis. In line with this, in vitro data presented here has shown that 

siRNA knockdown of each of the top six RPs resulted in potent senescence activation in MDA-

MB-468 cells, in a cancer-specific manner. In addition, RP silencing in MDA-MB-231 cells (p16-

null) resulted in cell death. Together, these findings suggest that these RP hits may represent 

novel drug targets for future pro-senescence therapies in p16-positive BLBC and that targeting 

these hits in p16-null BLBCs may also be therapeutically favourable. Crucially, the near atomic 

structure of the human 80S ribosome was recently published and all potential ligand-blinding 

domains present within the structure have been identified (Khatter et al., 2015). These recent 

findings may enable future structure-guided in silico drug design and allow the cancer ribosome 

to be targeted by novel small molecule drugs designed to inhibit or replace specific RPs. This is 

an exciting prospect and one that may revolutionise the personalised treatment of BLBC. 

 Future work to validate the top six RP hits as novel therapeutic targets in BLBC 

In order to further validate the top six RP hits as effective therapeutic targets in BLBC, breast 

cancer patient derived xenografts (p16-null, p16+/+ p21+/+ or p16+/+ p21-null background) 

containing an inducible shRNA construct targeting each of the top six RP hits could to be 

implanted into immunodeficient mice. Tumour size, metastasis and life expectancy could then 

be assessed +/- RP silencing. Crucially, this strategy would enable the therapeutic effectiveness 

of RP silencing to be assessed in vivo and may rank the top six RP candidates according to their 

therapeutic activity. 

At present, it is difficult to estimate the long-term consequences of pro-senescence therapies, 

such as RP silencing, and it is proposed that following initial senescence activation, senescent 

cancer cells ought to be rapidly eliminated as part of a two-step therapeutic approach (see 

Section 1.6.4 for further details). There is now mounting evidence to suggest that components 

of the SASP are able to trigger the clearance of senescent cells in vivo following stimulation of 
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the immune system (see Section 1.5.3). In addition, Acosta et al., 2013 demonstrated that the 

SASP may also function to activate senescence in neighbouring cells and promote tumour 

suppression in surrounding cells vulnerable to transformation. Importantly, it has not yet been 

established whether or not senescence activation following RP silencing in cancer is associated 

with a SASP. In order to explore the nature of the SASP associated with RP silencing, a cytokine 

array could be performed on both proliferating and senescent MDA-MB-468 cells following 

siRNA knockdown of each of the top six RPs or CBX7. A cytokine array would enable the SASP to 

be profiled and may indicate whether or not RP silencing in vivo is likely to harness the immune 

system for senescent cell clearance. In addition, conditioned medium experiments where 

medium taken from senescent MDA-MB-468 cells is applied to proliferating MDA-MB-468 cells 

and HMECs together with a Transwell assay where senescent MDA-MB-468 cells are co-cultured 

with proliferating MDA-MB-468 cells and HMECs would assess the paracrine nature of the SASP 

following RP silencing and may indicate the likely effects of senescent cancer cells on 

surrounding cancer cells and normal tissues. Together, these experiments may indicate the 

potential effectiveness of secondary therapies such as immuno-boosting agents following RP 

silencing and may help to establish a therapeutic window for senescence cell clearance in vivo. 

As well as immune-boosting agents, it is hypothesised that senolytic agents may also be required 

as a secondary therapy in order to successfully eliminate senescent cancer cells in vivo (see 

Section 1.6.4). In order to identify those agents capable of selectively targeting senescent cells 

following RP silencing, inducible shRNA MDA-MB-468 lines for each of the six RP hits ought to 

be established and a compound screen using these cells +/- shRNA induction as well as 

proliferating HMECs could be performed. This strategy may identify novel selective senolytic 

agents that may represent an effective secondary therapy in p16-positive BLBC following RP 

silencing. These agents could then be tested within the patient derived xenograft models 

described previously in order to assess their effectiveness in vivo. 

