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Abstract 

Effective monitoring of the environment for anthropogenic impacts is essential 

for managing and conserving ecosystems, especially in the face of global climate 

change and an ever increasing human population. Yet current biomonitoring schemes 

are grounded in species or trait based approaches, and lack the tools required to deal 

with the effects of stressors on species and their interactions in complex natural 

systems. Ecological networks can offer new insights into ecosystem degradation by 

explicitly considering the interactions between species, adding value to current 

taxonomically constrained schemes.  

Here, I develop a formalisation of a method for constructing ecological 

networks from species lists and trophic information harvested from the primary 

literature (Chapter 2). I then use this method to augment traditional biomonitoring 

data with information on the interaction between species to build large collections of 

food webs (Chapters 3-5). I apply novel network analysis methods from complex 

network research to examine the substructure of these networks. In Chapter 3, I find 

that the structure, and substructure, of freshwater food webs are fundamentally 

altered by hydrochemical stress (Appendix A). Chapter 4 demonstrates that the 

structure of agricultural food webs are linked to the delivery of beneficial pest control 

services, potentially allowing those services to be enhanced through management of 

food web structure. Finally, in Chapter 5 I use more detailed food web data to 

investigate how freshwater food webs are impacted by a catastrophic pesticide spill, 

how the indirect effects propagate through the food web, and how the structure of the 

community and ecosystem functioning recover over time.  

The findings presented herein demonstrate that ecological networks constructed from 

routine biomonitoring data can be a useful tool for understanding the impacts of 

stressors on ecological communities. Considering the interactions between species is 

vital if we are to fully understand, and mitigate against the negative effects of global 

climate change on biodiversity.  
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1 | Ecological networks: the missing links in 

biomonitoring science1 

 
 

 

 

 

 

1 Gray, C., Baird, D.J., Baumgartner, S., Jacob, U., Jenkins, G.B., O’Gorman, E.J., Lu, X., Ma, 

A., Pocock, M.J.O., Schuwirth, N., Thompson, M. & Woodward, G. (2014). Ecological 

networks: the missing links in biomonitoring science. Journal of Applied Ecology, 51, 1444–

1449. 
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1.1 Biomonitoring in the 21st century 

Biomonitoring programmes were first developed in the wake of the Industrial 

Revolution to measure the effects of environmental stressors on the natural world. 

They focus on measuring the biological response to environmental perturbations, as 

biota integrate the changes in environmental quality over time into one measure (i.e. 

presence, absence or composition), unlike chemical data which reflects only one point 

in time. Most current programmes are taxonomically constrained and monitor 

changes in biodiversity, although increasingly, aspects of ecosystem functioning are 

being incorporated. A range of indices have been developed which score taxa on their 

known sensitivity to particular stressors (e.g. Balloch, Davies & Jones. 1976; Wright, 

Furse & Armitage 1993; Bonada et al. 2006; Murphy et al. 2013). Changes are assessed 

against a baseline level relative to a reference or idealised level (e.g. targets for 

restoration or acceptable levels of a response variable for that place and time).  

This approach of assessing the biota of a site with respect to a ‘reference’ condition 

now underpins many biomonitoring schemes across Europe (e.g. Simpson et al. 2005; 

Murphy et al. 2013) and other parts of the world (Simpson & Norris 2000). However, 

pre-industrial (i.e. pre 1800) target conditions for many habitats no longer exist, or are 

very rare; many of European freshwater habitats are impacted (Friberg et al. 2011; 

Malaj et al. 2014) and many grasslands worldwide have experienced eutrophication 

driven by emissions and nitrogen deposition (Clark & Tilman 2008). Furthermore 

preindustrial states are very difficult to model with confidence (Battarbee et al. 2005). 

Additional challenges are provided by global climate change, since the reference 

conditions themselves may be shifting (Pauly 1995; Bennion et al. 2011). 

Unfortunately, this makes assigning appropriate reference conditions for 

biomonitoring problematic. 

Due to the paucity of baseline data, current biomonitoring schemes are still unable 

to diagnose many perturbations, often there is also a generally poor understanding of 

the underlying ecological mechanisms governing an ecosystems response to 
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environmental change (Friberg et al. 2011). Newly emerging environmental threats, 

such as the many facets of climate change, pose new challenges for biomonitoring 

schemes. Thus, there is a growing need to determine how best to assess the impact of 

these emerging stressors, both in isolation and in combination. Also, the structural 

biodiversity-centric focus of traditional methods (e.g. Wright, Furse & Armitage 1993; 

Metcalfe-Smith 1996; Murphy et al. 2013) now needs to be augmented with more 

explicitly functional measures (e.g. Young, Matthaei & Townsend 2008), to provide 

complementary insights into the impacts of stressors (Woodward et al. 2012b). 

Incorporating species interactions into biomonitoring approaches may help to 

overcome many of the limitations of current biomonitoring approaches, and provide 

a new template for ecosystem monitoring. 

 

1.2 The advantages of incorporating species interactions into 

biomonitoring schemes 

Traditional biomonitoring schemes have focused on presence/absence or 

abundance of taxa (network 'nodes') across environmental gradients, while ignoring 

the network of pairwise interactions (‘links’) between them (Friberg et al. 2011).  Such 

taxonomic grounding limits its ability to generalise beyond the characteristic biota of 

a given region or system. For instance, when assessing the ecological status of 

European rivers, huge effort has been devoted to harmonising approaches and data 

across member states, forcing practitioners to resort to complex statistical inter-

calibration (see Birk et al. 2013). However, network approaches are not reliant on the 

taxonomy of the nodes per se, and so, in theory, can be used to compare emergent 

topologies of networks irrespective of biogeographical differences in species 

composition.  

Environmental legislation increasingly requires both the structural and 

functional attributes of a particular community to be considered (e.g. the Water 
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Framework Directive; European Commission 2000), but the latter are often still 

missing or inferred, despite increasing calls for them to be embedded in ecological 

assessments. Network approaches can help address this gap as many ecosystem 

processes and the services they provide depend on interactions between taxa 

(Thompson, Dunne & Woodward 2012).  Interactions between these network nodes 

influence biodiversity and ecosystem functioning (Kremen 2005; Thompson, Dunne 

& Woodward 2012) and a system’s sensitivity to environmental change (Tylianakis, 

Tscharntke & Lewis 2007).  Changes in network structure can provide clues to altered 

dynamics and ecosystem functioning.  

A classic example of food web interactions determining alternative outcomes of 

both structural and functional responses to environmental stressors comes from 

shallow lakes. Here, catastrophic regime shifts are triggered by extreme nutrient 

concentrations, but in intermediate conditions trophic cascades in the food web can 

flip the ecosystem from one stable state to another, even in the absence of additional 

environmental change (Scheffer & Carpenter 2003). Ecological hystereses, whereby 

community recovery is modulated by the biota and not simply the reverse trajectory 

of the response to an impact (Scheffer & Carpenter 2003), highlight how the network 

of species interactions that underpin critical processes and services (such as clean 

water, or fisheries) can influence both the internal dynamics of the system and its 

resilience to environmental change (e.g. Thompson, Dunne & Woodward 2012). A 

good example of this is that of Broadstone Stream (Figure 1), as the food web of this 

small stream recovered from the effects of acidification, counterintuitive patterns 

emerged. The community response did not simply show a straightforward reverse of 

the trajectory of the response to acidification, and invertebrate numbers actually 

declined as pH rose. These system-level responses only made sense when viewed in 

the context of the food web: the declines in invertebrate numbers coupled with a 

succession of invasions of progressively larger predators, represented increasing top-

down effects and the resultant restructuring of the mass-abundance scaling properties 



Chapter 1 | Introduction 
 

Page | 5 
 

of the network even though the prey assemblage composition remained relatively 

constant. Traditional biomonitoring techniques could not explain this ecological 

response because they lacked the key ingredient: species interactions within the food 

web. 

 

Figure 1. Broadstone stream food webs plotted in ‘trivariate’ space; as species abundance 
versus body mass data, with links between nodes representing trophic interactions. The 
abundance of invertebrates declines despite improving environmental conditions, as top-
down effects intensify. Redrawn from Layer et al. (2011). 

 

Keystone species can be identified through a network approach (e.g. Jordán 

2009), helping to focus monitoring efforts towards those that are ecologically most 

significant, since highly connected species often determine network stability and 

vulnerability to cascading secondary extinctions (Dunne, Williams & Martinez 2002b). 

Similarly, a network approach can also help improve efficiency by identifying and 

tracking those species or interactions that are most sensitive to change: thus, keystone 

and indicator nodes could help provide novel early warning systems for detecting 

impending regime shifts or catastrophic ecosystem collapse (Aizen, Sabatino & 

Tylianakis 2012). 

A network approach can help to reveal the complicated direct and indirect 

effects of stressors on an ecological community, beyond the simple loss or gain of 

species. For example, when freshwaters are acidified and specialist herbivores are 

excluded, generalist herbivore–detritivore species occupy their niche space, slowing 
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their re-establishment (e.g. Layer, Hildrew & Woodward 2013). Translocation 

experiments have shown that these acid tolerant consumers can perform just as well, 

if not better, in the absence of interactions with more acid sensitive species in the 

network, suggesting they are not simply acidophilous. Empirical and modelling work 

has provided some evidence that generalist acidified networks are more robust than 

their counterparts at higher pH: i.e. ecological inertia within the food web may be 

modulating biological recovery as acidity ameliorates (Layer et al. 2010b; Layer, 

Hildrew & Woodward 2013).    

Network analysis has also revealed how another major environmental stressor – 

drought – leads to a top-down erosion of stream food webs: large and rare species 

high in the web are especially sensitive and overall ecosystem functioning is 

compromised due to severely impaired biomass fluxes through the network (Ledger 

et al. 2013). The complex interconnected consequences of environmental stress for a 

particular system can thus only be fully understood from a network perspective, 

allowing a priori predictions to be made and appropriate management strategies to be 

developed.  Ecotoxicology could also benefit from taking this more system-based 

approach, as different pest control agents (insecticides, herbicides, fungicides) will 

affect different trophic levels and compartments in the food web, with ramifications 

that ripple far beyond the intended targets or other species with acute sensitivity to 

the poison. Monitoring the network as a whole would help detect these potentially 

critical indirect and often unanticipated effects (e.g. Baird et al. 2001).  

Consideration of the interactions between species when assessing a community’s 

response to perturbations can provide a deeper insight into the mechanisms 

governing those responses (Scheffer & Carpenter 2003; Woodward et al. 2010a; Friberg 

et al. 2011). An understanding of the characteristics of a ‘healthy’, unperturbed 

community might remove the need for a ‘reference condition’ approach to 

biomonitoring altogether, allowing the limitations associated with that approach, 

such as shifting baselines, to be circumvented.  
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1.3 Incorporating ecological networks into biomonitoring schemes  

Although potentially useful, network-based approaches must still overcome 

some significant challenges, particularly in terms of gathering data on interactions.  In 

some cases biomonitoring data are explicitly interaction-based, e.g. monitoring 

pollinators by collecting individuals from flowers (as in Kremen, Ullman & Thorp 

2011; Pocock, Evans & Memmott 2012) but, on the whole, direct monitoring of the 

interaction itself is currently too labour intensive to be practical in routine 

biomonitoring schemes (Hegland et al. 2010). For example, to characterise the 

interactions in a traditional food web it is necessary to examine many hundreds of 

guts for each consumer species (e.g. Woodward, Speirs & Hildrew 2005). If a networks 

based approach to the widespread biomonitoring of the natural world is to be 

adopted, then the efficiency with which ecological networks can be built must be 

dramatically increased. 

Where directly observing interaction data is impractical, one approach is to 

augment monitoring data by inferring interactions based on prior knowledge. Such 

inferences are especially valuable where assemblages across trophic levels are 

routinely monitored, e.g in aquatic systems (fish, macroinvertebrates and algae in 

freshwaters and whole fish assemblages in the sea). Interactions can be added from 

previously observed interactions, e.g. from data papers (e.g. Brose et al. 2005; Barnes 

2008) and online resources, such as the Interaction Web Database 

(http://www.nceas.ucsb.edu/interactionweb/index.html) or the Database of Insects 

and their Food Plants (http://www.brc.ac.uk/dbif/). For instance, Mulder and Elser 

(2009) constructed a set of 22 food webs from biomonitoring data and published 

trophic interactions to show how chemical soil properties influence network structure 

and hence soil processes and services. Quantitative networks can be created from 

these known interactions based on simple rules (e.g. Chapter 4; Pocock, Evans & 

Memmott 2012). Where historic data exist (e.g. the UK Upland Waters Monitoring 

http://www.nceas.ucsb.edu/interactionweb/index.html
http://www.brc.ac.uk/dbif/
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Network; Kernan et al. 2010) networks could even be inferred by hindcasting back 

through time (Chapter 3).  

Such inferred networks have potential limitations, however, as they ignore 

possible behavioural differences in species between systems, (i.e. preferential feeding 

depending on which resources are available) and unexpected or state-specific changes 

in networks (e.g. those pre-empting regime shifts) could go undetected. 

Notwithstanding these caveats, the potential benefits are substantial, as the 

parameterisation of networks using simple allometric scaling rules could ultimately 

allow interaction strengths or energy fluxes to be inferred and stability or productivity 

to be modelled dynamically (e.g. Appendix A; Berlow et al. 2009; Layer et al. 2010b; 

Tang, Pawar & Allesina 2014). This would provide a currently missing system-level 

link between structure and (inferred) functioning. Inferring networks from the vast 

amounts of biomonitoring data already in existence would bring the benefits of 

ecological network science into aspects of biomonitoring, while circumventing the 

huge effort required to construct each network anew from direct observation. To 

achieve this, a systematic tool for the automated construction of large volumes of 

ecological networks is required (Chapter 2; Gray et al. 2015b). 

 Just as the goals and aims of biomonitoring differ from site to site, the type of 

network monitored is likely to also vary, as the ecosystem services and functions they 

provide are prioritized differently from place to place. There is huge scope for further 

development in this area, for example, in understanding the extent to which networks 

can withstand restructuring before the goods and services, which they provide 

become impaired (e.g. Chapter 5; Tylianakis et al. 2010; Thompson, Dunne & 

Woodward 2012). Some systems show clear signs in their network structure of 

impending regime shifts which have consequences for ecosystem functioning (e.g. 

Rawcliffe et al. 2010), whereas other networks experience significant network 

rearrangements without affecting some network metrics (Raffaelli & Friedlander 

2012). Thus the interpretation of network data will depend upon the type of system 
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being monitored as well as the desired ecosystem goods and services.  

 

1.4 Network metrics informing ecological research  

Traditional ecological network research has focussed on the analysis of basic 

network metrics such as linkage density (L/S; where L is the number of links, and S 

the number of nodes), connectance (L/S2), generality (number of resources per 

consumer), vulnerability (number of consumers per resources) of nodes, food chain 

length and proportion of basal, intermediate and top nodes (Thompson et al. 2012). 

How these basic metrics vary with the size of the network and with environmental 

gradients has been extensively studied (Briand 1983; Briand & Cohen 1984; Morris et 

al. 2014).  Increasingly though as the quality of the underlying food web data have 

improved, and analysis methods have advanced, these metrics are proving to be 

heavily influenced by sampling effort and insufficient to answer the types of 

ecological question under investigation (e.g. Goldwasser & Roughgarden 1997; 

Heleno, Devoto & Pocock 2012; Morris et al. 2014).  

It is important that any metrics used for analysis are rooted in ecological theory, 

as those which have been traditionally used are, as well as appropriate for addressing 

the hypothesis in question. Linkage density and connectance are both measures of 

how well connected a community is, highly connected communities might be more 

resilient to perturbations because redundant interactions might protect the 

community from secondary extinctions (Dunne, Williams & Martinez 2002b; Thébault 

& Fontaine 2010). As such, connectance has been proposed as an important and 

holistic biological indicator (Gilbert 2009). However, a meta-analysis revealed that 

there is no evidence that connectance is related to conservation value (Heleno, Devoto 

& Pocock 2012). 

Food chain length indicates the number of times energy has passed from a consumers 

diet into consumer biomass (Figure 2), between a basal species and a top consumer in 
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a food web (the 'trophic level'; Williams & Martinez 2004). Food chain length can be 

measured in a number of ways, Levine’s (1980) prey-averaged trophic height is a 

commonly used variant, and is equal to 1 + the mean trophic level of all the 

consumer’s resource. The calculation and ecological meaning of food chain length and 

trophic heights is challenged by the ubiquity of omnivory, cannibalism and mutual 

predation. There are theoretical constraints on the length of food chains, Elton (1927) 

predicted that trophic levels are limited to be fewer than six, others have suggested 

that food chains found in natural systems are shorter than you would expect by chance 

(Pimm 1980; Lawton 1989; Yodzis 1989; Williams & Martinez 2000). However it is 

unknown to what extent under-sampling has contributed to these findings (Lawton 

1989; Huxham, Raffaelli & Pike 1995; Goldwasser & Roughgarden 1997; Marcogliese 

& Cone 1997).  

Generality is a measure of the breadth of a consumer’s diet. If a consumer has a 

specialist (i.e. narrow) diet and is reliant on few resource nodes, then it might be 

expected to be vulnerable to extinction as the loss of only a few species from the food 

web might leave it with no resources. Equally if a consumer has low generality it is 

likely to have low topological importance as it mediates few energy pathways through 

the food web. Vulnerability is a measure of how many consumers are feeding on a 

 

 

Figure 2. An imaginary food web. An example food chain of length three is highlighted in 
blue. Trophic height (Levine 1980) is shown to the right. The generality of node 𝑖 is three, as 
it consumes three resource nodes. Its vulnerability is one as it is preyed upon by one 
consumer.  



Chapter 1 | Introduction 
 

Page | 11 
 

particular resource species (Figure 2), and therefor how important that node is for the 

flow of biomass through the food web. Generality and vulnerability scores can be 

normalised to the size of the food web, allowing values to be compared across 

different systems, or the standard deviation to be calculated to compare the variability 

of those scores. Again, sampling effort has been found to strongly influence these 

metrics, complicating their comparison between different systems (Lawton 1989; 

Huxham, Raffaelli & Pike 1995; Goldwasser & Roughgarden 1997; Marcogliese & 

Cone 1997). 

