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ABSTRACT

In this paper we present an approach to modeling the non-linearities
of analog electronic components using time-variant digital linear
filters. The filter coefficients are computed at every sample de-
pending on the current state of the system. With this technique
we are able to accurately model an analog filter including a non-
linear inductor with a saturating core. The value of the magnetic
permeability of a magnetic core changes according to its magnetic
flux and this, in turn, affects the inductance value. The cutoff fre-
quency of the filter can thus be seen as if it is being modulated by
the magnetic flux of the core. In comparison to a reference non-
linear model, the proposed approach has a lower computational
cost while providing a reasonably small error.

1. INTRODUCTION

This work investigates how it is possible to use linear, time vari-
ant filters in order to introduce non-linearities in a digital signal
processing system. The idea is to use time-varying infinite im-
pulse response filters whose coefficients are updated at every time
sample according to the state of the system at the previous time
sample. This approach is applied here to solve electronic circuits
with non-linear components in the digital domain and can be used
as a building block for Virtual Analog applications.

Non-linear DSP systems are governed by non-linear equations
that have to be solved iteratively at a non-negligible computational
cost [1, 2]. Adding a new non-linear equation to an existing sys-
tem increases the computational cost even further and requires
sometimes to partially re-design the existing system [3]. Non-
iterative ways to solve such systems have been proposed which
rely on pre-computed tables [4]. The lookup tables method does
not scale up easily to systems with multiple non-linearities as this
increases the dimensionality of the table, increasing memory usage
and computational cost.

The method presented in this paper replaces the non-linear
equations with a time-varying linear filter, which is by itself less
expensive in terms of computations and can, potentially, be ex-
panded to replace systems with multiple non-linearities with higher-
order filters. We do not expect the output of our approximated
model to be a sample-by-sample replica of the results obtainable
with more accurate simulations, but we expect it to be close enough
that the loss in accuracy is justified by improvements in execution
speed and scalability.

While general criteria that determine the stability of station-
ary recursive filters are well defined in the literature [5], criteria
to assess the stability of time-variant linear filters can be studied
and defined only under some specific conditions. Existing work

mainly focuses on bounded input-bounded output stability [6, 7]
and transient suppression [8]. However, these methods are not
readily applicable when filter coefficients are changing at every
sample. Recent work proves that stable time-varying behavior can
be obtained using state variable filters [9]. However, as in this
paper we deal with passive first-order filters, we chose to use a
different filter topology.

In [10], time-varying coefficients are used to introduce a clip-
ping function in the feedback loop of an IIR filter, in order to re-
produce the behaviour of analog voltage controlled filters. In [11]
it is shown that this method affects the frequency response of a
resonant filter by increasing its bandwidth and moving its centre
frequency. The use of IIR coefficients varying on a sample-by-
sample basis has been exploited previously in [12] where feed-
back amplitude modulation is used for sound synthesis and in [13]
where time-varying fractional delays are used to model non-linear
vibrating strings.

In this paper we will present a physically-informed model for
an inductor, with its characteristic non-linearity caused by the satu-
ration of the magnetic core [14]. Non-linear differential equations
and a state-space model to solve the non-linear transformer are
presented in [15], whereas a Wave Digital Filter approach can be
found in [16].

From a physical standpoint, the saturation of the core in an in-
ductor affects the present value of its inductance. From this consid-
eration we will build an infinite impulse response (IIR) linear filter
whose coefficients are updated at every time step using the actual
value of the inductance given by the current saturation state of its
core. This will produce a delay-free loop which we will address
using a variation on the classic 1-sample delay approach, widely
used in the literature ([17, 18]), and linearizing the system around
the operating point. D’angelo recently discussed the linearization
of a non-linear system around an operating point to solve a transis-
tor ladder filter [19], generalizing the delay-free loops resolution
method in [20].

The physics of the non-linear inductor is reviewed in Sec-
tion 2. Section 3 will present a reference non-linear discrete-time
model for the inductor which will be used to evaluate the approxi-
mated model presented in Section 4. Results and discussion follow
in Section 5 and Section 6 respectively.

