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Abstract 

Introduction 

Sports related groin pain (SRGP) is common, debilitating and often recurrent. Rehabilitation 

that addresses strength and flexibility deficits has only moderate effects. Recurrence of SRGP 

remains high, suggesting that deficits remain after apparently successful rehabilitation. The 

aims of this thesis were to inform best practice by (i) systematically reviewing the literature on 

biomechanical factors associated with SRGP (ii) investigating muscle activation and movement 

patterns associated with SRGP in both professional and amateur athletes; (iii) investigating 

muscle activation and movement patterns immediately after groin injury alongside their 

response to standard rehabilitation. 

Methods 

A systematic review with meta-analysis was completed. 84 athletes from four sports (56 

professional and 28 amateur) were recruited and clinically assessed. Hip joint kinematics and 

surface electromyography of gluteus medius (GM) and adductor longus (AL) muscles were 

measured while performing selected manoeuvres. A further 5 athletes had serial measures 

during traditional rehabilitation from acute injury.  

Results  

The review found strong evidence for decreased adductor flexibility as a risk factor; and 

decreased adductor strength and external rotation range of movement being associated with 

SRGP. The GM:AL ratio in injured professionals was increased due to reduced AL activation, a 

decreased GM:AL ratio was found in amateurs due to a decrease of GM activation. In injured 

professionals hip kinematic change matched the sEMG findings (increased abduction), 

whereas no consistent pattern was observed in amateurs. Longitudinal study participants 
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improved clinically after groin injury, but the muscle activation and movement patterns did not 

alter. 

Conclusion  

These studies identified clear muscle activation differences that extend existing the literature 

while the kinematic changes are novel. Further, participation level and sports-specific 

subgroups had not previously been identified but are clearly evident. Published guidelines 

require amendment, while clinical innovation that addresses sub-group specific biomechanical 

factors in rehabilitation programmes may inform prevention, improve outcome and certainly 

warrant further research.  
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Chapter 1: Introduction 

Thesis overview 

The Introductory chapter of the thesis provides the background to the problem of sports 

related groin pain (SRGP) and clarifies the rationale for subsequent experimental studies. The 

chapter presents the epidemiology of groin injuries, emphasising how common and 

troublesome these are in sports medicine. The second section focusses on biomechanical 

loading through the pelvis, which may be partly responsible for the susceptibility of multi-

directional athletes to injuries in the area. I then summarise the most common pathologies in 

the groin region. An additional comprehensive section on the anatomy and pathology of the 

groin area can be found in Appendix 1. Further, the chapter describes the diagnostic terms as 

well as the diagnostic process in athletes with SRGP. The last part of the chapter gives an 

overview of treatment strategies.  Overall, the introduction argues there is a lack of clarity 

about the potential importance of biomechanical factors such as muscle activation and 

movement patterns in the presentation of SRGP – therefore outlining the research space.   

Chapter 2 is a systematic review which provides a detailed synthesis of published retrospective 

and prospective biomechanical factors associated with SRGP. As well as synthesising a 

substantial body of knowledge, this review further defines the research gap in the field and 

strengthens the rationale for the experimental work in the thesis. Simultaneously, the review 

is also an original piece of work, which separates, synthesises and analyses clinically applicable 

biomechanical variables and provides a clear, novel and useful message for clinicians. 

Chapter 3 of the thesis details overt aims and hypotheses, in the form of null hypotheses. The 

aims are then addressed by separate chapters of the thesis. The alternative hypotheses are 

included in the introduction of each separate chapter. 
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Chapter 4 is a methods chapter which serves two purposes. Firstly, it describes my decision-

making process when choosing the optimal data collection, data processing or analysis method 

by outlining the pros and cons of the most popular solutions and, in consequence, the 

rationale of the final choice. Secondly, this chapter clearly describes the chosen data 

collection, processing and analysis methods using worked example by explaining the step-by-

step data processing methods and presenting graphic representations where relevant.  

Chapter 5: This study addresses one of the aims of the thesis which is to establish in my hands, 

and unusually in this body of literature, the reliability of pelvic girdle surface electromyography 

and hip joint kinematic measurement during standing hip flexion (SHF) and single leg squat 

(SLS) manoeuvres. 

Chapter 6; This observational study presents cross-sectional retrospective differences in 

gluteus medius versus adductor longus muscle activation ratios measured by surface 

electromyography, and hip joint kinematics measured by the CodaMotion capture system 

between healthy athletes and those suffering from SRGP. Measured groups are from four 

different sports disciplines and in two sports include both amateur and professional cohorts. 

The study procedure enabled us to explore associations between the movement and muscle 

activation patterns and SRGP. Separate analysis of the sports groups allowed for excluding 

potential bias of different biomechanical characteristics that may be associated with different 

sports and levels of participation. The results of the study showed clear biomechanical 

alterations between the healthy and injured athletes; therefore the level of play and sporting 

discipline, which may be likely to play a big role in the mechanism of injury, needs to be 

controlled when investigating the biomechanics of the athlete with injury.   

Chapter 7: This longitudinal study presents the results of a repeated-measures study which 

investigated muscle activation and movement patterns during the time-course of 

rehabilitation from acute injury. This study was completed in order to discover whether the 
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biomechanical imbalances discovered in previous, observational study, have a primary or 

secondary character, and whether they may be improved by the current rehabilitation 

programmes.  

The Last chapter of the thesis, chapter 8, discusses the study results in the context of other 

literature published in the field. It also considers the main study limitations, future directions 

and final conclusions.   

Background 

Sports related groin pain (SRGP) is a common entity, particularly in contact sports requiring 

repetitive high-speed kicking, twisting, pivoting and side-to-side movements (Lovell, 1995, 

Slavotinek et al., 2005); such as football, rugby and hockey. It is often associated with high 

recurrence and prolonged time away from sport (Weir et al., 2009), and together with 

hamstring injuries is responsible for the longest time away from playing sport (Orchard and 

Seward, 2011). The poor treatment outcomes and high recurrence rate make SRGP a key area 

for detailed study in order to deepen understanding of the pathophysiology and ultimately 

improve management.  
The difficulties in diagnosis and treatment of SRGP result partly from a lack of consensus 

amongst researchers and clinicians in classification of the functional anatomy of the area and 

the large range of diagnostic terms used (Weir et al., 2015, Bradshaw et al., 2008). Patients 

suffering from SRGP are often ‘diagnosed’ with osteitis pubis, adductor tendinopathy, 

sportsman’s hernia, Gilmore’s groin or iliopsoas-, rectus abdominis- and adductor-related 

muscular disorders. Various underlying tissue pathologies are likely to coexist (Holmich, 2007) 

and there is a lack of clinical or imaging tests with high levels of sensitivity or specificity  (Weir 

et al., 2015). SRGP was operationally defined in my thesis at the outset based on carefully 

considered pragmatic criteria, designed to exclude hip joint pathology and include over-
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lapping soft tissue derangement and dysfunction diagnoses in the relevant anatomical area. 

No single published model was judged satisfactory at the time. The robustness of our approach 

can be inferred from the close agreement to an identical basket of pathologies defined at the 

recent Doha agreement (Weir et al., 2015). 

SRGP usually has an insidious onset, but might also commence as an acute groin strain, which 

then becomes chronic (Fricker et al., 1991, Renstrom and Peterson, 1980). SRGP is a challenge 

to diagnose and, consequently, manage due to the complexity of pelvic girdle anatomy with 

multiple inter-dependent structures (Falvey et al., 2009) and the complex loading associated 

with the central-lateral load distribution from the spine to pelvis and hips (Dalstra and Huiskes, 

1995, Dalstra et al., 1993). Simple length, strength, range and palpation tests seemed 

inadequate to fully elucidate diverse athlete presentations.  Further, I felt there was a strong 

argument – particularly from a rehabilitation perspective and in view of the overalpping 

pathology - for potentially classifying patients by movement pattern rather than tissue 

diagnosis (Sahrmann, 2001). For this to be valid and for innovative treatments to be 

subsequently determined, there needed to be studies determining whether common 

movement patterns exist at all - and if so, of what nature, and in whom.  

An international consensus on the taxonomy of groin injuries (Doha agreement) has been 

published very recently (Weir et al., 2015). It provided a useful tool for both clinicians and 

researchers, as it established terminological agreement and should enable groin pain research 

to move forward (Delahunt et al., 2015). Additionally, a number of recommendations 

regarding further research in the groin area have been identified, including specific 

recommendations considering epidemiology, risk factors, clinical examination, outcome 

measures, the role of imaging, and treatment of groin injuries (Weir et al., 2015, Delahunt et 

al., 2015) – all of which are covered in this introduction.  
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What is not present in the consensus, are consideration of the roles adverse movement 

patterns or muscle activation imbalance may play in SRGP occurrence and maintenance. This 

reflects a major gap in the literature, rather than being an error in the consensus state ment. 

What is perhaps more surprising is that consideration of sub-groups – and especially the sub-

groups of elite vs non-elite athletes – is also not strongly represented in either the literature or 

the consensus. My thesis was positioned to address exactly those gaps, extending the promise 

of previous smaller-scale investigations of SRGP and recurrent hamstring injury by our 

research group, that have shown findings worthy of further more detailed exploration (Daly et 

al., 2015, Morrissey et al., 2012a). A central theme of my thesis was therefore exploration of 

whether biomechanical factors such as kinematically described movement patterns and 

electromyographically measured muscle imbalance might be relevant to SRGP presentation 

and management; and whether sports and participation-level specific groups may be identified 

using such methods.     

Epidemiology 

Epidemiology in football 

The incidence and prevalence of groin pathologies have been reported in a variety of sports. 

One of the sports disciplines most commonly mentioned in relation to groin injuries is football. 

A prospective, high quality UEFA study investigated epidemiology of hip and groin injuries in 

28 professional teams over 7 seasons (Werner et al., 2009). The prevalence for those types of 

injuries in football was reported to be between 12% and 16%. This is consistent with other 

authors reporting groin pathologies to account for 11% - 16% of all football injuries annually 

(Hagglund et al., 2006, Ekstrand and Gillquist, 1983, Hagglund et al., 2009, Hawkins and Fuller, 

1999). The study of Ekstrand (Ekstrand and Hilding, 1999) on two professional football 

divisions (176 players) found groin injuries constitute 8% of all football injuries in 1995.  
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Epidemiology in rugby 

Epidemiological report on injuries in professional English rugby union (Brooks et al., 2005a, 

Brooks et al., 2005b) has investigated the incidence and severity of rugby players during 

matches and training. The incidence of groin pathologies was 3.29 and 0.1 injuries per 1000 

player-hours during training and matches, respectively. Groin injuries were also responsible for 

101 (training) and 25 (match) absent days, and in consequence were ranked the fourth most 

severe injury among rugby players. O’Connor (O'Connor, 2004) reported a very high, 23% risk 

of sustaining groin injury in a prospective study on professional rugby players over a 2-year 

period. This rate is consistent with data from Gibbs (Gibbs, 1993).  

Epidemiology in hockey 

Groin injuries are also recognized as a major cause of morbidity in professional hockey players 

(Irshad et al., 2001). Emery et al.  (Emery et al., 1999a) reported an incidence of 20 groin or 

abdominal injuries per 100 players annually and an increasing trend of these injuries incidence 

(increasing rate of 1.32 (95% confidence interval -0.58, 3.21) injuries/100 players/year). A 

study on sub-elite Swedish hockey players over four seasons, published by Pettersson 

(Pettersson and Lorentzon, 1993), found groin strains were the third most common injury, 

accounting for 8% of all injuries. Another epidemiological study by Agel et al. found hip and 

pelvis pathologies most common injury area during training among Collegiate Ice Hockey male 

players over a 16 years period (Agel et al., 2007).  

Epidemiology in Australian Football league  

The 2010 Injury Report in Australian Football, published by Orchard in 2011 (Orchard and 

Seward, 2011) (Table 1), shows that groin injury incidence failed to decrease between 2001 

and 2010. Prevalence rate of this type of injuries, described as missed games per club per 

season, was the second highest value after hamstring strains. Groin injuries also had the 
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highest (recurrent groin injuries constituted 20% of all reported groin injuries) recurrence rate 

from all reported injuries. 

Groin injuries  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 10yrA  

Incidence  3.5 3.8 2.9 3.1 2.9 3.3 4.1 3.2 3.3 4.1 3.5 

Prevalence  13.6 15.7 13.7 13.3 11.2 14 18 12.4 11.7 15.3 13.6 

Severity  3.9 4.1 4.8 4.4 3.9 4.3 4.4 3.9 3.5 3.7 3.9 

Recurrence rate  20% 23% 20% 24% 23% 28% 38% 23% 19% 20% 20% 

Table 1: Key indicators for groin injuries over past ten years in Australian football (Orchard and 

Seward, 2011)  

 

Epidemiology in other sports 

Groin injuries were also reported in other sport disciplines. In Australian Cricket team they 

were the 5th most common injury (7% of all injuries in players per year) over two seasons 

(Orchard et al., 2002a). Swimmers, (mainly breaststroke discipline) also have a high incidence 

of groin injuries. Out of 296 surveyed breaststroke swimmers, 42.7% had missed at least one 

day of training due to groin problems (Grote, 2004). 

Risk factors in groin pathologies 

High incidence, prevalence and morbidity of SRGP has led to considerable interest among 

researchers to identify risk factors for this entity in order to better understand the 

mechanisms and facilitate prevention strategies.  One systematic review (Hrysomallis, 2009) 

investigated the adductor muscle features associated with future SRGP and found low to 

moderate evidence of decreased adductor muscles strength and flexibility associated with 

increased risk for subsequent SRGP.  

Two recently published systematic reviews identified factors consistently emerging from the 

literature as the risk factors for SRGP: previous adductor injury, decreased adductor strength 

and reduced sports-specific training (Maffey and Emery, 2007, Whittaker et al., 2015). 
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Previous adductor or abdominal injury was reported as a risk factor for groin strains in a 

number of separate studies (Emery and Meeuwisse, 2001, Engebretsen et al., 2010, Arnason, 

2004, Gabbe et al., 2010).  A high quality, prospective study of professional footballers 

(Arnason, 2004) reported that previous groin injury makes a player 7 times more susceptible to 

injury compared to uninjured player. These results are consistent with increased risk profile 

following exposure to musculo-skeletal injury in general (Hagglund et al., 2006, Maffey and 

Emery, 2007).  Age was found to be another important risk factor in groin injuries (Arnason, 

2004). 

Emery et al. (Emery and Meeuwisse, 2001) reported much higher risk of groin injury associated 

with decreased number of sport-specific training hours. This might be related to other finding 

of Arnason et al. (Arnason, 2004), who reported, that injured players had significantly higher 

body fat compared to healthy cohort. 

It is therefore important to note, that apart from factors more universally defining the risk 

factors for muscular injuries such as age and decreased number of training hours, there is also 

some evidence of simple biomechanical changes that precede pain onset. Those measures, as 

well as the more sophisticated so under-researched biomechanical investigations therefore 

warrant further study to improve our understanidng and management of SRGP. 

Biomechanics of load distribution through the pelvis  

The location between stable pelvis and mobile hips makes the groin area potentially very 

sensitive to biomechanical load or muscle activation imbalances transferred between the torso 

and lower limbs, regarding in particular the loading distribution. 

Additionally to a specific ‘sandwich-like’ bony structure of the pelvis, with the extra strong 

cortical shell and relatively soft layer between external core, muscles have been reported to 

significantly influence loading in the area. The pelvic stress forces were reported to be 



32 

 

significantly decreased when applying muscle forces to the bony pelvic model (Dalstra and 

Huiskes, 1995). Specifically, the muscular force input in the purely bony model of the pelvis 

was reported to have a largely stabilising effect on the hip joint, compensating the hip joint 

reaction forces. This may suggest, that any weakness of any muscle attaching to the pe lvis 

(particularly to pubic symphysis where the largest stresses occur) might increase the loading 

and lead to pathologies. 

Sophisticated biomechanics of the pelvis and the stress distribution dependency of muscular 

support reported by Dalstra might suggest a particular susceptibility to pathologies in this 

area. Any muscular imbalance regarding increased or decreased forces acting on the pelvic-hip 

area may easily modify the stresses in pelvic region (particularly pubic bone) and lead to 

pathologies. 

This is one of the reasons why the design of SRGP treatment strategies provides such a 

challenge for clinicians (Falvey et al., 2009). The simple model of pelvic and hip loading 

presented above becomes much more complex during dynamic, unilateral tasks, such as 

walking and jogging; even more in movements such as kicking, pivoting, cutting, side-to-side 

running or changing directions (Marshall et al., 2015), which are thought to increase the 

susceptibility for SRGP. In order to manage those high biomechanical demands, a high number 

of structures need to co-operate in an optimally balanced manner (Dalstra and Huiskes, 1995).  

SRGP is often suggested to be an effect of overuse and overload of, initially, one single 

structure (Pizzari et al., 2008, Lynch and Renstrom, 1999, Marshall et al., 2015). Following this 

initial pathology, other structures may be exposed to relatively higher demands, leading to 

further overload, injury, pain or other mal-adaptations (Mueller and Maluf, 2002, Bussey, 

2010, Renstrom and Peterson, 1980). This mechanism then results in multi-factorial, multi-

structural symptoms, with a lack of clearly defined pathology within one structure and 
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biomechanical adaptive alterations regarding muscle features and movement patterns 

(Bussey, 2010). 

A comprehensive and clinically applicable model of pelvis and hip loading was presented by 

Meyers et al. (Meyers et al., 2007), who focused on the pubic symphysis as a central point of 

the groin region and highlights the importance of the functional and biomechanical 

interactions between the abdominal and adductor muscles. The authors also provided insight 

into the biomechanical requirements of the pubic and groin area by presenting the directions 

of the forces acting on the pelvis and pubic symphysis (Figure 1, Figure 2). 

 

Figure 1: Medial view of the pelvis depicting the direction of forces acting on the pelvis and 
influencing pelvic tilt (Meyers et al., 2007). 
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 According to Meyers, the initial cause of pain and pathology in the groin may be due to the 

multiple muscular insertions to pubic symphysis, which may likely provide imbalances forces 

applied to the pelvic and groin area.  

Additionally to presenting an anatomical, biomechanical and functional approach, Meyers also 

provided some diagnostic advice. Using the pubic symphysis as the reference point, he  

 

Figure 2: Anterior view of the pubic ramus with schematic depiction of the many forces acting on the 
pubic joint (Meyers et al., 2007). 

 

distinguished clinical entities below as well as above the central point, which leads to focusing 

more on abdominal and “upper groin” area rather than adductors. This approach provides a 

description of pathologies occurring in abdominal area and is therefore an important overview 

of entities commonly confused with hernias. This review provides a very comprehensive 
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historical, anatomical, functional and biomechanical overview of SRGP but may be somewhat 

out-dated. The previously presented model by Falvey et al. (Falvey et al., 2009) includes all of 

those key elements, providing an additional clinical and diagnostic layer which I deemed to be 

a the optimal approach at the research design stage.  Optimal but not ideal, as none of the 

published models had been subject to robust validation, nor were they based on a body of 

biomechanical literature on SRGP – thus indicating a clear research space for my studies.  

Terminology in groin pain 

There had been an on-going debate and lack of agreement among researchers and clinicians 

regarding the diagnosis and terminology of symptoms in the pelvis and groin areas. A number 

of terms had been used throughout (for example: osteitis pubis, Gilmore’s groin, hockey’s 

groin), with slightly different diagnostic criteria. This led to general confusion and 

misunderstanding, as well as preventing groin pain focused research moving the field forward 

due to the lack of similar criteria for included injured participants. However, a very recently 

published Doha agreement on the terminology and diagnosis in athletic groin pain provides 

clear and structured guidelines, which will allow the research in the area to move forward.  

The published agreement was an effect of the meeting of the international group of experts in 

the groin pain research and treatment held in Doha, Qatar. Prior to the meeting, the 

organising committee has sent out two case studies of athletes presenting with groin 

symptoms to the group of 23 experts internationally in order to receive from them a preferred 

term for the diagnosis. The feedback from these studies served as the basis for one -day 

discussion regarding the terminology and diagnosis of groin symptoms. The effect of this 

discussion was then published as a consensus statement. 

Groin pain in athletes was a preferred term to name the pain in the groin area, which was 

related to sports. This was then divided into three main sub-groups: (i) defined clinical entities 
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for groin pain (adductor-, iliopsoas-, inguinal- and pubic- related pathologies); (ii) hip joint 

related pathologies; (iii) other causes of groin pain (for example nerve entrapment or referred 

pain). 

Throughout this thesis I am using the term sports-related groin pain (SRGP), which is 

consistent with the first sub-group defined by the group of experts, and includes all 

pathologies mentioned in the publication, and excludes the other cause s of groin pain. At the 

time of designing the research protocol for the studies included in the thesis (2011) there was 

still little agreement of the terminology and diagnosis, therefore based on the available 

research at that time I chose to use self-selected inclusion and exclusion criteria. These, 

however, proved to be consistent with the Doha agreement.  

A detailed overview of most common pathologies causing the groin pain in athletes can be 

found in Appendix 1 (p. 264). 

Diagnosis 

Physical assessment 

SRGP is often associated with high recurrence and prolonged time away from sport (Weir et 

al., 2009) therefore early and accurate diagnosis is essential to prevent chronicity.  

Groin pain gradually arising from musculo-skeletal origin is often suggested to be an effect of 

overuse and overload (Pizzari et al., 2008, Lynch and Renstrom, 1999). Moreover, there are 

often multiple diagnoses (Holmich, 2007, Nam and Brody, 2008, Caudill et al., 2008) and the 

pathologies may arise from poor biomechanics, pelvis instability and muscle imbalances in the 

groin area (Harris and Murray, 1974, Mandelbaum and Mora, 2005). Detecting functional 

abnormalities of muscles and bones in the area is considered crucial to effectively treat groin 

symptoms (Pizzari et al., 2008).  
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Diagnostic procedure should therefore include both the physical examination of the 

movement quality assessment, which would help to discover potential biomechanical 

imbalances; and diagnostic assessment of certain structures, which might already be 

pathologically altered as a consequence of poor biomechanics. The Doha agreement (Weir et 

al., 2015) provides useful guidelines regarding the diagnostic process of SRGP. Some good 

diagnostic recommendations were also given by Falvey et al. (Falvey et al., 2009) along the 

definition of the groin triangle.  

The assessment techniques of groin symptoms (adductor muscles strength and flexibility, 

iliopsoas muscle strength and flexibility) include pain reproduction and reveal potential 

biomechanical imbalances and strength and flexibility deficits. They were reported to be 

reliable (Holmich et al., 2004, Malliaras et al., 2009) and are widely used in the diagnostic 

process of groin pathologies. 

Most common causes of athletic groin pain are adductor-, iliopsoas- and abdominal related 

(Holmich, 2007). Reliable assessment of adductor, iliopsoas and abdominal muscles should 

include palpation, strength and flexibility measurements (Holmich et al., 2004, Malliaras et al., 

2009, Weir et al., 2015). In the strength and flexibility measurements, both pain reproduction 

and side-to-side asymmetries are assessed.  

Pain during palpation of adductor muscle insertion to pubic bone and 2-4 cm distally (6-8 on 

“pubic clock”) allows detecting the abnormalities such as adductor tendinopathy, 

ethensopathy and musclulo-tendinous junction pathologies (Falvey et al., 2009).  Bilateral 

adductor strength (in 0°, 30° and 45° of hip flexion (squeeze test)) and flexibility (lying supine 

(Holmich et al., 2004) or bent knee fall out test (Malliaras et al., 2009)) measurements detects 

muscle pathologies when reproducing pain. According to the Doha agreement, the pain or 

tenderness on palpation of the adductor muscles and during resisted adduction are the 

diagnostic criteria for adductor-related groin pain (Weir et al., 2015). 
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Reproduced pain during palpation of the iliopsoas muscle (superiorly to inguinal ligament), 

strength and flexibility testing (modified Thomas’ test) suggests iliopsoas muscle pathology 

(Falvey et al., 2009, Holmich et al., 2004). Asymmetry in strength and flexibility measurements, 

similarly to adductor muscles, might detect biomechanical imbalances, which should be 

addressed in rehabilitation. Pain on palpation and during strength or flexibility testing are the 

diagnostic criteria for iliopsoas-related groin pain according to the Doha agreement (Weir et 

al., 2015). 

Pubic-related pathologies can be suspected with the pain reproduction on the palpation on the 

pubic bone and adjacent bones (Weir et al., 2015). No particular stress or resistance test was 

identified to further diagnose the pubic-related pathology. 

Abdominal musculature assessment should also include both pain reproduction during 

palpation, strength and flexibility assessment. Pain on palpation directed at “12” on the “pubic 

clock” is consistent with ethensopathy or tendinopathy of rectus abdominis muscle (Falvey et 

al., 2009). This is supported by painful abdominal functional tests (resisted sit-ups) (Falvey et 

al., 2009, Holmich et al., 2004). Weakness detected during this test implies potential muscular 

imbalances in pelvic and pubic symphysis areas.  

Femoro-acetabular joint and acetabular labrum pathologies are commonly associated with 

groin symptoms (Narvani et al., 2003). Hip pathologies, particularly labral tears, still present a 

diagnostic challenge (Wenger et al., 2004, Martin et al., 2006). Falvey et al. advises using the 

impingement test to detect these groups of entities. This test (as well as the commonly used 

FABER test) was reported to be specific but only moderately sensitive compared to MRI scans 

(Troelsen et al., 2009). Therefore, MRI scans are still the “gold standard” in diagnostic process 

of hip and labrum pathologies (Chan et al., 2005, Freedman et al., 2006, Troelsen et al., 2009).  

According to Lovell (Lovell, 1995), sportsman’s hernia (referred to as “hernia without 

herniation”) is the most common clinical entity responsible for groin symptoms among 189 
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athletes with groin pain. Falvey describes it as “incipitent hernia” and, following other authors, 

proposes reproduction of pain during resisted “torsion” of the trunk or as a result of palpation 

on superficial inguinal region (Gilmore, 1998, Kumar, 2004). However, many authors refer to 

“sport’s hernia” as a diagnosis of exclusion (Atkins et al., 2010), so further investigations to 

potentially exclude this entity from the differential diagnoses is necessary. 

Imaging  

When groin symptoms present atypically, do not respond to rehabilitation as expected or 

there is a suspicion of underlying serious pathology, imaging techniques give the opportunity 

to make the diagnostic process shorter and less frustrating (Albers et al., 2001). 

Magnetic resonance imaging (MRI) is a commonly reported technique used in diagnosing 

pathologies associated with SRGP. Many authors report a high percentage of pathologies 

discovered by using MRI(Albers et al., 2001, Ekberg et al., 1996, Johnston et al., 2005, 

Kunduracioglu et al., 2007, Lawande et al., 2007, Zoga, 2009). It is frequently used to establish 

the diagnosis of pubic symphysis pathologies, hernia or muscular ethesiopathies. It also 

facilitates exclusion of other potential hip pathologies as labral tears (with contrast 

enhancement) and femoro-acetabular impingement. 

Ultrasonographic investigations may also be of use in the diagnostic process for SRGP. They 

have been used previously for the diagnosis of groin pain, but mainly in non-athletic 

populations (Truong et al., 1993, Deitch and Soncrant, 1981). Few studies advocate the use of 

ultrasonography in SRGP, primarily to exclude the true hernias from the differential diagnoses 

(Davies et al., 2010, Orchard et al., 1998).  

Other reported imaging techniques include plain film radiography and herniography (Ekberg et 

al., 1997, Ekstrand and Hilding, 1999). Both are reported to be reliable, but they are useful in 

only a limited number of cases. Similarly to ultrasonography, they are mainly used to exclude 
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the morphological or traumatic hip joint pathologies (radiography) or true hernias 

(herniography). 

Functional assessment 

Although the Doha agreement provided a very useful tool of the definition and diagnoses of 

groin injury, the mechanisms and inter-relation of different structures associated with pain is 

still not well understood (Weir et al., 2015). It is agreed, that the symptoms presenting in the 

groin area may have various aetiologies and are usually caused by a number of underlying 

structures (Falvey et al., 2009, Weir et al., 2015, Holmich, 2007). The complexity of the 

biomechanical demands of the area as well as multi-factorial cause of SRGP provides an 

argument for classifying patients by movement pattern rather than tissue diagnosis 

(Sahrmann, 2001), which is not mentioned in the Doha agreement nor present strongly in the 

literature.  

Similar problems were identified in relation to other pathologies, such as shoulder pain and 

lower back pain (Roussel et al., 2013, Roussel et al., 2009, Worsley et al., 2013, Mottram et al., 

2009), where identifying a discrete symptomatic structure is often challenging. In these cases, 

the rehabilitation strategy focusing on a movement pattern rather than being pathology may 

be a suitable way forward (Worsley et al., 2013, Mottram et al., 2009, Roussel et al., 2013). 

The argument is that identifying adverse movement patterns and muscle activation 

imbalances in SRGP, leads directly to relevant rehabilitation decision-making and may 

ultimately improve rehabilitation outcomes and reduce recurrence.  

In groin pain area, this is supported by a variety of previous research on muscular function in 

SRGP, the vast majority of which used very vague inclusion criteria of the participants (Arnason 

et al., 2004, Cowan et al., 2004a, Crow et al., 2010, Jansen et al., 2010, Malliaras et al., 2009, 

Mens et al., 2006). The majority of those studies included participants suffering from groin 

symptoms for at least 4-6 weeks and presenting with pain reproduction during palpation of 
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the groin and popular tests such as the ‘squeeze’ test. All studies show strong results, which 

justify the more general and descriptive, rather than tissue specific strategy in athletes with 

SRGP. A comprehensive overview of all studies published on the biomechanical factors 

associated with SRGP and further considerations on the inclusion criteria and terminology 

used in those studies are presented in Chapter 2: Systematic review (p. 45). 

Treatment 

Progressive rehabilitation  

An active, exercise based therapy (optimally combined with a manual treatment) has been 

reported to be most effective in SRGP (Weir et al., 2011b, Jansen et al., 2008, Machotka et al., 

2009). However, high re-currency and symptoms that persist despite treatment suggest that 

there are underlying, not yet recognised factors that contribute to SRGP and prevent a 

consistently full recovery.  Commonly agreed, multi-structural nature of SRGP (Delahunt et al., 

2015, Weir et al., 2015, Falvey et al., 2009) makes a successful recovery challenging, but there 

is agreement that a multi-focused therapy needs to be applied. 

Acute groin injuries commonly affect adductor muscles and tend to heal quickly. However, 

significant percentage of these injuries might turn into chronic condition, making them one of 

the major risk factors for subsequent SRGP (Arnason, 2004). The chronic SRGP is mainly 

treated by physiotherapy regardless of problems with diagnosis (Jansen et al., 2008, Machotka 

et al., 2009).  

Active physical treatment focusing on stretching and strengthening of hip and pelvic stability 

muscles is reported to be effective (Hölmich et al., 1999, Rodriguez et al., 2001). These findings 

are more positive than in a recently published high quality randomized controlled trial 

comparing the outcomes of exercise (adductors, abdominal and stability exercises) and multi -

modal (heating, manual therapy and stretching) therapy in 54 athletes (Weir et al., 2011b). 
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Although a greater percentage of athletes came back to sports after exercise therapy (55%) 

than after multi-modal therapy (50%), the multi-modal group returned to sporting activity 

quicker (after 12.8 weeks) than the exercise group (17.3 weeks). Outcomes of physical therapy 

were also reported to have far less positive outcomes than operative treatment in randomized 

clinical trial by Paajanen et al. Compared to 90% of participants who underwent surgical 

treatment, only 27% of those treated conservatively have returned to sport within 3 months 

since the commence of the treatment (Paajanen et al., 2011). However, the MRI or 

herniography confirmation of true hernia or severe pubic symphysis pathology was one of the 

inclusion criteria for study participants, with the SRGP subgroup not clearly extracted. 

Injection therapy 

Studies investigating the outcomes of steroid injections in groin pain treatment report 100% 

return to sport in symptomatic athletes, but they lack the control group to compare the 

outcomes with (Holt et al., 1995). The injections were usually used in groin pain diagnosed as 

“osteitis pubis” (Holt et al., 1995, O'Connell et al., 2002). This entity was reported to be a self-

treating pathology, healing naturally over a period of time (Lynch and Renstrom, 1999), which 

may provide a large bias for this study. Prolotherapy (12.5% dextrose and 0.5% l idocaine 

injected in tender region) was reported to have good outcomes in a case study/series? (Topol 

et al., 2005), but the level of evidence is low. 

Surgery  

Surgical intervention is usually considered when conservative treatment is unsuccessful 

(Jansen et al., 2008). The outcomes, therefore, are only reported for a narrow population not 

responding to physiotherapy. The interventions vary depending on the final diagnosis. When 

sport’s hernia (referred to as a functional deficiency of the abdominal wall without true hernia) 

was suspected, Bassisni hernia repair or mesh repair is undertaken (Smedberg et al., 1985, 
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Ingoldby, 1997, Taylor et al., 1991, Hackney, 1993). Reported results are excellent, but the 

quality of the studies is low to moderate. 

In adductor-related problems, adductor tenotomy was reported to have positive results by 

two studies with low level of evidence (Martens et al., 1987, Akermark and Johansson, 1992). 

When positive outcomes from the above techniques are not realised, neurotomy of the ilio-

inguinal or obturator nerve can be applied (Bradshaw et al., 1997, Polglase et al., 1991). 

Conservative management tends to be the first option (Jansen et al., 2008) after a period of 

rest and NSAIDs intake. Steroid injections are sometimes given simultaneously.  

Deficits in knowledge about treatment  

Although a number of simple biomechanical deficits in athletes with SRGP have been 

described, not all of them have been addressed in evaluated rehabilitation programmes. 

Additionally, no recommendations about dysfunctional movement patterns or muscle 

imbalance have been described. Strengthening of the adductor, abductor and abdominal 

muscles tend to be the primary elements of the published treatment strategies, but little 

attention is given to muscular balance or movement patterns in either static or dynamic 

conditions. The paucity of research investigating these patterns has also been recognised by 

the Doha agreement, which highlights specific of movement analysis in SRGP as one of the 

area for further research (Weir et al., 2015).  

A strong association between the movement and pathology has been found in other multi-

structural entities such as shoulder and back pain (Mottram et al., 2009, Roussel et al., 2009). 

Some of the simple biomechanical measures, such as strength and flexibility deficits, have also 

been found in association with SRGP. They are systematically reviewed in Chapter 2, which 

summarises current knowledge about the biomechanical signatures of SRGP in athletes. These 
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simple measures indicate that there may be some benefit in exploring more complex 

biomechanical mechanisms and the deficit of a body of research in this area was noted.  

Therefore, additionally to already described biomechanical deficits in athletes with SRGP, 

investigating the kinematics and muscle activation patterns in athletes with SRGP seemed to 

be a natural step forward. However, in order to consider altering treatment guidelines, further 

exploration is first required to determine whether such deficits exist.  These represent 

significant gaps in the literature, which the thesis addresses.  

The aims of this thesis are therefore to improve our understanding of the biomechanical 

characteristics of SRGP in athletes by exploring associated movement and muscle activation 

patterns. Additionally, it was decided to explore how these might differ between sporting 

groups and participation levels, in order to inform prevention and rehabilitation planning. 
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Chapter 2: Systematic review 

Movement and muscular function in sports related groin pain: a systematic review with 

meta-analysis. 

Chapter overview 

This chapter reviews the published evidence on the movement and muscular function 

associated with sports related groin pain (SRGP) – prospectively and retrospectively. By 

summarising these associations it also identifies a research gap and thus provides further 

rationale for the experimental chapters of this thesis. This summary shows that there are clear 

associations between simple biomechanical measures, such as strength and flexibility, and 

SRGP - which are consistent between studies despite no clear diagnoses. However very little 

attention has been given to more sophisticated biomechanical measures, potentially a barrier 

to designing more successful rehabilitation programmes and improving outcomes. 

Abstract  

Background: Sports related groin pain (SRGP) is a common entity in rotational sports such as 

football, rugby and hockey, accounting for 12%-18% of injuries each year, with high recurrence 

rates and often prolonged time away from sport. 

Objective: This systematic review synthesizes movement and muscle function findings to 

better understand deficits and guide rehabilitation. 

Study selection: Prospective and retrospective cross-sectional studies investigating muscle 

strength, flexibility, cross-sectional area, electromyographic activation onset and magnitude in 

patients with SRGP were included.  



46 

 

Search methods: Four databases (Medline, Web of Science, Ebsco and EMBASE)  were 

searched in June 2014. Studies were critiqued using a modified version of the Downs and Black 

Quality Index, and meta-analysis performed.  

Results: Seventeen studies (14 high quality, 3 low quality; 8 prospective and 9 retrospective) 

were identified. Prospective findings: Moderate evidence indicated decreased hip abduction 

flexibility as a risk factor for SRGP. Limited or very limited evidence suggested that decreased 

hip adduction strength during isokinetic testing at ~119 °/s was a risk factor for SRGP, but no 

associations were found at ~30°/s or ~210°/s, or with peak torque angle.  Decreased hip 

abductor strength in angular velocity ~30 °/s but not in ~119°/s and ~210 °/s was found as a 

risk factor for SRGP. No relationships were found with hip internal or external rotation range 

of movement, nor isokinetic knee extension strength. Decreased isokinetic knee flexion 

strength also was a potential risk factor for SRGP, at speed ~60°/s.  

Retrospective findings: There was strong evidence of decreased hip adductor muscle strength 

during a squeeze test at 45°, and decreased total hip external range of movement (sum of both 

legs) being associated with SRGP. There was strong evidence of no relationship to abductor 

muscle strength nor unilateral hip internal and external rotation range of movement. 

Moderate evidence suggested that increased abduction flexibility and no change in total hip 

internal range of movement (sum of both legs) were retrospectively associated with SRGP. 

Limited or very limited evidence (significant findings only) indicated decreased hip adductor 

muscle strength during 0° and 30° squeeze test and during eccentric hip adduction test, but 

decrease in isometric adductors to abductors strength ratio at speed 120.32°/s; decreased 

abductors to adductors activation ratio in early phase in moving leg as well as in all three 

phases in weight-bearing leg during SHF; increased hip flexors strength during isokinetic and 

decrease in transversus abdominis muscle resting thickness associated with SRGP.  
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Conclusions: There were a number of significant movement and muscle function associations 

observed in athletes both prior to and following the onset of SRGP. The strength of findings 

was hampered by the lack of consistent terminology and diagnostic criteria, with there being 

clear guides for future research. Nonetheless, these findings should be considered in 

rehabilitation and prevention planning.    
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Introduction  

Sports-related groin pain (SRGP) is a common clinical entity, accounting for 12% - 16% of all 

sports injuries (Werner et al., 2009, Ekstrand and Hilding, 1999). It is particularly prevalent in 

sports involving rotation and cutting movements, such as football, rugby and hockey (Orchard 

et al., 1998). It is often associated with prolonged time away from playing (Holmich et al., 

1999, Weir et al., 2010) and therefore considered a significant problem in professional sport.  

The difficulties in diagnosis and treatment of SRGP are partly caused by the lack of consensus 

amongst researchers and clinicians in classification of the functional anatomy of the area and 

the large range of diagnostic terms used (Weir et al., 2015, Bradshaw et al., 2008). Patients 

suffering from SRGP are often ‘diagnosed’ with osteitis pubis, adductor tendinopathy, 

sportsman’s hernia, Gilmore’s groin as well as iliopsoas-, rectus abdominis- and adductor-

related muscular disorders. Various underlying tissue pathologies are likely to coexist 

(Holmich, 2007) and there is a lack of clinical or imaging tests with high levels of sensitivity or 

specificity. Further, there is a strong argument – particularly from a rehabilitation perspective - 

for classifying patients by movement pattern rather than tissue diagnosis (Sahrmann, 2001). 

There have been a number of studies examining movement and muscle function factors 

causally or associatively linked to SRGP, but little synthesis of this data. Our review will 

therefore include all sub-diagnoses of groin pain, gathered under the umbrella term of SRGP. 

Further, I will consider movement and muscle function factors for specific tissue diagnoses 

where these are clear, but also across the SRGP group in order to identify common 

biomechanical patterns.  

Two systematic reviews (Machotka et al., 2009, Jansen et al., 2008) have been published on 

the effectiveness of conservative therapy in SRGP identyfying a paucity of high quality research 

in this area. Both reviews indicate that regardless of the underlying initial pathology of the 

groin pain, active rehabilitation including flexibility, stretching and strengthening exercises of 
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the pelvic girdle and hip muscles are critical components in effective management. Studies 

supporting active rehabilitation for SRGP tend to focus on hip adductor and abdominal muscle 

strengthening (Hölmich et al., 1999, Weir et al., 2010). However, the sports-specificity of these 

elements is limited. Moreover, the recurrence rate of groin symptoms is still relatively high, 

suggesting that current rehabilitation strategies may not fully address deficits in the 

neuromuscular system. This systematic review and meta-analysis will synthesise evidence 

related to movement and muscle function deficits in athletes with SRGP, with the aim of 

providing a useful guide for clinicians and researchers developing and evaluating rehabilitation 

and prevention programs. The hypothesis of this study was that there are clear and consistent 

biomechanical patterns in the athletes with SRGP emerging from previously published studies, 

giving evidence for either associations drawn from the retrospective studies, or risk factors 

from the prospective studies. 

Methodology 

Inclusion and Exclusion criteria 

Prospective and retrospective cross-sectional (i.e. case-control) studies investigating 

movement and muscle function variables associated with chronic groin pain published in 

English from database inception to June 2014 were included. Groin pain diagnostic labels 

included ‘adduction-related groin pain‘, ‘osteitis pubis‘, ‘pubialgia‘, ‘pubalgia‘, ‘sports hernia‘ 

or ‘adductor tendinopathy’. Only participants whose groin pain was associated with playing 

sports were included. Biomechanical terms included strength, flexibility (range of motion), 

muscle activation magnitude and timing, muscle size and cross-sectional area. Measurement 

techniques included magnetic resonance imaging (MRI), ultrasound, electromyography, 

dynamometer or physical examination.  
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Single case studies, cadaver studies, studies on healthy participants only and studies without a 

control group were excluded.  Studies including participants diagnosed with true hernias; and 

hip joint, thoracic or lumbar spine pathology were excluded from the review.   

Search strategy and review process 

A reproducible search strategy was created by three reviewers (PK, CB and DM). The search 

terms combined muscle features or measurement tools (“strength” OR “flexibility” OR “cross-

section*” OR “onset” OR “activation” OR “range of motion” OR “ROM” OR “EMG” OR 

“electromyograph*” OR “ultrasound*” OR “dynamometer” OR “MRI” OR “magnetic resonance 

imaging” OR “ultrasonograph*” OR “US”) and diagnostic terms  (“groin pain” OR “chronic groin 

pain” OR “osteitis pubis” OR “pubialgia” OR “pubalgia” OR “adductor pain” or “adductor 

tendin*” OR “adductor tendon*” OR “adductor* strain” OR ““adductor*” injur*”) . MEDLINE, 

Web of Knowledge, EMBASE and EBSCOHost databases were searched, using keywords 

wherever possible.  

Retrieved studies were entered into Endnote (Thomson, California, USA) and duplicates 

deleted. Titles and abstracts were screened against the inclusion and exclusion criteria by two 

independent reviewers (PK and CS). Where necessary, abstracts and full texts were obtained 

to make a final decision. A third reviewer (CB) was available to reach consensus if there were 

any conflicts. The reference lists of included studies were searched and citation tracking 

performed via Google Scholar for additional relevant studies.  

Quality assessment and study analysis 

A modified version of the Downs and Black Quality Index was applied by two independent 

reviewers (PK and CS) to assess the quality of included studies. A third reviewer was available 

to resolve differences (DM). Irrelevant questions referring to intervention trials were excluded 

from the questionnaire. Fifteen relevant questions built up a modified version of Downs and 
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Black Quality Index, with a maximum score of 16 points (Barton et al. 2012). Papers were 

considered as high quality studies (HQS) when scored above 10 (inclusive) points and low 

quality studies (LQS) when scored below 10 points, following Barton et al (Barton et al., 2012).  

Data extraction and analysis 

Characteristics of the study participants (number, type and level of sport, age, height and 

weight), diagnosis of the symptomatic patients, task (if relevant), muscle and/or muscle group, 

diagnostic tool, and results of symptomatic and control group were extracted from the 

selected articles (Error! Reference source not found.). Means and standard deviations (SD) 

were extracted in order to enable calculation of standard mean differences (SMDs). Where the 

presentation of the data was not adequate to calculate SMDs, corresponding authors were 

contacted by email in an attempt to obtain the data. In one case (Ibrahim et al., 2007), where 

the SD was not published, it was calculated by the authors of this review as the paper included 

individual participant values for variables measured. Where possible, data was pooled for 

common measurement features of given muscle groups in order to establish the levels of 

evidence. If results were not presented nor obtained from authors in a format allowing data 

pooling, it was omitted in meta-analysis. If only one study investigated given muscle 

characteristics, SMD was calculated from the result presented in this study. This analysis is 

more stringent than statistics commonly used in individual studies (such as t-test). It might, 

therefore, show different results to those reported previously within a specific study.  

If the results a study were provided for both legs/both sides of the body, only data from right 

or dominants side of the body were further calculated in order to maintain the data 

independence, as described or presented in previous studies (Menz, Neal et al., 2014).   

In studies reporting results from isokinetic measurements, originally reported radians per 

second (rad*s-1) were converted to degrees per second (°/s) accurately in abstract, and 

approximately in results section, in order to facilitate the delivery of the clinical implications. 
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Definitions for ‘levels of evidence’ were guided by recommendations made by van Tulder  et al 

(van Tulder et al., 2003): 

Strong evidence was defined as pooled results derived from three or more studies, including a 

minimum of two high quality studies (HQS), which are statistically homogenous (p > 0.05). 

Moderate evidence was defined as statistically significant pooled results derived from multiple 

studies, including at least one HQS, which are statistically heterogeneous (p < 0.05); or from 

multiple low quality studies (LQS), which are statistically homogenous (p > 0.05). Limited 

evidence was defined as results from multiple LQS, which are statistically heterogeneous (p < 

0.05); or from one HQS. Very limited evidence was defined as results from one LQS. Conflicting 

evidence was defined as pooled results insignificant and derived from multiple studies 

regardless of quality, of which some show statistical significance individually, which are 

statistically heterogeneous (p < 0.05, that is, inconsistent). 

Results 

Seventeen studies were included in the final yield. The search results from each database are 

shown on Figure 3. Reference list screening of included studies identified two additional 

studies (Arnason et al., 2004, Thorborg et al., 2014) to the initial 15 included studies.
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Figure 3: Flowchart showing studies inclusion and exclusion process for the review. 
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Paper Type of study Diagnosis N (SRGP:C) 
Type of 

sport 

Level of 

sport 
Age Weight Height 

Arnason et a l , 2004 
Prospective 

cohort s tudy 

Groin 

s tra in 
17:281 

Icelandic 

footbal l   

El i te league 

and fi rs t 
divis ion 

SRGP:25.1(1.2);C:24.0(0.2) SRGP:79.1(1.2); C:76.4(0.4) 
SRGP:183.0(1.4); C:180.5 

(0.4)  

Cowan et a l , 2004 
Retrospective, 
case-control  

s tudy 

Long 
s tanding 

groin pain 

10:12 
Australian 

footbal l   

El i te or sub-

el i te 
SRGP:26(7); C:25(6) 

SRGP:78.1(8.4); 

C:76.8(11.3) 
SRGP:180.7(7);C:176.5(7.9) 

Crow et a l , 2010 
Prospective 

s tudy 
Groin 
injury 

12:12 
Australian 
footbal l   

El i te 16-18 N/R N/R 

Emery et a l , 2001 
Prospective 

cohort s tudy 

Groin 
s tra in 

injury 

204:1088 

Canadian 
National  

Hockey 
League  

Professional N/R N/R N/R 

Engebretsen et a l , 
2010 

Prospective 
cohort s tudy 

Groin 
injury 

51:457 
Footbal l  
(soccer) 

Amateur N/R N/R N/R 

Ibrahim et a l , 2007 
Prospective 

s tudy 
Adductor 

s tra in 
8:79 

Australian 
footbal l   

Professional N/R N/R N/R 

Jansen et a l , 2010 

Retrospective, 

case-control  
s tudy 

Adduction 

related 
groin pain 

42:23 Various  Amateur 
R SRGP:24.8 (6.9);L 

SRGP:28.2(10.4);C:23.9(4.7) 

R SRGP:80(9.2); L 

SRGP:76.4(11.8);C:78.9(6.8) 

R SRGP:184.4(6.8);L 

SRGP:181.4(6.5); 
C:183.7(6.7) 

Mal liaras  et a l , 2010 
Retrospective, 
case-control  

s tudy 

Groin 
pa in 

10:19 

Australian 
Rules  

footbal l  

and 
soccer 

El i te SRGP:17.3(0.8); C:17.1(1.6) 
SRGP:  78.5 (7.0); C: 77.1 

(5.4) 
SRGP: 184.4 (6.7); C: 183.9 

(7.8) 

Mens  et a l , 2006 
Retrospective, 
case-control  

s tudy 

Adduction 
related 

groin pain 

44:44 Various  Amateur 
SRGP: 31.3 (28.1–34.6); C: 

32.2 (30.0–35.4)  

SRGP: 79.4 (76.3–82.5); C: 

82.4 (79.5–85.3)  
N/R 

Mohammad et a l , 
2014 

Retrospective, 

case-control  
s tudy 

Ostei tis  
pubis  

20:20 
Footbal l  
(soccer) 

N/R 
SRGP:19.94(3.51); 

C:20.78(3.35) 
SRGP:70.91(7.26); 

C:71.33(7.35) 
SRGP:176.16(4.93); 

C:176(4.15) 



 

 

 

5
5

 

Morrissey et a l , 2012 

Retrospective, 

case-control  
s tudy 

Chronic 
groin pain 

09:09 
Footbal l  

code 
Amateur SRGP:24(3); C:25(2) SRGP: 81 (4); C:82(3) SRGP:1.8(0.1); C:1.8(0.1) 

Nevin et a l , 2013 
Retrospective, 
case-control  

s tudy 

Long 
s tanding 

groin pain 

18:18 
Gael ic 

footbal l  
Club-level   

SRGP:23.89(3.18); 

C:23.83(3.55) 

SRGP:80.28(9.77); 

C:72.28(10.3) 

SRGP:1.79(0.06); 

C:1.80(0.06) 

O'Connor et a l , 2004 
Prospective 

s tudy 
Groin 
injury 

21:72 
Australian 

Rugby  
Professional  

SRGP: 22.2 (2.9)*; C: 20.2 
(4.5)* 

SRGP: 90.5 (9.5)*; C: 84.7 
(10.2)* 

SRGP: 1.80 (0.13); C: 1.78 
(0.06) 

Thorborg et a l , 2014 
Cross -sectional  

s tudy 

Adductor 
related 

groin pain 
21:16 

Footbal l  

(soccer) 

El i te and 

sub-el i te 

SRGP: 24.5 (2.5); C: 22.9  

(2.4) 

SRGP: 74.6 (6.4); C: 78.6 

(6.3) 

SRGP: 179.8 (5.9); C: 179.8 

(5.0) 

Tyler et a l , 2001 
Prospective 

s tudy 
Adductor 

s tra in 
08:37 

Ice 
hockey 

Professional N/R N/R N/R 

Verra l l  et a l , 2005 

Retrospective, 

case-control  
s tudy 

Chronic 

groin 
injury 

47:42:00 

Australian 
Rules  

footbal l  
and 

soccer 

Professional N/R N/R N/R 

Verra l l  et a l , 2007 
Prospective 
cohort s tudy 

Chronic 
groin 
injury 

04:25 
Australian 

Rules  
footbal l  

Professional 
SRGP:22.75(1.70); 

C:21.16(0.63)  
SRGP:72.50(3.28); 

C:84.92(1.99) 
SRGP:175.50(2.33); 

C:177.36(6.82) 

 

Table 2: Participants characteristics in reviewed studies; SRGP – sports related groin pain, C- controls, * indicate a significant difference between groin pain and control 
participant
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Quality assessment and data analysis 

The details of the modified Downs & Black scale results are shown in Table 3. The scores for 

the studies included in the review ranged between 8 and 15, with an average of 11. Of 17 

included studies, 14 were HQS and 3 were LQS.  

Where possible, the results of reviewed studies were pooled for analysis using Review 

Manager 5.2. Outcome values from a few papers were not reported and not obtainable 

despite contacting corresponding authors (Cowan et al., 2004a, Crow et al., 2010, Jansen et al., 

2010, Tyler et al., 2001, Mohammad et al., 2014). 
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D&B criterion (1) (2) (3) (5) (6) (7) (10) (11) (12) (15) (16) (18) (20) (21) (25) 
TOTAL 

Study 
quality PAPER                               

Thorborg et al. 1 1 1 2 1 1 1 1 0 1 1 1 1 1 1 15 HQ 
Arnason et al. 1 1 1 2 1 1 1 1 0 0 1 1 1 1 1 14 HQ 

Cowan et al. 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1 13 HQ 

Mens  et al. 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 13 HQ 
Engebretsen et al. 1 1 1 0 1 1 1 1 1 1 1 1 0 1 0 12 HQ 

Mal l iaras  et al. 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 12 HQ 
O'Connor et al. 0 1 1 2 1 1 1 0 0 0 1 1 1 1 1 12 HQ 

Crow et al. 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 10 HQ 
Emery et al. 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 10 HQ 

Ibrahim et al. 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 10 HQ 
Jansen et al. 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 10 HQ 

Morrissey et al. 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 10 HQ 

Tyler et al. 1 1 1 1 1 0 1 0 0 0 1 1 1 1 0 10 HQ 
Verra l  et al. 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 10 HQ 

Nevin et al. 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 9 LQ 
Verra l  et al. 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 9 LQ 

Mohammad  et al. 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 8 LQ 

 

Table 3: Results of the quality assessment using a modified Downs & Black scale (Downs and Black, 1998). (1) Clear aim/ hypothesis; (2) clear outcome measures; (3) clear 
participant characteristics; (5) clear principal confounders; (6) clear study findings; (7) estimates of random variability provided; (10) probability values provided; (11) invited 
participants representative to entire population; (12) participants prepared to participate representative to entire population; (15) attempt to blind outcome measures; (16 ) no 

data-dredging; (18) appropriate statistical tests; (20) valid and accurate outcome measures; (21) appropriate case -control matching; (25) adequate adjustment for confounding 
variables. 
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Diagnostic nomenclature  

Reviewed studies used a variety of diagnostic terms including groin pain (Malliaras et al., 

2009), chronic groin pain (Morrissey et al., 2012a), long standing groin pain (Cowan et al., 

2004a, Nevin and Delahunt, 2013), adductor related groin pain (Thorborg et al., 2014), 

adduction related groin pain (Jansen et al., 2010, Mens et al., 2006), groin strain (Arnason et 

al., 2004), groin injury (Crow et al., 2010, Engebretsen et al., 2010, O'Connor, 2004), chronic 

groin injury (Verrall et al., 2005a, Verrall et al., 2007a), adductor strain (Ibrahim et al., 2007, 

Tyler et al., 2001), groin or abdominal strain injury (Emery and Meeuwisse, 2001) and osteitis 

pubis (Mohammad et al., 2014) (Table 2). 

Hip adductor muscle characteristics 

Adductor muscle strength 

Prospectively, four HQS (Crow et al., 2010, Engebretsen et al., 2010, O'Connor, 2004, Tyler et al., 

2001) reported a significant decrease of adductor muscle strength as a risk factor for SRGP, 

whilst one HQS reported adductor muscle strength was not associated with risk of SRGP (Emery 

and Meeuwisse, 2001). Three of those studies measured adductor strength preseason 

(Engebretsen et al., 2010, Tyler et al., 2001, Emery and Meeuwisse, 2001). One study performed 

measurements weekly within season (Crow et al., 2010), and reported a significant decrease of 

adductor strength no sooner than two weeks pre-injury. Only one HQS (O'Connor, 2004) 

presented adequate data to complete calculation of SMDs, which indicated limited evidence of 

decreased adductor muscle strength during isokinetic test in angular velocity of 2.08 rad*s -1 

(~119°/s) (-0.51, -1.00 to -0.02) as a risk factor for SRGP, but not in angular velocities of 0.52 

rad*s-1 (~30°/s) (-0.33, -0.81 to 0.16) and 3.66 rad*s-1 (~210°/s) (-0.18, -0.67 to 0.30) (Figure 4a). 

No indication was provided regarding when these measurements were taken.  
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Retrospectively, there was strong evidence emerging from three HQS (Jansen et al., 2010, 

Malliaras et al., 2009, Mens et al., 2006) and one LQS (Nevin and Delahunt, 2013) of existing 

association between adductor muscle weakness during squeeze test in 45° hip flexion and SRGP 

(-1.00, -1.31 to -0.70) (Figure 4b). There was limited evidence from single HQSs of decreased 

adductor muscle strength during squeeze test in 0° (-1.04, -1.86 to -0.22) and 30° (-0.83, -1.63 

to -0.03) of hip flexion (Malliaras et al., 2009)(Figure 4b); and during eccentric adduction 

strength test (Thorborg et al., 2014) (-1.37, -2.10 to -0.64, Figure 4b) associated with SRGP. 

Limited evidence emerged from one HQS of no difference in adductor muscle strength during 

isometric adduction strength test (Thorborg et al., 2014) associated with SRGP (Figure 4b); very 

limited evidence emerged from one LQS indicates adductor muscle strength during isokinetic 

measurements in angular velocity 2.1 rad*s-1  (~120°/s) is not associated with SRGP (Mohammad 

et al., 2014) (Figure 4b). 

