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1 Introduction

One of the attractive elements of Kaluza-Klein theory is that it provides a single geometric

construction for the Maxwell field and its action. The price is that we need to envoke an

extra dimension and, if we wish to not have a whole new tower of massive states, we must

also insist that fields are independent of this new dimension. We can also ask what is the

interpretation, from the reduced spacetime point of view, of fields with a dependence on

the KK coordinate. These are states charged with respect to the KK gauge field, with the

charge being related to the momentum in the KK direction. These states will be massive

from the reduced perspective since the momentum in the compact space will also appear

as a mass from this perspective. Having a massless state in the five-dimensional theory

with momentum along the fifth direction will then lead to a BPS state in the reduced four-

dimensional theory as its charge will equal its mass (in four-dimensional) natural units.

The identification of states whose mass and charge have their origin from KK mo-

mentum was crucial in the identification of the low energy effective action of M-theory.

The D0-brane was simply a momentum mode along the eleventh direction [1]. Explicitly,
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from the eleven-dimensional supergravity perspective it was a null wave solution. From the

reduced ten-dimensional perspective this could be identified with the D0-brane solution in

IIA supergravity, its charge and mass originating from the eleven-dimensional momentum

of the null wave [2].

One may view Double Field Theory or hence forth DFT [3–15] (and [16–18] for recent

reviews), as an attempt to geometrically unify the metric and NS-NS two-form potential

B[2] in a Kaluza-Klein type way. Amongst other reasons, the local symmetry of the NS-NS

two-form means that one cannot lift this to just ordinary Riemannian geometry in higher

dimensions. Instead one needs to have a so called generalized geometry. Double field theory

extends the dimensions of spacetime so that the off-diagonal components of the generalized

metric — that is the metric of the full extended space — become the NS-NS two-form

potential. Then one solves the so-called strong constraint or section condition, that means

effectively one then carries out a Kaluza-Klein reduction from the full extended space down

to usual spacetime. The action of DFT then reduces to the ordinary supergravity action.

The generalized diffeomorphisms become both the ordinary diffeomorphisms and two-form

gauge transformations. (The global aspects of which have recently been explored in [19–

21]). As such we can view DFT as a novel type of Kaluza-Klein theory which lifts the

NS-NS sector of supergravity (i.e. metric and two-form) to a single geometric theory in

higher dimensions.

The extended geometry associated with the duality manifest version of M-theory [22–

29] is a further extension of this idea where the three-form potential C[3] and metric are

combined and lifted into a generalized metric for a single geometric theory with an extended

number of dimensions. Again there is a section condition [25, 26, 30, 31] whose solution

implies a Kaluza-Klein reduction back to ordinary spacetime.

It is natural to ask the question what is the interpretation of momenta along the extra

directions. A few moments thought about the comparision between DFT and Kaluza-

Klein theory indicates that it should correspond to a fundamental string charge. Thus this

indicates an intruiging interpretation for the fundamental string from the DFT point of

view. The string will just be a null wave in doubled space with the momentum along the

extended directions. The O(d, d) symmetry of T-duality which from the usual spacetime

point of view exchanges winding and momentum will now just correspond to a rotation in

the doubled space. A null wave pointing along the usual spacetime will be a momentum

mode but pointing along an extended direction it will be interpreted as a fundamental

string. The charge and tension of the string will just be given by the momentum. Thus

from the DFT point of view there are no strings, only null waves.

We will make this connection as explicit as possible. We begin by constructing a null

pp-wave solution of the equations of motion of DFT and interpret it as a massless state

in doubled space carrying momentum. We then show that this is the fundamental string

solution [32] when written in terms of the usual spacetime metric and two-form potential.

We wish to study the dynamics of such a solution. To do so we determine the equations

of motion of the Goldstone modes of this null wave solution in DFT. (Technically we

follow [33] very closely). The resulting equations of motion for the Golsstone modes are

the same as that of the string theory written down by Tseytlin [34, 35] to describe a string

world-sheet in doubled space.
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We then move to exhibit the same property for the duality manifest form of M-theory

(with U-duality group SL(5)). The wave is shown to be equivalent to the membrane. Thus

again there are no fundamental extended objects, only null waves. Along the way we will

need to write down the equations of motion of the duality manifest theory — something

that has so far not been done. Even though the action for the manifest SL(5) theory has

been known for a few years by now [27], the equations of motion are more complicated than

the Euler-Lagrange equations from that action since the generalized metric is constrained

to be an element of the SL(5)/SO(5) coset. Implementing this constraint in the variational

problem of the action then leads to a projected set of equations of motion just as in [8]

for DFT. We then conjecture the general form for the projector in terms of the Y-tensor

introduced in [31].

1.1 Bibliography

It is out of the scope of this paper to give a proper historical account of DFT and its

development. There are three relatively recent reviews of the subject [16–18]. We would

like to emphasize the early work of Siegel [3, 4] and Duff [36] and then the two key groups

that have developed DFT, one of Hohm, Hull and Zwiebach [5–8] and the other of Jeon,

Lee and Park [9–13]. In the duality manifest M-theory formalism there was initial work

by Duff [37] and then Hull [23] and Waldram et al. [24–26] and later, Berman, Perry and

collaborators [27–30]. Recently some key further developments in this direction are by

Grana et al. [38] and Hohm and Sambtleben [39–41]. From one perspective many of these

developments were anticipated by the so called E11 programme of West and collabora-

tors [42–47]. As such many of the ideas present in DFT and its variants were signalled

by the early work of West. In particular the authors of this paper have been influenced

by the fact that the nonlinear realization construction central to the E11 programme has

its origins in the theory of pions as Goldstone modes of the spontanteously broken chiral

Lagrangian. This led to the idea that the duality invariant theory may contain massless

Goldstone modes from spontaneously breaking the duality symmetry. Whether the null

states identifed here are such Goldstone modes is an open question.

For quantum aspects of the duality manifest string see [48–52]. In addition, there have

been a whole host of fascinating recent results, some small sample of which are [53–59].

When studying supergravity solutions such as the pp-wave, the string, the membrane and

the D0-brane, as well as reviewing concepts like T-duality, Kaluza-Klein reductions and

smearing we found the book by Ortin [60] an invaluable reference.

1.2 Notation

In this paper we are dealing with several different spaces of various dimensions at the

same time. Here is a brief summary of the indices and their ranges used for these spaces.

We start with the spacetime of dimension d with metric gµν and coordinates xµ where

µ = 1, . . . , d. In DFT this is the normal d-dimensional space and for the SL(5) duality

invariant theory where the dimensions are split into 4+7, these are the four dimensions the

U-duality group acts on, thus d = 4.
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The duals of the spacetime coordinates are denoted by x̃µ or x̃µ̄ for DFT and yµν
for the SL(5) theory. Together with the normal coordinates xµ they form a doubled or

extended space of dimension D with coordinates XM and generalized metric HMN for

DFT and MMN for the SL(5) theory, where M = 1, . . . , D. In DFT we have D = 2d and

the doubled space is equipped with an O(d, d) structure. In SL(5) there are six wrapping

coordinates yµν , where µ, ν are antisymmetrized and thus D = 10.

In what follows, we will see that the equations of motion will be projected using

a projectordenoted by PMN
KL. This acts on a (D × D)-dimensional symmetric vector

space whose building blocks are “vectors” of the form VMN with M,N symmetrized. The

dimension of this vector space is therefore 1
2D(D + 1).

All the dimension and indices are summarized in the following table.

space dimension O(d, d) SL(5) SO(5, 5) indices

spacetime d d 4 5 µ, ν, . . .

extended space D 2d 10 16 M,N, . . .

projector space 1
2D(D + 1) 2d2 + d 55 136 (MN), (PQ), . . .

(1.1)

1.3 Double field theory

In double field theory the spacetime metric gµν , the B-field Bµν and the dilaton φ are

encoded in the generalized metric HMN and the rescaled dilation d as follows,

HMN =

(

gµν −Bµρg
ρσBσν Bµρg

ρν

−gµσBσν gµν

)

and d = φ− 1

2
ln g (1.2)

where g = det gµν is the determinant of the spacetime metric. This generalized metric

is then a metric on a 2d dimensional space. We introduce the usual coordinates xµ and

their duals x̃µ which are combined into XM = (xµ, x̃µ) for the whole doubled space. This

doubled space is also equipped with a globally defined O(d, d) structure ηMN

ηMN =

(

0 δµ
ν

δµν 0

)

(1.3)

and all tensors are really O(d, d) tensors in the doubled space (for a discussion of this

see [20]). The action may then be written in terms of a sort of generalized Ricci scalar

S =

∫

dDXe−2dR (1.4)

with the scalar R given by

R =
1

8
HMN∂MHKL∂NHKL − 1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

2
ηMNηKL∂MEA

K∂NEB
LHAB .