Metrics from engineering have begun to enter ecological research, such as 

measures of network efficiency. The efficiency of a network is a measure of how 

reachable nodes are from any other node in the network, hence it builds upon the 

more simplistic measure of connectance (Figure 3). This method reveals information 

about the substructure of networks, it is more sophisticated than connectance which 

provides information about the density of connections averaged across the whole 

network, rather it is a descriptor of how well distributed these interactions are (Figure 

3).  This method has been applied to measure the global and local (i.e. node specific) 

efficiency of neural networks (Latora & Marchiori 2001), but is yet to be applied to 

 

 

Figure 3. Some example networks with high and low global efficiency and connectance. The 
shortest path between nodes 𝑖 and 𝑗 are highlighted. Connectance is insensitive to the 
distribution of links in a network, such that both b) and c) have the same connectance score. 
However all the nodes in b) are within two links of one another, yielding a high efficiency 
score, whilst the shortest path between nodes 𝑖 and 𝑗 in c) is four, yielding a low efficiency 
score. 
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ecological networks. This method is related to the ‘small-world’ phenomenon, 

networks which display ‘small-world’ characteristics have shorter path lengths 

between nodes than would be expected for a network of that size (Figure 4), which 

has important implications for the spread of perturbations through the network 

(Watts & Strogatz 1998; Montoya & Solé 2002). More traditionally used metrics (such 

as connectance) cannot capture this property. As such the nodes within a network 

with high efficiency are more highly connected than expected, and are likely to be 

robust to species and link loss. 

The application of advanced complex network analysis techniques to ecological 

networks is an exciting new avenue of research, many of these new tools may prove 

useful in increasing our understanding of the structure and dynamics of natural 

communities, allowing us to make predictions, and design conservation strategies 

 

Figure 4. An example of a food web with small-world properties. This highly connected food 
web is dominated by short path lengths between resources and consumers, an example of 
which is highlighted; a = coarse particulate organic matter (e.g. leaf litter), b = Gammarus pulex, 
c = Salmo trutta, d = Lutra lutra. The two concentric circles of nodes represent the shortest food 
web distances to or from G. pulex; all nodes in the network are within two links G. pulex. 
Symbols for nodes represent different trophic elements: green circles = producers, blue squares 
= macroinvertebrates, purple diamonds = vertebrate ectotherms, red triangles = endotherms, 
black circles = abiotic resources. Reproduced from Thompson et al. (2015). 
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more effectively. Substructural analysis of ecological networks is in its infancy, the 

analysis of large collections of replicated ecological networks using these novel tools 

has the potential to provide a far deeper understanding of the response of ecological 

networks to environmental change. Interdisciplinary collaboration will continue to 

allow the flow of ideas and novel metrics from other applications of network science, 

including biomedical research, social networks and information theory, into ecology 

(e.g. Ulanowicz 2004) to yield ever more sophisticated tools: the challenge now is to 

adopt and adapt these novel informatics approaches in a well-informed way to add 

value to biomonitoring. 
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1.5 Aims and thesis structure 

The main aim of this project was to apply novel network analysis techniques, 

taken from other fields of complex network research, to examine the suitability of 

ecological networks, in particular food webs, as a biomonitoring tool for 

understanding the impacts of anthropogenic stressors on the environment. To do this, 

I first developed a function in the R statistical programming language to automate the 

process of constructing food webs from species lists and trophic information 

harvested from the literature. I then use this function to combine routine 

biomonitoring data with information about the trophic interactions between species 

to build unprecedentedly large collections of food webs spanning environmental 

gradients. I then analyse these collections using methods taken from complex network 

research to determine if their structure was sensitive to those environmental 

gradients.  

Chapter 2 – ‘Joining the dots: an automated method for constructing food webs from 

compendia of published interactions’. Here I developed a novel R function which 

automates the construction of food webs from taxonomic lists, and a dataset of trophic 

interactions. While researchers have used this approach before, it is typically done by 

hand, and without a clear output which allows the source of each interaction to be 

traced. This R function provides an output which can be published alongside the food 

web stating the source of each interaction, and any diet assumptions which might 

have been made. I then tested the performance of this method against the traditional 

method of constructing food webs through analysis of gut contents, as well as some 

models which could be used to predict food web structure, and found that it matched 

and often outperformed those models. I then used this method to construct the food 

webs analysed in Chapters 3-5. 

Chapter 3 – ‘The recovery of freshwater food webs from the effects of acidification’. 

Here I augmented typical biomonitoring data which had been collected over the last 

24 years in order to monitor the recovery of 23 lake and stream sites from the effects 



Chapter 1 | Introduction 
 

Page | 15 
 

of acidification, and construct 451 food webs. I examined these food webs to assess 

how their structure had recovered over time, and what the principal hydrochemical 

determinants of food web structure were. A first for food web research, I measured 

the global efficiency of the networks to make inferences about the connectivity of the 

food webs as they respond to hydrochemical stress. 

Chapter 4 – ‘Food web topological plasticity disrupts the provision of ecosystem 

services’. Here I used biomonitoring data, which was collected to assess the impacts 

of genetically modified crops on farmland biodiversity, to construct a collection of 374 

carabid beetle food webs. Carabid beetles are known to regulate the abundance of 

weed seeds in arable fields, and so provide a pest control service to farmers. I 

examined the structure of these food webs to assess if the presence of alternative 

resources, here gastropod prey, interfered with the interactions between carabid 

consumers and their weed seed resources, and disrupted this pest control service.  

Chapter 5 – ‘The recovery of a freshwater food web from a catastrophic pesticide spill’. 

Here I present a study of 8 food webs constructed from samples taken from the River 

Kennet in Wiltshire, UK, on which there was a major spill of the pesticide chlorpyrifos 

in 2013. These food webs are more detailed than those built from routine 

biomonitoring data, and contain mass and abundance data for each node allowing 

more detailed network analysis to be performed. I examined how the efficiency of 

energy transfer through these food webs was affected by, and recovered from the 

pesticide spill. I applied complex network analysis techniques to examine the sub-

structure of these food webs, I measured the core size of these food webs. I linked 

these changes in food web structure to changes in the ecosystem functions they 

support, and how that recovered over time.  

 



Chapter 2 | Methods for building food webs 
 

Page | 16 
 

2 | Joining the dots: an automated method for 

constructing food webs from compendia of 

published interactions1 

 

 

 

 

 

1 Gray, C., Figueroa, D.H., Hudson, L.N., Ma, A., Perkins, D. & Woodward, G. 

(2015). Joining the dots: an automated method for constructing food webs from 

compendia of published interactions. Food Webs, 5, 11–20. 
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2.1 Summary 

Food webs are important tools for understanding how complex natural communities 

are structured and how they respond to environmental change. However their full 

potential has yet to be realised because of the huge amount of resources required to 

construct them de novo.  Consequently, the current catalogue of networks that are 

suitable for rigorous and comparative analyses and theoretical development still 

suffers from a lack of standardisation and replication.  

Here, we present a novel R function, WebBuilder, which automates the 

construction of food webs from taxonomic lists, and a dataset of trophic interactions. 

This function works by matching species against those within a dataset of trophic 

interactions, and ‘filling in’ missing trophic interactions based on these matches. We 

also present a dataset of over 20,000 freshwater trophic interactions, and use this and 

four well-characterised freshwater food webs to test the method.  

The WebBuilder function facilitates the generation of food webs of 

comparable quality to the most detailed published food webs, but at a fraction of the 

research effort or cost. Furthermore, it matched and often outperformed a selection of 

predictive models, which are currently among the best, in terms of capturing key 

properties of empirical food webs. The method is simple to use, systematic and, 

perhaps most importantly, reproducible, which will facilitate (re-) analysis and data 

sharing.  Although developed and tested on a sample of freshwater food webs, this 

method could easily be extended to cover other types of ecological interactions (such 

as mutualistic interactions).  

 

  



Chapter 2 | Methods for building food webs 
 

Page | 18 
 

2.2 Introduction 

 Characterising food webs (networks representing trophic interactions between 

species) and other ecological networks (networks which represent any type of 

ecological interaction, such as pollination) can help us understand and, ultimately 

predict multispecies systems’ responses to changes in environmental conditions 

(Tylianakis et al. 2010; Thompson et al. 2012). Food webs can reveal subtle but 

important changes in the biotic interactions that underpin ecosystem functioning, 

stability, and resilience to perturbations - higher-level phenomena that cannot be 

inferred from studying the nodes (i.e., species or populations) alone (Thompson et al. 

2012; Gray et al. 2014).  

 Despite the many advantages of a network-based approach to ecology, 

significant challenges need to be overcome, particularly in terms of gathering 

interaction data. Interactions occur between individuals and data are often collected 

at this level: for example, via collection, rearing and identification of every leaf miner, 

and subsequent leaf miner parasitoid along a transect to build herbivore-parasitoid 

networks (Memmott, Martinez & Cohen 2000; Macfadyen et al. 2011), or through 

dissecting and identifying consumer gut-contents via microscopy (Layer, Hildrew & 

Woodward 2013). Such laborious methods require substantial investment of time and 

resources, and it can take many thousands of lab hours to characterise just one food 

web, which even then may still be undersampled for links between its rarer members 

(see Table 1; e.g. Woodward et al. 2005; Olito & Fox 2014). Many hundreds or 

thousands of individuals of each species are often needed to fully characterise the full 

set of feeding links within a food web (e.g. Ings et al. 2009), which is rarely practical 

given the financial and time restraints of research funding. In addition, such 

comprehensive sampling is often destructive and can impose undesirable disturbance 

on study systems. Consequently, empirical food webs are often incompletely 

described and constructed from relatively small sample sizes (Kaiser-Bunbury et al. 

2010; Layer, Hildrew & Woodward 2013). This limits the conclusions that can be 
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drawn and the number of comparable food webs that are available both across and 

within studies (Briand 1983; Bascompte et al. 2003; Olesen et al. 2007) although 

exceptions to this exist (Bascompte et al. 2003; Cohen & Mulder 2014). Most studies 

still have patchy and differing levels of sampling effort and taxonomic resolution, 

making meta-analyses difficult or even inappropriate: the ability to construct large 

numbers of realistic, comparable food webs across multiple systems would, therefore, 

help realise the true potential of network approaches (Gray et al. 2014). 
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Table 1. Methods for constructing food webs, with their advantages and disadvantages. 

Method Advantages Disadvantages Examples 

Observation 
of evidence 
of interaction 
(e.g. feeding 
trials or gut 
contents 
analysis) 

High confidence 
in links produced. 

Very slow and labour-
intensive. 
Rare interactions are 
often missed. 
Interaction type is 
biased by the method 
employed, e.g. the prey 
of suctorial predators 
cannot be determined 
through gut contents 
analysis. 

Woodward et al. 
(2005)  
Macfadyen et al. 
(2011) 
Henson et al. (2009) 
Ledger et al. (2012) 
 

Extrapolating 
from 
previously 
published 
interactions  
(e.g. 
WebBuilder 
function) 

Fair confidence in 
links produced. 
Rare interactions 
can be included. 
Interactions from 
multiple studies 
determined 
through different 
methods can be 
easily 
incorporated. 
Low effort and 
quick. 

Reliant on the quality 
of the data contained 
within the reference 
dataset. 
Can only be used to 
construct ‘cumulative’ 
or ‘summary’ food 
webs, i.e. temporal or 
spatial changes in 
feeding behaviour 
cannot be 
incorporated. 

Hall & Raffaelli 
(1991) 
Goldwasser et al. 
(1993) 
Havens (1993)  
Piechnik et al. (2008) 
Pocock et al. (2012)  
Layer et al.(2013) 
Cohen & Mulder 
(2014) 
Strong & Leroux 
(2014) 
 

Predictive 
models 

Ecological rules 
and theory can be 
incorporated. 
Low effort and 
quick. 

Require prior 
knowledge of the 
structure of the food 
web in order to 
optimize parameter 
values.  
Many perform poorly 
at predicting 
individual interactions, 
even when food web 
structure is predicted 
well. 

Cohen et al. (1985) 
Williams & Martinez 
(2000) 
Petchey et al. (2008)  
Allesina & Pascual 
(2009) 
Allesina (2011) 
Olito & Fox (2014) 

 

 Ecological networks are often constructed by incorporating species interactions 

from the published literature (Table 1) and many food webs are constructed entirely 
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in this manner (Goldwasser & Roughgarden 1993; Havens 1993; Cohen & Mulder 

2014; Strong & Leroux 2014), while other food webs contain a blend of observational 

and extrapolated data (Pocock, Evans & Memmott 2012; Layer, Hildrew & Woodward 

2013). By filling in ‘missing’ trophic interactions to a given species list, the implicit 

assumption is made that, if a given pair of species have been observed to interact at 

one site, they will interact in the same way at other sites where they co-occur (at least 

in terms of a feeding link between the species being realised, or not). Food webs built 

through this method are often referred to as ‘summary’ or ‘cumulative’ food webs as 

they represent all potential interactions (of a particular type, for instance trophic 

interactions within a food web) between species of a particular community, rather 

than a snapshot in time. As such, food webs built through this method are unsuitable 

for detecting changes in species feeding behaviour across sites or over time, but are 

highly effective for detecting broad macro-ecological trends such as changes in food 

web structure across environmental gradients (Piechnik, Lawler & Martinez 2008; 

Mulder & Elser 2009; Layer et al. 2010b). 

This approach can be taken further, by assigning interactions of species on the 

basis of taxonomic similarity: i.e., species within the same genus are assumed to have 

identical links if a link has been established through direct observation for at least one 

congener (Goldwasser & Roughgarden 1993; Layer et al. 2010b). This process is often 

used when constructing summary food webs for species the interactions of which 

have not been fully characterised (e.g., as revealed from yield-effort curves) to 

minimise potential biases arising from under-sampling, i.e. including only observed 

links would otherwise significantly underestimate food web complexity, especially 

among the rarer and/or more obscure taxa (Woodward et al 2010). Recent work (Eklof 

et al. 2012) has provided justification for this approach, by highlighting the strong 

influence that taxonomy has in determining the structure of food webs. Thus, given 

the prevalence of undersampling in even relatively well-described food webs, dietary 

data extrapolated from the literature and generalised taxonomically can potentially 
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produce far more complete and realistic summary food webs than those that rely 

solely on observations made in a particular locale.  

Despite the prevalence of these methods for constructing summary food webs 

in the literature (Goldwasser & Roughgarden 1993; Havens 1993; Layer et al. 2010a; 

Pocock, Evans & Memmott 2012; Cohen & Mulder 2014; Strong & Leroux 2014), there 

is still no standard method for inferring feeding interactions, resulting in 

inconsistencies among studies, even within the same ecosystem type.  This is 

especially problematic because authors rarely state explicitly which links have been 

observed or extrapolated, or the source from which they have been drawn, or how 

closely the previously published interactions match those reported in their particular 

study, making replication impossible and preventing other researchers from 

scrutinising published interactions fully (but see Strong & Leroux 2014). 

Recent research has sought to develop predictive models of the structure of 

ecological networks (Rohr et al. 2010; Eklof et al. 2012; Gravel et al. 2013; Olito & Fox 

2014).  Simple rules based on ecological theory have been used to model and predict 

the structure and topology of food webs, the most successful of which include 

deterministic models based on information on species’ body sizes, for example the 

‘Difference’, ‘Ratio’, and ‘Difference/Ratio’ models (Allesina 2011) and the Allometric 

Diet Breadth Model (ADBM; Petchey et al. 2008) which incorporates allometric scaling 

and optimal foraging parameters. Whilst these models have been developed primarily 

to advance ecological theory, they provide a possible tool through which food webs 

could be built de novo in order to address questions about network structure across 

environmental gradients or scales. However, to achieve their best performance 

(proportion of correctly predicted links) these models require some prior knowledge 

about the number of links in the network. For instance, for the models mentioned 

above a researcher is required to go through a parameter optimisation procedure, by 

fixing the number of links, values of constants and exponents can be derived, by 

maximizing the number of links correctly predicted. When constructing a network for 
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the first time for a particular system, a researcher would be required to fix the number 

of links to an expected value which would bias the network structure towards that 

which the researcher expected to find.  

Additionally, recent work (Olito & Fox 2014) has highlighted that while 

predictive models might perform well at predicting metrics of network structure, they 

tend to perform poorly at predicting pairwise interactions (Vázquez, Chacoff & 

Cagnolo 2009; Verdú & Valiente-Banuet 2011; Sáyago et al. 2013; Vizentin-Bugoni, 

Maruyama & Sazima 2014), so whilst they may predict network structural metrics 

well, they are doing so for the wrong reason as the underlying biological mechanisms 

have not been fully incorporated into the predictive models (Petchey et al. 2011). To 

the best of our knowledge, the models used here have not, up until now, been used to 

predict network structure de novo, as this is not the scenario for which they were 

developed.  

Given the limitations of constructing food webs from observation of 

interactions or predictive models, we need an automated, repeatable and reliable 

method of building local food webs that can be applied across studies and, ultimately, 

different ecosystem and network types. Here, we introduce a method, the 

WebBuilder function that assembles food webs by systematically assigning links for 

taxa based upon a given set of user-defined rules applied to a dataset of known trophic 

interactions. We provide an implementation of our method for the R statistical 

modelling language (R Core Team 2013), building upon the methods and data 

structures provided by the Cheddar R package (Hudson et al. 2013). We tested the 

method on four highly resolved freshwater food webs which have had their 

interactions characterised through gut contents analysis, as these represent some of 

the most complete food webs described to date, as a test case for our proof-of-concept. 

Specifically, our key aims were to: 

1. Collate a dataset of trophic interactions in a standard format to act as an 

example system in which to test this method. 
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2. Automate the process of constructing food webs from this reference dataset 

in a repeatable and reliable manner.  

3. Compare the performance of this method with the structure of food webs 

with ‘known’ interactions, i.e. those which have been built through 

observation of the interactions.  

4. Compare the performance of this method with another way of predicting 

food web structure; the ADBM, Difference, Ratio and Difference/Ratio 

models. 