Abduction flexibility  

Prospectively, three HQS (Arnason et al., 2004, Tyler et al., 2001, Emery, 2012) reported no 

change in abduction flexibility preceding the onset of SRGP. Two studies presented adequate 

data to complete the meta-analysis (Arnason et al., 2004, Tyler et al., 2001), providing 

moderate evidence that abduction flexibility is not a risk factor for SRGP development (SMD -

0.36, CI from -0.80 to 0.09, Figure 4c). 

Retrospectively, there was moderate evidence emerging from two HQS (Malliaras et al., 2009, 

Thorborg et al., 2014) on an existing association between increased abduction flexibility during 

bent knee fall out test and SRGP (0.87, 0.35 to 1.40, Figure 4d). Limited evidence emerged 

from one HQS (Thorborg et al., 2014)of no change in abduction flexibility during unilateral test 

in 0° of hip flexion and SRGP (Figure 4d). 
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Adductor muscle peak torque angle 

Prospectively, there was limited evidence from one HQS (O'Connor, 2004) that adductor 

muscle peak torque angle change in angular velocity of 3.66 rad*s -1  (~210°/s) is not a risk 

factor for SRGP development (Figure 4e). 
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Figure 4: Forest plot detailing the analysis of the movement and muscular functions in the coronal 
plane relating to hip adductor muscles:  a – hip adductor muscle strength prospective results, b – hip 

adductor muscle strength retrospective results, c – hip abduction flexibility prospective results, d – hip 
abduction flexibility retrospective results, e – hip adduction peak torque angle retrospective results. 
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Figure 5: Forest plot detailing the analysis of movement and muscular functions in the coronal plane 
related to hip abductor muscles and relationship between the hip adductor versus abductor muscles: 
a – hip abductor muscle strength prospective results, b – hip abductor muscle strength retrospective 
results, c – hip adductor to abductor strength ratio retrospective results, d – hip abductor to adductor 

muscle activation ratio retrospective results.

a	

c	

b	

d	
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Hip abductor muscle characteristics 

Abductor muscle strength 

Prospectively, there was limited evidence from one HQS (O'Connor, 2004) of a decrease in 

abductor muscle strength during isokinetic test in angular velocity of 0.52 rad*s -1 (~30°/s) (-

0.77, -1.27 to -0.27) as a risk factor for SRGP development, but not in angular velocities of 2.08 

rad*s-1 (~119°/s) and 3.66 rad*s-1 (~210°/s) (Figure 5a). 

Retrospectively, there was strong evidence emerging from two HQS (Malliaras et al., 2009, 

Thorborg et al., 2014) of no change in abductor muscle strength during isometric unilateral 

measurements; and very limited evidence emerging from one LQS (Mohammad et al., 2014) of 

no difference in abductor muscle strength during isokinetic measurements in angular velocity 

2.1 rad*s-1 (~120°/s), associated with SRGP (Figure 5b).  

Relation between hip adductor and abductor muscles 

Muscle strength ratios 

Prospectively, one HQS (Tyler et al., 2001) reported decreased adductor to abductor muscle 

strength ratio as a risk factor for SRGP, but the format of data presentation was not adequate 

to complete the calculation of the SMD. 

Retrospectively, there was limited evidence emerging from one HQS (Thorborg et al., 2014) 

and very limited evidence emerging from one LQS (Mohammad et al., 2014) of no change in 

isometric or isokinetic (in angular velocity 2.1 rad*s -1 (~120°/s)) adductor to abductor muscle 

strength ratio associated with SRGP (Figure 5c). 

Abductor to adductor muscle activation ratio 

Retrospectively, one HQS (Morrissey et al., 2012a) provided limited evidence of decreased 

GM:AL muscle activation ratio associated with SRGP in the moving leg during early ( -1.08, -2.08 
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to -0.07), but not during middle or late phases of standing hip flexion movement (SHF) (Figure 

5d). The same study provided limited evidence of decreased GM:AL muscle activation ratio 

associated with SRGP in weight-bearing leg during early (-1.89, -3.05 to -0.73), middle (-2.14, -

3.36 to -0.93) and late (-2.23, -3.47 to -0.99) phases of SHF (Figure 5d). 

Hip flexor muscle characteristics 

Hip flexor muscle strength 

Retrospectively, there was very limited evidence provided by one LQS (Mohammad et al., 

2014) of increased hip flexor muscle strength during isokinetic test in angular velocity 2.1 

rad*s-1 (~120°/s) associated with SRGP (1.72, 0.99 to 2.46); and limited evidence emerging 

from one HQS (Thorborg et al., 2014) of no change in hip flexor strength during isometric and 

eccentric strength test associated with SRGP (Figure 6a). 

Hip extension flexibility 

Prospectively, there was limited evidence provided by one HQS (Arnason et al., 2004) of no 

association between hip extension flexibility and risk of SRGP development ( Figure 6b). 

Retrospectively, there was limited evidence from one HQS (Thorborg et al., 2014) of no 

association between hip extension flexibility and SRGP (-0.19, -0.84 to 0.46, Figure 6c). 

Hip extensor muscle characteristics 

Hip extensor muscle strength 

Retrospectively, there was very limited evidence emerging from one LQS (Mohammad et al., 

2014) of no association between hip extensor muscle strength during isokinetic test in angular 

velocity 2.1 rad*s-1 (~120°/s) and SRGP (0.22, -0.40 to 0.84, Figure 6d). 
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Hip flexor to extensor muscle ratio 

Retrospectively, there was very limited evidence emerging from one LQS (Mohammad et al., 

2014) of no association between hip flexor to hip extensor muscle strength ratio during 

isokinetic test in angular velocity 2.1 rad*s-1 (~120°/s)associated and SRGP (0.15, -0.47 to 0.77, 

Figure 6e). 
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Figure 6: Forest plot detailing the analysis of movement and muscular functions in the sagittal plane:  
a – hip flexor muscle strength retrospective results, b – hip flexor muscle flexibility prospective 
results, c – hip flexor muscle flexibility retrospective results, d – hip extensor muscle strength 
retrospective results, e – hip flexor to extensor muscle strength ratio retrospective results. 
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Hip rotation range of movement 

Prospectively, there was very limited evidence from one LQS (Verrall et al., 2007a) that hip 

internal and external rotation range of movement is not a risk factor for SRGP development 

(Figure 7a and c). 

Retrospectively, there was strong evidence emerging from two HQS (Malliaras et al., 2009, 

Thorborg et al., 2014) and one LQS (Nevin and Delahunt, 2013) on no difference in unilateral hip 

internal rotation range of movement; and strong evidence emerging from two HQS (Malliaras 

et al., 2009, Verrall et al., 2005a) of no difference in bilateral hip total internal rotation range of 

movement (sum of both legs), associated with SRGP (Figure 7b). There was moderate evidence 

emerging from one HQS (Malliaras et al., 2009) and one LQS (Nevin and Delahunt, 2013) of no 

difference in unilateral hip external rotation range of movement; but strong evidence emerging 

from two HQS of decreased bilateral total hip external rotation range of movement (sum of both 

legs) associated with SRGP  (-0.43, -0.80 to -0.05, Figure 7d). 

Knee muscle characteristics 

Prospectively, there was limited evidence from one HQS (O'Connor, 2004) that knee flexor 

muscle isokinetic strength measured with isokinetic measurements in angular velocity 1.04 

rad*s-1 (~60°/s) is not a risk factor for SRGP (Figure 7e). The same study provided limited 

evidence of decreased concentric knee extensor muscle strength measured with isokinetic 

measurements in angular velocity 1.04 rad*s-1 (~60°/s) is not a risk factor for SRGP as a risk 

factor for SRGP (-0.51, -1.00 to -0.01, Figure 7f).  

Abdominal muscle characteristics 

Retrospectively, there was limited evidence from one HQS (Jansen et al., 2010) of a decrease of 

transversus abdominis (TrA) muscle thickness at rest in participants with right-sided (-0.80, -1.32 
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to -0.28, Figure 7g) and left-sided SRGP symptoms (-1.05, -1.58 to -0.51, Figure 7g). One HQS 

(Cowan et al., 2004a) reported a delay in TrA activation onset during active straight leg raise task 

associated with SRGP, but adequate data was not available to complete SMD calculations.  

One study (Jansen et al., 2010) additionally reported no change in TrA thickness during active 

straight leg raise (ASLR) and bilateral isometric adduction test; and internal and external oblique 

muscle thickness at rest, ASLR or bilateral isometric adduction associated with SRGP, but 

adequate data was not available to complete SMD calculations. 

One study (Cowan et al., 2004b) reported no change in internal oblique and rectus femoris 

muscle activation onset timing during ASLR associated with SRGP, but adequate data was not 

available to complete SMD calculations. 
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Figure 7: Forest plot detailing the analysis of other movement and muscular functions: a -  hip internal 

rotation range of movement  prospective results, b – hip internal rotation range of movement  
retrospective results, c – hip external rotation range of movement  prospective results, d – hip 
external rotation range of movement  retrospective results, e – knee flexor muscle strength  

prospective results, f – knee extensor muscle strength prospective results, g – transversus abdominis 
muscle thickness retrospective results. 
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Muscle Feature Pro/Retro 
Studies missing 

in pooled results 
Studies included 
in pooled results 

Included 
studies 
quality 

Specific criterion 
Pooled 

result/Calculated 
SMD 

Evidence 

Adductor 

Strength 

Pro 

Emery, 2001 O'Connor, 2004 HQ Isokinetic hip adduction in 0.52 rad * s -1 No change Limited   

Engebretsen, 
2010 O'Connor, 2004 HQ Isokinetic hip adduction in 2.08 rad * s -1 Decrease in SRGP Limited   

Crow, 2010 

Tyler, 2001 O'Connor, 2004 HQ Isokinetic hip adduction in 3.66 rad * s -1 No change Limited   

Retro 

  Malliaras, 2009 HQ Squeeze test 0° Decrease in SRGP Limited   

  Malliaras, 2009 HQ Squeeze test 30° Decrease in SRGP Limited   

  Jansen, 2010 HQ 

Squeeze test 45° Decrease in SRGP Strong  
  Malliaras, 2009 HQ 

  Mens, 2006 HQ 

  Nevin, 2014 LQ 

  
Mohammad, 

2014 
LQ Isokinetic concentric hip adduction No change Very limited  

  Thorborg, 2014 HQ Isometric hip adduction No change Limited   

  Thorborg, 2014 HQ Eccentric hip adduction Decrease in SRGP Limited   

Flexibility 

Pro 
Emery, 2001 Arnason, 2004 HQ 

Unilateral abduction flexibility test No change 
Moderate - 

not 
homogenous 

  Tyler, 2001 HQ 

Retro 

  Malliaras, 2009 HQ 
Right bent knee fall out Increase in SRGP Moderate  

  Nevin, 2014 LQ 

  Thorborg, 2014 HQ Unilateral abduction flexibility test No change Limited  

Peak torque 
angle 

Pro   O'Connor, 2004 HQ Peak torque angle No change Limited  

Abductors Strength 

Pro 

  O'Connor, 2004 HQ Isokinetic hip abduction in 0.52 rad * s -1 Decrease in SRGP Limited 

  O'Connor, 2004 HQ Isokinetic hip abduction in 2.08 rad * s -1 No change Limited   

  O'Connor, 2004 HQ Isokinetic hip abduction in 3.66 rad * s-1 No change Limited 

Retro 

  Malliaras, 2009 HQ 
Isometric hip abduction No change Strong  

  Thorborg, 2014 HQ 

  
Mohammad, 

2014 
LQ Isokinetic concentric hip abduction No change Very limited 

Relationship between 
abductor and adductor 

muscles 
Strength Retro 

  
Mohammad, 

2014 
LQ 

Isokinetic concentric hip adductor vs. abductor 
strength 

No change Very limited  

  Tyler, 2001 HQ Isometric hip adductor vs. abductor strength Decrease in SRGP Limited   
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Activation Retro 

  Morrissey, 2012 HQ Moving leg - early phase of SHF Decrease in SRGP Limited  

  Morrissey, 2012 HQ Moving leg - middle phase of SHF No change Limited   

  Morrissey, 2012 HQ Moving leg - late phase of SHF No change Limited  

  Morrissey, 2012 HQ Weight-bearing leg - early phase of SHF Decrease in SRGP Limited  

  Morrissey, 2012 HQ Weight-bearing leg - middle phase of SHF Decrease in SRGP Limited   

  Morrissey, 2012 HQ Weight-bearing leg - late phase of SHF Decrease in SRGP Limited  

Hip flexors 

Strength Retro 

  
Mohammad, 

2014 
LQ Isokinetic concentric hip flexion Increase in SRGP Very limited  

  Thorborg, 2014 HQ Isometric hip flexion No change Limited  

  Thorborg, 2014 HQ Eccentric hip flexion No change Limited  

Flexibility 
Pro   Arnason, 2004 HQ Modified Thomas's test No change Limited   

Retro   Thorborg, 2014 HQ Modified Thomas's test No change Limited  

Hip extensors Strength Retro   
Mohammad, 

2014 
LQ Isokinetic concentric hip extension No change Very limited  

Relationship between 
flexor and extensor 

muscles 
Strength Retro   

Mohammad, 
2014 

LQ Isokinetic concentric hip flexion vs extension No change Very limited  

Hip rotation ROM 

Hip internal 
rotation 

Pro Ibrahim, 2007 Verral, 2007 LQ Passive hip internal rotation test No change Very limited  

Retro 

  Nevin, 2014 LQ 

Passive hip internal rotation test No change Strong   Thorborg, 2014 HQ 

  Malliaras, 2009 HQ 

  Malliaras, 2009 HQ 
Passive total hip internal rotation (sum of both legs) No change Moderate  

  Verral, 2005 HQ 

Hip external 
rotation 

Pro Ibrahim, 2007 Verral, 2007 LQ Passive hip external rotation test No change Very limited  

Retro 

  Nevin, 2014 LQ 
Passive hip external rotation test No change Strong  

  Malliaras, 2009 HQ 

  Malliaras, 2009 HQ Passive total hip external rotation test (sum of both 
legs) 

Decrease in SRGP Strong  
  Verral, 2005 HQ 

Knee extensor Strength Pro   O'Connor, 2004 HQ Isokinetic knee extension No change Limited  

Knee flexor Strength Pro   O'Connor, 2004 HQ Isokinetic knee flexion Decrease in SRGP Limited  

Transversus abdominis Thickness Retro   Jansen, 2010 HQ 
Resting thickness - right-sided symptoms Decrease in SRGP Limited  

Resting thickness - left-sided symptoms Decrease in SRGP Limited  

Table 4: Table summarising all studies included in this systematic review, findings and levels of evidence.
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Discussion 

This systematic review and meta-analysis synthesised 17 studies, including 8 prospective and 9 

retrospective, which investigated changes in movement and muscle function in professional 

and amateur athletes with SRGP. Overall, there was conclusive evidence that measurable 

differences in movement and muscle function factors exist in athletes with SRGP – some of 

which may precede and increase the risk of developing injury (Table 4). The findings should be 

considered by clinicians when designing rehabilitation and screening programmes (Table 5). 

There were some strong findings emerging from the evidence synthesis. The most notable, 

supported by strong or moderate evidence (Table 4), were retrospective associations between 

existing SRGP and: adductor muscle weakness, increased abduction flexibility (bent knee fall 

out) and decreased internal and external rotation range of movement. These results  should be 

particularly considered when designing rehabilitation programmes for athletes with 

established SRGP. Prospectively, a paucity of evidence and data is available to complete meta-

analysis, but limited evidence indicates reduced hip adduction strength may be a risk factor for 

SRGP development. Additionally, it is worth noting that numerous studies also reported hip 

abductor strength deficits as a risk factor for SRGP development, but could not be included in 

the meta-analysis due to a lack of reported data and response requesting additional data from 

corresponding authors. Nonetheless, hip abduction strength deficits should be particularly 

considered in screening programmes. 

Methodological considerations of included studies  

There have been numerous attempts to introduce a common classification system for 

diagnosing SRGP (Holmich, 2007, Mens et al., 2006, Falvey et al., 2009), which I have not 

added to but have instead combined pragmatically in order to enable review. All but one study 

(Mohammad et al., 2014) provided clear diagnostic criteria. There was heterogeneity of SRGP 
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definitions, with 11 subtly different diagnostic criteria being identified. This may limit the 

strength of the review, but the similarities between classifications mean I am confident our 

review is sufficiently robust with each study using similar inclusion criteria regardless of 

diagnostic term. For example, both Morrissey et al. (2012) and Malliaras et al. (2009) use an 

anatomical location of pain analysis alongside resisted movement tests and passive joint stress 

tests to differentially diagnose adductor tendinopathy with respect to hip joint pathology. 

They differ in that Malliaras et al. (2009) additionally assessed the symptoms during functional 

task such as agility drills, but these differences are relatively minor. Very similar inclusion 

criteria, based mainly on the palpatory pain of the adductor muscle, tendon or insertion area, 

and reproduction of symptoms during resisted hip adduction, are presented by Cowan et al. 

(2004), Jansen et al. (2010), Morrissey et al. (2012) and Thorborg et al. (2014). Interestingly, 

the diagnostic term is different in all studies: long standing groin pain (Cowan et al., 2004a), 

adduction related groin pain (Jansen et al., 2010), chronic groin pain (Morrissey et al., 2012a) 

and adductor related groin pain (Thorborg et al., 2014).  There is no question that initial recent 

attempts to establish international consensus on groin pain nomenclature should reduce 

confusion and lack of agreement regarding this issue. Potentially, future pathophysiological 

validity studies would help move clinical practice and research forward by enabling more 

robust result collation via shared nomenclature.  

Measurement protocols for each specific movement and muscle function variable also varied 

across the included studies. For example, for measurement of adductor muscle strength, three 

studies used hand-held dynamometers (Jansen et al., 2010, Mens et al., 2006, Thorborg et al., 

2014), two used sphygmomanometers (Nevin and Delahunt, 2013, Malliaras et al., 2009) and 

one used an isokinetic dynamometer (Mohammad et al., 2014). Additionally, one study using a 

hand-held dynamometer used it in two contraction types: isometric and eccentric (Thorborg et 

al., 2014). Further research is needed about the validity of each measure and consensus about 
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optimal methods would again improve both research synthesis and clinical translation.  

Additionally, variation in outcome measures and methodology across included studies limited 

the potential for data pooling.  

Although I included only studies investigating movement and muscle function factors in 

athletic populations, this included varied sports disciplines and participation levels. This i s both 

a strength and a potential weakness of our synthesis, as data pooling in such heterogeneous 

groups entails combining results from cohorts who have different sports specific training and 

participation volume.  While these factors are highly likely to influence injury risk and 

presentation profile, it was nonetheless judged that the pooling conducted was valuable to 

strengthen the review findings considering the paucity of research currently available for each 

group. This may need to be re-considered once the volume of work is sufficient at different 

sporting levels and in different disciplines. 

Interpreting the results of prospective studies was complicated by a lack of methodological 

clarity in manuscripts; for example testing dominant or non-dominant limb, moving or not 

moving, left or right, and inured or uninjured (Arnason et al., 2004, Emery and Meeuwisse, 

2001, Engebretsen et al., 2010, Ibrahim et al., 2007, Tyler et al., 2001). The most accessible 

approaches (O'Connor, 2004, Verrall et al., 2007a) clearly measured and compared dominant 

and non-dominant sides. Additionally, only some retrospective studies were clear about the 

side of measurements (Cowan et al., 2004a, Jansen et al., 2010, Morrissey et al., 2012a, Nevin 

and Delahunt, 2013, Thorborg et al., 2014, Verrall et al., 2005a). Given that unilateral 

symptoms can reflect bilateral biomechanical dysfunction, it would be our recommendation 

that future work examines movement on both sides, under any and all conditions assessed – 

and analyses data with reference to both symptom and dominance. In this review, however, I 

chose to analyse the data from dominant or right leg only, in order to maintain the consistency 

of the analysis despite different ways of presenting the data by individual authors. 
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Very few retrospective studies attempted to blind the measurement assessor (Engebretsen et 

al., 2010, Malliaras et al., 2009, Thorborg et al., 2014, Verrall et al., 2007a) and only one study 

reported detailed sample size and power calculations (Nevin and Delahunt, 2013).  

Five studies (Cowan et al., 2004a, Engebretsen et al., 2010, Morrissey et al., 2012a, Tyler et al., 

2001, Verrall et al., 2005a) did not report the reliability of the measurements in the assessors’ 

hands. Addressing these methodological limitations in future research is needed to improve 

confidence in findings and subsequently ‘levels of evidence’ which can be concluded.  

Surprisingly, some studies (Crow et al., 2010, Emery and Meeuwisse, 2001, Engebretsen et al., 

2010, Ibrahim et al., 2007, Tyler et al., 2001, Verrall et al., 2005a) did not provide basic 

anthropometric data such as age, height and weight, which limits the external applicability of 

findings and can be critical confounding factors, or co-variates, in biomechanical research. In 

particular, factors such as strength and muscle activation may clearly depend on the individual 

athlete’s fitness and muscle morphology. In order to avoid a potentially significant source of 

bias, all studies investigating biomechanical factors should accurately measure these factors 

and include them in analysis. 

Coronal plane muscle activation and strength  

Adductor muscles  

There is common agreement that the main muscles affected by SRGP are the hip adductors 

(Holmich, 2007, Crow et al., 2010), an assertion confirmed by eleven studies reporting 

decreased adduction strength associated with groin pain symptoms.  Overall there is strong 

evidence of an association between adductor muscle weakness and SRGP. Meta-analysis 

results showed strong evidence of adductor muscle weakness after the SRGP onset, but only 

when measured by squeeze test in 45° of hip flexion. This may indicate the importance of 

testing the groin symptoms using this particular test, which seems most sensitive to detect 
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strength deficits in athletes with SRGP.  There was limited evidence of decreased adduction 

strength prior to SRGP onset. It is important to note that there were four other prospective 

studies (Crow et al., 2010, Emery and Meeuwisse, 2001, Engebretsen et al., 2010, Tyler et al., 

2001) reporting adductor muscle weakness prior to the onset of SRGP, but presentation of the 

data in those studies did not allow for data pooling.  Adductor muscle weakness in the pre-

season was associated with SRGP onset indicating that strengthening of this muscle group may 

be a key component of prevention. Crow et al. (2010) reported decreased adductor muscle 

strength two weeks prior to SRGP onset, but no earlier, suggesting a potential neuro-inhibitory 

mechanism for altered adductor motor output immediately before or at the time of pain onset 

for some athletes rather than long-standing weakness. Clinicians should consider 

implementing prevention strategies based on adductor strength screening findings. 

Six studies investigated the association between abduction flexibility and SRGP (Arnason et al., 

2004, Emery and Meeuwisse, 2001, Malliaras et al., 2009, Nevin and Delahunt, 2013, Thorborg 

et al., 2014, Tyler et al., 2001) and only one retrospective LQS reported a significant 

association (Nevin and Delahunt, 2013). However, pooled results show moderate evidence 

that abduction flexibility was not changed before, but increased after SRGP onset, measured 

with the bent knee fall out test.  

The reason for such changes is not clear. There may be a relationship between optimal hip 

abductor flexibility and SRGP, with too much flexibility being problematic. It is worth noting, 

however, that the flexibility increase was noted only during the bent knee fall out test, which is 

a combination of abduction and external rotation flexibility test.  It is possible that this 

flexibility increases following pain onset, perhaps with rehabilitation or due to reduced 

participation and therefore reduced stress. This may remove the impact of compensations for 

adductor weakness prior to symptom onset. This could be questioned, as some athletes may 

have joint factors that explain restriction, which could also change, on this timescale due to 
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reduced joint loading. Further, there may be an interaction between joint load, increased 

flexibility and sports participation volume. Further research is needed to elucidate the 

relationship these factors, with such work having the potential to clarify aetiology.  

Abductor muscles  

There is a commonly held belief that SRGP might be at least partly due to muscle imbalance in 

the pelvic girdle area and, consequently, sub-optimal loading on groin structures (Morrissey et 

al., 2012a, Renstrom and Peterson, 1980). There is an association between decreased hip 

abduction strength and SRGP observed in prospective, but not retrospective studies (Malliaras 

et al., 2009, Thorborg et al., 2014, O'Connor, 2004, Mohammad et al., 2014). It is plausible that 

there is a weakness of hip abductors preceding SRGP onset, which disappears following pain 

onset or subsequent rehabilitation. This rehabilitation may be particularly important for 

gluteus medius muscle which is thought to have a primary stabilising function (Grimaldi, 2011), 

and should be considered in future research. 

Relationship between abductor and adductor muscles 

A prospective study by Tyler et al. (Tyler et al., 2001) reports a significant decrease in 

adduction in relation to abduction strength associated with SRGP in professional (ice hockey) 

players, while Morrissey et al. (Morrissey et al., 2012a) found a decrease in GM:AL activation in 

amateur footballers.  The relationship between muscle strength and activation is not linear 

(Kamen and Gabriel, 2010b). Therefore, although seemingly contradictory, if the abductor 

muscles are weaker they may need to increase activity to achieve their function of pelvic girdle 

stability. Additionally, GM activity were measured during a standing hip flexion movement (a 

functional task), whereas strength measurements were obtained using a maximal voluntary 

contraction break test and isolated hip abduction task (Tyler et al., 2001). These measures 

clearly investigate different aspects of the strength construct in a functional versus non-
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functional task. Research designs that include muscle activation in functionally relevant tasks 

and strength measures are needed to broaden our understanding of how different aspects 

muscle function can be affected in SRGP. 

Horizontal plane hip movement   

Strong evidence of a decrease in hip total external rotation range of movement after the SRGP 

onset was the only significant finding in horizontal plane hip movements. It is not clear 

whether this ROM limitation have muscular or articular origin, and there might be a number of 

reasons why it exists. For example, hip rotation restriction may follow increased hip joint 

loading due to muscle imbalance around the hip (e.g. reduced abductor strength). Decreased 

ROM in athletes may also be related to underlying hip joint injury, which may be 

asymptomatic. Limitation of rotation ROM is clearly an area that requires further research in 

athletes with SRGP, as a clear distinction needs to be made between articular and muscular 

movement restrictions.  

Other muscle function and architecture features  

A decrease in TrA thickness and delayed onset during movement was found to be associated 

with SRGP. Cowan's high quality study reported delayed TrA activation in relation to the 'prime 

mover' in a straight leg raise manoeuvre (Cowan et al., 2004b, Jansen et al., 2010), while 

Jansen's group reported reduced relaxed cross sectional area. These findings suggest that 

muscle dysfunction in SRGP is not limited to hip muscles and TrA function may be an important 

prevention and rehabilitation consideration in some affected athletes. 
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Clinical variable assessed Finding Clinical takeaway 

Parameter  Feature Headline result 
Include in screening 

[prospective findings] 

Include in rehabilitation 

[retrospective findings] 

Adductor 
Strength Decreased in SRGP   

Flexibility Increased in SRGP    

Abductor Strength Decreased in SRGP   

Relationship 
between 

abductors and 
adductors  

Strength Decreased in SRGP    

Activation Decreased in SRGP    

Hip flexor Strength Increased in SRGP    

Hip rotation 
ROM 

Hip external 
rotation 

Decreased in SRGP    

Knee flexor Strength Decreased in SRGP    

Transversus 
abdominis 

Thickness Decreased in SRGP   

Table 5: Table summarising the clinical implications emerging from this review;  indicates strong evidence,  indicates moderate evidence,  indicates limited or very 
limited evidence; SRGP – sports related groin pain. 
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Clinical implications and future directions 

In this section, I summarised the muscular and movement alterations associated with SRGP 

that could be considered during development of rehabilitation and prevention programmes. 

The strongest prospective risk factor from this review was reduced hip adductor strength, 

which should be considered for inclusion in pre-season screening programs. There is some 

indication for more regular screening of adductor strength in some environments (e.g. elite 

sport) given it may precede pain onset by 2 weeks in some individuals who go onto develop 

SRGP (Crow et al., 2010), although further studies in elite and other athletic populations are 

needed to confirm this finding. Recommendations for adductor muscle strength measurement 

and treatment strategies are well described. They include squeeze and unilateral resisted 

adduction tests to establish any potential strength deficits; and various exercises of graduated 

difficulty to restore them, such as squeezing the ball between knees in the early phase of 

rehabilitation and moving to long lever (ball between the feet) and ope n kinetic chain 

strengthening exercises using resistance devices as rehabilitation progresses (Weir et al., 

2011b, Holmich et al., 2010). Other factors preceded groin pain onset but the evidence was 

limited. These included decreased hip abductor muscle strength, and decreased knee extensor 

strength, indicating screening for and addressing identified deficits may reduce the incidence 

of SRGP. The most effective interventions for addressing hip and knee muscle function deficits 

and whether they decrease the incidence of groin pain warrant further investigation. 

Restriction in hip external rotation range of movement, in athletes with SRGP, may be critical 

due to the requirement for sufficient range of hip movement for adequate load absorption 

during change of direction activities (L'Hermette et al., 2006). Clinicians should identify 

whether the underlying cause of possible deficits in hip rotation ROM is articular or muscular. 

If muscular restriction is present, specific techniques including stretching, soft tissue work as 

well as using the entire range of movement in sports-specific tasks during the end phase of 
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rehabilitation should be considered. Articular restriction may be less likely to change with 

these interventions, and end range loading may even provoke symptoms (Ratzlaff et al., 2013). 

This may partly explain why addressing flexibility specifically (e.g. stretching, soft tissue 

techniques) is less of a feature of current groin rehabilitation and prevention programs than 

adductor and other muscle strengthening (Holmich et al., 1999, Weir et al., 2010, Weir et al., 

2011b).  

This review has shown that despite a lack of clear SRGP treatment guidelines, there is in fact a 

paucity of studies investigating the biomechanical patterns in SRGP. Studies summarised in the 

chapter mainly focus on local, simple biomechanical measures such as strength, flexibility and 

range of movement. It is important to note, that presented studies seem to show consistent 

and similar results, clearly indicating that specific characteristics of the athlete with SRGP exist. 

However, this review has also highlighted that there are very few studies that have 

investigated more sophisticated biomechanical measures, such as muscle activation or 

kinematic imbalances.  Additionally, only one study has measures those deficits during 

functional movement tests, which seem very relevant given the relation between SRGP and 

specific movements that predispose certain sports groups to become injured. 

The assessment and treatment options for potential pelvic movement control deficits are not 

well established and certainly require further investigation. We recommend careful clinical 

assessment of functional movements such as standing hip flexion (Morrissey et al., 2012a) or 

single leg squat which reflect common movements in sports possessing a high incidence of 

SRGP and load the pelvis in a relevant fashion. These functional tasks are also relatively easily 

controlled, compared to cutting manoeuvres, and therefore have the potential to reveal 

characteristic biomechanical signatures of SRGP. 
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Conclusions 

Our review identified a range of movement and muscle function features that can be 

prospectively identified in a range of athletes who subsequently develop SRGP and should be 

considered in screening programmes (Table 5). These findings provide clear clinical guidance 

that should be implemented in prevention and rehabilitation of athletes with SRGP.  

Mainly hip adductors and knee flexor strength deficits should be screened and addressed as 

they may be risk factors for SRGP.  

Further, this review identified both muscle function features and range of movement 

considerations, clearly shown by retrospective studies that should be considered in 

rehabilitation programmes (Table 5). In particular, adductor muscle weakness and increased 

abduction flexibility, hip total external rotation deficits, imbalances between adductor and 

abductor muscles, increased hip flexor strength and transversus abdominis muscle thickness 

should be addressed in rehabilitation programmes. The lack of consistency about various 

classification issues, alongside methodological heterogeneity also need to be addressed in 

order to optimally move the evidence base forward. 

It is worth noting, that despite the agreement of a multi-directional and multi-structural nature 

of SRGP, only one study investigated more sophisticated and more holistic signatures of SRGP. 

Further research should therefore focus not on exact diagnosis of the tissues, but on more 

general outcome measures, which may be applicable clinically – thus muscle activation and 

movement patters seem to be a relevant target for investigation. 

Finally, the literature is notable for the near complete lack of research on SRGP-related 

movement pattern differences during functional movements and also for comparison between 

sporting participation levels. These aspects will be addressed further in the  forthcoming 

chapters.  
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Chapter 3: Aims and hypotheses 

Chapter overview 

This chapter summarises the main aims of the thesis by outlining null hypotheses for each 

study. It summarises the aim of the whole thesis, as well as for the separate chapters –

alternative hypotheses being provided separate in each subsequent chapter. 

Overall aim 

The overarching aim of this thesis was to explore biomechanical factors associated with SRGP 

in order to determine whether they should be considered in improved rehabilitation and 

prevention paradigms, and if so, in what ways they may be beneficial. Allied to this primary 

research question were subsidiary questions exploring whether there was evidence of sports- 

and participation-level specificity.  

Null hypothesis 1 – Reliability study 

Coronal plane muscle activation measured with surface electromyography, and hip joint 

kinematics measured with 3D motion capture system, as well as the methods of data analysis 

during standing hip flexion and single leg squat movement manoeuvres would not be reliable 

between testing occasions.  

Null hypothesis 2 – Observational study 

There would be no consistent coronal plane muscle activation and movement pattern 

differences present when comparing athletes with sports related groin pain to well-matched, 

healthy controls, regardless of discipline and level of sport.  
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Null hypothesis 3 – Longitudinal study 

Coronal plane muscle activation and hip joint kinematic patterns in athletes after an acute 

groin injury would not be altered by rehabilitation irrespective of the clinical signs of recovery.   
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Chapter 3: Methods 

Chapter overview  

The development of the methodology for the studies was based on the paper published 

previously by our group (Morrissey et al., 2012a). However, many aspects of the inclusion and 

exclusion criteria, the data collection and data analysis processes were further developed 

during my PhD.  

The methodology for each study included in this thesis (observational and longitudinal) 

differed in details, regarding mainly the inclusion and exclusion criteria of the participants and 

the number of testing occasions. Those differences between studies are clearly described 

throughout this chapter. However, the main methodological consideration regarding the data 

collection, processing and analysis remain similar and consistent for all studies and are 

described in details. 

The first part of the chapter (‘Research protocol overview’) provides a concise description of 

the data collection, data processing and data analysis overview. This particular part of the 

chapter aims at describing the generic data collection process subsequently implemented in 

the thesis, and provides only limited details regarding the decision-making of the given 

collection, processing or analysis methods for clarity. Those details are thoroughly discussed 

further in the chapter. 

The second part (‘Participants’) describes the aspects associated with the study participants: 

ethical approval and potential ethical issues associated with the studies; the recruitment 

process and issues associated with it; the participant inclusion and exclusion criteria, and the 

rules of defining the dominance of participants’ leg.  
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The third part of the chapter (‘Measurement method’) firstly describes the surface 

electromyography (sEMG) as a method of collecting the muscle activation data. This part 

includes the general considerations regarding different types of the EMG, introduces the 

chosen method and discusses its advantages and disadvantages. Further, it describes the 

reliability of the method and factors that may influence it as well as discusses.  This part also 

describes the methodology of collecting and processing the kinetic and kinematic data. 

The fourth part of the chapter describes the stages of analysis of the collected data. It 

describes the movement manoeuvres chosen to collect the data and the method of dividing 

the movements into stages in order to enable the statistical comparison of the data.  

The last part of the Methods chapter presents a detailed analysis of the data processing 

techniques. A graphical presentation of a worked example of a sample data on each stage of 

data processing, alongside the justification of choosing certain processing techniques, 

facilitates the understanding the rationale of the chosen methods. 

Research protocol overview 

All studies presented in the thesis had ethical clearance, and all participants signed an 

informed consent before the data collections process.  

All participants filled in study questionnaires and underwent a clinical examination in order to 

be included in the study as an injured or control participant. Injured participants of the 

longitudinal study underwent more detailed clinical examination and VAS scores were 

recorded during each testing occasion. 

Surface electromyography (sEMG) electrodes and CodaMotion infra-red markers were placed 

on the pelvic, hips and lower limbs of each participant. After that, the participant was asked to 
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perform two movement manoeuvres: standing hip flexion (SHF) and single leg squat (SLS), 

each manoeuvre being performed three times on each leg.  

Kinematic data was filtered, and sEMG data was rectified, smoothed and filtered before 

analysis. There were four outcome measures: gluteus medius versus adductor longus muscle 

activation magnitude ratio, and hip joint rotations in three planes: coronal, sagittal and 

horizontal; calculated separately for the injured and uninjured players of each sports discipline. 

Movement manoeuvres were divided into exclusive, clinically relevant, phases prior to 

statistical comparison, with SHF being divided into three phases while SLS was divided into 

seven phases. 

Each variable was averaged within each phase for each leg for each participant, considered 

separately if it was moving or in stance, then group comparisons between the injured and 

uninjured athletes were performed. 

Participants 

Ethics 

All studies presented in the thesis were approved by the Queen Mary University of London 

Ethics of Research Committee. The ethical application for approval including the Participant 

Information Sheet and Informed Consents are enclosed in Appendix 5 for the observational 

study (p. 288) and in Appendix 7 for the longitudinal study (p. 308); the letters of ethical 

approval are enclosed in Appendix 4 for the observational study (p. 287) and in Appendix 6 for 

the longitudinal study (p. 307). NHS ethical approval was not necessary for the studies finally 

included in the thesis due to the specificity of investigated cohort as I aimed in recruiting 

amateur and professional athletes suffering from symptoms associated with their sports 

discipline rather than patients recruited via NHS.  
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A few ethical issues needed to be carefully considered and addressed before applying for the 

ethical approval for the studies. 

Firstly, I ensured that all potential study participants take part in the study voluntarily and that 

they are aware that they may withdraw from the study at any point, without giving any reason 

for such decision, with no consequences. I have emphasised it verbally several times before 

the potential participants signed the informed consent, such statement was also included in 

the Participant Information Sheet, which the potential participants were encouraged and given 

time to read before signing the consent.  

Second potential ethical issue of the study was the participants’ anonymity, which was solved 

by applying the coding system of the study participants. Outcomes of the clinical examination, 

description of symptoms and collected data were recorded and stored using Participants’ 

codes. Only the informed consents were signed by the participants with their names. The 

description of the coding system, which provided the link between the participants’ personal 

details and their coding number, was stored in a locked cabinet based in a locked PhD students 

office and locked Laboratory. I was the only person who had the keys to the cabinet; only a 

limited number of Centre for Sports and Exercise Medicine staff members own the keys to the 

Laboratory and to the PhD students’ office. 

The preparation of the participant for the data collection process required uncovering certain 

areas of his body: upper thighs, groin, buttocks, lower back and lower abdomen; lower back, 

lower abdomen and upper thighs also had to be uncovered throughout the data collection 

process. This may have potential ly caused participant’s discomfort. Firstly, the participant had 

to undergo a clinical examination consisting of palpation and specific clinical tests focusing on 

their hip, groin and abdominal area. Then, the sEMG electrodes were placed on above 

mentioned parts of participant’s body in order to obtain the muscle activation data; further, 
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CodaMotion markers were placed on participant’s body. Finally, the entire data collection 

process had to be performed with the participant’s abdomen and lower limbs uncovered in 

order to maximisee the visibility of the CodaMotion markers.  

The nature and necessity of those procedures were emphasised in writing in Information 

Sheet, understanding and agreement were confirmed prior to signing the informed consent. In 

order to provide a professional clinical approach to the participants, all procedures were 

performed by me - a Senior Physiotherapist, a member of Chartered Society of Physiotherapy 

and the Health and Care Professions Council; I have also obtained a Disclosure and Barring 

check prior to the data collection. However, if agreed with the study participant, the clinical 

examination, electrode placement and data collection process were performed by 4th year 

medical students under my close supervision.  

In order to minimise participants’ discomfort during their preparation for the data collection 

process, the clinical measurements and electrodes placement on participant’s body were 

always performed in a presence of at least two people behind the screen or in a separate room 

in the Human Performance Laboratory (HPL), which was locked throughout this process with 

the windows fully covered.  

For the data collection event, all participants were asked to bring their own shorts to the HPL. 

If they failed to do so, they were provided with a suitable pair. 

Another ethical consideration was associated with the necessity of provoking pain during 

clinical examination when checking participants’ eligibility for the study. In order to ensure 

that the pain or discomfort during is minimal, the examination was performed in a careful and 

delicate way by me or a 4th year medical students under my close supervision.  
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Recruitment 

The recruitment process of the professional and amateur athletes was one of the biggest 

challenges in the data collection process. No study included in this thesis was externally or 

internally funded, so the potential participant had to agree to partake in the study with no 

refund for their time, travel and effort.  

The potential participants were contacted via private contacts, friends and colleagues as well 

as using the contact details found in the web. Participants to be included in control group were 

recruited in similar ways and were closely matched with the SRGP athletes in order to avoid 

the bias arising from confounding factors (weight, height, age, position played, but also 

training type, access to physiotherapy and personal training service or the level and frequency 

of play).  

Careful matching of the control and symptomatic participants was one of the priorities in all 

included studies. Age, weight and height are typical sources of potential bias in biomechanical 

measurements, as the differences of these anthropometrical features between control and 

symptomatic groups may affect the sEMG values.  

The athlete’s position played on the pitch, among other mentioned factors, was treated with 

particular care, as in some sports the athletes playing in different positions may perform 

different movements. For example in rugby, while forwards perform repetitive twisting, 

cutting and pivoting and are frequently exposed to high loading in potentially very traumatic 

situations, backs perform additional kicking alongside running and changing directions.  

Matching of the symptomatic athletes and controls was a relatively difficult task due to 

simultaneous recruitment process of both groups. In consequence, the mean anthropometrical 

values of the SRGP athletes had to be closely monitored along the recruitment and data 

collection process, which allowed the recruited healthy controls to present similar mean values 
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in height, weight and age. Fortunately, given a high interest of healthy athletes in participation 

in the studies, it was possible to select the participants to match the desired values.  

The sample size calculation for each separate study was based on previous study by Morrissey 

et al (2012). Morrissey et al. recruited nine injured and nine healthy athletes, which proved to 

be a number large enough to observe significant differences in gluteus medius to adductor 

longus muscle activation ratio in standing hip flexion movement.  

Based on the sample size estimation equation (Kadam and Bhalerao, 2010, Kirby et al., 2002): 

where Zα is a constant number depending on the acceptance of the Type I error and whether 

the effect is one-sided or two-sided, according to the table presented below: 

 

α-error 5% 1% 0.10% 

2-sided 1.96 2.5758 3.2905 

1-sided 1.65 2.33  

 

Z1-β   is constant depending on the accepted power of the study as shown in the table below 

Power 80% 85% 90% 95% 

Value 0.8416 1.0364 1.2816 1.6449 

 

σ is the standard deviation, which is estimated for the study, but may be retrieved from 

previous similar study; 

Δ is a difference in effect between the injured and control groups. 
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Based on the formerly mentioned study by Morrissey et al. (Morrissey et al., 2012a), I chose 

the values for the formula: 

Zα - 2.5758 

Z1-β   - 1.2816 

σ – there were twelve different standard deviation values to be obtained from this study as 

there were two groups of participants (injured and control); the measurements were taken 

during the moving and weight-bearing phase of standing hip flexion movement (SHF); and SHF 

was further divided into three movement phases: early, middle and late. All of the values are 

listed below, sorted from the lowest to the highest value:  

0.3267 

0.3368 

0.3912 

0.4074 

0.4269 

0.48 

0.5416 

0.5596 

0.5973 

0.6186 

0.7005 

0.8182 

 

I decided to use the median of all of those values for further calculations of the sample size for 

my study, which was 0.5108. 

Δ also needed to be calculated, with six different values (three phases of movement during 

moving and weigh-bearing conditions), presented below, sorted from the lowest to the highest 

value: 
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276.435% 

40.47934% 

5.995547% 

123.6475% 

189.5781% 

97.46572% 

 

 In this case I again decided to use the median of those values, which was 110.5566 (Δ = 

1.105566). 

Using all of the above values, the sample size calculations are presented below: 

Above calculations suggest that recruiting eight participants in each study group would be an 

optimal number in order to reach the statistical significance of the results. However, very high 

differences between injured and control groups in the study which served as a base for the 

calculations (Morrissey et al., 2012a) may be associated with other factors.  

One of the most important potential sources of bias was the amateur level sporting population 

recruited for Morrissey’s study. This may mean that the participants have a higher variability of 

the training regime, general fitness and access to professional medical advice, and, in 

consequence, the reactions to pain may be emphasised. I aimed in recruiting mainly the 

professional athletes, who were potentially more equal in regards to those potential sources of 

bias; their general fitness and training regime is likely to be similar, professional medical help 

and advice is easily accessible. They professionals may also potentially show less change in 

muscle activation and movement patterns in the presence of pain, due to their better fitness 

levels. Therefore I decided to aim in a higher number of participants in studies focusing on 
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professional athletes, with the estimated number of ten in each group in each study 

(symptomatic and asymptomatic). 

Inclusion and exclusion criteria 

The definition of clear, evidence based and clinically relevant inclusion and exclusion criteria 

for study participants was one of the priorities before the data collection process. At the time 

of the data collection, there was a lack of international consensus among researchers 

regarding underlying pathology of groin symptoms, as well as its various diagnoses and 

terminology. A common agreement, however, exists that the nature of groin pain is multi -

structural and multi-factorial.  

In this thesis, an umbrella term ‘sports-related groin pain’ (SRGP) is proposed and used 

throughout. It includes the soft-tissue, but not hip joint diagnoses causing groin pain in 

athletes, which may be defined differently by the aforementioned classification systems. My 

hypothesis was that the multi-factorial and often misdiagnosed nature of groin symptoms 

would cause similar movement strategies in injured participants, which were associated with 

the symptoms rather than with diagnosis per se. This term, although defined prior to the Doha 

agreement (Weir et al., 2015), is consistent with one of the diagnostic and terminology 

subgroups specified there.  

The athlete had to be over 18 in order to participate in observational and longitudinal study. 

18 was selected as a minimum age in observational and longitudinal study firstly to ensure the 

participants were capable of making independent decisions whether to voluntarily take part in 

the study; secondly to ensure their physical maturity and avoid bias related to developmental 

imbalances. 

In order to be included in the observational study, a potential participant must have been 

experiencing sports related groin pain (SRGP) for a minimum of four weeks. This time frame 
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was decided to be long enough to consider the symptoms as ‘chronic’; it was also previously 

used in other studies (Mens et al., 2006, Morrissey et al., 2012a) and proved to be a sufficient 

period to demonstrate the significant biomechanical differences between the symptomatic 

and asymptomatic participants. Moreover, from a physiological perspective, four weeks after 

the symptoms onset is beyond the acute inflammation phase and into the intensive 

rehabilitation phase of injury, to which the study results are most relevant. Additionally, four 

weeks of pain is a long period of time in professional and amateur sports. Non-participation in 

training and game sessions may significantly decrease the levels of general and sports-specific 

fitness; it may also have serious consequences for the performance of the whole team, as well 

as may increase the players’ risk of other injuries (Arnason et al., 2004).  

In the longitudinal study, groin symptoms must have started as an effect of acute sports-

related incident. The potential participant must have been able to visit the Human 

Performance Laboratory to collect the first set of data a maximum of five days after the injury. 

This time frame was chosen to enable retrieval of information from the activation of the 

injured muscle as early as possible in the healing process. Additionally, the participant must 

have been available for at least two further data collection appointments, which were 

scheduled in two or three week intervals. These multiple, longitudinal measurements were 

planned to start early in the healing process in order to capture the biomechanical information 

from acutely injured muscles and discover the natural biomechanical adaptations of the 

muscle tissue during the healing process. 

Further inclusion criteria defined the clinical diagnosis process in order to assess potential 

participants’ eligibility for observational and longitudinal studies. 

For observational study, groin pain experienced by the potential participant must have 

decreased or prevented him from taking part in a game and/or training; for longitudinal study, 
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groin injury was defined as an acute incident, which resulted in groin symptoms and occurred 

in sports situations.  

In observational and longitudinal studies, tenderness and/or pain as a result of palpating the 

adductor musculature, adductor tendons, or their insertion to the pubic rami, were the next 

inclusion criteria. Reproduction of this pain while palpating these areas is one of the most 

common diagnostic criteria for SRGP, widely used by a number of researchers (Holmich, 2007). 

Palpation may additionally be useful in excluding hip joint related pathologies, as palpating 

groin musculature is not likely to reproduce hip-related groin pain. 

The reproduction of symptoms during a number of tests were the further inclusion criteria in 

all performed studies; specifically, the unilateral adductor muscle static resisted adduction test 

(lying supine); passive flexibility testing in the same position; unilateral iliopsoas muscle 

strength and flexibility testing; as well as squeeze tests in 0°, 45°, 90° of hip flexion. All of these 

tests were previously mentioned as reliable and valid (Malliaras et al., 2009, Thorborg et al., 

2011); the squeeze test in particular is most commonly mentioned in association with 

diagnostics of SRGP (Delahunt et al., 2011a, Delahunt et al., 2011b).  

The exclusion criteria in both observational and longitudinal studies were based mainly on the 

participant’s positive response to hip joint specific clinical tests. Hip joint pathologies 

commonly manifest as pain in the groin area (Anderson et al., 2012, Banerjee and McLean, 

2011), therefore carefully chosen clinical tests (flexion-adduction-internal rotation test 

(FADIR); flexion-abduction-external rotation test (FABER); and the grind test) were used to 

ensure that groin symptoms have muscular or biomechanical rather than hip joint origin. 

These tests are hip joint specific, sensitive, reliable and valid (Martin and Sekiya, 2008, Groh 

and Herrera, 2009). Additionally, significant lower back or posterior pelvic pain during the 
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physical examination excluded the potential participant from the study as this might indicate 

groin symptoms originating from the lumbar spine or sacro-iliac joints. 

Potential participant in both observational and longitudinal studies was also excluded if he/she 

had any previous groin or abdominal symptoms, injury or surgery. Exclusion of those 

participants aimed in ensuring that there are no other but biomechanical and functional 

factors from most recent injury affecting the measurements. All inclusion and exclusion criteria 

are synthesised in Table 6 the inclusion and exclusion criteria for the injured participants in the 

observational study are enclosed in Appendix 8 (p. 329), for the longitudinal study in 

Appendices 9 (first testing occasion, p. 333) and 10 (subsequent testing occasions, p. 337). The 

inclusion and exclusion forms for the healthy control participants in both studie s are enclosed 

in Appendix 11 (p. 339). 
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Inclusion criteria Exclusion criteria 

Observational  Longitudinal Observational  Longitudinal 

    
Positive response to any of the hip 
joint and SIJ clinical tests: quadrant 

test, grind test FADIR, FABER 

>4 weeks of SRGP 
symptoms 

<5 days after the acute 
injury 

Other previous 
hip/groin/abdominal injury or 

procedure 

Symptoms prevent from 
sporting activities 

Acute injury occurring in 
the sports situation 

  

>18 years old   

Tenderness and/or pain when palpating the adductor 
muscles, tendons or insertion to pubic rami 

  

Pain reproduction during at least two of clinical tests: 
unilateral hip adduction, unilateral passive hip flexibility 

test, squeeze test (0°, 45°, 90° of hip flexion) 
  

Additionally (but not necessarily), pain reproduction 
during other clinical tests: modified Thomas' test, active 

hip flexion against resistance 
  

 

Table 6: Inclusion and exclusion criteria for the observational, and longitudinal studies. 

 

Dominance 

Athletes often perform voluntary movements in a certain way, involving the preferred side of 

the body. This is particularly relevant in repetitive, sports-specific tasks, such as kicking the 

ball. In consequence, the biomechanical patterns of muscle activation and movement may 

differ between dominant and non-dominant limb. Defining the leg dominance is therefore an 

important stage in data analysis when investigating the association between unilateral 

symptoms (such as SRGP) and biomechanical measurements (such as kinematics, kinetics and 

sEMG magnitude). Despite a common agreement regarding the importance of the effect of leg 

dominance on biomechanical measurements, this feature is often overlooked in sports 

medicine research and in clinical settings (Jessica Velotta, 2011). 
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All athletes included in presented studies were participating in sports disciplines requiring 

repetitive, sports-specific movements in training and game.  A large number of those 

movements are one sided and asymmetrical, such as pushing off while starting to sprint, 

pushing off another player (rugby), kicking (football and rugby), twisting the whole body in 

particular direction and swinging the stick (field hockey) or throwing the Frisbee. It was likely 

that included participants performed those movements in a specific way, choosing the 

preferred side of the body more frequently than the other one. Therefore it was particularly 

important to determine the leg dominance of all the athletes included in the studies, and to 

include those data in further analysis.   

There is a number of ways to define the leg dominance: by the hand preference (BARBER et 

al., 1990), preference to kick the ball (HB. Greenberger, 1995, Morrissey et al., 2012a, 

Malliaras et al., 2009, Petschnig et al., 1998, Brophy et al., 2010), preference to jump (John A. 

Nyland, 1994), or preference of a weight-bearing leg when kicking a ball (John A. Nyland, 

1997). Dominance and preference of right or left leg may also depend on a task. The right leg 

was hypothesised to be more commonly chosen in movement (mobility) task, whereas left 

tends to be chosen during stability tasks (Gentry and Gabbard, 1995, Spry S, 1993). 

In this thesis, the leg dominance of all participating athletes was defined as preferred kicking 

leg. The pitfall of this approach is that not all of the included athletes perform repetitive 

kicking movement in their primary sports disciplines (hockey and Frisbee). Therefore  the 

movement of kicking may not be as intuitive in those sports, and may therefore have 

restricted application in defining the leg dominance.  

However, studies investigating preference to kick a ball as a definition of leg dominance, 

included healthy participant with no specification of preferable sports discipline, and still 

obtained valid results (Jessica Velotta, 2011). Therefore, in order to keep a maximum 
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consistency in methodology, I decided to use this method to determine the leg dominance in 

all study participants.  

Measurement methods 

The primary aim of the thesis was to investigate the muscle activation and movement patterns 

associated with SRGP. In order to meet this aim, I chose surface electromyography (sEMG) to 

collect the muscle activation data, and the optical motion capture system to collect kinematic 

data from the study participant.  Additionally, kinetic data from the force plates were also used 

to define the movement phases in the data processing and analysis. The rationale of the 

choice of these measurement methods are presented below, alongside the pros and cons of 

the alternative methods and reasoning behind the chosen data processing and analysis 

process. 

EMG measurements 

Surface electromyography measurements (sEMG) have been widely used in clinical and 

research settings to measure muscle activity and function (Luca, 1997). Classically, 

biomechanical researchers has recorded and analysed muscle activation during cyclic 

movements such as gait in order to establish normative muscle activity values and help to 

facilitate ambulation in patients with walking difficulties (Frigo and Crenna, 2009). The EMG 

has also been increasingly used to measure the pathological mechanisms in order to establish 

the movement patterns in chronic pain presentations (Szpala et al., 2014, Van Damme et al., 

2014) or to guide rehabilitation after injury (Morrissey et al., 2012a). There are clear clinical 

implications emerging from the results of using the EMG in developing the treatment 

strategies for diverse groups of participants.  Thus, using the EMG in clinical research enables 

us to better understand muscle activation patterns, altered recruitment strategies and their 
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association with pain, or risk factors for injury (Sole et al., 2012, Amiri-Khorasani and Kellis, 

2013, Brophy et al., 2007). 

There are three main electromyography methods, which are used to record muscle activity: 

surface, fine wire electromyography and – more recently – high density surface arrays. Those 

methods have various applications (Figure 8) as well as different advantages and 

disadvantages. 

Surface electromyography (sEMG) is suitable for obtaining information about large areas of 

superficial muscle. It is widely used in biofeedback studies (Lyons et al., 2003, Yoo et al., 2014) 

and in a very broad field of biomechanics, rehabilitation and sports. The sEMG is a relatively 

easy to use, non-invasive technique, with a large variety of applications. It is used to study 

normative muscle activation values in athletic and non-athletic population in gait or sports-

specific tasks; it helps to establish the movement efficiency (mainly in athletes); it guides the 

rehabilitation strategy by providing information of muscle activation in various exercises and 

movement tasks (Delmore et al., 2014, Boudreau et al., 2009); facilitates the diagnosis of 

muscle dysfunction (Disselhorst-Klug et al., 2009, Chendeb et al., 2004) as well as muscle 

damage (Felici et al., 1997, Merletti and Parker, 2004).  The summary of the advantages and 

disadvantages of this method is presented in Table 7. 

High density arrays (HD-EMG) can be used to collect detailed samples of muscle activity from 

the surface, thus yielding information about, for example, individual action potentials. HD-

EMG is mainly used to investigate the details of the muscle activation strategies by collecting 

information about motor unit action potentials (MUAPs). 
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Figure 8: The overview of different EMG techniques. For movement studies, conventional sEMG is 

usually used; recently developed HD-sEMG with multiple electrodes allows to measure the muscular 
activity down to the level of the muscle unit; the needle EMG is used as a tool to obtain information 
from the muscle unit (Drost et al., 2006). 

 

Indwelling electromyography (fine wire or needle) is the most invasive technique, but suitable 

to record the neuro-activity from smaller areas, down to a muscle fibre level. It is therefore 

extensively used in investigating the firing characteristics of motor units (MUs) (Hermens et al., 

1992, De Luca et al., 2014), motor neuron excitability as well as clinically in establishing the 

neurological and neuromuscular diagnoses. Despite the invasiveness, indwelling (usually fine 

wire) EMG also finds its use in biomechanical research, as it gives the opportunity to 

investigate deeper muscles, not accessible with the sEMG (Jansen et al., 2010). 