(1.5)
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Here M,N are curved doubled spacetime indices and A,B are flat doubled tangent space

indices. They are related via the generalized vielbeins EA
M such that

HMN = EA
MEB

NηAB . (1.6)

In addition to this there is the so called section condition or strong constraint. This

diminishes the dependence of the fields on the number of coordinates. This constraint may

be written as

ηMN∂M • ∂N• = 0 (1.7)

for any field in the theory. Its simple consequence is that one may choose to have de-

pendence on the usual coordinates alone. Different choices of how one solves the section

condition gives rise to different duality related theories. So at the cost of breaking the

O(d, d) symmetry we may choose

∂µ̄• = 0 . (1.8)

This is like a simple Kaluza-Klein reduction and we will find it useful in what follows to

take this perspective. Imposing the condition (1.8) on the action (1.4) produces the NS-NS

sector of supergravity. (There is also a boundary term contribution that will not play a role

in what follows [61].) Thus at a rather simplistic level, the DFT action is like a Kaluza-Klein

lift of the NS-NS sector of supergravity. Note, the last line in R containing the vielbeins

was originally not present in the literature. This is because indeed it vanishes when one

imposes the section condition. It is however crucial when one considers the Scherk-Schwarz

reductions of the theory [62–66]. (We will not consider such Scherk-Schwarz reductions in

this paper.)

The equation of motion for the dilaton is easily obtained by varying the action

δS =

∫

dDXe−2d(−2R)δd (1.9)

which has to vanish for any variation δd and thus gives

R = 0. (1.10)

(Note that δR/δd = 0 up to total derivatives.) To find the equation of motion for the

generalized metric we have to be a bit more careful. Varying the action with the generalized

metric gives

δS =

∫

dDXe−2dKMNδHMN (1.11)

where KMN is given by

KMN =
1

8
∂MHKL∂NHKL − 1

2
∂(M |HKL∂KH|N)L + 2∂M∂Nd

+ (∂L − 2∂Ld)

[

HLK

(

1

2
∂(MHN)K − 1

4
∂KHMN

)]

− 1

2
HP (MHN)Q (∂L − 2∂Ld)

(

HPK∂KHQL
)

− ηKLηPQ

(

∂Kd∂LEA
P − 1

2
∂K∂LEA

P

)

H(N |RER
AH|M)Q.

(1.12)
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The last term uses the variation of the vielbein with respect to the metric

δEA
M =

1

2
HABEN

BδHMN . (1.13)

The expression in (1.11) does not have to vanish for any δHMN since the generalized

metric is constrained to parametrize the coset space O(d, d)/O(d) × O(d). This means

the generalized metric can be parametrized by gµν and Bµν as written in (1.2). Thus

deriving the equations of motion is a little more complicated. This was first done in [8].

We will rederive the equations of motion here using a slightly different method because

this method will be more readily applicable to the cases of extended geometry with the

exceptional groups that we discuss later. The basic idea is that rather than varying with

respect to the generalized metric one varies with respect to the spacetime metric and the

B-field and then make the result O(d, d) covariant.

By applying the chain rule, the action can be varied with respect to δgµν and δBµν

separately. Making use of

δgµν
δgρσ

= δµ
(ρδν

σ),
δgµν

δgρσ
= −gµ(ρgσ)ν , δBµν

δBρσ
= δµ

[ρδν
σ] (1.14)

leads to

δS =

∫

dDXe−2dKMN

[

δHMN

δgρσ
δgρσ +

δHMN

δBρσ
δBρσ

]

(1.15)

=

∫

dDXe−2d
{[

−Kµνg
µ(ρgσ)ν + 2Kµ

νgµ(ρgσ)τBτν

+Kµν
(

δµ
(ρδν

σ) +Bµτg
τ(ρgσ)λBλν

)]

δgρσ (1.16)

+
[

−2Kµ
νgµτδτ

[ρδν
σ] − 2KµνBµτg

τλδλ
[ρδν

σ]
]

δBρσ

}

.

Now the g’s and B’s are re-expressed in terms of H, the symmetrizing brackets are dropped

and the antisymmetrizing ones are expanded

δS =

∫

dDXe−2d

{

[−KµνHµρHσν + 2Kµ
νHµρHσ

ν +Kµν (δµ
ρδν

σ −Hµ
ρHσ

ν)] δgρσ

−2 [Kµ
νHµτ +KµνHµ

τ ]
1

2
(δτ

ρδν
σ − δτ

σδν
ρ) δBρσ

}

. (1.17)

The crucial step is to then re-covariantize the indices by using ηMN given in (1.3)

δS =

∫

dDXe−2d
{

KKL

(

ηKρησL −HKρHσL
)

δgρσ

−KKL

(

HKP ηPMη
LN −HKP δP

NδM
L
)

ηMρδσNδBρσ

}

(1.18)

which reproduces the previous line once the doubled indices are expanded and summed

over. In a final step the terms inside the brackets are brought into a form corresponding

to a projected set of equations as follows

δS =

∫

dDXe−2d
{

KKL

(

δM
KδN

L −HKP ηPMηNQHQL
)

ηMρησNδgρσ

−KKL

(

HKP ηPMη
LQHQR −HKP δP

QδM
LHQR

)

HRNηMρδσNδBρσ

}
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=

∫

dDXe−2d2PMN
KLKKL

(

ηMρησNδgρσ + ηMρHσNδBρσ

)

(1.19)

where we have introduced the projector

PMN
KL =

1

2
(δM

(KδN
L) −HMP η

P (KηNQHL)Q) (1.20)

which is symmetric in both MN and KL.

The variation of the action has to vanish for any δgµν and δBµν independently, therefore

the equations of motion are given by

PMN
KLKKL = 0 (1.21)

and not KMN = 0, the naive equations expected from setting (1.11) to zero.

This equation of motion was derived in a slightly different way in [8] by using the

constraint equation HtηH = η which ensures H is an element of O(d, d). The result is

1

2
(KMN − ηMKHKPKPQHQLηLN ) = PMN

KLKKL = 0 (1.22)

in agreement with ours. We wish to emphasize the point of rederiving these equations is

just so that we can use this method in the exceptional case later.

The importance for the presence of the projector can be seen by counting degrees

of freedom. The symmetric spacetime metric has 1
2d(d + 1) degrees of freedom and the

antisymmetric B-field contributes 1
2d(d−1) for a total of d2 independent components. The

dimension of the doubled space isD = 2d, thereforeKMN has 2d2+d components. Of these,

d2 + d are in the kernel of the projector and are therefore eliminated, leaving d2 degrees

of freedom as desired. This can be shown by computing the characteristic polynomial and

all the eigenvalues of the projector P .

2 The string as a wave

Now we are equipped with the equations of motion of DFT and so we move on to describe

a solution of these equations and subsequently examine its Goldstone modes.

2.1 Wave solution or fundamental string in DFT

We seek a solution for the generalized metric corresponding to a null wave whose momen-

tum is pointing the z̃ direction. The ansatz will be that of a pp-wave in usual general

relativity [67]. This has no compunction to be a solution of DFT. As we have seen the

equations of motion of the generalized metric in DFT are certainly not the same as the

equations of motion of the metric in relativity. Let us immediately remove any source of

confusion the reader may have, the pp-wave as a solution for gµν may of course, by con-

struction, be embedded as a solution in DFT by simply inserting the pp-wave solution for

gµν into HMN . Here we will consider a pp-wave (that is the usual pp-wave ansatz [67])

not for gµν but for the doubled metric HMN itself and then determine its interpretation in

terms of the usual metric gµν and two-form Bµν .