 Nucleoli morphology together with the top six RPs may act as 

novel prognostic biomarkers in p16-positive BLBC 

BLBC is highly heterogeneous and remains the most clinically challenging subtype due to the 

lack of effective targeted therapies (see Section 1.8). Further stratification of this disease subset 

and the identification of novel molecular subtypes may drive the development of effective 

targeted agents and may enable a more sophisticated personalised therapeutic approach. 

Importantly, analysis of the Kaplan Meier database revealed that elevated expression of each of 

the top six RPs is associated with a poor prognosis in BLBC suggesting that these ribosomal hits 



193 
 

may represent novel prognostic biomarkers in this disease subset (see Section 4.2.2). In addition, 

Derenzini et al., 2009 showed that an enlarged and irregular nucleoli is associated with a poor 

prognosis in breast cancer. In order to assess whether the Kaplan Meier expression data may be 

replicated at the protein level and to assess the clinical relevance of the top six RPs as potential 

prognostic biomarkers in BLBC a TMA utilising the METABRIC dataset could be performed. 

Protein levels of each of the top six RPs together with p16 and the nucleoli signature could be 

examined within each of the tumour samples. This information could then be cross-compared 

with known patient data including p53 status, tumour subtype, tumour grade, lymph node 

status, response to therapy and survival. This strategy may validate the top six RP hits identified 

here as novel prognostic biomarkers within BLBC and may enable further stratification of this 

highly heterogeneous disease subtype within the clinic. Routine profiling of the ribosomal 

signature together with p16 status and nucleoli morphology within BLBC may revolutionise the 

treatment of BLBC patients and allow the personalised application of novel pro-senescence 

therapies. 
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Figure A.1: Uncropped western blots of p16, p53 and p21 in HeLa, MDA-MB-231 and MDA-MB-468 cells. 

Cell lysates were probed for mouse anti-p16, rabbit anti-p53 and rabbit anti-p21 according to Section 2.6. 

(A) p16 (B) p53 (C) p21.    

 

Gene 
Symbol 

Full Gene Name Gene ID 

ZMIZ2 zinc finger, MIZ-type containing 2 83637 

ALPP alkaline phosphatase, placental (Regan isozyme) 250 

ANKRD7 ankyrin repeat domain 7 56311 

BBX bobby sox homolog (Drosophila) 56987 

BRMS1L breast cancer metastasis-suppressor 1-like 84312 

FAM120A family with sequence similarity 120A 23196 

CSNK1G1 casein kinase 1, gamma 1 53944 

DDX6 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 1656 

DLX5 distal-less homeo box 5 1749 

DLX6 distal-less homeo box 6 1750 

DNAJC5G DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 285126 

DNM1 dynamin 1 1759 

C19orf73 chromosome 19 open reading frame 73 55150 

CCDC82 coiled-coil domain containing 82 79780 

C11orf44 chromosome 11 open reading frame 44 283171 

FSIP2 fibrous sheath interacting protein 2 401024 

MLST8 MTOR associated protein, LST8 homolog 64223 

GEMIN6 gem (nuclear organelle) associated protein 6 79833 

GPX3 glutathione peroxidase 3 (plasma) 2878 

GRM8 glutamate receptor, metabotropic 8 2918 

IL13RA1 interleukin 13 receptor, alpha 1 3597 

CWC22 CWC22 spliceosome-associated protein 57703 

MFHAS1 malignant fibrous histiocytoma amplified sequence 1 9258 

IGSF21 immunoglobin superfamily, member 21 84966 

GLIDR glioblastoma down-regulated RNA 389741 

DENND6B DENN/MADD domain containing 6B 414918 

MKNK2 MAP kinase interacting serine/threonine kinase 2 2872 
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MRPL13 mitochondrial ribosomal protein L13 28998 