For the purpose of this study, sEMG was chosen to record muscle activation during movement 

because the muscles to be investigated were large and located superficially; it is non-invasive; 

has got an easy set up procedure and is relatively quick to learn (Hermens et al., 2000). 

Standard rounded Ag-AgCl passive disposable bipolar electrodes were used with an electrolyte 

gel built in.   

The choice of using the sEMG as a main measurement tool in this study was associated with a 

few limitations (Kamen and Gabriel, 2010a).  
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The sEMG is an optimal device to measure the motor output from large and superficial 

muscles. Although such muscles were mainly the focus of my interest, few smaller and deeper 

muscles (such as internal oblique and ilio-psoas) were also relevant to my studies and 

collecting data from those was impossible with sEMG. I considered using additional types of 

EMG (such as indwelling fine wire EMG) before the data collection process, but adding another 

measurement tool would make the protocol too long and impractical. High invasiveness of fine 

wire EMG might additionally discourage some of the potential participants to take part in the 

studies. 

The sEMG measurements have some standard limitations, which might have affected our 

measurements. Those limiting factors can not be fully controlled but can be minimised, albeit 

always being present in sEMG measurements.  

One of the biggest potential sources of bias is misplacement of the surface electrodes on the 

body of the participant. In order to minimise this bias, I underwent an extensive training 

before the data collection and followed all available guidelines. My anatomical and 

physiological knowledge associated with my occupation facilitated the identification of desired 

muscles and the optimal electrodes location on the muscle.  However, the individual’s 

anatomical and physiological differences such as the location of innervation zones might have 

compromised the reliability and validity of the measurements.  

Another potential limitation of the sEMG measurement is cross-talk. Cross-talk can be defined 

as any electrical activity recorded by the electrode that is not representing the activation of 

the desired muscle. It may originate from other muscles, when the surface electrodes are 

placed too close to them; it may also appear as an electric signal from the muscle of interest, 

which is not representing the magnitude of muscle activation. This can occur when the muscle 

electrical tripole (depolarized current sink and two current sources), which is a target signal for 
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sEMG, is covered by stronger dipole originating near tendon areas (where there is no ions to 

be delivered to depolarized zone) with significantly different properties. This dipole, also called 

a terminal phase of MUAP, is a high-frequency signal, which is reduced by distance to a less, 

extends than tripole. Subcutaneous fat, by increasing the distance between the signal source 

and receiver is therefore a natural source of bias. 

There are limited ways to minimize the risk of cross-talk. Bipolar electrodes need to be placed 

close to each other to improve selectivity (10-20mm).  However, placing them too close to 

each other may lead to salt bridge formation between electrolyte gel areas between two 

electrodes. This would reduce the difference between tw electrodes and si gnificantly decrease 

recorded signal. In order to minimise the cross-talk risk during the data collection process, I 

followed closely all of the guidelines keeping the recommended distance between the 

electrodes. 

Pros Cons How mitigated 

Easy to use with a 
lot of guidelines of 

good practice 
available 

No possibility to collect 
data from muscles 

located deeper 

Such muscles were 
excluded from data 
collection process 

Non-invasive 
Potential bias due to 

the electrode 
misplacement 

Extensive training 
completed prior to data 

collection 

Relatively short 
time of participant 

set-up 

Potential presence of 
cross-talk 

Closely following available 
guidelines  

 

Table 7: Summary of pros and cons of surface electromyography 

 

Muscle neurophysiology is complex and there is a number of intrinsic and extrinsic factors 

potentially affecting the EMG signal (Luca, 1997). Therefore strict guidelines exist regarding 
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the sEMG data acquisition, handling and analysis. Extensive studies, which investigate the 

neurophysiology of muscle fibers and types of EMG instrumentation, serve as a base for those 

guidelines (Hermens et al., 1992, Hermens et al., 2000). The main educational role, although 

limited to sEMG, has been mostly held by SENIAM (Surface EMG for Non-Invasive Assessment 

of Muscles), which is an initiative in the Biomedical Health and Research Program (BIOMED II) 

of the European Union. SENIAM’s two key objectives are to (i) provide a space and opportunity 

for researchers and clinicians working with sEMG to share experience on various aspects of 

using the sEMG; and (ii) to develop recommendations according to existing evidence regarding 

the use of sEMG. Another source of up-to-date knowledge about EMG is ISEK (The 

International Society of Electromyography and Kinesiology) together with its conference 

proceedings; and the Journal of Electromyography and Kinesiology.  

In all studies included in this thesis I closely followed SENIAM guidelines in the sEMG data 

collection, acquisition and analysis. Following those guidelines, the electrodes used in these 

studies were placed on the surface of specially prepared skin. The skin area chosen for 

electrode placement was firstly shaved (if necessary) to ensure the optimal skin-electrode 

contact, then cleaned with alcohol wipes to discard any electric charges from the surface of 

the skin. Owing to a number of other skin preparation techniques reported in literature, I 

decided to additionally abrade the skin with a gentle sand paper. ‘Sensor (electrode) location ’ 

refers to the centre of two bipolar electrodes located on a muscle. SENIAM provides the 

recommendations for electrode location for 30 muscles, defined as a point on the line 

between two anatomical landmarks. In individual muscles the sensors are recommended to be 

placed between the most distal motor endplate zone and the distal tendon (longitudinally) and 

within a maximal distance from the muscle edge or subdivisions (transversely); the bipolar 

electrodes need to be placed with the respect of the direction of muscle fibres (SENIAM.ORG, 

2015).  
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Where SENIAM guidelines were not available (external oblique, adductor longus and adductor 

magnus muscles) other guidelines were followed (Lyons et al., 1983, Cram, 2011). It is worth 

noting, that although the data was collected from 12 muscles in all participants, this thesis 

focuses on the activation of 4 muscles only: gluteus medius and adductor longus muscle, 

bilaterally.   Surface electromyography Ag-AgCl electrodes were placed bilaterally on external 

oblique (Figure 9a), gluteus medius (Figure 9b), adductor longus (Figure 9c), gluteus maximus 

(Figure 9d), rectus femoris (Figure 9e) and biceps femoris (Figure 9f) muscles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a b c 
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Figure 9: Surface electrodes placement location;  a – external oblique muscle; b – gluteus 
medius muscle; c – adductor longus muscle; d – gluteus maximus muscle; e – rectus femoris 
muscle; f – biceps femoris muscle.  
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Reliability and validity of the sEMG measurements are reported to be high (Kollmitzer et al., 

1999b). They may be, however, affected by the misplacement of the electrodes on the 

participant’s body, which makes them user-dependent (Mathur et al., 2005). Thus the 

reliability and validity of the sEMG measurements may be compromised by a lack of 

anatomical or physiological knowledge, limited training time or no theoretical skills of the 

sEMG user (Kamen and Gabriel, 2010a). 

Before collecting any data I completed extensive training in using the sEMG and gained 

essential knowledge to limit the risk of compormised sEMG measurement reliability or validity. 

A large number of practical sessions using sEMG device under close supervision improved my 

skills and provided confidence and independence in data collection process. Additionally, I 

have completed a five-year full time education, which led to obtaining BSc and MSc degrees in 

Physiotherapy, and have been working clinically since then. My education, qualification and 

clinical experience enabled me to gain and establish the anatomical and physiological 

knowledge, which likely minimised potential human error in my sEMG measurements. 

Before collecting data from injured participants I had performed a reliability study, which 

reports a high to excellent reliability of performed research protocol. The details of those 

studies are described in Chapter 2: Reliability study (p. 140). 

There are a number of limitations of sEMG measurements and there are limited methods to 

control them. However, sEMG measurements are generally reported to be reliable in 

biomechanical research (Kollmitzer et al., 1999a).  

There are a number of studies reporting high sEMG reliabil ity in the dynamic movements of 

upper (Reinold et al., 2004) and lower limb (Ng et al., 2008); in cyclic movements such as gait 

(Bogey et al., 2003) and more one-off sports specific movements (Ortiz et al., Amiri-Khorasani 

and Kellis, 2013). However, the reliability for the sEMG it is highly dependent on the specific 
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user and situation, for the studies included in the thesis reported in Chapter 5: Reliability study 

(p. 140). 

The sEMG is commonly used to detect the motor output from muscles during intentional 

movement tasks of varied complexity. The movement of the participant, however, creates a 

number of limitations, which might potentially affect the reliability and validity of the 

measurements. 

The most general issue is related to participants’ comfort while performing movement tasks 

with a large number of wires around their body. In present studies, additionally to sEMG 

electrodes and their wires, CodaMotion markers were attached to participants’ lower limbs 

and pelvis areas. The participants were given adequate time to habituate to moving with all 

the wires on; however, the quantity of markers and electrodes might have affected their 

movement. 

The electrodes placed on the surface of the skin are supposed to detect and record the motor 

output of the muscle lying much deeper (Kamen and Gabriel, 2010a). The process of palpating 

the muscle, finding the recommended location for the electrode and attaching it there is 

performed with the participant lying down and relaxed (Hermens et al., 2000). If he or she 

performs an investigated movement during data collection process, associated contraction of 

the muscle will cause its displacement in relation to the skin and the initial proper electrode 

placement may lose its reliability. 

Additionally, potential perspiration or electrodes rubbing against each other or against the skin 

may cause their displacement on the skin surface. This may further limit the reliability of 

measurements (Kamen and Gabriel, 2010a). This issue, however, was addressed by putting a 

large amount of tape over the electrodes in order to secure their position.   
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Other limitations of sEMG motor output, related to the movement, are associated with the 

physiological determinants of muscle electrical signal. The surface electrodes detect the motor 

unit action potentials (MUAPs), which is the sum of individual muscle fibres action potentials 

(MFAPs). MFAPs, which then determine the final recorded sEMG signal, might be affected by 

several factors. One of the MFAPs’ characteristics, potentially affecting the sEMG recording, is 

the muscle fibre conduction velocity (MFCV). MFCV depends on factors such as muscle fibre 

diameter, temperature or intracellular pH. Muscle fibre’s diameter, and consequently also 

MFCV, decreases with muscle stretch and increases with muscle contraction (Kamen and 

Gabriel, 2010a). MFCV might further increase with the increase of the temperature when 

performing the movement. But when the task is challenging, the MFCV might decrease due to 

decreased intracellular pH when muscle fatigues. All of those factors might potentially affect 

the MFCV and, consequently, the motor output detected by electrodes.  

However, the movement tasks used in studies included in this thesis were rather static, not 

allowing the temperature to rise too much and not enabling the muscles to fatigue. Moreover, 

the temperature in the laboratory was kept similar during the data col lection, which might 

have further minimised its potential effect on sEMG recordings. Nevertheless, those 

limitations exist and should be acknowledged while analysing collected sEMG data.  

sEMG data normalisation 

The procedure of normalisation of the sEMG signal generally means presentation of the raw 

sEMG data as a relative value by dividing it by another sEMG value. The aim of this is to 

decrease the between-subject variability and make the sEMG signal comparable between 

participants.  Normalisation is proposed by a number of authors as a standard procedure 

before further analysis of the sEMG signal (Luca, 1997, Cram, 2011, Burden, 2010). Non-

normalised sEMG should not be analysed between subjects or between different 
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measurement occasions in one subject due to the specificity of  muscle physiology and 

different methods of generating force.  

The motor output is a measure of the electrical activity of all individual muscle fibres located 

close enough to the surface electrodes to be recorded; this generates force. Different muscles 

and different muscle fibre types have different strategies to increase force. Moreover, in order 

to increase the force output, at low force levels the quantity of active motor units increases, 

while at higher force levels it is rather the frequency of motor units that is responsible for 

increased force.  

The choice of normalisation method is critical in further interpretation of obtained data 

(Burden, 2010) and should be strongly dependent on the aim of the individual study. 

Therefore, the decision whether to normalise the sEMG data at all should also be consciously 

made. Considering the aims of individual studies and the desired outcome measures, standard 

normalization procedures may decrease the reliability of the sEMG data or simply not add any 

value, thus making the procedure useless. 

There are a few common ways to normalize the EMG data and there is no agreement among 

researchers, which is the best normalizing procedure (Lai et al., 2009, Kamen and Gabriel, 

2010a). Most frequently, the sEMG signal collected during a task is divided by other sEMG 

values from the same muscle. The most common procedure is to obtain the sEMG value from 

a maximal voluntary contraction (with isometric contraction being the most common and most 

reliable type) (MVC) and then dividing the obtained sEMG value from the investigated task by 

isometric MVC. A very similar procedure is also commonly used with various percentages of 

MVC (50%, 60% or 80%), which is then called sub-MVC. This method seems to be a reliable 

way of potentially obtaining a very clean sEMG signal, as all of the artifacts present in the 

desired motor output also appear in the value to which it is normalized. In consequence, 
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dividing two sEMG signals with exactly the same noise will naturally filter out this noise. 

However, MVC and sub-MVC are strongly dependent on the   effort that the individual puts 

into the forceful muscle contraction. It was discovered that the term ‘maximal voluntary 

contraction’ is in fact misleading as much higher activation outputs are  achieved when 

performing high-velocity muscle actions (Ball and Scurr, 2013). Moreover, there is no 

consensus regarding the type of manoeuvre used in order to achieve the maximal neural 

activation of the muscle. 

Other values, that obtained sEMG signal might be normalized to, are peak or mean activation 

value when performing investigated movement task (Lai et al., 2009). This method was 

previously used in investigating the sEMG values in cyclic movements such as gait (Allison et 

al., 1993). It was reported to reduce the intra-subject and inter-subject variability, thus 

completing its normalization role. However, it might reduce the meaning of some real 

biological inter-subject differences, such as strength. Also, same movement task might be of 

graded difficulty among individuals. In consequence, different people with various strength 

levels would use different level of muscle activation to perform the same task. Normalising the 

sEMG signal obtained during this task to the mean of muscle activation, while performing it, 

might therefore disregard the strength differences.  

Moreover, the movement strategies and their reproducibility in movement tasks are not well 

known. Therefore, muscle activation patterns used differently in individuals, or in different 

repetitions might alter the relation to the reference sEMG value.  

None of normalization procedures described above were considered relevant to our study. 

Normalisation to 100% or 50% of MVC would be both non-ethical and non-reliable, as 

participants would have been asked to maximally contract potentially injured muscle. Not only 

would they not be able to perform a maximal contraction, but also such effort might 
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additionally increase their symptoms and deteriorate their condition, which would be highly 

unethical. 

Normalising the sEMG to a peak or mean level of muscle activation during analysed movement 

task seems to be a convenient and relevant way in our study. However, because one of the 

aims of the study is to discover the muscle activation patterns, it would be wrong to assume 

that the patterns are not affected by the injury by including them as one of the inputs (or 

independent variables) in analysis. Moreover, peak or mean sEMG value used for 

normalisation would be obtained from healthy muscle in healthy participant and injured 

muscle in injured participant. Using the same value in healthy and injured participants would 

not allow obtaining a comparable sEMG value, as it would include pathology in injured 

participants.  

Therefore, owing to the specific aim of this study, I chose another way to process sEMG data in 

our study. It is important to note that it was not the main aim of this study to discover the 

muscle activation magnitude in various groups of participants. Instead, I aimed to explore the 

movement patterns and relationship between the activation (and its consequences on the 

biomechanical balance) of two muscles (adductor longus and gluteus medius), and potential 

differences between groups. Firstly, the sEMG data was time-normalised by dividing analysed 

movement task into phases and averaging sEMG data for each recorded muscle within those 

phases. Time averaging is a common technique for analysing sEMG data by providing a 

standard and reliable value against which the data are measured (Burden et al., 2003a, 

Mathiassen et al., 1995). It thus allows reliable quantification of muscular motor output in 

chosen time phase (van der Hulst et al., 2010b, van der Hulst et al., 2010a, van der Hulst et al., 

2010c). 
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Secondly, I used intra-subject muscle ratios as a primary outcome measure within participant, 

which was then averaged within group (such as symptomatic or asymptomatic group). Because 

the subcutaneous fat layer has a comparable depth within a given participant, using intra-

subject ratios would minimise fat’s potentially large effect on the sEMG signal. Moreover, by 

using muscle ratios I was able to explore the muscle activation patterns by analysing the 

relative relationship between two muscles rather than two separate values, which was our 

aim. This approach was previously used and published in several papers (Morrissey et al., 

2012a, van der Hulst et al., 2010a, van der Hulst et al., 2010c, Ferguson et al., 2004, Reeves et 

al., 2006, Daly et al., 2015). Due to the aim of exploring movement patterns in  specific athletic 

sub-groups in my study, it was even more important to ensure that the measurement values 

were comparable between groups such as amateurs and professionals, therefore analysing 

muscle ratios within defined movement phases was, in our opinion, the best, most relevant 

and accurate way of normalizing our sEMG data. 

However, if the primary measure of two muscle sEMG activation ratios was showing significant 

differences between groups, I used the secondary measure of individual muscle activation 

magnitude within a given time phase in order to indicate the reason for an observed ratio 

difference. I did not analyse the exact quantity of the sEMG activation magnitude in separate 

muscles, but rather interpreted the trend (increase or decrease of the activation magnitude), 

which affected the ratio measures.  

Normalisation of the sEMG is a process that aims in reducing the inter-subject variability in 

order to make various groups of participants, different muscles and different measurements 

occasions comparable (Luca, 1997, Cram, 2011). Although I made a potentially controversial 

decision not to normalize our sEMG data in the most common way, significant between-

groups differences, with very small P values, found in our study make a strong argument in 

favour of our method of proceeding.  
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Muscle activation measured by sEMG is a useful representation of muscle function, but can’t 

be proportionately related to muscle force (Nishihara and Isho, 2012). Although some research 

reported the linear relationship between sEMG signal and muscle force output, it was only 

found in specific conditions, specific muscles and during isometric contractions (Lippold, 1952). 

In a majority of studies, the muscle activation was found to increase with the increase of the 

force (Madeleine et al., 2001, Solomonow et al., 1990), but this relationship was not linear 

(Bilodeau et al., 2003, Gregor et al., 2002, Karlsson and Gerdle, 2001, Onishi et al., 2000) .   

In majority of biomechanical and kinesiological research, where the aim of study is to measure 

a real movement, treating the sEMG signal as a representation of force is incorrect for a 

number of reasons. 

Firstly, all of the factors mentioned previously, that may affect the sEMG signal, make it 

impossible to directly relate it to force; specifically the surface electrode location, change of 

the muscle and muscle fibres length or dislocation of the surface electrode in relation to the 

muscle during movement (Gerdle et al., 2000, Gerdle et al., 1997, Wretling et al., 1987). 

Secondly, the size and shape of the surface electrodes determine its data collection from 

particular muscle areas only (Nishihara and Isho, 2012). Therefore only a certain number of 

muscle fibres and motor units are placed under and its activity recorded by the electrodes, 

which prevents from recording the whole muscle activity and, consequently, the number of 

motor units. If all of the motor units covered by the electrodes are active and muscle force is 

still increasing it might mean other areas of muscle are being activated, which is impossible to 

measure (Nishihara and Isho, 2012). 

It might also mean that in order to increase force output, the frequency of already active 

motor units rather than activating new motor units occurs. This is also impossible to detect by 
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sEMG, which can only record the quantity rather than the quality of muscle fibres 

depolarization. 

Additionally, the force directed in certain direction is frequently produced by more than one 

muscle (Nishihara and Isho, 2012). The presence and level of this synergy is not possible to 

control, therefore activation measurements from the muscle of interest can’t be expected to 

be responsible for the entire generated force (Nishihara and Isho, 2012). 

Kinematic measurements 

Despite a clear link between the movement patterns and other multi -structural pathologies 

(such as shoulder or lower back pain), and clear muscle strength, flexibility and range of 

movement imbalances reported in SRGP athletes (Chapter 2: Systematic review, p. 45), the 

association between movement and pathology has not been investigated in that group. 

Interestingly, the movement patterns in association with SRGP are highlighted as one of the 

areas with the need to research on by the Doha agreement. I decided to collect the kinematic 

along the electromyographic data in order to discover how the muscle activation imbalances 

affect the movement of the hip joint in the injured athletes. Given that the muscle activation 

patterns are not easily measurable in clinical environment, I aimed at exploring associations, 

which may be observable and quantifiable by a clinician. Additionally, because the link 

between muscle activation and force is not linear, measuring hip joint rotations gave me the 

opportunity to investigate the link between the muscle electric output and hip joint 

movement. 

3D kinematic and kinetic data present a good opportunity to quantify and analyse multi-

segment movement. In my studies, I used the kinematic data in order to discover the 

signatures of SRGP in the movement patterns of injured participants.  



  

116 

 

Despite few concerns and limitations associated with the reliability of 3D kinematic 

measurements, one systematic review provided evidence for the reliability of the 3D kinematic 

measurements (McGinley et al., 2009). 

‘Motion capture’ (mocap) refers to a method of measuring and quantifying human or animal 

movement so that it is presented in digital form that can be further analysed (Gabai and 

Primo, 2011, Scott Dyer, 1995). Mocap is very widely used in arts, performance, animation, in 

research in the areas of psychology, orthopaedics, neurological disorders, social relations and 

sports medicine as well as in clinical settings (McGinley et al., 2009). 

Typical motion capture system includes a set of devices tracking the movement and software 

that determines the animation of the image based on calculations. The exact technical 

solutions to achieve the desired output vary between systems. Kinematic data can be collected 

by one of many available motion capture systems. Three main types are mechanical, magnetic 

and optical; each of these systems have certain advantages and disadvantages (Scott Dyer, 

1995). 

Mechanical mocaps are based on an exo-skeleton, which is worn by the object and is follows 

and tracks the movement of the object; the sensors in each joint recognise and track the 

rotations (Vlasic et al., 2007). This system is insensitive to any interference from light or 

magnetic field, which makes it seemingly straightforward to use. However, mechanical 

systems have got a number of limitations, which excludes them from biomechanical research 

with clinical implications. Firstly, they do not have any awareness of the ground level, which 

makes movements such as jumping impossible; secondly, the distal data of lower limbs tend to 

lose their accuracy; thirdly, in typical systems it is impossible to determine the object’s 

orientation during data collection – the displacements is only calculated based on the amount 

of rotation that was detected by the mechanical frames (Vlasic et al., 2007). 



  

117 

 

Magnetic mocaps use wired sensors to measure the magnetic field created by the source 

(Scott Dyer, 1995). They typically include one or more control units, and all sensors and the 

source are wired to this unit. The sensors are attached to the tracked object, and the source 

(magnet) is usually placed centrally. These systems have high measurement accuracy and 

relatively low level of signal interruption. However, they are very sensitive to metal objects 

near the data collection area; the range of these devices is narrower than in optical systems 

and the sampling rate is too small for typical sports movements (Scott Dyer, 1995), which 

suggests their limited application in biomechanical measurements .   

In optical mocaps the markers are placed on the object and then the opti cal signal of their 

location in transmitted to the receivers – cameras, which are then attached to the computer 

that manages the data collection process. The markers attached to the object may operate 

either in a passive or active way. In passive systems the markers are covered with a retro-

reflective material, which allows them to reflect the LED light emitted from the cameras.  

In active systems, the markers themselves are emitting light, which is then captured by the 

cameras. Regardless of the type of the markers, the optical signal is received by each camera, 

which then generated the 2D coordinates for each marker. This information is further 

transferred into the computer and the software calculates the 3D coordinates of each marker 

(Bodenheimer et al., 1997). 

The optical mocaps are widely used in biomechanical research (Lebel et al., 2013, Laudner et 

al., 2014, Morrissey et al., 2012a) owing to: their high accuracy; high sampling rate which 

allows detecting a subtle movement or displacement; and typically wireless marker types 

which does not restrict the object’s movement during data collection. Those systems, 

however, are usually more expensive, require a specially designated and prepared space in 
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order to operate and are sensitive to light and occlusion, which decreases the data quality and 

accuracy (Bodenheimer et al., 1997). 

The quantification of observed movement in this study was enabled by using the Cartesian 

Optoelectronic Dynamic Anthropometer (CODA) motion system (Codamotion Cx1 sensor units, 

Charnwood Dynamics, Rothely, Leicestershire). To collect the kinematic data, active, infra-red 

markers were put on participant’s body according to validated protocols (Monaghan et al., 

2007). The markers attached to the surface of participant’s skin on strictly specified anatomical 

landmarks served as a base to calculate joints centres: pelvis, hips, knees and ankles. Data for 

our study were collected only for pelvis and lower limbs, as only those body parts were 

relevant for the study aims.  

The signal from the markers attached to participant’s body is recorded by four cameras  and 

then computed into 3D stick-figure displayed on the screen. During the data collection process 

the information from all of the markers was received in three planes and the displacement 

recorded in on all three axes. Further calculation according to standard CodaMotion protocols 

enabled to calculate the rotation of each joint bilaterally in all three planes.  

The main source of bias in the kinematic measurements is misplacement of the infra-red 

markers on the participant’s body. In order to accurately calculate the joint rotation centres, 

participant’s anatomical landmarks must have been identified without error.  As with the 

sEMG, extensive training period, a large amount of reliability data as well as my experience 

and occupation minimised the risk of the collected data being of poor quality. 

In my studies, the pelvis and lower limbs kinematic data were obtained by the infra-red 

CodaMotion system markers sampling at 200Hz attached by the double sided tape to 

participant’s bony anatomical landmarks according to modified Helen-Hayes protocol 

following standard protocol (Monaghan et al., 2007).    
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Kinematic data processing 

The infra-red markers placed on each participant’s anterior and posterior superior iliac spines, 

as well as the marker wands placed on the thighs allowed to calculate the internal hip joint 

centre of rotations in three planes, according to the local coordinate system. This process is 

automatic within the CodaMotion software, once the markers are appropriately named in the 

data collection set-up file. In order to calculate the joint rotations, the software must first 

determine the rigid segments, between which the rotations would further occur. In case of the 

hip joint, these segments are the pelvis and thigh.  

Those segments and the points of segments definition (anterior and superior iliac spines, as 

well as femoral epicondyle) were defined following the International Society of Biomechanics 

(ISB) guidelines (Wu et al., 2002), which recommend using easily palpable anatomical 

landmarks as the frame for the definition of the hip joint centre. The rotations in the centre of 

the hip joint, as well as the rotations around the axes are also recommended, and presented 

on Figure 10, in this case – a right hip joint. 
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Figure 10: Graphical representation of the pelvis coordination system (XYZ), femur coordination 
system (xyz) and the right hip joint coordinate system (Wu et al., 2002). 

Pelvis coordinate system (XYZ) 

O: The origin coincident with the right hip centre of rotation 

Z: This axis is made by the line, which is parallel to the line between both ASISs, and directed to 

the right 

X: This axis is defined by the line lying parallel to the line lying in the plane defined by both 

ASISs and the midpoint between two PSISs, directed anteriorly 

Y: This axis is defined by the line perpendicular to both Z and X axis, directed cranially.  

Femoral coordinate system (xyz) 

o: The origin coincident with the right hip joint centre of rotation, which is coincident with O in 

the neutral configuration 
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y: This axis is defined by the line originating int eh midpoint between the medial and lateral 

femoral epicondyle, and the origin, directed cranially. 

z: This axis is defined by the line perpendicular to the y-axis, lying in the plane defined by the 

origin and two femoral epicondyles, and is directed to the right. 

x: This axis is perpendicular to y- and z-axes, directed anteriorly (Cappozzo et al., 1995). 

The hip joint rotation centres for each individual were based on adding the individually 

calculated offset to the line between the left and right ASIS reference point. 

Kinetic measurements 

Force platforms have been increasingly used in biomechanical research as a direct 

representation of vertical, latero-medial and fore-aft components of ground reaction forces 

during stance and movement (Cross, 1999, Bobbert and Schamhardt, 1990). Combining the 

kinetic output with additional kinematic data, using the link-segment models of human body, it 

is possible to calculate the joint reaction forces (Bobbert and Schamhardt, 1990). 

Most generally, the force plate can be described as a metal platform including one or more 

sensors (strain-gauge transducer or piezoelectric transducer), which provides the electrical 

signal proportional to the force acting on a platform.  

In my research, all of the participants performed all of the movements on the Kistler type 

9281B force plates (Kistler Instruments Corporation, Winterthur, Switzerland). They are 

equipped in four built-in piezoelectric 3-component force sensors, and form a very rigid 

aluminium ‘sandwich’ constructions allowing for the measurements of a wide spectrum of 

movement frequency. I aimed in measuring the sEMG and kinematic data in various phases of 

selected movement tasks, some of them having very subtle force displacement signatures (for 
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example, change from bilateral to unilateral stance). Thus, high sensitivity of the force plates 

was necessary to detect and define the movement phases for further analysis.  

Movement manoeuvres 

I collected the electromyographic, kinematic and kinetic data from participants performing 

specific movement tasks. They were carefully chosen to be of a graded difficulty and provide a 

loading challenging for the pelvic and groin areas. 

 Prior to the data collection the participants were instructed how to perform each movement 

task, they were also given time to practice them; this procedure was performed in in order to 

allow the participants to familiarise themselves movement having CodaMotion markers and 

sEMG electrodes attached to their body. The collective flowchart of the data collection process 

is presented on Figure 11. 
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Figure 11: Flowchart representing the data collection process and the differences between the 
observational and longitudinal studies included in the thesis. 

 

Standing hip flexion (SHF) was chosen as one of the test manoeuvres, with data for both 

moving and stance legs being collected and analysed. This task, analogous to kicking and 

locomotion, has been the subject of previous similar study (Hungerford et al., 2003). 

Participants were instructed to flex their hip to 90° within one second, then to maintain 90° of 

hip flexion for two seconds before returning to bilateral stance (Figure 12).  
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Figure 12: Stages of the standing hip flexion manoeuvre (SHF). 

 

Single leg squat (SLS) was chosen as the second manoeuvre as being challenging for pelvic 

girdle stability and control (Hungerford et al., 2003, Hungerford et al., 2004), analogous to 

sports-specific movements common for investigated cohort and considered to be a 

progressive challenge comparing to SHF (Boudreau et al., 2009). Moreover, SLS is a widely 

used clinical test commonly used to assess the pelvic girdle and hip function (Boudreau et al., 

2009, Crossley et al., 2011).  

Star ng	posi on	(3	sec)	

Stable	bilateral	stance	on	the	
	force	plate	(3	sec)	

Stable	unilateral	stance	with	90°	
	of	hip	flexion	(3	sec)	

Stepping	on	the	force	plate	

Flexing	one	hip	to	90°	
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During this task, the participant was asked to flex the knee of the non weight-bearing limb to 

45 degrees. They were permitted to position the non weight-bearing hip in whatever position 

they chose. They were then asked to squat on the weight-bearing/supporting limb as low as 

possible and then return to an upright single leg stance position (Figure 13).  

Other manoeuvres, such as rapid direction change, cutting, pivoting, side-to-side steps or 

kicking were considered in order to add an element of sport specific tasks. They were, 

however, finally excluded from data collection procedure as were not validated and repetitive 

enough or were unable to be performed properly in laboratory environment. Moreover, 

majority of them also reproduced participants’ symptoms. Therefore including them in data 

collection process was not only unethical, but might also considerably affect the 

measurements as presence of pain might change the way participants moved in order to avoid 

pain. 

The order of testing the right and left legs in all movements was randomised by participant’s 

preference. The process of dividing the movement manoeuvres into phases, as well as the 

detailed criteria of each movement phase, are presented in the next part of this chapter.  
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Figure 13: Stages of the single leg squat manoeuvre (SLS). 

 

Dividing the movements into phases  

Movement tasks were divided into phases using the kinetic and kinematic outputs by visual 

examination of the data using the custom made MatLab program (Figure 14).  

 

 

Star ng	posi on	(3	sec)	

Stable	bilateral	stance	on	the	
	force	plate	(3	sec)	

Stable	unilateral	stance	with	90°	
	of	hip	flexion	(3	sec)	

Stepping	on	the	force	plate	

Unilateral	stable	stance	

Stable	unilateral	stance	in	a	maximal	squa ng	posi on(3	sec)	

Performing	single	leg	squat	
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Figure 14: The interface of a custom-made MatLab program used to define the phases of movements. 
Top two rows (in blue) represent the rectified, filtered and smoothed sEMG signal obtained 
from all 12 channels; the top red row represents the hip joint rotation in x (coronal), y 
(sagittal) and x (horizontal) planes. 

 

The kinetic data obtained from the force plates were necessary to identify the load 

displacement when performing the movement. In both movement tasks (SHF and SLS), the 

first defined phase included a change from bilateral to unilateral stance. This moment was only 

detectable from the kinetic data, as the movement itself was too subtle to be noticed using 

the kinematic output. The definition of subsequent SHF and SLS movement phases was 

completed by the visual examination of the kinematic and original CodaMotion data.  
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Figure 15: The process of defining the phases of SHF movement in the custom MatLab program. Top 
row represents the hip joint rotations; the bottom row represents the ground reaction force 

displacement in three planes: coronal (x), sagittal (y) and horizontal (z). A: the initial lateral force 
displacement when changing from bilateral to unilateral stance, B: maximal hip stable hip flexion. 

 

The custom made MatLab program written to define the movement phases in investigated 

tasks allowed to display the graphs representing any lower limb joint rotation (pelvis, hip, knee 

and ankle) next to kinetic output from the force plate, plotted against time in all three planes 

(coronal, sagittal and horizontal) (Figure 14). The original, non-processed data from 

CodaMotion software in a form of stick figure were displayed simultaneously on another 

monitor in order to ensure that joint rotations displayed on graph represent the expected 

movement signatures in each participant (Figure 15).  

This data processing and analysis approach requires a manual definition of each movement 

phase, for each participant in every data collection event. It is therefore very time consuming, 

and relatively sensitive to human error. I made some attempts to entirely automate the 

process of defining the phases of movements, but those solutions failed.  

A	

B	

Hip	joint	rota ons	
	

Ground	reac on	
force	displacement	

	

X	 Z	Y	
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Depending on the movement task, the number and definition of the movement phases varied. 

SHF was divided into three phases: early, middle and late. The early phase was selected to 

represent the start of transition from bilateral to unilateral stance, which is a moment of 

increased demand on the pelvic girdle. It was defined as 50 ms before and 50 ms after initial 

lateral push on the force plate and initial abduction of the hip of the moving leg. The exact 

moment of this lateral force shift was defined using the kinetic output from the force plate as 

it was clearly represented by a positive or negative peak (depending whether the pushing leg 

was right or left, as the orientation of the laboratory co-ordinate system was constant) in the 

X-axis of the force plate output. This peak defined the exact moment of push-off, with addition 

of 50 ms before and 50 ms after used to define an early phase, being performed in the MatLab 

program.  The period prior to activation was designed to partially account for electro-

mechanical delay.   

 The end phase of SHF was selected to evaluate the biomechanical features of stable unilateral 

stance. It was defined as 50ms before and 50 ms after stable standing with 90° of hip flexion, 

defined mainly using the kinematic output of the moving hip in sagittal plane. The exact 

moment of stable stance was defined manually, when the participant achieved a stable 

standing hip flexion position. In order to measure a representatrvie period of the whole end 

phase of the movement, 50ms before and 50 ms were added after the defined stable stance 

moment. 

The middle phase of SHF included the actual movement of flexing the hip joint, which 

represented the dynamic ability to adjust muscular output throughout the range of 

movement.  It was defined as starting at the moment of the completion of the early phase of 

the movement (so 50 ms after defined initial lateral push represented by the lateral peak on 

the force plate output) and finishing at the commencement of the end phase, so 50 ms before 

the defined stable stance with one hip flexed. 
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In SLS seven phases were defined based on kinematic data - four movement phases and three 

stationary phases (Table 8). The choice of these phases enabled comparison of kinematic and 

muscle activation data at clinically relevant phases of the SLS task (e.g. deep knee flexion). 

These phases were divided into two categories: four movement (M) phases and three stable 

(S) phases (Table 8). The order of the phases was as follows: M1 -> M2 -> S1 -> M3 -> S2 -> M4 

-> S3. The Movement I phase (M1) was defined in the same way as the early phase in SHF – 

firstly the initial lateral shift on the force plate was defined (lateral peak on the X-axis of the 

force plate output), then 50 ms were added before and after that lateral shift  (Table 8). The 

Movement II phase (M2) occurs between the end of the M1 phase and beginning of S1 phase – 

so until the participants stand still on one leg (Table 8).   

Stance I phase (S1) was defined as 50 ms before and 50 ms after the stable stance on one leg, 

with the other leg held in the front or at the back depending on individual preference. The 

exact moment of the stable stance was defined using the sagittal plane (rotations around the X 

axis) of the lifted hip – the moment of stability in sagittal plane was marked, then 50 ms were 

added both before and after the moment of stable stance but the MatLab program 

automatically (Table 8). 

The Movement III phase (M3) was defined as the actual squatting down movement starting at 

the end of the Stance I phase and ending at the beginning of Stance II phase, including the 

movement of squatting down, which typically lasted 3 seconds (Table 8). 

Stance II phase (S2) was defined as the moment of stable squatting position (Table 8). Firstly, 

the moment of stable squat was defined using three different out puts in order to determine 

the exact moment of a stable squat position: visual raw data from CodaMotion capture 

system, hip sagittal plane kinematic data (rotation around the X axis) and knee sagittal plane 
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kinematic data (rotation around the X axis). Then, 50 ms were added before and after the 

defined moment, constituting the S2 phase. 

The Movement IV phase occurred when the participant was returning from the squatting 

position back to the stable one leg stance, between the end of the S2 phase and beginning of 

Stance III phase (S3) (Table 8). 

Last phase of the SLS, the Stance III phase (S3), was defined similarly to S1 phase - the only 

difference was that S1 phase occurred before performing the squat, and S3 phase occurred 

after the squat. 

Phase 
number 

Phase 
characteristics 

Phase code Phase description 

1 

Movement 
phases 

M1 
Lateral shift of the load - initiation of 

change from bilateral to unilateral stance 

2 M2 Change from bilateral to unilateral stance 

3 M3 Squatting down 

4 M4 Squatting up 

5 

Stable phases 

S1 
Stable unilateral stance prior to 

performing squat 

6 S2 
Stable stance in unilateral maximal squat 

position 

7 S3 
Stable unilateral stance after to 

performing squat 

Table 8: Table showing the division of the SLS movement to seven phases 

 

Data analysis process 

There were four main outcome measures in the experimental studies of this thesis: the ratio of 

the magnitude of the gluteus medius to adductor longus muscle activation, and hip joint 

rotation values in coronal, sagittal and horizontal plane. In the longitudinal study, an additional 

outcome measure was the VAS scores for the clinical tests during each testing occasion.  
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sEMG Kinematic 

GM:AL activation ratio 

Hip coronal 

Hip sagittal 

Hip horizontal 
Table 9: Table summarising four main outcome measures in the experimental studies of the thesis; 
sEMG – surface electromyography; GM – gluteus medius muscle; AL – adductor longus muscle. 

 

All four main outcome measures were firstly calculated for each individual participant within 

each defined movement phase in SHF and SLS as the mean of three repetitions, for each leg 

separately, for moving and weight-bearing leg in SHF and only the moving leg in SLS. Then, the 

group means were calculated in a similar fashion, each outcome measure being averaged for 

the relevant subgroups in each movement phase for each movement.  

The collective flowchart of the data analysis process is presented on Figure 16. 

 

Figure 16: Flowchart presenting the stages of the data analysis process. 

 

The details of the statistical analysis are presented in each chapter separately. 
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Step-by-step data processing 

In this section we present the data processing and analysis to give a step by step 

representation of the process of getting from raw data to a format ready for statistical 

analysis. 

The electromyographic, kinematic and kinetic data were collected with the CodaMotion 

software and all data were synchronised to give a time synchronised output, with the potential 

offset of any data source negated. The sEMG data presented here is in fact a short sample of 

1.2 sec of the whole sEMG collected signal, which was cropped to better represent the effect 

of processing tools on the signal.  

sEMG data processing 

The sEMG provides a lot of valuable information about muscle function. However, a raw sEMG 

signal is a form of data associated with significant limitations, and can’t be further compared 

between participants, or within one participant between different occasions. Moreover, the 

sensitivity of sEMG during data collection process enables a large amount of noise to be 

recorded along the desired, biological signal. Therefore, the sEMG signal needs to undergo 

certain procedures in order to be further analysed.  

In order to present the effect of data processing techniques on the sEMG signal, the output 

was extracted for one participant, the example signal during one repetition of SHF from the 

adductor longus muscle being shown in Figure 17. 
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Figure 17: Graphical representation of a sample raw sEMG signal (please note that this signal has been 

analogue filtered in the amplifier attached to the sEMG electrode, but has not been digitally filtered), 
in this case of the left adductor longus muscle (AL) during the left standing hip flexion task (SHF).  mV 
– millivolts. 

 

Then, each individual raw sEMG signal output is further processed using filtering, rectifying 

and smoothing techniques applied by a custom made MatLab programme (Appendix 13, p. 

358) –.  

Filtering 

The first level of the sEMG signal processing is data filtering: analogue and digital. Analogue 

filtering occurs during the data collection process in the amplifier attached to the electrode 

(Kamen and Gabriel, 2010a). The main function of the amplifier is to distinguish the desired 

muscular motor output from electrical noise, which is present in the environment and easily 
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transferred through the human body. Two bipolar electrodes placed close to each other are 

organized to record a potential difference between the two. They detect the entire electrical 

signal transferred through the area to which they are attached. This signal includes not only 

the biological, desired muscular motor output, but also any other biological or environmenatal 

signal. The detected sEMG is a summation of the noise, neural and muscle fibre membrane 

depolarisation. Therefore it is not detected at the same time by both electrodes. This 

phenomenon allows for the differentiation of the desired EMG signal from the 

electromagnetic noise, which is detected simultaneously by both electrodes. The amplifier 

therefore acts as a first stage filter by recognizing the desired, biological signal recorded by the 

bipolar electrodes and strengthening it; at the same time the amplifier decreases the 

amplitude of the noise. In this study, built-in sEMG amplifiers enabled us to complete the first 

stage of the data filtering. 

The second stage of the sEMG filtering occurs during digital (software) data filtering (Kamen 

and Gabriel, 2010a). In this study, after visual examination of the data and identifying the 

potential sources of noise, I used a band pass filter with 500 Hz low-pass and 10 Hz high-pass 

cut-off frequencies. Although in healthy muscles the activation frequency does not decrease 

below 20 Hz, injured muscles might potentially generate lower frequency output (Kamen and 

Gabriel, 2010a). I therefore decided to allow an extra wide margin (10 Hz) while collecting data 

from injured muscles. Moreover, a 10 Hz high-pass filter is recommended by the International 

Society of Electromyography and Kinesiology in order to successfully remove the noise 

associated with wires and the movement of electrodes.  

Additionally, to remove the electrical noise, a narrow notch filter (50 Hz) was used to filter out 

any 50 Hz electrical radiation signal resulting from mains electrical interference, if it was 

detected during plotting the frequency spectrum of each individual data.  
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In the presented example, the sEMG signal was band-pass filtered as a standard procedure 

(high-pass filter: 10 Hz, low-pass filter: 500 Hz) and notch filtered if the frequency analysis 

showed the noise at the 50 Hz (notch filter: 50 Hz) (Figure 18 in red).  

 

Figure 18: Graphical representation of the sEMG signal before (blue) and after (red) applying a band-
pass and notch filter; mV – millivolt. A 2mv offset has been applied for visualisation purposes.  

 

Rectification  

Next, each individual sEMG signal was rectified, a data processing procedure which leaves only 

positive sEMG values for further analysis. The raw sEMG signal represents the difference 

between two electrodes in the level of de- and re-polarisation of the membrane of muscle 

fibres.  Consequently, the raw sEMG always has corresponding positive and negative values. 

When smoothing, (averaging in specified time window), the sEMG recordings woud likely give 
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an average value of approximately zero. To address this issue, a half-wave (cutting off all 

negative values and leaving only positive values) or full -wave (using the absolute values of 

each data point) rectification is recommended. In our study, following available guidelines, I 

chose a full-wave approach to rectifying the sEMG signal. 

The rectified signal is presented on Figure 19 in yellow, please note that the raw sEMG signal 

has been presented with 2 mV offset for visualisation purposes. 

 

Figure 19: Graphical representation of the raw sEMG signal (blue), filtered sEMG signal (red) and a 
filtered signal after rectification procedure (yellow); mV – millivolt. 
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Smoothing 

After rectification, the sEMG signal is smoothed. The technique of smoothing (or averaging) 

the sEMG signal is used to enable the quantification of muscle activation over time. This is 

measured in millivolts and is performed by averaging the sEMG signal in a specified moving 

time window. Common window lengths are between 100-200ms, in our study I used a 200ms 

averaging window. The smoothed sEMG signal is presented on Figure 20 in purple. 

 

Figure 20: Graphical representation of the raw sEMG signal (blue), filtered sEMG signal (red), rectified 
sEMG signal (yellow) and smoothed sEMG signal (purple); mV – millivolt. 
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Log transforming 

After these procedures, each separate sEMG signal was log transformed, which enabled us to 

limit the influence of the larger, more superficial, fast-twitch muscle fibres therefore yielding a 

composite sEMG with a quasi-linear measure of muscle activation (Robertson, 2004). This best 

served the purpose of this study and enabled us to limit the effect of outliers in the statistical 

analysis.     

 

After these processing procedures, each individual data recording for each muscle was divided 

into phases, according to both visual kinematic data examination in the CodaMotion software 

interface, and either kinetic or kinematic data. This was achieved by close examination of both 

outputs and defining the time of the occurring events. Each phase of each movement has its 

own specific events that define the beginning and end of the phase, which are described in 

detailed on page 126. 

For example, the early phase of both SHF and SLS movement is the beginning of load shift from 

bilateral to unilateral stance, defined as an initial lateral load shift on the force plate. Firstly, 

the approximate time of this event was defined by the visual data examination of the stick-

figure on the interface of the CodaMotion software, with a special attention given to the Z-axis 

output on the stick-figure and the force plates (Figure 21). 
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Figure 21: A graphical representation of the relevant outputs of the CodaMotion software interface; 
top row – stages of the change form a bilateral to unilateral stance characterising the early phase of 

both SHF and SLS movement; bottom picture – Z-axis output from both force plates. The numbers of 
the phase in the top row correspond to the numbers shown on the force plate output. 

In this data sample of the left standing hip flexion movement (Figure 21), the participant is 

establishing his bilateral position on a force plate (1), then he pushes off by his left leg (2 and 

3), after that he starts lifting his left leg (4) and starts offloading the left force plate. Then he 

proceeds to lift left leg (5), which leads to complete off-load of the force plate (6). In this part 

of the data, the push-off phase (so the early phase in SHF and Moving I phase in SLS)  is defined 

between time phases (3) and (4). In order to establish the exact moment of the lateral push, 
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the output from the force plate in all three planes was transferred into a MatLab program for 

the detailed inspection of this movement signature (Figure 22).   

 

Figure 22: A relevant output from the interface of the custom made MatLab program, showing the X, 

Y and Z axes outputs from a force plate. 

 

In particular, the X-axis output from the force plate is then examined closely in the 

approximate time window, which was established previously by the visual data examination in 

the CodaMotion software interface, as the approximate time of the occurrence of this 

movement; in this case between 1 and 1.2. on the presented example, a clear negative peak in 

the X-axis, indicating the maximal lateral push (in this case left leg push-off indicated a 

negative direction of the lateral push) is visible, and marked manually, as presented on Figure 

23. The peak rather than first deflection was chosen as this was less susceptible to artefact 

such as that due to normal postural away.  

 

Figure 23: A part of the interface of the custom made Matlab program showing the X-axis output of 
the force plate; black line indicates a moment of lateral push on the force plate, which indicated the 

moment of the change from the bilateral to unilateral stance. 

X y z 



 

142 

 

In order to define the phase, 50 ms is then retracted and 50 ms was added by the MatLab 

programme to the marked point in time to ensure a time period reflective of movement onset.  

This timeframe is then transferred to all the other data outputs – separate sEMG outputs from 

the gluteus medius and adductor longus muscles, and the hip joint coronal, sagittal and 

horizontal plane, in both standing and moving legs in SHF and only the moving side in SLS.  

In a similar manner, other phases of SHF and SLS movements were defined based on their 

specific characteristics (p. 126). 

Kinematic data 

After the definition of the relevant movement phases for each movement, the event times of 

the defined phases were further applied to the kinematic outcome measures: hip joint 

rotations in coronal, sagittal and horizontal plane. The kinematic data were collected at a 

sampling frequency of 200 Hz. 

The kinematic data received from the markers are highly susceptible to noise. One of the main 

source of this noise is a very short period of time when the CodaMotions cameras are 

acquiring the data in order to capture the exact marker position and prevent from ‘smearing’ 

of the data during fast movements. This period of the actual data acquisition is not dependent 

of the sampling frequency. The noise that may affect the real signal is a high-frequency noise 

mainly arising from the photo-detector current noise in the cameras or the sub-optimal room 

lightning. It is usually rather small in x- and z-axes. However, this noise may become more 

significant in the y-axis, which is derived by the triangulation calculation of the two outer 

CodaMotion cameras. 

Additionally, there is high risk of low frequency noise associated with the fact that the markers 

are put on the participant’s skin, which may provide some movement fluctuations. 
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The higher frequency components of the final noise can be filtered out (smoothed) by a low 

pass filter. In this study I used 20 Hz low pass filter to smooth out the high frequency noise. 

This frequency is recommended by the software provider as optimal in order to remove noise 

but prevent data loss (Contents, 2004). This process was implemented automatically within 

the CodaMotion software, therefore graphical representation of the effect of filtering and 

smoothing of the data was not possible to present.
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Chapter 5: Reliability study 

Chapter overview 

This chapter addresses the inter-rater reliability of the data collection and analysis method, 

which is further used in the experimental chapters of the thesis. 24 healthy participants took 

part in the study, performing standing hip flexion and single leg squat, on two occasions with a 

one-week interval. 

Introduction 

Reliability of the measurements, defined as repeatability and stability of the test results as well 

as a minimal measurement error over time or occasions, is essential in sports medicine 

research (Atkinson and Nevill, 1998, Downing, 2004).  If the measurement method is not 

repeatable, the results lose their meaning and need to be interpreted with caution, or not 

interpreted at all (Downing, 2004).  Moreover, good reliability is an essential part of the 

validity of the results (Downing, 2003, Portney and Watkins, 2000).     

Surface electromyography (sEMG) and kinematic measurements in biomechanical research are 

typically reported to have moderate to high reliability (Kollmitzer et al., 1999b, McGinley et al., 

2009) according to the criteria established by Portney and Watkins (Portney and Watkins, 

2000). sEMG measurements of the pelvis and hip musculature during concentric and eccentric 

movement  and rehabilitation exercises were reported to have an ICC of between 0.5 – 0.95 

(Claiborne et al., 2009, Bolgla and Uhl, 2007) whereas a systematic review of 3D kinematic 

measurement reliability reported that among 23 reviewed studies the reported error 

(standard deviation or standard error) of the measurements was less than 5 degrees with only 

a few exceptions (McGinley et al., 2009). However, the classic application of 3D kinematic 

measurements is for gait analysis, with good reliability within a given laboratory but not as 
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good between laboratories. There is a paucity of research determining the reliability of 

kinematic measurements in other functional manoeuvres (Goodwin et al., 1999). 

Reliability of the results obtained by both sEMG and kinematic measurement devices has a 

considerably high user dependency due to a large number of extrinsic factors potentially 

affecting it (Monaghan et al., 2007). As mentioned previously in the Chapter 3: Methods (p. 

85), sEMG signals will be significantly altered depending on the electrode location on the 

muscle and, for example, due to picking up signals from other muscles (cross-talk), or poor 

alignment of the electrode with the muscle fibres. Additionally, the quality of sEMG 

measurements might be compromised due to improper skin preparation prior to the electrode 

placement that is a lack of shaving, rubbing and sanitising. Because my testing procedure 

involved movement, there was also potential for the electrodes to be partially dislodged, 

which could also significantly alter the sEMG output. Movement artefact was an additional 

concern. Therefore lack of reproducible and careful process of securing the electrodes may 

also be a factor affecting sEMG measurement reliability. 

In 3D kinematic measurements the critical extrinsic factors potentially affecting the results 

were the laboratory alignment and placement of the infra-red markers on participant’s body 

(Monaghan et al., 2007). Poor alignment of the CodaMotion cameras and, consequently, noisy 

definition of the X, Y and Z axes in the laboratory would affect the levels of joint rotations  

defined for a given participant and reduce the validity of between-subject comparisons. 

Inaccurate placement of the infrared markers on a participant’s anatomical landmarks, which 

serve as the base of the joint centre calculation, would mean the measurements are not only 

unreliable, but also naturally not valid. 

Considering such a high number of potential user-dependent errors that might affect the 

reliability of the measurements, a study was performed to establish the reliability of the 
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measurement method applied in the studies included in the thesis – the alternative hypothesis 

was that the method of measurement and data analysis is reliable. The specific aims of this 

study were to establish the reliability of the sEMG and kinematic measurements and analysis 

method when performing standing hip flexion (SHF) and single leg squat (SLS) manoeuvres in 

order to inform our analysis of study findings in pathological groups. As further applied in 

other studies included in the thesis, the analysis focused on the gluteus medius to adductor 

longus muscle activation ratio (GM:AL) and the hip joint kinematics in sagittal, coronal and 

horizontal planes. 

Methodology 

Participants 

The study was approved by the Queen Mary University of London Ethics of Research 

Committee and all study participants gave verbal consent to take part in the study after they 

read the patient information sheet and their question were answered. A convenience sample 

was recruited, 21-24 years of age, performing various sports at an amateur level (football, 

rugby, hockey, running, weightlifting, dancing, mixed martial arts, cricket, squash, tennis). 

Testing took place over an 18-month period, across the data collection phase of the 

observational study.  

sEMG electrodes and CodaMotion markers placement 

All study participants were invited to the Human Performance Laboratory (HPL) for the data 

collection process. They were asked to bring their own pair of shorts uncovering their legs. 

They were then asked to lie down on the plinth placed in a locked office or behind the screens 

in HPL and certain areas of their body (abdominal area, groin, legs and buttocks) were then 

uncovered. Then the participants were asked to perform standardised movements and 
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isometric muscle contractions in order to define the location for sEMG electrode placement. 

These areas were then shaved, lightly abraded and alcohol-wiped in order to optimise the 

electrodes’ capability to record the electrical signal. sEMG electrodes, to which the disposable 

sensors equipped with ultrasound gel were attached, were then placed on previously prepared 

areas and secured with tape in order to prevent dislodging during subsequent dynamic data 

collection. 

In a standing position, the CodaMotion markers were placed on the anatomical landmarks of 

participant’s pelvis and lower limbs according to a modified Helen-Hayes protocol (Monaghan 

et al., 2007), and secured with tape. 

Data collection protocol 

All participants attended the HPL for the data collection process twice, with between seven 

and ten days between visits. This timeframe was chosen in order to minimise the 

measurement bias associated with an altered muscle signal due to change of training load or 

strategy.  

The participant was asked to perform two different movement tasks; each task was performed 

three times with each lower limb. Before the data collection, the participant was given clear 

instructions regarding each task and a suitable amount of time to famil iarise themself with 

each task. 

Firstly, the participant was asked to perform a standing hip flexion manoeuvre. He/she was 

instructed to step on the force plate for three seconds, then lift a chosen leg up to achieve the 

hip and knee 90° flexion, hold it for three seconds, then put it back down and step back from 

the force plate. 

The second task was the single leg squat manoeuvre. The participant was asked to step on a 

force plate, lift a chosen leg up for three seconds and perform a comfortable single leg squat 
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on the supporting leg. He was instructed to stay in this position for three seconds, after which 

he was asked to rise from the squat, put the elevated leg back on the force plate and step off. 

Data analysis 

Electromyographic, kinematic and kinetic data were further analysed using a set of custom 

made MatLab programmes (version 2008 - 2015, The Mathworks, Natick, MA, USA) and SPSS 

statistical program (IBM Corp. Released 2013. IBM SPSS Statistics for Mac, Version 22.0. 

Armonk, NY: IBM Corp). 

Dividing the SHF and SLS movements into phases 

Following the usual methodology developed for the studies included in the thesis, the SHF was 

divided into three phases: early, middle and late. The early phase was initially defined as 50 ms 

before and 50 ms after the initial lateral push of the lifted leg. The late phase was defined as 

50 ms before and 50 ms after the stable one leg stance with the other leg flexed in the hip and 

knee to 90°. The middle phase was defined as occurring between the early and late phase, 

which include the actual lifting movement of the leg. 

The SLS movement was divided into seven phases:  four movement phases and three stable 

phases (Table 10).  
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Phase 
number 

Phase 
characteristics 

Phase code Phase description 

1 

Movement 
phases 

M1 
Lateral shift of the load - initiation of 

change from bilateral to unilateral stance 

2 M2 Change from bilateral to unilateral stance 

3 M3 Squatting down 

4 M4 Squatting up 

5 

Stable phases 

S1 
Stable unilateral stance prior to 

performing squat 

6 S2 
Stable stance in unilateral maximal squat 

position 

7 S3 
Stable unilateral stance after to 

performing squat 

 

Table 10: Table showing the division of the SLS movement to seven phases 

Statistical data analysis 

Firstly, the quality all of the individual raw sEMG data were manually checked with parti cular 

attention to the data within previously defined phases. If the data quality was poor within any 

of the analysed phases, the record was deleted. If the data quality was poor beyond these 

phases, but acceptable within, the record was accepted. This was necessary as there were 

periods during the data collection phase when the sEMG collection unit developed 

intermittent faults. The 50Hz filter was available in case of the presence of commonly 

occurring electrical noise and applied if necessary. Then all of the finally approved sEMG data 

were 12Hz high-pass and 400Hz low-pass filtered, smoothed and rectified. The means were 

then calculated for each phase in each individual for each leg, across three repetitions, for 

both testing occasions separately. 