– 7 –
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The following is a solution to DFT in 2d dimensions given by the generalized metric

HMN with line element

ds2 = HMNdXMdXN

= (H − 2)
[

dt2 − dz2
]

+ δmndy
mdyn

+ 2(H − 1)
[

dtdz̃ + dt̃dz
]

−H
[

dt̃2 − dz̃2
]

+ δmndỹmdỹn

(2.1)

where the generalized coordinates are split as

XM = (xµ, x̃µ) = (t, z, ym; t̃, z̃, ỹm) (2.2)

and a tilde denotes a dual coordinate as explained above. This generalized metric and

rescaled dilaton d = const. solve the equations of motion of the DFT derived in section 1.3.

The appendix A.1 provides the details demonstrating it is indeed a solution.

Since it is exactly the same form as the usual pp-wave solution, the natural interpre-

tation is of a pp-wave in the doubled geometry. One therefore imagines it propagates and

therefore carries momentum in the z̃ direction. It is worth a pausing here. To determine

whether it truely carries momentum would require the construction of conserved charges

in DFT. This has not yet been done. It would be useful to consider objects like generalized

Komar integrals and the other ways one defines charges in general relativity but now for

DFT. Nevertheless, we shall proceed with the interpretation of this solution as a pp-wave

and thus carries momentum in the dual z̃ direction.

H is taken to be a harmonic function of the usual transverse coordinates1 ym (but not

of their duals ỹm) and as such is annihilated by the Laplacian operator in these directions,

i.e δmn∂m∂nH = 0. In DFT language, it is required (at least naively) that H satifies the

section condition and so to solve the section condition it is not a function of any of the dual

coordinates. The fact that the harmonic function H is taken to only depend on ym and

not the dual transverse directions implies that the wave solution is smeared in these ỹm
directions. One can think of it as a plane wave front extending along the dual directions

described by coordinates ỹm but with momentum in the z̃ direction. An explicit form ofH is

H = 1 +
h

rd−4
for r2 = ymynδmn (2.3)

where h is a constant and r is the radial coordinate of the transverse space.

We will now use the form of the doubled metric HMN in terms of gµν and Bµν to

rewrite this solution in terms of d-dimensional quantities, effectively reducing the dual

dimensions. This is like in Kaluza-Klein theory, writing a solution of the full theory in

terms of the reduced metric and vector potential

ds2 = (gµν −Bµρg
ρσBσν)dx

µdxν + 2Bµρg
ρνdxµdx̃ν + gµνdx̃µdx̃ν . (2.4)

By comparing (2.4) with (2.1), the fields of the reduced theory with coordinates xµ =

(t, z, ym) can be computed. We find the metric and its inverse to be

gµν = diag(−H−1, H−1, δmn) and gµν = diag(−H,H, δmn) (2.5)

1The range of the transverse index is m = 1, . . . , d− 2.
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whereas the only non-zero component of the B-field is given by

Btz = −Bzt = −(H−1 − 1) . (2.6)

From the definition e−2d =
√
ge−2φ of the rescaled dilaton d (which is a constant here) it

follows that the dilaton φ is given by (φ0 is another constant)

e−2φ = He−2φ0 or e−2(φ−φ0) = H (2.7)

since g = −H−2. The corresponding line element is

ds2 = −H−1(dt2 − dz2) + δmndy
mdyn (2.8)

which together with the B-field and the dilaton φ gives the fundamental string solution

extended along the z direction [32]. We have thus shown that the solution (2.1) which

carries momentum in the z̃ direction in the doubled space corresponds to the string along

the z direction from a reduced point of view.

This follows the logic of usual Kaluza Klein theory. In the doubled formalism the

solution is a massless wave with PMPNHMN = 0 (where the PM are some generalized

momenta), but from a the reduced normal spacetime point of view the string has a tension

T and charge q which are obviously given by the momenta in the dual directions with a

resulting BPS equation

T = |q| . (2.9)

Of course this is no surprise from the point of view of T-duality. Momentum and string

winding exchange under T-duality. It is precisely as expected that momentum in the dual

direction corresponds to a string. What is more surprising is when one views this from

the true DFT perspective. There are null wave solutions that can point in any direction.

When we analyze these null waves from the reduced theory we see them as fundamental

strings or as usual pp-waves. It is a simple O(d, d) rotation of direction of propagation that

takes one solution into the other. This is duality from the DFT perspective.

2.2 Goldstone modes of the wave solution

In the previous section we presented a solution to the equations of motion of DFT which

reduces to the fundamental string. It will be interesting to analyse the Goldstone modes

of this solution in double field theory. Especially since the advent of M-theory, it was

understood that branes are dynamical objects and that when one finds a solution of the

low energy effective action one can learn about the theory by examining the dynamics of

the Goldstone modes. For D-branes in string theory this was done in [33] and for the

membrane and fivebrane in M-theory, where such an analysis was really the only way of

describing brane dynamics, this was done in [33, 68]. We will follow the excellent exposition

and the method described in [33] as closely as possible.

In DFT, the diffeomorphisms and gauge transformations are combined into generalized

diffeomorphisms generated by a generalized Lie derivative. We will consider small variations

– 9 –
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in the generalized metric, hMN and the dilaton, λ generated by such transformations as

follows,

hMN = δξHMN = LξHMN , λ = δξd = Lξd . (2.10)

For all the duality invariant geometries including DFT, the generalized Lie derivative of

the metric [6] is given by the ordinary Lie derivative plus a correction in terms of the so

called Y-tensor

LξHMN = LξHMN − Y LP
MQ∂P ξ

QHLN − Y LP
NQ∂P ξ

QHML

= ξL∂LHMN + 2HL(M∂N)ξ
L − 2Y LP

Q(MHN)L∂P ξ
Q .

(2.11)

The Y-tensor [31] encodes a great deal about the geometry. For DFT, the Y-tensor is

simply given in terms of the O(d, d) metric

YMN
KL = ηMNηKL . (2.12)

If the metric HMN and the transformation parameter ξM = (ξµ, ξ̃µ) both satisfy the section

condition, then the vector part ξµ generates a coordinate transformation while the one-form

part ξ̃µ gives a gauge transformation of the B-field.

The generalized Lie derivative of the dilaton contains just the transport term plus a

term for d being a tensor density

Lξd = ξM∂Md−
1

2
∂Mξ

M . (2.13)

The wave solutions are extended objects and therefore sweep out a worldvolume in

space. This is spanned by the coordinates {t, z}. All remaining coordinates are treated as

transverse in the extended space. The solution clearly breaks translation symmetry and

so one naturally expects scalar zero-modes. One immediate puzzle would be to ask about

the number of degrees of freedom of the Goldstone modes. Given that the space is now

doubled one would naively image that any solution which may be interpreted as a string

would have 2d − 2 degrees of freedom rather than the expected d − 2. We will answer

this question and show how the Goldstone modes have the correct number of degrees of

freedom despite the solution living in a 2d dimensional space. The projected form of the

equations of motion are crucial in making this work out.

To carry out the analysis it will be useful to split up the space into parts longitudi-

nal and transverse to the string. One collects the worldvolume coordinates t and z into

xa and similarly for their duals2 x̃ā = (t̃, z̃) such that the generalized coordinates are

XM = (xa, ym, x̃ā, ỹm̄). This allows the non-zero components of the metric and its inverse

to be written as

Hab = (2−H)Iab Hab = HI
ab

Hāb̄ = HIāb̄ Hāb̄ = (2−H)Iāb̄

Hab̄ = Hb̄a = (H − 1)Jab̄ Hab̄ = Hb̄a = (H − 1)Jab̄

Hmn = δmn, Hm̄n̄ = δm̄n̄ Hmn = δmn, Hm̄n̄ = δm̄n̄

(2.14)

2In what follows we will use the alternative notation x̃µ̄ for the dual coordinates to avoid confusion

between inverse and dual parts of the metric.
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where the constant symmetric 2× 2 matrices I and J are defined as

I =

(

−1 0

0 1

)

and J =

(

0 1

1 0

)

. (2.15)

For later use also define their (antisymmetric) product

K = I · J = −J · I =
(

0 −1

1 0

)

. (2.16)

Following [33], we now pick a transformation parameter ξM with non-zero components

only in the transverse directions, but with no transformation along the worldvolume di-

rections (and the directions dual to the worldvolume). This transformation may then be

described by the DFT vector field

ξM = (0, Hαφ̂m, 0, Hβ ˆ̃φm̄) (2.17)

where φ̂m and
ˆ̃
φm̄ are the constant vectors that later will become the Goldstone modes

once we allow them to have dependence on the worldvolume coordinates; H is the harmonic

function given above and α, β are constants that are to be determined by demanding that

the Goldstone modes become normalisable. Using

hMN = ξL∂LHMN + 2HL(M∂N)ξ
L − 2ηLP ηQ(MHN)L∂P ξ

Q (2.18)

we can compute the components of hMN in terms of φ̂m,
ˆ̃
φm̄. Recall that both the metric

and the transformation parameter only depend on y through the harmonic function H.