2. PHYSICS OF INDUCTORS

An inductor is a passive component with inductive behavior, usu-
ally built using a coil of wire winded on a core made of ferro-
magnetic material, such as ferrite. While inductors are often mod-
eled as linear components, most real inductors exhibit non-linear

DAFX-1

http://c4dm.eecs.qmul.ac.uk
mailto:g.moro@qmul.ac.uk
http://www.eecs.qmul.ac.uk/~andrewm/
mailto:a.mcpherson@qmul.ac.uk


Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015

behavior caused primarily by the progressive saturation of their
ferromagnetic core. The distortion caused by the core occurs pri-
marily for signals with large currents and low frequencies.

We present here a simplified model for the inductor which
models the saturation of the core but does not take into account
losses, hysteresis and parasitic parameters.
From Faraday’s laws we have, for a solenoid:

dB

dt
=

VL
NS

(1)

whereB is the magnetic flux density in the inductor core, VL is the
voltage across the inductor, S is the area of the section of the core
and N is the number of turns in the inductor. Ampere’s law gives
the magnetizing force H for a solenoid traversed by a current IL
as: [21]

H =
NIL
l

(2)

and l is the length of the induction path. In an ideal inductor there
is a linear relation between the flux density and the magnetizing
force:

B = µH (3)

where µ is the absolute magnetic permeability of the core, defined
as:

µ = µ0µi (4)

where µ0 is the vacuum permeability and µi ≥ 1 is the relative
permeability of the magnetic core. In the case of a ferromagnetic
core, however, the magnetic flux density cannot be increased above
a certain value. This value is called magnetic flux density satura-
tion and depends on the material and geometry of the core.

For low flux density levels, Eq. (3) is valid and the inductor can
be considered as a linear component. As the core approaches the
saturation level Bsat, the relation between H and B becomes non
linear, the magnetic characteristics of the core change from those
of a ferromagnetic material to those of a paramagnetic material and
the value of µ progressively changes from being µ = µi ·µ0 when
B = 0 to being approximately µ = µ0 when B = Bsat. The
Fröhlich-Kennelly relation gives the following relation betweenB
and H for a ferromagnetic core: [22]

B =
H

c+ b|H| (5)

where b and c are defined as

b =
1−

√
1
µi

Bsat

c =
1

µ0µi

The B-H relation described by these formulas is shown in Fig. 1.
For small values of |H| and/or large values of Bsat, Eq. (5) is
equivalent to Eq. (3), thus explaining the linear behaviour at low
currents.
The inductance L of a solenoid is derived by Ampere’s law as:
[21]

L =
µN2S

l
(6)
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Figure 1: Anhysteretic B-H curve according to the Fröhlich model
for an inductor with a ferrite core (ui = 400, Bsat = 1.3)

where N , S, l, µ are the physical parameters of the inductor de-
scribed above. As denoted by Eqs. (3) and (5), µ is not constant
and its value can drop by several orders of magnitude as the core
progressively saturates and this is reflected directly on the value of
the inductance through Eq. (6).

3. DISCRETIZATION OF THE NON-LINEAR INDUCTOR

In order to solve a circuit including a non-linear inductor in the
discrete-time domain, Eqs. (1), (2) and (5) have to be discretized.
This is straightforward for Eqs. (2) and (5):

H[n] =
N

l
IL[n] (7)

B[n] =
H[n]

c+ b|H[n]| (8)

while Eq. (1) requires an integration formula. The solution to an
equation of the form:

dx

dt
= f(x, t) (9)

is given in the discrete-time domain by the backward Euler for-
mula as: [23]

x[n] = x[n− 1] + Tf(x[n]) (10)

where T is the sampling period of the discrete-time system. This
formula, when applied to Eq. (1), yields:

B[n] = B[n− 1] +
T

NS
VL[n] (11)

Combining Eqs. (7), (8) and (11), we obtain:

VL[n] =
NS

T

(
N
l
IL[n]

c+ bN
l
|IL[n]|

−B[n− 1]

)
(12)

Where VL[n] is the voltage across an inductor at a time instant
n given the current through it IL[n] and the magnetic field at the
previous time instant B[n− 1] .
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3.1. High pass filter

We now consider the circuit in Fig. 2. In this circuit low frequen-
cies from the input Vi will find an easier path to ground through
the inductor than high frequencies, therefore, considering node Vo
as the output, the circuit will act as a high pass filter. For the circuit
in Fig. 2, the current through the inductor is:

IL[n] =
Vi[n]− Vo[n]

R
(13)

while the voltage across the inductor is:

VL[n] = Vo[n] (14)

Substituting these values in Eqs. (7), (11) and (12) gives:

B[n] = B[n− 1] +
T

NS
Vo[n] (15)

Vo[n] =
NS

T

(
N
l
Vi[n]−Vo[n]

R

c+ bN
l
|Vi[n]−Vo[n]

R
|
−B[n− 1]

)
(16)

Combining Eqs. (15) and (16) we obtain the following system
equation for the discretized version of the circut in Fig. 2 with
a non-linear inductor.