ICCs values with the 95% CI were then calculated in a two way mixed model (with random 

effects for the study participants but fixed effect for the rater) to establish an inter-rater 

reliability of the electromyograhic and kinematic data collection and analysis method (de Vet 

et al., 2006, Shrout and Fleiss, 1979). Further, one-way ANOVA and t-tests were performed to 
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establish the overall agreement between two data series. To interpret the reliability values, 

standard criteria were referred to (Portney and Watkins, 1993)(Table 11).  

Value range Description 

< 0.59 Poor 

0.60 – 0.74 Moderate 

0.75 – 0.89 Good 

≥0.90 Excellent 

Table 11: The interpretation of ICC values (Portney and Watkins, 2000). 

 

Results 

Twenty-eight participants took part in the reliability study. Owing to technical difficulties 

resulting in poor data quality, the measurements from twenty-four participants were finally 

analysed. 

Standing hip flexion 

sEMG 

The overall reliability of the method of the GM:AL electromyography data collection and 

analysis of the SHF manoeuvre was moderate (ICC=0.71, CI=0.63 – 0.78, F = 2.23, p = 0.14). 

Separate analysis showed a higher reliability of the right SHF manoeuvre (ICC=0.8, CI = 0.7 – 

0.8, F = 15, p = 0.62) than left SHF manoeuvre (ICC = 0.6, CI = 0.41 – 0.73, F = 2.68, p = 0.11). 

When analysing separate phases, the highest (good) reliability of the measurements was 

achieved in the early phase of SHF (ICC = 0.83, CI= 0.73 – 0.83, F = 0.43, p = 0.51), moderate 

reliability was obtained in the middle (ICC = 0.67, CI = 0.48 – 0.8, F = 1.41, p = 0.24) and poor in 

the late (ICC = 0.58, CI = 0.32 – 0.74, F = 0.59, p = 0.45) phases of SHF movement. 
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Poor reliability was achieved in moving (ICC = 0.46, CI = 0.2 – 0.63, F = 0.84, p = 0.36) and 

moderate in stance (ICC = 0.6, CI = 0.44 – 0.7, F = 0.05, p = 0.95) phases of SHF, when analysed 

separately. A summary of the results is presented in Table 12. 

 

Phases of SHF 
Measured 

side 
L SHF 
(ICC) 

R SHF 
(ICC) 

Combined 
L SHF 

(ICC) 

Combined 
R SHF 

(ICC) 

Combined 
L+R SHF 

(ICC) 

early 
Moving 0.54 0.83     

0.83 
Stance  0.71 0.88     

middle 
Moving  0.58 0.63     

0.67 
Stance  0.63 0.72 0.6 0.8 

late 
Moving  0.61 0.72     

0.58 
Stance  0.32 0.51     

       

Overall 0.71      

Moving side L+R SHF 0.55      

Stance side L+R SHF 0.6      

 

Table 12: Table summarizing the ICC values measured with the 95% of the confidence intervals for the 
measurements and the data analysis methods of the gluteus medius to adductor longus muscle 
magnitude activation ratio during three phases of the SHF manoeuvre, measured on the moving and 
stance side. SHF= standing hip flexion; L = left, R = right; GM:AL = gluteus medius to adductor longus 

muscle activation magnitude ratio; ICC = intraclass correlation coefficient; CI = confidence interval. 

 

Kinematics 

The overall reliability of the kinematic measurements of the hip joint rotations in coronal, 

sagittal and horizontal plane in SHF was excellent (ICC = 0.97, CI = 0.97 – 0.98, F = 1.63, p =0.2) 

with a similar reliability of the right and left leg manoeuvres (ICC = 0.97, CI = 0.97 – 0.98, F = 

1.4, p = 0.24 and ICC = 0.97, CI = 0.97 – 0.98, F = 0.39, p = 0.53 respectively).  

The analysis of the separate planes showed excellent reliability in the sagittal plane (ICC = 0.99, 

CI = 0.98 – 0.99, F = 0.6, p = 0.8) followed by the coronal plane (ICC = 0.91, CI = 0.89 – 0.93, F = 

3.09, p = 0.8), but poor reliability in the horizontal (ICC = 0.48, CI = 0.33 – 0.6, F = 1.08, p = 0.3) 

plane. 



 

152 

 

The analysis of separate SHF movement phases showed an excellent reliability in the early 

phase of SHF (ICC = 0.93, CI = 0.91 – 0.95, F = 0.04, p = 0.84), middle (ICC = 0.97, CI = 0.97 – 

0.98, F = 1.31, p = 0.25), and late (ICC = 0.98, CI = 0.98 – 0.99, F = 0.96, p = 0.33).  

Both moving and stance measured sides showed excellent reliability, with the moving leg 

higher than the stance leg (ICC = 0.98, CI = 0.98 – 0.99, F = 2.72, p = 0.1 and ICC = 0.91, CI = 

0.89 – 0.92, F = 0.001, p = 0.98 respectively). 

The ICC values for separate planes in each movement phase are presented in Table 13. 

Phases of 
SHF 

Measured 
side 

Plane 
L SHF 
(ICC) 

R SHF 
(ICC) 

L+R SHF 
(ICC) 

L+R 

SHF 
(ICC) 

early 

  cor 0.84 0.81    

mov sag 0.88 0.84 0.66  

  hor 0.27 0.34    

  cor 0.61 0.9   0.93 

st sag 0.85 0.92 0.66  

  hor 0.29 0.41     

middle 

  cor 0.82 0.82    

mov sag 0.85 0.62 0.64  

  hor 0.52 0.2    

  cor 0.67 0.8   0.97 

st sag 0.9 0.88 0.66  

  hor 0.28 0.45     

late 

mov 

cor 0.74 0.59    

sag 0.83 0.7 0.67  

hor 0.68 0.47    

st 

cor 0.86 0.8   0.98 

sag 0.89 0.87 0.72  
hor 0.38 0.53    

       

Overall  0.97     
Coronal plane L+R SHF 0.91     
Sagittal plane L+R SHF 0.99     

Horizontal plane L+R SHF 0.48     
Moving side L+R SHF 0.98     
Stance side L+R SHF 0.91     

       
Table 13: Table summarizing the ICC values measured with the 95% of the confidence intervals for the 
measurements and the data analysis methods of the hip joint kinematics in all three planes during 
three phases of the SHF manoeuvre, measured on the moving and stance side. SHF= standing hip 
flexion; L = left; R = right; ICC = intraclass correlation coefficient; CI = confidence interval; mov = 

moving side; st = stance side; cor = coronal plane; sag = sagittal plane; hor = horizontal plane. 
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Single leg squat 

sEMG 

The overall reliability of the SLS manoeuvre across all phases was moderate (ICC = 0.72, CI = 

0.67 – 0.764, F = 0.002, p = 0.96). The reliability of the right SLS was higher than the left SLS 

(ICC = 0.78, CI = 0.72 – 0.83, F = 5.37, p = 0.21 and ICC = 0.66, CI = 0.57 – 0.73, F = 3.47, p = 0.64 

respectively).  

When analysing the separate phases, the highest reliability was achieved in the moving 2 

phase (ICC = 0.83, CI = 0.73 – 0.89, F = 0.29, p = 0.59) followed by the stance 1 (ICC = 0.78, CI = 

0.65 – 0.86, F = 0.63, p = 0.43), moving 1 (ICC = 0.75, CI = 0.61 – 0.84, F = 0.01, p = 0.91), 

moving 3 (ICC = 0.67, CI = 0.47 – 0.79, F = 0.29, p = 0.87), stance 2 (ICC = 0.66, CI = 0.47 – 0.79, 

F = 0.54, p = 0.47), stance 3 (ICC = 0.66, CI = 0.44 – 0.78, F = 0.05, p = 0.82) and moving 4 (ICC = 

0.65, CI = 0.43 – 0.77, F = 0.09, p = 0.72) .  

When analysing the stance and movement phases, higher reliability was achieved in the 

moving phases (ICC = 0.73, CI = 0.67 – 0. 77, F = 0.009, p = 0.92) than the stance phases (ICC = 

0.7, CI = 0.61 – 0.77, F = 0.005, p = 94). 

The summary of these results is presented in Table 14. 
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Phase of 
SLS 

L SLS 
(ICC) 

R SLS 
(ICC) 

L SLS 
(ICC) 

R SLS 
(ICC) 

L+R SLS 
(ICC) 

L+R SLS 
(ICC) 

Mov 1 0.72 0.78     

0.73 

0.75 

Mov 2 0.82 0.84     0.83 

Mov 3 0.65 0.73     0.67 

Mov 4 0.54 0.76 0.66 0.78 0.65 

St 1 0.78 0.78    

0.7 

0.78 

St 2 0.68 0.54     0.66 

St 3 0.54 0.76     0.66 

       

Overall  0.72     

Table 14: Table summarizing the ICC values measured with the 95% of the confidence intervals for the 
measurements and the data analysis methods of the gluteus medius to adductor longus muscle 
magnitude activation ratio during seven phases of the SLS manoeuvre, measured on the moving side. 
SLS = single leg squat; L = left; R = right; ICC = intraclass correlation coefficient; CI = confidence 

interval; mov1 = phase moving 1; mov2 = phase moving 2; mov3 = phase moving 3; st1 = phase stance 
1; st2 = phase stance 2; st3= phase stance 3. 

 

Kinematics 

The overall reliability of the hip joint kinematic measurement and analysis method was 

excellent (ICC = 0.94, CI = 0.93 – 0.95, F = 1.52, p = 0.22). The reliability of the right SLS 

manoeuvre was higher than the left SLS manoeuvre (ICC = 0.93, CI = 0.92 – 0.94, F = 0.86, p = 

0.35 and ICC = 0.9, CI = 0.71 – 0.93, F = 0.54, p = 0. 23 respectively). 

Analysis of the separate planes showed a good reliability in coronal and sagittal planes (ICC = 

0.87, CI = 0.83 – 0.9, F = 4.39, p = 0.04 and ICC = 0.86, CI = 0.82 – 0.89, F = 1.26, p = 0.26 

respectively), but poor reliability in the horizontal plane of SLS (ICC = 0.38, CI = 0.22 – 0.51, F = 

9.46, p = 0.002). 

When analysed collectively, both moving and stance phases achieved excellent reliability (ICC = 

0.93, CI = 0.91 – 0.94, F = 1.91, p = 0.17 and ICC = 0.94, CI = 0.92 – 0.95, F = 0.82, p = 0.37, 

respectively) 
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The analysis of the separate movement phases showed excellent reliability in the moving 2 

(ICC = 0.92, CI = 0.88 - 0.94, F = 0.33, p = 0.57), moving 3 (ICC = 0.96, CI = 0.94 - 0.97, F = 0.07, p 

= 0.8), moving 4 (ICC = 0.91, CI = 0.86 - 0.95, F = 4.16, p = 0.44), stance 1 (ICC = 0.95, CI = 0.93 - 

0.97, F = 0.002, p = 0.97) and stance 2 phases (ICC = 0.92, CI = 0.89 - 0.95, F = 0.000, p = 0.99); 

and moderate reliability in the moving 1 (ICC = 0.88, CI = 0.82 - 0.92, F = 0.7, p = 0.79) and 

stance 3 (ICC = 0.9, CI = 0.85 - 0.92, F = 0.76, p = 0.65) phases. A summary of these results is 

presented in Table 15. 
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Phase of 
SLS 

Plane 
L SLS 
(ICC) 

R SLS 
(ICC) 

L SLS 
(ICC) 

R SLS 
(ICC) 

L+R 
SLS 

(ICC) 

L+R 
SLS 

(ICC) 

L+R 
SLS 

(ICC) 

mov 1 

cor 0.85 0.6     0.72 

0.88 

 

sag 0.54 0.88     0.71  

hor 0.54 0.93     0.74  

mov 2 

cor 0.64 0.81     0.73 

0.92 

 

sag 0.36 0.88     0.62  

hor 0.5 0.43     0.47  

mov 3 

cor 0.59 0.82     0.7 

0.96 

 

sag 0.78 0.7     0.74 0.93 

hor 0.69 0.18     0.43  

mov 4 

cor 0.22 0.8     0.51 

0.91 

 
sag 0.29 0.87     0.58  

hor 0.49 0.33     0.41   

st 1 

cor 0.56 0.82 0.96 0.93 0.69 

0.95 

 

sag 0.59 0.84     0.72  

hor 0.48 0.49     0.48  

st 2 

cor 0.43 0.88     0.66 

0.92 

 

sag 0.53 0.68     0.61  

hor 0.51 0.33     0.42 0.94 

st 3 

cor 0.32 0.8     0.56 

0.9 

 
sag 0.4 0.77     0.58  
hor 0.59 0.53     0.56  

         

Overall  0.94      

Coronal plane SL+SR 0.87      

Sagittal plane SL+SR 0.86      

Horizontal plane SL+SR 0.38      

 

Table 15: Table summarizing the ICC values measured with the 95% of the confidence intervals for the 
measurements and the data analysis methods of the hip joint kinematics in all three planes during 
seven phases of the SLS manoeuvre, measured on the moving side. SLS = single leg squat; L = left; R = 
right; ICC = intraclass correlation coefficient; CI = confidence interval; mov1 = phase moving 1; mov2 = 

phase moving 2; mov3 = phase moving 3; st1 = phase stance 1; st2 = phase stance 2; st 3= phase 
stance 3; cor = coronal plane; sag = sagittal plane; hor = horizontal plane. 

 

  



 

157 

 

Discussion 

The methods of data collection and - in particular – analysis, implemented in the thesis are 

relatively complex and include multiple stages of data collection and processing. In order to 

establish the reliability of the data collection and analysis methods, the reliability of the final 

result was analysed, rather than the individual stages of data processing. The overall reliability 

of the measurements and the analysis method was moderate to high, in agreement with 

previous research (Kollmitzer et al., 1999b, McGinley et al., 2009).  

There are many methods of assessing the reliability in the biomechanical and rehabilitation 

research, and little consensus has been achieved regarding which method should be used 

(Rankin and Stokes, 1998). It has been agreed that reliability measurements should in general 

represent the true variability of the observations (Riddle et al., 1989), but this has not led to 

researchers’ achieving methodological agreement. Each reliability analysis method is 

associated with some advantages and disadvantages, and although some general guidelines 

exist regarding the methods used in a given field, the final choice of the method needs to be 

carefully chosen by the researcher, based on the aims of a particular study. 

In my study I chose to analyse reliability using the ICC, performing multiple measurement on 

separate groups of data (such as one outcome measure during a particular movement phase) 

as well as analysing reliability throughout the whole movement. Therefore, the natural 

limitation of this analysis is the lack of limits of agreement or equivalent, which may have been 

achieved by employing an approach such as Bland and Altman’s analysis plot (Atkinson and 

Nevill, 1998). Additionally, the ICC is just a one point representation of the reliability based on 

a given sample, which also limits its clinical interpretation (Rankin and Stokes, 1998). Therefore 

some authors suggest complimenting these measurements with the Bland and Altman 95% 

limits of agreement test (Bland and Altman, 1986). 
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There were several reasons why I chose to accept the results of the performed ICC 

measurements. Firstly, this test is certainly a better option for assessing the systematic 

difference between measurements than for example Person’s correlation, which doesn’t allow 

to relate the findings further to the individuals. ICC is actually influenced by the magnitude of 

between-subjects variation, which makes it more clinically applicable. 

Secondly, although some authors encourage to compliments ICC with Bland and Altman 95% 

limits of agreement test (Bland and Altman, 1986), these measurements are also suggested for 

assessment of the reliability of the measurement method rather than the intra-rater reliability 

of the scientist performing measurements with a selected method (Costa-Santos et al., 2011, 

Bland and Altman, 1986). The aim of my study was to establish my reliability of using and 

analysing the method, which was previously used and validated. Therefore, adding the Bland 

and Altman results may not have been appropriate in this particular case  (Costa-Santos et al., 

2011). 

Further, considering the amount of data that was analysed in my study, the division of both 

movements into a number of phases and both legs being measure in each condition, there 

were a very high number of outcome measures in this study. Adding further analysis would be 

rather a confusing than a clarifying factor, and might have decreased the understanding of the 

overall reliability of the measurements.  

The overall reliability of the method of collecting and analysing the electromyographic data 

implemented in the thesis was moderate in both movement manoeuvres. This is in agreement 

with previous studies measuring the reliability of sEMG measurements in controlled 

movements (Zech et al., 2008, Rainoldi et al., 2001, Heinonen et al., 1994).   

The movements implemented in this study, however, were not as fully controlled as would be 

the case with static, isometric contractions (Heinonen et al., 1994). Both SHF and SLS 
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manoeuvres are complex tasks, used clinically to assess the many aspects of the function of 

the hip and pelvis areas (Boudreau et al., 2009, Crossley et al., 2011, Marshall et al., 2015). 

One study measured the reliability of leg muscle electromyography during vertical jumping and 

implemented a similar method of dividing the movement into phases based on the kinematic 

events (Goodwin et al., 1999). The reliability was reported to be poor to moderate depending 

on the measured muscles. A satisfactory reliability was achieved in the rectus femoris and 

vastus medialis muscles (ICC = 0.88 and ICC = 0.7 respectively), but poor reliability (ICC < 0.25) 

was reported for the biceps femoris and gastrocnemius muscles. The hip and pelvis 

musculature was not measured in that study but is likely to be subject to similar concerns.  

Compared to the vertical jumping, the reliability of the GM:AL muscle activation ratio reported 

in my study was considerably higher for both manoeuvres with an ICC of 0.72 for SHF and also 

0.72 for the SLS. The reason for a better reliability of my study may be another level of data 

normalisation implemented in the electromyographic data analysis – muscle activation 

magnitude ratio rather than measuring only one muscle, which was the case during the 

vertical jump. The method of muscle ratio analysis was chosen in order to avoid the standard 

way of electromyographic data normalisation (such as normalising the sEMG signal to the 

maximal voluntary contraction or to the peak, or mean activation during the performed 

movement), which could not be implemented in the experimental studies including potentially 

injured muscles (van der Hulst et al., 2010a, van der Hulst et al., 2010b, Morrissey et al., 

2012a).  

Additionally, one of the aims of the thesis was to determine the overall muscle activation 

patterns and the functional characteristics of the symptomatic study participants rather than 

establishing the definitive level of muscle activation or obtaining very discreet activation 

information such as motor unit action potential (MUAP) or muscle fibre level data. The method 

of the agonist-antagonist muscle ratio seemed therefore optimal to achieve the study aims. 
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Relatively high reliability reported in this study may suggest a robustness of this method for 

the functional assessment of the muscle activation, which may be implemented in the clinical 

settings. However, an additional analysis of separate GM and AL muscle activation was 

performed only in the right SHF movement, and the reliability of both separate muscles was 

similar to the ratio (GM: ICC = 0.67, CI = 0.51 – 0.78, F = 0.24, p = 0.62; AL: ICC = 0.75, CI = 0.63 

– 0.83, F = 0.95, p = 0.33). 

Additionally, compared to the vertical jump movement, both SHF and SLS manoeuvres are 

more static, which may increase the reliability of the measurements. Interestingly, in the SHF 

(where both the moving and stance side were measured and analysed) a higher reliability was 

achieved in the moving than stance phase. Moreover, when analysing the phases of 

movement, the highest reliability was achieved in the early phase, during the initial lateral shift 

of the loading from the bilateral to unilateral stance, and the lowest – during the stable one leg 

stance. In SLS, where only the moving leg was analysed a separate analysis was performed to 

establish the reliability of the moving and stance phases of the movement, and the moving 

phases again achieved a higher reliability than the stance phases. A generally higher reliability 

of the moving than stance phases in SHF and SLS may be due to a higher muscle activation 

magnitude during movement than stance phases. A relatively low muscular activation during 

stance may be similar to the static muscle electrical output, which was also recorded and 

analysed. Nevertheless, both stance and movement phases achieved a similar and moderate 

reliability. 

The separate ICCs for GM:AL ratio in each movement phase in both SHF and SLS were 

moderate and acceptable. However, the ICC on the stance side of the late phase during SHF 

was very low (0.322). This is a surprising result and clearly differs from the reliability levels of 

all of the other single measurements. The reason for such discrepancy is not clear. It may be 

due to the learning bias as the SHF manoeuvre, although apparently easy, presented a 
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challenge for study participants during the late phase to maintain stable unilateral stance. 

During the second testing occasion the study participants may have already expected and 

learned how to achieve an optimal level of stability when standing still with one knee lifted, 

which has affected the reliability of this particular phase. It may also be that there are 

alternative muscular co-ordination strategies the body can adopt to maintain the position such 

as is the case with scapular movement (Worsley et al., 2013). 

Interestingly, the reliability of the manoeuvres performed on the right and left side, the 

reliability was consistently higher in the right compared to the left, in both SHF and SLS 

manoeuvres. I found no studies specifically investigating the reliability of the right compared 

to left side in the biomechanical literature, but it may be hypothesised that following the 

general population the majority of the participants were right side dominant (Lansky et al., 

1988). Thus, performing the movement on their dominant and preferred side may have been 

more reproducible and therefore resulted in higher reliability values.  

Kinematics data collection and analysis 

The overall reliability of the method of 3D hip joint kinematic data collection and analysis 

during SHF and SLS manoeuvres was excellent, with SHF achieving a higher reliability 

compared to SLS.  

Although 3D kinematic measurements are widely used in clinical research, two published 

studies have reported a poor to moderate reliability of 3D kinematic measurement between 

laboratories (Noonan et al., 2003, Gorton Iii et al., 2009), which may question the clinical 

applications of such measurements. A recent systematic review on the reliability of 3D 

kinematic measurements used in gait analysis (McGinley et al., 2009) has reported that 

although some errors and bias do exist in these measurements, they may not affect the clinical 

applications of 3D gait analysis as such. Although the review focuses specifically on 3D gait 
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analysis, the typical method of the assessment of the kinematic measurements in reviewed 

studies is based on the division of the gait pattern into phases (Baker, 2006) – which may be 

comparable to the method implemented in my study. Interestingly, one of the results of the 

review shows is that hip joint kinematic measurements tend to show a lower reliability 

compared to pelvis, knee and foot. 

One study, not included in the review, shows a high reliability of the 3D gait analysis kinematic 

measures in the participants with the hip osteoarthritis (Laroche et al., 2011), which may be 

associated with the experimental studies included in the thesis due to similarity of the coronal 

plane kinematic impairment between hip osteoarthritis and groin pain.  

The analysis of the reliability of the hip joint movement in the separate planes showed a good 

to excellent reliability in the coronal and sagittal plane (slightly higher in sagittal in SHF). 

However, a consistently lower reliability level was shown in the horizontal plane in both 

movements, which supports the results of the previous studies (McGinley et al., 2009). This 

clear discrepancy between planes may be associated with the hip joint functional anatomy 

and, consequently, the function of the muscles acting on the hip joint. Whereas the coronal 

and sagittal plane movements are mostly achieved with a large and well -defined muscle 

groups regardless of the hip position (such as ilio-psoas, adductor and gluteal muscle groups), 

the movements in the horizontal plane are often controlled by the same muscle, as their 

accessory function (adductor magnus, gracilis and biceps femoris). Moreover, some of the 

major hip stability muscles such as gluteus medius, act as both internal and external rotators 

depending on the part of the muscle (Gottschalk et al., 1989). Therefore, the general control 

and stability in the hip joint in horizontal plane may be worse than other planes, and therefore 

reliability compromised. This may mean that in the experimental studies including in the 

thesis, the results obtained from the hip rotations in the horizontal plane should be treated 
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with caution. In addition, the degree of movement in the horizontal plane is small in these 

movements, and noise will therefore be relatively high.  

A previously mentioned review on the reliability of the 3D gait analysis kinematics (McGinley 

et al., 2009) emphasises the difficulty of drawing the definite conclusions due to study 

diversity. However, one of the recommendations of this review is that the acceptability of the 

reliability level of such measurements is highly dependent of the ‘proposed use’. In the 

experimental studies included in the thesis, the kinematic characteristics of the hip joint in the 

symptomatic participants were the secondary finding, analysed in the context of the coronal 

plane muscle activation alterations. Therefore, despite a few cases of low reliability levels in 

the hip joint kinematic measurements, I decided to accept and implement this method of 

kinematic data and analysis. 

Conclusions 

Overall, the reliability of the GM:AL sEMG data collection and analysis was moderate, with 

better reliability for the right leg manoeuvres. The hip joint kinematic data collection and 

analysis was moderate with some exceptions (e.g. hip joint horizontal plane kinematics). Some 

measurement errors were present in the proposed method, but they don’t compromise its 

application and allow the aims of the experimental studies to be met with confidence.  
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Chapter 6: Observational studies, combined as a cross sectional 

report 

Chapter overview 

This chapter summarises the results of the electromyographic and hip joint kinematic 

measurements of 84 amateur and professional athletes of various sports disciplines, while 

performing a standing hip flexion and single leg squat tasks.  

Introduction 

Sports related groin pain (SRGP) is common and recurrent. It is associated with a prolonged 

time away from sports and may be career ending. Athletes particularly susceptible to SRGP are 

those participating in high speed rotation-related sporting disciplines requiring repetitive 

kicking, pivoting, cutting or changing direction such as football, rugby and hockey (Brooks et 

al., 2005a, Brooks et al., 2005b, Ekstrand and Hilding, 1999, Emery et al., 1999a, Holmich et al., 

2010, Werner et al., 2009, Hagglund et al., 2006, Ekstrand and Gillquist, 1983, Hagglund et al., 

2009, Hawkins and Fuller, 1999, Holmich et al., 2013, Gibbs, 1993, O'Connor, 2004, Garraway 

et al., 2000, Emery et al., 1999b).  

The diagnosis and treatment of SRGP is challenging (Werner et al., 2009), with ill-defined and 

multi-structural pathology (Holmich, 2007) and often non-specific symptoms (Ekberg et al., 

1988, Falvey et al., 2009). Similar problems have been identified with other pathologies, such 

as shoulder pain and lower back pain, which present a huge challenge when identifying a 

distinct structure responsible for the symptoms. In these cases, the rehabilitation strategy 

focusing on a movement pattern rather than dictated by pathology seems to be the optimal 

way forward (Worsley et al., 2013, Mottram et al., 2009, Roussel et al., 2013). This presents an 
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argument that identifying the patterns of movement and muscle activation imbalances in SRGP 

may improve rehabilitation outcomes and reduce recurrence. 

An international agreement meeting held in Doha, Qatar published a report stating that while 

there is no gold standard diagnostic process for groin pain in athletes, there are three 

categories for SRGP - ‘defined clinical entities’, ‘hip-related pathology’ and ‘other conditions’ 

(Weir et al., 2015). Identification of study participants in regards to one of these three groups 

has been recommended (Weir et al., 2015). The defined clinical entities comprise of adductor-, 

iliopsoas-, inguinal- and pubic-related groin pain. These entities can co-exist. Further, a set of 

recommendations for minimum standards of reporting (Delahunt et al., 2015) was published 

from the same set of meetings. These recommendations have been useful in analysing our 

findings and presenting our research.  

There are a number of reported factors associated with SRGP (Arnason et al., 2004, Cowan et 

al., 2004a, Crow et al., 2010, Emery and Meeuwisse, 2001, Engebretsen et al., 2010, Ibrahim et 

al., 2007, Jansen et al., 2010, Malliaras et al., 2009, Mens et al., 2006, Mohammad et al., 2014, 

Morrissey et al., 2012a, Nevin and Delahunt, 2013, O'Connor, 2004, Thorborg et al., 2014, Tyler 

et al., 2001, Verrall et al., 2005a, Verrall et al., 2007a). The imbalances in the muscle features 

and range of movement in the SRGP athletes have been recognised in the Doha agreement 

and the necessity of including those imbalances in designing the prevention programs has 

been highlighted. However, little attention has been given to the necessity of recognising the 

biomechanical signatures associated with SRGP, such as movement pattern differences 

between injured and uninjured athletes.  Nor has any consideration been given to the 

participation level of the athlete and sports-specificity, in either the published literature or 

consensus documents.    
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The large number of reported muscular changes in both static and dynamic tests of athletes 

with SRGP is very likely to alter the way they move (Suzuki et al., 2001, Worsley et al., 2013). 

These alterations in movement patterns may be the cause of further damage and lack of 

successful recovery (Worsley et al., 2013). One study has measured muscle activation 

magnitude with surface electromyography and found that gluteus medius to adductor longus 

ratio was significantly decreased in amateur footballers with SRGP compared with matched 

controls (Morrissey et al., 2012a) which suggests there may be biomechanical imbalances in 

the coronal plane. 

Interestingly, although authors investigating biomechanical associations between SRGP and 

biomechanics use different diagnostic and inclusion/exclusion criteria in their studies, their 

findings are similar (Crow et al., 2010, Malliaras et al., 2009, Mens et al., 2006, Nevin and 

Delahunt, 2013, Thorborg et al., 2014, Verrall et al., 2005a). Some authors are very stringent 

with included SRGP group, (Thorborg et al., 2011, Holmich, 2007) whereas other define ‘groin 

pain’ very broadly and use rather limited inclusion criteria (Arnason et al., 2004). I chose the 

latter method, with our focus being broad categorisation rather than tissue-specific diagnosis. I 

appreciated this would yield a more heterogenous group, making any biomechanical patterns 

less likely to emerge yet also making any revealed patterns more robust and therefore of wider 

clinical relevance. Nonetheless, our criteria ensured that all subjects had adductor-related 

groin pain, alongside possible other defined clinical entities such as pubic-related or iliopsoas-

related groin pain (Weir et al., 2015). 

It is widely recognised that the athletes participating in certain sports disciplines are more 

susceptible to SRGP than others. A common approach associates this increased risk with 

repetitive kicking, twisting, cutting and pivoting manoeuvres. However, the mechanisms of 

SRGP development and the movements that may cause it are still not well understood. In the 

presence of a number of muscular and range of movement changes shown in association with 
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SRGP, it is a natural step forward to further explore the biomechanical characteristics of 

movement and muscle activation associated with SRGP. Further, although twisting, cutting and 

pivoting manoeuvres are common in all sports with a high incidence of SRGP, the 

requirements of each sport vary. Additionally, the level of sports and consequently the training 

load also varies among athletes suffering from SRGP, which suggests that there is an 

underlying biomechanical deficit, which potentially differs between different athletic groups, 

that is still under-researched. A lack of success in SRGP treatment among both amateur and 

professional athletes may mean that there are underlying factors such as alterations in 

movement patterns and muscle activation, which are under-researched, and may require 

more attention. 

The aim of this study was to characterise the biomechanical patterns in athletes with SRGP 

participating in various multi-directional sports at professional and amateur levels, with 

comparison to closely matched controls in order to better understand sports-specific 

presentations and guide rehabilitation. The alternative hypothesis was that injured would and 

uninjured subjects would differ in a systematic way. Secondary hypothesis was that the SRGP 

athletes participating in professional sport would show similar movement and muscle 

activation patterns compared to well-matched controls, and that these patterns would differ 

depending on the level and sports discipline played. 

The impact of the work is potentially considerable, with there being very little in the literature 

measuring movement patterns nor comparing participation levels as shown by an absence of 

recommendations or summary argument in recent consensus statements and an absence of 

such studies in the systematic review.  
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Methods 

Ethical approval was obtained from Queen Mary Ethics of Research Committee and all of the 

study participants granted signed informed consent prior to the data collection process. 

Participants were recruited from local sports clubs, by snowball recruiting and or by contacting 

sports clubs directly.  Control participants were recruited from the same or very similar sources 

as symptomatic subjects in order to closely match activity levels and training. For example, an 

injured professional midfielder from one club would ideally be tested alongside an uninjured 

player midfielder from the same club.   

Symptomatic participants were included in the study if they were >18 years old, had unilateral 

SRGP for at least 4 weeks and if their main pain symptoms were reproduced by the palpation 

of adductor muscle insertion to the pubic bone and unilateral adductor muscle static resisted 

adduction test (lying supine), and/or the following tests: abduction passive flexibility testing 

(lying supine), unilateral iliopsoas muscle strength and flexibility testing, squeeze test in 0°, 

45°, 90° (Delahunt et al. , 2011a, Delahunt et al. , 2011b, Malliaras, Hogan, 2009). Participants 

were excluded if they tested positive with hip joint tests (passive internal rotation, FA BER, 

quadrant test), had a history of groin or abdominal surgery or true hernia, or had significant 

lower back pain during clinical examination. Additional exclusion criterion for both 

symptomatic and asymptomatic participants was a history of previous groin, adductor or 

abdominal symptoms or incidents. The dominant leg was defined as preferred kicking leg; 

weight and height were measured using calibrated stadiometer and scales (Seca 761, 217 

stadiometer, Seca Scales and Measuring Systems, Birmingham, UK).   

Surface electromyography Ag-AgCl round, 1 cm diameter electrodes (sEMG, Noraxon Telemyo 

2400T, Scottsdale, Arizona, USA, sampling frequency 1500Hz) were placed within 1.2 cm 

centre-distance from each other and secured with tape on participants’ gluteus medius (GM) 
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and adductor longus (AL) muscles bilaterally, after standard skin preparation (shaving, rubbing, 

sterilising). Infra-red active motion analysis system markers sampling at 200Hz (Codamotion 

Cx1 sensor units, Charnwood Dynamics, Rothley, Leicestershire) were placed on lower limb 

anatomical landmarks according to a modified Helen-Hayes protocol (Monaghan et al. , 2007). 

Standing hip flexion (SHF) and single leg squat (SLS) were chosen as the test manoeuvre s, with 

data for both moving and stance legs in SHF and only the stance leg in SLS being collected and 

analysed. Data were collected whilst participants stood on a force platform (Kistler type 9281B, 

Kistler Instruments Corporation, Winterthur, Switzerland, sampling frequency 500Hz). The 

movements were divided into phases: SHF into three and SLS into seven. 

The electromyographic data were rectified, smoothed and filtered. The mean 

electromyography values were computed in each phase for each participant, then GM:AL 

ratios were analysed individually and group means were then calculated. If the GM:AL ratio 

showed significant differences within groups, individual muscle sEMG values were further 

analysed.  

The kinematic segmental rotations were defined using the same temporal windows. All data 

were processed using MatLab (version 2012a, The Mathworks, Natick, MA, USA). Data were 

collected from both legs in all participants, but for further analysis data from both limbs in 

control groups, and mainly from the symptomatic side in SRGP participants were used.  

Analysis of variance was used with either muscle activation magnitude ratio or kinematic hip 

joint rotations in one of three planes as the dependent variable. Injury status, level of sport, 

movement stage and whether the measured limb was in stance or moving were entered as 

independent factors. Interactions between level of sport (professionals or amateurs) and injury 

status (injured or uninjured) and phase of movement (early, middle or late) were specified and 

tested with a post hoc Bonferroni test.  
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Further analyses were performed in order to determine (i) the dif ferences between the 

dominant and non-dominant legs of the healthy controls in each group; and (ii) the differences 

between the healthy controls of the professional football and amateur football subgroups. 

Results 

Participants 

Eighty four athletes participated in the study, thirty nine injured players and forty five well-

matched, healthy control players: twenty professional footballers (ten injured and ten uninjured), 

nineteen amateur footballers (nine injured and ten uninjured), sixteen professional rugby players 

(eight injured and eight uninjured), fourteen Ultimate Frisbee players (seven injured and seven 

uninjured) and fifteen Field Hockey players (five injured and ten uninjured)  (Table 16). 



1
7

1 

 

 

 

 Amateur football Pro Fb Rugby Frisbee Hockey 

 Inj Con p Inj Con p Inj Con p Inj Con p Inj Con p 

N 9 10  10 10  8 8  7 7  5 10  

Height 180  

(10) 

180 (10) 0.52 180.6 (9.7) 178.2 (13.4) 0.17 179.9 (5.0) 182.63 (7.1) 0.39 182.79 (8.18) 174.5 (6.97) 0.06 175.8 (9.0) 174.8 (10.8) 0.9 

Weight 81 (4) 82 (3) 0.77 76.83 (24.6) 74.6 (17.5) 0.24 86.1 (7.9) 96.38 (15.2) 0.11 77.43 (12.03) 71.29 (5.59) 0.24 73.3 (10.4) 76.4 (15.1) 0.77 

Age 24 (3) 25 (2) 0.67 20.09 (4.3) 19.7 (2.74) 0.22 20.25 (2.4) 22.6 (3.4) 0.13 26.29 (3.59) 24.57 (1.99) 0.29 24 (3.1) 22.8 (2.3) 0.52 

Injured leg 

(Dom:Non) 

7:2 2:8 7:1 7:0 2:3 

Table 16: Study participants’ characteristics.  Am Fb = amateur footballers; Pro Fb = professional footballers, Rb = rugby, Inj = injured, Con = controls, Dom = dominant leg injured, 
Non = non-dominant leg injured.
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A majority of the injured athletes injured their dominant leg (twenty five out of thirty nine). Within 

the subgroups, the dominant leg was injured in majority of the symptomatic participants in the 

amateur footballers (seven out of nine), professional rugby players (seven out of eight) and 

Ultimate Frisbee players (seven out if seven). The non-dominant leg was injured in the majority of 

the professional footballers (eight out of ten). Field Hockey players did not show any association 

between the injury and leg dominance (two players were injured on the dominant side, three 

players on the non-dominant side). The characteristics of the study participants are presented in 

Table 16. 

Standing hip flexion 

Either leg in healthy participants versus injured leg in SRGP participants  

sEMG 

Professional footballers 

Professional footballers with SRGP had significantly increased GM:AL ratios compared to well -

matched controls while standing on the symptomatic leg in all three phases of the SHF movement 

(early p = 0.00011, middle p = 0.00000093 and late phase p = 0.001) (Table 17A, Figure 24). 

Analysis of the individual muscles showed no difference between injured and healthy participants 

in GM activation, but a significant decrease in AL activation in all three phases of movement (early: 

p = 0.00035, middle: p = 0.0000012, late: p = 0.0017) in injured compared to healthy participants.  

While moving the injured leg, the GM:AL ratio in the injured professional footballers was 

significantly increased compared to controls in all three phases of movement (early: p = 0.0023, 

middle: p = 0.0014 and late:  p = 0.002) (Table 17B, Figure 24). Analysis of the individual muscles 

showed that the injured professional footballers had an increased GM activation only in the late 

phase of SHF (p = 0.0002); and decreased AL activation in the early (p = 0.013) and middle (p = 

0.0021) phases of SHF compared to healthy controls. 
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A: Summary measurements of professional footballers during standing hip flexion; describing the stance, injured leg with respe ct to the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 
  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

Surface EMG                   

GM:AL 0.06 (0.3) 2.09 (0.28) <0.01* -0.37(0.29) 2.1 (0.31) <0.01* 0.32 (0.25) 2.32 (0.29) <0.01* 
 Comments Ratio difference due to a decrease of AL activation Ratio difference due to a decrease of AL activation Ratio difference due to a decrease of AL activation 
Kinematics                   
Sagittal hip 

2.5 (1.18) 6.08 (2) 0.17 -5.53 (0.85) -4.96 (1.1) 0.68 -2.21 (0.87) 0.91 (1.52) 0.08** 
(Flex +) 

Coronal hip 
0.56 (0.7) -1.37 (1.06) 0.14 -3.42 (0.51) -2.67 (1.1) 0.54 -2.250(0.69) -5.9 (0.81) 0.024* 

(Add +) 
Horizontal hip 

-8.89 (1.97) -9.17 (3.37) 0.93 -3.96 (0.66) -2.93 (1.27) 0.41 -12.05 (2.07) -11.78 (2.9) 0.94 
(IR +) 

B: Summary measurements of professional footballers during standing hip flexion; describing the moving, injured leg with respe ct to the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 
 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.18 (0.29) 1.58 (034) <0.01* -0.82 (0.23) 0.2 (0.21) <0.01* -0.07 (0.21) 0.18(0.16) <0.01* 

Comments Ratio difference due to a decrease of AL activation Ratio difference due to a decrease of AL activation Ratio difference due to an increase of GM activation 
Kinematics                   
Sagittal hip 

4.17 (1.43) 5.77 (1.77) 0.47 71.1 (1.34) 70.54 (2.39) 0.84 75.27 (1.27) 76.97 (1.86) 0.45 
(Flex +) 

Coronal hip 
-0.07 (0.59) -2.9 (1.02) 0.02* 1.41 (0.86) 2.59 (1.77) 0.55 0.72 (0.98) -0.82 (1.47) 0.39 

(Add +) 
Horizontal hip 

-7.89 (1.43) -6.95 (2.51) 0.75 7.17 (1.01) 5.7 (1.36) 0.39 -1.51 (1.17) -3.64(2.45) 0.44 
(IR +) 

Table 17: Results from comparing surface electromyography and kinematic data between the injured leg of the injured professional foot ballers to the mean of both legs in the 
control professional footballers during standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 (trend); sEMG = 

surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = 
standard error;   = increased in injured players; = decreased in injured players.
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Figure 24: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured professional footballers to 
the mean of both legs in the control professional footballers during standing hip flexion when the leg is weight bearing (stance)  (dots) and moving (diamonds). GM=gluteus 
medius; AL= adductor longus.
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A: Summary measurements of amateur footballers during standing hip flexion; describing the stance, injured leg with respect t o the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 
 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.93 (0.12) -0.22 (0.28) <0.01* 0.64(0.11) -0.57 (0.2) <0.01* 1.2 (0.13) 0.03 (0.22) <0.01* 
 Comments Ratio difference due to a decrease of GM activation Ratio difference due to a decrease of GM activation Ratio difference due to a decrease of GM activation 
Kinematics                   
Sagittal hip 

(Flex +)  
5.97 (1.23) 7.21 (1.34) 0.06** -5.63 (0.58) -4.96 (2.97) 0.82 0.37 (1.15) 8.81 (4.05) 0.03* 

Coronal hip 
2.32 (0.63) 0.42 (0.6) 0.08** -5.07 (0.41) -4.08 (0.79) 0.27 -2.82 (0.7) -3.23 (0.73) 0.71 

(Add +) 
Horizontal hip 

-1.57 (1.28) 2.59 (1.93) <0.01* -4.03 (0.43) -9.55 (4.3) 0.2 -5.41 (1.37) 2.59 (4.43) <0.01* 
(IR +) 

B: Summary measurements of amateur footballers during standing hip flexion; describing the moving, injured leg with respect t o the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 
 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.26 (0.11) -0.47 (0.25) <0.01* -0.53 (0.09) -0.74 (0.18) 0.29 -0.63 (0.9) -0.67 (016) 0.85 

Comments Ratio difference due to a decrease of GM activation     
Kinematics                   
Sagittal hip 

9.29 (1.6) 10.81 (1.52) 0.49 56.38 (2.28) 48.12 (4.16) 0.08** 66.2 (1.7) 57.45 (4.46) 0.07** 
(Flex +) 

Coronal hip 
-4.35 (0.66) -3.59 (0.59) 0.39 2.37 (0.85) 3.23 (1.31) 0.58 -2.12 (0.83) -0.47 (1.38) 0.3 

(Add +) 
Horizontal hip 

-4.29 (1.58) 3.08 (2.07) <0.01* 8.42 (1.29) 5.24 (1.13) 0.07 3.8 (1.62) 7.97 (2.42) 0.16 
(IR +) 

Table 18: Results from comparing surface electromyography and kinematic data between the injured leg of the injured amateur footballe rs to the mean of both legs in the 

control amateur footballers during standing hip flexion when the leg is weight bearing (stance) (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 (trend); sEMG = 
surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = 
standard error;   = increased in injured players; = decreased in injured players.  
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Figure 25: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured amateur footballers to the 
mean of both legs in the control amateur footballers during standing hip flexion when the leg is weight bearing (stance)  (dots) and moving (diamonds). GM=gluteus medius; 

AL= adductor longus.



 

177 

 

Amateur football players 

While standing on the symptomatic leg, symptomatic amateur players had a significant 

decrease in GM:AL in all phases of the  SHF task (early p = 0.0000048, middle: p = 0.0000001 

and late: p = 0.00000021) compared to the control group (Table 18A, Figure 25). Analysis of 

the individual muscles showed a decreased activation of GM in all three phases of movement 

(early p = 0.0000061, middle: p = 0.00000052 and late: p = 0.00000000042); and increased 

activation of AL in the early (p = 0.03) and middle (p = 0.043) phases of SHF. 

When moving the injured leg, these players showed a significantly decreased GM:AL compared 

to control group in the early phase of the movement (p = 0.0078) (Table 18B, Figure 25). 

Analysis of the individual muscles showed that injured players had a significant decrease in GM 

activation compared to controls in this phase of movement (p = 0.0000092).  

Professional rugby players 

When standing on the symptomatic leg, there was a significant increase of the GM:AL 

activation ratio in the middle phase of SHF in the injured players compared to healthy controls 

(p = 0.0043) (Table 19A, Figure 26). Further analysis did not show any significant differences 

between the symptomatic and asymptomatic rugby players when analysing separate muscles. 

When measuring the moving leg, the injured players demonstrated an increase in GM:AL 

activation ratio in the early phase of SHF (p = 0.011) compared to controls (Table 19B, Figure 

26) with analysis of the individual legs showing that AL demonstrated a decreased activation 

compared to healthy controls in the same phase of movement (p = 0.014).  
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A: Summary measurements of professional rugby players during standing hip flexion; describing the stance, injured leg with respect to the mean of the uninjured control group legs. 
Movement 

Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 
Phase 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 1.01 (0.15) 1.34 (0.18) 0.17 0.94 (0.2) 1.65 (0.14) <0.01* 1.82 (0.17) 2.09 (0.16) 0.26 
 Comments       

Kinematics                   
Sagittal hip 

23.17 (0.65) 18.96 (1.67) <0.05* -5.1 (0.97) -7.77 (1.03) 0.07** 15.72 (1.29) 9.41 (2.57) <0.05* 
(Flex +) 

Coronal hip 
-1.56 (0.15) -4.71 (0.73) <0.05* -7.45 (0.7) -6.43 (0.63) 0.28 -9.88 (1.14) -10.68 (0.43) 0.57 

(Add +) 

Horizontal hip 
-5.54 (1.85) -17.82 (1.44) <0.01* -2.21 (0.64) -5.54 (0.7) <0.01* -10.12 (1.85) -23.74 (1.25) <0.01* 

(IR +) 
B: Summary measurements of professional rugby players during standing hip flexion; describing the moving, injured leg with respect to the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.4 (0.21) 1.13 (0.18) <0.05* -0.99 (0.15) -1.11 (0.15) 0.59 -1.22 (0.11) -1.2 (0.15) 0.92 
Comments Ratio increase due to a decrease of AL activation     
Kinematics                   

Sagittal hip 
20.29 (0.83) 18.2 (2.93) 0.25 63.3 (1.52) 70.78 (1.62) <0.01* 82.53 (1.34) 86.98 (2.93) 0.18 

(Flex +) 
Coronal hip 

-5.12 (0.75) 0.46 (01.2) <0.01* 4.82 (1.98) 5.98 (1.49) 0.64 -0.38 (2.2) 8.62 (1.29) <0.01* 
(Add +) 

Horizontal hip 
-12.25 (1.74) -1.89 (2.02) <0.01* 4.89 (1.51) 2.29 (2.09) 0.32 -5.73 (3.25) -4.49 (4.3) 0.82 

(IR +) 

Table 19: Results from comparing surface electromyography and kinematic data between the injured leg of the injured professional rugby players to the mean of both legs in the 
control professional rugby players during standing hip flexion when the leg is weight bearing (stance) (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 (trend); sEMG = 
surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = 

standard error;   = increased in injured players; = decreased in injured players.
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Figure 26: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured professional rugby players to 
the mean of both legs in the control professional rugby players during standing hip flexion when the leg is weight bearing (stance)  (dots) and moving (diamonds). GM=gluteus 
medius; AL= adductor longus.
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Ultimate Frisbee players 

When measuring the SHF movement, there were no significant differences between injured 

and healthy Ultimate Frisbee players when the leg was moving or in stance (Table 20, Figure 

27).  

Field hockey players 

When measuring the stance leg during the SHF, the injured field hockey players demonstrated 

a decreased GM:AL activation ratio in all three phases of movement (early: p = 0.0064, middle: 

p = 0.017, late: p = 0.01) compared to the healthy controls (Table 21A, Figure 28). The analysis 

of the individual muscles showed that the injured players had a significant decrease of GM 

activation in all three phases of SHF (early: p = 0.00025, middle: p = 0.0014, late: p = 0.0021) 

compared to the healthy controls. 

When measuring the moving leg, the injured field hockey players showed a decreased GM:AL 

activation ration in all three phases of SHF (early: p = 0.04, middle: p = 0.0024, late: p = 0.0061) 

compared to the healthy controls (Table 21B, Figure 28). In the analysis of the individual 

muscles the injured players demonstrated a significantly decreased GM activation in all three 

phases of SHF (early: p = 0.0021, middle: p = 0.0009, late: p = 0.0044) and a significant 

decrease of the AL activation in the early phase of SHF (p = 0.031) compared to the healthy 

controls.
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A: Summary measurements of Ultimate Frisbee players during standing hip flexion; describing the stance, injured leg with resp ect to the mean of the uninjured control group legs. 
Movement 

Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 
Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.42 (0.23) 1.47 (0.6) 0.11 0.52 (0.25) 1.52 (0.5) 0.08** 1.56 (0.26) 2.57 (0.43) 0.05** 
 Comments       

Kinematics                   
Sagittal hip 

25.66 (0.79) 17.12 (3.64) <0.05* -4.4 (1.05) -8.12 (1.45) <0.05* 21.12 (1.33) 5.14 (4.35) <0.01* 
(Flex +) 

Coronal hip 
0.73 (0.89) -4.44 (0.85) <0.01* -8.15 (1.61) -6.71 (1.48) 0.52 -10.94 (1.51) -10.87 (2.5) 0.98 

(Add +) 

Horizontal hip 
-2.05 (1.91) -9.02 (2.54) <0.05* -3.37 (1.03) -5.74 (1.18) 0.14 -5.55 (3.03) -14.55 (4.13) 0.09** 

(IR +) 
B: Summary measurements of  Ultimate Frisbee players during standing hip flexion; describing the moving, injured leg with respect to the mean of the uninjured control group legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.61 (0.6) 0.57 (1.49) 0.36 -0.48 (0.28) -1.25 (0.77) 0.35 0.05 (0.86) -0.2 (1.57) 0.29 
 Comments       
Kinematics                   

Sagittal hip 
23.62 (0.8) 18.19 (3.6) 0.15 69.26 (1.93) 69.91 (2.08) 0.82 93.19 (2.19) 83.98 (4.9) 0.1 

(Flex +) 
Coronal hip 

-1.82 (0.86) 2.01 (0.98) <0.01* 0.56 (1.88) -0.48 (2.79) 0.76 3.03 (1.63) 1.27 (4.05) 0.69 
(Add +) 

Horizontal hip 
-2.36 (1.98) -3.85 (3.15) 0.69 3.65 (2.4) -2.59 (2.58) 0.09** 0.95 (3.89) -7.69 (3.14) 0.1 

(IR +) 

Table 20: Results from comparing surface electromyography and kinematic data between the injured leg of the injured Ultimate Frisbee players to the mean of both legs in the 
control Ultimate Frisbee players during standing hip flexion when the leg is weight bearing (stance) (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 (trend); sEMG = 
surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = 

standard error;   = increased in injured players; = decreased in injured players.  
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Figure 27: aphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured Ultimate Frisbee players to the 

mean of both legs in the control Ultimate Frisbee players during standing hip flexion when the leg is weight bearing (stance)  (dots) and moving (diamonds). GM=gluteus 
medius; AL= adductor longus. 
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A: Summary measurements of field hockey players during standing hip flexion; describing the stance, injured leg with respect t o the mean of the uninjured control group legs. 
Movement 

Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 
Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 1.76 (0.22) -0.54 (0.78) <0.01* 0.65 (0.23) -1.6 (0.89) <0.05* 1.91 (0.16) -0.37 (0.84) <0.01* 
 Comments Significant decrease of GM activation Significant decrease of GM activation Significant decrease of GM activation 

Kinematics                   
Sagittal hip 

21.48 (1.24) 18.36 (1.66) 0.14 -8.54 (0.93) -2.17 (8.5) 0.46 13.79 (1.86) 18.96 (8.54) 0.56 
(Flex +) 

Coronal hip 
2.46 (0.84) 0.71 (0.57) 0.09** -10.94 (1.07) -9.29 (3.19) 0.63 -8.71 (1.17) -9.16 (2.71) 0.88 

(Add +) 

Horizontal hip 
-4.37 (1.67) -9.01 (1.99) 0.08** -4.19 (0.82) -5.96 (1.34) 0.27 -9.69 (1.54) -15.77 (2.47) <0.05* 

(IR +) 
B: Summary measurements of field hockey players during standing hip flexion; describing the moving, injured leg with respect to the mean of the uninjured control group legs. 
Movement 

Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 
Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 
Surface EMG                   

GM:AL 0.82 (0.36) -0.98 (0.77) <0.05* -0.18 (0.25) -2.61 (-0.72) <0.01* 0.47 (0.28) -2 (0.81) <0.01* 
 Comments Significant decrease of GM activation Significant decrease of GM activation Significant decrease of GM activation 
Kinematics                   

Sagittal hip 
22.92 (1.44) 17. 97 (1.65) <0.05* 61.36 (1.68) 57.62 (8.51) 0.67 85.41 (1.36) 78.85 (7.12) 0.37 

(Flex +) 
Coronal hip 

-2 (0.84) -1.33 (0.78) 0.56 2.45 (1.12) -0.16 (3.41) 0.47 1.5 (1.48) -1.12 (3.59) 0.5 
(Add +) 

Horizontal hip 
-8.85 (1.64) -15.74 (1.2) <0.01* -1.18 (1.7) 4.97 (2.19) <0.05* -8.42 (2.59) -9.08 (2.82) 0.86 

(IR +) 

Table 21: Results from comparing surface electromyography and kinematic data between the injured leg of the injured field hockey players to the mean of both legs in the 
control field hockey players during standing hip flexion when the leg is weight bearing (stance) (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 (trend); sEMG = 
surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = 

standard error;   = increased in injured players; = decreased in injured players.
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Figure 28: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured field hockey players to the 
mean of both legs in the control field hockey players during standing hip flexion when the leg is weight bearing (stance)  (dots) and moving (diamonds). GM=gluteus medius; 
AL= adductor longus. 
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Kinematics 

Professional football players 

When measuring the stance leg during the SHF, the injured professional football players were 

more abducted in the late phase of SHF (p = 0.024) compared to the healthy controls ( Table 

17A, Figure 24). 

When measuring the moving leg, the injured players were more abducted in the early phase of 

SHF (p = 0.018) compared to the controls (Table 17B, Figure 24). 

Amateur football players 

In the stance leg, the injured amateur football players were more flexed in the late phase (p = 

0.028), and more internally rotated in the early (p = 0.000035) and late (p = 0.00036) phases of 

SHF compared to the healthy controls (Table 18A, Figure 25). 

When measuring the moving leg, the injured players demonstrated an increased internal 

rotation in the early phase of SHF (p = 0.0053) compared to healthy controls (Table 18B, Figure 

25). 

Professional rugby players 

When measuring the stance leg, the injured professional rugby players demonstrated a 

decreased hip flexion in the early (p = 0.022) and late (p =0.036) phases of SHF; increased hip 

abduction in the early phase (p = 0.022) and increased hip external rotation in the early (p = 

0.00000019) and late (p = 0.0002) phases compared to healthy controls (Table 19A, Figure 26).  

When measuring the moving leg, the injured players demonstrated more flexion in the middle 

(p = 0.031) and late (p = 0.027) phases of SHF; increased hip abduction in the early (p = 0.0016) 

and late (p = 0.000022) phases of SHF; and increased hip internal rotation in the e arly (p = 

0.00009) phase of SHF, compared to the healthy controls (Table 19B, Figure 26). 
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Ultimate Frisbee players 

When measuring the stance leg the injured Ultimate Frisbee players demonstrated a 

decreased hip flexion in all three phases of SHF (early: p = 0.026, middle: p = 0.048, late: p = 

0.0017); and increased abduction (p = 0.0001) and external rotation (p = 0.033) in the early 

phase of SHF, compared to healthy controls (Table 20A, Figure 27).  

When measuring the moving leg, the injured players showed an increased hip adduction in the 

early phase of SHF (p = 0.0047) compared to the healthy controls (Table 20B, Figure 27). 

Field hockey players 

In the stance leg, the injured Field Hockey players demonstrated an increased hip external 

rotation in the late phase of SHF (p = 0.044) compared to the healthy controls ( Table 21A, 

Figure 28). 

When measuring the moving leg, the injured players showed less hip flexion in the early phase 

of SHF (p = 0.028), and increased hip external rotation in the early (p = 0.0013), but increased 

hip internal rotation in the middle (p = 0033) phase of SHF, compared to the healthy controls 

(Table 21B, Figure 28).  