 

2.3 Methods 

2.3.1 Dataset of trophic interactions 

We collated a dataset of 20,823 pairwise trophic interactions among species (or 

the next highest level of resolution available, usually genus), from 51 different data 

sources, most of which were primary literature (Table A.1, online supporting 

material). It contains trophic interactions between primarily UK freshwater species, 

including 203 producer taxa, 593 invertebrate taxa, 24 fish taxa, 10,348 producer-

animal links, 9,531 animal-animal links and 944 detritus-animal links.  When the 

necessary data were not available in the original publications, we contacted the 

authors directly, where possible, to obtain the raw data. The taxonomy of every 

resource and consumer has been standardised through the Global Names Resolver 

(http://resolver.globalnames.biodinfo.org/) using the Global Biodiversity 

Information Facility dataset. For every resource-consumer link the taxonomy (species, 

genus, subfamily, family, order, class) of both is given, along with life-stage 

information, if relevant, and a literature reference for the source of the link. This 

dataset builds upon the collection assembled by Brose et al (2005), and to the best of 

our knowledge, represents the largest standardised collection of trophic links for 

freshwater organisms. This dataset is available to download at 

https://sites.google.com/site/foodwebsdataset/ (doi: 10.5281/zenodo.13751) and is 

http://resolver.globalnames.biodinfo.org/
https://sites.google.com/site/foodwebsdatabase/
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designed to be easily updated by the iterative addition of new data (details of how to 

submit new data to the dataset are given on the website), allowing its content to 

improve over time, in an analogous manner to molecular-based bioinformatics 

datasets. New data will be subjected to a quality assurance procedure prior to 

inclusion in the dataset. Specifically, all taxa will be parsed through Global Names 

Resolver (http://resolver.globalnames.biodinfo.org/) using the Global Biodiversity 

Information Facility dataset. Additionally the data will be eyeballed for irregularities. 

It is anticipated that these data will exist as an open access resource, and as such the 

community of researchers who access it will report any errors they find so they can be 

double checked and removed. New iterations of the dataset can be produced, hosted 

on the webpage alongside the original, and assigned a new DOI, allowing researchers 

to cite exactly which version of the dataset they have used for their research, allowing 

analyses to be repeated using identical versions to those cited in a given study, if 

required in the future.  

 

2.3.2 The WebBuilder function  

 The method of constructing ecological networks by extrapolating from 

previously published interactions is implemented in a new R function - WebBuilder 

(see online supporting material for code). The user is required to provide the 

following; firstly a list of taxa (i.e. nodes) in the community of interest (step I,   

Figure 5), this data can be gathered from multiple sources and could be in the form of 

survey or biomonitoring data. Secondly, for each node, the minimum level of 

taxonomic generalisation (explained below; step II), and the taxonomic classification 

of each node (step III). Lastly a registry – a dataset of known trophic interactions, 

including taxonomic classification (step IV), an example of which is published here, 

but which can also be created by the user or obtained elsewhere. It is recommended 

that the user resolve the taxonomy of their taxa list and registry using the same 

procedure so as to ensure that taxa are matched correctly, if the user were using the 

http://resolver.globalnames.biodinfo.org/
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registry provided here they would need to parse their taxa list through Global Names 

Resolver (http://resolver.globalnames.biodinfo.org/) using the Global Biodiversity 

Information Facility dataset. The function searches the registry for every possible 

combination of resource-consumer interactions (for N taxa there are N2 possible 

trophic interactions) which match the provided taxa list given the specified level of 

taxonomic generalisation.  

 The minimum level of taxonomic generalisation determines the taxonomic 

rank at which matches are made, thus generalising the resources or consumers of the 

candidate node to the species, genus, subfamily, family, order etc level, as specified in 

the input (step II,   

Figure 5). For instance, a researcher might decide to ascribe the level of taxonomic 

generalisation of ‘genus’ to the mayfly Baetis fuscatus, allowing it to be matched with 

the more commonly studied species Baetis rhodani in the dataset, and take on the 

  

Figure 5. A simplified workflow demonstrating the WebBuilder function. For a workable 
example see online supporting material. 

http://resolver.globalnames.biodinfo.org/
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appropriate feeding interactions of that species, i.e. those which include taxa also 

present on the provided taxa list (see the first Scenario in Figure 6). This level of 

taxonomic generalisation is selected based on knowledge of a candidate node’s 

trophic interactions in relation to its sister taxa (i.e. if all members of the same 

taxonomic unit can be assumed to have the same trophic interactions or not), and this 

can be tailored depending on the resource/consumer status of the node. For example, 

consumers of the larvae of the non-biting midge subfamily Tanypodinae tend to be 

trophic generalists and would likely consume other larvae of the family 

Chironomidae, while it is not likely that the resources of Tanypodinae larvae (which 

are predominantly predatory) would be shared by all Chironomidae larvae (many of 

which are grazers or filter feeders). Hence it would not be appropriate to assign the 

trophic generalisation level ‘family’ to both resource and consumer interactions of 

Chironomidae. Instead a researcher might ascribe the ‘resource method’ for 

Tanypodinae as ‘family’, but the ‘consumer method’ as ‘subfamily’ (see the second 

Scenario in Figure 6). The function output contains references to the original empirical 

links, the number of matches that were found and the taxonomic level at which those 

matches were found, so links can be additionally screened and scrutinised post hoc, 

and analysis can be repeated easily because the function output contains the necessary 

information. Example R code is supplied (see online supporting material).  
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Figure 6. An example of inputs and outputs for the WebBuilder function. Two different 
scenarios are highlighted. Firstly in blue the taxa Baetis fuscatus is generalised to the genus 
level for both its consumer and resource links, this allows it to be matched with B. scambus in 
the registry and the Navicula tripunctata – B. fuscatus, and Cocconeis placentula – B. fuscatus links 
to be included in the output. Secondly in green, the taxa Tanypodinae are generalised to the 
family level for its resource links and subfamily level for its consumer links, allowing it to 
matched with all entries in the registry with the subfamily Tanypodinae and the Tanypodinae 
– Salmo trutta, and Baetis fuscatus – Tanypodinae links to be included in the output. 
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2.3.3 Comparing the WebBuilder function with empirical food webs 

The WebBuilder function was validated on a collection of highly-resolved 

stream food webs which have had their trophic interactions characterised through 

direct observation; Broadstone Stream (Woodward et al. 2010b), Afon Hirnant 

(Woodward et al. 2010b; Gilljam et al. 2011), Tadnoll Brook (Edwards et al. 2009) and 

the summary food web for the replicated four reference Mill Stream side-channels 

(Ledger et al. 2012; Woodward et al. 2012a). The replicates for the Mill Stream data 

were aggregated to aid comparison with the other food webs, which were all 

constructed as a single summary food web. The Broadstone and Afon Hirnant food 

webs contained only trophic interactions between macro-invertebrates, the Tadnoll 

food web contained interactions between macro-invertebrates and fishes and the Mill 

Stream data contain interactions between macroinvertebrates, algae and detritus. 

When the WebBuilder function was used to generate the empirical food webs, in 

turn each respective local dataset was first removed from the global dataset, so each 

food web was generated in the absence of its own link information (to remove 

circularities).  

The performance of the WebBuilder function was evaluated by calculating 

the True Skill Statistic (TSS; Allouche, Tsoar & Kadmon 2006). This statistic was used 

as it can be seperated into its component parts to provide information on the types of 

differences between the empirical and generated food webs, and builds upon the most 

commonly used metric which is simply the proportion of links correctly generated 

(Petchey et al. 2008; Woodward et al. 2010b; e.g. Allesina 2011). This statistic was 

chosen over likelihood based approaches because we were not interested so much in 

the efficiency of these predictive models, more the biological realism of the generated 

food webs (Petchey et al. 2011). The TSS is calculated from the following formula: 

𝑇𝑆𝑆 = (𝑎𝑑 − 𝑏𝑐)/[(𝑎 + 𝑐)(𝑏 + 𝑑)] 

where a is the number of links which were correctly generated by the function (the 

True Positives Rate; TPR), b the number of links generated by the function but not 
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observed empirically, c the number of links not generated by the function but were 

observed empirically and d the number of links neither generated by the function nor 

observed empirically. TSS score values range from -1 to 1, where a score of -1 

represents a generated food web that is the inverse of the empirically observed one 

(no observed empirical links are seen in the generated food web, and every non-link 

in the empirical food web is present in the generated food web), and 1 representing a 

generated food web having the exact same links as the empirically observed one.  

Each empirical food web was generated using the level of taxonomic 

generalisation considered most appropriate (see online supporting material), this 

mostly consisted of exact and genus level matches although some family and order 

matches were used. To test how the generated food webs compared to their empirical 

counterparts, a series of network metrics were calculated; number of links (L), linkage 

density (L/S; where S is the number of nodes), connectance (C, where C=L/S2), 

generality (the average number of resources per consumer), vulnerability (the average 

number of consumers per resource), and proportion of top, intermediate and basal 

nodes (with cannibalistic links removed). The difference between the generated and 

empirical network metric was tested with paired Wilcoxon signed rank tests. 

To test how the quality of the generated food webs varied with dataset size, the 

dataset was randomly subsampled, in sequential steps of 5% from 5-100%, of the 

original dataset size, and then used to generate each food web. Each subsample size 

was repeated five times and each empirical food web was generated in the absence of 

its own food web data as above, to remove circularities. For each node within each 

network, the same level of taxonomic generalisation was used as above. 

To test how the quality of the pairwise interactions generated by the 

WebBuilder function varied with the level of taxonomic generalisation, each food 

web was built using exact, genus, family or order taxonomic generalisation for all 

nodes. The degree (the number of links into or out of a particular node), generality, 

and vulnerability for every node in the generated food web was compared with that 
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in the empirical network. The difference between the two for every node was recorded 

so that a positive score represented interactions ‘missed’ by the WebBuilder 

function, and a negative score represented ‘extra’ interactions not found in the 

empirical food web. The distribution of these scores gives an indication of how well 

the WebBuilder function predicted pairwise interactions across the whole network: 

i.e., if, on average, it tended to ‘miss’ more interactions, or tended to pick up ‘extra’ 

interactions. To test if the mean was different from zero (indicating no difference in 

the quality of pairwise interactions between the generated and empirical food webs) 

a one sampled t-test was used. 

 

2.3.4 Comparing the WebBuilder function to theoretical food web models 

The performance of the WebBuilder function was compared with examples of some 

of the best-performing predictive models currently available: the ‘Difference’, ‘Ratio’ 

and ‘Difference/Ratio’ models (Allesina 2011) as well as the Allometric Diet Breadth 

Model (ADBM; with ‘ratio’ handling time, Petchey et al. 2008). The ‘Difference’, ‘Ratio’ 

and ‘Difference/Ratio’ models all generate food web links on the basis of body size, 

(either the difference between consumer body size and resource body size, the ratio 

between the two, or the difference multiplied by the ratio). The ADBM builds on this 

and incorporates allometries of body size and foraging behaviour of individual 

consumers to model food web structure (see Petchey et al. 2008; Allesina 2011 for more 

detailed explanations).  Detritus nodes were first excluded from the Mill Stream food 

web because these nodes had no body size or abundance data. For the ‘Difference’, 

‘Ratio’ and ‘Difference/Ratio’ models two parameters required optimisation, a and b.  

For the ADBM we used parameter values for the mass to attack rate constant (a), 

resource mass to attack rate exponent (ai) and consumer mass to attack rate exponent 

(aj) from the literature (Rall et al. 2012) rather than through parameter optimisation as 

in Petchey et al. (2008), so as to simulate a situation for which the WebBuilder 

function was designed, where food webs are being generated for the first time with 
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no prior knowledge of the system other than the species richness. For two parameters 

(mass to handling time constant, h.a; mass to handling time critical ratio, b) we were 

unable to find information in the literature with which to value these parameters, so 

went through the process of optimisation. For all models this was achieved by 

constructing food webs with a range of values for each parameter, and selecting those 

food webs which had a number of links that was within the range set by the 

WebBuilder function, i.e. if the WebBuilder function generated K links, and there 

were L empirical links and K-L=t we selected all possible solutions within the range 

L-t:L+t, to make the comparison with the WebBuilder function fair. Note that for 

some food webs the difference between L and K was large, leading to large variation 

in the food web sizes generated by these models. Indeed for the Afon Hirnanlt food 

web this range fell below zero, and so the range was arbitrarily set to be the same 

proportional size as that of the Tadnoll food web, which had the next highest range. 

Parameter optimisation was conducted without using the connectance of the 

empirical food webs, hence although the same data have been used, results will vary 

from previous publications. Prior knowledge of the connectance of food webs would 

not be possible if a food web were being built de novo, so here we are using these 

models in a different way from their original application.  

 

2.4 Results 

2.4.1 Comparing the WebBuilder function with empirical food webs 

When we constructed food webs from random subsets of the dataset, the 

quality (as measured by TSS scores) of the generated food webs improved as the 

number of records in the dataset increased, allowing more complete resource and 

consumer interactions to be ascribed to each taxa (Figure 7). The strength of this 

relationship was food web specific, for instance Broadstone and Afon Hirnant did not 

continue to improve beyond a dataset size of about 25%. These food webs are 
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relatively simplistic compared to Tadnoll and Millstream, and so the WebBuilder 

function reached its optimum performance when generating these food webs with a 

fraction of the total dataset. Tadnoll and Millstream did not reach their asymptotes 

suggesting that more data are needed to improve upon the quality of their generated 

food webs. 

The level of taxonomic generalisation for each node was important for the 

quality of the generated food web; if the taxonomy of a given node list was generalised 

too far (typically beyond the family level) then the ascribed links became 

unrepresentative and the food web become over-connected resulting in an increased 

FPR and lower TSS score (Figure A.1, online supporting material). At the scale of 

 

Figure 7. The quality of the generated food web increases with the size of the dataset. 
Fluctuations in the TSS score are caused by changes in the component parts of the TSS, i.e. 
while the TPR may increase as the dataset size increases, other metrics such as the FPR might 
also increase, causing the total TSS to fall (see methods).  Lines are fitted using a LOESS 
smoother (Cleveland et al. 1992), grey shading indicates the 95% confidence intervals. 
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individual trophic interactions, the difference in degree, generality and vulnerability 

was generally positive when matching taxa exactly or at the genus level, and becomes 

progressively more negative as the taxonomic generalisation increased, indicating 

that the WebBuilder function was ‘missing’ links when matching nodes exactly or at 

the genus level, and including progressively more links the further the taxonomy was 

generalised (Figure 8). For Afon Hirnant and Tadnoll there was no significant 

difference in the generality of consumers between the generated and empirical food 

webs when taxa were matched at the genus level, and there was no significant 

difference in vulnerability of resources for the Tadnoll food web when matched at the 

genus level. This suggests that matching taxa at the genus level for these food webs 

produces the most ‘accurate’ pairwise interactions. For all other food webs and levels 

of taxonomic generalisations the generated links were different from that of the 

empirical food web (Figure 8). 
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Figure 8. Box plots showing the changes in generated trophic interactions as the level of 
taxonomic generalisation is varied.  The difference in degree (top), generality (middle) and 
vulnerability (bottom) of individual nodes between the generated and empirical food web, 
thus the sample size reflects the number of nodes in the empirical food web. Positive values 
represent links which were ‘missed’ by the WebBuilder function, while negative values 
represent additional links not found empirically. Box plots are colour coded: Broadstone (B; 
blue), Afon Hirnant (A; red), Tadnoll (T; purple) and Mill Stream (M; green).Stars indicate if 
the mean is different from zero (one sample t-test) and indicate if the generated trophic 
interactions are different from that of the empirical food web, 0.05 >= p > 0.01 = *, 0.01 >= p > 
0.001 = **, p <= 0.001=***. 
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The occurrence of each food web’s nodes in the dataset is given in Table 2. The 

coverage of these within the reduced dataset (food web data were removed from the 

dataset when used to generate the food web for that site) varied between 1,497 

(Broadstone) and 6,704 occurrences (Mill Stream) (Table 2). Even at the family level 

some nodes from Broadstone, Afon Hirnant and Mill Stream were not represented in 

the dataset, meaning that those nodes needed to be generalised further still for the 

WebBuilder function to generate their links. These nodes tended to be rare taxa 

which were poorly represented in the dataset. The generated food webs (see online 

supporting material for the generated trophic links) had similar network metrics to 

the empirical food webs (Table 3), although the proportion of top nodes was 

consistently lower in the generated food webs, and the proportion of intermediate and 

basal nodes was consistently higher. All generated food web metrics were found to be 

not significantly different to that of their empirical counterparts (paired Wilcoxon 

signed rank test, p=>0.05). The TSS ranged from 0.405 (Broadstone) to 0.571 (Tadnoll 

Brook). Two food webs (Broadstone and Afon Hirnant) contained nodes that were 

found to have predatory links in the empirical food web but were not predicted to 

have any by the WebBuilder function, and vice versa many nodes distributed across 

all the food webs were predicted to have consumer links but were not found to have 

any empirically (Figure 9). 
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Table 2. The representation of the food web taxa within the full dataset and partial dataset 
(i.e., diet data gathered from a food web were excluded from the generation of its own inferred 
food web).  

Food web 

Number of 
appearances in dataset 

Percentage of nodes 
appearing in partial dataset 
at each taxonomic level 

Full data 
set 

Partial data 
set exact genus family 

Broadstone 2,196 1,497 81% 84% 94% 

Afon Hirnant 2,945 2,266 72% 79% 92% 

Tadnoll 12,405 4,314 84% 91% 100% 

Mill Stream 11,545 6,704 87% 96% 97% 
 

 

Table 3. The number of links (L), linkage density (L/S, where S=number of nodes), the 
connectance (C, where C=L/S2), Generality, Vulnerability, proportion of top, intermediate 
and basal species of the empirical and generated food webs.  The performance of the 
WebBuilder function (relative to the original empirical food web) is summarised by the TSS 
statistic (which gives an overall measure of performance), and TPR (the proportion of links 
correctly generated). All food web metrics for the generated food webs were found to be 
similar to that of their empirical counterparts (paired Wilcoxon signed rank test, p = >0.05) 
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Figure 9. Predation matrices for the empirical food webs compared to those generated by the 
AR method. Nodes are ordered by increasing body mass.  A trophic link is represented by a 
point indicating that the taxon in that column consumes the taxon in that row. Links generated 
by the WebBuilder function are represented by empty circles, and those found empirically 
are represented by smaller, filled circles. 
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2.4.2 Comparing the WebBuilder function method to theoretical food web 

models 

The percentage of links correctly predicted (TPR) by the ADBM ranged from 

12-43%, for the Difference model it was 0-46%, Ratio model it was 0-51% and the 

Difference/Ratio it was 0-54% (Figure 10). All webs generated by the WebBuilder 

function had higher TPR and TSS scores than the median values for the Difference, 

Ratio and Difference /Ratio models (Figure 10). In general the WebBuilder function 

had higher TPR and TSS scores than the ADBM, however the TPR score for Tadnoll 

and Afon Hirnant were similar to the median ADBM TPR score for that particular 

food web (as opposed to the overall median). Additionally the TSS score for Tadnoll 

generated by the WebBuilder function was similar to the median ADBM TSS score 

(Figure A.2, online supporting material).  
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Figure 10. Box plots showing the performance of the WebBuilder function compared to the 
ADBM, Difference, Ratio and Difference/Ratio models. The performance of the WebBuilder 
function is plotted as four vertical lines, one for each of the empirical food webs; Broadstone

, Afon Hirnant , Tadnoll  and Mill Stream . The TSS score (top panel) gives an overall 
measure of the performance of the predictive method relative to empirical food webs, and 
varies between 1 (a generated food web that is exactly the same as the empirical food web) 
and -1 (a generated food web which is the exact inverse of the empirical food web). The TPR 
(True Positives Rate; bottom panel) is the proportion of generated food web links that were 
also found empirically, and varies between 0 (no links generated correctly) and 1 (all links 
generated correctly). A box plot of each set of values is given, indicating the range, quartile 
ranges and median of each set of values. For the WebBuilder function only the individual 
scores for the four food webs are shown, for all others there are too many generated scores to 
be shown individually; ADBM (n=508), Difference (n=32,025), Ratio (n=43,638) and 
Difference/Ratio (n=41,602). 
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2.5 Discussion 

2.5.1 Strengths and weaknesses of the WebBuilder function 

Here we have demonstrated a systematic and reproducible method for 

building ecological networks from compilations of previously observed interactions. 