V 2
o [n]β[n]− Vo[n]γ[n]− δ[n] = 0 (17)

with

β[n] = bNTk[n]

γ[n] = clRT + bNTk[n]Vi[n] +N2S − bN2Sk[n]B[n− 1]

δ[n] = clNRSB[n− 1]− bN2Sk[n]B[n− 1]Vi[n] +N2SVi[n]

in which, k is the sign of the current through the inductor at time
instant n, Vi[n] is the voltage input to the system and B[n− 1] is
computed at each time step using Eq. (15). Eq. (17) is – strictly
speaking – a non-polynomial equation as it contains k = sign(Vo−
Vi) and should then be solved using iterative numerical approaches
(e.g. Newton Method). On the other hand, it can be considered as
two distinct second-order polynomials – one with k = 1 and one
with k = −1. Solving these two polynomials will produce four
solutions for Vo, of which one and only one will be real and there-
fore acceptable.

The following schedule can thus be used to find the output
Vo[n] of the system for every n:

1. Solve Eq. (17) as explained above to obtain Vo[n]. For n =
0 assume B[n− 1] = 0

2. Compute B[n] using Eq. (15)

Figure 2: Passive high pass filter

3.2. Low pass filter

We now consider the circuit in Fig. 3. In this circuit high frequen-
cies from the input Vi will be attenuated while passing through the
inductor more than low frequencies, therefore, considering node
Vo as the output, the circuit will act as a low pass filter. In this
case the current through and the voltage across the inductor are,
respectively:

IL[n] =
Vo[n]

R
(18)

VL[n] = Vi[n]− Vo[n] (19)

Substituting these values in Eqs. (7) and (11) and going through
passages similar to those described in Section 3.1 we obtain:

V 2
o [n]ε[n] + Vo[n]ζ[n] + η[n] = 0 (20)

with

ε[n] = bNTk[n]

ζ[n] = bN2Sk[n]B[n− 1]− clRT + bNTk[n]Vi[n]−N2S

η[n] = clNRSB[n− 1] + clRTVi[n]

where k[n] = sign(Vo[n]) and for which the same considerations
made above for the resolution of Eq. (17) are valid.

4. APPROXIMATION OF THE NON-LINEAR INDUCTOR
WITH A VARIABLE INDUCTANCE

The reference model presented in Section 3 solves the non-linear
electronic circuits proposed using non-linear equations. A differ-
ent approach is presented in this section which solves the same
circuits using time-varying linear filters informed by the physical
behaviour of the non-linearity under exam.

In Section 2 we showed that the change in the permeability
of the core of an inductor as it approaches saturation affects the
effective inductance of the core. The non-linear behaviour is mod-
eled here using a time-varying value for the inductance which is,
for each time instant, determined by the current value of the core
permeability.

The incremental magnetic permeability of a ferromagnetic ma-
terial is the rate of change of magnetic flux density with respect to
the magnetizing force and is given, in its differential definition, by:
[24]

µinc =
dB

dH
(21)

Figure 3: Passive low pass filter
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For a real inductor, according to the Fröhlich model, µinc is given
combining this with Eq. (5):

µinc =
dB

dH
=

c

(c+ b|H|)2 (22)

Remembering Eqs. (7) and (22), the time-discrete formulation for
µinc is:

µinc[n] =
c

(c+ bN
l
|IL[n]|)2

(23)

The equation of the inductance of a solenoid as given by Eq. (6) is
discretized as:

L[n] =
µinc[n]N2S

l
(24)

Which, combined with Eq. (23), gives:

L[n] =
cN2S

l(c+ bN
l
|IL[n])2

(25)

4.1. High pass filter

If we consider the inductor in Fig. 2 to be ideal, the cutoff fre-
quency Fc of the filter can be computed from the values of its
electronic components as:

Fc =
R

2πL
(26)

We can discretize the circuit under exam using the well-known
bilinear transform. If the component values were time-invariant,
the z-transform of the first-order highpass filter would be:

H(z) =
2L− 2Lz−1

RT + 2L+ z−1(RT − 2L)
(27)

If we now consider the inductor to have a saturating core,
the value of L actually changes at every sample, according to
Eq. (25). Comparing Eqs. (25) and (26) it emerges that as the
current through the inductor increases, the actual inductance value
is decreased and consequently the cutoff frequency increases.