Therefore ∂m is the only derivative that gives a non-zero contribution. We find

hab = −φ̂m(Hα∂mH)Iab hmn = 2φ̂qδq(mδn)
p∂pH

α

hāb̄ = φ̂m(Hα∂mH)Iāb̄ hm̄n̄ = −2φ̂qδq(m̄δn̄)
p∂pH

α

hab̄ = hb̄a = φ̂m(Hα∂mH)Jab̄ hmn̄ = hn̄m = −2
ˆ̃
φq̄δq̄[mδn̄]

p∂pH
β

(2.19)

and all terms with indicies mixing a, ā with m, m̄ vanish. For the dilaton there is no

contribution from the transport term as d is a constant for our solution. This leaves the

density term which gives

λ = −1

2
φ̂m∂mH

α . (2.20)

Once we have these equations, the next step is to allow the moduli to have dependence

on the worldvolume coordinates,

φ̂m → φm(x) ,
ˆ̃
φm̄ → φ̃m̄(x) (2.21)

and the hats are removed. These are the zero-modes.

We now determine their equations of motion by inserting (2.21) into (2.19) and (2.20)

and then subsequently into the equations of motion for DFT, (1.10) and (1.21). As usual
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we keep only terms with two derivatives and first order in hMN and λ themselves. (It would

certainly be interesting to move beyond this expansion and compare with a Nambu-Goto

type action but we will not do so here). This gives

KMN = HLK∂L∂(MhN)K − 1

4
HLK∂L∂KhMN + 2∂M∂Nλ (2.22)

R = 4HMN∂M∂Nλ− ∂M∂Nh
MN . (2.23)

For convenience we will define � = HIab∂a∂b and ∆ = δkl∂k∂l. Inserting hMN from (2.19),

we find

Kab = −(1 + αH−1)∂a∂bφ
m(Hα∂mH) +

1

4
Iab�φ

m(Hα∂mH)

Kāb̄ = −1

4
Iāb̄�φ

m(Hα∂mH)

Kab̄ = Kb̄a =
1

2
K

c
b̄∂c∂aφ

m(Hα∂mH)− 1

4
Jab̄�φ

m(Hα∂mH)

Kmn = −α
2
�φpδp(mδn)

q(Hα∂qH)

Km̄n̄ =
α

2
�φpδp(m̄δn̄)

q(Hα∂qH)

Kmn̄ = δKn̄m =
β

2
�φ̃p̄δp̄[mδn̄]

q(Hβ∂qH)

Kam = Kma =
1

2
∂aφ

n [δmn∆H
α − ∂m∂nH

α − ∂m(Hα∂nH)]

Kām = Kmā =
1

2
K

b
ā∂bφ

n∂m(Hα∂nH)

Kam̄ = Km̄a =
1

2
∂aφ̃

n̄δn̄
kδm̄

l
[

δkl∆H
β − ∂k∂lH

β
]

Kām̄ = Km̄ā = 0

(2.24)

where K was defined in (2.16). Further, inserting λ from (2.20) gives the dilaton equation

R = −H−1(2α+ 1)�φm(Hα∂mH) = 0. (2.25)

It is straight forward to see that the dilaton equation is solved by �φ = 0. For the other

equations we have to work a bit harder. The full equations of motion for the generalized

metric are the projected equations (1.21) which contain d2 linearly independet equations

Kmn = δm
k̄δn

l̄Kk̄l̄

Kmn̄ = δm
k̄δn̄

lKk̄l

(2.26)

Kmt = (H − 1)δm
n̄Kn̄z − (2−H)δm

n̄Kn̄t̄

Kmz = (H − 1)δm
n̄Kn̄t + (2−H)δm

n̄Kn̄z̄

Kmt̄ = (H − 1)δm
n̄Kn̄z̄ −Hδm

n̄Kn̄t

Kmz̄ = (H − 1)δm
n̄Kn̄t̄ +Hδm

n̄Kn̄z

(2.27)

0 = (H − 1)(Kt̄t̄ −Kz̄z̄) +H(Ktz̄ +Kzt̄)

0 = (H − 1)(Ktt −Kzz) + (2−H)(Ktz̄ +Kzt̄)

0 = (H − 1)(Ktz̄ −Kzt̄)−HKzz + (2−H)Kz̄z̄

0 = (H − 1)(Ktt̄ −Kzz̄) +HKtz + (2−H)Kt̄z̄.

(2.28)
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Inserting for KMN from above yields the equations of motion for the zero modes. The first

two read
−α�φpδp(mδn)q(Hα∂qH) = 0

β�φ̃q̄δq̄[mδn̄]
p(Hβ∂qH) = 0

(2.29)

and can be solved by �φ = 0 and �φ̃ = 0 respectively. The next block of equations (2.27)

can be re-covariantized by using

− Iacǫ
cb = −

(

−1 0

0 1

)(

0 1

−1 0

)

=

(

0 1

1 0

)

(2.30)

which leads to

∂aφ
n [δmn∆H

α − ∂m∂nH
α −∂m(Hα∂nH)]

= −Iacǫ
cb∂bφ̃

n̄δn̄
p(H − 1)

[

δpm∆Hβ − ∂p∂mH
β
]

∂aφ
n∂m(Hα∂nH) = Iacǫ

cb∂bφ̃
n̄δn̄

pH
[

δpm∆Hβ − ∂p∂mH
β
]

.

(2.31)

Adding these two equations gives

∂aφ
nW (α)

mn = Iacǫ
cb∂bφ̃

n̄δn̄
nW (β)

mn (2.32)

where for γ = α, β we have W
(γ)
mn = δmn∆H

γ −∂m∂nHγ . If α = β we have the same object

Wmn on both sides which can be shown to be invertible. The equation can thus be reduced

to a duality relation between φ and φ̃

∂aφ
m = Iabǫ

bc∂cφ̃
n̄δmn̄ or dφm = ⋆dφ̃n̄δmn̄ . (2.33)

This equation implies both �φ = 0 and �φ̃ = 0 as can be seen by acting with a con-

tracted derivative on the equation. If φm and φ̃m̄ are placed in a generalized vector

ΦM = (0, φm, 0, φ̃m̄) this can be written as a self-duality relation

HMNdΦM = ηMN ⋆ dΦN (2.34)

and precisely matches the result in [36] for the duality symmetric string.

The final block of equations of motion (2.28) are either trivial or are also of the form

�φm(Hα∂mH) = 0 provided α = −1. If one was not concerned by normalisation of

the modes then this also provides a way of constraining the value of α. The consistent

choice of α = −1 is fortunately the choice that also leads to normalisable modes. This

may be seen by examing the case α = −1 and integrating over the transverse space.

This exactly mirrors the situation described in [33]. The Goldstone modes are really the

normalisable modes corresponding to broken gauge transformations. Where for gravity the

gauge transformations are ordinary diffeomorphisms, in the case of DFT it is generated

by the generalised Lie deriviative. (In case the reader is more familiar with the study of

monopoles, the analogue of the modes described in this paper is with the dyonic U(1) mode

in the monopole moduli space.)
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One can now turn equation (2.33) into a (anti-)chiral equation for a linear combination

of φ and φ̃ as follows. Introducing ψ± to be given by

ψ± = φ± φ̃ (2.35)

and inserting them into (2.33) and its Hodge dual gives the familiar (anti-)self-dual left-

and right-movers

dψ± = ± ⋆ dψ± (2.36)

of the Tseytlin-string [34, 35]. Thus the dynamics of the Goldstone modes of the wave

solution reproduce the duality symmetric string in doubled space. The number of physical

degrees of freedom are not doubled but just become rearranged in terms of chiral and

anti-chiral modes on the world-sheet.