The WebBuilder function facilitates comparability across studies, re-analysis and 

data sharing. Although developed in the context of freshwater food webs, given its 

simplicity and generality the WebBuilder function could be easily applied to other 

systems, such as terrestrial food webs or even mutualistic networks. Plenty of other 

datasets already exist which could be exploited similarly to produce comparable, 

reproducible networks from marine and terrestrial systems (e.g., Barnes 2008; 

Database of Insects and their Food Plants; http://www.brc.ac.uk/dbif/).  

The WebBuilder function is an effective tool for constructing summary 

ecological networks for the first time. The overall performance (TSS) of the 

WebBuilder function exceeded that of the ADBM, Difference, Ratio and Difference 

/Ratio models. The proportion of correctly predicted links (TPR) was similar to or 

exceeded that of the ADBM.  The ADBM cannot predict links for nodes that have no 

body-size information – either because it is not known or because the concept is 

meaningless for the node, such as detrital resources. This problem does not apply to 

the WebBuilder function. The ADBM, Difference, Ratio and Difference/Ratio 

models have been used to generate the food webs presented here before, and have 

performed better than we have achieved here (Petchey et al. 2008; Woodward et al. 

2010b; Allesina 2011), however to achieve this accuracy the generated food webs were 

constrained to have the same connectance as the empirical food webs, an approach 

not available when building a food web for the first time. Indeed there were instances 

here that the TPR and TSS of modelled food webs exceeded that of the WebBuilder 

function, but from the range of possible food webs generated by these models, it is 

impossible to select the most ‘accurate’ one without knowledge of the expected 

number of links. The WebBuilder function does not rely on prior knowledge of the 
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food web, only on the correct identification of the nodes, thus reducing biases and 

restrictions. 

It is perhaps unfair to compare the performance of the WebBuilder function 

to that of the ADBM, Difference, Ratio and Difference/Ratio models due to the 

inherent differences in the mechanisms through which they operate, and indeed it is 

not our intention for this exercise to be taken as a criticism of these alternative 

approaches. Rather, we have compared them here in order to place the WebBuilder 

method in the broader context of some of other more widely-used predictive methods 

currently available. Comparing our approach with the performance of the ADBM 

essentially represents a test of, and a means of improving, our understanding of the 

mechanistic theory behind these trophic interactions. Comparing the food webs 

produced by our approach with empirical food webs represents a test of the quality 

of the underlying data held within the dataset of trophic interactions. The 

WebBuilder function should be used as tool with which to construct large collections 

of food webs with which to test our understanding of food web structure across 

environmental gradients. The WebBuilder function is particularly suited to 

constructing food webs for data-poor systems, e.g., where there is no information 

available about the abundance or body size of nodes, with the only information being 

a list of species present. Clearly the ADBM or other predictive models would not be 

suited to these conditions, as they were never designed to work in this way.  The 

WebBuilder function, however, would be able to generate reasonably realistic food 

webs if given a reference dataset of relevant trophic interactions. The WebBuilder 

function is adaptive, and can be improved upon over time; for instance, by increasing 

the size and coverage of the dataset of interactions. Hence it requires a substantial 

amount of data to perform well, unlike the predictive models analysed here. These 

types of methods can be viewed as complementary: a researcher might use both in 

conjunction in order to harness the advantages of both to better predict food web 

structure: indeed we envisage combining the WebBuilder function and other 
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predictive approaches in parallel to build and understand food webs.  

The four food webs presented here are among the most highly resolved and 

complete freshwater food webs published to date, yet the links are still under-sampled 

for many nodes (Woodward et al. 2010b), due to methodological issues and logistical 

constraints on sampling effort. The WebBuilder function can help to overcome these 

issues. Firstly, it can take many hundreds of individuals to characterise a species diet 

(Ings et al. 2009) and thus the interactions between rare consumers and rare resources 

are often under-sampled. The WebBuilder function helps to overcome this as rare 

interactions need only be observed once in the dataset of previously published 

interactions in order to be incorporated into applicable food webs as they are 

constructed: i.e., potentially the “global diet” of a species is held within the dataset, 

and can be expanded in future data collections. Secondly, the method of observing 

interactions often limits the types of interactions which can be characterised; for 

instance, the prey of suctorial predators (which are especially common in terrestrial 

ecosystems) cannot be identified through traditional gut contents analysis, but if 

characterised through other means (e.g. laboratory trials or molecular sequencing) 

they can be included in the dataset and incorporated into generated food webs. For 

instance, two suctorial predators in the Broadstone food web (Platambus maculatus and 

Bezzia sp.) did not have their guts analysed for predatory links in the original study 

(Woodward, Speirs & Hildrew 2005) and so had been previously excluded from the 

food web (e.g. Petchey et al. 2008; Woodward et al. 2010b), these nodes would have 

been predicted to prey upon other species by the WebBuilder function. This is due 

to the WebBuilder function generalising the taxonomy of these nodes, and their 

subsequent appearances in the dataset, as other studies have characterised the diets 

of these taxa. Some links in the dataset of trophic interactions were known from just a 

single data source, e.g. Cordulegaster boltonii as a consumer of Nemurella pictetii is 

known only from the Broadstone food web. Therefore, when we excluded self-

referrential diet data, the WebBuilder function reconstruction of Broadstone did not 
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predict a trophic link between C. boltonii and N. pictetii. We have not quantified how 

often this effect occurred. As with other open-source datasets, anomalies will be 

ironed out as the dataset is enriched with more observations as it grows, and its 

coverage will improve over time. 

Besides constructing food webs de novo, the WebBuilder function could be 

used to standardise a collection of networks gathered from different sources prior to 

analysis. This would effectively standardise the sampling effort for included 

interactions (although not for species richness or taxonomic resolution) and would 

remove spatially or temporally explicit interactions (or lack thereof). If the analysis 

was concerned with the structure of summary food webs from different locations and 

habitat types then this might be an appropriate first step. 

 

2.5.2 Future Directions 

The realism of links generated by the WebBuilder function could be 

addressed by assessing the number of times a particular interaction appears in the 

dataset, as well as the number of times an interaction could have occurred but did not 

(i.e. species found at the same site but not found to interact). If a particular interaction 

has been observed many times across many systems, it is probably reasonable to 

assume it also occurs at other sites where those species co-exist.  However, if it has 

only been observed rarely, or at a site with very different characteristics than the one 

in question (for instance contrasting environmental conditions, or significantly 

different community assemblages) this assumption might not be so reasonable. As the 

size of the dataset continues to grow, evaluation of whether links are realised or not 

will improve over time. 

The WebBuilder function is designed to construct summary food webs, and 

ignores potential behavioural shifts of species, hence it is unsuitable for constructing 

temporally or spatially explicit food webs. Additional data such as abundance 
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information could be used to weight interactions, this would, for instance, reduce the 

weight of interactions between rare species reducing their influence on food web 

structure and increasing the realism of the resulting food web. There is an increasing 

body of literature detailing the importance of weak and strong interactions within 

networks (de Ruiter, Neutel & Moore 1995; Berlow et al. 2004; Vázquez et al. 2007) and 

a multitude of methods already exist for determining interaction strengths in food 

webs (see Berlow et al. 2004) some of which can be employed alongside the 

WebBuilder function. Thus, despite the ‘coarse’ nature of food webs built in this way 

there is much potential for their use in ecological research, and by combining them 

with models such as those presented here potential mismatches arising from 

behavioural shifts could be highlighted. 

It would be straightforward for the underlying code of the WebBuilder 

function to be extended to incorporate a range of traits that could influence the 

realisation of potential trophic interactions, other than phylogeny, such as life stage or 

body size. For instance, within freshwater food webs body size is an important 

determinant of trophic interactions, and food web structure predicted using body size 

alone may be more accurate than those predicted using phylogeny alone (Woodward 

et al. 2010b). This could further increase the realism of the constructed food webs and 

hence their wider applicability and usefulness. 

This dataset of trophic interactions was collated to test the performance of the 

WebBuilder function when predicting the structure of the four empirical UK 

freshwater food webs used here.  It would be straightforward to extend the coverage 

of this dataset by augmenting it with data collected from other geographic regions. If 

this dataset is used to construct food webs in the future researchers will need to use 

their discretion to decide how applicable it is to their system. For instance, this initial 

version of the dataset does not provide good coverage of lentic species, or species from 

across Europe or other parts of the world. However, interaction data are being 

published at a rapidly accelerating rate (Ings et al. 2009) and this can be used to form 
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an iterative feedback process, improving data quality over time; the presence of links 

predicted by the WebBuilder function can therefore be tested evermore rigorously 

in the future. Identifying underrepresented nodes in the dataset will help target 

further research more cost effectively: e.g., a great deal is known about the diet of a 

handful of often economically valuable species in the dataset (for instance, brown 

trout, Salmo trutta appears >3,000 times), but very little is known about many others. 

Additionally, technologies such as those provided by recent advances in molecular 

sequencing will improve the efficiency of trophic interaction detection (Clare 2014) 

and therefore the volume of data which can be incorporated into the dataset. We 

actively encourage researchers with suitable data to contribute them to this dataset. 

Exciting initiatives such as Global Biotic Interactions (Poelen, Simons & Mungall 

2014), by incorporating necessary information such as the method through which an 

interaction was determined, could provide a global, open source repository of 

interaction data which the WebBuilder function could access through R. As more of 

these unknown links become known, nodes will not need to be generalised 

taxonomically in order to find matches in the dataset, the links generated will more 

closely match the known links for those species and therefore the quality of the 

ecological food webs generated by the WebBuilder function will improve. 

 

2.5.3 Conclusions 

We have demonstrated that the food webs generated here are comparable to 

empirically observed food webs and exceeded the accuracy of other potential methods 

of predicting freshwater food webs. This method could be used to build vast numbers 

of ecological networks from data that already exists, such as routine biomonitoring 

data which is collected in huge volumes in many parts of the world (e.g., Dutch soil 

biomonitoring data have recently been used to build a large collection of food webs; 

Cohen & Mulder 2014). Producing collections of replicable networks is vital for 

advancing ecological network research beyond the largely unreplicated case-study 
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approach that has dominated to date: the WebBuilder function approach presents a 

new robust and repeatable method that helps move us considerably closer to that goal.   
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3 | The recovery of freshwater food webs from 

the effects of acidification  
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3.1 Summary 

Recent work has shown that consideration of the structure of ecological 

networks, such as food webs, can be vital for a full understanding of how ecological 

communities respond to environmental change. Our understanding of how the 

structure of food webs responds to acidification is hindered by small sample sizes and 

a lack of replication.  

We use a uniquely large and replicated collection of 451 freshwater food webs, 

constructed with data from the UK Upland Waters Monitoring Network, to 

investigate the changes in network structure that accompany recovery from 

acidification. We assess if these food webs are suitable for addressing these research 

questions by quantifying the extent to which they are undersampled through species 

and link accumulation curves. From each food web we measured a range of network 

metrics and used these to assess how the structure of the food webs has changed over 

time at each site. There was no congruence between those sites exhibiting clear 

chemical recovery trends and evidence of change in their network structure. However 

when the food webs were modelled at the regional (UK) scale, food web generality, 

vulnerability and network efficiency decreased with increasing acidity, while node 

redundancy increased with acidity. Many acidity related variables, such as SO4, pH, 

dissolved organic carbon, labile aluminium, acid neutralising capacity Ca, NO3 and 

Cl were identified as drivers of community structure, while only NO3 was found to 

drive changes in network structure.  

These findings, which support previous work done using a far smaller collection 

of food webs, indicate that community and food web structure are fundamentally 

altered by acidity. There may be an inherent stability to acidified food webs, which 

may be limiting biological recovery, however further investigation is required. 
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3.2 Introduction 

As we move further into the 6th mass extinction event, a deeper understanding 

how complex systems respond to environmental change and recover from 

perturbations is of crucial importance (Pimm et al. 1995). Previously work has shown 

that biological recovery from perturbation does not necessarily follow a reversal in 

the trajectory of decline (Scheffer & Carpenter 2003; Feld et al. 2011; Murphy et al. 

2014). Species interactions confound attempts to scale up predictions made from 

individuals or populations to the whole-community or ecosystem level (Ings et al. 

2009; Thompson et al. 2012). The structure of the network created by the interactions 

between species determines the stability of that community and thus modulates its 

resistance and robustness to environmental change. Indeed, often it is the interactions 

between species that are suggested as mechanisms which delay or alter the trajectory 

of recovery (Scheffer & Carpenter 2003). Therefore it is necessary to consider these 

interactions when attempting to assess the consequences of environmental change on 

communities.  

 Acidification of freshwaters is caused by atmospheric pollution, such as 

sulphur dioxide, which is deposited in the environment and subsequently washed 

into freshwater systems, or taken up by moisture in the atmosphere to become ‘acid 

rain’ (Driscoll et al. 2001). Acidification has profound ecological impacts, including the 

loss of many acid-sensitive species from all trophic levels (e.g. Round 1990; Rosemond 

et al. 1992; Sayer, Reader & Dalziel 1993). Increased surface water concentrations of 

inorganic aluminium, which becomes more soluble in acidified soils, is toxic to many 

species, in particular salmonid fishes (Sayer, Reader & Dalziel 1993) and a range of 

macroinvertebrate taxa.. Controls on acidic emissions in Europe came into force in 

1983 through the United Nations Economic Commission for Europe (UNECE) 

Convention on Long Range Transboundary Air Pollution (LRTAP) with the specific 

aim of reducing the impact of acid deposition on soils, vegetation and surface waters. 

Since this point there has been a dramatic reduction in the emissions of SO2 and NOx 
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gasses across Europe.  

The Upland Waters Monitoring Network (UWMN, formerly the Acid Waters 

Monitoring Network) was set up in 1988 to assess the chemical and biological recovery 

of surface waters in the UK. The network comprises 23 stream and lake sites 

distributed across acid sensitive, base poor geology regions of the UK (Figure 11). The 

sites were chosen for their vulnerability to acidification. They are generally distributed 

across the upland areas of the west coast of the UK where precipitation, and fluxes of 

sulphur and nitrogen have tended to be high, and are predominantly located in 

regions with base-poor geology and, hence, are particular susceptible to acidification. 

The sites also include lakes and streams in areas overlying acid sensitive geologies in 

regions receiving relatively little acid deposition, such as north- western Scotland 

(Patrick et al. 1991). The design of the Network, sampling methodology and analytical 

protocols are provided by Patrick et al. (1995).  

The acidity of most UWMN sites has declined significantly since the onset of 

monitoring (Monteith et al. 2014). Evidence for biological responses to chemical 

improvement varies between sites (Murphy et al. 2014) with only half of the sites 

showing significant trends. Similar, “sluggish”, biological recovery has also been 

reported elsewhere (e.g. Arseneau et al. 2011). Several hypotheses have been put 

forward to explain the lag in biological recovery (Yan et al. 2003; Monteith et al. 2005), 

including: dispersal limitations, ocasional acid episodes and food web dynamics 

which might resist the re-establishment of more acid-sensitive species. The long 

distance dispersal abilities of freshwater macroinvertebrates is now known to be 

sufficient to recolonise UWMN sites and so cannot be the mechanism preventing 

biological recovery (Masters et al. 2007; Hildrew 2009). Likewise, while many of the 

stream sites experience episodic drops in pH which might hinder recovery (Evans, 

Monteith & Harriman 2001), lakes are far less prone to dramatic fluctuations in 

hydrochemistry, and both streams and lakes show limited biological recovery. 

Additionally, across the network, the pH during more acidic episodes has fallen more 
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rapidly than has the average tendency (Monteith et al. 2014), and thus occasional acidic 

events is not considered to be limiting biological recovery (Monteith et al. 2005). It has 

been proposed that the dynamics of the food web itself may be limiting biological 

recovery. Generalist herbivore/detritivores macroinvertebrates are known to inhibit 

the return of acid-sensitive specialist algal grazers (Ledger & Hildrew 2005; Layer, 

Hildrew & Woodward 2013), and dynamic modelling has revealed that acidified food 

webs are more robust over time, suggesting that they might resist re-invasion (Layer 

et al. 2010b). Redundancy within networks is a property which may provide resistance 

to perturbations, and hence may be a property of more stable systems (Naeem 1998; 

Solé et al. 2003; Peralta et al. 2014). Likewise, some food webs have been found to 

display ‘small-world’ properties, namely have shorter path lengths between nodes 

than expected (Watts & Strogatz 1998; Montoya & Solé 2002), which influences the 

rate at which perturbations propagate (Montoya, Pimm & Solé 2006). Network 

efficiency, which is a measure of how well connected a network is, was measured to 

make inferences about a networks ‘small-world’ properties (Latora & Marchiori 2001). 

Food webs are a representation of the structure and functioning of 

communities which, in turn, can regulate their sensitivity to environmental change 

(Ings et al. 2009; Thompson et al. 2012). In particular, food web complexity and the 

distribution of interaction strengths are key determinants of stability, influencing how 

a community responds to environmental stress (May 1972; McCann 2000). For 

example, food web size, linkage density and trophic height in acid sensitive waters all 

decrease with exposure to lower pH (Layer et al. 2010b, 2011). Acidified food webs are 

also smaller, simpler and have lower average interaction strengths than more 

circumneutral freshwater food webs (Woodward & Hildrew 2002; Layer et al. 2010b). 

To date, assessment of temporal dynamics of food webs in response to the 

amelioration of acidification has been restricted by the resources required to map 

them.  