As a consequence, the filter coefficients in Eq. (27) will also
change over time. Considering the time-varying elements, the fi-
nite difference equation for this system is, therefore:

Vo[n] = b0[n]Vi[n] + b1[n]Vi[n− 1]− a1[n]Vo[n− 1] (28)

where:

b0[n] = 2L[n]/(RT + 2L[n]),
b1[n] = −2L[n]/(RT + 2L[n]),
a1[n] = (RT − 2L[n])/(RT + 2L[n])

(29)

For the circuit in Fig. 2, L[n] depends on the instantaneous cur-
rent through the inductor, as given by Eq. (13), which, in turn, de-
pends on Vo[n]. Therefore L[n] cannot be computed before Vo[n]
and it cannot appear in the right hand side of Eq. (28). This con-
straint leads to an uncomputable loop, also known as delay-free
loop [25]. To eliminate the delay free loop we must use an ap-
proximate value for IL[n] which does not depend on Vo[n].

We can estimate a value V ′o [n] ≈ Vo[n] by linearizing the out-
put signal around time instant n − 1 and estimating the value of

V ′o [n] using linear extrapolation. Given the discrete-time differen-
tiation of Vo[n]

∆Vo[n] = Vo[n]− Vo[n− 1] (30)

we can write

V ′o [n] = Vo[n− 1] + ∆Vo[n− 1] (31)

Given a parameter α ∈ [0, 1], we can define an estimated value
V ′o(n, α) for the output voltage at every time instant between n−1
and n by linearly interpolating between Vo[n− 1] and V ′o [n] as:

V ′o(n, α) = α · Vo[n− 1] + (1− α) · V ′o [n] (32)

which, for α = 1 equals Vo[n − 1] and for α = 0 equals V ′o [n].
In order to appropriately compute the current through the inductor,
the input and output voltage must be considered at the same instant
in time, therefore we also define V ′i (n, α) as the linear interpola-
tion between Vi[n− 1] and Vi[n], parametrized by α:

V ′i (n, α) = α · Vi[n− 1] + (1− α) · Vi[n] (33)

Now we can compute approximate value for IL[n] parametrized
byα by replacing Vo with V ′o(n, α) and Vi with V ′i (n, α) in Eq. (13):

ILα [n] =
V ′i (n, α)− V ′o(n, α)

R
(34)

4.2. Low pass filter

The z-transform of the low pass filter in Fig. 3:

H(z) =
RT +RTz−1

RT + 2L+ z−1(RT − 2L)
(35)

We can derive the equations for the filter coefficients similarly to
what has been done in the previous paragraph. In the case of a real
inductor, the value of L[n] is, again, time-varying and it depends
on the current through the inductor IL[n] for each instant n.

As such current is not known in advance, we need to use
an approximate value for IL[n] when computing the filter coef-
ficients. Analogously to what has been done for the high pass
filter in Section 4.1, using the same formulas for linear extrapola-
tion as in Eq. (31) and linear interpolation as in Eq. (32) to obtain
V ′o(n, α), we can write the estimated current through the inductor,
parametrized by α, by replacing Vo with V ′o(n, α) in Eq. (18):

ILα [n] =
V ′o(n, α)

R
(36)

5. RESULTS

For the evaluation of the approximated saturating inductor model
we created a digital model of the high pass circuit in Fig. 2 and
solved it using both the model involving non-linear equations de-
scribed in Section 3, used as a reference, and the approximate
model introduced in Section 4. Results for the low pass circuit in
Fig. 3 are not explicitly reported here for brevity, but the findings
are very similar to those outlined below for the high pass filter.