2.3 Comparison with the σ-model evaluated in the string or wave background

The equations of motion that were derived in the previous section recover the equations

of motion of Tseytlin string. A natural question would be to ask what background is the

string in? Is the target space the doubled solution combining the fundamental string with

the wave-background? The answer to this question is that we can see immediately from

this Goldstone mode analysis one obtains the equations of motion of the free string ie. that

of the σ-model in a flat background. To understand this it is worth understanding what

the Goldstone mode analysis provides you with in other cases where this has been carried

out in a more conventional setting. In the work of [33] the Goldstone mode analysis of the

D3-brane, the M-theory membrane and fivebrane was carried out and used to determine

the effective equations of motion for each of those objects. In each case the description

gave the description of those objects in a flat background. Some further thought shows

that this is the correct answer. The Goldstone mode analysis must give the equations of

motion of the string in a flat background since the solution for which one is determining

the moduli is that of string in flat background. A string solution in the background of

other strings ie. a string σ-model in a string background would be a different solution

and as such obey a different set of equations of motion. Describing this more technically,

to find the σ-model in a nontrivial background then one must find the backreacted wave

solution not for asympotically flat space but for one with asymptotically switched on NS

fluxes and then determine its moduli and their equations of motion. Of course, how we

normally proceed with brane actions is that once one has determined the effective equations

of motion through a Goldstone mode analysis one then covariantises these equations (in

terms of the geometry of moduli space) to determine the general equations of motion. In

terms of the doubled string above, this would imply just replacing the flat target space

generalised metric with the generalised metric of an arbitrary background. (The quantum

properties of such twisted chiral bosons with an arbitrary target space may well be very

nontrivial, an analysis of such is outside the scope of the current paper).
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3 The membrane as a wave

In a similar manner to the string, the membrane will be shown to arise from a massless so-

lution corresponding to a wave in an extended geometry. We will demonstrate this for the

membrane in the SL(5) duality invariant theory though it is imagined that this will be true

of all the extended geometries corresponding to the exceptional groups. We begin with the

equations of motion of the SL(5) theory. The actions of the U-duality manifest theories have

been explored at length [29] but the equations of motion will require the construction of pro-

jectors just as in the O(d, d) case since we should only consider variations of the actions that

preserve the generalized metric coset structure. We begin by describing these projectors.

3.1 The SL(5) duality invariant theory

Let us start by examining the extended geometry of the SL(5) duality invariant theory. This

arises from the full eleven-dimensional theory by splitting the dimensions into 4+7. The

U-duality group acts on the four dimensions and can be made manifest by including the six

dual dimensions corresponding to membrane wrappings. There is then a (4+6)-dimensional

extended space with manifest SL(5) invariance and no dependence on the remaining seven

dimensions. Referring to the E11 decomposition into SL(5)×GL(7), schematically a gen-

eralized metric of such an (10+7)-dimensional space can be written as (see [69])

H = det g11
−1/2

(

M̃ 0

0 g7

)

(3.1)

where M̃ is the generalized metric on the extended space and g7 is the metric on the re-

maining seven dimensions. The conformal factor up front is important as it relates these

two otherwise independent sectors, it is given in terms of the determinant of g11, the metric

of the full eleven-dimensional space.

This M̃MN is the generalized metric as first given in [27]. It parametrizes the coset

SL(5)/SO(5) in terms of the spacetime metric gµν and the form field Cµνρ

M̃MN =





gµν +
1
2Cµρσg

ρσ,λτCλτν
1√
2
Cµρσg

ρσ,λτ

1√
2
gρσ,λτCλτν gρσ,λτ



 (3.2)

for coordinates XM = (xµ, yµν) in the 10 of SL(5) and with gµν,ρσ = 1
2(g

µρgνσ − gµσgνρ)

which is used to raise an antisymmetric pair of indices. Note that there is no overall factor

in front, this metric has a determinant of g−2 where g is the determinant of the four-metric

gµν . Therefore in this form it is actually an element of GL(5), not SL(5). This can be

remidied by considering the following.

The theory contains a scaling symmetry for the GL(5) which can be used to rescale

M̃MN by g, e.g. MMN = g1/5M̃MN (this particular rescaling leads to a generalized metric

with unit determinant, i.e. detMMN = 1). Noting that det g11 = g det g7 and assuming a
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simple form3 for the seven-metric such that det g7 = V we have

H =

(

V −1/2g−1/2g−1/5M 0

0 V −5/14g−1/2δ7

)

=

(

e−∆M 0

0 e−5∆/7δ7

)

. (3.3)

Under an SL(5) transformation the seven-sector should remain unchanged, therefore we

have the following SL(5) scalar density

e∆ = V 1/2g7/10 (3.4)

which we will us to write down the correctly weighted action for the extended theory. In

terms of the generalized metric MMN with unit determinant and the volume factor ∆ the

action reads

S =

∫

dDXe∆R (3.5)

where the scalar R is given by

R =
1

12
MMN∂MMKL∂NMKL − 1

2
MMN∂MMKL∂LMKN

+ ∂MMMN∂N∆+
1

7
MMN∂M∆∂N∆ .

(3.6)

The first two terms reproduce the Einstein-Hilbert and Maxwell term upon imposing section

condition. The last two terms are kinetic terms for ∆. The equations of motion for ∆ can

be found by varying the action and are given up to total derivatives by R = 0.

On the other hand, varying the action with respect to the generalized metric and

integrating by parts gives

δS =

∫

dDXe∆
[

1

12

(

∂MMKL∂NMKL − 2∂KMKL∂LMMN − 2MKL∂K∂LMMN

+2MKLMPQ∂KMMP∂LMNQ − 2MKL∂K∆∂LMMN

)

−1

2

(

∂MMKL∂LMKN − 2∂LMKL∂MMKN − 2MKL∂L∂MMKN

+2MKPMLQ∂(KMM)Q∂LMNP − 2MKL∂K∆∂MMLN

)

−∂M∂N∆− 6

7
∂M∆∂N∆

]

δMMN . (3.7)

Note that there is no term for varying e∆. This factor contains information about the

determinant of MMN but does not change if the metric is varied as it is fixed to have unit

determinant. We will denote everything inside the brackets by KMN

δS =

∫

dDXe∆KMNδMMN . (3.8)

As in the case of DFT, (3.8) does not have to vanish for any variation δMMN since

the generalized metric is constrained to parametrize a coset space. This gives rise to a

3For example when considering the compactification of the seven dimensions on a seven-torus with equal

radius R this is just g7 = Rδ7 and thus V = R7.
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projector to eliminate the additional degrees of freedom. To impose this constraint and

find this projector, one has to use the chain rule. In order to vary the generalized metric

with respect to the spacetime metric and the C-field, it will be usefull to use indices

a = {µ, 5} in the 5 of SL(5). The coordinates are then

XM = Xab =

{

Xµ5 = xµ

Xµν = 1
2ǫ

µνρσyρσ
(3.9)

where ǫµνρσ is the permutation symbol in four dimensions, a tensor density. The generalized

metric and its inverse take the form

Mab,cd =

(

Mµ5,ν5 Mµ5,λτ

Mρσ,ν5 Mρσ,λτ

)

= g1/5





gµν +
1
2Cµρσg

ρσ,λτCλτν − 1
2
√
2
Cµρσg

ρσ,αβǫαβλτ

− 1
2
√
2
ǫρσαβg

αβ,λτCλτν g−1gρσ,λτ





Mab,cd = g−1/5





gµν 1
2
√
2
gµνCναβǫ

αβλτ

1
2
√
2
ǫρσαβCαβµg

µν ggρσ,λτ + 1
8ǫ

ρσαβCαβµg
µνCνγδǫ

γδλτ



 (3.10)

with gµν,αβgαβ,ρσ = 1
2(δ

µ
ρ δνσ−δµσδνρ). Note the factor of g1/5 up front since this is the rescaled

metric with unit determinant. Using the chain rule and varying the metric in (3.8) with

respect to δgµν and δCµνρ gives

δS =

∫

dDXKMN

[

δMMN

δgµν
δgµν +

δMMN

δCµνρ
δCµνρ

]

(3.11)

=

∫

dDXg−1/5

{[

−Kα5,β5g
α(µgν)β − 2Kα5,ββ′

1

2
√
2
gα(µgν)α

′

Cα′γγ′ǫγγ
′ββ′

+Kαα′,ββ′

(

ggµνgαα
′,ββ′ − ggα(µgν)[βgβ

′]α′ − ggα[βgβ
′](µgν)α

′

−1

8
ǫαα

′γγ′

Cγγ′σg
σ(µgν)σ

′

Cσ′λλ′ǫλλ
′ββ′

)