Here we use community data collected by the UWMN, coupled with an 
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understanding of key trophic interactions gathered from the literature, to construct an 

unprecedentedly large collection of food webs. We use this collection to investigate 

how these complex networks re-assemble as the community recovers from 

acidification. Specifically, we address the following questions: 

1) Has there been directional change in network structure over the past 25 years 

at UWMN sites? Do such changes indicate recovery from acidification? 

2) What are the major environmental determinants of community composition 

and network structure? 

3) Do acidified food webs have greater redundancy and efficiency, as would be 

expected for more stable networks? 

 

3.3 Methods 

3.3.1 Sites 

The UWMN consists of 11 stream and 12 lakes distributed across the UK 

(Figure 11): full site descriptions and sampling methodologies are provided in Patrick, 

Monteith & Jenkins (1995) and Kernan et al. (2010). Water chemistry, epilithic diatom, 

macroinvertebrate and fish sampling began in spring 1988 and continued 

uninterrupted at most sites up to 2012, except for access restrictions to a few sites 

during a foot-and-mouth disease outbreak in 2001, and some isolated adverse weather 

conditions in other years (see Kernan et al. 2010). The sites are distributed along a 

latitudinal gradient across the UK, which can be interpreted as a proxy for the degree 

of acid deposition that each site was exposed to at the onset of monitoring as those 

sites at high latitudes were exposed to relatively little acid deposition whilst those 

sites at lower latitudes tended to be more heavily acidified (Patrick et al. 1991). One 

lake site, Loch Coire nan Arr, was affected by damming that increased water levels 

and was replaced in 2001 by Loch Coire Fionnaraich which has comparable 

characteristics.  
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Figure 11. The Upland Waters Monitoring sites, consisting of 11 lakes (dark blue squares) and 
12 streams (light blue circles). 

 

3.3.2 Hydrochemistry 

Hydrochemistry samples were taken monthly from stream sites, and quarterly 

from lake sites. All dip samples were collected in acid-rinsed bottles. A large number 

of chemical variables were recorded at each site, for more details see Kernan et al. 

(2010) and Monteith et al. (2014). In total 14 variables considered to be key drivers or 

indicators of acidification (Monteith et al. 2014) were used here; pH, Gran Alkalinity, 
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H+, Conductivity, nitrate (NO3), non-labile aluminium, soluble aluminium, labile 

aluminium, Dissolved Organic Carbon (DOC), sodium (Na+), sulphate (SO42-), 

calcium (Ca2+) and Cl-. Acid Neutralising Capacity (ANC) describes the ability of 

water to resist acidification by a strong acid, and is calculated here from DOC and 

labile aluminium concentrations, as well as alkalinity, see Kernan et al. (2010) for more 

details. 

Except for pH, we used the annual arithmetic mean of all hydrochemical data 

as summary statistics for each site. Annual average pH was calculated by first 

converting pH to H+ concentration, calculating the annual arithmetic mean, and then 

converted back to pH. In addition, minimum recorded pH and ANC were used to 

produce annual hydrochemical summary statistics for each sites.  

3.3.3 Biota 

Benthic diatom, macroinvertebrate and fish populations were sampled 

annually from 1988-2012. Benthic diatoms were sampled by selecting five cobble sized 

stones at a depth below that of minimum flow in streams, or the permanently 

submerged littoral zone in lakes. The stones were taken from discrete locations -

upstream, middle and downstream of a surveyed 50 m reach in streams, or three or 

four surveyed locations around the shore of lakes, with areas close to inflow or 

outflow streams being avoided. Epilithic diatoms were removed by brushing into a 

clean funnel and plastic vial then preserved in Lugol’s Iodine immediately. Samples 

were prepared using standard techniques (Battarbee et al. 2001) and examined by light 

microscopy at x1000 magnification. Three hundred valves were counted from each 

sample and identified to species level.  

 Macroinvertebrates were sampled by taking five separate one minute kick 

samples using a standard hand net (300µm mesh) from riffle sections of streams and 

the dominant littoral habitat of lakes. Using a white tray, halogen lamp and fine 

forceps, all invertebrates were picked out and preserved with 70% Industrial 

Methylated Spirit. With the exception of Diptera, Oligochaeta and Bivalva, taxa were 
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identified to species level. Diptera were further identified to family level and Bivalvia 

to genus level. All taxa were counted. 

Annual electric fishing surveys were employed to assess the abundance of 

salmonid populations at each stream site and at the outflow streams immediately 

downstream from each lake site. The presence of any non-salmonid fish species was 

recorded although no abundance data were collected. Fishing occured between mid-

September and mid-October each year. The sampling procedure used three 50m 

reaches distributed across 500m of the stream or lake outflow, Each 50m reach was 

fished using stop nets and electric fishing apparatus. The fishing was repeated in each 

reach three times, or more if no clear drop off in numbers occurred. 

3.3.4 Food web construction 

Binary food webs, in which species (nodes) and links are described in terms of 

their presence/absence in each year at each site were constructed for all sites in all 

years for which there was complete biological and hydrochemical data, this resulted 

in the production of 451 food webs in total. Feeding links between species were 

inferred from published literature, and filled in for each network using the 

WebBuilder function (Chapter 2; Gray et al. 2015) and associated dataset of trophic 

interactions, in R (R Core Team 2013). This method is based on the assumption that all 

feeding links between specific pairs of species that have been reported previously 

would be realized wherever and whenever both species co-exist at a study site (Hall 

& Raffaelli 1991; Martinez 1991; Layer et al. 2010b; Pocock, Evans & Memmott 2012). 

In some instances, due to a paucity of trophic interaction data, feeding links were 

assigned on the basis of taxonomic similarity.  

3.3.5 Network metrics 

A range of food web metrics were calculated from each food web. The number 

of nodes in each network was measured as the total number of connected species.  

Mean trophic height of each food web was calculated using the method of Levine 

(1980) and defined as 1 plus the mean trophic level of a consumer’s resources, 
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averaged across all consumers. The maximum trophic height of each food web was 

defined in the same way, except that the maximum value across all consumers was 

taken. Mean generality (𝐺; number of resources per consumer) and mean vulnerability 

(𝑉; number of consumers per resource) of each network was calculated. Additionally 

for each taxon k, normalised 𝐺 and 𝑉 were calculated: 

 
𝐺𝑘 =  

1

𝐿/𝑆
∑ 𝑎𝑖𝑘

𝑆

𝑖=1

 (1) 

 
𝑉𝑘 =  

1

𝐿/𝑆
∑ 𝑎𝑗𝑘

𝑆

𝑗=1

 (2) 

 

Where 𝑆 is the number of nodes and 𝐿 the number of links in a food web. 𝑎𝑖𝑘 = 1 if 

taxon k consumes taxon i (otherwise 𝑎𝑖𝑘 = 0), and 𝑎𝑗𝑘 = 1 if taxon k is being consumed 

by taxon j (otherwise 𝑎𝑗𝑘 = 0). Mean 𝐺𝑘 and 𝑉𝑘 in any given food web equal 1, making 

their standard deviations, which give an indication of the variability in 𝐺 and 𝑉 

respectively across a network, comparable across networks of different size. These 

metrics were all calculated using the R package cheddar (Hudson et al. 2013).  

The global efficiency (Latora & Marchiori 2001) of a network describes the 

‘reachability’ of each node by any other node, and is a measure of the overall 

connectivity of the network. The global efficiency of each network was calculated as 

follows: 

 
𝐸 =  

1

𝑆(𝑆 − 1)
∑

1

𝑑𝑖𝑗
𝑖≠𝑗∈𝐺

 (3) 

 

Where 𝑑𝑖𝑗 is the shortest path length between node 𝑖 and 𝑗, using the sna R package 

(Butts 2013).  
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The proportional redundancy of each network was calculated by grouping 

nodes into trophic species (i.e. nodes with common resources and consumers) and 

then calculated as follows: 

 
𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦 = 1 −  

𝑇

𝑆
 (4) 

 

Where 𝑇 is the number of trophic species within the network. Redundancy was 

calculated using functions from the cheddar package (Hudson et al. 2013) in R.   

 

3.3.6 Statistical data analysis 

All statistical data analysis was done in R version 3.1.1 (R Core Team 2013). 

Mann–Kendall trend tests determined whether there were significant trends in mean 

pH, ANC, DOC, labile aluminium, and network metrics over time at each site. We 

used χ2 contingency tests to assess the extent to which sites that exhibited clear 

chemical recovery trends also showed evidence of change in their network structure 

(Murphy et al. 2014). For each chemical variable, and for each network metric, we 

counted the number of sites (out of 23) that exhibited (a) a trend in both, (b) a 

biological but not a chemical trend, (c) a chemical but not a biological trend, and (d) 

with neither trend. The χ2 test assessed whether the distribution of sites across these 

four categories was different to that due to random chance. 

Principal Component Analysis (PCA) was performed on the water chemistry 

data of each site. Yearly mean (or minimum) values for key hydrochemical variables 

were centred to zero and scaled by their standard deviations, and sample scores on 

the first PC axis (PC1) extracted for use as a proxy for water chemical stress. Each 

network metric was regressed against PC1, and any trend assessed with Generalised 

Linear Mixed Effects models. Site type (lake or stream) was fitted as a fixed effect, and 

any potential interactions with PC1 were assessed on the basis of stepwise model 
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simplification and model AIC. For each model, site and year were used as random 

effects, but a range of random effects structures were investigated for each response 

variable, the best model was selected on the basis of AIC.  

To assess the principal hydrochemical determinants of community structure, a 

distance-based Redundancy Analysis (RDA) model was used in step-wise model 

selection of hydrochemical variables based on their P-values and AIC scores. The 

community matrix was constructed from the diatom, invertebrate and fish data, 

which were counts of each species at each site in each year. As three different sampling 

methodologies had been used to characterise the biota, the Wisconsin double 

standardization was used; the abundance values were first standardized by each 

species maximum score, and then by sample total, and by convention multiplied by 

100 (Bray & Curtis 1957). Bray-Curtis dissimilarity scores were used. The 

hydrochemical variables used here were further selected to minimise co-linearity, in 

total 8 variables (yearly mean values) were used; pH, SO4, Dissolved Organic Carbon 

(DOC), labile aluminium, Acid Neutralising Capacity (ANC), Ca, NO3 and Cl. In the 

step-wise model selection procedure, first each hydrochemical variable was used as 

the sole constrained explanatory variable within the RDA model, and the explained 

variation by each model was recorded. Secondly the variables were ranked by the 

explained variation in each of the constrained ordinations. Variables were then 

sequentially added to the model, at each stage the significance of each variable was 

assessed using Monte Carlo permutations and the variation explained by the 

remaining variables was recalculated and the variables re-sorted by this value. 

Variables were sequentially added to the model in this manner until the next best 

variable no longer significantly improved the model. Comparison of variables is based 

on AIC criteria and p-values from Monte Carlo permutation test (n=199). Finally the 

explanatory power of each of the variables in the final model was assessed using 

Permutational multivariate analysis of variance (PERMANOVA) with 9999 

permutations. To determine the principle environmental determinants of network 
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structure, the step-wise model selection procedure was repeated using a dataframe of 

network metrics in the place of the community matrix and Euclidean distances. All 

ordination analysis was performed using the vegan package in R (Oksanen et al. 2015). 

Variance partitioning was used to assess the variation in community or food web 

structure explained by the first four (or fewer) significant environmental variables. 

 

3.4 Results 

3.4.1 Has there been directional change in network structure? 

Trends in hydrochemical variables varied across all sites. Several showed 

significant increasing trends in average annual pH (13 out of 23; Figure C Appendix 

E), Acid Neutralising Capacity (18 out of 23; Figure D Appendix E), Dissolved Organic 

Carbon (20 out of 23; Figure E Appendix E) and significant decreasing trends in labile 

aluminium (14 out of 23; Figure F Appendix E) suggesting that at least partial recovery 

from acidification has occurred at most sites (Monteith et al. 2014). Some sites showed 

significant increasing trends in mean trophic height (8 out of 23; Figure G Appendix 

E), vulnerability (8 out of 23; Figure H Appendix E), and its standard deviation (7 out 

of 23; Figure I Appendix E), significant decreasing trends in redundancy (11 out of 23; 

Figure J Appendix E), standard deviation in generality (10 out of 23; Figure K 

Appendix E) and efficiency (6 out of 23; Figure L Appendix E). Generality increased 

in two sites, and decreased in four others (Figure M Appendix E), likewise maximum 

trophic height increased in one site, and decreased in two others (Figure N Appendix 

E). These mixed trends were unrelated to the sites severity of acidification at the 

beginning of monitoring. Indeed, χ2 tests revealed that there was no congruence 

between those sites exhibiting chemical and biological recovery (Table A Appendix 

E). 
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3.4.2 What are the environmental determinants of community and food 

web structure? 

When food web data were analysed together at the regional (UK) scale, 

network metrics were related to the degree of environmental stress that the food web 

was exposed to (Figure 12). Generality, vulnerability and efficiency decreased with 

increasing environmental stress (low pH) whilst redundancy increased with 

increasing environmental stress (low pH).  

  
Figure 12. Network metrics vary with environmental stress. The acidity gradient is PC1 
extracted from the PCA of the water chemistry data, and is strongly related to pH, ANC & 
labile aluminium, such the x-axis can be interpreted as increasing environmental stress from 
left to right. Lines indicate fitted values from GLMM where p < 0.05. 
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The RDA model testing of the effects of environmental variables on community 

structure was significant (p=0.001; Figure 13), the constrained component explained 

16% of the variation in community structure while the conditional component (site 

and year) explained 50% of the variation. All 8 environmental variables were included 

in the model structure through step-wise model selection, after PERMANOVA they 

all had a significant effect on community structure (Table 4). Variance partitioning 

determined that SO4 explained 2.02% of the variance in community structure, pH 

3.7%, DOC 1.8% and labile aluminium 0.93%. 

 The RDA model testing of the effects of environmental variables on food web 

structure was significant (p=0.008; Figure 14), the constrained component (NO3) 

explained 0.3% of the variation in community structure while the conditional 

component (site and year) explained 61% of the variation. Among the 10 

environmental variables only NO3 had an effect on food web structure (Table 5). 
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Table 4. Effects of hydrochemical variables on community composition determined through 
PERMANOVA with 9999 permutations, with site and year fitted as conditional variables. All 
variables are yearly averages. Bold p-values indicate significance at α = 0.05. 

Variable d.f. SS Pseudo-
F 

p-value 

SO4 1 0.36 2.0535 0.001 
pH 1 0.251 1.4272 0.002 
DOC 1 0.334 1.9003 0.001 
L_Al 1 0.273 1.5568 0.001 
ANC 1 0.278 1.5853 0.002 
Ca 1 0.244 1.3883 0.004 
NO3 1 0.412 2.3487 0.001 
Cl 1 0.274 1.561 0.003 
Residual 412 72.315   

 

 

Table 5. Effects of hydrochemical variables on food web metrics determined through 
PERMANOVA with 9999 permutations, with site and year fitted as conditional variables. All 
variables are yearly averages. Bold p-values indicate significance at α = 0.05. 

Variable d.f. SS Pseudo-
F 

p-value 

NO3 1 0.01186 2.6749 0.017 

Residual 419 1.85714   
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Figure 13. Distance-based Redundancy Analysis with SO4, pH, DOC, labile aluminium 
(L_Al), ANC, Ca, NO3 and Cl fitted as constrained variables and site and year as conditional 
variables. Site scores (a) and species scores (b) are shown. 
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Figure 14. Site scores from Distance-based Redundancy Analysis with NO3 fitted as a 
constrained variable and site and year as conditional variables. maxTH and meanTH are mean 
and max trophic height respectively. sd.G and sd.V are the standard deviation in normalised 
generality and vulnerability scores respectively. E is network efficiency and S is the number 
of nodes.  
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3.5 Discussion 

It is clear that scale is an important consideration when assessing food web 

data. When the current data were analysed at the site scale, site scale sources of 

variation such as individual site characteristics or sampling error swamped any trends 

in food web structure over time. For instance weather conditions immediately before 

or during the time of sampling were largely uncontrolled for. Additionally the acidity 

gradient that each site is exposed to is small relative to the gradient of the whole 

dataset. When the data were aggregated and analysed at the regional (UK) scale then 

significant trends emerged.  

There were instances of contradictory trends within the network for instance 

Afon Gwy and Old Lodge were recovering in terms of their hydrochemistry, but were 

yet to show a trend in their invertebrate community composition. Conversely, 

Coneyglen Burn’s invertebrate community had experienced significant turnover, but 

its hydrochemistry did not shown a significant time series trend (Kernan et al. 2010). 

Extreme events, and the small sampling window for each site has caused some sites 

to lose and regain their significant trends in biota recovery over time (Monteith & 

Evans 1998, 2005; Kernan et al. 2010). Results from the analysis of the aggregated data 

are easier to interpret although attributing these trends to specific hydrochemical 

drivers becomes more difficult.  

3.5.1 Chemical, community and food web recovery across the network 

Our results provide clear evidence, in concordance with other published 

studies, for reductions in the acidity of acidified waters across the UWMN sites 

(Monteith et al. 2014), which is consistent with other international assessments of 

trends in acidified waters (Stoddard et al. 1999; Evans et al. 2001; Skjelkvåle et al. 2005).  

 Average annual pH and ANC increased in almost all of the historically 

acidified sites, indeed, Kernan et al. (2010) who used the full dataset (rather than 

annual averages) found that seventeen of the 22 sites they studied (Loch Coire 
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Fionnaraich was not included) showed significant increases in pH, and eighteen 

showed significant increasing trends in ANC. However SO4 concentrations across the 

network in 2012 remained several times higher at most sites than those found at the 

least impacted sites (Monteith et al. 2014), so clearly there is further to go in terms of 

chemical recovery at these sites. Labile aluminium has also fallen dramatically across 

the UWMN sites, although in 2012 the concentration was still far higher than is typical 

for sites unimpacted by acidification (Monteith et al. 2014). 

 The increasing trends in DOC in UWMN sites is mirrored in other 

industrialised regions of the northern hemisphere (De Wit et al. 2007; SanClements et 

al. 2012) and have been ascribed to an increase in the solubility of soil organic carbon 

as a consequence of reductions in acid deposition (Monteith et al. 2007; Clark et al. 

2011; Evans et al. 2012). This means that although there has been a marked reduction 

in strong mineral acids (e.g. SO4) this has been partially buffered by an increase in 

weak organic acids (DOC), and thus the expectation for recovery of pH has been 

modified (Evans et al. 2008). However there is increasing evidence that DOC provides 

an important ecosystem service as it helps to protect waters from acidification 

(Monteith et al. 2014), and increasing DOC may well be part of a natural chemical 

recovery trajectory.  