We performed our tests using the parameter values listed in
Table 4 over all of the possible combinations of the following pa-
rameters:
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Input signal
Input
level [V]

15Hz 45Hz 89Hz 179Hz 238Hz 953Hz 3810Hz 7620Hz 15240Hz 19050Hz Noise Bass Guitar

1 0.034 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.042 0.041 0.041
10 0.024 0.039 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.053 0.046 0.041
50 0.203 0.193 0.026 0.039 0.040 0.041 0.041 0.042 0.042 0.042 0.172 0.115 0.043

100 0.397 0.669 0.572 0.025 0.035 0.041 0.042 0.042 0.042 0.042 0.330 0.256 0.046
200 0.706 1.360 1.750 1.515 0.501 0.041 0.042 0.042 0.043 0.043 0.470 1.130 0.058

Table 1: High-pass filter: frequency-domain RMS error (%) for different signals and input voltages, with α = 1 and sampling rate=48kHz

Input signal
Sampling
rate [kHz]

15Hz 45Hz 89Hz 179Hz 238Hz 953Hz 3810Hz 7620Hz 15240Hz 19050Hz Noise Bass Guitar

12 2.703 4.944 6.032 4.412 0.943 0.165 0.175 - - - 3.425 3.740 0.221
24 1.390 2.621 3.295 2.688 0.775 0.082 0.084 0.085 - - 1.152 2.123 0.114
48 0.706 1.360 1.750 1.515 0.501 0.041 0.042 0.042 0.043 0.043 0.470 1.130 0.058
96 0.356 0.694 0.908 0.811 0.286 0.020 0.021 0.021 0.021 0.021 0.434 0.579 0.030

192 0.179 0.351 0.463 0.421 0.153 0.010 0.010 0.010 0.010 0.010 0.279 0.289 0.015
384 0.090 0.177 0.234 0.214 0.079 0.005 0.005 0.005 0.005 0.005 0.154 0.142 0.008

Table 2: High-pass filter: frequency-domain RMS error (%) for different signals and sampling rates with α = 1 and input level=200V

Input signal
α 15Hz 45Hz 89Hz 179Hz 238Hz 953Hz 3810Hz 7620Hz 15240Hz 19050Hz Noise Bass Guitar
0 1.062 2.072 2.600 2.410 0.904 0.211 1.475 11.821 533.597 533.597 51.414 1.019 0.622

0.25 0.758 1.480 1.891 1.684 0.582 0.153 0.780 5.894 479.974 479.974 45.540 0.620 0.538
0.5 0.538 1.055 1.378 1.135 0.341 0.095 0.250 1.537 336.812 336.812 37.176 0.485 0.448
0.75 0.517 1.006 1.319 1.067 0.316 0.031 0.064 0.854 211.559 211.559 20.818 0.742 0.311

1 0.706 1.360 1.750 1.515 0.501 0.041 0.042 0.042 0.043 0.043 0.470 1.130 0.058

Table 3: High-pass filter: frequency-domain RMS error (%) for different signals and values of α with sampling rate=48kHz and input
level=200V

1. sampling frequencies:
12kHz, 24kHz, 48kHz, 96kHz, 192kHz, 384kHz.

2. audio signals:

(a) Sine waves at frequencies:
15Hz, 45Hz, 89Hz, 179Hz, 238Hz, 953Hz, 3810Hz,
7620Hz, 15240Hz, 19050Hz, length 10 seconds

(b) White noise sample, length 10 seconds

(c) Electric bass guitar sample, length 6.6 seconds

(d) Electric guitar sample, length 3.1 seconds

3. a set of amplitudes: 1V, 10V, 50V, 100V, 200V

4. a set of values for the linear interpolation parameterα: 0.25,
0.5, 0.75, 1

We skipped tests on sine waves whose frequency was above
the Nyquist frequency of the sampling rate. For sampling frequen-
cies of 48kHz and above the result signals have been bandlimited
to a maximum frequency of 20kHz before computing error fig-
ures. Given a sampling rate, an input signal and an amplitude, the
outputs of the approximate model for each different α have been
compared to the output of the reference model.

R[Ω] µi Bsat[T ] N S[cm2] l[cm]

100 400 1.3 1000 1 2

Table 4: Physical parameters used in the simulation.