− 1

5
g1/5KMNMMNgµν

]

δgµν

+

[

2Kα5,ββ′

1

2
√
2
gαα

′

δ[µγ δ
ν
γ′δρ]σ ǫ

γγ′ββ′

+2Kαα′,ββ′

1

8
ǫαα

′γγ′

δ[µγ δ
ν
γ′δρ]σ g

σσ′

Cσ′λλ′ǫλλ
′ββ′

]

δCµνρ

}

(3.12)

where the term 1
5KMNMMNgµνδgµν arises from varying the determinant factor. After

cleaning up and dropping the symmetrizing and antisymmetrizing brackets, the g’s and

C’s are re-expressed in terms of M (factors of g1/5 have to be accounted for carefully)

δS =

∫

dDX

{

g1/5
[

−Kα5,β5Mα5,µ5Mν5,β5 − 2Kα5,ββ′Mα5,µ5Mν5,ββ′

+Kαα′,ββ′

(

g−1/5Mµ5,ν5ggαα
′,ββ′ −Mαα′,µ5Mν5,ββ′

)

−1

5
KMNMMNMµ5,ν5

]

δgµν

+
1√
2

[

Kα5,ββ′Mα5,µ5ǫνρββ
′

+Kαα′,ββ′Mαα′,µ5ǫνρββ
′

]

δCµνρ

}

(3.13)
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Now the indices can be re-covariantized to be expressed as

δS =

∫

dDX

{

g1/5KKL

(

MM,µ5Mν5,NMMP
1

4
ǫaPKǫaNQMQL −MK,µ5Mν5,L

−1

5
MKLMµ5,ν5

)

δgµν +
1√
2
KKLMK,µ5ǫνρL5δCµνρ

} (3.14)

which reproduces the previous line if the extended indices are expanded and summed over.

In a final step these expressions can be written in terms of a projected set of equations

δS=

∫

dDX(−3)P KL
MN KKL

(

g1/5MM,µ5Mν5,Nδgµν −
1

2
√
2
MM,µ5ǫνρN5δCµνρ

)

(3.15)

where the projector is given by

P KL
MN =

1

3

(

δM
(KδN

L) +
1

5
MMNMKL − 1

4
MMP ǫ

aP (KǫaNQML)Q

)

(3.16)

which is symmetric in both MN and KL as can be seen from the contraction with the

symmetric δgµν and KKL respectively. Note that the term containing δCµνρ does not

impose any symmetry property on the projector.

The variation of the action has to vanish for any δgµν and δCµνρ independently, there-

fore the equations of motion are given by

P KL
MN KKL = 0 (3.17)

with KMN defined in (3.8).

3.2 Divertimento: equations of motion with a projector

In general, the dynamics of extended geometry can be described using a projected equation

of motion. The action is given by

S =

∫

dDXL (3.18)

where the Lagrangian L includes the integration measure for the extended space. Setting

the variation of the action to zero gives

δS =

∫

dDXKMNδMMN = 0 (3.19)

whereKMN = δL/δMMN is the variation of the Lagrangian with respect to the generalized

metric. The integrand does not have to vanish for any δMMN since the generalized metric

is constraint to parametrize the coset space G/H. This constraint gives rise to a projector

in the equations of motion

PMN
KLKKL = 0. (3.20)

The extended geometries are all equipped with the so called Y -tensor described in [31]. The

Y -tensor determines the deviation from usual geometry in that it gives the correction to
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Lie derivative to form the generalized Lie derivative given in [30]. Following the method for

O(d, d) and then SL(5) where we use a chain rule type arguement, we see that the projector

may be written in a standard form using only the generalized metric and the Y -tensor

PMN
KL =

1

a

(

δM
(KδN

L) + bMMNMKL −MMPY
P (K

NQML)Q
)

, (3.21)

together with the constants a and b which depend on the dimension of the extended space

D and thus the U-duality group. These constants together with the Y -tensor are given in

the following table for some of the duality groups under consideration.

YMN
KL a b D

O(d, d) ηMNηKL 2 0 2d

SL(5) 1
4ǫ

iMN ǫiKL 3 1/5 10

SO(5, 5) 1
2(Γ

i)MN (Γi)KL 4 1/4 16

(3.22)

The elements that form the Y -tensor are ηMN , the invariant metric of O(d, d); ǫiMN =

ǫiabcd, the SL(5) alternating tensor (i = 1, . . . , 5); and (Γi)MN , the 16× 16 Majorana-Weyl

representation of the SO(5, 5) Clifford algebra (i = 1, . . . , 10).

Our PMN
KL is a genuine projector in the sense that P 2 = P and its eigenvalues are

either 0 or 1. The eigenvectors with eigenvalue 0 span the kernel of the projector. Those

parts of KMN proportional to these eigenvectors are projected out and eliminated from

the equations of motion.

The multiplicity of the eigenvalues 0 and 1 are called nullity (dimension of the kernel)

and rank of the projector respectively. They add up to the dimension D of the vector

space of eigenvectors. We have not shown that this is true beyond the groups in the

table above since the calculations have been done just by brute force. However, given the

structure of the exceptional geometric theories, in that the theories up to E7 are completely

determined by the generalized metric and the Y -tensor (along with a few dimensionally

dependent constants), then we expect this projector to be true at least up to E7 with only

the constants a and b to be determined.

Note, the object KMN is symmetric and thus has 1
2D(D+1) independent components

in a generalized space with D dimensions. The bosonic degrees of freedom of the theories

under consideration are given by the metric tensor gµν and the form fields Bµν or Cµνρ

(plus one for the dilaton φ in DFT and the volume factor ∆ in the SL(5) theory). One

equation of motion is needed for each of those degrees of freedom. The projector reduces

the components of the equation KMN = 0 such that the right number of independent

equations remain.
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3.3 Wave solution or membrane in the SL(5) theory

The wave solution for the SL(5) duality invariant theory is given by a generalized metric

MMN with line element

ds2 = MMNdXMdXN

= (H − 2)
[

(dx1)2 − (dx2)2 − (dx3)2
]

+ (dx4)2

+ 2(H − 1)
[

dx1dy23 + dx2dy13 − dx3dy12
]

−H
[

(dy13)
2 + (dy12)

2 − (dy23)
2
]

+ (dy34)
2 + (dy24)

2 − (dy14)
2.

(3.23)

This generalized metric solves the equations of motion of the SL(5) theory derived in 3.1

(see appendix A.2). It can be interpreted as a pp-wave in the extended geometry which

carries momentum in the directions dual to x2 and x3 i.e. combinations of y12, y13 and y23.

Since it is a pp-wave it has no mass or charge and the solution is pure metric, there is no

form field it couples to. As before, H is a harmonic function of the transverse coordinate

x4: H = 1 + h lnx4. It is smeared in the remaining dual directions.

A Kaluza-Klein ansatz suitable for the geometry here that allows us to rewrite the

solution in terms of four-dimensional quatities and reducing the dual directions is

ds2 =
(

gµν + e2φCµλτg
λτ,ρσCρσν

)

dxµdxν

+ 2e2φCµλτg
λτ,ρσdxµdyρσ + e2φgλτ,ρσdyλτdyρσ.

(3.24)

The factor e2φ is a scale factor and needs to be included for consistency. This decompos-

tion of the generalized metric into the usual metric and C-field resembles the form of the

generalized metric (3.2) as in the DFT case.

By comparing (3.24) with (3.23), the fields of the reduced system with coordinates xµ

can be computed. From the diagonal terms we find

gµν=diag(−H−1, H−1, H−1, 1) and gµν,ρσ=e−2φdiag(−H,−H,−1, H, 1, 1)

(3.25)

and since gµν,ρσ is given by gµν , the inverse of gµν , we need e2φ = H−1 for consistency.

The corresponding line element is

ds2 = −H−1
[

(dx1)2 − (dx2)2 − (dx3)2
]

+ (dx4)2. (3.26)

The off-diagonal terms give the antisymmetric C-field whose only non-zero component is

C123 = −(H−1 − 1). (3.27)

This metric and C-field look like the membrane in M-theory. To complete this identifica-

tion, (3.26) has to be rescaled to be expressed in the Einstein frame.