 The general increasing mean trophic height of food webs over time at each of 

the sites is to be expected from what we know about how these systems respond to 

de-acidification; under acidification species are lost throughout the food web but top 

predators such as fish (Henriksen, Fjeld & Hesthagen 1999) and many predatory 

macro-invertebrates are especially vulnerable (Layer et al. 2011). As these acid-

sensitive species re-colonise feeding chains will lengthen (Woodward & Hildrew 

2001) and the average trophic height of the food web as a whole will increase. All of 

the sites which experienced this lengthening of food chains were also increasing in 

their pH, although not all sites increasing their pH also increased their mean trophic 

height. This trend was not detected in the aggregated data across the stress gradient, 
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suggesting that other environmental factors, other than pH (for instance DOC which 

was closely related to PC2), may be impacting mean trophic height and complicating 

the pH/trophic height story. 

 Along the hydrochemical stress gradient, vulnerability and generality both 

decreased (Figure 12), although no trend in generality overtime in the individual sites 

was detected, and vulnerability tended to increase over time at individual sites. 

However there were only eight increasing vulnerability trends out of a possible 23, 

and many sites showed complex patterns over time (Figure H Appendix E). Those 

sites increasing their vulnerability were not those recovering from acidification (Table 

A Appendix E) hence it seems reasonable to conclude that the analysis over the stress 

gradient is more conclusive than the site by site analysis. The decreasing generality 

and vulnerability with increasing hydrochemical stress is consistent with the theory 

that as an acidified system recovers, specialist consumers and larger top predators re-

colonise (Woodward & Hildrew 2001; Layer, Hildrew & Woodward 2013) which 

causes a reduction in the mean number of consumers per resource species 

(vulnerability), and mean number of resources per consumer (generality). There are 

known to be marked differences in the feeding patterns of primary-consumers across 

a pH gradient, the species richness of both algal resources and primary consumers 

increase with increasing pH, the composition of functional feeding groups within the 

primary consumers switch from a generalist herbivore-detritivore dominated system 

at low pH, to a more diverse community including specialist herbivore primary 

consumers (Ledger & Hildrew 2005; Layer, Hildrew & Woodward 2013). This coupled 

with the appearance of other acid-sensitive invertebrate species (such as the mayflies 

Baetis sp. and Caenis sp., or the snail Radix balthica) and salmonid fish at high pH 

explains the decreasing trend in vulnerability and generality with decreasing 

environmental stress. Previous work has found that generality and vulnerability 

increased with pH (Layer et al. 2010b), but used a far smaller sample size than that 

used here. 
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 Network efficiency is a measure of how ‘reachable’ each node is from every 

other node, and as such it is strongly related to how well connected a network is. 

Decreasing network efficiency with increasing hydrochemical stress (Figure 12) 

indicates that food webs under more stress are less well connected across the whole 

network, for instance there may be pockets of species which are poorly connected to 

other species, such that the average shortest path length between all pairs of nodes is 

increased. The addition of top predators such as salmonid fish to the system 

(Woodward & Hildrew 2001) may explain the increased efficiency of less stressed 

food webs. Consumers in freshwater systems tend to be highly generalist engulfing 

predators which will consume anything within a given size range. The addition of 

these generalist interactions between top predators and a swathe of invertebrates 

within the appropriate size range may well increase the reachability between those 

resource nodes, as well as link together different feeding pathways (i.e. allochthonous 

vs autochthonous).  

 Food webs under more hydrochemical stress contained proportionally more 

redundant feeding pathways than their counterparts under less stress, the proportion 

of ‘trophic species’, nodes feeding on and being fed on by the same species is larger at 

low pH. This is congruent with the increase is specialist consumers as acidity 

ameliorates. Additionally, food webs at low pH tend to have few species and few links 

(Layer et al. 2010b), making the scope for unique feeding pathways small.  

 The ‘ecological inertia’ of these food webs is an often cited mechanism to 

explain the delay in biological recovery (Lundberg, Ranta & Kaitala 2000; Ledger & 

Hildrew 2005; Kernan et al. 2010; Layer et al. 2010b), whereby food webs under 

acidified conditions are dynamically stable and resistant to re-colonisation by acid-

sensitive species. Townsend et al.  (1987) measured the persistence of 27 stream 

invertebrate communities across a pH gradient, and found that those communities 

from the most acidified sites were the most persistent. Likewise Layer et al. (2010b) 

used dynamic modelling to determine the robustness of stream food webs to species 



Chapter 3 | Food webs recovery from acidification 
 

Page | 70 
 

extinctions, and found that food webs from more acidified conditions are more robust. 

Here we provide some evidence in support of this theory, redundancy is an important 

feature engineered into (non-ecological) stable systems, providing robustness against 

node loss, this translates into biological systems and leads us to predict that food webs 

with greater redundancy amongst its nodes might be more robust to simulated species 

removal. In biological systems redundancy increases the reliability of ecosystem 

functioning (Naeem 1998; Peralta et al. 2014). Here we found that food webs from 

acidified waters had higher redundancy amongst their nodes suggesting that they 

might provide more reliably ecosystem functioning rates (Naeem 1998; Peralta et al. 

2014), and might be more robust. However, contrasting this we found that more 

acidified food webs had lower global efficiency. The efficiency of a network is closely 

related to its small world properties, highly efficient networks also exhibit small world 

properties. Ecological networks with small world properties can be relatively stable 

(Solé & Montoya 2001; Dunne, Williams & Martinez 2002a; however, see Appendix 

A). These contrasting results warrant further investigation to reveal if acidified food 

webs are more stable, or, if they are more stable in some regards and not others. For 

instance, acidified food webs may be more persistent (the strength of perturbation 

required to change a community; Pimm 1984) and at the same time less robust to 

perturbation (Appendix A).  

3.5.2 Environmental drivers of community & food web structure 

The chief drivers of community structure were to be expected as they were all 

either key drivers of (SO4, Ca, NO3, Cl) or respond to (pH, ANC, DOC, labile 

aluminium) changes in acidity. That these were not found to be the main drivers of 

network structure is surprising, especially since they are clearly related to changes in 

network structure (Figure 12). Many of the network metrics were relatively unrelated 

to NO3 (those aligned with the first unconstrained axis, such as redundancy, standard 

deviation in generality, mean trophic height, efficiency) suggesting that the 

hydrochemical variables analysed here were not, at least in isolation, the principal 

determinants of network structure, rather their combined effect on the acidity of 
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freshwater systems had significant implications for food web structure.  

3.5.3 Food web construction 

The use of inferred feeding links in food web studies has been criticised on the 

basis that they might over estimate diet breadth, and fail to detect behavioural 

differences between sites (Hall & Raffaelli 1997; Raffaelli 2007). However we believe 

that the use of ‘summary’ food webs, which include the full complement of known 

possible tropic interactions can still be a useful tool for understanding community 

dynamics. Indeed, given the limitations of summary food webs, they are more likely 

to be insensitive to environmental change rather than reveal erroneous trends. Hence 

we believe that the trends revealed here are real, and warrant further examination 

perhaps by building food webs in a more empirical manner, such as through gut 

contents analysis (as in Woodward, Speirs & Hildrew 2005; Layer et al. 2010b).  

Another potential limitation to the food webs produced here is that they don’t 

include the full freshwater community, in particular the meiofauna and top predators 

such as the European Dipper (Cinclus cinclus) or Otter (Lutra lutra) are missing. Top 

predators have been shown to have a profound effect on community structure in these 

systems (Layer et al. 2011), and so their exclusion may omit an important source of 

variation in this data. However this was unavoidable since the presence of these 

species has not been systematically recoded at these sites. Additionally, the fish 

assemblage of the lake sites were sampled from the lake outflows, which likely contain 

a different fish community to that in the main lake. For instance, Pike (Esox lucius) are 

usually associated with slow moving or standing water bodies, and so would be 

unlikely to be sampled in the lake outflows, even if they were present in the main lake 

(although Pike was found to be present at lake sites on fourteen sampling occasions). 

Of the 434 sampling occasions on which fish were present at a site, Brown Trout was 

found 434 times reflecting its dominance in these systems. The next most common 

species was the European Eel (Anguilla anguilla), which was found on 136 sampling 

occasions. All other species (Esox lucius, Gasterosteus aculeatus, Lampetra sp., Phoxinus 
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phoxinus and Salmo salar) were found on less than 60 sampling occasions. The use of 

presence/absence data for this analysis (rather than counts of each species at each site) 

should help to overcome some of these limitations. 

 

3.5.4 Conclusion 

This is the first example, of which we are aware, of a large collection of 

replicated food webs distributed over both time and space. Our study is one of the 

first to address macroecological questions relating to the structure of food webs across 

time and a broad environmental gradient. Our analysis reveals fundamental 

structural changes occurring in the food webs as they respond to changes in acidity, 

these structural changes could have profound implications for the stability of the 

system, and may be limiting biological recovery. It would be instructive to further 

investigate the stability of these food webs, in order to more fully explore if there is an 

intrinsic food web inertia limiting the rate of recovery (Appendix A). 
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4 | Food web topological plasticity disrupts the 

provisioning of ecosystem services 

 

  

© Dave Bohan 
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4.1 Summary 

There have been calls recently to direct the management of ecosystem services 

towards the conservation of the structure of ecological networks. However ecological 

networks are made up of many interactions all with the potential to influence one 

another. Thus, when directing management towards a particular desired interaction 

it is important to consider it in the context of the whole network. Carabid consumers 

in arable systems consume both weed seeds and gastropod resources, and can provide 

a measurable pest control benefit to farmers. However it is unknown to what extent 

the network in which these consumers are embedded rewires when alternative 

resources, such as gastropods, are available.  

Here we use an exceptionally large dataset of 374 half-fields distributed across 

the UK and taken from the Farm Scale Evaluation (FSE) of genetically modified 

herbicide tolerant crop. We use these food webs to test if the presence of gastropods 

disrupts the ecosystem service of weed seed regulation. We found that increasing 

numbers of gastropod species are associated with a decline in the number of 

herbivores in each food web. There was a strong negative relationship between the 

herbivore and predator interaction frequency in each food web. The number of 

herbivores, and the herbivore interaction frequency was found to be related to the 

strength of weed regulation found in each half-field.  

These results suggest that if management were directed toward manipulating 

network structure and reducing the carabid-gastropod interactions (i.e. by removing 

gastropods from the system) then this might result in a stronger weed regulation 

effect. 
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4.2 Introduction 

The sustainable provision of  ecosystems services has become a cornerstone of 

environmental research, management and policymaking (Royal Society 2009; Redford 

et al. 2012). Many of the services that humanity requires are driven by interactions 

between species (Montoya, Rogers & Memmott 2012), such as trophic interactions 

between consumers and their resources for the delivery of biological control (e.g. 

Macfadyen et al. 2011). Increasingly, we are learning that these interactions are 

embedded in a network of other links which reflect the structure and dynamics of the 

community present. Thus, any one interaction and the ecosystem service it supports 

can be influenced both positively and negatively by the composition of interactions 

making up the network in which it is embedded.  

Changes in the composition of resource species within a food web, whether that 

be presence and absence, or changes to their relative abundances, will necessarily 

cause concomitant changes to their interactions with consumer species. Some 

interactions may disappear altogether, others will be reformed while many may 

change their relative strength. All these changes could potentially occur without 

marked changes to the consumer assemblage.  Alternatively, a change in prey 

composition could lead to a rearrangement of all possible links and potentially 

complete turnover of the consumer assemblage. These two component parts of link 

turnover (Poisot et al. 2012) could go on to cause changes in the functioning and finally 

service provisioning of a particular network. Such turnover of links is essentially a 

rewiring of the existing network according to the composition and abundances of the 

consumer and resource community. 

We know that environmental change causes species turnover (e.g. Benedick et al. 

2006; Clough et al. 2007; Novotny et al. 2007), indeed species turnover is commonly 

evaluated as β-diversity between habitats and much of our attempts to manage 

ecosystem services is predicated upon conserving species against turnover (e.g. 

Benedick et al. 2006). More recently, an argument has been made that managing and 
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conserving links in networks is an important mechanism for assuring the stable 

delivery of ecosystem services (McCann 2007; Tylianakis et al. 2010; Gray et al. 2014). 

In part this is because changes in the composition of interactions can lead to changes 

in ecological functions despite no change in species richness (Tylianakis, Tscharntke 

& Lewis 2007). What is unknown, however, is the importance and contribution of link 

turnover to the support and delivery of ecosystem services in replicate networks of 

real-world ecosystems.  

Here we investigate the relative importance of link and species turnover in a 

highly replicated network of two ecosystem services, weed seed and slug control, 

delivered by a common community of carabid beetle species in agricultural fields 

distributed across the UK. Carabid beetles are polyphagous predators and have been 

the subject of much research as they regulate weed seeds in agricultural systems 

(Bohan et al. 2011a) and consume gastropods pests (Bohan et al. 2000), both of which 

contribute to reduced crop yields. Thus they are potentially important contributors to 

the ecosystem service of pest control in agricultural systems. The diets of carabid 

beetles have been studied extensively (e.g. Larochelle 1990; Mundy et al. 2000; Saska 

2008), some taxa are considered to be generalist omnivores (e.g. Pterostichus sp.) whilst 

others are specialists (e.g. Harpalus sp.). However the extent to which each species 

contributes to the ecosystem service of pest control is unknown. If seed specialists 

alone are enough to provide effective control of weed seeds, then the presence of 

gastropod resources shouldn’t interfere with this service. However if omnivores are 

required to control weed seeds, which would also feed upon gastropods when they 

are present then the presence of gastropods in agricultural fields might disrupt the 

ecosystem service of weed seed control. 

The nodes of our networks were formed from the abundances of species of 

weeds, slugs and carabids present in agricultural sample data, with observed trophic 

links gathered from the literature. Changes in species and link turnover are thus 

inferred by comparison between networks in different replicate fields, each with a 
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distinct community of weed seeds, slugs and carabids. Taking weed seed regulation 

as our standard ecosystem service, we ask: i) how this service is affected by the 

potentially disruptive and competing function of slug predation; ii) do both link and 

species turnover contribute towards this disruption; and, iii) should we manage 

species or links in real-world networks of ecosystem services? 

 

4.3 Methods 

4.3.1 Experimental design and data collection  

The Farm Scale Evaluation (FSE) experiment extensively sampled the 

biodiversity in and around crop fields across the UK (Figure 15). Previously power 

analyses have shown that the nodes in the FSE dataset are fully sampled (Perry et al. 

2003). More details of the experimental design and protocols for data collection can be 

found in (Champion et al. (2003) and Bohan et al. (2005), but briefly they are as follows: 

The count data for the weed seedbanks, seed rain, carabids and gastropods 

comes from 66 spring-sown beet, 55 spring maize and 66 spring oilseed rape fields. 

The fields were distributed across the UK (Figure 15) and each field was sampled for 

one cropping year (Firbank et al. 2003) between 2000 and 2004. Each field was divided 

in two so that one half was sown with the conventional crop and the other the 

Genetically Modified Herbicide Tolerant (GMHT) variety. Data from both treatments 

were used for the analyses presented in this study, hence a total of 374 half-fields. 

The pitfall-trapping of soil-surface-active invertebrates employed the method 

described by Brooks et al. (2003). Pitfall traps were distributed along transects which 

ran from the crop edge into the centre of each field in the spring (April ⁄May) and 

summer (June⁄July), and in late summer (August). Viable seed available to the 

carabids for consumption via the return of weed seed to the seedbank (seed rain) was 

quantified using seed rain traps along the same transects within each field (Heard et 

al. 2003). The traps were emptied every 2 weeks throughout the growing season. 
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Gastropods were sampled as in Brooks et al. (2003),  using baited refuge traps at the 

same positions used for the pitfall trapping in late April and in early August for spring 

oilseed rape, and in May and August for maize and beet.   All invertebrates and non-

crop seeds were identified to species, and counted. Counts were then pooled, by 

summation, to give a year-total estimate for each species in each half field, and from 

this the relative abundance of each species was calculated.  

 

 

Figure 15. Map of the 187 sites from the FSE dataset used in this study. 

 

4.3.2 Weed Regulation 

To assess the regulation of weed seeds, seedbank samples were taken just prior 

to sowing in the experimental cropping year (t0) and just prior to sowing in the 
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following cropping year (t1). Seedbank abundance was estimated by taking soil cores 

along four transects running into each half field. Germinated seeds in the seedbank 

sample were counted and identified to species (Squire, Rodger & Wright 2000; Heard 

et al. 2003). The seedbank counts were then pooled, by summation, to give an estimate 

of the seedbank in each half field (total weeds) as well as dicotyledon, monocotyledon 

and individual species counts. Regulation was calculated from the change in seed 

bank counts between t0 and t1, using the following formula: 

 
𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = ln (

𝑡1 + 0.5

𝑡0 + 0.5
)  (1) 

 

so that for each half field a measure total, dicotyledon, monocotyledon and 

individual weed species regulation was calculated. 

4.3.3 Food web construction 

The species sample data were supplemented with carabid dietary information 

harvested from the literature. We assumed that where a carabid species, A, was 

observed to consume a resource species, B, in the literature and both these species 

were present in the sample data from one half field, then this interaction was realised 

(as in Goldwasser & Roughgarden 1993; Havens 1993; Layer et al. 2010a; Pocock, 

Evans & Memmott 2012). To standardise the (trophic interaction) sampling effort 

across all carabid species, and account for poorly studied carabid species which did 

not appear in the literature, it was assumed that each carabid would consume the 

same resources as other carabids within the same genus (see Goldwasser et al. 1993; 

Layer et al. 2010). A similar generalisation was made at the resource level. Where 

particular carabids was recorded to feed upon one species of gastropod or weed in the 

literature, we assumed that this carabid would also consume other resource species of 

the same genus (Gray et al. 2015b). This generalisation was done to reduce the 

numbers of isolated species within each network, and to avoid the bias towards more 

studied species (Ings et al. 2009; Woodward et al. 2010b). 
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Interaction frequency between each consumer and resource was calculated as 

the product of consumer relative abundance and resource relative abundance. Species 

abundance is known to be a major predictor of the strength of its interactions with 

other species (e.g. Reuman & Cohen 2005), hence weighting the links in this manner 

incorporates an estimate of the variation in interaction strength with species 

abundance, within each food web. Incorporating weighted links in this way builds 

upon the simple binary food web structure built from presence/absence data.  Since 

species abundances vary wildly in response to its local environment the resulting 

network structure is also be more sensitive to change. 