MRPS24 mitochondrial ribosomal protein S24 64951 

NAB2 NGFI-A binding protein 2 (EGR1 binding protein 2) 4665 

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor, alpha 

4792 

NR1I2 nuclear receptor subfamily 1, group I, member 2 8856 

NUDT14 nudix (nucleoside diphosphate linked moiety X)-type motif 14 256281 

OC200226 - 200226 

EMC10 ER membrane protein complex subunit 10 284361 

NHSL2 NHS-like 2 340527 

MSGN1 mesogenin 1 343930 

RPL32P7 ribosomal protein L32 pseudogene 7 391560 

RPL32P36 ribosomal protein L32 pseudogene 36 392447 

KNOP1 lysine-rich nucleolar protein 1 400506 

DUOXA2 dual oxidase maturation factor 2 405753 

DUOXA1 dual oxidase maturation factor 1 90527 

CYB5RL cytochrome b5 reductase-like 606495 

OPLAH 5-oxoprolinase (ATP-hydrolysing) 26873 

OR4K5 olfactory receptor, family 4, subfamily K, member 5 79317 

OR6C76 olfactory receptor, family 6, subfamily C, member 76 390326 

PBRM1 polybromo 1 55193 

PDZRN4 PDZ domain containing RING finger 4 29951 

PGD 6-phosphogluconate dehydrogenase 5226 

PRLR prolactin receptor 5618 

PTK6 PTK6 protein tyrosine kinase 6 5753 

PYM within bgcn homolog (Drosophila) 84305 

RAD21 RAD21 homolog (S. pombe) 5885 

RNF17 ring finger protein 17 56163 

RPL14 ribosomal protein L14 9045 

RPL18 ribosomal protein L18 6141 

RPL34 ribosomal protein L34 6164 

RPL35A ribosomal protein L35a 6165 

RPLP2 ribosomal protein, large P2 6181 

RPS18 ribosomal protein S18 6222 

RPS3A ribosomal protein S3A 6189 

RPS7 ribosomal protein S7 6201 

RTCD1 RNA terminal phosphate cyclase domain 1 8634 

RUFY2 RUN and FYVE domain containing 2 55680 

SLC38A1 solute carrier family 38, member 1 81539 

SMO smoothened homolog (Drosophila) 6608 

SOCS6 suppressor of cytokine signaling 6 9306 

SPAM1 sperm adhesion molecule 1 (PH-20 hyaluronidase, zona 
pellucida binding) 

6677 

SPATS1 spermatogenesis associated, serine-rich 1 221409 
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SPTA1 spectrin, alpha, erythrocytic 1 (elliptocytosis 2) 6708 

SRP54 signal recognition particle 54kDa 6729 

SRPK1 SFRS protein kinase 1 6732 

STXBP5 syntaxin binding protein 5 (tomosyn) 134957 

TRAPPC9 trafficking protein particle complex 9 83696 

TCEB1 transcription elongation factor B (SIII), polypeptide 1 (15kDa, 
elongin C) 

6921 

TCTEL1 t-complex-associated-testis-expressed 1-like 1 6993 

TOP2B topoisomerase (DNA) II beta 180kDa 7155 

TTBK2 tau tubulin kinase 2 146057 

U2AF1L3 U2(RNU2) small nuclear RNA auxiliary factor 1-like 3 199746 

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 1 7311 

UNC93B1 unc-93 homolog B1 (C. elegans) 81622 

CEACAM20 carcinoembryonic antigen-related cell adhesion molecule 20 125931 

VRK1 vaccinia related kinase 1 7443 

WFDC8 WAP four-disulfide core domain 8 90199 

YAP YY1 associated protein 1 55249 

ZMYM1 zinc finger, MYM domain containing 1 79830 

Figure A.2: List of 86 genes targeted within the HeLa siRNA screens.  