The standard rescaling procedure (in four dimensions) gives

gµν = Ω−2g̃µν = H−3/2g̃µν (3.28)

where

Ω2 =
√

| det e2φgµν,ρσ| = H3/2. (3.29)
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Therefore the rescaled metric reads g̃µν = H3/2gµν and the full solution in the Einstein

frame is4

ds2 = −H−1/2
[

(dx1)2 − (dx2)2 − (dx3)2
]

+H3/2(dx4)2 (3.30)

which is indeed the M2-brane in four dimensions in the Einstein frame. The membrane is

extended in the x2 − x3 plane. We have thus shown that the solution (3.23) which carries

momentum in the directions dual to x2 and x3 in the extended geometry corresponds to

a membrane stretched along these directions from a reduced point of view. By similar

arguments as in the string case, the mass and charge of the M2-brane are given by the

momenta in the dual directions.

3.4 Goldstone modes of the wave solution

Following the same procedure as for the DFT wave we will now perform the Goldstone

mode analysis for the wave in SL(5). To do this we will use the five-dimensional coordinate

representation introduced above and split the coordinates into worldvolume and transverse

parts. Note that the membrane in four dimensions only has one transverse direction. By

introducing m,n = 1, 2, 3, the coordinates read

XM = Xab = (Xm5;X45, Xm4, Xmn) = (xm;x4, ymn, ym4). (3.31)

In this notation the non-zero components of the generalized metric for the SL(5) wave

given in 3.23 can be written as

Mm5,n5 = (2−H)Imn Mm5,n5 = HI
mn

Mm4,n4 = −HImn Mm4,n4 = −(2−H)Imn

Mm4,n5 = −(H − 1)Imn Mm4,n5 = −(H − 1)Imn

Mmn,kl = Imn,kl Mmn,kl = I
mn,kl

M45,45 = 1 M45,45 = 1

(3.32)

where the harmonic function H is a function of X45 = x4 only and for convenience these

two matrices are introduced

Imn =









−1 0 0

0 1 0

0 0 1









= I
mn , Imn,kl =









1 0 0

0 1 0

0 0 −1









= I
mn,kl. (3.33)

The generalized Lie derivative of the metric and the volume factor (a density) are given by

the same expressions as before (cf. (2.11) and (2.13)) with the Y -tensor for SL(5) being

YMN
KL =

1

4
ǫaMN ǫaKL (3.34)

where these are five-dimensional permutation symbols which are tensor densities. We thus

have

LξMMN = ξL∂LMMN + 2ML(M∂N)ξ
L − 1

2
ML(M |ǫa|N)Qǫ

aLP∂P ξ
Q (3.35)

Lξ∆ = ξM∂M∆+ ∂Mξ
M . (3.36)

4The C-field is unaffected by the rescaling, only its field strength obtains a different factor in the action.
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We again pick a transformation parameter ξM with non-zero components only in the

transverse directions but not along the worldvolume (and its dual). This can be described

by an SL(5) vector field

ξM = ξab = (0, Hαφ̂, 0, Hβ ˆ̃φmn) (3.37)

where φ̂ and
ˆ̃
φij are a constant scalar and dualized vector that later will become the

Goldstone modes once they are allowed a dependence on the worldvolume coordinates, H

is the harmonic function and α, β are constants determined by normalisability.

Using the generalized Lie derivative given above we compute mMN = LξMMN

mm5,n5 = mm4,n4 = mm4,n5 = −Imnφ̂H
α∂H

m45,45 = 2φ̂∂Hα

mmn,kl = −Imn,klφ̂∂H
α

mmn,45 =
1

2
Imn,kl

ˆ̃
φkl∂Hβ

(3.38)

and, recalling that ∆ is a constant for our solution,

λ = Lξ∆ = ∂(φ̂Hα). (3.39)

Now the four modes φ, φ̃12, φ̃13 and φ̃23 are allowed to depend on the worldvolume coordi-

nates xm (and the hats are removed).

For the equations of motion we need KMN and R only with terms with two derivatives

on mMN and λ. There are no such terms in R as given in (3.6) but upon integrating by

parts they can arise. We thus have

KMN = MKL∂K∂(MmN)L − 1

6
MKL∂K∂LmMN − ∂M∂Nλ (3.40)

R = −2

7
MMN∂M∂Nλ− ∂M∂Nm

MN (3.41)

Inserting mMN and defining �φ = HImn∂m∂nφ this gives

Km5,n5 = −(1 + αH−1)∂m∂nφ(H
α∂H) +

1

6
Imn�φ(H

α∂H)

Km4,n4 =
1

6
Imn�φ(H

α∂H)

Km5,n4 = −1

2
∂m∂nφ(H

α∂H) +
1

6
Imn�φ(H

α∂H)

K45,45 = −α
3
H−1

�φ(Hα∂H)

Kmn,kl =
α

6
H−1

Imn,kl�φ(H
α∂H) (3.42)

Kmn,45 = − β

12
H−1

Imn,kl�φ̃
kl(Hβ∂H)

Km5,45 = −1

2
∂mφ∂(H

α∂H)

Km4,45 = −1

2
∂mφ∂(H

α∂H)
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Km5,kl =
1

4
Ikl,pq∂mφ̃

pq∂2Hβ

Km4,kl = 0

The volume factor equation gives

R = H−1

(

α

7
+ 1

)

�φ(Hα∂H) = 0 (3.43)

which is solved by �φ = 0.

Now we have 14 components of the projected equation of motion PMN
KLKKL = 0:

• three of the form Km5,45 ∼ Kkl,n4 +Kkl,n5

K15,45 = (H − 2)(K12,24 +K13,34)− (H − 1)(K12,25 +K13,35)

K25,45 = (H − 2)(K12,14 +K23,34)− (H − 1)(K12,15 +K23,35)

K35,45 = (H − 2)(K13,14 −K23,24)− (H − 1)(K13,15 −K23,25)

(3.44)

• three of the form Km4,45 ∼ Kkl,n4 +Kkl,n5

K14,45 = (H − 1)(K12,24 +K13,34)−H(K12,25 +K13,35)

K24,45 = (H − 1)(K12,14 +K23,34)−H(K12,15 +K23,35)

K34,45 = (H − 1)(K13,14 −K23,24)−H(K13,15 −K23,25)

(3.45)

• three of the form Kmn,kl ∼ Kp4,q4 +Kp4,q5 +Kp5,q4 +Kp5,q5 with mn 6= kl

K13,23 = (H − 2)K14,24 − (H − 1)K14,25 − (H − 1)K15,24 −HK15,25

−K12,23 = (H − 2)K14,34 − (H − 1)K14,35 − (H − 1)K15,34 −HK15,35

−K12,13 = (H − 2)K24,34 − (H − 1)K24,35 − (H − 1)K25,34 −HK25,35

(3.46)

• two relating the Km4,m4, Km4,m5 and Km5,m5 components

H(K15,15 −K25,25 −K35,35) = (H − 2)(K14,14 −K24,24 −K34,34)

H(K14,15 −K24,25 −K34,35) = (H − 1)(K14,14 −K24,24 −K34,34)
(3.47)

• and three relating Kmn,kl with mn = kl and K45,45 to Km4,m4, Km4,m5 and Km5,m5

K12,12 −K13,13 = (H − 2)(K14,14 − 2K24,24)− 2(H − 1)(K14,15 − 2K24,25)

+H(K15,15 − 2K25,25) +
2

H
(K14,14 −K24,24 −K34,34)

K12,12 +K23,23 = (H − 2)(2K14,14 −K24,24)− 2(H − 1)(2K14,15 −K24,25)

+H(2K15,15 −K25,25) +
2

H
(K14,14 −K24,24 −K34,34)

K45,45 − 2K12,12 = 2(H − 2)(K14,14 −K24,24) + 4(H − 1)(2K14,15 −K24,25)

− 2H(K15,15 −K25,25)−
3

H
(K14,14 −K24,24 −K34,34)

(3.48)
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The first and second block of equations can be combined to get cancellations, resulting in

three equations for φ̃
∂2φ̃

12 + ∂3φ̃
13 = 0

∂1φ̃
12 − ∂3φ̃

23 = 0

∂1φ̃
13 + ∂2φ̃

23 = 0 .