Following network construction, each carabid species was assigned to a trophic 

group based upon their role in each replicate network in which they are found. 

Carabid nodes linked only to gastropods were assigned to the ‘predator’ grouping, 

while those consuming only weeds were ‘herbivores’, and ‘omnivores’ were species 

linked to both gastropods and weeds. Thus, a particular carabid species might be a 

predator in one food web, a herbivore in another and an omnivore in yet another.  

4.3.4 Statistical analysis 

All analysis was done in R (R Core Team 2013) using the cheddar (Hudson et al. 

2013), bipartite (Dormann, Gruber & Fruend 2008) and vegan (Oksanen et al. 2015) 

packages. Food web plots were created with the HiveR package (Krzywinski et al. 

2012). Herbivore or predator interaction frequency for each food web was calculated 

as the sum of all those interactions belonging to these carabids feeding only on weeds 

or gastropods respectively (i.e. those feeding on both resource types were classified as 

omnivores and excluded). 

Species and link turnover across the collection of food webs were measured 

using Bray-Curtis dissimilarity in the vegan package (Oksanen et al. 2015). Each food 

web is a realisation of interactions drawn from the metaweb (Dunne 2006), contingent 

on local species composition and abundances. While the dissimilarity of species 

between two sites is straightforward to quantify, link dissimilarity must be 
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decomposed into two parts; differences in interactions between networks originate 

from differences in species composition, and because shared species between the two 

realisations may interact differently (Poisot et al. 2012). The link dissimilarity 

presented here is that driven solely by changes in the underlying species composition. 

In order to assess how species and link turnover changes across the 

herbivore/predator gradient, we used the number of herbivores and predators within 

each network as factor levels with which to categorise the food webs (i.e. food webs 

with 1 herbivore, 2 herbivores, 3 herbivores etc). We ensured that no single food web 

appeared in more than one group by randomly assigning food webs to either their 

herbivore or predator group, and calculated the Bray-Curtis dissimilarity between the 

herbivore and predator groups. 

 In all models each site was treated as a replicate, as there was no repeat sampling 

from any one site. Linear regressions were used to test for a relationship between the 

number of gastropod species and the number of weed species and specialist 

herbivores within each food web. The count of weed and gastropod species, and 

herbivores was log(x+0.5) transformed to obtain normality. The relationship between 

number of herbivores and predators in each network was assessed using a 

Generalised Linear Model and a Quasiposisson error distribution to account for 

overdispersion, the number of predators in each network was log(x+0.5) transformed 

and used as the predictor variable. The relationship between the number of herbivore 

links and predator links for omnivore nodes only was assessed with linear regression 

using log(x) transformed predictor and explanatory variables to obtain normality. 

Due to the extreme distribution produced, the relationship between predatory 

interaction frequency and herbivory interaction frequency was fitted using LOWESS 

smoothing. The relationship between weed regulation and the number of herbivores 

or herbivory interaction frequency was assed using linear regressions where the 

number of herbivores had been log(x+0.5) transformed and the herbivory interaction 

frequency was log(x) transformed after removal of zeros by addition of the minimum 

value, to obtain normality. To directly test if the presence of gastropods interfered 
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with any weed seed regulation, count of carabid species within each food web was 

included as an interaction term. 

4.4 Results 

In total 811 unique trophic interactions were found between 41 carabid, 96 weed 

and 9 gastropod species (Figure 16). In the ‘master’ amalgamated food web (Figure 

16) there were 17 herbivore carabid species, 6 predatory species and 18 omnivore 

species.  

4.4.1 Service disruption 

No pattern was found in the number of gastropod and weed species within 

each food web (Figure 17a), however as the number of gastropod species increased, 

the number of specialist herbivores within each food web decreased (F1,372 = 11.8, 

p=<0.0001, Figure 17b). 

There was an inverse relationship between the number of herbivores and 

predators within each food web (F1,372 = 339.5, p=<0.0001, Figure A Appendix F) and 

between specialist predatory and herbivory interaction frequency (Figure 18). As the 

predatory interaction frequency increased across the networks, the herbivory 

interaction frequency reduced dramatically.  
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Figure 16. The ‘master’ food web. Carabid (black circles), weed (green circles) and gastropod 
(red circles) species nodes are sized proportionally to their ranked relative to how often they 
were found across all food webs. Link colour intensity and thickness is proportional to the 
strength of the interaction across all food webs.  



Chapter 4 | Food web topological plasticity 
 

Page | 84 
 

  

Figure 17. The relationships between the number of gastropod and weed species in each food 
web (a), and between the number of gastropod species and the number of herbivores within 
each food web (b). 

 

 
Figure 18. The sum of specialist herbivory interaction frequency and sum of specialist 
predatory interaction frequency for each food web. Lines show a LOWESS smoother with 
standard error. 
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Food webs with more specialist herbivores had stronger weed regulation (F1,333 

= 3.98, p=0.047, Figure B Appendix F), this trend was also found for monocot (F1,333 = 

6.42, p=0.01) and dicot weed regulation (F1,333 = 4.57, p=0.03). This trend was also 

evident for total weed regulation by food webs with larger specialist herbivore 

interaction frequencies (F1,333 = 5.16, p=0.02, Figure 19a), and also for monocot 

regulation (F1,333 = 3.89, p=0.05) and dicot regulation (F1,333 = 5.76, p=0.02). Those food 

webs which were more dominated by specialist herbivorous interactions more 

strongly down regulated weed seeds. These relationships were not found when 

considering the total herbivore interaction frequency (i.e. specialist herbivores plus 

weed feeding omnivore links) for each food web (Table A Appendix F), suggesting 

that it is the specialist herbivore interactions which are more strongly related to the 

level of weed regulation. 
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Figure 19. The level of total weed regulation (a), monocot regulation (b) and dicot regulation 
(c) related to the sum herbivory interaction frequency for each network.  

 

This indicates that the presence of gastropods in fields interferes with the 

ecosystem service of weed regulation, their presence in a food web decreases the 

number of specialist herbivore carabids (Figure 17b), which in turn weakens the 

interaction frequency between specialist herbivore carabids and weeds (Figure 18) 

which is related to a decreases in weed seed regulation (Figure 19). 
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4.4.2 Link turnover 

The variation in network structure was driven more strongly by changes in link 

composition than by changes in species composition (Figure 20). Although changes in 

carabid species composition were low (mean dissimilarity 0.44 ± 0.17), and most 

carabid species were found in most food webs, carabids were able to alter their diets 

across the gradient of available resources such that changes in link composition were 

higher (mean dissimilarity 0.65 ± 0.25).  

  

Figure 20. The turnover in carabid species (a) and links (b) between the food webs across the 
herbivore/predator gradient.  

 

4.4.3 Management of ecosystem services 

For each carabid, in each food web, there was an inverse relationship between 

the number of links to weed resources and number of links to gastropod resources 

(Figure 21), even amongst the omnivores, no omnivore node was found to have high 

numbers of links to both weeds and gastropods (t=-7.08, p=<0.0001, Table A, Figure 

C Appendix F). The occupancy of the potential link space by the most common carabid 

species Pterostichus melanarius is shown in Figure 21, this distribution was typical for 

the most abundant carabid species, many of the species occupied most but not all of 

this link space (Figure D in Appendix F), suggesting that most carabid species can 
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perform most roles in these networks.  

 

Figure 21. A density plot showing the inverse relationship between herbivore links and 
predator links. Within each food web, for each carabid species, the number of links to weed 
and gastropod resources are plotted. Some carabids were pure herbivores or predators, but 
most were omnivores. Colour indicates the count of each particular weed-gastropod link 
combination. The occupation of this space of potential feeding interactions for the most 
common carabid species Pterostichus melanarius is shown in black.  
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4.5 Discussion 

This is the first study of which we are aware that explicitly links the replicated 

structure of ecological networks to the provisioning of an ecosystem service. We have 

presented evidence that the presence of alternative resources (gastropods) causes re-

wiring within the food web and could disrupt the delivery of effective weed seed 

control; the presence of gastropods in the food webs reduced the strength of specialist 

herbivore interactions, which in turn was related to reduced weed seed regulation. 

Thus when targeting ecosystem management towards the delivery of desired services, 

it is important to consider the interactions underpinning those services and the local 

realisation of the regional metaweb, rather than the taxonomically defined trophic 

designation of a species. For example P. meinarius is a highly abundant generalist 

carabid species consuming both weed seeds and gastropods, but directing 

conservation towards this species will not deliver stable service provision (Bohan et 

al. 2011a). Directing conservation efforts towards removing carabid-gastropod links 

from the system (i.e. through the use of molluscicides) might increase the specialist 

carabid-weed seed interactions and ensure more stable service delivery. However this 

mechanism would be best tested with experimental evidence, and direct examination 

of the diet of carabids at the local scale, perhaps through molecular techniques (e.g. 

Eskelson et al. 2011; Lundgren, Saska & Honěk 2013).  

The versatility and diet breadth of these species may be an important mechanism 

maintaining network structure over time, eliminating alternative resources to direct 

predation pressure on to weed seeds might cause carabid predators to be without 

resources at certain times of the year (i.e. spring, or before seed fall) and so might be 

lost from the system. This itself clearly poses a problem for stable service delivery, and 

how best to manage this system over time is a matter for further research.  

Our results demonstrate plasticity in species roles within these networks, 

sometimes performing as specialist herbivores, sometimes specialist predators and 

sometimes generalist omnivores, suggesting that the global niche of these species is 
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modulated at the field scale. Carabid species are traditionally categorised into strict 

feeding guilds (e.g. Lövei & Sunderland 1996), although increasingly it is being 

recognised that these species are more versatile in their diet than previously thought 

(e.g. Lundgren, Saska & Honěk 2013). Our results demonstrate that the role a species 

plays within a complex food web is defined by its synecology, and thus the 

contribution each species makes toward a desired level of ecosystem functioning can 

only be assessed in the context of the food web. Modern conservation literature 

favours the maintenance of ecosystem functioning and the ecosystem services that 

result. A food web approach towards service management is advantageous as it 

explicitly considers the interactions between species which are the drivers of many 

ecosystem functions (Thompson et al. 2012; Gray et al. 2014). Our work here has 

identified a possible mechanism through which weed seed regulation could be 

enhanced through management targeted at manipulating food web structure, rather 

than the species composition per se.  

The networks presented here are ‘summary’ food webs for the species found in 

each half field, they are local realisations of the regional metaweb, and hence they are 

not sensitive to behavioural differences between species across environmental 

gradients. They are reliant on the trophic information data harvested from the 

literature and as such there were many species for which no trophic information could 

be found and so were excluded from the final networks, these were mostly weed 

species (109), but also some gastropod species (3). Although links established from 

forced feeding trials were excluded there may be biases in the food webs due to the 

often small choice range available to carabids in laboratory trials. The sensitivity of 

these food webs could be improved by gathering more information on the trophic 

interactions found in these natural systems, for instance screening the guts of carabids 

for molecular markers (e.g. Lundgren, Saska & Honěk 2013) or resource DNA (e.g. 

Eskelson et al. 2011) would facilitate the identification of species specific trophic 

interactions. Given these limitations, a priori one might expect these food webs to be 

relatively structurally invariant, thus the trends presented here may in reality be even 
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more prominent in nature. 

Weeds and gastropod pests exert a significant impact on agriculture, and 

considerable resources are diverted towards controlling these sources of reduced 

productivity. The negative effects of pesticides on the natural world are well 

documented (Royal Society 2009). Our results indicate that by harnessing the natural 

link plasticity found within these food webs, effective weed seed control through 

targeted management of food web structure could be achieved, potentially reducing 

the need for some pesticides (e.g. herbicides). Adopting a food web approach links 

pest populations to food web dynamics and ecosystem service provisioning, which 

can then be more accurately predicted and managed.  
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5 | The recovery of a freshwater food web from a 

catastrophic pesticide spill 
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5.1 Summary 

Pesticides have strong negative direct effects in fresh waters, but understanding 

how these effects propagate through natural ecosystems is limited because research 

that considers the whole ecological community in a natural setting is rare.  

Here, we investigate how an accidental spill of the insecticide Chlorpyrifos affects 

the structure and functioning of a natural river community. We quantify the direct 

impacts on pesticide sensitive arthropods, and the indirect effects mediated through 

the food web. We quantify the effect that this food web re-structuring had on a key 

ecosystem function, leaf litter decomposition. We use data collected regularly for up 

to 18 months after the spill to investigate the trajectory of recovery.  

We find that the biomasses of pesticide sensitive species are reduced, while the 

biomasses of their competitors and resources increased. Major restructuring occurred 

within the food web such that the trophic transfer efficiency through the pesticide 

sensitive nodes was reduced. Invertebrate mediated leaf litter decomposition was 

reduced while microbial leaf litter decomposition was unchanged. Constrained 

correspondence analysis showed that community structure recovered by one year on. 

Ecosystem functioning (leaf litter decomposition) recovered more quickly than the 

structural aspects of the community, perhaps due to the high redundancy within the 

assemblage involved in leaf litter decomposition. This work demonstrates the 

resilience of natural freshwater systems to pesticide spills, this deeper and more 

holistic understanding will facilitate more effective mitigation and restoration efforts. 
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5.2 Introduction 

The global human population is growing rapidly, this coupled with trends 

towards a more Western diet pattern has created an urgent need to assure future food 

security (Godfray et al. 2010). Meeting this demand for food will lead to ever more 

increased pesticide use, as the need to control agricultural pests becomes more 

pressing. While technological advances and innovations such as ‘sustainable 

intensification’ (Royal Society 2009) may help us to meet this challenge in the future, 

in the meantime the use of pesticides in agriculture continues to have wide ranging 

negative impacts upon biodiversity and ecosystem functioning (Rockström et al. 2009). 

A deeper understanding of the impacts of pesticides at the ecosystem scale is vital if 

we are to effectively mitigate against these negative impacts. 

Most ecotoxicological work to date has necessarily been laboratory or 

mesocosm based, experiments in the laboratory have revealed precise toxicity and 

effect levels for individual pesticides on the survival and life-history of target species 

(e.g. Gammarus pulex; Xuereb et al. 2007). More complex, community level responses 

to pesticides have been revealed in micro- and mesocosm experiments (van den Brink 

et al. 1996; Van Wijngaarden et al. 1996; Traas et al. 2004)  and field surveys (Chung, 

Wallace & Grubaugh 1993; Triebskorn et al. 2003; Malaj et al. 2014). Little is known 

about how pesticides affect natural whole communities, or how the ecosystem 

processes of natural communities are affected, due to the lack of replicated, controlled 

experiments in a natural setting. Additionally, little work has been done tracking the 

trajectory of recovery for communities after exposure to pesticides, especially in a 

natural setting (but see Raven & George 1989; Chung, Wallace & Grubaugh 1993). 

Predicting how pesticides will influence natural communities and ecosystem 

properties poses a far larger challenge than predicting responses of individual taxa in 

isolation (Relyea 2009; Altenburger et al. 2013), due to the interplay between direct and 

indirect effects (Brock, van Wijngaarden & van Geest 2000) and non-additive effects 

such as synergisms and antagonisms (Relyea & Hoverman 2006).  
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Chlorpyrifos is a widely used broad-spectrum organophosphate pesticide 

(insecticide and acaricide) which attacks insect (and arachnid) nervous systems. It is 

relatively non-persistent, measured natural water column half-lives for chlorpyrifos 

typically range from < 1 to 4.8 days, (Racke 1993; Barron & Woodburn 1995), and its 

principal degradation products are less toxic than the parent chemical leading its 

direct (toxic) effects to be relatively short-lived (Kramer et al. 1997). Specifically, 

chlorpyrifos can be toxic to most invertebrate and fish species, but often only at high 

concentrations, (Barron & Woodburn 1995). Within the invertebrates, crustaceans and 

invertebrate larvae are among the most sensitive species for instance the lethal 

concentration (LC50) for the freshwater shrimp G. pulex is 0.07µg/L (Barron & 

Woodburn 1995).  Molluscs are among the most resistant species, with many taxa 

having an LC50 of >100µg/L (Barron & Woodburn 1995). Most fish species are also 

sensitive to chlorpyrifos toxicity given high enough concentrations, for instance, the 

LC50 for Rainbow Trout (Oncorhynchus mykiss) is 7µg/L (Barron & Woodburn 1995). 

Compartments of the community not directly affected by chlorpyrifos toxicity are 

affected indirectly (see reviews by Barron & Woodburn 1995; Brock, van Wijngaarden 

& van Geest 2000; Giddings et al. 2014). For instance, Chlorpyrifos has been found to 

alter food-web structure in microcosms (Traas et al. 2004). Little work has been done 

to investigate the effects of Chlorpyrifos on the microbial community, which is an 

important component of the food web and contribute towards many ecosystem 

functions. Little work has been done linking chlorpyrifos exposure to ecosystem 

functioning, however mesocosm studies have found macroinvertebrate-mediated 

litter breakdown to be depressed (Brock et al. 1993; Cuppen et al. 1995).  

Ecological networks such as food webs are a useful tool for studying the effects 

of stressors on communities (Ings et al. 2009; Thompson et al. 2012; Gray et al. 2014). A 

food web based approach to the study of pesticide exposure in natural ecosystems is 

particularly useful as it implicitly encompasses the range of indirect effects, allowing 

the full impacts of the pesticide on the whole community to be measured. The use of 
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trivariate food webs (Cohen, Jonsson & Carpenter 2003), whereby the mass and 

abundance of each node (taxa) in the network is incorporated, can reveal changes to 

the energy transfer efficiency through the food web. Study of the structure of the food 

web has provided explanations for unexpectedly slow recovery from perturbations in 

other systems (Scheffer & Carpenter 2003; Layer et al. 2011), and it might provide an 

explanation for the often slow recovery of natural communities following chlorpyrifos 

exposure (Raven & George 1989). Food web models have been used to successfully 

predict the indirect effects of mixtures of pesticides on experimental communities 

(Halstead et al. 2014), but this is yet to be applied to natural communities. Much of the 

research examining the indirect effects of pesticides on communities and ecosystem 

functioning has been descriptive rather than mechanistic (but see Traas et al. 2004; 

Halstead et al. 2014). As of yet the food web of natural communities exposed to 

chlorpyrifos as not been investigated in a controlled and repeated manner. 