Fig. 4 displays the time domain voltage signal of a 15Hz si-
nusoid of peak amplitude 200V processed through the high pass
filter. The time domain waveforms are very similar. Fig. 4 (bot-
tom) shows that only by zooming in on the time axis we can notice
the difference: the drop in voltage caused by the saturation of the
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Figure 4: Time domain waveforms for the reference and approx-
imated high pass filter for sampling frequency 48kHz, signal fre-
quency 15Hz, input level 200V, α = 1. Large time scale (top) and
detail (bottom)

core is slightly delayed in the approximated waveform. This can
be easily explained considering that in the approximated model
the value for the flux density is computed based on the value of
the current at the previous time sample, which causes an inherent
delay in the response. Fig. 5 shows that the flux density is in fact
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Figure 5: Time domain waveforms of the flux density for the signal
in Fig. 4. Large time scale (top) and detail (bottom).
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Figure 6: Peaks of the spectrum of the signal in Fig. 4

slightly delayed with respect to the reference.
The RMS error between the two time-domain voltage signals

is 2.45%. This rather large error figure is justified by the fact that
the discrepancy between the two waveforms occurs around a rapid
voltage drop. As human perception of an audio signal is linked
more closely to its frequency content than to its time-domain repre-
sentation, we find it more relevant to reference the THD, THD+N
and frequency domain RMS error figures for the purposes of this
evaluation.

Fig. 6 displays the reference and approximated signal in the
frequency domain. They are very similar, with a total RMS error
in the frequency domain as small as 0.71%. While the match is
almost perfect for the lower harmonics, a small discrepancy arises
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Figure 7: Peaks of the spectrum of a 150Hz sinusoid processed
through the high pass filter circuit, sampled at 48kHz
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Figure 8: Peaks of the spectrum of a 150Hz sinusoid processed
through the high pass filter circuit, sampled at 384kHz

from the 90th harmonic (1350Hz and above). No noise or spuri-
ous frequencies have been introduced by the approximated model,
as denoted by the fact that the THD and the THD+N values are
exactly the same.

Performing the same analysis on a 150Hz signal gives a time-
domain RMS error of 8.63% and a frequency-domain RMS error
of 1.69%. The spectrum of the signal is shown in Fig. 7. The
discrepancies in the spectral amplitudes begin to arise from about
4950Hz (33rd harmonic). Again, no spurious frequencies or noise
are added.

By increasing the sampling frequency to 384kHz (8 times over-
sampling), for the 150Hz sinewave we obtain that the time-domain
RMS error is cut down to 1.1% and the frequency-domain RMS er-
ror is 0.24%. The increase in the sampling rate reduced the effect
of the unit delay used in the approximation. The frequency re-
sponse of this oversampled signal is displayed in Fig. 8. At every
time step the value of the inductance L[n] changes according to an
estimated value of the current through the inductor, as explained
in Section 4.1. Tables 1 to 3 show the frequency domain error fig-
ures for each of the test signals. Table 1 shows that the increase
in the amplitude of the input signal causes larger errors. This is
expected as to a larger amplitude corresponds a faster saturation
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of the core and therefore a larger distortion of the output, with a
steeper voltage drop in the time domain. Table 2 shows that re-
sults are greatly improved by increasing the sampling frequency.
The error reduction is proportional to 1/Fs.

The α parameter, as given by Eq. (34), determines the balance
between the weight given to the value I[n− 1] of the current mea-
sured at the previous time step and the estimated value I ′[n] of the
current through the inductor at the current time instant, when com-
puting the value L[n] of the inductance at the current time instant.
When α = 0.5 the estimated value used for the current through
the inductor is the average value of the current over the time inter-
val between n − 1 and n and this is, in theory, the best choice to
be used in the computation of L[n], as long as the estimated value
I ′[n] is reasonably close to the actual value I[n].

Test results in Table 3 show that most of the times α = 0.75
performs better than α = 0.5 and also that both these values per-
form poorly when the signal contains significant amounts of en-
ergy at higher frequencies. This can be explained by the fact that
as the frequency of the signal increases, the linear extrapolation
becomes less accurate and α = 0.75 performs better than α = 0.5
because the overshoot caused by the estimate is mitigated by giv-
ing less weight to it. The value of α = 1, corresponding to no
linear extrapolation being used, was found to be the one that gives
best results for a signal of arbitrary frequency content. This effec-
tively corresponds to the introduction of a 1-sample delay so that
the filter coefficients are entirely based on the system state at the
previous sample instant.