Single leg squat 

sEMG 

Professional football players 

The symptomatic professional football players had a significantly increased GM:AL ratio in all 

seven phases of SLS (moving I: p = 0.0001, moving II: p = 0.0000051, moving III: p = 0.0023, 

moving IV: p = 0.00065,  stance I: p = 0.000021, stance II: p = 0.0068, stance III: p = 0.00019), 

compared to the healthy controls (Table 22, Figure 29). Analysis of the individual muscles 



 

188 

 

demonstrated an increase in GM activation in the moving I (p = 0.014) and stance II (p = 0.024) 

phases of SLS; and a decrease in AL activation in all of the moving phases (moving I: p = 0.0015, 

moving II: p = 0.000015, moving III: p = 0.0043, moving IV: p = 0.00014) and stance III (p = 

0.0000019) phase of SLS; in the injured players compared to the healthy controls.  

 

  Phase 1: Moving I    

 Measured leg Uninjured Injured Statistic (p)    

sEMG GM:AL 0.014 (0.26) 1.774 (0.34) <0.01*    

Comments GM activation increase and AL decrease     

Sagittal hip  9.42(1.6) 6.68 (1.9) 0.27 NB Flex +    

Coronal hip  3.76 (0.76) -0.92 (1.04) <0.01* NB Add +   

Horizontal hip -8.43 (1.6) -4.17 (2.65) 0.17 NB IR +   

Phase 2: Moving II Phase 3: Stance I 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL -0.34 (0.25) 1.9 (0.37) <0.01* -0.5 (0.24) 1.47 (0.36) <0.01* 

Comments Ratio increase due to decrease of AL activation Ratio increase due to decrease of AL activation 

Sagittal hip  16.32 (1.42) 8.67 (1.5) <0.01* 25.41 (2.22) 16.14 (2.18) <0.01* 

Coronal hip  0.51 (0.42) 1.5 (0.74) 0.25 4.31 (0.86) 0.09 (0.96) <0.01* 

Horizontal hip  -1.73 (0.5) -0.53 (0.66) 0.15 -10.17(1.58) -5.01 (2.56) 0.09 

 Phase 4: Moving III Phase 5:  Stance II 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL -0.47 (0.2) 0.82 (0.36) <0.01* -0.26 (0.23) 0.9 (0.35) <0.01* 

Comments Ratio increase due to decrease of AL activation Ratio increase due to increase of GM activation 

Sagittal hip  42.81 (2.76) 41.61 (2.34) 0.74 67.55 (2.21) 57.49 (2.99) <0.01* 

Coronal hip  12.06 (0.75) 14.09 (1.4) 0.21 16.56 (1.11) 13.61 (2.08) 0.21 

Horizontal hip  -0.9 (1.06) 1.4 (0.9) 0.09 -10.11 (1.75) -5.31 (2.52) 0.12 

 Phase 6: Moving IV Phase 7:  Stance III 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL -0.31 (0.24) 1.08 (0.3) <0.01* -0.25 (0.34) 1.71 (0.37) <0.01* 

Comments Ratio increase due to decrease of AL activation Ratio increase due to decrease of AL activation 

Sagittal hip  -50.55 (2.17) -44.66 (3.1) 0.13 16.95 (1.33) 13.43 (1.62) 0.98 

Coronal hip -15.05 (0.9) -19.07 (1.36) <0.05* 0.36 (0.85) -4.84 (2.62) 0.11 

Horizontal hip 1.01 (0.95) -2.8 (0.88) <0.01* -9.63 (1.43) -4.84 (2.62) 0.11 

 

Table 22: Results from comparing surface electromyography and kinematic data between the injured 
leg of the injured professional footballers to the mean of both legs in the control professional 

footballers during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = surface 
electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor 
longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error;   = increased in 
injured players; = decreased in injured players.
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Figure 29: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured professional football players 
to the mean of both legs in the control professional football players during single leg squat when the leg is moving (dots). GM=gluteus medius; AL= adductor longus. 
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Amateur football players 

The injured amateur football players demonstrated a decrease in GM:AL ratio in the moving III 

(p = 0.00002) and moving IV (p = 0.00046), as well as stance II (p = 0.000015) phases of SLS, 

compared to the healthy controls. The analysis of the individual muscles in these phases 

showed a decrease in GM activation in the moving III (p = 0.0022) and moving IV (p = 

0.0000028) phases of SLS in the injured players compared to the healthy controls ( Table 23, 

Figure 30).  

Professional rugby players 

The injured professional rugby players demonstrated an increase in GM:AL ratio only in stance 

II phase of SLS (p = 0.017) compared to the healthy controls (Table 24, Figure 31). The analysis 

of individual muscle activation showed a significant decrease of AL activation in the same 

phase (p = 0.0003).
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  Phase: Moving I    

 Measured leg Uninjured Injured Statistic (p)    

sEMG GM:AL 0.97 (0.16) 1.64 (0.4) 0.13    

Comments      

Sagittal hip 13.45(1.07) 16.78(2.9) 0.28 NB Flex +    

Coronal hip  3.19(1.07) 16.47(1.85) 0.02* NB Add +   

Horizontal hip  -2.94(1.63) -3.74(0.78) 0.66 NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 0.7(0.15) 0.73(0.23) 0.9 0.78(0.13) 0.96(0.15) 0.37 

Comments     

Sagittal hip 26.47(1.95) 23.56(5.74) 0.63 40.08(2.13) 40.03(4.91) 0.99 

Coronal hip 0.2(0.55) 1.85(2.64) 0.54 3.43(0.98) 5.28(2.4) 0.48 

Horizontal hip  -2.41(0.61) 0.95(2.06) 0.12 -5.51(1.84) -2.79(2.15) 0.34 

 Phase: Moving III Phase:  Stance II 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 0.76(0.1) 0.13(0.09) <0.01* 0.76(0.11) -0.35(0.21) <0.01* 

Comments     

Sagittal hip 24.54(1.84) 25.28(2.71) 0.82 64(1.71) 65(3.14) 0.78 

Coronal hip 5.37(0.76) 6.33(1.69) 0.61 8.6(0.97) 11.6(3.26) 0.38 

Horizontal hip 0.03(0.77) 2.54(1.52) 0.15 -5.27(1.67) -0.25(1.19) <0.05* 

 Phase: Moving IV Phase:  Stance III 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 0.92(0.1) 0.24(0.15) <0.01* 0.82(0.17) 1.37(0.3) 0.12 

Comments     

Sagittal hip -48.48(2.4) -47.25(4.27) 0.8 15.86(18.7) 1.41(0.38) 0.34 

Coronal hip  -8.7(0.86) -11.43(3.64) 0.47 -0.07(1.03) 0.17(0.84) 0.86 

Horizontal hip 0.03(1.13) -2.62(1.07) 0.09 -4.92(1.7) -2.87(0.49) 0.25 

Table 23: Results from comparing surface electromyography and kinematic data between the injured 
leg of the injured amateur footballers to the mean of both legs in the control amateur footballers 
during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = surface 

electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor 
longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error;   = increased in 
injured players; = decreased in injured players.
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Figure 30:  Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured amateur football players to 

the mean of both legs in the control amateur football players during single leg squat when the leg is moving (dots). GM=gluteus medius; AL= adductor longus.
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Ultimate Frisbee players 

There were no significant differences in the GM:AL ratio between the injured and healthy 

Ultimate Frisbee players in any of the SLS movement phases (Table 25, Figure 32). 

Field Hockey players 

The injured Field Hockey players demonstrated a decrease in GM:AL ratio in all of the SLS 

movement phases (moving I: p = 0.00015, moving II: p = 0.00036, moving III: p = 0.00022, 

moving IV: p = 0.001,  stance I: p = 0.00044, stance II: p = 0.00011, stance III: p = 0.00026) 

compared to healthy controls. The analysis of the individual muscles showed a decrease in GM 

activation in all of the SLS movement phases (moving I: p = 0.00015, moving II: p = 0.000029, 

moving III: p = 0.000014, moving IV: p = 0.00012, stance I: p = 0.00005, stance II: p = 0.000033, 

stance III: p = 0.0000064) in injured players compared to the controls (Table 26, Figure 33).  
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  Phase 1: Moving I    

 Measured 
leg 

Uninjured Injured Statistic (p)    

sEMG GM:AL 1.14(0.19) 0.99(0.24) 0.62    

Comments      

Sagittal hip  23.45(0.52) 22.94(1.75) 0.78 NB Flex +    

Coronal hip  -1.19(0.59) 3.68(0.93) <0.01* NB Add +   

Horizontal hip -7.74(1.41) 1.35(3.04) <0.01* NB IR +   

Phase 2: Moving II Phase 3: Stance I 

 Measured 
leg 

Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.07(0.21) 0.94(0.3) 0.73 0.28(0.21) 0.9(0.26) 0.26 

Comments     

Sagittal hip  1.63(0.57) -0.57(0.79) <0.05* 25.19(0.73) 23.87(2.38) 0.6 

Coronal hip  -1.63(0.48) 0.39(0.58) <0.01* -2.86(0.82) 5.22(0.76) <0.01* 

Horizontal hip  -1.26(0.4) -1.11(0.82) 0.88 -8.85(1.41) 1.51(2.78) <0.01* 

 Phase 4: Moving III Phase 5:  Stance II 

 Measured 
leg 

Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 0.25(0.16) 0.37(0.19) 0.65 0.18(0.18) 0.82(0.19) <0.05* 

Comments   Ratio increase due to a decrease of AL activation 

Sagittal hip  47.73(2.6) 42.32(5.09) 0.35 71.77(2.91) 67.27(5.18) 0.45 

Coronal hip  14.52(1.79) 8.84(1.46) <0.05* 12.16(2.68) 13.9(1.12) 0.56 

Horizontal hip  0.3(2.44) -2.58(1.92) 0.36 -0.53(2.57) -3.14(1.52) 0.39 

 Phase 6: Moving IV Phase 7:  Stance III 

 Measured 
leg 

Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.11(0.21) 1.39(0.17) 0.22 1.47(0.22) 1.45(0.23) 0.97 

Comments     

Sagittal hip  -47.83(3.37) -43.38(4.43) 0.43 25.71(0.94) 22.4(2.41) 0.21 

Coronal hip -13.08(1.96) -7.99(1.48) <0.05* -3.87(1.17) 4.03(2.38) <0.05* 

Horizontal hip -0.66(2.52) 1.87(2.16) 0.45 -8.25(1.44) 0.97(2.97) <0.01* 

       

Table 24: Results from comparing surface electromyography and kinematic data between the injured 
leg of the injured professional rugby players to the mean of both legs in the control professional rugby 

players during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = surface 
electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor 
longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error;   = increased in 
injured players; = decreased in injured players.



 

 

   

 

 

Figure 31: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured professional rugby players to 
the mean of both legs in the control professional rugby players during single leg squat when the leg is moving (dots). GM=gluteus medius; AL= adductor longus. 
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  Phase: Moving I    

 Measured leg Uninjured Injured Statistic (p)    

sEMG GM:AL 1.26(0.28) 0.78(0.55) 0.44    

Comments      

Sagittal hip 28.48(1.04) 28.36(3.58) 0.97 NB Flex +    

Coronal hip 1.67(0.8) 5.16(0.74) <0.01* NB Add +   

Horizontal hip -1.63(2.01) 1.99(2.31) 0.24 NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.46(0.33) 0.52(0.48) 0.11 1.65(0.31) 0.96(0.51) 0.26 

Comments     

Sagittal hip 4.57(2.16) 3.14(1.13) 0.56 33.19(1.79) 33.33(3.92) 0.97 

Coronal hip -1.87(0.49) -0.25(1.06) 0.17 0.07(0.92) 5.19(0.89) <0.01* 

Horizontal hip 1.14(0.86) -0.9 (0.72) 0.07** -0.81(2.12) 1.7(2.2) 0.42 

 Phase: Moving III Phase:  Stance II 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 0.43(0.24) -0.11(0.54) 0.37 0.48(0.28) 0.21(0.6) 0.69 

Comments     

Sagittal hip 40.61(2.78) 36.29(5.5) 0.49 71.22(2.86) 74.37(2.71) 0.43 

Coronal hip 8.74(1.87) 14.96(1.8) <0.05* 10.19(1.93) 19.01(1.87) <0.01* 
Horizontal hip 2.53(1.52) 0.75(1.58) 0.42 2.58(1.94) 4.14(2.34) 0.61 

 Phase: Moving IV Phase:  Stance III 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.07(0.21) 0.55(0.57) 0.39 1.23(0.29) 0.62(0.53) 0.32 

Comments     

Sagittal hip -0.35(2.79) -44.17(2.68) <0.05* 35.12(1.2) 29.04(2.75) <0.05* 

Coronal hip  -10.39(2.05) -16.8(1.69) <0.05* -0.67(0.98) 1.7(1.33) 0.16 

Horizontal hip  -1.42(1.2) -2.39(1.26) 0.58 -1.33(2.08) 0.28(2.35) 0.61 

Table 25: Results from comparing surface electromyography and kinematic data between the injured 
leg of the injured Ultimate Frisbee players to the mean of both legs in the control Ultimate Frisbee 
players during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = surface 
electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor 

longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error;   = increased in 
injured players; = decreased in injured players.
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Figure 32: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured Untimate Frisbee players to 

the mean of both legs in the control Untimate Frisbee players during single leg squat when the leg is moving (dots). GM=gluteus medius; AL= adductor longus. 
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  Phase: Moving I    

 Measured leg Uninjured Injured Statistic (p)    

sEMG GM:AL 2.76(0.52) -1.8(0.9) <0.01*    

Comments Significant decrease of GM activation    

Sagittal hip 18.36(1.31) 18.46(1.4) 0.96 NB Flex +    

Coronal hip  1.14(0.78) 2.83(1.13) 0.23 NB Add +   

Horizontal hip -3.78(3.09) -12.09(0.87) <0.05* NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 2.16(0.37) -2.03(0.97) <0.01* 2.24(0.31) -1.35(0.85) <0.01* 

Comments Significant decrease of GM activation Significant decrease of GM activation 

Sagittal hip 0.53(1.06) 0.93(0.77) 0.76 19.45(1.8) 19.39(0.99) 0.98 

Coronal hip  -4.65(1.08) -3.51(1.39) 0.52 -3.48(0.78) -0.68(1.98) 0.2 

Horizontal hip  -3.64(1.43) -2.42(0.97) 0.49 -8.07(2.35) -14.51(1.25) <0.05* 

 Phase: Moving III Phase:  Stance II 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.07(0.28) -2.86(0.89) <0.01* 1.14(0.31) -2.97(0.87) <0.01* 

Comments     

Sagittal hip 43.72(1.44) 57.76(4.34) <0.01* 63.47(1.39) 77.18(5.62) <0.05* 

Coronal hip  12.81(1.91) 11.82(2.62) 0.76 8.19(1.59) 15.15(2.45) <0.05* 

Horizontal hip  6.38(1.43) 3.3(0.96) 0.09** -0.21(2.9) -10.6(2.36) <0.05* 

 Phase: Moving IV Phase:  Stance III 

 Measured leg Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

sEMG GM:AL 1.67(0.24) -2.38(1.08) <0.01* 2.24(0.29) -1.95(0.96) <0.01* 

Comments     

Sagittal hip -40.04(0.95) -62.48(6.08) <0.01* 22.24(1.52) 17.67(2.25) 0.1 

Coronal hip  -12.75(1.94) -15.55(2.92) 0.43 -3.89(1.09) -2.39(1.35) 0.39 

Horizontal hip -7.74(1.82) -7.07(1.41) 0.77 -10.2(2.45) -16.17(1.04) <0.05* 

Table 26: Results from comparing surface electromyography and kinematic data between the injured 
leg of the injured field hockey players to the mean of both legs in the control field hockey players 
during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = surface 
electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor 

longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error;   = increased in 
injured players; = decreased in injured players.
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Figure 33: Graphical representation of the results comparing surface electromyography and kinematic data between the injured leg of the injured field hockey players to the 
mean of both legs in the control field hockey players during single leg squat when the leg is moving (dots). GM=gluteus medius; AL= adductor longus.
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Kinematics 

Professional football players 

The injured professional football players demonstrated less hip flexion in the moving II (p = 

0.00042), stance I (p = 0.0041) and stance II (p = 0.0088) phases of SLS; and more hip 

abduction in the moving I (p = 0.00054) and moving IV (p = 0.017), as well as stance I (p = 

0.0017) and stance III (p = 0.0019) phases of SLS; compared to the healthy controls (Table 22, 

Figure 29). 

Amateur football players 

The only observed kinematic difference between the injured and healthy amateur football 

players was an increased hip internal rotation in the stance II phase of SLS in symptomatic 

athletes (p = 0.017) (Table 23, Figure 30). 

Professional rugby players 

The injured professional rugby players demonstrated increased hip adduction in moving I (p = 

0.000067) and moving II (p = 0.0011), as well as stance I (p = 0.0000000000000042) and stance 

III (0.000000000036) phases of SLS; as well as significantly increased hip internal rotation in 

the moving I (p = 0.00026), moving III (p = 0.00035) and stance I (p = 0.0000098) and stance III 

(p = 0.000000000015) phases of SLS; compared to the healthy controls (Table 24, Figure 31). 

Ultimate Frisbee players 

The injured Ultimate Frisbee players demonstrated less hip flexion in the stance III phase of 

movement (p = 0.048); and increased hip joint adduction in the moving I (p = 0.023), moving III 

(p = 0.021), stance I (p = 0.0002) and stance II (p = 0.002), but increased abduction in the 

moving IV (p = 0.02) phases of SLS; compared to the healthy controls (Table 25, Figure 32). 
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Field Hockey players 

The injured Field Hockey players demonstrated less hip flexion in the moving III (p = 0.0058) 

and moving IV (p = 0.0013), but more hip flexion in the stance II (p = 0.027) phases of SLS; 

more hip adduction in the stance II phase of the SLS (p = 0.026); and more hip external 

rotation in the movement I (p = 0.015) and all of the stance (stance I: p = 0.023, stance II: p = 

0.011, stance III: p = 0.033) phases of SLS: compared to the healthy controls (Table 26, Figure 

33). 

Further analyses 

Dominance data (sEMG and kinematics) 

The analysis of potential dominance bias shows that there are some, but small differences 

between the dominant and non-dominant legs of the healthy controls in each subgroup; but 

these are smaller than the effects of the injury. All comparisons between the dominant and 

non-dominant legs of the healthy controls in each subgroup are enclosed in Appendix 2 (p. 

264). 

Overall professional vs. amateur footballers (sEMG) comparison at baseline and 

change from baseline   

The mean of both legs of the healthy amateur footballers showed a significantly increased 

sEMG GM:AL ratio compared to the mean of both legs in healthy professional footballers in all 

stance phases , but not in the moving phases of SHF (Table 27), and in all phases of SLS (Table 

28). 

The difference between the injured and non-injured players, in professional and amateur 

subgroup, when comparing the mean of all of the phases in SHF, but moving and stance leg 
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separately, and mean of all phases of SLS; between the mean of both legs of the healthy 

controls and injured leg in the injured athletes is presented in Figure 34. 

 

 

Figure 34: This graph shows the overall change in GM:AL activation ratio with data combined across 
movement phases in order to compare the professional and amateur footballers’ similarity between 
control groups; alongside injured subjects’ direction and degree of difference. Graph representing the 

mean of both legs in the healthy controls (Controls) and injured leg of the injured players (Injured), in 
all of the SHF movement phases collectively, but separately when the leg in stance and moving; and in 
all of the phases of SLS collectively; in the professional and amateur footballers. Pro – professional 
footballers; Am – amateur footballers; SHF – standing hip flexion movement; SLS – single leg squat 

movement. * represents significant difference between the control participants in the professional 
and amateur subgroups (p < 0.01).  
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A: Summary measurements of the control participants of professional vs amateur footballers (mean of both legs) during standing hip flexion; describing the stance legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 
  Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) 

Surface EMG                   

GM:AL 0.06 (0.3) 0.93 (0.12) <0.01* -0.37(0.29) 0.64(0.11) <0.01* 0.32 (0.25) 1.2 (0.13) 
-2.82 (0.7) 

 
-5.41 (1.37) 

1.2 (0.13) 

 

<0.01* 
 Comments    
Kinematics                   
Sagittal hip 

2.5 (1.18) 5.97 (1.23) 0.59 -5.53 (0.85) -5.63 (0.58) 0.92 -2.21 (0.87) 0.37 (1.15) 0.8 
(Flex +) 

Coronal hip 
0.56 (0.7) 2.32 (0.63) 0.06** -3.42 (0.51) -5.07 (0.41) <0.05* -2.250(0.69) -2.82 (0.7) 0.56 

(Add +) 
Horizontal hip 

-8.89 (1.97) -1.57 (1.28) <0.01* -3.96 (0.66) -4.03 (0.43) 0.93 -12.05 (2.07) -5.41 (1.37) <0.01* 
(IR +) 
B: Summary measurements of the control participants of professional vs amateur footballers (mean of both legs during standing hip flexion; describing the moving legs. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 
 Measured leg Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) 
Surface EMG                   

GM:AL 0.18 (0.29) 0.26 (0.11) 0.78 -0.82 (0.23) -0.53 (0.09) 0.24 -0.07 (0.21) -0.63 (0.9) 0.85 

Comments    
Kinematics               
Sagittal hip 

4.17 (1.43) 9.29 (1.6) 0.018 71.1 (1.34) 56.38 (2.28) <0.01* 75.27 (1.27) 66.2 (1.7) <0.01* 
(Flex +) 

Coronal hip 
-0.07 (0.59) -4.35 (0.66) <0.01* 1.41 (0.86) 2.37 (0.85) 0.43 0.72 (0.98) -2.12 (0.83) <0.01* 

(Add +) 
Horizontal hip 

-7.89 (1.43) -4.29 (1.58) 0.094** 7.17 (1.01) 8.42 (1.29) 0.45 -1.51 (1.17) 3.8 (1.62) <0.01* 
(IR +) 

Table 27: Results from comparing surface electromyography and kinematic data between the mean of both legs of the healthy professional football players to the mean of 
both legs in the healthy amateur football players during standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1 

(trend); sEMG = surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal 
rotation; SE = standard error;   = increased in amateur players; = decreased in amateur players.  
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  Phase 1: Moving I    

 Measured leg Professionals Amateurs Statistic (p)    

sEMG GM:AL 0.014 (0.26) 0.97 (0.16) <0.01*    

Comments      

Sagittal hip  9.42(1.6) 13.45(1.07) <0.05* NB Flex +    

Coronal hip  3.76 (0.76) 3.19(1.07) 0.64 NB Add +   

Horizontal hip -8.43 (1.6) -2.94(1.63) <0.05* NB IR +   

Phase 2: Moving II Phase 3: Stance I 

 Measured leg Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) 

sEMG GM:AL -0.34 (0.25) 0.7(0.15) <0.01* -0.5 (0.24) 0.78(0.13) <0.01* 

Comments    

Sagittal hip  16.32 (1.42) 26.47(1.95) <0.01* 25.41 (2.22) 40.08(2.13) <0.01* 

Coronal hip  0.51 (0.42) 0.2(0.55) 0.65 4.31 (0.86) 3.43(0.98) 0.5 

Horizontal hip  -1.73 (0.5) -2.41(0.61) 0.39 -10.17(1.58) -5.51(1.84) 0.058 

 Phase 4: Moving III Phase 5:  Stance II 

 Measured leg Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) 

sEMG GM:AL -0.47 (0.2) 0.76(0.1) <0.01* -0.26 (0.23) 0.76(0.11) <0.01* 

Comments    

Sagittal hip  42.81 (2.76) 24.54(1.84) <0.01* 67.55 (2.21) 64(1.71) 0.25 

Coronal hip  12.06 (0.75) 5.37(0.76) <0.01* 16.56 (1.11) 8.6(0.97) <0.01* 

Horizontal hip  -0.9 (1.06) 0.03(0.77) 0.48 -10.11 (1.75) -5.27(1.67) 0.048 

 Phase 6: Moving IV Phase 7:  Stance III 

 Measured leg Professionals Amateurs Statistic (p) Professionals Amateurs Statistic (p) 

sEMG GM:AL -0.31 (0.24) 0.92(0.1) <0.01* -0.25 (0.34) 0.82(0.17) <0.01* 

Comments    

Sagittal hip  -50.55 (2.17) -48.48(2.4) 0.52 16.95 (1.33) 15.86(18.7) 0.63 

Coronal hip -15.05 (0.9) -8.7(0.86) <0.01* 0.36 (0.85) -0.07(1.03) 0.75 

Horizontal hip 1.01 (0.95) 0.03(1.13) 0.51 -9.63 (1.43) -4.92(1.7) <0.05* 

Table 28: Results from comparing surface electromyography and kinematic data between the mean of 
both legs of the healthy professional football players to the mean of both legs in the healthy amateur 

football players during single leg squat when the leg is moving.  Annotations: * = p < 0.05; sEMG = 
surface electromyography; arrows indicate the direction of difference; GM=gluteus medius; AL= 
adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error ;   = 
increased in amateur players; = decreased in amateur players. 
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Discussion 

The aim of this study was to provide insight into pre- and re-habilitation strategies among 

multidirection athletes by exploring the muscle activation and kinematic patterns associated 

with SRGP. This was achieved by investigating relevant biomechanical patterns in injured 

athletes participating in a variety of amateur and professional sports during a standing hip 

flexion (SHF) and single leg squat (SLS) tasks.  

The precursor question that needs to be answered is whether there are activation and 

movement pattern differences at all? This question was clearly answered as a range of 

significant biomechanical imbalances in the pelvic girdle were found in nearly all of the groups 

of athletes with SRGP, compared with well-matched controls, when performing movements 

challenging for the pelvis and hip areas. Typically, movement pattern differences were 

matched with relative muscle activation differences. Specifically, there was a marked 

difference in the GM:AL muscle activation ratio as well as significantly altered hip joint 

kinematics in coronal, sagittal and horizontal planes in both movement manoeuvres.  There 

were clear differences between sports, and between participation levels within sports.  

The professional footballers suffering from SRGP showed a consistent pattern of increased 

GM:AL ratio as a result of the increased GM activation and/or decreased AL activation in both 

movement manoeuvres, compared to healthy controls. This pattern was also observed in the 

professional rugby players, although less consistently. 

In the professional footballer subgroup, the importance of gluteal activation and strengthening 

in the injury prevention strategies is recognised among healthcare professionals (Stolen et al., 

2005, Lehnhard et al., 1996, Crow et al., 2012, Smith et al., 2014). Optimally strong and 

functional gluteal musculature in this cohort may be better suited to cope with any additional 

(over)loads (Caia et al., 2013, Lago-Penas et al., 2014, Stolen et al., 2005), possibly resulting in 
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the absence of observed activation deficiencies in GM. Moreover, increased loads on the groin 

area may result in the pain, dysfunction and potential inhibition of the AL as reported in rats 

(Ohira et al., 2011). Adductor muscle strengthening prevention programs implemented in the 

professional footballers were reported to reduce the incidence of SRGP in this cohort (Holmich 

et al., 2010). Thus, despite a commonly recognised dysfunction of the hip adductor muscles 

before and after the onset of SRGP (Crow et al., 2010, Emery and Meeuwisse, 2001, 

Engebretsen et al., 2010, Nevin and Delahunt, 2013), the decrease of AL activation in the 

professionals with SRGP suggests that more adductor-focused training should be implemented 

in the prevention and rehabilitation programmes in professional football. A study by Serner et 

al. (Serner et al., 2013) measured the activation of adductor musculature in six adductor 

exercises with graduated difficulty, which provides a good resource for the clinicians and 

should be considered in SRGP prevention and treatment programmes.   

In rugby players, the pattern of hip joint movement in the presence of  little muscle activation 

imbalances may indicate that the injured players are still able to fully activate their muscles on 

the optimal, ‘healthy’ level. However, in order to achieve that, they may be choosing various 

kinematic strategies – hence the non-uniform differences between injured and uninjured 

players in the hip kinematics. A lack of adequate ‘kicking-specific’ training in rugby has been 

recognised (Quarrie and Hopkins, 2015), and their focus on ‘stability’ over ‘mobility’ in game 

environment may indicate that open-chain manoeuvres (such as SHF) are relatively untrained 

and difficult to stabilise. 

A similar trend of the GM:AL ratio decrease in injured players of both ‘amateur’ subgroups 

(amateur footballers and field hockey players) was a result of the GM activation decrease, with 

AL activation not being significantly altered. The sEMG pattern of change is opposite to this 

observed in the professional footballers and there may be a few explanations for this finding. 
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Firstly, the access to healthcare professionals’ services may have biased the findings. Gluteal 

muscle hypertrophy as compared to the general population has been reported among 

professional footballers (Sanchis-Moysi et al., 2011) and their strong, well-trained and highly 

functional GM may be less likely to lose its properties as a response to an overload or 

increased movement demand. In the ‘amateur’ subgroup the decrease of GM activation 

affecting the GM:AL ratio may be the result of this muscle being sub-functional prior to the 

onset of symptoms, and the increased demands and/or overload may trigger a further loss of 

function. Alternatively, the loss of GM function may be the reason for SRGP in the amateurs as 

the weakness of this muscle leads to increased load on the hip joint (Fetto et al., 2002, 

Presswood et al., 2008). Although the joint itself may not have been affected in this group (as 

the players testing positive in hip joint tests were excluded in this study), lack of optimal 

function of GM may have cause the initial hip and pelvic imbalance in the coronal plane 

(Homan et al., 2013) and led to SRGP.  

Different physiological characteristics of professionals associated with regular high-intensity 

training may also explain the different mechanisms of coping with overload and/or injury 

between the ‘amateur’ and ‘professional’ groups. The professionals receive a financial reward 

for being a part of the team, therefore a majority of their time is spent on training and 

optimising their performance (Stolen et al., 2005); classically they don’t have any other time 

consuming occupation. Amateurs, however, have full-time jobs and their training time is 

limited. The difference in physiology between two groups may mean that the amateurs are 

more sensitive to any overload or imbalance occurring in their pelvic area and that the muscles 

react quicker with a decrease of function, activation or strength in these players. In the 

professionals, pelvic girdle musculature may cope well with the initial overload, but further 

excessive loading may potentially lead to muscle inhibition, as recently reported in hamstring 

injuries (Fyfe et al., 2013). Alternatively, the adductor activation deficit may be an effect of 
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pain in the groin region, which doesn’t affect other musculature in these players (such as 

gluteal muscles). 

Interestingly, in both subgroups of athletes: ‘professionals’ (professional footballers) and 

‘amateurs’ (amateur footballers and field hockey players) the hip joint movement pattern 

during SHF was consistent with the muscle activation and ratio changes. The ‘professionals’, 

with an increase of the GM:AL ratio being mainly the result of the decrease of AL activation, 

were more abducted in several SHF phases. The amateurs, presenting a decreased GM:AL ratio 

due to a decrease of GM activation, tended to show more internal rotation, which is often 

associated with a GM dysfunction (Dai et al., 2014, Homan et al., 2013, Powers, 2010, Lack et 

al., 2014).  

The lack of clear kinematic differences in injured compared to healthy amateur footballers in 

SLS is a surprising finding. SLS as a clinical test is more demanding than SHF, although the 

demands on pelvic control were reported to be similar in both movements (Boudreau et al., 

2009). It was therefore expected that the biomechanical imbalances (both muscle activation 

and kinematic) demonstrated during SHF will be also present in SLS, potentially even to a 

greater extent.  

In the field hockey players the hip joint kinematic imbalances were present in all planes, in the 

horizontal plane presenting a consistent pattern of increased external rotation throughout the 

movement. These findings are rather surprising, as in the presence of clear GM dysfunction 

manifesting as a decrease of its activation, hip joint kinematics of the injured players was not 

altered in an expected way; instead, they demonstrated increased hip external rotation 

(Crossley et al., 2011, Grimaldi, 2011).  

Kawalek and colleagues (Kawalek and Garsztka, 2013) performed the analysis of the muscle 

flexibility in the field hockey players and found a shortened iliopsoas muscle in  100% of tested 
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participants. Iliopsoas muscle is the main hip flexor (Andersson et al., 1995), and in this cohort 

I only identified increased hip flexion in the phase of holding the squat in the lowest position 

i.e. the maximal knee flexion. However, iliopsoas is also an external rotator of the hip in the 

flexed position (Rajendran, 1989), which may explain the pattern of external rotation observed 

in the injured hockey players. Moreover, SRGP as a result of the iliopsoas muscle dysfunction is 

one of the most commonly recognised diagnostic sub-groups according to the Doha 

agreement (Weir et al., 2015). In this study, participants were not diagnosed according to the 

primary driver of their pain, therefore it may be that the iliopsoas muscle was the main cause 

of SRGP in injured field hockey players, which may have biased the results. It is, however, 

worth noting that despite the unexpected kinematic patterns presented by the injured players, 

the coronal plane muscle activation imbalance was still present in those players and that their 

GM was clearly underactive.  

Interestingly, the injured Ultimate Frisbee players, in the absence of the GM:AL imbalances, 

showed a consistently increased hip abduction when measuring the stance leg in SHF. As with 

the professional rugby players, they may still be able to activate their muscles on a ‘healthy’ 

level despite the injury, but the force output may be smaller, particularly in the adductor 

muscle – which leads to increased abduction. This consistency is observed in all three phases 

of SHF but only in the stance leg, with no imbalances when the leg is moving. This pattern may 

suggest similar mechanisms of injury in this group and the professional footballers, which may 

be associated with the tendency to injure their weight-bearing leg regardless of whether this 

leg is dominant or non-dominant. Clear kinematic imbalances in the injured Ultimate Frisbee 

players in the stance, but not the moving leg, may therefore indicate that the leg being an 

actual stabiliser during turning, twisting and cutting manoeuvres is the dominant leg, and the 

one most commonly injured. It, however, raises a question whether the definition of  the leg 

dominance by the preference to kick a ball is appropriate in this cohort. 



 

210 

 

The differences of the results between the subgroups may also be caused by the different 

injury mechanisms. Amateur players, with a lack of easy access to healthcare and strength and 

conditioning professionals, may not recognise the importance of targeted strengthening of 

certain muscle groups to prevent injuries caused by the imbalances in the pelvic area 

(Grimaldi, 2011). These differences in pre-habilitation and prevention strategies between the 

professional and amateur players may influence the target of biomechanical changes 

associated with groin injuries (Meister et al., 2011, Zheng et al., 2008). 

Moreover, different injury mechanisms may be to some extend demonstrated by the different 

tendency in dominant/non-dominant leg injury pattern discovered in this study. When 

analysing separate subgroups, in three out of five (amateur footballers, professional rugby 

players and ultimate Frisbee players) the injured athletes were symptomatic on their dominant 

side and only one subgroup of injured athletes (professional footballers) have injured their 

non-dominant side. The field hockey players didn’t show any tendency in injuring the 

dominant/non-dominant leg, but a low number of injured participants might have influenced 

the results.  

It was surprising that only professional footballers (and not professional rugby players) showed 

a different pattern from all other groups and injured mainly their non-dominant side. Among 

all of the sub-groups measured in this study, the professional footballers potentially perform 

the largest number of kicking movements in the training and game (Lees and Rahnama, 2013, 

Barfield, 1998). Thus, increased susceptibility to injure the weight-bearing limb in professional 

footballers may potentially indicate that these players’ training is focused on the open chain 

movements, such as kicking but less on the weight-bearing and stability exercises (Stolen et al., 

2005). This may lead to the professional footballers lacking in optimal control and stability in 

the weight-bearing limb, which then is more sensitive to any biomechanical imbalances and 

therefore prone to pain and injuries. Additionally, a high amount of the dynamic movements 
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during competition and training of professional footballers (such as high number of repetitive 

kicking) (Stolen et al., 2005) may increase the demands for the weight-bearing leg to provide 

stability and control for the whole body, which then lead to overload and injury (Terje et al., 

2015). The results of this study present clear clinical implications when designing the 

prevention strategies in this group of athletes. Firstly, the focus on adductor muscles should be 

emphasised, based on the exercises involving a high adductor activation (Serner et al., 2013). 

Secondly, everyday training should implement more weight-bearing and stability activities 

additionally to highly repetitive kicking movements. For example, more emphasis on every 

kind of twisting, turning and pivoting manoeuvres, potentially with additional weight in order 

to increase the challenge, may be useful.   

The tendency of injuring the dominant (kicking) leg in amateur footballers, professional rugby 

and Field hockey players may indicate that the mechanism of injury is similar in these three 

groups of athletes, but different to professional footballers. A similar biomechanical pattern in 

these groups shown in this study may strengthen this suggestion. It may be that the amateur 

footballers and professional rugby players overload their limb in the repetitive open kinetic 

chain movements (such as kicking), which is not the focus or priority of their training (le Gall et 

al., 2010, Padulo et al., 2013). The kicking movement itself is a very demanding task for the 

balance of the antagonist coronal plane hip and pelvis musculature with a marked eccentric 

phase of adductor muscles work when slowing down the limb after the kick (Barfield, 1998). In 

the absence of specific training to perform this movement in a safe and optimal way, the 

coronal plane hip and pelvis musculature may become overloaded causing injury and pain. In 

order to prevent SRGP in these groups of athletes, gluteal strengthening, particularly during 

open chain exercises may be advised. Additionally, kicking-specific training with an optimal 

pelvic and hip musculature balance may be useful in SRGP prevention. 
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A different mechanism of injury might have occurred in the Ultimate Frisbee players, who 

don’t perform the kicking movement at all.  The dominant leg in this group of players was also 

defined as the preferred kicking leg, which may have been irrelevant to the athletes who don’t 

kick the ball in game and training environment. However, this way of defining leg dominance 

was reported to be valid for athletes in various sports disciplines (Jessica Velotta, 2011) and 

was performed in order to maintain the consistency of the inclusion criteria in this study.  The 

tendency of injuring the dominant leg in the Ultimate Frisbee players may be related to the 

fact that in the absence of kicking movement in this sport, the athletes have the opportunity to 

choose the preferred limb to perform the most challenging movements, such as twisting, 

turning, cutting and pivoting (Reynolds and Halsmer, 2006) or that it takes a particular 

stabilisation role for the dominant arm to throw the Frisbee. This may mean that although 

their dominant leg is the one most commonly injured (as in the amateur footballers and 

professional rugby players), the mechanism of injury is actually similar to the professional 

footballers, being associated with the increased demands on the weight-bearing leg when 

performing highly challenging manoeuvres.  

An additional analysis was performed to compare the healthy controls of the professional and 

amateur footballers (Table 27 and Table 28). These two groups were selected from all others 

as were most comparable, and level-specificity is likely to be the only different factor in these 

players.  Interestingly, there is a significant difference between the healthy control 

professionals and amateur in GM:AL activation ratio, clearly limited to the weight-bearing 

(closed kinetic chain) situation, that is, only in the stance leg in SHF (Table 27), and SLS (Table 

28). This finding suggests that the professional and amateur players are in fact different 

cohorts, and strengthens previously stated hypothesis of different injury mechanisms to the 

moving or weight-bearing leg. The level-specificity, potentially even more than sport-

specificity, may be therefore a major overlooked factor in SRGP rehabilitation, as established 
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conservative management guidelines are generic and do not differentiate the level of play. 

Critically, the difference in coronal plane muscle activation between control groups is the 

opposite difference to that measured we see in injured groups (Figure 34).  

It is worth noting that a separate analysis of the differences between the dominant and non-

dominant leg of the healthy control participants was also performed in order to explore  

whether the inter-group differences may be confounded by differences between dominant 

and non-dominant legs. Although some significant effects of leg dominance were found in the 

healthy cohort, I decided not to include this data in the main analysis. Firstly, the potential 

effects of dominance were not affecting the results, and obscured the main analysis simply by 

quantity of results; and secondly, almost all of the study participants have injured their 

dominant leg, which makes the dominance analysis somewhat spurious. The method of 

analysing and establishing the dominance bias is presented in Table 29 on the professional and 

amateur footballers: in professionals, the GM:AL ratio is increased in the dominant compared 

to non-dominant leg in healthy controls. They have mainly injured their non-dominant leg, 

which means that the increase of the sEMG ratio in their injured leg is a true finding, not 

biased by the dominance data. In healthy amateurs, the GM:AL ratio in the dominant leg is 

increased when measuring the stance, but decreased when measuring the moving leg. This 

cohort has mainly injured their dominant leg, which means that the decrease of the sEMG 

ratio is a true finding in all cases, except the early phase of the moving leg, which may have 

been a dominance bias. 
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 SHF 

 Pro (injured leg: non-dominant) Am (injured leg: dominant) 

 Stance Moving Stance Moving 

 E M L E M L E M L E M L 

Dominant leg            

Injured leg            

 

Table 29: The example of the potential dominance bias analysis shown on the professional and 

amateur footballers. SHF – standing hip flexion movement; Pro – professional footballers; Am – 
amateur footballers; E – early phase; M – middle phase; L – late phase; highlight shows a potential 
dominance bias. 

 

The results of all comparisons between the dominant and non-dominant legs for all 

participants groups during SHF and SLS are included in Appendix 2 (p. 264). 

Limitations 

Although the link between injuring the dominant or non-dominant leg within the subgroups is 

clear in this research, it should be treated with caution as the relatively low number of 

participants prevents such epidemiological conclusions. However, further research focusing on 

the mechanisms of SRGP is required in order to fully understand its aetiology and design 

optimal prevention strategies for every athlete. 

In this study the participants were not specifically diagnosed as having adductor-, iliopsoas-, 

abdominal- or inguinal- related SRGP. Instead I have diagnosed them as suffering from sports-

related groin pain, which included all of those sub-categories. Therefore it may be that in some 

groups of tested athletes a particular structure being a primary driver of pain was dominating, 

providing some bias to the results.  

There are some commonly recognised limitations associated with surface electromyographic 

measurements, which also apply in this study. These include the misplacement of the 

electrodes on the skin; inadequate preparation of participants’ skin; unusual location of the 

motor plates and innervation zones within an individual; presence of the sEMG signal artefacts 
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and other (Kamen and Gabriel, 2010a). Except for those limitations that could not be 

controlled, effort was made decrease the risk of sEMG bias, including extensive theoretical and 

practical training.. 

The injured professional rugby players, although they were closely matched with the controls, 

were not controlled regarding the position played. This may have biased the results given the 

very different player characteristics depending on position.  

A relatively low number of participants in the field hockey subgroup may bias the results as the 

minimum sample size was estimated at seven.  

Future research 

The results of this study show that injured athletes have clear muscle activation and kinematic 

imbalances in the coronal plane. No comprehensive study of other biomechanical imbalances 

in neither other muscles nor other planes has been reported; therefore researchers in the area 

should investigate other muscle activation and kinematic signatures in athletic groups and sub-

groups with SRGP. 

Although there is a clear link between pain, muscle activation and movement patterns in 

SRGP, the causality of these associations is still not established. A prospective, longitudinal 

study measuring reported biomechanical characteristics before and after the pain onset, and 

potentially after the completed rehabilitation course, would help to understand the 

mechanism of SRGP and provide a powerful clinical tool for the SRGP prevention programmes. 

Limitations 

Although the link between injuring the dominant or non-dominant leg within the subgroups is 

clear in this research, it should be treated with caution as the relatively low number of 

participants prevents such epidemiological conclusions. However, further research focusing on 
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the mechanisms of SRGP is required in order to fully understand its aetiology and design 

optimal prevention strategies for every athlete. 

In this study the participants were not specifically diagnosed as having adductor-, iliopsoas-, 

abdominal- or inguinal- related SRGP. Instead I have diagnosed them as suffering from sports-

related groin pain, which included all of those sub-categories. Therefore it may be that in some 

groups of tested athletes a particular structure being a primary driver of pain was dominating, 

providing some bias to the results.  

There are some commonly recognised limitations associated with surface electromyographic 

measurements, which also apply in this study. These include the misplacement of the 

electrodes on the skin; inadequate preparation of participants’ skin; unusual location of the 

motor plates and innervation zones within an individual; presence of the sEMG signal artefacts 

and other (Kamen and Gabriel, 2010a). Except for those limitations I couldn’t control, I made 

an active effort in order to decrease the risk of the sEMG being biased, including extensive 

theoretical and practical training which made me confident in using this tool.  

The injured professional rugby players, although they were closely matched with the controls, 

were not controlled regarding the position played. This may have biased the results given the 

very different player characteristics depending on position.  

A relatively low number of participants in the field hockey subgroup may bias the results as the 

minimum sample size was estimated at seven.  

Future research 

The results of this study show that injured athletes have clear muscle activation and kinematic 

imbalances in the coronal plane. No comprehensive study of other biomechanical imbalances 

in neither other muscles nor other planes has been reported, therefore researchers in the area 
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should investigate other muscle activation and kinematic signatures in athletic groups and sub-

groups with SRGP. 

Although there is a clear link between pain, muscle activation and movement patterns i n 

SRGP, the causality of these associations is still not established. A prospective, longitudinal 

study measuring reported biomechanical characteristics before and after the pain onset, and 

potentially after the completed rehabilitation course, would help to understand the 

mechanism of SRGP and provide a powerful clinical tool for the SRGP prevention programmes.  

Conclusions 

There are clear coronal muscle activation and kinematic differences between injured and 

healthy groups of professional footballers, amateur footballers, professional rugby and field 

hockey players. Minimal biomechanical imbalances were found in the injured Ultimate Frisbee 

players compared to the controls. 

In the majority of groups, in both SHF and SLS tasks, the hip joint movement patterns in the 

injured players were consistent with the muscle activation differences; most strongly in the 

SHF task. The muscle activation and movement patterns are different in the professional 

footballers with SRGP are different from the other groups of injured athletes. Moreover, they 

tended to injure their non-dominant leg, opposite to the rest of the groups. This may suggest 

that the mechanism of the injury in this group of athletes is different from others and that the 

healthcare professionals providing services to those athletes should be particularly cautious 

regarding a careful assessment and rehabilitation in this cohort. 

The cross sectional nature of my work has enabled clarity to emerge that there are, previously 

unidentified, sports and participation level specific movement patterns and muscle activation 

patterns and therefore a good case for revisiting rehabilitation recommendations.  
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Chapter 7: Longitudinal study 

Chapter overview 

This chapter summarises the electromyographic and kinematic results of the study on five 

amateur rugby players after an acute groin injury measured three times – immediately after 

injury, mid-rehabilitation phase and after recovery. It correlates the results of each 

measurement, and additionally compares them to the cohort of five healthy amateur rugby 

players. 

Introduction 

Sports related groin pain (SRGP) is a chronic and debilitating condition in professional and 

amateur athletes participating in sports requiring repetitive kicking, twisting and pivoting 

(Thorborg et al., 2010, Holmich et al., 2011, Serner et al., 2015). The aetiology of this condition 

is not clear, but the relation between the acute groin injury and chronic SRGP has been 

longrecognised (Renstrom and Peterson, 1980). Acute groin injury was reported to typically 

occur during quick acceleration and sudden direction changes (Estwanik et al., 1990) as well as 

powerful overstretch of the lower limb in the directions of abduction and external rotation 

(Merrfield and Cowan, 1973, Smodlaka, 1980).  Although previous groin injury has been 

recognised as one of the main risk factors for subsequent pathology (Arnason, 2004, Hagglund 

et al., 2009, Engebretsen et al., 2010, Steffen et al., 2008), there is a paucity of research on 

acute groin injuries (Serner et al., 2015) which have been reported to account for 39% of all 

groin injuries (Holmich et al., 2014). 

Instead, the majority of studies investigating the diagnoses, mechanisms and treatment for 

groin pathologies focus on the chronic condition – SRGP (Morrissey et al., 2012a, Malliaras et 
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al., 2009, Mens et al., 1999), or do not specify the inclusion/exclusion criteria clearly enough to 

reliably differentiate between acute and chronic groin pathologies.  

The consensus regarding the necessity of rest and adequate, early conservative treatment in 

acute groin injuries has been established by both clinicians and researchers (Jansen et al., 

2008, Machotka et al., 2009, Serner et al., 2015).   

There have been a few attempts to design pre-habilitation and rehabilitation programmes in 

order to decrease the incidence of groin injuries or optimise recovery (Holmich et al., 2010, 

Weir et al., 2011b, Weir et al., 2009). These programmes have focussed mostly on 

strengthening and stability of certain muscle groups (mainly hip adductors and flexors, as well 

as abdominals) and some of the interventions have been reported to be more successful than 

others. However, no study proposes an intervention including movement pattern retraining as 

well as relative muscle activation balance in the pelvic girdle areas, which was reported to be 

impaired in athletes with SRGP (Morrissey et al., 2012a). 

Despite such common views and growing understanding of the treatment requirements, 

chronic SRGP is still a major and common problem in amateur and professional sports (Weir et 

al., 2015, Delahunt et al., 2015).  

A number of biomechanical signatures of the athletes with chronic SRGP were discovered 

(Morrissey et al., 2012a, Malliaras et al., 2009, Arnason et al., 2004, Cowan et al., 2004b, Crow 

et al., 2010, Engebretsen et al., 2010, Emery and Meeuwisse, 2001, Emery et al., 1999a, Jansen 

et al., 2010, Mens et al., 2006, Mohammad et al., 2014, Nevin and Delahunt, 2013), mostly by 

observational studies. However, no longitudinal measurements have studied which 

biomechanical deficiencies remain after acute groin injury, a major risk factor for subsequent 

SRGP. Moreover, little attention is given to the kinematics and movement patterns of injured 

athletes. 
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As is the case in other multi-structural pathologies, such as patella-femoral pain syndrome, 

lower back and shoulder pain (Roussel et al., 2009, Mottram et al., 2009, Roussel et al., 2013, 

Worsley et al., 2013), optimising the movement patterns may be a key to successful 

rehabilitation, and may represent a way forward in groin pain (Morrissey et al., 2012a).  

The aim of this study was to recognise the biomechanical deficiencies as a consequence of the 

acute muscle injury, to discover potential imbalances remaining after acute groin injury and 

optimise rehabilitation programmes, repeated electromyographic and kinematic 

measurements were performed immediately after groin injury, and throughout the 

rehabilitation process. Performed measurements enabled description of the muscle activation 

and hip joint movement patterns during the course of rehabilitation until the athletes were 

recovered according to established clinical measurements (Holmich et al., 2004). Additionally, 

the measurement of injured participants during the first, second and third occasion were 

compared with the results obtained from the healthy, well -matched control participants. The 

alternative hypothesis was the results of the outcome measures would differ significantly 

between the injured and uninjured participants, both at the beginning and at the end of the 

rehabilitation process; and that there would be no difference in the electromyographic and hip 

joint kinematic measurements between the first and the last testing occasion in the 

symptomatic players. 

Methods 

Queen Mary University Ethics of Research Committee approval was obtained and participants 

signed informed consent. Amateur rugby players were recruited from local and university 

teams through friends, family and contact details found on the web. The healthy control 

participants attended the Human Performance Laboratory on only one occasion; the injured 

participants attended the Laboratory on three occasions: up to five days after injury, four 
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weeks after initial injury and between eight and twelve weeks after initial injury, when the 

participant was functionally asymptomatic (Holmich et al., 1999). During every visit, they 

underwent a clinical examination; firstly to screen the potential participants against the 

inclusion criteria during the first visit; and secondly to assess the clinical outcomes indicating  

participants’ recovery or otherwise. The clinical examination was divided into two parts: 

palpation and specific diagnostic tests. Each test was scored by participants according to their 

pain levels from 0-10 on the visual analogue scale (VAS). The dominant and injured limbs were 

established and clinically assessed. 

After standard skin preparation, surface electrodes and CodaMotion markers were placed on 

participants’ lower limb and pelvis areas. Then the participants were asked to perform two 

movements: standing hip flexion (SHF) and single leg squat (SLS) manoeuvres, for three 

repetitions of each leg. The SHF and SLS manoeuvres were then divided into three and seven 

phases, respectively. 

A repeated measures ANOVA and paired t-tests were performed on the results of the maximal 

VAS scores obtained in each testing occasions – collectively, as well as separately for palpation 

and testing sections.  

The sEMG signal from the gluteus medius (GM) and adductor longus (AL) muscles was then 

filtered, rectified and smoothed, GM:AL ratio and its logarithmic scale was then calculated for 

each participant, during each occasion separately, using custom made MatLab programmes 

(version 2012a, The Mathworks, Natick, MA, USA). Regarding the kinematic data, the hip joint 

rotation values were calculated as a mean of three repetitions for each leg separately, in all 

three planes, during each testing occasion. In SHF the injured leg was analysed when it was 

both stance and moving, in SLS the injured leg was analysed only when it was stance (weight-

bearing). The details of this study methodology can be found in Chapter 3: Methods (p. 85). 
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Statistical analysis 

Repeated measures two-way ANOVA was performed, with the testing occasion and the 

movement phases as the independent factors, and the sEMG or hip joint rotation values in 

each plane as the dependent factors. Where the Mauchly’s test for spheri city violated the 

assumption of sphericity, Greenhouse‐Geisser correction was used and the p values of 

significance as well as the degrees of freedom were reported according to the correction. 

Additionally, one-way ANOVA was performed for each movement phase separately, with a 

testing occasion as the independent factor and the sEMG or hip joint rotation values in each 

plane as the dependent factors. 

A three-way mixed-model ANOVA analysis was performed in order to compare the results 

obtained from the three testing occasions, from the injured athletes with the right leg of the 

uninjured athletes; with the testing occasion, the movement phases and the injury status 

(injured or control) as the independent factors, and the sEMG or hip joint rotation values as 

the dependent factors. Because the healthy controls were tested once only, the values 

obtained from one testing occasion were multiplied and treated as obtained during all three 

testing occasion. As this approach might have biased the results, I have additionally performed 

separate t-tests between the results obtained from the healthy controls and results obtained 

from injured participants during each testing occasion separately.  

I recognised that the statistical analysis needed to be regarded as tentative due to the low 

number of participants. However, I made a conscious decision to statistically analyse this study 

as a longitudinal case-control study rather than case series, for reasons further explained in 

discussion section of this chapter. 
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Results 

Five injured male amateur rugby players were recruited to this study between January 2013 

and May 2014, all of them completed three testing occasions. The characteristics of the 

participants are presented in Table 30. 

The outcomes of the clinical examination VAS scores during each testing occasion are 

presented in Table 31. 

 

  Participants’ characteristics 

  Inj Con p 

N 5 5   

Height 1.81 1.83 0.68 

Weight 84.2 81.6 0.72 

Age 21 21.8 0.54 

Injured leg 
(Dom:Non) 

5:0 

 

Table 30: Characteristics of study participants. Inj – injured players; Con – controls. Dom – dominant leg injured; 
Non – non-dominant leg injured. 

 



2
2

4 

 

 

 

Cl inica l  
examination 

Pa lpation 
Clinical tests 

Adductor tests  I l iopsoas  tests  

Add 
tendon 

Add insertion to 
pubic bone 

Pubic symphysis I l iopsoas  

Adduction 

against 
res is tance 

Squeeze test 
0° 

Squeeze 
test 45° 

Squeeze test 90° 

Passive hip 

abduction 
(s tretch) 

Active hip 
flexion 
against 

res is tance 

Pass ive hip 

extens ion 
(s tretch) 

Testing 

occas ion 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Patient 1  0 0 0 3* 0** 0*** 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 3 3 0 4 2 0 0 0 0 5* 4** 0*** 

Patient 2 3 4 0 5* 5** 2*** 0 0 0 0 0 0 5 2 0 5 0 2*** 0 0 0 6* 6** 0 5 0 1 3 0 0 0 0 0 

Patient 3 0 0 0 0 1 0 0 0 0 4* 3** 0*** 0 0 0 2 2 0 2 0 0 0 0 0 3 4** 0 0 2 5*** 0 4 0 

Patient 4 0 0 0 0 0 0 0* 1** 0*** 0 0 0 4 0 0 0 0 0 0 0 0 4* 1** 0*** 0 0 0 3 1 0 0 1 0 

Patient 5 5* 0 0 0 0 0 4 1** 0*** 1 0 0 0 0 0 5* 2** 0*** 4 0 0 0 2 0 0 0 0 3 0 0 0 0 0 

 

Table 31: The results of the clinical examination of all five participants during three testing occasions in visual analogue scale (VAS); Add – adductor muscle. * indicates the 
maximal VAS score during the first measurement in both palpation and clinical tests; ** indicates the maximal VAS score during the second measurement in both palpation 

and clinical tests; *** indicates the maximal VAS score during the last measurements in both palpation and clinical tests; underlined number represents the maximal VAS score 
overall.  
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Vas scores 

Repeated measures ANOVA showed a significant effect of the testing occasion on the 

maximal VAS scores when measured collectively and measuring the palpation and clinical tests 

separately (Table 32).  

Paired t-test showed a significant difference between the first and the last measurement, both 

when analysing the palpation and clinical tests collectively (p = 0.019) and separately 

(palpation: p = 0.01; clinical tests: p = 0.036) (Figure 35). The results of analysis between other 

occasions are presented in Table 33. 
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Figure 35: Graphic representation of the maximal visual analogue scale (VAS) scores obtained from 
each participant during each clinical examination as well as the means of the scores, analysed 

collectively (palpation and clinical tests) (graph A) as well as divided into palpation (graph B) and 
clinical test (graph C) separately. The X axis represents the first (1), second (2) and third (3) testing 
occasion, the Y axis shows the VAS scores. The grey lines represent each participant separately, the 
black line represents the mean of all participants, error bars represent the positive standard 

deviation. 
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ANOVA  
Max pain all in 

VAS 

Max pain 
pa lpation in 

VAS  

Max pain 
cl inical tests in 

VAS 

Mauchly's test 
of spherici ty 

Signi ficance 0.61 0.699 0.502 

Chi  square 0.988 0.716 1.38 

G-G? No No No 

F 6.687 7.042 4.78 

df 2,8 2,8 2.8 

p 0.02 0.017 0.043 

 

 

Table 32: A summary of the results obtained from the repeated measures ANOVA comparisons with 
the testing occasion as the independent factor and the maximal VAS scores as the dependent factors 
in given comparison; G-G - Greenhouse‐Geisser correction used; df – degrees of freedom; highlighted 
cells indicate the significant findings. 