 

 

Gene 
Symbol 

Full Gene Name Gene ID 

ALPP alkaline phosphatase, placental (Regan isozyme) 250 

FAM120A family with sequence similarity 120A 23196 

CCDC82 coiled-coil domain containing 82 79780 

CWC22 CWC22 spliceosome-associated protein 57703 

CYB5RL cytochrome b5 reductase-like 606495 

DDX6 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 1656 

DENND6B DENN/MADD domain containing 6B 414918 

DLX5 distal-less homeo box 5 1749 

DLX6 distal-less homeo box 6 1750 

DNAJC5G DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 285126 

DUOXA1 dual oxidase maturation factor 1 90527 

DUOXA2 dual oxidase maturation factor 2 405753 

FSIP2 fibrous sheath interacting protein 2 401024 

GEMIN6 gem (nuclear organelle) associated protein 6 79833 

GPX3 glutathione peroxidase 3 (plasma) 2878 

GRM8 glutamate receptor, metabotropic 8 2918 

IL13RA1 interleukin 13 receptor, alpha 1 3597 

KNOP1 lysine-rich nucleolar protein 1 400506 

MFHAS1 malignant fibrous histiocytoma amplified sequence 1 9258 
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MRPL10 mitochondrial ribosomal protein L10 124995 

MRPL13 mitochondrial ribosomal protein L13 28998 

MRPL30 mitochondrial ribosomal protein L30 51263 

MRPL41 mitochondrial ribosomal protein L41 64975 

MRPL55 mitochondrial ribosomal protein L55 128308 

MRPS24 mitochondrial ribosomal protein S24 64951 

MRPS27 mitochondrial ribosomal protein S27 23107 

MRPS31 mitochondrial ribosomal protein S31 10240 

MRPS6 mitochondrial ribosomal protein S6 64968 

NFKBIA nuclear factor of kappa light polypeptide gene enhancer in 
B-cells inhibitor, alpha 

4792 

NHSL2 NHS-like 2 340527 

NR1I2 nuclear receptor subfamily 1, group I, member 2 8856 

OR4K5 olfactory receptor, family 4, subfamily K, member 5 79317 

PBRM1 polybromo 1 55193 

PGD 6-phosphogluconate dehydrogenase 5226 

PRLR prolactin receptor 5618 

RPL14 ribosomal protein L14 9045 

RPL18 ribosomal protein L18 6141 

RPL32P36 ribosomal protein L32 pseudogene 36 392447 

RPL32P7 ribosomal protein L32 pseudogene 7 391560 

RPL34 ribosomal protein L34 6164 

RPL35A ribosomal protein L35a 6165 

RPLP2 ribosomal protein, large P2 6181 

RPS18 ribosomal protein S18 6222 

RPS3A ribosomal protein S3A 6189 

RPS7 ribosomal protein S7 6201 

SPAM1 sperm adhesion molecule 1 (PH-20 hyaluronidase, zona 
pellucida binding) 

6677 

SPATS1 spermatogenesis associated, serine-rich 1 221409 

TCTEL1 t-complex-associated-testis-expressed 1-like 1 6993 

TOP2B topoisomerase (DNA) II beta 180kDa 7155 

U2AF1L3 U2(RNU2) small nuclear RNA auxiliary factor 1-like 3 199746 

UBA52 ubiquitin A-52 residue ribosomal protein fusion product 1 7311 

UNC93B1 unc-93 homolog B1 (C. elegans) 81622 

CEACAM20 carcinoembryonic antigen-related cell adhesion molecule 20 125931 

WFDC8 WAP four-disulfide core domain 8 90199 

YAP YY1 associated protein 1 55249 

ZMIZ2 zinc finger, MIZ-type containing 2 83637 

ZMYM1 zinc finger, MYM domain containing 1 79830 

Figure A.3: List of 57 genes targeted within the MDA-MB-468 siRNA screens.  
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Figure A.4: Heatmap depicting those RP transcripts with no correlation with the top six RP hits in BLBC 
cases within the METABRIC dataset.   
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Figure A.5: Nuclear p21 protein levels in MDA-MB-231 cells following CBX7 silencing. Cells were reverse 

transfected wit 30 nM siRNA targeting GAPDH or CBX7 according to Section 2.3.3 and were fixed and 

stained with DAPI, rabbit anti-p21 and Alexa Fluor-488 conjugated anti-rabbit according to Section 2.4. 

Nuclear p21 protein levels were quantified according to Section 2.5. The frequency distribution is from a 

single experiment containing three technical repeats. 