6. DISCUSSION

In this paper we introduced a way to solve a high pass filter circuit
containing a non-linear inductor using a time-varying IIR filter,
whose block diagram is shown in Fig. 9. The model is physically
informed and exploits the fact that the actual inductance value for a
solenoid changes according to the saturation of its core. As pointed
out in 4.1, these changes affect the frequency response of the filter
by modulating its cutoff frequency.

6.1. Performance

The time-variant IIR filters used here to emulate the behavior of a
non-linear inductor produced results comparable to the reference
model and they did not exhibit any inherent instability. The time
domain error due to the intrinsic delay in the approximation does
not affect negatively the perceived sound, as it produces rather
small error figures in the frequency-domain. For certain com-
binations of parametes (e.g. large µi, large input voltage) ring-
ing and overshoot effects have been observed, due to the sudden
change in the filter coefficients. These effects can be attenuated
by hard limiting the slew rate of the filter coefficients, imposing a
maximum-change-per-sample limit, or otherwise suppressing the
transient using one of the techniques proposed in [8].

The use of linear extrapolation to compute an estimate of the
inductance value at the current time sample did not improve the
results. On the other hand, the model produces good results when
not using linear extrapolation, with frequency-domain errors be-
low 1.75% in all the cases under exam and below 1.2% when tested
with real-world audio signals.

Inductors mostly saturate at low frequencies, therefore the use
of oversampling is not a requirement when modeling this type of
non-linearity, as the higher partials generated by the distortion are
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Figure 9: Block diagram of the digital filter for the circuit in Fig. 2,
when α = 1.

likely to be below the Nyquist frequency even for a sampling rate
of 48kHz. Despite this general consideration, the choice of the
oversampling factor has to be evaluated on a case-by-case basis,
according to the characteristics of the inductor (e.g. saturation flux
density), of the circuit (e.g. presence of other non linear elements
and filters) and of the expected frequency content of the input sig-
nal. Nevertheless, the accuracy of the model takes advantage of
oversampling, which reduces the effects of the 1-sample delay and
gives better results overall.

As outlined above, Eq. (17) is a particular case which can be
solved with lower computational cost than most non-linear equa-
tions found in DSP systems. This considered, solving the high
pass circuit using the non-linear model and Eq. (17) requires 13
multiplies, 12 additions and 2 square roots per sample. Solving
the same circuit with the time-variant IIR filter in Section 4 re-
quires 5 multiplies, 4 additions and 2 divisions per sample. As on
modern CPUs the execution time of square roots is greater or equal
than the one for divisions, the time-variant IIR model turns out to
have a lower computational cost than the non-linear one. Improve-
ments in speed can become even greater when a similar approach is
used to model non-linearities which are otherwise solved through
computationally-expensive transcendental functions.

The stability and performance of time-variant IIR models have
to be evaluated on a case-by-case basis. For instance, modeling of
a diode clipper circuit as a time-variant resistor has been attempted
by the authors which led to a conditionally-working model that
requires oversampling and other adjustments to prevent DC drift
of the output.

6.2. Applications

The idea that is at the base of this research, that is the use of time-
variant linear filters with recursive coefficient computation to im-
plement non-linearities, proved to be not only achievable, but also
well suited for the emulation of a real electronic component, the
inductor. This model has been successfully used to extend exist-
ing systems, without requiring major re-designs. For instance, it
was used to add the non-linearities of the inductor to the wah-wah
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pedal model based on the DK-method presented in [26] by simply
replacing the static inductance in the circuit with a time-varying
one. What emerged from the simulation of the wah-wah pedal is
that the current through the inductor was too small to cause au-
dible saturation, when using for the inductor parameters similar
to the ones of a real wah-wah inductor. By introducing fictitious
physical parameters for the inductor, we allowed the input signal to
drive it into saturation. As a result we obtained increased harmonic
distortion and a shift of the cutoff frequency of the filter.

The inductor model presented is not complete yet, as a full
model of the inductor would require at least to add the hysteresis
of the magnetic core. From what we have seen so far, it is rea-
sonable to think that this additional step will not add much to the
complexity of the model.
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