 

Paired t-test 
between 

occas ions  

Max pain 
col lective in 

VAS (p va lue) 

Max pain 
pa lpation in 

VAS (p va lue) 

Max pain 
cl inical tests in 

VAS (p va lue) 

1/3 0.02 0.01 0.04 

1/2 0.05 0.04 0.1 

2/3 0.05 0.05 0.05 

 

Table 33: The results of paired t-tests between the maximal scores obtained in visual analogue scale 
(VAS) during palpation and clinical tests analysed together (collective) and separately; 1/3 – 

comparing first and third occasion; 1/2 - comparing the first and second occasion; 2/3  -comparing the 
second and third occasion; Max pain – maximal obtained VAS scores. Highlighted cells indicate the 
significant findings. 

 

sEMG results 

SHF 

No significant effect was found in both two-way repeated measures ANOVA, with a testing 

occasion and phase of movement as independent factors and the GM:AL activation ratio as the 

dependent factor; as well as analysing each phase separately by one-way ANOVA with the 

testing occasion as an independent factor and the GM:AL activation ratio as the dependent 

factor. The results of each comparison are presented in Table 34. 
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When comparing the injured participants with the healthy controls, no significant interaction 

was found in the three-way mixed ANOVA in SHF when the injured leg was in stance (F = 

0.185, p = 0.945) or moving (F = 0.91, p = 0.969), as well as in the SLS (F = 0.402, p = 0.95) 

movement manoeuvre. No significant difference between the injured and uninjured 

participants was found when performing independent t-tests between two groups (Table 34).



2
2

9
 

 

 

Analysis combination 

L SHF 
Two-
way 

ANOVA 

L SHF 
early 

L SHF 
middle 

L SHF 
late 

R SHF 
Two-
way 

ANOVA 

R SHF 
early 

R SHF 
middle 

R 
SHF 
late 

R SLS 
Two-
way 

ANOVA 

R SLS 
moving 
1 

R SLS 
moving 
2 

R SLS 
moving 
3 

R SLS 
moving 
4 

R SLS 
stance 
1 

R SLS 
stance 
2 

R SLS 
stance 
3 

sEMG 
Maulchy's 

test of 
sphericity 

Significance 0.22 0.7 0.84 0.35 0.262 0.51 0.86 0.88 - 0.76 0.64 0.52 0.99 0.95 0.98 0.77 

Chi square 0.67 0.71 0.34 2.13 12.854 1.34 0.3 0.25 - 0.54 0.89 1.3 0.02 0.11 0.04 0.54 

G-G? No No No No No No No No No No No No No No No No 

F 0.19 1.1 1.93 0.1 0.97 0.35 1.17 0.71 0.4 0.44 1.34 0.3 0.56 1.3 0.21 0.31 

df 4, 16 2, 8 2, 8 2, 8 4, 16 2, 8 2, 8 2, 8 12, 48 2, 8 2, 8 2, 8 2, 8 2, 8 2, 8 2, 8 

p 0.94 0.38 0.21 0.91 0.45 0.72 0.36 0.52 0.96 0.66 0.32 0.75 0.59 0.32 0.81 0.74 

Kinematics 
Coronal plane 

Maulchy's 
test of 

sphericity 

Significance 0.01 <0.01 0.01 0 0.1 0.1 0.17 0.72 - 0.48 0.12 0.18 0.88 0.03 0.39 0.88 

Chi square 24.57 16.32 8.93 14.92 4.66 17 3.51 0.65 - 1.47 4.33 3.43 0.25 6.87 1.89 0.25 

G-G? 
Yes 

ε=0.282 
Yes 

ε=0.50 
Yes 

ε=0.513 
Yes 

ε=0.502 
No No No No - No No No No 

Yes 
ε=0.527 

No No 

F 0.55 4.21 6.48 4.54 0.62 0.57 0.54 0.21 1.58 1.45 2.92 1.82 2.19 2.1 2.61 2.19 

df 
1.13, 
4.52 

1.002, 
4.009 

1.062, 
4.105 

1.003, 
4.014 

4, 16 4, 16 2, 8 2, 8 12,48 2, 8 2, 8 2, 8 2, 8 
1.053, 
4.213 

2, 8 2, 8 

p 0.71 0.11 0.62 0.1 0.51 0.69 0.6 0.82 0.13 0.29 0.11 0.22 0.17 0.22 0.13 0.17 

Sagittal plane 
Maulchy's 

test of 

sphericity 

Significance 0.23 0.2 0.2 0.63 0.051 0.02 0.25 0.77 - 0.74 0.98 0.65 1 0.93 0.15 1 

Chi square 13.46 3.26 3.26 0.93 19.37 8.37 2.78 0.53 - 0.6 0.04 0.88 0.01 0.14 3.79 0.01 

G-G? No No No No No 
Yes 

ε=0.516 
No No No No No No No No No No 

F 0.7 0.83 1.02 0.99 0.68 0.39 0.75 0.95 0.73 4.27 3.29 1.45 1.25 1.75 0.5 1.25 

df 4, 16 2, 8 2, 8 2, 8 4, 16 
1.032, 
4.127 

2, 8 2, 8 12, 48 2, 8 2, 8 2, 8 2, 8 2, 8 2, 8 2, 8 

p 0.61 0.47 0.4 0.41 0.62 0.57 0.93 0.43 0.71 0.55 0.09 0.29 0.34 0.24 0.63 0.34 

Horizontal plane 
Maulchy's 

test of 
sphericity 

Significance <0.01 0.35 0.52 0.92 <0.05 0.09 0.14 - <0.01 0.6 0.44 0.08 0.71 0.52 0.05 0.63 

Chi square 26.42 2.09 1.31 0.18 22.17 4.82 3.99 - 19.85 1.02 1.64 4.97 0.69 1.3 6.18 0.92 



2
3

0
 

 

 

G-G? 
Yes 

ε=0.363 
No No No 

Yes 
ε=0.322 

No No No No No No No No No 
Yes 

ε=0.534 
No 

F 2.11 0.11 0.3 0.49 0.3 0.08 0.56 0.02 0.38 0.28 0.47 0.14 0.09 0.26 0.07 0.15 

df 
1.45, 
5.81 

2, 8 2, 8 2, 8 
1.29, 
5.15 

2, 8 2, 8 2, 8 12, 48 2, 8 2, 8 2, 8 2, 8 2, 8 
1.068, 
4.272 

2, 8 

p 0.2 0.89 0.75 0.63 0.67 0.93 0.95 0.99 0.96 0.76 0.64 0.87 0.92 0.78 0.82 0.87 

 

Table 34: A summary of the results obtained from the repeated measures ANOVA comparisons of the injured players, with the testing occasion as the independent factor and the gluteus medius 

to adductor longus muscle activation ratio (GM:AL) and the hip joint rotation in three planes as the dependent factors in given comparison; G-G - Greenhouse‐Geisser correction used; df – 
degrees of freedom;  L SHF – left standing hip flexion movement (injured leg stance); R SHF – right standing hip flexion movement (injured leg moving); R SLS – right single leg squat movement 

(injured leg stance); X – hip join rotation in coronal plane; Y – hip joint rotation in sagittal plane; Z – hip joint rotation in horizontal plane; ε – level of Greenhouse-Geisser correction. Highlighted 
cells indicate the significant findings (no significant findings found). 
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Kinematics 

No significant effect was found in both two-way repeated measures ANOVA, with a testing 

occasion and phase of movement as independent factors and the hip joint kinematics in each 

plane as the dependent factor; as well as analysing each phase separately by one -way ANOVA 

with the testing occasion as an independent factor and the hip joint kinematics in each plane 

as the dependent factor (Table 34).   

When comparing the injured participant with the uninjured controls, no significant interaction 

was found in a three-way mixed model ANOVA in SHF when the injured leg was stance in any 

plane (coronal: F = 0.546, p = 0.703; sagittal: F = 0.697, p =599; horizontal: F = 2.108, p = 

0.103), or moving (coronal: F = 0.565, p = 0.69; sagittal: F = 0.677, p =613; horizontal: F = 0.269, 

p = 0.879); as well as during SLS (coronal: F = 1.577, p = 0.111; sagittal: F = 0.732, p =717; 

horizontal: F = 0.384, p = 0.966). No significant differences were found when performing 

independent t-tests between the injured and uninjured participants. 

Discussion 

This study aimed to identify biomechanical imbalances in hip joint kinematics and muscle 

electromyography after acute groin injury, and following potential deficiencies along the 

course of rehabilitation. There was no significant effect of the testing occasion on the GM:AL 

sEMG ratio or hip joint kinematics in any plane during SHF movement when the injured leg 

was both stance and moving; as well as in SLS when the injured leg was stance (weight-

bearing) although low subject numbers must be foregrounded as a caveat. Interestingly, no 

significant interaction was also found between the injured athletes and healthy controls in 

both sEMG and kinematic measures, at any testing occasion. 

SRGP still remains a challenge for sports medicine. A number of research reported a previous 

groin injury as a major risk factor for SRGP (Arnason et al., 2004, Maffey and Emery, 2007), 
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which suggests that underlying imbalances still remain in athlete after his primary injury, 

despite positive outcomes of the clinical assessment (Holmich et al., 2004). It has been 

suggested that the SRGP recovery time with the exercise-focused rehabilitation programme is 

8 - 12 weeks (Holmich et al., 1999), and this timeframe was also used in our study as sufficient 

time for the participants to recover from their injuries. Indeed, the study participants got 

significantly better between the first and last testing occasion. Interestingly, this improvement 

was in general not followed by the sEMG and kinematic changes in injured athletes.  

A number of biomechanical imbalances in athletes with SRGP have been reported, including 

mainly strength and flexibility deficiencies (Malliaras et al., 2009, Mohammad et al., 2014, 

Nevin and Delahunt, 2013, Thorborg et al., 2010). Few studies have focused on the 

elctromyographic deficits (Morrissey et al., 2012a, Cowan et al., 2004b), reporting a clear 

association between existing sEMG deficits and SRGP; and none at all on movement pattern 

changes.  

This suggests that despite a seemingly successful rehabilitation and minimal warning signs 

discovered during the clinical examination, there are underlying imbalances, which increase 

the athlete’s risk of SRGP after acute episode. One study by Jansen et al (Jansen et al., 2009) 

mentions such phenomenon and reports no recovery of the  transverse abdominal muscle 

thickness in athletes with SRGP despite successful clinical outcomes following a course of 

rehabilitation. 

In this study, I found that despite a comprehensive exercise program and a significant 

improvement in clinical presentation of their injury, the athletes failed to improve their 

coronal plane hip muscle activation ratio.  

The rehabilitation focussing on optimising the movement pattern has been reported successful 

in other multi-structural clinical entities, such as with lower back and shoulder pathologies 
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(Roussel et al., 2009, Mottram et al., 2009, Roussel et al., 2013, Worsley et al., 2013) . There is 

also convincing evidence that the kinematic dysfunctions need to be addressed in order to 

optimise the rehabilitation and promote a successful recovery from pain – as has been shown 

in runners with patella-femoral pain (Noehren et al., Willy et al.).  

The rehabilitation programme implemented in this study was based on previously published 

programmes, showing good clinical outcomes (Holmich et al., 1999, Weir et al., 2011b). The 

clinical examination followed by this study was also based on previously published research, 

using reliable clinical tests (Holmich et al., 2004). The programme focused on stretching and 

strengthening of certain structures, and no attention was given to movement patterns and 

their retraining. No previous research has identified the movement imbalances in SRGP 

athletes, or investigated the effects of the movement re-patterning on the effects of SRGP 

rehabilitation. However, given a still very high prevalence and morbidity of this debilitating 

condition, an increased focus on optimising the hip joint kinematics alongside the 

strengthening exercises seems to be a natural step forward.  

It was surprising that no significant interaction existed when comparing the injured with the 

uninjured athletes. The reason for no significant interaction may be that the muscle activation 

and kinematic patterns are less affected by short compared with longer term groin pain. There 

is in fact no research investigating muscle activation patterns immediately after acute injury. A 

number of studies have, however, shown an association between the alteration of muscle 

activation and chronic pain or overload (Dingenen et al., 2015, Daly et al., 2015, Bourne et al., 

2015, Morrissey et al., 2012a, Barton et al., 2012). It is therefore possible that an acutely 

injured muscle activation is not altered, particularly when measuring an electromyographic 

output from the whole muscle, with only two bipolar electrodes. Potentially, the healthy areas 

of the injured muscles put an increased effort to maintain a ‘normal’ level of muscle activation 
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in order to maximise function, which is also consistent with a lack of kinematic differences 

observed between the injured and uninjured players in this study.  

Alternatively, lack of muscle activation or kinematic differences between testing occasions as 

well as between the injured cohort and healthy controls at the outset may suggest that the 

measurement method of this study was either not sensitive enough to explore the 

biomechanical patterns in the acutely injured athletes or that the differences do not exist at 

baseline and are acquired during recovery.  

Limitations 

A major limitation of this study is a low number of participants and therefore the results of this 

study should be treated with caution. A complexity and high amount of time that the 

participants were requested to sacrifice in order to part take in the study (three occasions of 

minimum two hour visit in the Human Performance Laboratory excluding the travel time), as 

well as stringent inclusion and exclusion criteria (for example only including participants who 

were able to arrive for the first testing occasion up to five days after the injury) limited the 

number of participants that could be recruited. It could be argued that the study should be 

treated as a case-series due to the low number of participants. However, in order to define a 

study a case-series I would have had to disregard the results from the healthy control 

participants. Although the comparison between the injured and uninjured players were not 

significant at any point I decided to include the healthy participants’ data in the study as the 

results may become significant with larger participants numbers.    

In this study the original acute injury was assessed only clinically, no imaging diagnostic tests 

were taken. This may bias the results, as there are a number of structures within the groin 

area that may potentially cause the injury and result in different biomechanical alterations.  
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Another limitation of the study was a small number of physiotherapy consultations that each 

participant was given (three on three testing occasions). This may have had a negative effect 

on the participants’ motivation to closely follow the exercise program, as well as increased the 

chance for participants to make mistakes in their exercises, which could not have been 

corrected in time. 

Conclusions 

There is no relationship between the clinical outcomes of the athlete’s recovery after an acute 

groin injury and the change in the coronal plane muscle activation and hip joint kinematics.  

No change in the GM:AL activation ratio was found in the injured leg between any of the 

testing occasions, in SHF and SLS manoeuvres. 

In the stance leg during SHF and SLS manoeuvres the athletes show an initial change of the hip 

joint kinematics into the abduction direction during the conservative treatment. However, 

they return to the degree of adduction presented during the initial testing after completing the 

rehabilitation course, while showing a significant improvement in their clinical measures.  
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Chapter 8: Discussion 

Main findings 

The aim of this thesis was to explore the biomechanical factors associated with sports related 

groin pain (SRGP) in order to guide rehabilitation and prevention strategies; firstly by 

summarising already reported biomechanical patterns in a systematic review with meta-

analysis; secondly by investigating hip joint electromyographic and kinematic deficits specific 

to athletic sub-groups with SRGP; and thirdly, by observing those deficiencies among athletes 

recovering from groin injury. 

Limitations 

Five key limitations that apply to the overall thesis are worthy of further discussion. Firstly I did 

not use a patient rated outcome measure which, in retrospect, could have been useful to 

better characterise our patient groups and also as a potential covariate in statistical analysis. 

Although there were some measures available, these were either too vague to detect the 

functional deficits (Functional Measurement Screen) and some too focused on the hip joint 

(Harris Hip Score). A functional Copenhagen Hip and Groin Outcome Score (HAGOS), which is 

more targeted in the athletic deficits associated with groin pain, had just been published and 

would have been a suitable patient reported outcome measure in this study. This seemed very 

secondary to our main focus and methodological design but will be employed in future work.   

The limitations associated with using the surface electromyography, presented in detail in  

Chapter 3: Methods (p. 85), were present when collecting data for the studies. In particular, 

our choice of temporal rather than amplitude normalisation could be viewed as an additional 

limitation, but a conscious decision was made to analyse the less conventional muscle ratios 

within standardised movement phases (van der Hulst et al., 2010b, van der Hulst et al., 2010c, 
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Mathiassen et al., 1995). None of the standard normalisation procedures were relevant for the 

injured muscles (Daly et al., 2015, Burden et al., 2003b); and the aim of the study was to assess 

the biomechanical imbalance of the coronal plane antagonist muscles rather than identify the 

exact level of muscle activation. Further reasoning of this decision and the advantages and 

disadvantages of thereof are detailed in Chapter 3: Methods (p. 85). 

Focusing on coronal plane muscle activation data and tri-planar hip joint kinematics was a 

conscious choice, based on the existing evidence of mainly coronal plane deficits associated 

with SRGP, as shown in the systematic review. Ideally, we would also have established the 

muscle activation patterns in other planes, but this was not possible due to the difficulty of 

access and deemed less likely to be useful given the location of symptoms. Nonetheless, 

further investigations of other muscular imbalances affecting the pelvis and hip stability may 

give useful information, for example exploration of sagittal plane relationships in relation to 

pelvis tilt.  

Although the number of participants was very high - especially when one considers that data 

collection and analysis typically took a day per subject per test not including the time spent 

recruiting – the number in the longitudinal study was low. This was despite concerted and 

persistent recruitment efforts. A recommendation for future work is aligning data collection 

with sports group with high numbers of injured athletes.   

The wider context  

Prior to summarising what has been found and relating this to the literature, it is important to 

revisit some key underpinning factors concerning diagnosis and assessment in order to fully 

understand the sampling criteria employed and therefore to whom the research findings are 

relevant.  
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There has been a lot of debate in the literature regarding terminology, diagnostic categories 

and definitions of athletic groin pain. Studies included in this thesis were designed in 2011, 

when there was still little agreement on the classification and diagnosis of SRGP. I was 

therefore faced with difficult decisions and deliberately designed an inclusive approach, 

requiring participants to respond positively or negatively to commonly used clinical tests in 

such a way as to localise the pathology to a defined range of muscular and soft-tissue related 

pathologies and exclude symptoms of bony or articular origin (Holmich, 2007). I was cognisant 

of needing to balance the risk of regression to the mean, in that sample diversity may have 

confounded clear movement pattern description with the possibility that we may maximise 

relevance and generalizability with an inclusive approach. 

This approach is not unusual, with a range of authors commonly avoiding overly defined 

decisions regarding study inclusion and exclusion criteria (Malliaras et al., 2009, Nevin and 

Delahunt, 2013, Arnason et al., 2004, Mohammad et al., 2014, O'Connor, 2004). Interestingly, 

our approach has been indirectly validated by the recent Doha agreement on the definitions 

and terminology of athletic groin pain, which defines diagnostic sub-categories of very similar 

nature to the ones we selected (Weir et al., 2015). This provides a very strong argument for 

the validity of the thesis results. Effectively, our criteria map to the Doha-defined adductor-, 

iliopsoas-, inguinal- and pubic-related pathologies, which were combined in the thesis.  

Although sub-grouping participants further depending on a more exact injury classification 

may potentially have altered the results, it is unlikely for a number of reasons. Firstly, the 

consensus is that groin pain is usually a multi-structural entity, and that the majority of injured 

athletes suffer from secondary and/or tertiary causes of pain (Holmich, 2007), therefore 

combining  multiple categories. Secondly, our studies show strong, significant and consistent 

results, which are primarily sport- and level-specific. If there was a necessity to assess the 

exact and primary diagnosis of the injured players, our results may not have been so obvious 
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due to smaller sub-sample numbers. Additionally, one of the aims of the thesis was to guide 

rehabilitation and prevention strategies, and make the results applicable to clinical practice. 

Therefore the inclusion criteria for the study, and in consequence the investigated cohort, 

were based on combined, commonly applied, clinical tests. In order to diagnose groin pain for 

each separate category of pain (adductor-, iliopsoas-, inguinal- and pubic-related) a clinical test 

combination must reproduce the predominant symptom(s), which in the presence of 

secondary and/or tertiary causes may be challenging for a clinician. Therefore combining all of 

the tests together and not sub-dividing the participants’ makes the findings more applicable 

and easier to implement in clinical settings. Most importantly, we have uncovered unique 

findings about sports and participation level specificity in terms of movement patterns that are 

not considered in current clinical guidelines. Perhaps these factors are more important than 

diagnostic sub-groups? This question may be provocative but is certainly worth posing, and 

our data provides a provisionally affirmative answer. Further confirmation would emerge from 

studies investigating the muscle activation and movement patterns focussed rehabilitation, 

and whether this treatment yields better outcomes than traditional conservative treatment.  

Multiple muscle activation and kinematic patterns were found in the systematic review in 

professional and amateur athletes; as risk factors from prospective studies, as well as 

associations with existing SRGP. The high recurrence rate, and the fact that previous groin 

injury is reported to be a major risk factor in subsequent SRGP (Maffey and Emery, 2007, 

Arnason, 2004, Whittaker et al., 2015) suggest that current rehabilitation and management 

approaches do not address all potential deficits in SRGP. The results of the experimental 

studies in the thesis revealed some of these potential deficits. The coronal plane muscle 

activation and the hip joint kinematic patterns have not been extensively investigated in the 

association with SRGP. There were clear muscle activation and movement pattern imbalances, 

which should be considered in designing pre- and re-habilitation programmes for SRGP. 
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Additionally, muscle activation and kinematic patterns varied between the levels and types of 

sport. This was a surprising finding, as it was expected that the biomechanical effect on the 

athletes would be similar across all sports, and levels of athlete. Instead, different movement 

strategies were demonstrated depending on the sport and level of play. In particular, clear 

similarities within professional as opposed to amateur groups of players: the former group 

seeming to present with highly activated gluteal muscles while ‘turning off’ the adductors, 

whereas the latter group increased adductor activation alongside reduced gluteal muscle 

activation in the presence of pain.  

The sport- and level- specific differences observed in the observational study may have 

occurred due to the differences in the treatment and playing load in different groups of 

athletes. As further discussed in the observational study chapter, professional players, in 

opposition to amateurs, tend to have well-structured, closely supervised and often gluteal-

driven rehabilitation and prevention programmes. Therefore, they are likely to have well-

developed, activated and strong gluteal muscles that are less likely to display deficits in 

function in SRGP. In amateurs, the gluteal muscles tend to be weaker (Niinimaki et al., 2015, 

Niemuth et al., 2005), so any added loading may need to be absorbed by the adductor 

muscles. 

It is possible that the different training and participation levels, alongside potentially different 

genetic factors, may explain the associations identified and are irrelevant to SRGP. This seems 

unlikely for two main reasons.  Firstly, professional athlete pre-habilitation does not differ 

significantly from rehabilitation in terms of a gluteal focus, with hip extensor and abductor 

dominant strength training being a strong feature of usual football preparation in the form of 

power squats, side-plank, gluteal activation and multi-directional activities (Styles et al., 2015, 

Sanchis-Moysi et al., 2011, Crow et al., 2012). Adductor strengthening may be a more salient 

feature of SRGP rehabilitation than usual sport, but would have resulted in adductor rather 
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than gluteal dominance in the results – the opposite of what was found.   Secondly, the main 

training done by any elite sportsperson is participation in full, or deconstructed game 

situations (Jackman et al., 2013, McIntyre and Hall, 2005, Veale and Pearce, 2009).  For these 

reasons, I am confident that the biomechanical patterns we see are likely to be injury related – 

either preceding pain onset or as a secondary adaptation.   

The superiority of active exercise therapy for the SRGP treatment has long been established 

(Holmich et al., 1999, Jansen et al., 2008, Machotka et al., 2009), measured mainly by clinical 

outcomes of athletes completing rehabilitation (Jansen et al., 2008, Machotka et al., 2009). 

Although some biomechanical deficits, such as adductor muscle weakness, are recognised and 

included in published treatment strategies, usual practice does not include strongly advocate 

identifying and targeting potential biomechanical deficits. Specifically, I have found altered 

movement patterns and muscle imbalance to be strongly associated with SRGP. Therefore the 

focus and emphasis of the current guidelines need to be revisited.  

Deficient neural drive may be associated with SRGP occurrence and is not explicitly addressed 

in SRGP rehabilitation programmes. The need of increased focus on the neuro-inhibitory 

mechanisms has been previously recognised in other sports-related injuries presenting a large 

challenge in sports, such as hamstring injures (Fyfe et al., 2013, Thelen et al., 2006, Daly et al., 

2015). Implementing the heavily overloading, eccentric hamstring training (known as Nordic 

exercises), which maximises the hamstring muscle activation (Bourne et al., 2015) was 

reported to significantly reduce the first-time and recurrent hamstring injuries (Arnason et al., 

2008, Petersen et al., 2011, van der Horst et al., 2015) 

However limited, these papers give a novel approach and increasing evidence for the 

necessary elements of the hamstring injuries rehabilitation practice. A spectacular 

breakthrough in reducing the incidence of those injuries by Nordic exercises suggests that 
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similar mechanisms and, in consequence, treatment strategies should also be implemented in 

other persistent sports injuries. 

Increasingly, published work describes neuro-muscular deficits associated with SRGP, 

(Morrissey et al., 2012a, Cowan et al., 2004b) with even more recent work providing and 

measuring a selection of exercises with an increasing muscle activation rate, focussing solely 

on the adductor muscles (Serner et al., 2013). This approach seems to be supported by the 

findings of this thesis, at least for the muscle activation deficits in professional athletes. 

Whether this approach would also change movement patterns has not yet been established. A 

similar approach may be warranted for the gluteal muscles in amateur athletes. We do not 

have an equivalent exercise to the Nordic hamstring for either the adductor or abductor 

muscle groups as yet – that is, an exercise that results in maximum activation to a break point. 

Perhaps this is unfeasible or perhaps it could represent a major step forward for SRGP 

management. 

It suggests that there may be an underlying imbalance or deficit after the acute injury, which is 

not addressed in the current rehabilitation programmes. This imbalance is unrecognised in the 

clinical examination, leading to clinicians terminating the rehabilitation period potentially too 

early (Holmich et al., 1999) and allowing the athlete return to play prematurely. In the absence 

of clear clinical signs of any deficits, the athlete returns to his normal level of activity, and gets 

injured again. It may be that previously injured muscle has a propensity to become weak and 

inhibited without continued high load rehabilitation. Potentially, the risk for the injury 

recurrence may be decreased by a regular screening of the adduction strength, as it was 

reported to drop significantly two weeks before SRGP (Tyler et al., 2001). 

In Chapter 7: Longitudinal study (p. 218) the findings indicate that neither the movement nor 

the muscle activation patterns were altered from basel ine up to 8-12 weeks after injury. This 
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was surprising on the one hand given the trend for improved symptoms and function affecting 

4 of the 5 players, but unsurprising in that no focus was given to muscle activation nor 

movement patterns in the traditional rehabilitation employed. It is worth noting that the 

sample size of the longitudinal study was very low, due to recruitment barriers discussed 

earlier, yet it can still be argued that the lack of change observed fits with other literature. For 

example, scapular retraining deficits are often found when measuring people with shoulder 

impingement syndrome but only change with very speci fically targeted interventions (Worsley 

et al., 2013). Equally, only the targeted rehabilitation focussed on the kinematic patterns re -

training was found to be effective in reducing one of the main risk factors in patella-femoral 

pain syndrome (Noehren et al., 2013), with the standard rehabilitation strategies failing to 

provide long-term success (Dolak et al., 2011). 

However, as discussed in the longitudinal study section, the muscle activation imbalances may 

be secondary to the acute injury, and lack of proper focus on re-storing the coronal plane 

balance in the rehabilitation programmes may be the most important reason for the high 

recurrence of SRGP. The similarity of the (statistically insignificant) biomechanical pattern of 

the longitudinal study participants to the professional group in the observational study 

supports the hypothesis, that there is in fact no common adaptive response to the injury, pain 

or overload but rather that this relationship is level specific. Careful clinical examination and 

rehabilitation during functionally relevant manoeuvres may be key to not only improved 

rehabilitation success for SRGP, but also to reducing recurrence by re -storing and optimising 

biomechanical factors. The optimal methods for doing this need further study, and may 

include simplified versions of the complex measurements employed in this thesis. Potentially, 

modern sensors combined with a phone application of the dynamic goniometer measuring the 

changes in the hip joint kinematics in three planes, and/or basic muscle activation measures of 
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a very limited number of muscles could be useful and provide large amount of clinically 

applicable information.  

A careful assessment of the actual muscle function in a functional setting is the more 

important as the relationship between muscle activation and force is yet to be established 

(Nishihara and Isho, 2012), in particular in a potentially injured muscle. Therefore potential 

strength deficits, or lack of thereof, may not be fully representative of actual functional 

deficits, and the treatment choices based purely on strength may be heavily biased. This 

provides another argument for a functional assessment of the movement and muscular 

‘behaviour’ in functional tasks, which may be more sensitive to subtle abnormalities present in 

the athletes with SRGP (Boudreau et al., 2009, Crossley et al., 2011). 

An additional and surprising finding of both observational and longitudinal study is the 

different pattern of the dominant versus non-dominant leg injured. All of the groups tended to 

injure their dominant leg, apart from the professional footballers, who showed a pattern of 

the non-dominant leg being more commonly injured, also reported in knee injuries (Krajnc et 

al., 2010). As the dominant leg was defined as the preferred kicking leg, it may raise a question 

whether the injury mechanisms may be associated with the training specificity.  Among all of 

the investigated groups, the professional footballers perform the most kicking-specific training 

(Young and Rath, 2011, Kellis and Katis, 2007), which may then bias their self-reported 

dominance, as they are equally comfortable kicking with both legs. Alternatively, a high 

amount of kicking movement training puts more emphasis on open-chain movement patterns, 

meaning the standing leg is more challenged due to the higher loads associ ated with body 

deceleration and rotation (Mognoni et al., 1994, Orchard et al., 2002b). 
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Conclusions  

My research shows clear biomechanical factors associated with SRGP that are participation 

level specific and partly sports specific. These include both muscle activation patterns and 

corresponding kinematic changes. My novel approach, and findings, represent a new 

dimension innovation in the clinical and research environments when designing and 

implementing prevention and rehabilitation programmes in athletes suffering from – or at high 

risk of - SRGP. Different levels of sport may require different approaches.   

A strong argument can be made that coronal plane muscle activation and lower limb 

movement patterns need to be carefully assessed and addressed in the rehabilitation process, 

with the consideration that the imbalance may affect both the adductor and abductor 

muscles.  

In order to plan and implement successful and efficient prevention and rehabili tation 

strategies for athletes, which include the hip coronal plane muscle activation and kinematic 

imbalances, simple and clinically applicable measuring devices may be needed.  

This thesis also provides evidence that questions the conclusions of the recent Doha 

consensus, and make a case for extending them. We propose there are a number of 

imbalances and biomechanical deficits, which are level- and sport-specific, associated with 

SRGP. Research is needed to determine if addressing these gives better, more sustained, 

rehabilitation outcomes. The key to more successful prevention and rehabilitation 

programmes may be careful assessment of the pelvic girdle muscular and kinematic function 

and correction of the discovered imbalances.  
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Appendix 1 

Anatomy and pathology of the groin region  

The definition of the anatomical landmarks of the groin area has always been troublesome.  

Anatomy books and dictionaries provide vague and non-specific definitions (LeBlanc and 

LeBlanc, 2003). However, a very useful, patho-anatomical ‘groin triangle’ model was proposed 

(Falvey et al., 2009), which summarises the anatomy of the area in the context of possible 

pathologies and provides a good anatomical guide for clinical diagnosis. 

The groin triangle is based on the anterior aspect of the thigh and provides a clear reference to 

locate the structures and symptoms in the groin area. The apices of the triangle are  the: 

anterior superior iliac spine (ASIS), pubic tubercle and ‘3G point’, which is defined as the mid-

point between ASIS and superior pole of the patella. The structures in the area are then 

described as lying within the triangle, medially, laterally or superiorly to it (Figure 36). 

Additionally to simple anatomical description, this model also provides advice on how to 

conduct the optimal diagnostic process of the groin area and describes in more detail 

potentially serious entities, which should be investigated further.  

Special attention is drawn to the pubic tubercle, the attachment site of several structures that 

can potentially cause groin symptoms.  To facilitate the diagnosis of the pain arising from this 

region, Falvey introduced a model of “the pubic clock” (Figure 37). It gives clear and specific 

instructions on palpation of the pubic tubercle region and links the specific structures to the 

symptomatic areas. The pubic clock is in fact a simplified model of previously published 

Meyers’ considerations about the structures attaching around the pubic symphysis joint 

(Meyers et al., 2005) with an additional layer of clinical application for diagnosis.   
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Figure 36: The groin triangle. AL - adductor longus; ASIS - anterior superior iliac spine; Gr - gracilis; 
IlioPS - iliopsoas; Pec - pectinius; RF – rectus femoris (Falvey et al., 2009). 

 



 

266 

 

 

Figure 37: Pubic clock – a diagnostic clinical tool for SRGP diagnosis (Falvey et al., 2009) 

 

Structures lying laterally to the triangle  

The lateral border of the triangle extends from ASIS to a 3G point (Figure 36). Main structures, 

potentially triggering groin symptoms include: femoro-acetabular joint, trochanteric bursa, 

tensor fasciae latae muscle and iliotibial band. From a clinical and diagnostic perspective, 

pathologies in the femoro-acetabular (hip) joint, including the trochanteric bursa, need to be 

excluded early in the differential diagnostic process as they are likely to warrant different 

management (Anderson et al., 2012, Lahner et al., 2014). This was recognised in the Doha 

agreement, which separated hip-related pathologies from others in the terminology of 

patients groups. Similar approach was undertaken in this thesis, and testing positive on any of 

the common and validated hip joint tests was one of the main exclusion criteria for the study 

participants. 

In fact, a differential diagnosis for groin pain should be particularly sensitive to any signs of the 

symptomatic femoro-acetabular impingement (FAI), morphological hip joint pathology of 
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unknown origin, presenting as an anatomical misalignment of the femoral head and 

acetabulum (Byrd, 2013, Monazzam et al., 2013, Hessel, 2014). It may present in two variants: 

CAM and PINCER. CAM is a form of deformity of the proximal part of the femur, with extra 

amount of bone in the area postero-inferiorly to the femoral head and in consequence – 

shallower femoral neck. PINCER presents as excessive acetabulum, which is either too deep or 

ill-oriented. Although CAM is classically associated with young, otherwise healthy athletic male 

population and PINCER in middle aged women (Amanatullah et al., 2015), they often co-exist 

and provide a mechanical misalignment between the femoral head and acetabulum, and a 

high potential for a hip joint pathology (Amanatullah et al., 2015). Importantly, FAI should not 

be used as a clinical diagnosis, as it may not be symptomatic; in fact there are studies reporting 

an asymptomatic presence of FAI in as many as 92% of healthy population (Schmitz et al., 

2013, Kapron et al., 2011). 

FAI, similarly to SRGP, is commonly observed in athletes participating in kicking and/or multi-

directional sports disciplines (Lahner et al., 2014, Fraitzl et al., 2010, Hammoud et al., 2012, 

Hessel, 2014, Johnson et al., 2012, Keogh and Batt, 2008). Weir et al. (Weir et al., 2011a) 

showed a very high prevalence of FAI in athletes diagnosed with SRGP. In his study 64 out of 

68 patients with groin pain (95%) have shown radiologically confirmed FAI. Nepple et al. 

(Nepple et al., 2012) retrospectively reviewed 123 cases of hip and groin pain and his findings 

are similar to Weir’s. However, patients with both hip and groin symptoms were included in 

both studies, so the incidence of the hip pathologies may have been overestimated in this 

population. 

However, another study reported a low prevalence of groin pain in patients with various hip 

malformations (Gosvig et al., 2010). This study also investigated radiographic signs of hip 

osteoarthrtitis, an entity that might as well be responsible for groin symptoms according to 

Falvey, and associated with pain beyond the lateral border of the groin triangle.  
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Other pathologies potentially causing groin pain and situated laterally to the triangle include: 

femoral neck stress fracture, proximal iliotibial band friction syndrome, femoral and lateral 

cutaneous nerve entrapment (Brukner et al., 2012). Although quite commonly reported, these 

entities have not been associated in relation to pain arising from the groin area. 

A clear diagnostic and clinical entity potentially presenting as the pain in the groin is the 

acetabular tear. Narvani et al. (Narvani et al., 2003) found that 22% (4 out of 18) patients 

presenting with groin pain had a tear of the acetabular labrum on MRI, 3 located anterio-

superiorly, in the lateral part of hip joint.  Silvis et al (Silvis et al., 2011) found that out of 39 

professional and non-professional hockey players with groin pain, 25 (64%) showed positive 

MRI findings of hip pathologies. 22% of these players were diagnosed with tear of the 

acetabular labrum based on MRI findings.  Burnett et al. (Burnett et al., 2006) retrospectively 

reported groin pain symptoms in 61 out of 66 patients with as arthroscopically confirmed 

acetabular tear, whereas in a study published by Fitzgerald (Fitzgerald, 1995) 49 out of 55 

patient with an acetabular tear identified with arthrography had groin symptoms. Bradshaw et 

al. (Bradshaw et al., 2008) has reported that hip joint pathology was the most common 

diagnosis among 218 patients with groin symptoms (45.9%).  

Structures lying within the triangle 

Pathologies, which may cause groin symptoms and arise from structures lying within the 

triangle include iliopsoas syndrome, rectus femoris tendinopathy and apophysitys, femoral 

hernia and genitofemoral and cutaneus nerve entrapments. In this thesis, consistently with the 

Doha agreement terminological guidelines, the participants for the observational study were 

included if presenting with the iliopsoas or, abdominal muscles pathologies. Participants wi th 

suspected hernias and nerve entrapment were excluded from the study.  



 

269 

 

Relationship between iliopsoas muscle pathologies and groin symptoms have been reported 

previously (Holmich, 2007, Lovell, 1995). Iliopsoas muscle-related pathologies were found to 

be the second most common entity responsible for groin symptoms in the Holmich (35.3%), 

but not the Lovell study (3%).  

Abdominal pathologies have also been reported in association with groin pain (Jansen et al., 

2010, Cowan et al., 2004b, Mens et al., 2006) and the role of the abdominal muscles 

(potentially due to their insertion to the superior part of the pubic bone and therefore the 

ability to affect the forces and loading travelling through) is commonly recognised. 

Structures lying medially to the triangle  

Structures located medially to the triangle are thought to be main causes of SRGP (Holmich, 

2007). The area is mostly filled with hip adductor muscles, providing important stability 

mechanisms for the hip, groin and pelvis areas. According to Falvey et al. (Falvey et al., 2009) 

“the abnormal mechanics that arise as a result of adductor dysfunction pl ay a critical role in 

the generation of a chronic pain/dysfunction cycle in the area”.  

A number of studies have reported differences in adductor muscle function associated with 

SRGP (Morrissey et al., 2012b, Crow et al., 2010, Mens et al., 2006, Malliaras et al., 2009).  

The most common pathologies affecting the adductor muscles include the adductor and/or 

gracilis muscle ethensopathy and the pathology of the adductor muscle -tendon junction. 

According to the Doha agreement , adductor-related groin pain (including the pathology of all 

of the adductor muscles, with the adductor longus and gracilis being the most commonly 

injured) is one of the sub-groups identified within the SRPG.  

The recommendations for diagnosing the adductor-related pathology include the pain 

provocation tests (active hip adduction) and the palpation of the potentially injured areas. 

Among many active hip adduction tests, the squeeze test is most commonly used, and is 
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reported to be a sensitive, but not very specific test for groin pathologies (Delahunt et al., 

2011b, Delahunt et al., 2011a). Therefore, further pain reproduction by palpation of  the 

painful areas is recommended to improve diagnostic confidence (Holmich, 2007, Falvey et al., 

2009). Although those diagnostic criteria are widely used by clinicians, it is worth noting that 

SRGP is a multi-structural pathology and is likely to be related with more than one structure 

(Holmich, 2007). 

Another common pathology in this area include an acute adductor muscle injury, which may 

lead to chronic groin pain and the ‘groin pain cycle’ (Renstrom and Peterson, 1980). 

Pubic symphysis and pubic ramus are situated medially to the triangle and there is an 

established relation within authors between pathologies occurring in that region and groin 

symptoms (Verrall et al., 2007b, Verrall et al., 2005b, Slavotinek et al., 2005).  Bradshaw et al. 

(Bradshaw et al., 2008) reported osteitis pubis in 20.6% of participants presenting groin 

symptoms, which was a second most common entity diagnosed in his study. “Osteitis pubis”, 

“athletic pubialgia” are the common terms used to describe clinical entities in this region (Hiti 

et al., 2011, Kunduracioglu et al., 2007, Lovell et al., 2006, Mandelbaum and Mora, 2005, 

McCarthy and Vicenzino, 2003, Johnson, 2003, Rodriguez et al., 2001, Williams et al., 2000, 

Major and Helms, 1997, Fricker, 1997, Fricker et al., 1991). There is, though, still a lack of 

consensus regarding the terminology as some authors use these terms to describe a general 

pain in the pubis area, while others insist on leaving them to very specific pathologies to the 

pubic symphysis.  

Structures lying superiorly to the triangle 

Apart from already discussed abdominal muscle pathologies, other common clinical entities in 

the area superiorly to the triangle are hernias. The term “hernia” is not consistently used 

among authors and true abdominal, inguinal or femoral hernia is often confused with entities 
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such as sport’s hernia or abdominal or inguinal wall deficiency. Although authors try to 

distinguish between these different entities, diagnosis is not straightforward. Holmich et al. 

(Holmich, 2007) found only one true hernia among 207 athletes with groin pain, his findings, 

though, are not supported by any other high quality study.  Despite the lack of strong 

evidence, “sports” or “sportsman’s” hernia has been investigated by several authors (Orchard 

et al., 1998, Steele et al., 2004, Caudill et al., 2008, Fon and Spence, 2000)  and the term is still 

commonly used in relation to groin syndromes. 
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Appendix 2 

Tables summarising the results of comparisons between the dominant and non-dominant legs 

of the healthy controls in each subgroup, in both movement manoeuvres.
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A: Summary measurements of professional footballers during standing hip flexion; describing the stance, dominant leg with respec t to the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 

   Measured leg Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL 0.72 (0.24) -0.62 (0.5) 0.02* 0.27(0.24) -1.03 (0.51) 0.03* 0.58 (0.24) 0.06 (0.46) 0.32 

Kinematics                   

Sagittal hip 
1.18 (1.76) 3.92 (1.52) 0.25 -4.93 (1.37) -6.26 (0.91) 0.42 -2.95 (1.16) -1.22 (1.33) 0.33 

(Flex +) 

Coronal hip 
0.83 (0.73) 0.26 (0.22) 0.69 -3.42 (0.75) -3.43 (0.69) 1 -2.54 (0.98) -1.85 (0.92) 0.61 

(Add +) 

Horizontal hip 
-14.97 (2.96) -2.33 (1.87) <0.01* -3.38 (0.93) -4.67 (0.92) 0.33 -16.28 (3.13) -6.28 (1.82) 0.01* 

(IR +) 

B: Summary measurements of professional footballers during standing hip flexion; describing the moving, dominant leg with resp ect to the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 

 Measured leg Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL 0.19 (0.5) 0.16 (0.3) 0.95 -0.92 (0.35) -0.73 (0.3) 0.69 -0.67 (0.37) -0.67 (0.2) 0.99 

Kinematics                   

Sagittal hip 
4.97 (2.05) 3.36 (2) 0.58 68.75 (1.88) 73.45 (1.82) 0.08** 74.04 (1.66) 76.81 (1.94) 0.28 

(Flex +) 

Coronal hip 
0.13 (0.94) -0.27 (0.72) 0.24 3.27 (1.47) -0.46 (0.7) 6.22 1.88 (1.59) -0.73 (0.92) 0.16 

(Add +) 

Horizontal hip 
-4.61 (1.9) -11.17 (1.97) 0.02* 6.22 (1.87) 8.12 (0.78) 0.35 -0.28 (1.6) -3.05 (1.69) 0.24 

(IR +) 

Table 35: Results from comparing surface electromyography and kinematic data between the dominant and non-dominant legs of the healthy professional footballers during 
standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotat ion; SE = standard error.   = increased in non–dominant 

leg; = decreased in non-dominant leg.  
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A: Summary measurements of professional footballers during standing hip flexion; describing the stance, dominant leg with resp ect to the non-dominant leg of healthy controls. 

Movement 
Early Middle Late 

phase 

 Measured leg Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL 1.2 (0.18) 0.65 (0.15) 0.019* 0.86 (0.15) 0.4 (0.15) 0.04* 1.4 (0.19) 1 (0.19) 0.14 

Kinematics                   

Sagittal hip 
5.93 (1.65) 6 (1.83) 0.98 -5.36 (0.75) -5.9 (0.88) 0.65 0.63 (1.6) 0.11 (1.68) 0.62 

(Flex +) 

Coronal hip 
-0.39 (0.82) 4.98 (0.8) <0.01* -5.44 (0.55) -4.7 (0.62) 0.37 -5.92 (1.03) 0.27 (0.73) <0.01* 

(Add +) 

Horizontal hip 
-2.37 (1.99) -0.79 (1.62) 0.54 -4.75 (0.61) -3.32 (0.6) 0.09 -6.72 (2.02) -4.11 (1.84) 0.34 

(IR +) 

B: Summary measurements of amateur footballers during standing hip flexion; describing the moving, dominant leg with respect t o the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 

   Measured 
leg 

Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL -0.05 (0.15) 0.59 (0.15) <0.01* -0.96 (0.1) -0.08 (0.13) <0.01* -0.92 (0.11) -0.33 (0.14) <0.01* 

Kinematics                   

Sagittal hip 
7.93 (2.24) 10.62 (2.3) 0.4 61.63 (1.83) 51.54 (3.95) 0.02* 70.42 (1.5) 62.23 (2.9) 0.014* 

(Flex +) 

Coronal hip 
-1.72 (0.11) -6.92 (0.18) <0.01* -0.72 (1.33) 5.21(0.94) <0.01* -2.52 (0.83) -1.76 (0.95) 0.65 

(Add +) 

Horizontal hip 
-4.04 (1.55) -4.54 (2.75) 0.87 6.33 (1.66) 10.35 (1.93) 0.12 1.97 (2.59) 5.51 (2) 0.28 

(IR +) 

Table 36: Results from comparing surface electromyography and kinematic data between the dominant and non-dominant legs of the healthy amateur footballers during 

standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotat ion; SE = standard error.   = increased in non–dominant 
leg; = decreased in non-dominant leg.  
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A: Summary measurements of professional rugby players during standing hip flexion; describing the stance, dominant leg with re spect to the non-dominant leg of the uninjured control group. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 

  Dominant 
Non-

dominant 
Statistic (p) Dominant 

Non-
dominant 

Statistic (p) Dominant 
Non-

dominant 
Statistic (p) 

Surface EMG                   

GM:AL 1.29 (0.26) 0.77 (0.16) 0.11 0.86 (0.31) 1.02 (0.25) 0.68 1.67 (0.22) 1.97 (0.23) 0.34 

Kinematics                   

Sagittal hip 
21.79 (0.58) 24.75 (1.14) <0.05* -7.32 (1.09) -1.78 (0.96) <0.01* 13.71 (1.73) 18.74 (1.46) <0.05* 

(Flex +) 

Coronal hip 
-2.29 (0.79) -0.71 (1.28) 0.3 -7.55 (1) -7.31 (0.97) 0.87 -8.24 (0.57) -12.34 (2.58) 0.14 

(Add +) 

Horizontal hip 
-7.55 (2.1) -3.33 (3.13) 0.26 -3.34 (0.75) -0.85 (1.02) 0.06 -17.26 (2.1) 0.6 (2.76) <0.01* 

(IR +) 

B: Summary measurements of professional rugby players during standing hip flexion; describing the moving, dominant leg with re spect to the non-dominant leg of the uninjured control group. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

phase 

 Measured leg Dominant 
Non-

dominant 
Statistic (p) Dominant 

Non-
dominant 

Statistic (p) Dominant 
Non-

dominant 
Statistic (p) 

Surface EMG                     

GM:AL -0.09 (0.29) 0.86 (0.15) <0.05* -1.34 (0.26) -0.66 (0.15) <0.05* -1.24 (0.18) -1.2 (0.15) 0.86 

Kinematics                     

Sagittal hip 
22.05 (0.85) 18.06 (1.42) <0.05* 60.7 (1.43) 67.2 (2.7) <0.05* 83.66 (1.69) 80.83 (1.56) <0.05* 

(Flex +) 

Coronal hip 
-4.61 (1.1) -5.9 (1) 0.39 8.88 (1.48) -1.42 (3.47) <0.05* 2.51 (2.02) -4.73 (4.33) 0.15 

(Add +) 

Horizontal hip 
-11.83 (2.33) -12.79 (2.69) 0.79 1.52 (1.63) 8.92 (2.43) <0.05* -7.61 (2.98) -2.9 (7) 0.54 

(IR +) 

Table 37: Results from comparing surface electromyography and kinematic data between the dominant and non-dominant legs of the healthy professional rugby players 
during standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1; sEMG = surface electromyography; arrows 

indicate the direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error.   = increased in non–
dominant leg; = decreased in non-dominant leg.
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A:  Summary measurements of Ultimate Frisbee during standing hip flexion; describing the stance, dominant leg with respect to the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

  Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL 0.36 (0.37) 0.48 (0.27) 0.81 0.26 (0.38) 0.78 (0.33) 0.31 1.42 (0.46) 1.69 (0.26) 0.62 

 Comments       

Kinematics                   

Sagittal hip 
25.33 (1.02) 26.01 (1.24) 0.67 -3.37 (1.72) -5.72 (0.81) 0.24 22.19 (1.53) 19.92 (2.27) 0.42 

(Flex +) 

Coronal hip 
-2.54 (0.82) 4.17 (1.22) <0.01* -5.46 (2.32) -11.59 (1.42) <0.05* -11.15 (2.68) -10.71 (1.38) 0.89 

(Add +) 

Horizontal hip 
-11.49 (1.66) 7.87 (1.63) <0.01* -2.18 (1.47) -4.89 (1.28) 0.19 -14.19 (3.33) 4.16 (2.23) <0.01* 

(IR +) 

B: Summary measurements of Ultimate Frisbee during standing hip flexion; describing the moving, dominant leg with respect to t he non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

  Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) Dominant Non-dominant Statistic (p) 

Surface EMG                   

GM:AL 0.87 (0.35) 0.35 (0.41) 0.34 -0.37 (0.31) -0.59 (0.46) 0.69 0.02 (0.42) 0.08 (0.55) 0.93 

 Comments       

Kinematics                   

Sagittal hip 
24.99 (1.04) 22.17 (1.17) 0.08 67.38 (2.17) 71.68 (3.41) 0.3 93.52 (2.9) 92.81 (3.54) 0.88 

(Flex +) 

Coronal hip 
0.62 (1.22) -4.38 (0.91) <0.01* 1.01 (2.42) -0.03 (3.18) 0.8 5.85 (1.6) -0.14 (2.62) 0.07 

(Add +) 

Horizontal hip 
6.2 (1.91) -11.36 (2.14) <0.01* 3.39 (3.88) 3.99 (2.67) 0.9 11.32 (2.36) -10.71 (5.43) <0.01* 

(IR +) 

Table 38: Results from comparing surface electromyography and kinematic data between the dominant and non-dominant legs of the healthy Ultimate Frisbee players during 
standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotation; SE = standard error.   = increased in non–dominant 

leg; = decreased in non-dominant leg.  

 

 



2
7

7
 

 

 

A:  Summary measurements of field hockey players during standing hip flexion; describing the stance, dominant leg with respect  to the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

Surface EMG                   

GM:AL 0.36 (0.37) 0.48 (0.27) 0.81 0.26 (0.38) 0.78 (0.33) 0.31 1.42 (0.46) 1.69 (0.26) 0.62 

 Comments       

Kinematics                   

Sagittal hip 
25.33(1.02) 26.01 (1.24) 0.67 -3.37 (1.72) -5.72 (0.81) 0.24 22.19 (1.53) 19.92 (2.27) 0.42 

(Flex +) 

Coronal hip 
-2.54 (0.82) 4.17 (1.22) <0.01* -5.46 (2.32) -11.59 (1.42) <0.05* -11.15 (2.68) -10.71 (1.38) 0.89 

(Add +) 

Horizontal hip 
-11.49 (1.66) 7.87 (1.63) <0.01* -2.18 (1.47) -4.89 (1.28) 0.19 -14.19 (3.33) 4.16 (2.23) <0.01* 

(IR +) 

B:  Summary measurements of field hockey players during standing hip flexion; describing the moving, dominant leg with respect  to the non-dominant leg of healthy controls. 