(3.49)

Defining φ̃i =
1
2ǫijkφ̃

jk this can be written as

∂2φ̃3 − ∂3φ̃2 = 0

∂1φ̃3 − ∂3φ̃1 = 0

∂2φ̃1 − ∂1φ̃2 = 0 .

(3.50)

All the remaining blocks of equations are either trivial or satisfied by �φ = 0.

One would expect a non-zero right-hand side for the above equations of the form ∂mφ

to get relations between φ and φ̃

∂mφ(∂
2Hα) ∼ −Imnǫ

npq∂pφ̃q(∂
2Hβ) (3.51)

This does not only provide a condition for β to be equal to α, but also the three equations

needed to reduce the number of modes from four to one.

The reason for the zero on the right-hand side is due to a degeneracy in considering

the membrane with its three-dimensional worldvolume in a four-dimensional background.

There is only one transverse direction and hence only one contributing derivative ∂45 ≡ ∂.

So a term like

δmnδ
kl∂k∂lH

α − δm
kδn

l∂k∂lH
α (3.52)

as it arose for the string vanishes for the membrane. It would be interesting to see if the

same calculation for the membrane derived from a wave in a larger extended geometry,

e.g. the (5+10+1)-dimensional extended space with manifest SO(5, 5) invariance along five

dimensions, would provide a duality relation between the φ’s and φ̃’s that could be turned

into a self-duality relation resembling the result in [37].

4 Discussion

We have seen that strings and branes are null waves from the point of view of extended the-

ories. The BPS nature of these solutions has its origin in the fact that the null wave is BPS

and its reduction naturally gives rise to a BPS condition of charge being equal to tension.

There are immediate natural extensions to this work such as understanding how this

works for the supersymmetric theory and checking how this works for other branes such as

the M-theory fivebrane. There is also the the more ambitious question as to whether the

same analysis works for lower BPS objects such as 1/4 BPS states.

The Goldstone mode analysis provides a particularly interesting interplay between

worldvolume and spacetime approaches. The solutions all obey the section condition and
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the local symmetry variations used to calculate the Goldstone modes also obey the section

condition but there are still components of the variation, φ̃, that are in the extended

directions. These are crucial in giving the Tseytlin string. Thus the relation to the section

condition in the target space and the chirality condition may be understood as follows.

From the point of view of the string world-sheet one should view the φ̃ deformations as

components of a local symmetry variation in the extended dimensions but one that still

does not functionally depend on the dual coordinates. This is crucial since it means the

section condition is still obeyed in the Tseytlin string.

Other fascinating possibilities will be to extend this to branes that are non-BPS but

are thermodynamically excited. The hope of embedding brane thermodynamics in DFT

and extended geometries is intruiging.

From this perspective there is an intriguing possibilitiy of how one should calculate

string scattering amplitudes. Many novel contemporary techniques have been developed

for understanding the amplitudes of the massless sector of many theories [70]. Now string

and branes themselves may be viewed as massless objects all be it in a theory with extra

dimensions. These objects being massless degrees of freedom fits well with the idea (pre-

viously expressed in [43]) that one may think of strings and branes as Goldstone modes of

the spontaneously broken duality symmetry. As such the appearance of nonlinear realized

duality symmetry (see for example [29] and references therein) in the target space is unsur-

prising from this perspective. Effective actions of sigma models with nonlinearly realized

symmetries in target spaces began with the effective action of pions, the Goldstone modes

of broken chiral symmetry.

Another direction of interest is to consider unsmearing the wave solution. It is un-

certain whether this can make sense since it will then break the section condition and yet

with Scherk-Schwarz theories the section condition is broken and with the localized KK-

solution [71] the branes become localized in a dual coordinate. Studying the particulars

of interesting backgrounds like those described in this paper and their localizations may

provide insight into futher possibilities.
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A Solution check

A.1 The wave in DFT

In this appendix we proof that the wave solution to DFT presented in (2.1) does indeed sat-

isfy the equations of motion (1.10) and (1.21) derived from the DFT action. We will actually

show that the stronger equation KMN = 0 instead of the projected equation is satisfied.

Both R andKMN have three kind of terms: those just containing the generalized metric

HMN , those containing the dilaton d and those with the generalized vielbein EA
M . The

vielbein terms are always proportional to the Y-tensor and thus vanish since our solution

satisfies the section condition. In our solution d is constant so all the dilaton terms vanish

as well as they are always acted by a derivative operator on. This leaves us to check the

metric terms. Recall that the harmonic function H is a funtion of the transverse ym only,

so the only derivatives acting on H that give a non-vanishing contribution are the ∂m.

We will split this task into several steps. First consider the term that is proportional

to ∂MHKL∂NHKL. Using the notation of section 2.2, we can expand the indices to get

∂MHKL∂MHKL → ∂mHab∂nHab + ∂mHkl∂nHkl

+ ∂mHāb̄∂nHāb̄ + ∂mHk̄l̄∂nHk̄l̄ + 2∂mHab̄∂nHab̄

= I
ab
Iab∂mH∂n(2−H) + I

āb̄
Iāb̄∂m(2−H)∂nH

+ 2Jab̄Jab̄∂m(H − 1)∂n(H − 1)

= (−2− 2 + 4)∂mH∂nH

= 0.

(A.1)

Next consider the term proportional to ∂MHKL∂KHNL. It vanishes as well

∂MHKL∂KHNL → ∂mHkl∂kHnl = 0. (A.2)

Similarly the terms inKMN and R where the derivatives are contracted with the generalized

metric (in any combination) vanish since the only derivative we need to consider is ∂m,

but upon contraction this forces both indices on H to be of kl type and Hkl = δkl so its

derivative vanishes.

Thus we have shown that all terms in KMNand R are zero and therefore the equations

of motion is satisfied by our solution.

A.2 The wave in SL(5)

As for the DFT solution, we have to check that the solution presented in (3.23) is actually

a solution to the equations of motion (3.17) and R = 0 of the extended geometry of SL(5).

Before we insert the metric into KMN and R, we note some simplifications. The

harmonic function H is a function only of the transverse coordinates, just x4 = X45 in our

case. Therefore the only derivative that yields a non-zero result is ∂45 which we will simply

denote by ∂. Thus, just as in the DFT case, terms like

∂KMKL∂LMMN , ∂MMKL∂LMKN , MKL∂L∂MMKN , (A.3)

– 26 –



J
H
E
P
0
6
(
2
0
1
4
)
0
0
6

that is terms where a derivative acts on a metric which is contracted with a derivative,

vanish since M45,45 = 1.

The volume factor ∆ is a constant for our solution, so all terms with ∂∆ also van-

ish. Furthermore, since H is a harmonic function, it is annihilated by the Laplacian and

therefore

MKL∂K∂LMMN = ∂2MMN = 0 (A.4)

since all the components of MMN are linear functions of H.

With these simplifications in mind, most of the terms in KMN and R vanish trivially.

We only need to check two terms explicitly, namely

∂MMKL∂NMKL and MKLMPQ∂KMMP∂LMNQ. (A.5)

Using the notation of section 3.4, we start with the first expression and expand the indices

to get

∂MMKL∂NMKL → ∂Mk5,l5∂Mk5,l5 + ∂Mk4,l4∂Mk4,l4 + 2∂Mk5,l4∂Mk5,l4

+ ∂Mkl,pq∂Mkl,pq + ∂M45,45∂M45,45

= I
mn

Imn [∂H∂(2−H) + ∂(2−H)∂H + 2∂(H − 1)∂(H − 1)]

= 3 [−1− 1 + 2] ∂H∂H

= 0.

(A.6)

Similarly we can show that the other expression in (A.5) vanishes

MKLMPQ∂KMMP∂LMNQ → Mp5,q5∂MM,p5∂MN,q5 +Mp4,q4∂MM,p4∂MN,q4

+ 2Mp5,q4∂MM,p5∂MN,q4

+Mkl,pq∂MM,kl∂MN,pq +M45,45∂MM,45∂MN,45

→ [H − (2−H)− 2(H − 1)] IpqImpInq∂H∂H

= [H − 2 +H − 2H + 2] Imn∂H∂H

= 0. (A.7)

We have thus shown that all the terms in KMN and R vanish and the equations of

motion are therefore satisfied by our solution.
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