Movement 
Early (mean (SE)) Middle (mean (SE)) Late (mean (SE)) 

Phase 

  Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) Uninjured Injured Statistic (p) 

Surface EMG                   

GM:AL 0.87 (0.35) 0.35 (0.41) 0.34 -0.37 (0.31) -0.59 (0.46) 0.69 0.02 (0.42) 0.08 (0.55) 0.93 

 Comments       

Kinematics                   

Sagittal hip 
24.99 (1.04) 22.17 (1.17) 0.08 67.38 (2.17) 71.68 (3.41) 0.3 93.52 (2.9) 92.81 (3.54) 0.88 

(Flex +) 

Coronal hip 
0.62 (1.22) -4.38 (0.91) <0.01* 1.01 (2.42) -0.03 (3.18) 0.8 5.85 (1.6) -0.14 (2.62) 0.07 

(Add +) 

Horizontal hip 
6.2 (1.91) -11.36 (2.14) <0.01* 3.39 (3.88) 3.99 (2.67) 0.9 11.32 (2.36) -10.71 (5.43) <0.01* 

(IR +) 

Table 39: Results from comparing surface electromyography and kinematic data between the dominant and non-dominant legs of the healthy field hockey players during 

standing hip flexion when the leg is weight bearing (stance)  (A) and moving (B). Annotations: * = p < 0.05; ** = p < 0.1; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal rotat ion; SE = standard error;   = increased in non–dominant 
leg; = decreased in non-dominant leg.  
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  Phase: Moving I    

 Measured leg Dom NonDom Statistic (p)    

sEMG GM:AL -0.7 (0.46) 0.63 (0.25) <0.05*    

Sagittal hip  10.67 (2.7) 8.45 (1.93) 0.51 NB Flex +    

Coronal hip  3.92 (1.12) 3.63 (1.05) 0.85 NB Add +   

Horizontal hip -1.38 (2) -13.91 (1.76) <0.01* NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Dom NonDom Statistic (p) Dom NonDom Statistic (p) 

sEMG GM:AL -1.32 (0.37) 0.5 (0.24) <0.01* -1.21 (0.38) 0.13 (0.25) <0.01* 

Sagittal hip 11.32 (1.58) 20.17 (1.89) <0.01* 20.89 (3.48) 28.88 (2.75) 0.08 

Coronal hip 0.59 (0.33) 0.45 (0.71) 0.86 4.56 (1.28) 4.12 (1.19) 0.8 

Horizontal hip -1.38 (1.99) -13.91 (1.76) <0.01* -3.26 (1.61) -15.49 (1.96) <0.01* 

 Phase: Moving III Phase:  Stance II 

 Measured leg Dom NonDom Statistic (p) Dom NonDom Statistic (p) 

sEMG GM:AL -0.89 (0.35) -0.11 (0.2) 0.38 -0.48 (0.44) -0.06 (0.18) 0.38 

Sagittal hip 45.53 (4.16) 40.45 (3.71) 0.37 67.33 (3.67 ) 67.74 (2.7) 0.93 

Coronal hip 11.91 (1.16) 12.19 (1.01) 0.86 16.32 (2.03) 16.77 (1.11) 0.85 

Horizontal hip -3.2 (1.75) 1.08 (1.17) <0.05* -5.34 (2.64) -14.28 (2.01) <0.01* 

 Phase: Moving IV Phase:  Stance III 

 Measured leg Dom NonDom Statistic (p) Dom NonDom Statistic (p) 

sEMG GM:AL -1.04 (0.43) 0.31 (0.21) <0.01* -1.33 (0.59) 0.68 (0.29) <0.01* 

Sagittal hip -48.66 (3.64) -52.05 (2.65) 0.46 17.44 (2.28) 16.56 (1.59) 0.75 

Coronal hip -14.77 (1.33) -15.28 (1.24) 0.78 -0.21 (1.28) 0.8 (1.16) 0.56 

Horizontal hip 1.21 (1.75) 0.84 (1.03) 0.86 -3.85 (1.63) -14.13 (1.8) <0.01* 

Table 40: Results from comparing surface electromyography and kinematic data between the 
dominant and non-dominant legs of healthy professional footballers during single leg squat when the 
leg is moving.  Annotations: * = p < 0.05; sEMG = surface electromyography; arrows indicate the 

direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = 
internal rotation; SE = standard error;   = increased in non–dominant leg; = decreased in non-
dominant leg.  
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Phase: Moving I    

 Measured leg Dominant Non-
dominant 

Statistic (p)    

sEMG GM:AL 0.62(0.24) 1.33(0.19) <0.05*    

Sagittal hip 13.9(1.48) 12.95(1.57) 0.66 NB Flex +    

Coronal hip 7.49(0.94) -1.66(1.12) <0.01* NB Add +   

Horizontal hip -6.58(2.48) -6.06(2.28) 0.86 NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.48(0.19) 0.92(0.22) 0.13 0.55(0.17) 1.02(0.2) 0.08 

Sagittal hip 26.46(2.52) 26.48(3.09) 1 39.94(3.07) 40.23(3) 0.95 

Coronal hip -0.57(0.83) 1.06(0.67) 0.13 7.04(1.07) -0.47(1.29) <0.01* 

Horizontal hip -3.83(0.76) -0.81(0.89) <0.05* -6.58(2.48) -4.36(2.77) 0.55 

Phase: Moving III Phase:  Stance II 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.5(0.08) 1.02(0.17) <0.01* 0.4(0.1) 1.14(0.16) <0.01* 

Sagittal hip 24.78(2.67) 24.3(2.57) 0.9 64.89(2.17) 63.79(2.65) 0.75 

Coronal hip 3.36(1.04) 7.38(0.96) <0.01* 10.78(1) 6.58(1.53) <0.05* 

Horizontal hip -0.48(1.07) 0.54(1.11) 0.51 -8.16(2.31) -2.59(2.31) 0.09 

Phase: Moving IV Phase:  Stance III 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.72(0.1) 1.14(0.18) <0.05* 0.52(0.18) 1.14(0.27) 0.07 

Sagittal hip -50.36(4) -46.66(2.55) 0.44 14.98(3.27) 16.82(1.33) 0.6 

Coronal hip -6.79(1.32) -10.53(1.01) <0.05* 3.58(1.07) -4.03(1.45) <0.01* 

Horizontal hip 1.13(1.89) -1.02(1.27) 0.35 -6.06(2.28) -3.68(2.57) 0.49 

Table 41: Results from comparing surface electromyography and kinematic data between the 
dominant and non-dominant legs of healthy amateur footballers during single leg squat when the leg 

is moving.  Annotations: * = p < 0.05; sEMG = surface electromyography; arrows indicate the direction 
of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal 
rotation; SE = standard error;   = increased in non–dominant leg; = decreased in non-dominant 
leg.  
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Phase: Moving I    

 Measured leg Dominant Non-
dominant 

Statistic (p)    

sEMG GM:AL 1.4(0.22) 0.88(0.31) 0.17    

Sagittal hip 22.45(0.66) 21.37(0.5) <0.01* NB Flex +    

Coronal hip 0.01(0.87) -2.44(0.72) <0.05* NB Add +   

Horizontal hip -7.98(1.84) -7.5(2.18) 0.87 NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.39(0.17) 0.74(0.38) 0.13 1.67(0.16) 0.86(0.37) 0.06 

Sagittal hip 1.19(0.75) 2.11(0.87) 0.43 26.64(1.14) 23.61(0.77) <0.05* 

Coronal hip -2.03(0.68) -1.19(0.69) 0.39 -2.03(1.3) -3.75(0.96) 0.29 

Horizontal hip -1.74(0.5) -0.73(0.63) 0.21 -9.73(1.93) -7.89(2.09) 0.52 

Phase: Moving III Phase:  Stance II 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.59(0.15) -0.09(0.26) <0.05* 0.44(0.27) -0.09(0.24) 0.15 

Sagittal hip 43.43(3.19) 52.05(3.61) 0.097 68.99(3.97) 74.21(4.26) 0.39 

Coronal hip 14.64(1.73) 14.4(3.3) 0.95 15.52(3.93) 9.23(3.59) 0.29 

Horizontal hip -1.83(3.49) 2.43(3.47) 0.4 -3.29(1.04) 1.88(4.71) 0.3 

Phase: Moving IV Phase:  Stance III 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.46(0.16) 0.75(0.23) <0.05* 2.09(0.14) 0.81(0.38) <0.01* 

Sagittal hip -40.74(4.1) -54.04(4.3) <0.05* 28.8(1.33) 22.48(0.96) <0.01* 

Coronal hip -14.9(2.57) -11.49(2.95) 0.4 -3.95(1.99) -3.79(1.25) 0.95 

Horizontal hip 2.23(3.26) -3.2(3.73) 0.29 -7.99(1.91) -8.53(2.22) 0.85 

Table 42: Results from comparing surface electromyography and kinematic data between the 
dominant and non-dominant legs of healthy professional football players during single leg squat when 

the leg is moving.  Annotations: * = p < 0.05; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = 
internal rotation; SE = standard error;   = increased in non–dominant leg; = decreased in non-
dominant leg.  
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Phase: Moving I    

 Measured leg Dominant Non-
dominant 

Statistic (p)    

sEMG GM:AL 1.66(0.4) 0.87(0.38) 0.16    

Sagittal hip 30.8(1.35) 26.39(1.44) <0.05* NB Flex +    

Coronal hip 4.82(1.16) -1.17(0.68) <0.01* NB Add +   

Horizontal hip 7.5(2.08) -9.9(2.08) <0.01* NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.56(0.38) 1.35(0.55) 0.76 1.78(0.34) 1.51(0.54) 0.68 

Sagittal hip 3.05(2.66) 5.86(3.34) 0.52 34.83(2.08) 31.81(2.82) 0.39 

Coronal hip -1.36(0.89) -2.31(0.5) 0.36 4(1.34) -3.27(0.65) <0.05* 

Horizontal hip 1.34(0.76) 0.97(1.48) 0.82 9.26(2.36) -9.37(1.84) <0.01* 

Phase: Moving III Phase:  Stance II 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.48(0.27) 0.37(0.4) 0.83 0.57(0.36) 0.39(0.45) 0.76 

Sagittal hip 38.96(2.69) 42.65(5.35) 0.54 71.85(2.77) 70.35(5.81) 0.82 

Coronal hip 12.67(1.98) 3.91(2.39) <0.05* 16.63(1) 1.27(2.97) <0.01* 

Horizontal hip -1.85(1.38) 7.93(2.16) <0.01* 6.25(2) -2.5(3.31) <0.05* 

Phase: Moving IV Phase:  Stance III 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.21(0.22) 0.94(0.36) 0.53 1.43(0.4) 1.04(0.44) 0.51 

Sagittal hip -37.39(2.28) -31.37(6.19) 0.37 35.98(1.73) 34.3(1.7) 0.49 

Coronal hip -14(2.02) -4.82(3.7) <0.05* 2.98(1.41) -4.13(0.79) <0.01* 

Horizontal hip 1.89(1.38) -6.53(0.97) <0.01* 8.03(1.9) -10.2(2.15) <0.01* 

Table 43: Results from comparing surface electromyography and kinematic data between the 
dominant and non-dominant legs of healthy Ultimate Frisbee players during single leg squat when the 

leg is moving.  Annotations: * = p < 0.05; sEMG = surface electromyography; arrows indicate the 
direction of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = 
internal rotation; SE = standard error;   = increased in non–dominant leg; = decreased in non-
dominant leg.  
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Phase: Moving I    

 Measured leg Dominant Non-
dominant 

Statistic (p)    

sEMG GM:AL 2.07(0.58) 2.68(0.52) 0.44    

Sagittal hip 20.45(1.52) 18.28(1.3) 0.29 NB Flex +    

Coronal hip 3.71(0.91) 0.52(0.91) <0.05* NB Add +   

Horizontal hip 0.04(0.75) -5.84(3.17) 0.08 NB IR +   

Phase: Moving II Phase: Stance I 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.38(0.38) 1.98(0.36) 0.27 1.91(0.39) 2.13(0.3) 0.66 

Sagittal hip 1.13(1.34) 0.69(0.99) 0.79 22.58(2.3) 19.44(1.7) 0.28 

Coronal hip -5.35(1.71) -4.23(1.06) 0.58 -0.67(1.56) -3.84(0.83) 0.08 

Horizontal hip -1.36(1.96) -3.02(1.29) 0.48 -1.36(1.74) -9.46(2.3) <0.01* 

Phase: Moving III Phase:  Stance II 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 0.89(0.18) 1.1(0.28) 0.54 1.06(0.19) 1.16(0.31) 0.78 

Sagittal hip 39.56(2.94) 42.93(1.38) 0.31 61.51(1.45) 62.73(1.51) 0.56 

Coronal hip 14.64(1.51) 14.18(1.91) 0.85 15.14(1.97) 9.15(1.73) <0.05* 

Horizontal hip -3.44(2.05) 6.59(1.29) <0.01* -2(1.24) -1.48(3.06) 0.88 

Phase: Moving IV Phase:  Stance III 

 Measured leg Dominant Non-
dominant 

Statistic (p) Dominant Non-
dominant 

Statistic (p) 

sEMG GM:AL 1.78(0.17) 1.62(0.23) 0.6 2.15(0.3) 2.12(0.29) 0.94 

Sagittal hip -36.78(2.97) -39.75(0.98) 0.35 24.28(2.03) 21.84(1.51) 0.34 

Coronal hip -15.57(0.91) -13.58(2) 0.37 -1.57(1.71) -3.78(1.19) 0.3 

Horizontal hip -0.13(1,74) -7.7(1.87) <0.01* -2.3(1.48) -11.29(2.56) <0.01* 

Table 44: Results from comparing surface electromyography and kinematic data between the 
dominant and non-dominant legs of healthy filed hockey players during single leg squat when the leg 

is moving.  Annotations: * = p < 0.05; sEMG = surface electromyography; arrows indicate the direction 
of difference; GM=gluteus medius; AL= adductor longus; Flex = flexion; Add = adduction; IR = internal 
rotation; SE = standard error;   = increased in non–dominant leg; = decreased in non-dominant 
leg.  
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Appendix 3 

Point based skills database 

 

Total

Miss PM Kloskowska (110624846)

Progress

Personal Details

Full Name: Paulina Maria Kloskowska Gender: Female

Username: hhw819 Email: p.kloskowska@qmul.ac.uk

Telephone: Mobile: 07534133446

Enrolment Status: R-E-E Programme: RRPF-QMWHRN1 PhD FT WHRI (Non-Clinical)

Course Name: PhD FT William Harvey Research Institute (Non-Clinical) Award Code: RP

Start Date: 01-Nov-2011 Expected End Date: 01-Nov-2015

Route: RSWHN

Faculty: Medicine and Dentistry School: William Harvey Research Institute

Department: William Harvey Research Institute

Supervisors

Title Given Names Last Name Telephone Email Active

Dr Dylan Morrissey d.morrissey@qmul.ac.uk true

Prof Bruce Lindsay Kidd b.l.kidd@qmul.ac.uk true

Points Summary

Year Type Pts: A B C D Total Cap: A B C D Total

0    Teaching/demonstrating/marking/preparation 0.0 2.5 0.0 2.5 5.0

Teaching sub-total 0.0 2.5 0.0 2.5 5.0

Year 0 Total (with caps applied) 0.0 2.5 0.0 2.5 5.0

1st    Conference Attendance (Half day) 7.5 3.0 0.0 0.0 10.5

   Conference Attendance (One day) 5.0 2.0 0.0 0.0 7.0

Conference attendance sub-total 12.5 5.0 0.0 0.0 17.5

   CAPD Course 9.0 11.0 10.5 8.5 39.0

Course/event attendance sub-total 9.0 11.0 10.5 8.5 39.0

   External funding application <£2,000 0.0 0.0 2.0 2.0 4.0

Funding application sub-total 0.0 0.0 2.0 2.0 4.0

   Conference Presentation (oral/poster) 6.0 6.0 0.0 8.0 20.0

   Ethical Approval for Study - Non-Clinical 0.0 0.0 2.0 0.0 2.0

Other sub-total 6.0 6.0 2.0 8.0 22.0

   Mentoring/supervising of Project Student 8.0 4.0 0.0 8.0 20.0

   Teaching/demonstrating/marking/preparation 0.0 6.5 0.0 6.5 13.0

Teaching sub-total 8.0 10.5 0.0 14.5 33.0

Year 1 Total (with caps applied) 35.5 32.5 14.5 33.0 115.5

 

 

Total
target
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2nd    Conference Attendance (Half day) 2.5 1.0 0.0 0.0 3.5

   Conference Attendance (Two days) 10.0 4.0 0.0 0.0 14.0

Conference attendance sub-total 12.5 5.0 0.0 0.0 17.5

   CAPD Course 0.0 4.0 0.0 2.0 6.0

   CILT Module 1 0.0 5.0 0.0 5.0 10.0

   CILT Module 2 0.0 5.0 0.0 5.0 10.0

Course/event attendance sub-total 0.0 14.0 0.0 12.0 26.0

   External funding application <£2,000 0.0 0.0 2.0 2.0 4.0

Funding application sub-total 0.0 0.0 2.0 2.0 4.0

   Journal Club/Reading Group/lab meeting Presentation 3.0 0.0 0.0 1.0 4.0

Giving presentations sub-total 3.0 0.0 0.0 1.0 4.0

   Conference Presentation (oral/poster) 12.0 12.0 0.0 16.0 40.0

   Course/event Attendance 0.0 1.0 0.0 1.0 2.0

   Ethical Approval for Study - Clinical 0.0 0.0 10.0 0.0 10.0

   Ethical Approval for Study - Non-Clinical 0.0 0.0 4.0 0.0 4.0

   Organising an event/seminar/conference 0.0 2.0 0.0 2.0 4.0

   Presenting - internal to QM 1.0 1.0 0.0 2.0 4.0

Other sub-total 13.0 16.0 14.0 21.0 64.0

   Mentoring/supervising of Project Student 6.0 3.0 0.0 6.0 15.0

   Teaching/demonstrating/marking/preparation 0.0 11.5 0.0 11.5 23.0

Teaching sub-total 6.0 14.5 0.0 17.5 38.0

Year 2 Total (with caps applied) 34.5 49.5 16.0 53.5 153.5

3rd    Conference Attendance (Half day) 2.5 1.0 0.0 0.0 3.5

Conference attendance sub-total 2.5 1.0 0.0 0.0 3.5

   Ethical Approval for Study - Clinical 0.0 0.0 10.0 0.0 10.0

   Presenting - internal to QM 1.0 1.0 0.0 2.0 4.0

Other sub-total 1.0 1.0 10.0 2.0 14.0

   Teaching/demonstrating/marking/preparation 0.0 3.0 0.0 3.0 6.0

Teaching sub-total 0.0 3.0 0.0 3.0 6.0

Year 3 Total (with caps applied) 3.5 5.0 10.0 5.0 23.5

Total    Conference Attendance (Half day) 12.5 5.0 0.0 0.0 17.5

   Conference Attendance (One day) 5.0 2.0 0.0 0.0 7.0

   Conference Attendance (Two days) 10.0 4.0 0.0 0.0 14.0

Conference attendance sub-total 18.0 11.0 0.0 0.0 29.0 18.0 12.0 30.0

   CAPD Course 9.0 15.0 10.5 10.5 45.0

   CILT Module 1 0.0 5.0 0.0 5.0 10.0

   CILT Module 2 0.0 5.0 0.0 5.0 10.0

Course/event attendance sub-total 9.0 25.0 10.5 20.5 65.0

   External funding application <£2,000 0.0 0.0 4.0 4.0 8.0 8.0 4.0 12.0

Funding application sub-total 0.0 0.0 4.0 4.0 8.0

   Journal Club/Reading Group/lab meeting Presentation 3.0 0.0 0.0 1.0 4.0 6.0 6.0 12.0

Giving presentations sub-total 3.0 0.0 0.0 1.0 4.0

   Conference Presentation (oral/poster) 18.0 18.0 0.0 24.0 60.0

   Course/event Attendance 0.0 1.0 0.0 1.0 2.0

   Ethical Approval for Study - Clinical 0.0 0.0 20.0 0.0 20.0

   Ethical Approval for Study - Non-Clinical 0.0 0.0 6.0 0.0 6.0

   Organising an event/seminar/conference 0.0 2.0 0.0 2.0 4.0

   Presenting - internal to QM 2.0 2.0 0.0 4.0 8.0

Other sub-total 20.0 23.0 26.0 31.0 100.0

   Mentoring/supervising of Project Student 8.0 4.0 0.0 8.0 20.0 8.0 4.0 8.0 20.0

   Teaching/demonstrating/marking/preparation 0.0 15.0 0.0 15.0 30.0 15.0 15.0 30.0

Teaching sub-total 8.0 19.0 0.0 23.0 50.0

Total (with caps applied) 58.0 78.0 40.5 79.5 256.0

 

Target 60.0 20.0 15.0 30.0 210.0

Pending Activities

Nothing found to display

Activity Record

Type Code Title Provider From To Hours A B C D Total

Teaching/demonstrating/marking/preparation Biomechanics - Lower Limb CSEM
24-Jan-
2011
14:30

24-Jan-
2011
17:00

2.5 0.0 1.2 0.0 1.2 2.5

Teaching/demonstrating/marking/preparation
Biomechanics - students
presentations

CSEM
31-Jan-
2011
14:30

31-Jan-
2011
17:00

2.5 0.0 1.2 0.0 1.2 2.5

Mentoring/supervising of Project Student
Mentoring/supervising a student's
project (OR)

CSEM
01-Nov-
2011
08:00

29-Jun-
2012
09:00

0.0 2.0 1.0 0.0 2.0 5.0

Conference Attendance (Half day) Attending lab meetings Dr Dylan Morrissey

02-Nov-
2011
08:30

06-Mar-
2013
08:30

0.0 2.5 1.0 0.0 0.0 3.5

Ethical approval - case control
08-Nov- 08-Jan-
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Ethical Approval for Study - Non-Clinical study QMUL 2011

09:00

2012

09:00

0.0 0.0 0.0 2.0 0.0 2.0

Conference Attendance (Half day) Attending lab meetings Dr Dylan Morrissey
09-Nov-
2011
08:30

06-Mar-
2013
08:30

0.0 2.5 1.0 0.0 0.0 3.5

Conference Attendance (One day) CSEM-DJO Education Meeting CSEM
09-Dec-
2011
09:00

09-Dec-
2011
17:00

0.0 5.0 2.0 0.0 0.0 7.0

CAPD Course R244 Cafe Scientifique The Learning Institute
14-Dec-
2011
18:00

14-Dec-
2011
20:30

0.0 0.0 1.0 0.0 0.0 1.0

Mentoring/supervising of Project Student
Mentoring/supervising a student's
project (JC)

CSEM
02-Jan-
2012
09:00

17-Aug-
2012
09:00

0.0 2.0 1.0 0.0 2.0 5.0

CAPD Course R160
Writing for Publication in Refereed
Journals

The Learning Institute
23-Jan-
2012
14:00

23-Jan-
2012
17:00

0.0 0.0 0.0 0.0 3.0 3.0

Mentoring/supervising of Project Student
SMentoring/supervising a student's
project (JA)

CSEM
08-Feb-
2012
08:00

17-Aug-
2012
09:00

0.0 2.0 1.0 0.0 2.0 5.0

Conference Presentation (oral/poster)
Football Association Medical
Society conference - groin and
hamstrings

Football Association
Medical Society

13-Feb-
2012
18:50

13-Feb-
2012
21:30

0.0 3.0 3.0 0.0 4.0 10.0

Teaching/demonstrating/marking/preparation Rehabilitation - lower limb CSEM
21-Feb-
2012
13:30

21-Feb-
2012
15:30

2.0 0.0 1.0 0.0 1.0 2.0

Teaching/demonstrating/marking/preparation Rehabilitation - upper limb CSEM
28-Feb-
2012
14:30

28-Feb-
2012
18:00

3.5 0.0 1.8 0.0 1.8 3.5

Teaching/demonstrating/marking/preparation Rehabilitation - spine CSEM
06-Mar-
2012
14:30

06-Mar-
2012
18:00

3.5 0.0 1.8 0.0 1.8 3.5

Teaching/demonstrating/marking/preparation Biomechanics - spine and pelvis CSEM
13-Mar-
2012
14:30

13-Mar-
2012
16:30

2.0 0.0 1.0 0.0 1.0 2.0

Conference Attendance (Half day)
ootball Association Medical Society
conference - Achilles problems in
football

ootball Association
Medical Society

16-Apr-
2012
18:50

16-Apr-
2012
21:30

0.0 2.5 1.0 0.0 0.0 3.5

CAPD Course R175 PhD Induction Day 1 The Learning Institute
19-Apr-
2012
09:30

19-Apr-
2012
17:00

0.0 1.0 2.5 3.5 0.0 7.0

External funding application <£2,000
Boehringer Ingelheim Students
Grant

Boehringer Ingelheim
Foundation

01-May-
2012
09:00

01-Jun-
2012
09:00

0.0 0.0 0.0 1.0 1.0 2.0

CAPD Course R121 Managing Your PhD The Learning Institute
08-May-
2012
10:00

08-May-
2012
16:00

0.0 0.0 3.0 3.0 0.0 6.0

CAPD Course R182
Presenting Your Research to an
Audience (Day 1)

The Learning Institute
14-May-
2012
10:00

14-May-
2012
13:00

0.0 0.0 1.5 0.0 1.5 3.0

CAPD Course DELUEL25p
How to use Endnote for Medicine
and the Sciences

The Learning Institute
15-May-
2012
14:00

15-May-
2012
16:00

0.0 2.0 0.0 0.0 0.0 2.0

Conference Presentation (oral/poster)
WHRI Annual Research Review
oral presentation

WHRI
10-Jul-
2012
09:00

10-Jul-
2012
16:00

0.0 3.0 3.0 0.0 4.0 10.0

Mentoring/supervising of Project Student
Mentoring/supervising a student's
project (WM)

CSEM
10-Sep-
2012
09:00

24-Jun-
2013
09:00

0.0 2.0 1.0 0.0 2.0 5.0

External funding application <£2,000
ISB Brazil 2013 Student Travel
Grant

International Society
of Biomechanics

01-Oct-
2012
09:00

01-Nov-
2012
09:00

0.0 0.0 0.0 1.0 1.0 2.0

CAPD Course ARP1
Introduction to Leadership &
Managing Teams (Day 1)

The Learning Institute
08-Oct-
2012
10:00

08-Oct-
2012
16:00

0.0 0.0 2.0 1.0 3.0 6.0

Teaching/demonstrating/marking/preparation Lower limb anatomy CSEM
12-Oct-
2012
11:00

12-Oct-
2012
13:00

2.0 0.0 1.0 0.0 1.0 2.0

CAPD Course RW202 WISE - Women in Leadership The Learning Institute

24-Oct-

2012
16:00

24-Oct-

2012
18:00

0.0 0.0 1.0 0.0 1.0 2.0

CAPD Course R209 Critical Thinking The Learning Institute
29-Oct-
2012
10:00

29-Oct-
2012
16:00

0.0 6.0 0.0 0.0 0.0 6.0

CAPD Course R137
Postgraduate Funding: Considering
the Alternatives

The Learning Institute
31-Oct-
2012
14:00

31-Oct-
2012
17:00

0.0 0.0 0.0 3.0 0.0 3.0

Teaching/demonstrating/marking/preparation Upper limb anatomy CSEM
02-Nov-
2012
11:30

02-Nov-
2012
13:30

2.0 0.0 1.0 0.0 1.0 2.0

Ethical Approval for Study - Non-Clinical
Ethical approval - case control
study

QMUL
08-Nov-
2012
09:00

15-Feb-
2013
09:00

0.0 0.0 0.0 2.0 0.0 2.0

CAPD Course R243 Negotiating and Influencing Skills The Learning Institute
12-Nov-
2012
14:00

12-Nov-
2012
17:00

0.0 0.0 3.0 0.0 0.0 3.0

Teaching/demonstrating/marking/preparation Spine anatomy CSEM
13-Nov-
2012
13:00

13-Nov-
2012
14:30

1.5 0.0 0.8 0.0 0.8 1.5

External funding application <£2,000 QMUL Postrgraduate Travel Grant QMUL
03-Dec-
2012

15-Jan-
2013 0.0 0.0 0.0 1.0 1.0 2.0
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09:00 09:00

Conference Attendance (Half day) Cafe Scientifique Jo Cordy
05-Dec-
2012
18:00

05-Dec-
2013
21:00

0.0 2.5 1.0 0.0 0.0 3.5

CILT Module 1 CILT Module 1 completion LI
03-Jan-
2013
15:00

03-Sep-
2013
09:00

0.0 0.0 5.0 0.0 5.0 10.0

Teaching/demonstrating/marking/preparation Biomechanics - lower limb CSEM
22-Jan-
2013
14:30

22-Jan-
2013
17:00

2.5 0.0 1.2 0.0 1.2 2.5

Teaching/demonstrating/marking/preparation Rehabilitation - lower limb CSEM
25-Jan-
2013
09:00

25-Jan-
2013
11:30

2.5 0.0 1.2 0.0 1.2 2.5

Teaching/demonstrating/marking/preparation Dance Medicine lecture CSEMM
05-Feb-
2013
09:00

05-Feb-
2013
11:00

2.0 0.0 1.0 0.0 1.0 2.0

Teaching/demonstrating/marking/preparation Rehabilitation - upper limb CSEM
15-Feb-
2013
09:00

15-Feb-
2013
11:30

2.5 0.0 1.2 0.0 1.2 2.5

Ethical Approval for Study - Non-Clinical Ethical approval - longitudinal study QMUL
15-Feb-
2013
09:00

15-Feb-
2013
17:00

0.0 0.0 0.0 2.0 0.0 2.0

Teaching/demonstrating/marking/preparation Anatomy practical: Lower limb CSEM
25-Feb-
2013
15:00

25-Feb-
2013
17:00

2.0 0.0 1.0 0.0 1.0 2.0

Teaching/demonstrating/marking/preparation Dance Medicine lecture CSEM
05-Mar-
2013
09:00

05-Mar-
2013
11:00

2.0 0.0 1.0 0.0 1.0 2.0

External funding application <£2,000
QMPGRF Travel Grant successfully
obtained

QMUL
19-Mar-
2013
09:00

19-Mar-
2013
11:00

0.0 0.0 0.0 1.0 1.0 2.0

Journal Club/Reading Group/lab meeting
Presentation

Attending Lab Meetings
Dr Dylan Morrissey,
CSEM

27-Mar-
2013
08:30

19-Mar-
2014
10:00

0.0 3.0 0.0 0.0 1.0 4.0

Course/event Attendance Planning for difficult conversations LI
10-May-
2013
13:00

10-May-
2013
15:00

0.0 0.0 1.0 0.0 1.0 2.0

Conference Attendance (Two days)
18th Annual Congress of European
College of Sports Science

European College of
Sports Science

26-Jun-
2013
08:00

29-Jun-
2013
20:00

0.0 10.0 4.0 0.0 0.0 14.0

Conference Presentation (oral/poster)
18th Annual Congress of European
College of Sports Science- oral
presentation

European College of
Sports Science

28-Jun-
2013
11:00

28-Jun-
2013
12:00

0.0 3.0 3.0 0.0 4.0 10.0

Conference Presentation (oral/poster) WHRI Annual Research Review WHRI
04-Jul-
2013
10:00

04-Jul-
2013
18:00

0.0 3.0 3.0 0.0 4.0 10.0

Presenting - internal to QM RIP presentation QMUL
10-Jul-
2013
13:00

10-Jul-
2013
14:00

0.0 1.0 1.0 0.0 2.0 4.0

Mentoring/supervising of Project Student Supervising iBSc student CSEM, WHRI
02-Sep-
2013
09:00

25-Jul-
2014
09:00

0.0 2.0 1.0 0.0 2.0 5.0

CILT Module 2 CILT Module 2 completion LI
02-Sep-
2013
09:00

14-Mar-
2014
14:00

0.0 0.0 5.0 0.0 5.0 10.0

Mentoring/supervising of Project Student Supervising iBSc student CSEM, WHRI
02-Sep-
2013
09:00

24-Jul-
2014
09:00

0.0 2.0 1.0 0.0 2.0 5.0

Conference Presentation (oral/poster) QMUL in motion Conference CSEM, WHRI
05-Sep-
2013
09:00

05-Sep-
2013
17:00

0.0 3.0 3.0 0.0 4.0 10.0

Conference Presentation (oral/poster)
CSEM Annual Scientific
Conference presentation

CSEM, WHRI
06-Sep-
2013
09:00

06-Sep-
2013
18:00

0.0 3.0 3.0 0.0 4.0 10.0

Organising an event/seminar/conference
Organising CSEM Annual Scientific
Conference

CSEM, WHRI
06-Sep-
2013
09:00

06-Sep-
2013
18:00

0.0 0.0 2.0 0.0 2.0 4.0

Mentoring/supervising of Project Student Supervising MSc student CSEM, WHRI
24-Sep-
2013
09:00

27-Feb-
2015
09:00

0.0 2.0 1.0 0.0 2.0 5.0

Teaching/demonstrating/marking/preparation
Anatomy Lecturing for iBSc
students

CSEM, WHRI
27-Sep-
2013
09:00

18-Dec-
2013
12:00

6.0 0.0 3.0 0.0 3.0 6.0

Ethical Approval for Study - Clinical
Obtaining non-clinical ethics -
successful

QMUL
01-Oct-
2013
09:00

31-Oct-
2013
09:00

0.0 0.0 0.0 10.0 0.0 10.0

CAPD Course A206 Detecting and Deterring Plagiarism
Centre for Academic
and Professional
Development

24-Oct-
2013
16:00

24-Oct-
2013
17:00

0.0 0.0 1.0 0.0 2.0 3.0

Teaching/demonstrating/marking/preparation
Teching Biomechanics and
Rehabilitation to iBSc students

CSEM, WHRI
19-Nov-
2013
09:00

03-Mar-
2014
12:00

6.0 0.0 3.0 0.0 3.0 6.0

Ethical Approval for Study - Clinical
Obtaining clinical (NHS) ethics
through IRAS form -in progress

NHS
03-Jan-
2014
09:00

24-Mar-
2014
10:00

0.0 0.0 0.0 10.0 0.0 10.0

Conference Attendance (Half day)
WHRI New Year Celebration
Conference

WHRI
31-Jan-
2014
13:00

31-Jan-
2014
18:00

0.0 2.5 1.0 0.0 0.0 3.5

Presenting - internal to QM Internal meeting presentation CSEM, WHRI
05-Mar-
2014
08:00

05-Mar-
2014
12:00

0.0 1.0 1.0 0.0 2.0 4.0
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Appendix 4 

Letter of ethical approval for the observational study. 

 

          Queen Mary, University of London 

                  Room E16  
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Research Ethics Committee 
                  Hazel Covill 

                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 2207 

                 Email: h.covill@qmul.ac.uk 
 Dr Dylan Morrissey 
 Department of Sports Medicine  

 Mile End Hospital 
 Bancroft Road 
 London E1 4NS    27th October 2015 

           

 To Whom It May Concern: 
 

Re: QMREC2011/07 – Human performance measurement – a generic ethics 
application.  
 
This is to confirm that the following study was agreed under the above ethical approval:  
 
The biomechanical determinants of lumbo-pelvic muscle imbalance in footballers with 
adductor-related groin pain. 

 
Date of approval. 

This was noted and approved on the 1st March 2012. 
 
Yours faithfully 
 

 
Ms Elizabeth Hall – QMREC Chair.    Patron: Her Majesty the Queen  

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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Appendix 5 

Approved ethical application for the observational study including the Participant 

Information Sheet and the Informed Consent. 

For Office Use Only: 

 

Rec Reference ……………. 

Date received: …………… 

 

 

Application form – Queen Mary Research Ethics Committee 

 

 

1   Name and email address of applicant 

Miss Paulina Kloskowska MSc, 

Centre for Sports and Exercise Medicine, WHRI 

Email: p.kloskowska@qmul.ac.uk 

 

2 Title of study 
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The biomechanical determinants of lumbo-pelvic muscle imbalance in Field Hockey 

players with adductor-related groin pain. 

 

3 Investigators  

Miss Paulina Kloskowska MSc, BSc 

Dr Dylan Morrissey PhD MSc MMACP MCSP 

Professor Roger Woledge, Professor Emeritus of Experimental Physiology  

 

4 Proposed timetable 

Preferred start date: October 2012 

Projected date of completion: September 2014 

 

5 Other organisations involved 

Professional and amateur athletes 

 

The athletes will only be recruited once letters of approval have been granted.  

6 Other REC approval 

N/A 

 

7 Nature of project e.g. undergraduate, postgraduate 
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The project is a postgraduate student research for the fulfilment of an intercalated 

BSc project. It will build the first part of the PhD project and develop collaboration 

between the Centre for Sports and Exercise Medicine and the sports clubs. Students 

who will work on this project include  

 Miss Laura Middleton, BSc SEM student  

 Miss Charlotte Hillary, BSc SEM student 
 

 

 

8 Purpose of the research 

The purpose of the study is to investigate muscle activation and kinematics during 

simple movement tests commonly used in the assessment of subjects with chronic 

groin pain and determine whether any systematic differences in 

electromyographically detected muscle onsets exist in muscle activation or 

movement patterns between: 

a) symptomatic and non symptomatic sides  

b) controls and subjects  

c) dominant and non-dominant leg  

The tests to be examined are:  

- One Leg Standing – the ability to stand unsupported on one leg and lift the 

other leg to 90 degrees of hip flexion (Hungerford et al 03) 

- Active Straight Leg Raise – the ability to lift one leg approximately 60 

degrees from the supporting surface. Measurements of pain and effort are 

scored for all subjects (Mens et al 99) 
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- One Leg Squat – the ability to stand on one leg and perform a squat on the 

supporting leg (Crossley et al. 2011) 

- Bent Knee Fall Out – the ability of the subject to abduct and externally rotate 

the hip joint from a position of hip and knee flexion (crook lying) (Sahrmann 

98) 

- other, similar, tests as indicated specific to the sport  

 

The overall null hypothesis is that subjects with groin pain due to either articular or 

muscular presentations have no difference in movement patterns or muscle timing 

with respect to control subjects.  

 

There are a range of movement or subject group alternative hypotheses including: 

- that subjects with chronic groin pain will have an altered pattern of movement 
on the symptomatic side compared with the non-symptomatic side 

- that subjects with chronic groin pain will have an altered ratio of hip adductor 
to hip abductor muscle activity compared to normal subjects 

- that subjects with chronic groin pain will have altered ratios of hip adductor to 
hip extensor muscle activity  

- that subjects with chronic groin pain will have an altered ratio of hip flexor to 
hip extensor muscle activity 

- that the effect of dominance affects the muscle activation and muscle ratio in 
symptomatic subjects  

 

 

 

Background: 
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Chronic groin pain is a common problem in football code athletes. Among 

professional soccer players the incidence of groin pain accounts up for 18% per year 

(Homlich 2007). There are many disorders potentially responsible for that symptom, 

including referred pain of thoracolumbar origin, hip arthrosis, hernia and sports 

hernia (Holmich 2007), pelvic nerve entrapments (Anderson et al 2001), urological 

diseases (Fon et al 2000), and many other, few of which are well investigated and 

described. 

According to previous studies (Holmich 2007, Verral et al 2005) one of the most 

common clinical entities causing groin pain are adductor-related disorders (ARGP). 

This non-specific diagnosis contains wide range of alterations affecting adductor 

muscles and consequently, the adduction movement (Ibrahim et al 2007). The 

possible causes of ARGP include pathology of muscles, tendons, joints or bones. 

The variety of probabilities potentially responsible for this syndrome continues to 

present a significant diagnostic challenge (Holmich 2007, Fricker 1997). 

Although there have been a number of studies trying to specify the initial cause of 

ARGP (Holmich 2007, Mens et al 2006, Verral 2001), few of them focus on the effect 

it has on the muscles around the groin and pelvic region. Several authors associated 

a decreased hip joint range of movement (ROM) with an increased risk of ARGP 

(Ibrahim et al 2007, Kettunen et al 2000, Gupta et al 2004), while others highlight the 

relationship between the features of the muscles responsible for core stability (e.g. 

transversus abdominis) and pathology of adductor muscles (Mens et al 2006). The 

outcomes, though, do not show significant relation in any of these studies – thus it 

appears to be rational to continue research in this field, which will help to uncover 

other relation between pelvic girdle muscles in ARGP. 
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Morrissey et al. (in review) carried  out research showing the differences between 

the gluteus medius (GM) to adductor longus (AL) ratio in football players suffering 

from adductor-related groin pain compared to a matched control group (Figure 1). 

The data were collected during both moving and stance phase of standing hip flexion 

and show a significant change of the activation ratio between examined muscles in 

subjects with groin pain. The data suggests that there may be a common pattern 

concerning the electromyographic determinants in patients suffering and recovering 

from groin pain, which shows a significant decrease of GM:AL ratio in patients 

suffering from groin pain. Further analysis shows it is mainly due to a significant 

decrease of GM activation. 

However, these outcomes have not been analysed in comparison to the kinematic 

determinants of the analysed movements. As well as EMG results, kinematic 

outcomes are also expected to show differences between participants with ARGP 

and healthy controls.  
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Figure 1: The ratio of GM:AL activity (mV) of injured and uninjured sides in ARGP patients 

and controls. 

During these studies a number of data concerning ARGP will be collected. They will 

help to develop a quantifiable clinical test procedure and associated database to 

diagnose and assess the muscle imbalance occurring in ARGP. The outcomes 

would not only be useful to plan the accurate rehabilitation and proper treatment of 

this group of patients, but would also provide new insight into the mechanisms 

underlying ARGP. 
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9 Study design, methodology and data analysis 

Each potential participant will be provided with a consent form, information sheet and 

an explanation of the procedure before participating in the study. 

 

Each subject will be asked to complete a written screening questionnaire to define 

their lower back, pelvic and groin injury status that has impacted on their ability to 

train or play in the last twelve months. The questionnaire will comprise of two parts; 

characterisation of participants and self-reported injury history.  

 

Characterisation includes: 

Biological data - age, age at puberty, height, weight 

 

Sporting career – age at which commenced specialist sport, amount of playing / 

practice time, position played, level of competition. 
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Injury will be defined as any pain or dysfunction in the anterior hip and groin region, 

of at least 1 month’s duration, that impacted the ability to do physical activity during 

the study period and/or the last twelve months. Each sportsman / woman will include 

a description and location of the injury and will be required to indicate their injury 

location on a body chart (attached). The duration of symptoms must have been at 

least 1 month. 

 

It is at this point that consent will be taken and the questionnaire gone through with 

the subject. At this time, additional data will be collected on: 

- Family history  
- Past medical history  
- Playing load – past / preseason / current 
- Injury – onset / presence of prodromic symptoms 
- Pain area and behaviour 

 

A physical examination will then be undertaken to determine appropriate inclusion 

criteria as well as other associated features that may identify subgroups in analysis 

of the data. This will include: 

- Spinal range of motion and manual segmental examination 

- Hip joint range of motion and pain provocation tests 

- SIJ Kinetic tests 

- Isometric hip adduction force and symptom provocation 

- Thomas test – muscle length and strength 

- Squeeze test – resisted adduction (0 / 60 / 90 degrees of hip flexion) 
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- Unilateral Resisted Abduction test (30 degrees of hip flexion) 

- Bilateral Resisted Abduction test (30 degrees of hip flexion) 

- Palpation of the adductor tendons / pubic insertion 

- SIJ passive motion analysis 

- Response to ASLR 

- Hip quadrant testing  

- Labral “grind” test 

 

 

Subjects will then undergo motion analysis measurements using non-invasive 3-

dimensional infra-red cameras (Codamotion cx1, Charnwood Dynamics, 

Loughborough, UK) and force plates (Kistler, USA) - using standard marker 

placement protocols for the spine, pelvis and lower limb. In addition to motion 

analysis, electromyographic (EMG) readings will be taken using the wireless surface 

EMG device (Noraxon Telemyo 2400T, Scottsdale, Arizona, USA) of the following 

muscles : 

- Hip adductors  - 2 channels – Adductor longus and magnus 
- Gluteus medius 
- Gluteus maximus 
- Abdominals – external oblique 
- Rectus femoris  
- Biceps femoris 

 

Testing will take place in the Human Performance Laboratory at QMUL and should 

take no longer than 90 minutes. Only one test per participant will be required. 
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Simultaneous measurements of muscle strength will also be made using a hand held 

dynamometer.  

 

Data analysis  

Based on the results of the questionnaire and the physical examination, two sub-

groups will be defined : one with a presentation of chronic groin pain of soft tissue 

origin and a control group. Controls will be age, height and activity matched.  

Analysis of collected data for defined sub-groups will be done using a mathematical 

model written in MatLAb (Mathworks, USA).   

 

 

Statistical analysis  

The data will be assessed for normality and appropriate group comparison analysis 

undertaken accordingly. The power of the study will be 80% with statistical 

significance set at p < 0.05.  

 

 

10 Participants to be studied 

 

Number of participants – approximately 10 in each group 

 

Lower age limit – 18  
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Upper age limit – 70 

 

Sample Size 

Based on the study by Cowan et al (2004) showing a difference in abdominal muscle 

activation of 45ms with a pooled standard deviation of 30ms, a sample size of 14 at 

a power of 80% and alpha error level of 5% is required in each group. We have 

allowed for an extra 6 subjects in case of data loss, unexpected sub-groups and to 

detect smaller significant differences. 

 

 

11 Selection criteria 

These inclusion / exclusion criteria reflect those used in previous studies examining 

potential mechanisms for chronic groin pain (Cowan et al 04, Holmich et al 99) 

 

Chronic groin pain group 

 

Inclusion criteria 

 18 yr of age or older 

 Playing elite- or sub elite-level sport 

 Activity-related, insidious onset groin pain that has been present for at least 4 
weeks. 

At least two of 

1. Tenderness on palpation of either the adductor tendons, their insertion onto 
the pubic bone, or the pubic symphysis 

2. Presence of groin pain during active hip adduction against resistance at the 
time of assessment – squeeze test 

3. Presence of groin pain during active hip flexion against resistance at the time 
of assessment 
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4. Presence of groin pain during passive hip abduction (stretch) 
5. Presence of groin pain during passive hip extension (stretch) 
6. Labral grind test positive 
7. Flexion adduction  (FAbER) test positive 
8. Proven muscular pathology on previously completed imaging tests 

 

Exclusion criteria 

 Groin pain that commenced as a result of an acute incident without prodromic 
symptoms  

 Groin pain that commenced as a result of the articular pathology 

 Surgery to the lower abdominal, hip or groin region 

 Frank inguinal hernia 

 Lumbar pain that predominates on physical examination  
 Neurological symptoms 

 Systemic disease 

 Significant psychological condition  
 

Control group 

Inclusion criteria 

 Over 18 years of age 

 Playing elite- or sub elite-level sport 
 

Exclusion criteria 

 History of groin pain 

 Surgery to their lower abdominal, hip, or groin region, or a frank inguinal 
hernia 

 History of lumbar pain in the past year 

 Neurological symptoms 

 Systemic disease 
 Significant psychological condition  

 

.  

12 Recruitment (including incentives and compensation) 
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Participants will be approached indirectly through an advert provided by email to the 

medical staff of various sports clubs. The medical staff at various clubs will have full 

details of the study and will have consented to provide this information to their 

academy teams. 

 

The advert will include details of the research project; its purpose, objective and that 

participants are required. The advert will reflect the affiliation with QMUL and that the 

study has the full backing of the football clubs. This advert will be subject to 

consideration by Dr Morrissey prior to use. 

Medical staff at the clubs will be asked to discuss the study with players and 
provide them with an information sheet detailing the study and the 

requirements of each participant, along with a consent form.  

A contact telephone number will also be enclosed so that any questions or 

queries potential participants might have can be addressed through a follow 
up telephone interview with Dr Dylan Morrissey or Paulina Kloskowska. 

If a player is happy to participate, details will be collected by the club’s 

medical staff or Paulina Kloskowska. It is anticipated that a group of players 
will be tested at similar times and in the presence of the club physiotherapy 

staff. Consent will be documented at the time of testing. 

Travelling expenses to a maximum of ten pounds per person will be given. 
The assessments will all be undertaken at the HPL, QMUL.  As an incentive, 

each participant and their medical team will be offered an explanation of the 
findings. No financial or other reward will be given to participants. 

 

13 Ethical considerations and risks to participants 

The main ethical issue will be the need to ensure voluntary participation from 

acaedemy players within a club environment. As the clubs will not be 
incentivised in any way to participate, it is not anticipated that any form of 

coercion will occur.  

The need to remove sufficient clothing to attach the motion markers to the 
torso and legs is also another consideration. In order for the EMG electrode 

pads to be well-adhered, small areas of the skin will need to be shaved and 
cleaned. Privacy in the data collection areas will be maximised and subjects 

will be encouraged to bring suitable clothing. The presence of the club’s 
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physiotherapy staff should also ensure that players are confident in the 

testing being undertaken. 

Full and informed consent will be obtained from each participant before 

entering the study. The participant will be given an information sheet detailing 
what the study entails and what is required of the participant. This will also be 
reiterated in person with the opportunity to ask any questions about the 

project.  

Each participant will be protected from harm or injury with all measurements 

being undertaken in a controlled manner. 

Each participant will have the right to withdraw from the research at any time, 
and for whatever reason.  

 

14 Confidentiality, anonymity, and data storage 

Each participant’s confidentiality and privacy will be assured by the use of a 
code which will be characterized by each participant’s initials and the date of 
the test.  Each participant will be allocated their code on consenting to the 

study and each coded participant will also have the date that the assessment 
will be undertaken. This will ensure each participant’s anonymity. Only the 

QMUL research team involved in the investigation will have access to the 
corresponding name/number data and any other personal information, which 
will be securely held on a separate server, requiring a password. The data will 

be securely stored, easily retrievable and well indexed.  

Sensitive data will be stored on password protected server databases to which only 

the investigators will have access too, all such data will be handled in accordance 

with the provisions of the Data protection Act 1998. 

 

15  Information for participants 

Headed Paper 

 

REC Protocol Number.…........... 

 

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET  

 

We would like to invite you to participate in this research project. You should 
only participate if you want to; choosing not to take part will not disadvantage 
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you in any way. Your decision will not affect your access to treatment or 

services. Before you decide whether you want to take part, it is important for 
you to understand why the research is being done and what your participation 

will involve. Please take time to read the following information carefully and 
discuss it with others if you wish. Ask us if there is anything that is not clear or 
if you would like more information. If you do decide to take part, please let us 

know beforehand if you have been involved in any other study during the last 
year.  

 
If you volunteer to take part you will be invited to meet the study team at the 
Human Performance Laboratory, Queen Mary’s University of London.  After 

answering any questions you may have, you will be asked to fill in a 
questionnaire. The first part will ask for you for personal details such as age, 

height, weight, other sporting activities past and present and amount of 
playing time. The second part will deal with self-reported injury, particularly 
pain or injury in the groin area. 

 
A short physical examination will be undertaken to determine your suitability 

to participate.  
 
  

We will then attach several electrodes that will be used to measure the 
electrical activity in your muscles. These electrodes do not carry any 

electricity into your body. These electrodes are self adhesive and designed to 
stick to skin and be removed easily and painlessly.  
This will be followed by the application of 20 small infra-red motion sensors to 

your trunk and legs with medical grade double sided sticky tape. This will 
require you to wear clothing that reveals the skin of the lumbar spine, 

shoulder blades and legs. A pair of close fitting shorts would be ideal. We can 
provide these if necessary. 
 We will then make some measurements of your movement patterns during 

several movement tasks while standing or lying on a force plate that 
measures weight transfer. The total time required to attach markers and 

marker boxes and to measure the movement should be about one hour. 
 
We do not anticipate any risk or discomfort by participating in this study. In 

order to participate in the study you will be asked to meet certain study 
inclusion/exclusion criteria.  

If you participate in this study you will be given an identification number and 
so will remain completely anonymous throughout. All personal information 
linking you to this number will be kept separately and stored securely on a 

database server to which only I will have access to. All information will be 
handled in accordance with the provisions of the data protection act 1998 and 

your confidentiality assured. 
 
My correspondence details are included in this application if you wish to 

contact me, to obtain further details or to ask any questions regarding the 
study: 
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Paulina Kloskowska 

p.kloskowska@qmul.ac.uk 07428147932 
Centre for Sport and Exercise Medicine 

Mile End Hospital 
Bancroft Road 
LONDON E1 4DG 

 
Alternatively, you can contact: 

Dr Dylan Morrissey  
Centre for Sport and Exercise Medicine 
Mile End Hospital 

Bancroft Road 
LONDON E1 4DG 

And on d.morrissey@qmul.ac.uk 02082238839  
 
 

 

16 Consent  

Please complete this form after you have read the Information Sheet and/or listened 

to an explanation about the research. 

 

Title of Study: The biomechanical determinants of lumbo-pelvic muscle imbalance in 

footballers with adductor-related groin pain. 

 

 

 Queen Mary Research Ethics Committee Ref: ________________ 

 

. • Thank you for considering taking part in this 
research. The person organizing the research must 

explain the project to you before you agree to take 
part.  

. • If you have any questions arising from the 

Information Sheet or explanation already given to you, 
please ask the researcher before you decide whether 

to join in. You will be given a copy of this Consent 

mailto:p.kloskowska@qmul.ac.uk
mailto:d.morrissey@qmul.ac.uk
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Form to keep and refer to at any time.  

. • I understand that if I decide at any other time 
during the research that I no longer wish to participate 

in this project, I can notify the researchers involved 
and be withdrawn from it immediately.  

. • I consent to the processing of my personal 

information for the purposes of this research study. I 
understand that such information will be treated as 

strictly confidential and handled in accordance with 
the provisions of the Data Protection Act 1998.  

 

Participant’s Statement:  

I ___________________________________________ agree that the 

research project named above has been explained to me to my satisfaction 
and I agree to take part in the study. I have read both the notes written 
above and the Information Sheet about the project, and understand what 

the research study involves.  

Signed: Date:  

Investigator’s Statement:  

I ___________________________________________ confirm that I have 
carefully explained the nature, demands and any foreseeable risks (where 

applicable) of the proposed research to the volunteer.  

Signed: Date: 

 

17 Signature of applicant and authorising signatories. 
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Appendix 6 

Letter of ethical approval for the longitudinal study. 

 

          Queen Mary, University of London 

                  Room E16  
      Queen’s Building 
      Queen Mary University of London 
      Mile End Road 
      London E1 4NS 
      
                  Queen Mary Research Ethics Committee 
                  Hazel Covill 

                  Research Ethics Administrator 
                                                                                                                                 Tel: +44 (0) 20 7882 2207 

                 Email: h.covill@qmul.ac.uk 
 Dr Dylan Morrissey 
 Department of Sports Medicine  

 Mile End Hospital 
 Bancroft Road 
 London E1 4NS    27th October 2015 

           

 To Whom It May Concern: 
 

Re: QMREC2011/07 – Human performance measurement – a generic ethics 
application.  
 
This is to confirm that the following study was agreed under the above ethical approval:  
 
The biomechanical determinants of lumbo-pelvic muscle imbalance in athletes after adductor 
strain injury along the process of rehabilitation – a longitudinal study. 

 
Date of approval. 

This was noted and approved on the 18th February 2013. 
 
Yours faithfully 
 

 
Ms Elizabeth Hall – QMREC Chair.    Patron: Her Majesty the Queen  

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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Appendix 7 

Approved ethical application for the longitudinal study including the Participant Information 

Sheet and the Informed Consent. 

 

For Office Use Only: 

 

Rec Reference ……………. 

Date received: …………… 

 

 

Application form – Queen Mary Research Ethics Committee 

 

 

1   Name and email address of applicant 

Miss Paulina Kloskowska MSc, 

Centre for Sports and Exercise Medicine, WHRI 

E-mail: p.kloskowska@qmul.ac.uk 

 

2 Title of study 
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The biomechanical determinants of lumbo-pelvic muscle imbalance in athletes after 

adductor strain injury along the process of rehabilitation – a longitudinal study. 

 

3 Investigators  

Miss Paulina Kloskowska MSc, BSc 

Dr Dylan Morrissey PhD MSc MMACP MCSP 

Professor Roger Woledge, Professor Emeritus of Experimental Physiology  

Centre for Sports and Exercise Medicine, Queen Mary University of London 

4 Proposed timetable 

Preferred start date: January 2013 

Projected date of completion: Sept 2015 

 

5 Other organisations involved 

Saracens RUFC, Harlequins RUFC and other sports clubs 

Subjects from each of these groups will only be recruited once letters of approval 

have been granted.  

6 Other REC approval 

N/A 

 

7 Nature of project e.g. undergraduate, postgraduate 
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The project is part of a PhD project. Students who will work on this project include  

 Mr Waleed Moussa, BSc SEM student, Centre for Sports and Exercise 
Medicine, Queen Mary University of London  

 

8 Purpose of the research 

The purpose of the study is to investigate muscle activation and kinematics over a 

period of rehabilitation process during simple movement tests in subjects with acute 

groin pain and determine whether any systematic differences in 

electromyographically detected muscle onsets exist in muscle activation or 

movement patterns between: 

a) symptomatic and non symptomatic sides  

b) controls and subjects  

c) dominant and non-dominant leg 

d) different phases of rehabilitation process 

  

The tests to be examined are:  

- One Leg Standing – the ability to stand unsupported on one leg and lift the 

other leg to 90 degrees of hip flexion (Hungerford et al 03) 

- Active Straight Leg Raise – the ability to lift one leg approximately 60 

degrees from the supporting surface. Measurements of pain and effort are 

scored for all subjects (Mens et al 99) 

- One Leg Squat – the ability to stand on one leg and perform a squat on the 

supporting leg (Crossley et al. 2011) 
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- Bent Knee Fall Out – the ability of the subject to abduct and externally rotate 

the hip joint from a position of hip and knee flexion (crook lying) (Sahrmann 

98) 

-concentric and eccentric hip adduction and abduction 

- other, similar, tests as indicated specific to the sport  

 

The overall null hypothesis is that subjects with groin pain due to either articular or 

muscular presentations have no difference in movement patterns or muscle timing 

with respect to control subjects in any phase of rehabilitation process.  

 

There are a range of movement or subject group alternative hypotheses including: 

- that subjects with acute groin pain will have an altered pattern of movement 
on the symptomatic side compared with the non-symptomatic side 

- that subjects with acute groin pain will have an altered ratio of hip adductor to 
hip abductor muscle activity compared to normal subjects 

- that subjects with acute groin pain will have altered ratios of hip adductor to 
hip extensor muscle activity  

- that subjects with acute groin pain will have an altered ratio of hip flexor to hip 
extensor muscle activity 

- that the effect of dominance affects the muscle activation and muscle ratio in 
symptomatic subjects  

- that the muscle activation and kinematic patterns are different on a different 
stages of rehabilitation after adductor injury 

 

Background: 

 

Long-standing adduction-related groin pain (LSARGP) is a common problem in 

football code athletes. Among professional soccer players the incidence of groin pain 

accounts up for 18% per year (Homlich 2007). There are many disorders potentially 
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responsible for that symptom, including referred pain of thoracolumbar origin, hip 

arthrosis, hernia and sports hernia (Holmich 2007), pelvic nerve entrapments 

(Anderson et al 2001), urological diseases (Fon et al 2000), and many other, few of 

which are well investigated and described. 

According to previous studies (Holmich 2007, Verral et al 2005) one of the most 

common clinical entities causing groin pain are adductor-related disorders (ARGP). 

This non-specific diagnosis contains wide range of alterations affecting adductor 

muscles and consequently, the adduction movement (Ibrahim et al 2007). The 

possible causes of LSARGP include pathology of muscles, tendons, joints or bones. 

The variety of probabilities potentially responsible for this syndrome continues to 

present a significant diagnostic challenge (Holmich 2007, Fricker 1997). 

Although there have been a number of studies trying to specify the initial cause of 

LSARGP (Holmich 2007, Mens et al 2006, Verral 2001), few of them focus on the 

effect it has on the muscles around the groin and pelvic region. Several authors 

associated a decreased hip joint range of movement (ROM) with an increased risk of 

ARGP (Ibrahim et al 2007, Kettunen et al 2000, Gupta et al 2004), while others 

highlight the relationship between the features of the muscles responsible for core 

stability (e.g. transversus abdominis) and pathology of adductor muscles (Mens et al 

2006). The outcomes, though, do not show significant relation in any of these studies 

– thus it appears to be rational to continue research in this field, which will help to 

uncover other relation between pelvic girdle muscles in LSARGP. 

One of the main risk factors for LSARGP in athletes is a former acute injury to the 

adductor muscles (Engenretsen et al. 2010). 
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Morrissey et al. (2012) carried out research showing the differences between the 

gluteus medius (GM) to adductor longus (AL) ratio in football players suffering from 

adductor-related groin pain compared to a matched control group (Figure 1). The 

data were collected during both moving and stance phase of standing hip flexion and 

show a significant change of the activation ratio between examined muscles in 

subjects with groin pain. The data suggests that there may be a common pattern 

concerning the electromyographic determinants in patients suffering and recovering 

from groin pain, which shows a significant decrease of GM:AL ratio in patients 

suffering from groin pain. Further analysis shows it is mainly due to a significant 

decrease of GM activation. 

However, these outcomes have not been analysed in comparison to the kinematic 

determinants of the analysed movements. As well as EMG results, kinematic 

outcomes are also expected to show differences between participants with ARGP 

and healthy controls.  
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Figure 1: The ratio of GM:AL activity (mV) of injured and uninjured sides in ARGP patients 

and controls. 

During this study a lot of data concerning acute adductor injury will be collected. 

They will help to complete our knowledge about the muscular changes in groin 

injuries. These data will allow us not only to complete the knowledge about the 

general muscle healing process, but will give us a clear picture of athlete’s gradual 

return to health. We expect to find out why some particular groups of athletes fail to 

recover after such injuries. Based on the athletes’ individual findings we will be 

provided with a clinical tool so that we can give targeted and individualised 

rehabilitation prescriptions. 
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9 Study design, methodology and data analysis 

Each potential participant will be provided with a consent form, information sheet and 

an explanation of the procedure before participating in the study. 

 

Each subject will be asked to complete a written screening questionnaire to define 

their lower back, pelvic and groin injury status that has impacted on their ability to 

train or play. The questionnaire will comprise of two parts; characterisation of 

participants and self-reported injury history.  

 

Characterisation includes: 
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Biological data - age, age at puberty, height, weight 

 

Sporting career – age at which commenced specialist sport, amount of playing / 

practice time, position played, level of competition. 

 

Injury will be defined as an acute adductor longus muscle strain (grade I,II or III) 

diagnosed by the team physiotherapist or a team physician and impacts the ability to 

do physical activity. Each sportsman/woman will include a description and location of 

the injury and will be required to indicate their injury location on a body chart 

(attached).  

 

It is at this point that consent will be taken and the questionnaire gone through with 

the subject. At this time, additional data will be collected on: 

- Family history  
- Past medical history  
- Playing load – past / preseason / current 
- Injury – onset / presence of prodromic symptoms 
- Pain area and behaviour 

 

A physical examination will then be undertaken to determine appropriate inclusion 

criteria as well as other associated features that may identify subgroups in analysis 

of the data. This will include: 

- Hip joint range of motion and pain provocation tests 

- SIJ Kinetic tests 

- Isometric hip adduction force and symptom provocation 
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- Thomas test – muscle length and strength 

- Squeeze test – resisted adduction (0 / 60 / 90 degrees of hip flexion) 

- Unilateral Resisted Abduction test (30 degrees of hip flexion) 

- Bilateral Resisted Abduction test (30 degrees of hip flexion) 

- Palpation of the adductor tendons, adductor muscles and pubic insertion 

- SIJ passive motion analysis 

- Response to ASLR 

- Hip quadrant testing  

- Labral “grind” test 

- ultrasound investigation 

 

 

Subjects will then undergo concentric and eccentric peak torque measurements and 

motion analysis measurements using non-invasive 3-dimensional infra-red cameras 

(Codamotion cx1, Charnwood Dynamics, Loughborough, UK) and force plates 

(Kistler, USA) - using standard marker placement protocols for the spine, pelvis and 

lower limb. In addition to motion analysis, electromyographic (EMG) readings will be 

taken using the wireless surface EMG device (Noraxon Telemyo 2400T, Scottsdale, 

Arizona, USA) of the following muscles : 

- Hip adductors  - 2 channels – Adductor longus and magnus 
- Gluteus medius 
- Gluteus maximus 
- Abdominals – external oblique 
- Rectus femoris  
- Biceps femoris 
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Testing will take place in the Human Performance Laboratory at QMUL and should 

take no longer than 120 minutes.  

 

Simultaneous measurements of muscle strength will also be made using a hand held 

dynamometer.  
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Data analysis  

Based on the results of the questionnaire and the physical examination, two sub-

groups will be defined: one with a presentation of acute groin pain of soft tissue 

origin and a control group. The sub-group of participants will be tested 4 times: 

 Shortly after injury (maximum 5 days) 
 3 weeks after first test 

 6 weeks after first test 

 9 weeks after first test 
 

Controls will be age, height and activity matched and will only be tested once. 
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Analysis of collected data for defined sub-groups will be done using a mathematical 

model written in MatLAb (Mathworks, USA).   

 

Statistical analysis  

The data will be assessed for normality and appropriate group comparison analysis 

undertaken accordingly. The power of the study will be 80% with statistical 

significance set at p < 0.05.  

 

Attached to the application is a flowchart of the study (Attachment 1). 

10 Participants to be studied 

 

Number of participants – approximately 15 symptomatic players and 10 

asymptomatic players to build a control group. 

 

Lower age limit – 18  

Upper age limit – 70 

 

11 Selection criteria 

 

Acute adductor longus injury 
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Inclusion criteria 

 18 yr of age or older 

 Playing elite- or sub elite-level sport 

 Activity-related, acute onset groin pain that has been diagnosed as adductor 
strain (grade I, II or III) confirmed by ultrasound imaging and/or MRI scan 

 

Control group 

Inclusion criteria 

 Over 18 years of age 

 Playing elite- or sub elite-level sport 
 

Exclusion criteria 

 History of groin pain or acute groin injury 

 Surgery to their lower abdominal, hip, or groin region, or a frank inguinal 
hernia 

 History of prolonged lumbar pain in the past year 
 Lumbar pain during examination 

 Neurological symptoms 

 Systemic disease 

 Significant psychological condition  
 

.  

12 Recruitment (including incentives and compensation) 

 

Participants will be approached indirectly through an advert provided by email to the 

medical staff of various football clubs. The medical staff at various clubs will have full 

details of the study and will have consented to provide this information to their 

academy teams. 
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The advert will include details of the research project, its purpose, objective and that 

participants are required. The advert will reflect the affiliation with QMUL and that the 

study has the full backing of the football clubs. This advert will be subject to 

consideration by Dr Morrissey prior to use. 

Medical staff at the clubs will be asked to discuss the study with players and 

provide them with an information sheet detailing the study and the 
requirements of each participant, along with a consent form.  

A contact telephone number will also be enclosed so that any questions or 
queries potential participants might have can be addressed through a follow 
up telephone interview with Dr Dylan Morrissey or Paulina Kloskowska. 

If a player is happy to participate details will be collected by the club’s medical 
staff or Paulina Kloskowska. It is anticipated that a group of players will be 

tested at similar times and in the presence of the club physiotherapy staff. 
Consent will be documented at the time of testing. 

Travelling expenses to a maximum of ten pounds per person will be given. 

The assessments will all be undertaken at the HPL, QMUL.  As an incentive, 
each participant and their medical team will be offered an explanation of the 

findings. No financial or other reward will be given to participants. 

 

13 Ethical considerations and risks to participants 

The main ethical issue will be the need to ensure voluntary participation from 
players within a club environment. As the clubs will not be incentivised in any 

way to participate, it is not anticipated that any form of coercion will occur.  

The need to remove sufficient clothing to attach the motion markers to the 
torso and legs is also another consideration. In order for the EMG electrode 

pads to be well adhered, small areas of the skin will need to be shaved and 
cleaned. Privacy in the data collection areas will be maximised and subjects 

will be encouraged to bring suitable clothing. The presence of the club’s 
physiotherapy staff should also ensure that players are confident in the 
testing being undertaken. 

Full and informed consent will be obtained from each participant before 
entering the study. The participant will be given an information sheet detailing 

what the study entails and what is required of the participant. This will also be 
reiterated in person with the opportunity to ask any questions about the 
project.  

Each participant will be protected from harm or injury with all measurements 
being undertaken in a controlled manner. Participants will be encouraged to 

avoid potentially painful movements or range of motion. 
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Each participant will have the right to withdraw from the research at any time, 

and for whatever reason.  

 

14 Confidentiality, anonymity, and data storage 

Each participant’s confidentiality and privacy will be assured by the use of a 
code which will be characterized by each participant’s initials and the date of 

the test.  Each participant will be allocated their code on consenting to the 
study and each coded participant will also have the date that the assessment 

will be undertaken. This will ensure each participant’s anonymity. Only the 
QMUL research team involved in the investigation will have access to the 
corresponding name/number data and any other personal information, which 

will be securely held on a separate server, requiring a password. The data will 
be securely stored, easily retrievable and well indexed.  

Sensitive data will be stored on password protected server databases to which only 

the investigators will have access too, all such data will be handled in accordance 

with the provisions of the Data protection Act 1998. 

 

15 Information for participants 

Headed Paper 

 

REC Protocol Number.…........... 

 

YOU WILL BE GIVEN A COPY OF THIS INFORMATION SHEET  

 
We would like to invite you to participate in this research project. You should 
only participate if you want to; choosing not to take part will not disadvantage 

you in any way. Your decision will not affect your access to treatment or 
services. Before you decide whether you want to take part, it is important for 

you to understand why the research is being done and what your participation 
will involve. Please take time to read the following information carefully and 
discuss it with others if you wish. Ask us if there is anything that is not clear or 

if you would like more information.  
 

If you volunteer to take part you will be invited to meet the study team at the 
Human Performance Laboratory, Queen Mary’s University of London.  After 
answering any questions you may have, you will be asked to fill in a 

questionnaire. The first part will ask for you for personal details such as age, 
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height, weight, other sporting activities past and present and amount of 

playing time. The second part will deal with self-reported injury, particularly 
pain or injury in the groin area. 

 
A short physical examination will be undertaken to determine your suitability 
to participate.  

 
  

We will then attach several electrodes that will be used to measure the 
electrical activity in your muscles. These electrodes do not carry any 
electricity into your body. These electrodes are self adhesive and designed to 

stick to skin and be removed easily and painlessly.  
After that you will be asked to perform a couple of movements and the force 

of these movement will be measured. This will be obtained by attaching your 
leg to the special machine, which is able to measure the strength of the 
movement. 

This will be followed by the application of 20 small infra-red motion sensors to 
your trunk and legs with medical grade double sided sticky tape. This will 

require you to wear clothing that reveals the skin of the lumbar spine, 
shoulder blades and legs. A pair of close fitting shorts would be ideal. We can 
provide these if necessary. 

 We will then make some measurements of your movement patterns during 
several movement tasks while standing or lying on a force plate that 

measures weight transfer. The total time required to attach markers and 
marker boxes and to measure the movement should be about one hour. 
 

We do not anticipate any risk or discomfort by participating in this study. You 
will be encouraged to avoid any movements that may reproduce your pain or 

make it worse. In order to participate in the study you will be asked to meet 
certain study inclusion/exclusion criteria.  
If you participate in this study you will be given an identification number and 

so will remain completely anonymous throughout. All personal information 
linking you to this number will be kept separately and stored securely on a 

database server to which only I will have access to. All information will be 
handled in accordance with the provisions of the data protection act 1998 and 
your confidentiality assured. 

 
My correspondence details are included in this application if you wish to 

contact me, to obtain further details or to ask any questions regarding the 
study: 
Paulina Kloskowska 

p.kloskowska@qmul.ac.uk 07428147932 
Centre for Sport and Exercise Medicine 

Mile End Hospital 
Bancroft Road 
LONDON E1 4DG 

 
Alternatively, you can contact: 

mailto:p.kloskowska@qmul.ac.uk
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Dr Dylan Morrissey  

Centre for Sport and Exercise Medicine 
Mile End Hospital 

Bancroft Road 
LONDON E1 4DG 
And on d.morrissey@qmul.ac.uk 02082238839  

 
 

 

16 Consent  

Please complete this form after you have read the Information Sheet and/or listened 

to an explanation about the research. 

 

Title of Study: The biomechanical determinants of lumbo-pelvic muscle imbalance in 

footballers with adductor-related groin pain. 

 

 

 Queen Mary Research Ethics Committee Ref: ________________ 

 

. • Thank you for considering taking part in this research. The 
person organizing the research must explain the project to you before you 
agree to take part.  

. • If you have any questions arising from the Information Sheet or 
explanation already given to you, please ask the researcher before you 

decide whether to join in. You will be given a copy of this Consent Form to 
keep and refer to at any time.  

. • I understand that if I decide at any other time during the 

research that I no longer wish to participate in this project, I can notify the 
researchers involved and be withdrawn from it immediately.  

. • I consent to the processing of my personal information for the 
purposes of this research study. I understand that such information will be 
treated as strictly confidential and handled in accordance with the provisions 

of the Data Protection Act 1998.  

mailto:d.morrissey@qmul.ac.uk


 

328 

 

 

Participant’s Statement:  

I ___________________________________________ agree that the 

research project named above has been explained to me to my satisfaction 
and I agree to take part in the study. I have read both the notes written 
above and the Information Sheet about the project, and understand what 

the research study involves.  

Signed: Date:  

Investigator’s Statement:  

I ___________________________________________ confirm that I have 
carefully explained the nature, demands and any foreseeable risks (where 

applicable) of the proposed research to the volunteer.  

Signed: Date: 

 

17 Signature of applicant and authorising signatories. 

 

 

 

 

 

  



 

329 

 

Appendix 8 

Inclusion and exclusion criteria form for the observational study. 

 

FORM A 

 

Code: 

 

Age: 

 

Height: 

 

Weight: 

 

Dominant leg: 

 

Symptomatic leg:  

 

Level of competition now played: 

 

Current/recent symptoms: 

 

 

Please mark the area of your symptoms on the body chart attached on the last 
page. 

 

 How long have these symptoms been present / were they present for? 

 

 

 Describe how these symptoms started 

 

 

 Have you had any treatment for this condition? Please explain. 
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Have you had any investigations for this condition? Please explain. 

 

 

 

PART I: Inclusion criteria 

 

1. Tenderness on palpation: 
 

 

a. Adductor tendon 
 

 

b. Adductor insertion to pubic bone 
 

 

c. Pubic symphysis 
 

      d. Iliopsoas muscle  

 

2. Presence of groin pain during active hip adduction against resistance at 
the time of assessment 

 

 

3. Presence of groin pain during active hip flexion against resistance at 
the time of assessment 

 

 

 

4. Presence of groin pain during passive hip abduction (stretch) 
 

 

 

5. Presence of groin pain during passive hip extension (stretch) 
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6. Squeeze test positive (0, 60 or 90 of flexion) 

 

7. Proven muscular pathology on imaging tests 

 

 

 

 

PART II: Exclusion criteria 

 

1. Groin pain that commenced as a result of the articular pathology 

 

 

2. Surgery to the lower abdominal, hip or groin region 

 

 

3. Frank inguinal hernia 

 

 

4. Lumbar pain that predominates on physical examination  

 

 

5. Neurological symptoms 

 

 

6. Systemic disease 

 

 

8. Labral grind test positive 

 

 

9. Flexion adduction  (FAbER) test positive 

 

 

7. Significant psychological condition  
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Appendix 9 

Inclusion and exclusion criteria form for the longitudinal study: first testing occasion. 

 

FORM A 

 

Code: 

 

Age: 

 

Height: 

 

Weight: 

 

Dominant leg: 

 

Symptomatic leg:  

 

Level of competition now played: 

 

Current/recent symptoms: 

 

 

Please mark the area of your symptoms on the body chart attached on the last 
page. 

 

 How long have these symptoms been present / were they present for? 

 

 

 Describe how these symptoms started 

 

 

 Have you had any treatment for this condition? Please explain. 
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Have you had any investigations for this condition? Please explain. 

 

PART I: Inclusion criteria 

 

1. Tenderness on palpation: 
 

 

d. Adductor tendon 
 

 

e. Adductor insertion to pubic bone 
 

 

f. Pubic symphysis 
 

      d. Iliopsoas muscle  

 

2. Presence of groin pain during active hip adduction against resistance at 
the time of assessment 

 

 

3. Presence of groin pain during active hip flexion against resistance at 
the time of assessment 

 

 

 

4. Presence of groin pain during passive hip abduction (stretch) 
 

 

 

5. Presence of groin pain during passive hip extension (stretch) 
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6. Squeeze test positive (0, 60 or 90 of flexion) 

7. Proven muscular pathology on imaging tests 

 

 

 

PART II: Exclusion criteria 

 

1. Groin pain that commenced as a result of the articular pathology 

 

 

2. Surgery to the lower abdominal, hip or groin region 

 

 

3. Frank inguinal hernia 

 

 

4. Lumbar pain that predominates on physical examination  

 

 

5. Neurological symptoms 

 

 

6. Systemic disease 

 

 

8. Labral grind test positive 

 

 

9. Flexion adduction  (FAbER) test positive 

 

 

7. Significant psychological condition  
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337 

 

Appendix 10 

Inclusion and exclusion criteria form for the longitudinal study: subsequent testing 

occasions. 

 

FORM A (subsequent testing) 

Code: 

 

1. Tenderness on palpation: 
 

 

g. Adductor tendon 
 

 

h. Adductor insertion to pubic bone 
 

 

i. Pubic symphysis 
 

      d. Iliopsoas muscle  

 

2. Presence of groin pain during active hip adduction against resistance at 
the time of assessment 

 

 

3. Presence of groin pain during active hip flexion against resistance at 
the time of assessment 

 

 

 

4. Presence of groin pain during passive hip abduction (stretch) 
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5. Presence of groin pain during passive hip extension (stretch) 
 

 

 

 

6. Squeeze test positive (0, 60 or 90 of flexion) 
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Appendix 11 

Inclusion and exclusion criteria form for the control participants in observational and 

longitudinal studies. 

 

FORM B 

 

Code: 

 

Age: 

 

Height: 

 

Weight: 

 

Dominant leg: 

 

Level of competition now played: 

 

 

 

1. History of groin pain 
 

 

2. Surgery to their lower abdominal, hip, or groin region, or a frank 
inguinal hernia 

 

 

3. History of lumbar pain in the past year 
 

 

4. Neurological symptoms 
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5. Systemic disease 
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Appendix 12 

Combine stats GUI – a custom-made MatLab program to statistically analyse the data for the 

observational and longitudinal studies. 

 
function varargout = CombineStatsGUI(varargin) 

 

Beginning of the GUI initialization code 
 

gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 

    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @CombineStatsGUI_OpeningFcn, ... 

    'gui_OutputFcn',  @CombineStatsGUI_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 

if nargin && ischar(varargin) 
    gui_State.gui_Callback = str2func(varargin); 

end 

  

if nargout 

    [varargout1:nargout] = gui_mainfcn(gui_State, varargin{:}); 
else 

    gui_mainfcn(gui_State, varargin{:}); 
end 

 

End of the GUI initialization code 
 

Opening the interface 
  

function CombineStatsGUI_OpeningFcn(hObject, eventdata, handles, 

varargin)  

handles.output = hObject; 
guidata(hObject, handles); 

 

function varargout = CombineStatsGUI_OutputFcn(hObject, eventdata, 

handles) 

varargout{1} = handles.output; 

  

 

Choosing the desired comparisons from a drop-down 

menu available in the GUI 
 

 

function Subject1_Callback(hObject, eventdata, handles)  
MakeSet(hObject, handles) 

function Movement1_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Leg1_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 
function Segment1_Callback(hObject, eventdata, handles) 
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MakeSet(hObject, handles) 
function Time_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function Site1_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Subject2_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Movement2_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 
function Leg2_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function Site2_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function Site3_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Leg3_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Movement3_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Subject3_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 
function Muscle1_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function Muscle2_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function IsSubtract_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Source1_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function Source2_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 
function Source3_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function IsRatio_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
function IsLog_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 

function Contra_Callback(hObject, eventdata, handles) 
MakeSet(hObject, handles) 

function AvSub_Callback(hObject, eventdata, handles) 
function AvMov_Callback(hObject, eventdata, handles) 
function AvLeg_Callback(hObject, eventdata, handles) 

function AvSite_Callback(hObject, eventdata, handles) 
function AvTim_Callback(hObject, eventdata, handles) 

function AvSource_Callback(hObject, eventdata, handles) 
function Participant_Callback(hObject, eventdata, handles) 

function ReportFile_Callback(hObject, eventdata, handles) 

  

 Reading the data 
 

 

function SourceA_Callback(hObject, eventdata, handles) 
sourcefileA=get(handles.SourceA, 'String'); 

[XLNum XLtxt] = xlsread(sourcefileA, 'AllData', 'A10:W3000'); 
Logic=XLNum(:,1:20);  rrlg=length(Logic); 

  

XLNum = xlsread(sourcefileA, 'AllData', 'D10:FD3000'); 

XLNum=XLNum(:,21:end); 
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[rr,cc]=size(XLNum); Data=NaN*ones(rrlg,200); Data(1:rr,1:cc)=XLNum;             
Data=reshape(Data,[rrlg 20 10]); 

data=Data(:,14:15,:); 
disp(length(find(data<5E-5))) 
data(data<5E-5)=NaN; Data(:,14:15,:)=data; 

disp(length(find(data<5E-5))) 
XLNum = xlsread(sourcefileA, 'AllData', 'D10:NV3000'); 

XLNum=XLNum(:,284:end); 
[rr,cc]=size(XLNum); DataK=NaN*ones(rrlg,100); DataK(1:rr,1:cc)=XLNum;             
DataK=reshape(DataK,[rrlg 20 5]); 

DataK(:,:,1:2:9)=DataK(:,:,:); 
DataK(:,:,2:2:8)=DataK(:,:,3:2:9)-DataK(:,:,1:2:7);  

handles.SegDat=DataK; 
handles.EMGDat=Data(:,4:20,:); 
handles.FileNames=XLtxt(:,2); 

SportsGroup=XLtxt(:,1); 
handles.isPat=strcmp('Pat',SportsGroup); 

handles.isAm =strcmp('Am', SportsGroup); 
handles.isPro=strcmp('Pro',SportsGroup); 

handles.isUf =strcmp('Uf', SportsGroup); 
handles.isRb =strcmp('Rb', SportsGroup); 
handles.isFh =strcmp('Fh', SportsGroup); 

handles.SportsGroup=SportsGroup; 
handles.isinj   =Logic(:,1); 

handles.isinjL  =Logic(:,2); 
handles.isinjR  =Logic(:,3); 
handles.pantnum=Logic(:,4); 

handles.isleft  =Logic(:,5); 
handles.isright =Logic(:,6); 

handles.isone   =Logic(:,7); 
handles.israis  =Logic(:,8); 
handles.isbent  =Logic(:,9); 

handles.isquick=Logic(:,10); 
handles.isstand =Logic(:,11); 

handles.isdom   =Logic(:,12); 
handles.isinjipsi   =Logic(:,13); 

handles.isinjcontra =Logic(:,14); 

  
disp('Data loaded') 

guidata(hObject, handles); 

  

  

 

Setting the statistical analysis package 
 

function MakeSet(hObject, handles) 
set(handles.AnovaTableE, 'Visible', 'off'); set(handles.AnovaTableK, 

'Visible', 'off') 

set(handles.BonFerr, 'Visible', 'off'); set(handles.BonFerrK, 

'Visible', 'off') 

set(handles.text35, 'Visible', 'off'); set(handles.text113, 'Visible', 

'off') 
set(handles.text38, 'Visible', 'off'); set(handles.text114, 'Visible', 

'off') 

hhE=handles.axes1;   hhEp=handles.axes2;   hhK=handles.axes3;    

hhKp=handles.axes4; 
hhCor=handles.axes5; hhCor2=handles.axes6; hhCor3=handles.axes7; 

hhCor4=handles.axes8; 
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cla(hhK, 'reset');   cla(hhE, 'reset');    cla(hhKp, 'reset');   

cla(hhEp, 'reset'); 

cla(hhCor, 'reset'); cla(hhCor2, 'reset'); cla(hhCor3, 'reset'); 

cla(hhCor4, 'reset'); 
hhCorList=[hhCor hhCor2 hhCor3 hhCor4]; 

  

Reading the settings from the data chosen for 

further comparisons 

 
Source(1)=get(handles.Source1, 'Value');    

Source(2)=get(handles.Source2, 'Value');      

Source(3)=get(handles.Source3, 'Value'); 
Subject(1)=get(handles.Subject1, 'Value');  

Subject(2)=get(handles.Subject2, 'Value');    

Subject(3)=get(handles.Subject3, 'Value'); 
MoveMent(1)=get(handles.Movement1, 

'Value');MoveMent(2)=get(handles.Movement2, 'Value');  

MoveMent(3)=get(handles.Movement3, 'Value'); 

Leg(1)=get(handles.Leg1, 'Value');  

Leg(2)=get(handles.Leg2, 'Value');            Leg(3)=get(handles.Leg3, 

'Value'); 

Site(1)=get(handles.Site1, 'Value');        Site(2)=get(handles.Site2, 

'Value');          Site(3)=get(handles.Site3, 'Value'); 

Muscle(1)=get(handles.Muscle1, 'Value');    

Muscle(2)=get(handles.Muscle2, 'Value'); 
Angle=get(handles.Segment1, 'Value'); 

Contra=get(handles.Contra, 'Value'); 
Time=get(handles.Time, 'Value'); 

if Time==1; TT=1; end 
if Time==2; TT=2; end 

if Time==3; TT=[1 3]; end 
if Time==4; TT=[2 4]; end 
if Time==5; TT=[1 3 5]; end 

if Time==6; TT=[2 4 6]; end 
if Time==7; TT=[1 3 5 7]; end 

kk=length(TT); 

  

cols={'b' 'r' 'g'}; 

if Source(3)==14; jj=2; else jj=3; end; handles.jj=jj; 

  

Y4avE=[]; Y4avK=[]; Pant4av=[]; Sj4av=[]; 

M4av=[];L4av=[];St4av=[];T4av=[]; So4av=[];  

 

Collecting the relevant sEMG data from the data 

set in the interface 
 

 

 

p=0;  

ReportE(1:4,1:15)={[]};ReportK(1:4,1:15)={[]}; 
TtestsE(1:4,1:15)={[]}; TtestsK(1:4,1:15)={[]}; 

for k=1:4; SubDatE{k}=[]; SubDatK{k}=[]; GList{k}=[]; end;  

handles.XLTab=[];handles.XLTab{kk,jj}=NaN;  
for j=1:jj   

 

Choosing the source of the data (groups of 
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participants) 

 
    if Source(j)==1;  SoUse= handles.isAm | handles.isPro | 

handles.isUf | handles.isRb | handles.isFh;end % AllData 

    if Source(j)==2;  SoUse= handles.isAm ; end % Amateurs only 
    if Source(j)==3;  SoUse= handles.isPro ; end % Professionals only 

    if Source(j)==4;  SoUse= handles.isRb ; end % Rugby 

    if Source(j)==5;  SoUse= handles.isUf     ; end % Frisbee 
    if Source(j)==6;  SoUse= handles.isFh     ; end % Field hockey 

    if Source(j)==7;  SoUse=  handles.isPro|  handles.isRb | 

handles.isFh;end % H P R 

    if Source(j)==8;  SoUse= handles.isAm | handles.isUf ;end % A F 
    if Source(j)==9;  SoUse= handles.isAm | handles.isPro ;end % A P 
    if Source(j)==10;  SoUse= handles.isAm | handles.isPro | 

handles.isRb ;end % A P R 
    if Source(j)==11;  SoUse=  handles.isRb | handles.isFh;end % H R 

    if Source(j)==12;  SoUse= handles.isAm | handles.isPro | 

handles.isUf ;end % A P F 
only 

     
    if Subject(j)==1; SjUse= handles.isinj | ~handles.isinj ; end % 

All 
    if Subject(j)==2; SjUse= handles.isinj; end % Injured 

    if Subject(j)==3; SjUse=~handles.isinj; end % Un-injured 
    if Source(3)==14 
        if Subject(1)==Subject(2) && Source(1)==Source(2) 

            Paired=1; 
        else 

            Paired=0; 
        end 

    else 

        if Subject(1)==Subject(2) && Source(1)==Source(2) && ..... 
                Subject(3)==Subject(1) && Source(3)==Source(1)  ; 

            Paired=1; 
        else 
            Paired=0; 

        end 
    end 

 

Choosing the source of the data (movement 

manoeuvre to be further analysed) 
 

     
    if MoveMent(j)==1; MvUse=handles.isone | handles.isbent | 

handles.israis| handles.isstand | handles.isquick;end % Any 

    if MoveMent(j)==2; MvUse=handles.isone; end % One Leg Bend 
    if MoveMent(j)==5; MvUse=handles.isstand; end % Hip Flexion 

 

Choosing the source of the data (leg to be further 

analysed) 
 

 

    if Leg(j)==1; LgUse=handles.isleft | handles.isright; end % Either 

    if Leg(j)==2; LgUse=handles.isleft; end % Left 
    if Leg(j)==3; LgUse=handles.isright; end % Right 
    if Leg(j)==4; LgUse=handles.isdom; end % Dominant 
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    if Leg(j)==5; LgUse=~handles.isdom; end % Non-Dominant 
    if Leg(j)==6; LgUse=handles.isinjipsi; end % Injured 

    if Leg(j)==7; LgUse=~handles.isinjipsi; end % Uninjured 

     

     

Choosing the source of the data (movement phase to 

be further analysed) 
 

     

    for k=1:kk          handles.XLTab{k,j}=[]; 
        TmUse=TT(k); 

        Use=SoUse & SjUse & MvUse & LgUse;  

 

 

 

Choosing the source of the data (what is the leg 

status to be further analysed) 
 

 
if Site(j)==2; ALorR=Use(Use); end             % Right; 

        if Site(j)==3; ALorR=handles.isinjR(Use); end  % Injured; 
        if Site(j)==4; ALorR=handles.isinjL(Use); end  % Uninjured; 

        if Site(j)==5; ALorR=handles.isright(Use); end % Moving; 
        if Site(j)==6; ALorR=handles.isleft(Use); end  % Not moving; 

 

 

 

sEMG data processing for the formerly selected 

analysis combination(filtering, rectifying, 

smoothing and log transforming) 
         
        EMGUse=squeeze(handles.EMGDat(Use,:,TmUse)); 

        SegDatUse=squeeze(handles.SegDat(Use,:,TmUse)); 

        PantUse{j,k}=handles.pantnum(Use); 
        handles.SGUse{j,k}=handles.SportsGroup(Use); 

        if Site(j)==1; ALorR=~Use(Use); end             
        clear SetE RawSet 
        Ratio=get(handles.IsRatio, 'Value'); if Ratio; qq=2; else 

qq=1; end 
        for q=1:qq 

            if q==2 && Contra; ALorR=~ALorR; end 
            MMuse=ones(size(EMGUse,1),1)*2*Muscle(q)-1; 

            MMuse=MMuse+ALorR; 

            if isempty(EMGUse); disp('No Data Available'); return; end 
            RawSet(:,q)=EMGUse(sub2ind(size(EMGUse), 1:length(MMuse), 

MMuse')); 
        End 

 

        if Ratio; SetE=RawSet(:,1)./RawSet(:,2); else SetE= 

RawSet(:,1); end 

        if get(handles.IsLog, 'Value') ; SetE=log(SetE); end 
        MusNames=get(handles.Muscle1, 'String'); 
        lab2=MusNames(Muscle(1)); lab1=''; lab3=''; 

        if Ratio; lab3=MusNames(Muscle(2)); end 
        if get(handles.IsLog, 'Value'); lab1='Log:'; end 
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        handles.MusName=[char(lab1) char(lab2) '/' char(lab3)]; 

         

         

         

Reading and setting the kinematic data: joints and 

rotations for the formerly chosen data combination 

to be analysed 
 

Ause=  (mod(Angle-1,3)+1)     +   (ceil(Angle/3)-1)*6     + ALorR*3;   
        SetK =  (SegDatUse(sub2ind(size(SegDatUse), 1:length(Ause), 

Ause')))';  

         
        if kk>1 && k==1; StartSet=SetK; end 

        if kk>1 &&  get(handles.IsSubtract, 'Value'); SetK=SetK-

StartSet; end 

         
        AngNames=get(handles.Segment1, 'String'); 

        lab2=AngNames(Angle); lab1=''; lab3=''; handles.AngName=lab2; 
        if get(handles.IsLog, 'Value'); lab1='Log of '; end 
        handles.AngName=[char(lab2) char(lab3)]; 

        Sets{j,k}=SetK;  
        p=p+1; Tab(1:length(SetK),p)=SetK; count(p)=length(SetK);  

 

 

Basic Set statistics – performing the statistical 

analysis 
 

 

        SetEMean(k)={Mynanmean(SetE)};       SetESD=Mynanstd(SetE);               

SetEN(k)={sum(~isnan(SetE))}; 
        SetEMiss(k)={length(SetE)-SetEN{k}}; 

SetESEM(k)={SetESD/sqrt(SetEN{k})}; 
        SetKMean(k)={Mynanmean(SetK)};       SetKSD=Mynanstd(SetK);               

SetKN(k)={sum(~isnan(SetK))}; 

        SetKMiss(k)={length(SetK)-SetKN{k}}; 

SetKSEM(k)={SetKSD/sqrt(SetKN{k})}; 

=Ps=PantUse{j,k}; PList=unique(Ps); clear PSetK PSetE; 

PN=length(PList); 

         
        for p=1:PN; 
            Obs4p=Ps==PList(p);  

            PSetK(p)=nanmean(SetK(Obs4p)); PDatK{p}=SetK(Obs4p); 
            PSetE(p)=nanmean(SetE(Obs4p)); PDatE{p}=SetE(Obs4p); 

            GList{k}=[GList{k}; Ps(Ps==PList(p))];  
        end 
        SubDatE{k}=[SubDatE{k} PSetE]; SubDatK{k}=[SubDatK{k} PSetK]; 

        PairDatE{k,j}=PSetE;           PairDatK{k,j}=PSetK; 
        SetENL(k)={nanN(PSetE)};       SetKNL(k)={nanN(PSetK)}; 

        SetEMeanL(k)={nanmean(PSetE)};   

SetKMeanL(k)={nanmean(PSetK)}; 
        SetESEML(k)={nansem(PSetE)};     SetKSEML(k)={nansem(PSetK)}; 

        

  

         
        handles.GList=GList; 
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Accumulating data for ANOVA 

 
        ZZ=zeros(size(PSetK)); 

        Y4avK=[Y4avK; PSetK']; Y4avE=[Y4avE; PSetE']; 
        Pant4av=[Pant4av; PList]; 
        Sj4av= [Sj4av; ZZ'+Subject(j)]; 

        M4av=[M4av; ZZ'+MoveMent(j)]; 
        L4av=[L4av; ZZ'+Leg(j)]; 

        St4av=[St4av; ZZ'+Site(j)]; 
        T4av=[T4av; ZZ'+k]; 
        So4av=[So4av; ZZ'+Source(j)]; 

         

Plotting the data 
        plot(hhE,SetE*0+k+j/5, SetE, [cols{j} '*']); xlim(hhE,[0.5 

kk+1]); hold(hhE,'on') 

        errorbar(hhE,k+j/5-0.1, SetEMean{k}, SetESEM{k},[cols{j} 'd']) 
        plot(hhK,SetK*0+k+j/5, SetK, [cols{j} '*']); xlim(hhK,[0.5 

kk+1]); hold(hhK,'on') 

        errorbar(hhK,k+j/5-0.1, SetKMean{k}, SetKSEM{k},[cols{j} 'd']) 

         

        for p=1:PN 
            Spider(hhCorList(k),PDatK{p}, PDatE{p}, cols{j}); 

hold(hhCorList(k),'on'); 
            xx=PDatK{p}; yy=PDatE{p}; MeanX=nanmean(xx); 

MeanY=nanmean(yy); 

            pad=NaN*zeros(length(xx)-1,1); 
            disp([k j p]) 

            handles.XLTab{k,j}=[handles.XLTab{k,j} ;[[PList(p); pad], 

yy, [MeanY; pad], xx, [MeanX; pad]]]; 

             

        end 
        if j==jj   

            [Rval,Pval] = corr([SubDatE{k}' SubDatK{k}'], 'type', 

'Pearson', 'rows', 'complete', 'tail', 'both'); 
            label=['R= ' num2str(Rval(1,2),3), ' P= ' 

num2str(Pval(1,2),3)]; 
            text(0.5,0.9, label, 'units', 'normalized', 'Parent', 

hhCorList(k)) 

             

        end 

         

         

        clear ReOrdered  

 

        for q=1:size(SegDatUse,1) 
            for a=[1:3 7:9]; 
                ReOrdered(q,a+ALorR(q)*3)=SegDatUse(q,a); 

            end 
            for a=[4:6 10:12]; 

                ReOrdered(q,a-ALorR(q)*3)=SegDatUse(q,a); 

            end 

        end 

         
        handles.SegDatUse{j,k}=ReOrdered; 
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    end  

 

 

Setting the output – report of the statistics 
 

    Col=(j-1)*5+ (1:length(SetKN)); 
    ReportK(1, Col)=SetKN;                  ReportE(1, Col)=SetEN; 

    ReportK(2, Col)=SetKMiss;               ReportE(2, ol)=SetEMiss;  
    ReportK(3, Col)=SetKMean;               ReportE(3, Col)=SetEMean;  

    ReportK(4, Col)=SetKSEM;                ReportE(4, Col)=SetESEM;  
    ReportK(5, Col)=SetKNL;                 ReportE(5, Col)=SetENL; 
    ReportK(6, Col)=SetKMeanL;              ReportE(6,Col)=SetEMeanL;  

    ReportK(7, Col)=SetKSEML;               ReportE(7, Col)=SetESEML;  

   

     

    handles.FileNamesUse{j}=handles.FileNames(Use); 

end  

  

Preparing the data for the t-test and performing 

the t-test 
 

 

compare=[2 3 3; 1 1 2]; 

if jj==3;ncomp=3; else ncomp=1; end 
for j=1:ncomp   

    G1=compare(1,j)-1; G2=compare(2,j)-1; 
    for k=1:kk 
DFE=ReportE{1,5*G1+k}+ReportE{1,5*G2+k}-1; 

        DFK=ReportK{1,5*G1+k}+ReportK{1,5*G2+k}-1; 
        MeanDE=ReportE{3,5*G1+k}-ReportE{3,5*G2+k}; 

        MeanDK=ReportK{3,5*G1+k}-ReportK{3,5*G2+k}; 
        SEDE=sqrt(ReportE{4,5*G1+k}^2+ReportE{4,5*G2+k}^2); 
        SEDK=sqrt(ReportK{4,5*G1+k}^2+ReportK{4,5*G2+k}^2); 

        StudE=abs(MeanDE/SEDE); 
        StudK=abs(MeanDK/SEDK); 

        try 
            PnullE=2*(1-tcdf(StudE,DFE)); 

            PnullK=2*(1-tcdf(StudK,DFK)); 
        catch 

            PnullE=1; 

            PnullK=1; 
        end 

                DFEL=ReportE{5,5*G1+k}+ReportE{5,5*G2+k}-1; 
        DFKL=ReportK{5,5*G1+k}+ReportK{5,5*G2+k}-1; 
        MeanDEL=ReportE{6,5*G1+k}-ReportE{6,5*G2+k}; 

        MeanDKL=ReportK{6,5*G1+k}-ReportK{6,5*G2+k}; 
        SEDEL=sqrt(ReportE{7,5*G1+k}^2+ReportE{7,5*G2+k}^2); 

        SEDKL=sqrt(ReportK{7,5*G1+k}^2+ReportK{7,5*G2+k}^2); 
        StudEL=abs(MeanDEL/SEDEL); 

        StudKL=abs(MeanDKL/SEDKL); 

         try 
            PnullEL=2*(1-tcdf(StudEL,DFEL)); 

            PnullKL=2*(1-tcdf(StudKL,DFKL)); 
        catch 
            PnullEL=1; 

            PnullKL=1; 
        end 
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        TtestsE(1:6,(j-1)*5+k)={MeanDE; SEDE; StudE; 

num2str(PnullE,'%7.2g'); StudEL; num2str(PnullEL,'%7.2g')}; 
        TtestsK(1:6,(j-1)*5+k)={MeanDK; SEDK; StudK; 

num2str(PnullK,'%7.2g'); StudKL; num2str(PnullKL,'%7.2g')}; 
    end 

end 

  
set(handles.Results, 'data', ReportE) 

set(handles.ResultsK, 'data', ReportK) 
set(handles.Ttests, 'data', TtestsE) 

set(handles.TtestsK, 'data', TtestsK) 
handles.Y4avE  = Y4avE;  handles.Y4avK  = Y4avK; 

handles.Sj4av = Sj4av ; handles.M4av  = M4av ; 
handles.L4av  = L4av; handles.St4av = St4av;  handles.T4av  = T4av ; 
handles.Pant4av=Pant4av; handles.Sets=Sets; handles.PantUse=PantUse; 

handles.Subjects=Subject; handles.MoveMent=MoveMent; handles.Tab=Tab; 
handles.Leg=Leg; handles.Site=Site; handles.Source=Source; 

handles.count=count; 
handles.So4av=So4av; 

 

 

Performing paired comparisons 

  
if Paired 

    set(handles.axes2, 'Visible', 'on') 
    axes(handles.axes2);cla;hold on 

    set(handles.PairedTests, 'Visible', 'on'); 
    lincol={'-k' ':m' '-c'}; 
    for j=1:ncomp   

        G1=compare(1,j); G2=compare(2,j); 
        for k=1:kk 

            yy1=PairDatE{k,G1}; 
            plot((k+G1/5)+yy1*0, yy1, 'dr', 'MarkerFacecolor', 'r') 

            yy2=PairDatE{k,G2}; 
            plot((k+G2/5)+yy2*0, yy2, 'db', 'MarkerFacecolor', 'b') 

            for p=1:length(yy1); plot(k+[G1 G2]/5, [yy1(p) yy2(p)], 

lincol{j}); end 
            DF=2*length(find(~isnan(yy1)))-1; Ydiff=yy1-yy2; 

MeanD=nanmean(Ydiff); 
            SKD=nanstd(Ydiff)/sqrt(DF); 
            Stud=abs(MeanD/SKD); 

            try Pnull=2*(1-tcdf(Stud,DF));catch; Pnull=1;end  
            PairedTests(1:5,(j-1)*3+k)={(DF+1)/2; MeanD; SKD; Stud; 

Pnull}; 

             

        end 

        set(handles.PairedTests, 'data', PairedTests); 

         

    end 
    axes(handles.axes4);cla;hold on  
    for j=1:ncomp   

        G1=compare(1,j); G2=compare(2,j); 
        for k=1:kk 
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            yy1=PairDatK{k,G1}; 
            plot((k+G1/5)+yy1*0, yy1, 'dr', 'MarkerFacecolor', 'r') 

            yy2=PairDatK{k,G2}; 
            plot((k+G2/5)+yy2*0, yy2, 'db', 'MarkerFacecolor', 'b') 
            for p=1:length(yy1); plot(k+[G1 G2]/5, [yy1(p) yy2(p)], 

lincol{j}); end 
            DF=2*length(find(~isnan(yy1)))-1; Ydiff=yy1-yy2; 

MeanD=nanmean(Ydiff); 
            SKD=nanstd(Ydiff)/sqrt(DF); 
            Stud=abs(MeanD/SKD); 

            try Pnull=2*(1-tcdf(Stud,DF));catch; Pnull=1;end 
            PairedTests(1:5,(j-1)*3+k)={(DF+1)/2; MeanD; SKD; Stud; 

Pnull}; 
        end 
        set(handles.PairedTestsK, 'data', PairedTests); 

    end  

     

     

else 

    set(handles.PairedTests, 'Visible', 'off'); 
    axes(handles.axes2);cla;hold on 
    set(handles.axes2, 'Visible', 'off') 

end 
%% 

guidata(hObject, handles); 

  

Plotting the kinematic data 
 

function KinemPlot_Callback(hObject, eventdata, handles) 

  

Labels={'Pelvis Moving' 'Pelvis Not Moving' 'Hip Moving' 'Hip Not 

Moving'}; 
YLabels={'Coronal' 'Sagittal' 'Horizontal'}; 

figure(4); 
cols='brg'; 

for j=1:handles.jj 
    if j==1;  clf; end 
    for k=1:size(handles.SegDatUse, 2) 

        SDU=handles.SegDatUse{j,k};         SegDatMean=nanmean(SDU);  
        SegDatSem=nanstd(SDU)/sqrt(size(SDU,1)); 

        sp=0; 
        for pp=1:3 
            for s=1:4 

                sp=sp+1; 
                yy=SegDatMean(sp); ee=SegDatSem(sp); 

                subplot(3,4,sp) 
                errorbar(k, yy, ee, cols(j)); hold on; 
                plot(k, yy, [ 'o' cols(j)] ) 

                if pp==1; title(Labels(s)); end 
                if s==1; ylabel(YLabels(pp)); end 

                if j==2; axis tight; ylm=ylim; while ylm(2)-ylm(1)<20; 

ylm=ylm+[-5 5]; end; ylim(ylm); end; xlim([0.7 3.3]); 
            end 

        end 

    end 

end 
axes(handles.axes1) 

  



 

352 

 

  
function IndPlot_Callback(hObject, eventdata, handles) 

  

 

  

Performing the ANOVA  
 

function ANOVA_Callback(hObject, eventdata, handles) 

MakeSet(hObject, handles) 
set(handles.AnovaTableE, 'Visible', 'on'); set(handles.AnovaTableK, 

'Visible', 'on') 

set(handles.BonFerr, 'Visible', 'on'); set(handles.BonFerrK, 

'Visible', 'on') 

set(handles.text35, 'Visible', 'on'); set(handles.text113, 'Visible', 

'on') 
set(handles.text38, 'Visible', 'on'); set(handles.text114, 'Visible', 

'on') 
Y4avK=handles.Y4avK;  Y4avE=handles.Y4avE; 

Sj4av =handles.Sj4av ;  M4av = handles.M4av  ; 
L4av=handles.L4av;  St4av = handles.St4av;  T4av  = handles.T4av ; 
Pant4av=(handles.Pant4av)'; So4av =handles.So4av ; 

group={}; names={}; 
if get(handles.Participant, 'Value');  group=[group, Pant4av]; 

names=[names 'Ppt']; end 
if get(handles.AvSource, 'Value');  group=[group, So4av]; names=[names 

'Srce']; end 

if get(handles.AvSub, 'Value');  group=[group, Sj4av]; names=[names 

'Subj']; end 

if get(handles.AvMov, 'Value');  group=[group, M4av];  names=[names 

'Movt']; end 
if get(handles.AvLeg, 'Value');  group=[group, L4av];  names=[names 

'Leg'];  end 
if get(handles.AvSite, 'Value'); group=[group, St4av]; names=[names 

'Site']; end 
if get(handles.AvTim, 'Value');  group=[group, T4av];  names=[names 

'Time']; end 
Dim=1:length(names); 
try 

    [~, tableE, statsE]=anovan(Y4avE, group, 'varnames', names, 

'display', 'off', 'model','interaction',  'sstype',2 ); 

    [~, tableK, statsK]=anovan(Y4avK, group, 'varnames', names, 

'display', 'off', 'model','interaction',  'sstype',2 ); 
catch 

    disp('Stats Not Available .. Cuss Now & Try Again Later'); 
    return 

end 
[cE,~,~,~] = 

multcompare(statsE,'display','off','ctype','bonferroni','dimension',Di

m ); 
[cK,~,~,Nms] = 

multcompare(statsK,'display','off','ctype','bonferroni','dimension',Di

m); 
set(handles.AnovaTableK, 'data', tableK) 

set(handles.AnovaTableE, 'data', tableE) 

Switches={.... 

    'Leg=1' 'MovAny';  'Leg=2' 'MovL';'Leg=3' 'MovR';'Leg=4' 

'MovInj';'Leg=5' 'MovUn';.... 
    'Time=1' 'Point 1'; 'Time=2' 'Point 2';'Time=3' 'Point 3';..... 
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    'Site=1' 'Left' ;'Site=2' 'Right';'Site=3' 'Inj' ;'Site=4' 'Uninj' 

;'Site=5' 'Moving' ;'Site=6' ' NotMov';...... 

    'Movt=1' 'Std&Lie' ;'Movt=2' 'Stand'; 'Movt=3'  'Lie';..... 
    'Srce=1' 'A&B'; 'Srce=2' 'GrpA';'Srce=3' 'GrpB';.... 
    'Subj=1' 'All'; 'Subj=2' 'Inj'; 'Subj=3' 'UnInj'}; 

for q=1:length(Switches) 
    Nms=regexprep(Nms, Switches{q,1}, Switches{q,2}); 

end 
for EK=1:2; 

 

Post hoc testing 

 
    if EK==1; c=cE; else  c=cK; end 
    R=size(c,1); 

    BonTable={}; 
    q=0; 

    for r=1:R 
        if sign(c(r,3))==sign(c(r,5)); 
            q=q+1; 

            BonTable(q,1)=Nms(c(q,1)); 
            BonTable(q,2)=Nms(c(q,2)); 

            BonTable(q,3)={num2str(c(q,4))}; 
            if sign(c(q,3))==sign(c(q,5)); Sig='Yes'; else Sig='No'; 

end 

            BonTable(q,4)={Sig}; 
        end 

        if q==0; BonTable(1,1:4)={'          No' 'significantly' 

'different' 'pairs'}; end 

    end 
    if EK==1; set(handles.BonFerr, 'data', BonTable); else 

set(handles.BonFerrK, 'data', BonTable); end 

end 

  

Performing the file output – writing to Excel file 
  

function pushbutton2_Callback(hObject, eventdata, handles) 
FileName=get(handles.ReportFile, 'String'); 
Subjects=handles.Subjects; MoveMent=handles.MoveMent; 

Leg=handles.Leg; Site=handles.Site; Source=handles.Source; 
TG=get(handles.Time, 'Value'); 

GroupNames={'Blue' 'Red' 'Green'}; 
SjLabs={'All' 'Injured' 'Uninjured'}; 
MvLabs={'Any' 'One Leg Bend' 'Bent Knee Fall Out' 'Straight Leg Raise' 

'Hip Flexion' 'QuickHipFlexion'}; 

LgLabs={'Either' 'Left' 'Right' 'Dominant' 'Non-Dominant' 'Injured' 

'Un-injured'}; 
StLabs={'Left' 'Right' 'Injured' 'Un-injured' 'Moving' 'Not Moving'}; 
TmLabs=cell(7,4); 

TmLabs(1,1)={'Point 1'}; 
TmLabs(2,1:1)={'Range 1>2'}; 

TmLabs(3,1:2)={'Point 1' 'Point 2'}; 
TmLabs(4,1:2)={'Range 1>2' 'Range 2>3'}; 
TmLabs(5,1:3)={'Point 1' 'Point 2' 'Point 3'}; 

TmLabs(6,1:3)={'Range 1>2' 'Range 2>3' 'Range 3>4'}; 

TmLabs(7,1:4)={'Point 1' 'Point 2' 'Point 3' 'Point 4'}; 
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SrceLabs={'All data' 'AmFootball' 'ProFootball' 'Rugby' 'Frisbee' 

'Hockey' 'H+P+R' 'A+F' 'A+P' 'A+P+R' 'H+R' 'A+P+F' 'Patient'}; 

ReportE =get(handles.Results, 'data'); 
ReportK =get(handles.ResultsK, 'data'); 

  

  

  

col=0;  
RowHeads={'Time'; 'Graph Colour';'Source'; 'Subject 

group';'Movement';'Moving leg is'; 
          'Position of leg';'EMG 

Source/Angle';'N';'Mean';'SEM';'';'Data Listing'}; 

OutTabGrouped(1:length(RowHeads),1)= RowHeads;  
AA=handles.XLTab; 

[kk jj]=size(AA); 
for j=1:jj 
    Group=GroupNames{j}; 

    if ~(Subjects(j)==4) 
        for k=1:kk             

            col=col+6; 
            OutTabGrouped(9:11, col)=ReportE([1 3 4],k+(j-1)*5); 

            OutTabGrouped(9:11, col+1)=ReportE(5:7,k+(j-1)*5); 

            OutTabGrouped(9:11, col+2)=ReportK([1 3 4],k+(j-1)*5); 
            OutTabGrouped(9:11, col+3)=ReportK(5:7,k+(j-1)*5); 

            aa=AA{k,j}; [rr cc]=size(aa); 
            OutTabGrouped(13+(1:rr), col-2+(1:cc))=num2cell(aa); 
Labs={TmLabs{TG,k}; Group; SrceLabs{Source(j)}; 

SjLabs{Subjects(j)};......... 
                  MvLabs{MoveMent(j)}; LgLabs{Leg(j)}; 

StLabs{Site(j)}; char(handles.MusName)}; 
            OutTabGrouped(1:8, col)=Labs; 

            OutTabGrouped(8, col+2)={char(handles.AngName)}; 
        end 
    end 

end 
a=1; 

xlswrite(FileName, OutTabGrouped, 'Grouped data', 'C5')             

             

Collecting all of the used functions in one place  
 

 

function radiobutton3_Callback(hObject, eventdata, handles) 

  

function Subject1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
end 

function Movement1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
end 

function Leg1_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function Segment1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

function Time_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

function Site1_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

function SourceA_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Subject2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Movement2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Leg2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Site2_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Muscle2_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Subject3_CreateFcn(hObject, eventdata, handles) 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 
function Movement3_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 

end 

function Leg3_CreateFcn(hObject, eventdata, handles) 

  
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 
end 

function Site3_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
end 

function ReportFile_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
end 

function LastRec_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
end 

function SourceB_CreateFcn(hObject, eventdata, handles) 
function Source1_CreateFcn(hObject, eventdata, handles) 

function Source2_CreateFcn(hObject, eventdata, handles) 
function Source3_CreateFcn(hObject, eventdata, handles) 
function Muscle1_CreateFcn(hObject, eventdata, handles) 

function Names_CreateFcn(hObject, eventdata, handles) 
if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 

  
function axes6_ButtonDownFcn(hObject, eventdata, handles) 

cases=handles.GList(Vlasic et al.) ; 
gname(cases) 

  

function GroupStatsVis_Callback(hObject, eventdata, handles) 
ON=get(hObject, 'Value'); 

if ON  
    set(handles.Results, 'Visible', 'on') 

    set(handles.ResultsK, 'Visible', 'on') 
    set(handles.text32, 'Visible', 'on') 
else  

    set(handles.Results, 'Visible', 'off') 
    set(handles.ResultsK, 'Visible', 'off') 

    set(handles.text32, 'Visible', 'off') 
end 

 

function UnpTVis_Callback(hObject, eventdata, handles) 
ON=get(hObject, 'Value'); 

if ON  
    set(handles.Ttests, 'Visible', 'on') 
    set(handles.TtestsK, 'Visible', 'on') 

    set(handles.text33, 'Visible', 'on') 

else  

    set(handles.Ttests, 'Visible', 'off') 
    set(handles.TtestsK, 'Visible', 'off') 
    set(handles.text33, 'Visible', 'off') 

end 

  

function PaiTVis_Callback(hObject, eventdata, handles) 
ON=get(hObject, 'Value'); 
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if ON  
    set(handles.PairedTests, 'Visible', 'on') 

    set(handles.PairedTestsK, 'Visible', 'on') 
    set(handles.text34, 'Visible', 'on') 
else  

    set(handles.PairedTests, 'Visible', 'off') 
    set(handles.PairedTestsK, 'Visible', 'off') 

    set(handles.text34, 'Visible', 'off') 
end 

  

  

function AnoVis_Callback(hObject, eventdata, handles) 

ON=get(hObject, 'Value'); 
if ON  

    set(handles.AnovaTableE, 'Visible', 'on') 
    set(handles.AnovaTableK, 'Visible', 'on') 
    set(handles.BonFerr, 'Visible', 'on') 

    set(handles.BonFerrK, 'Visible', 'on') 
    set(handles.text35, 'Visible', 'on') 

     set(handles.text38, 'Visible', 'on') 
      set(handles.text113, 'Visible', 'on') 
     set(handles.text114, 'Visible', 'on') 

else  
    set(handles.AnovaTableE, 'Visible', 'off') 

    set(handles.AnovaTableK, 'Visible', 'off') 
    set(handles.BonFerr, 'Visible', 'off') 

    set(handles.BonFerrK, 'Visible', 'off') 

        set(handles.text35, 'Visible', 'off') 
     set(handles.text38, 'Visible', 'off') 

      set(handles.text113, 'Visible', 'off') 
     set(handles.text114, 'Visible', 'off') 
end 
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Appendix 13 

% This function processed EMG:  filtered, rectified and smoothed. 

  
% Filtering: needs two functions: NotchFilter and PassFilter 
% Rectifying: Prof's idea of rectifying the negative values according 

to 
% the mean of de- and re-polarisation, rather than according to zero. 

  
% Smoothing: according to the window size depending on the sample 
% frequenct, but being always 0.1 sec (also following Prof - but maybe 

needs to be checked) 

  

  
function proEMG = EMGprocessing(rawEMG, SF) 

% for TMSI following Prof 
% windowSize is 0.1 sec (depending on the smapling frequency of the 

input data) 

  
windowSize=0.1*SF; 

  

  
[FiltData1]=NotchFilter (rawEMG,50,SF);% 50 here - what frequency is 

desired to be filtered out 

[FiltData2]=PassFilter (FiltData1,[10 400],SF); 
bls=mean(FiltData2(1000:length(FiltData2),:),1); 
rectEMG=abs(FiltData2-repmat(bls,length(FiltData2),1)); 

  
proEMG=filter(ones(1,windowSize)/windowSize,1,rectEMG); 
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 Functions called by this programme 

 

1. NotchFilter 
 

%% Notch filter 
% input DirtyData = dirty data, 
%       cutoo = target cutting frequency, 
%       fs= sampling rate 
% 
function [FiltData]=NotchFilter(DirtyData,cutoff,Fs) 

  
            Time=((1:length(DirtyData))-1)/Fs; 
            Raw=timeseries(DirtyData,Time); 

            Ints=[cutoff-2 cutoff+2]; % the frequency intervals, in 

hertz, for filtering the data: 
            Filt = idealfilter(Raw,Ints,'notch'); 
            FiltData=Filt.Data; 
            figure 
            plot(Time, DirtyData); 
            hold on 
            plot(Time, FiltData, 'r'); 

 

 

2. PassFilter 
 

%% Band-Pass filter 
% input DirtyData = dirty data, 
%       pass = target cutting frequency, 
%       fs= sampling rate 
% 

 
function [FiltData]=PassFilter(DirtyData,pass,Fs) 

  
            Time=((1:length(DirtyData))-1)/Fs; 
            Raw=timeseries(DirtyData,Time); 
            Ints=pass; % the frequency intervals, in hertz, for 

filtering the data: 
            Filt = idealfilter(Raw,Ints,'pass'); 
            FiltData=Filt.Data; 
            figure 
            plot(Time, DirtyData); 
            hold on 
            plot(Time, FiltData, 'r'); 

 