There is a need for controlled, replicated investigations into the direct and 

indirect effects of pesticides in natural ecosystems, as well as the trajectory of recovery 

that these communities follow. A spill of the insecticide chlorpyrifos in the River 

Kennet, Wiltshire UK, on 1st July 2013 provided an opportunity to address this gap. 

The River Kennet is a lowland chalk tributary of the River Thames in southern 

England, designated as a UK Site of Special Scientific Interest (SSSI). Its diverse 

macroinvertebrate fauna is dominated by Gammaridae, Baetidae, Ephemerellidae, 

Simuliidae and Chironomidae, which support an economically important salmonid 

game fishery (Wright et al. 2002, 2004). The spill of chlorpyrifos was likely to be a 

‘down-the-drain’ incident, and entered the river through a water treatment works. 

Concentrations of 0.52–0.82µg/L were recorded coming from the main tertiary 

sewage treatment works in Marlborough, Wiltshire, on 2 and 5 July, respectively 

(Appendix C; Thompson et al.). The peak concentration was most likely missed, but 

even the recorded concentrations are sufficient to be acutely toxic to arthropods 

(Barron & Woodburn 1995; Giddings et al. 2014), particularly over extended periods 
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(i.e. >24h; Rubach et al. 2011). 

Previous work has demonstrated the immediate effects of this spill on both 

community structure and measures of ecosystem functioning (Appendix C; 

Thompson et al.). Crucially, Thompson et al. (2015) used before-after-control-impact 

(BACI) data, allowing them to detect causal relationships between the pesticide spill 

and reduced invertebrate abundances. Thompson et al. (2015) found that the biomass 

of pesticide sensitive species, in particular the keystone detritivore G. pulex, was 

reduced in sites impacted by the pesticide, relative to control sites upstream of the 

spill. Indirect effects were detected as the biomass of non-pesticide sensitive taxa such 

as oligochaete worms, increased. Chlorophyll-α concentration, which is a proxy for 

algal biomass, was also increased. When the food web was plotted in trivariate spece, 

whereby the nodes of the network are plotted by their mass and abundance,  the slope 

of the interactions through the pesticide sensitive nodes steepened in response to the 

pesticide. The slope of these interactions is a proxy for energy transfer through the 

food web, steeper slopes indicating reduced energy transfer efficiency. These changes 

to the structure of the food web was found to alter ecosystem functioning rates; 

invertebrate mediated leaf litter decomposition was reduced in impacted sites, while 

microbe driven decomposition was increased. 

We build upon the work done by Thompson et al. (2015), and demonstrate the 

recovery of the river ecosystem one year on. We quantify the initial impact and 

recovery of the biomass of sensitive and non sensitive invertebrate species, use 

detailed mass and abundance data to construct quantified food webs to make specific 

predictions about the direct and indirect effects mediated through the food web, and 

investigate the effects on and recovery of leaf litter decomposition. 

Specifically we will address the following hypotheses: 
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1. Community structure will be significantly impacted by the pesticide spill 

at impacted sites, and recover towards that of the control sites by one year 

on. 

2. The biomass of pesticide sensitive taxa which have adult aerial life stage, 

such as the mayfly Baetis sp., will recover more quickly than those who do 

not, such as G. pulex. 

3. The biomass of oligochaete worms and chlorophyll-α concentration, which 

were higher in impacted sites immediately after the spill, will recover to 

become indistinguishable from that of the control by one year on. 

4.  As the biomass of pesticide sensitive species recovers, so too will the 

energy transfer efficency through those nodes; the slope of the feeding 

interactions between pesticide sensitive taxa and their consumers and 

resources will become shallower over time. 

5. The rate of leaf-litter decomposition at impacted sites will recover to be 

indistinguishable from that at the control sites by one year on. Microbial 

decomposition rates will recover more quickly than invertebrate mediated 

decomposition.  

6. Structural changes to the community will take longer to recover than 

invertebrate mediated decomposition rates due to high redundancy and a 

mix of sensitive and non-sensitive species involved in decomposition.  

 

  



Chapter 5 | Food web recovery from a pesticide spill 
 

Page | 99  
 

5.3 Methods 

Sampling began in July 2013, approximately 2 weeks after the pesticide spill. Seven 

sites were selected with similar channel forms and riparian surroundings, located 

approximately 1km apart, except for the most downstream site which is located 

approximately 5km from the second most downstream site (Figure 22). Each sampling 

round was repeated in full every two months (with the exception of electrofishing 

which was not done in every sampling round) up until the 9th sampling round in 

March 2015, when there was a six month gap before the final (10th) sampling round in 

September 2015. Due to limited resources not all samples from each site and date 

could be processed, details of which samples, from which site at which time points 

are presented below (Table 6).  

 

 

Figure 22. Map of the River Kennet with study sites marked; three upstream of the pesticide entry 

point in grey, and four below in red.  

 

5.3.1 Community structure 

To quantify the chlorophyll-α concentration, a proxy for algal biomass, ten 

stones were randomly selected from each reach, and using a quadrat of known area 

(17.28cm2) of the upper surface scraped and washed into a sample bottle. Samples 
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were stored in the dark and frozen at -20°C until analysis. Data presented here were 

from six samples (Table 6), from sites A-F, and four of the total ten time points. The 

laboratory procedure was as follows: each sample was filtered through a Whatman 

GF/C glass fiber filter placed in a Büchner funnel by applying a vacuum. The filter 

was then quickly placed into 20ml of ice-cold 96 % ethanol, mashed up slightly with 

a glass rod, and placed on ice covered with a dark plastic bag to prevent degradation 

of chlorophyll molecules, which become highly sensitive to UV light during 

extraction. Samples were kept at 4°C in the dark overnight. 200µl of sample was 

transferred to a NuncTM MicroWellTM 96-well optical bottom plate and chlorophyll-α 

content was then measured spectrophotometrically using a Biotek HT absorbance 

reader (Biotek, Swindon, U.K.). Absorption of the extraction was measured at 664 

(chlorophyll-α) and 750 nm (turbidity), with and without the addition of 50µl of 0.1M 

HCL. The addition of HCL degraded the chlorophyll-α into its degradation products, 

pheophytins and pheophorbides (Steinman, Lamberti & Leavitt 2006), hence the skew 

in absorption values created as a result of degradation products and not chlorophyll-

α was removed (Lorenzen 1967).  The absorbance of the sample in a microplate was 

converted into a 1-cm path length corrected absorbance using the measured path 

length (Warren 2008): 

 𝐴1𝑐𝑚 =
𝐴𝑚𝑖𝑐𝑟𝑜𝑝𝑙𝑎𝑡𝑒−𝐵

𝜋𝑟2
  (1) 

 

Where Amicroplate is the absorbance reading taken using the 96-well plate reader, B is 

the mean absorbance of 10 control wells containing only 200µl of ethanol, and 𝑟 is the 

radius of the well (0.325cm). 

After path length correction, the chlorophyll-α and pheophytin concentration 

was calculated using the following equation (modified from Steinman, Lamberti & 

Leavitt 2006): 
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Chlorophyll-α & pheophytin (mm/m2) = 

(𝐴664−𝐴750) ∙ 𝐸 ∙ 104

83.4 ∙ 𝑇
 (2) 

   

 
Pheophytin (mm/m2) = 

(𝐴𝐻𝐶𝐿 664−𝐴𝐻𝐶𝐿 750) ∙ 𝐸 ∙ 104

83.4 ∙ 𝑇
 (3) 

Where 𝐴664 and 𝐴750 is the absorbance at 664nm and 750nm respectively, 𝐴𝐻𝐶𝐿 664 and 

𝐴𝐻𝐶𝐿 750 is the absorbance after the addition of HCL at 664nm and 750nm respectively. 

𝐸 is the volume of ethanol used (20ml), 83.4 is the absorption coefficient for 

chlorophyll-α in ethanol (1g-1cm-1), and 𝑇 is the scraped area of stone (17.28cm2). 

Finally the concentration of chlorophyll-α was calculated by subtracting equation (3) 

from equation (2). 

 The diatom assemblage was characterised by selecting ten permanently 

submerged stones at each study site from unshaded areas. The biofilm was scrubbed 

and washed from the upper stone surface. Samples were immediately preserved by 

addition of Lugol’s iodine and stored until further processing. Data presented here 

were from one sample processed (Table 6) from four sites (A, C, D and F) at 2 time 

points (September 2013 and September 2014). Slide preparation followed Battarbee et 

al. (2001), a minimum of 300 diatom valves were identified to species per sample using 

standard keys  (see Appendix G) and abundances per unit area were determined as in 

Battarbee (1973). Linear dimensions were measured to the nearest 1µm to estimate 

diatom biovolume (Hillebrand et al. 1999). The first 30 specimens of all common (n > 

30) species were measured, and where species were encountered less frequently, all 

specimens in the count were measured. Carbon content of the diatoms was estimated 

(Rocha & Duncan 1985) and then converted to dry mass (Sicko-Goad, Schelske & 

Stoermer 1984).  

To determine the abundance of the invertebrates, ten Surber samples (area 

0.0625m2; mesh 330μm) were taken from randomly chosen stony riffles at each site 

within a ~50m2 stretch. Samples were immediately preserved in 96% ethanol until 



Chapter 5 | Food web recovery from a pesticide spill 
 

Page | 102  
 

further processing. In the laboratory, samples from four sites (A, C, D and F) and four 

time points (September 2013, March 2014, September 2014 and March 2015) were 

prioritised (Table 6). For each site, in each time point three samples were processed; 

invertebrates were sorted from debris, identified to species where possible (i.e. all 

except Diptera [identified to Family] and Annelidae [identified to Subclass]), and 

counted. Individuals were identified using a combination of published identification 

keys (Appendix G). Body size measurements were taken in the form of linear 

dimensions (head-capsule width or body length) for up to 60 specimens of each 

species in each site at each time point using a calibrated ocular micrometer, and 

individual dry mass determined from published length-dry mass regression 

equations (Table A Appendix G).  

Quantitative depletion electrofishing was undertaken at 6 time points 

(September 2013, March 2014, September 2014, November 2014, March 2015 and 

September 2015; some time points were omitted to minimise stress on the fish 

assembledge) to assess fish abundance (Table 6). At each site a 50m stretch of the river 

was electrofished (after Carle & Strub 1978). Stop-nets were installed at both ends of 

the stretch, and three runs were completed, moving upstream and sweeping from one 

side of the river to the other. All fishes were counted and measured (fork length and 

body mass) before being released back into the stream alive. Population densities were 

estimated using the R package FSA (Ogle 2012) and iterative Maximum Weighted 

Likelihood statistics (Carle & Strub 1978). For each species, individual dry mass was 

calculated using length–mass regression equations (Table A Appendix G). 
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Table 6. The numbers of samples processed for each data type. Numbers in black indicate data 

presented here, in grey are data processed but not presented here. In all instances (except fish) gaps 
represent samples collected (see main text for numbers) but not yet processed. Fish were only surveyed 
on the dates indicated, only those indicated with a black Y are presented here. 

 Site Jul-13 Sep-13 Nov-13 Mar-14 May-14 Jul-14 Sep-14 Nov-14 Mar-15 Sep-15 

C
h

lo
ro

p
h

y
ll

 

A  6  6 6 6 6 6 6  

B  6  6 6 6 6 6 6  

C  6 6 6 6 6 6 6 6  

D  6 6 6 6 6 6 6 6  

E  6 6 6 6 6 6 6 6  

F  6 6 6 6 6 6 6 6  

G 6 5  6 6 6  6 6  

D
ia

to
m

s 

A  1  3   1    

B    3       

C  1  3   1    

D  1  3   1    

E    3       

F  1  3   1    

G    3       

In
v

er
te

b
ra

te
s 

A  4  3   3  3  

B  1         

C  3  3   3  3  

D  3  3   3  3  

E  1         

F  3  3   3  3  

G  1         

F
is

h
 

A  Y  Y   Y Y Y Y 

B  Y  Y   Y Y Y Y 

C  Y  Y   Y Y Y Y 

D  Y  Y   Y Y Y Y 

E  Y  Y   Y Y Y Y 

F  Y  Y   Y Y Y Y 

G  Y  Y   Y Y Y Y 

L
ea

f 
li

tt
er

 d
ec

o
m

p
o

si
ti

o
n

 

A  10  10   10  10  

B  10  10       

C  10  10   10  10  

D  10  10   10  10  

E  10  10       

F  10  10   10  10  

G  10  10       
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5.3.2  Food web construction and analysis 

Quantitative trivariate food webs were constructed, where nodes (species) are 

plotted by their mass and abundance along with their interactions. This was done for 

four sites (A, C, D & F) and two time points (September 2013 & September 2014), 

which produced in total eight food webs. Feeding links were established by inferring 

links from the literature, and filled in for each network using the WebBuilder function 

(Chapter 2; Gray et al. 2015) in R (R Core Team 2013). This method is based on the 

assumption that a described feeding link would be realized between two species at a 

given study site if the same link has been described in another system where those 

species co-exist (e.g. Hall & Raffaelli 1991; Martinez 1991; Layer et al. 2010b; Pocock, 

Evans & Memmott 2012). In some instances, due to a paucity of trophic interaction 

data, feeding links were assigned on the basis of taxonomic similarity, (Table B 

Appendix G).  

 The slope of every trophic interaction in trivariate space was calculated using 

the method of Cohen et al. (2009) in the R package Cheddar (Hudson et al. 2013). We 

used link slopes to estimate changes in potential biomass flux between a resource and 

its consumer (Thompson et al.). A trophic interaction can be viewed as a vector from 

a resource to its consumer in mass-abundance space, a steepening of this slope 

indicates less efficient energy transfer and reduced biomass flux (Cohen et al. 2009). 

5.3.3 Leaf litter decomposition 

Breakdown rates of black alder (Alnus glutinosa) leaf litter was determined for 

each site at each time point. Ten replicates of bags with each of two mesh sizes were 

deployed in each site at each time point, each bag containing 3.00±0.3 g of air-dried 

leaf litter. Bags with fine mesh size (500µm) were used to exclude invertebrate 

detritivores, while coarse mesh size (10mm) allowed invertebrates access to the leaf 

litter.  The bags were left to incubate in the river for 9 days, when collected they were 

frozen at -20°C. In the laboratory samples from four sites (A, C, D and F) and four time 

points (September 2013, March 2014, September 2014 and March 2015) were 
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prioritised for processing (Table 6). All ten replicate samples were processed. The leaf-

litter was extracted and oven-dried at 80°C and re-weighed to determine the 

proportion remaining.  

 Leaf breakdown rates were expressed as the exponential decay rate coefficient, 

𝑘 (after Woodward et al. 2012b): 

 𝑘 = −𝑙𝑛 (
𝑚1 

𝑚0  ∙ 𝑐
) /𝑑𝑑 (5) 

 

Where 𝑚0 is the initial leaf litter weight, and 𝑚1 is the final leaf litter weight, 𝑐 

is an air-dry to oven-dry conversion factor (calculated separately; 0.968) and 𝑑𝑑 is the 

number of degree-days (the temperature multiplied by the number of incubation 

days). Total (𝑘𝑡𝑜𝑡𝑎𝑙) and microbially mediated breakdown rates (𝑘𝑚𝑖𝑐𝑟𝑜𝑏𝑒) were 

determined from the coarse-mesh and fine-mesh bags, respectively. Rates of 

invertebrate-mediated breakdown were derived by calculating the percent of litter 

mass remaining in coarse-mesh and fine-mesh bags in each bag pair and then 

calculating a new 𝑘 value (𝑘𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒) based on this difference: 

 𝑘𝑖𝑛𝑣𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒 = 1 −  ((1 − 𝑃𝑐𝑜𝑎𝑟𝑠𝑒) − (1 − 𝑃𝑓𝑖𝑛𝑒)) (6) 

 

Where 𝑃𝑐𝑜𝑎𝑟𝑠𝑒 is the proportional weight of leaf litter remaining in a coarse bag, 

and 𝑃𝑓𝑖𝑛𝑒 is the proportional weight of leaf litter remaining in a fine bag. 

 To control for seasonal temperature differences across the sampling time 

points, temperature data were obtained for Environment Agency monitoring stations 

located within the sampling area. One temperature reading was selected to coincide 

with each sampling time point, where possible temperature data from the same site 

were used.  
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5.3.4 Statistical analysis 

All statistical analysis was done in R (R Core Team 2013). Constrained 

Correspondence Analysis (CCA), with sampling time point (September 2013 or 

September 2014) fitted as the sole constrained axis, was done to assess the impact of 

the pesticide spill on, and recovery of, community structure. The explanatory power 

of time, treatment and an interaction between the two was assessed using 

Permutational multivariate analysis of variance (PERMANOVA) with 9999 

permutations. 

Generalised linear mixed effects models (GLMM) were used to test for a 

significant effect of time and treatment on a range of response variables; chlorophyll-

α concentration, the biomass of some pesticide sensitive taxa (Baetis, G. pulex), non-

pesticide sensitive taxa (Oligochaeta), link slopes and decomposition rates. In all cases 

treatment was nested within time in order to assess any differences between control 

and impact at each time point. Site and sample month was treated as having a random 

effect on the intercept of the linear relationship. Chlorophyll-α concentration and 

biomasses were log10 transformed to meet test assumptions.  All GLMMs were 

performed using the nlme package in R (Pinheiro et al. 2014). 
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5.4 Results 

5.4.1 Community structure 

The CCA model revealed that community structure was significantly affected 

by the pesticide spill (Figure 23), and that the community had recovered one year on 

from the spill (indicated by the reduction in distance separating the two treatments 

over time). PERMANOVA revealed that the interaction between time and treatment 

had an effect on community structure (Table 7). The treatment/time component of the 

CCA model explained 30% of the variation. This confirms our first hypothesis. 

 
Figure 23. CCA plot with time fitted as the sole constrained variable. Site scores are shown as either 
red squares (impacted sites), or blue circles (control sites). Species scores are shown in grey. Time points 
are separated; T2 = September 2013, T7 = September 2014.  
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Table 7. Effect of treatment and time on community structure (PERMANOVA). 

Source d.f. SS Pseudo-F P-value 

Treatment/time 3 1.11906 1.0881  0.0446 
treatment 1 0.55254  1.0746  0.1092 
Residual 4 2.05681   

 

Both time and treatment had an effect on chlorophyll-α concentrations, (Table 

8), chlorophyll-α concentrations were higher in impacted sites after the pesticide spill 

but became indistinguishable from that of the control sites by one year on (September 

2014) indicating that the algal assemblage was indirectly affected by the pesticide spill 

(Figure 24), although the chlorophyll-α concentration at impacted and control sites 

did diverge again in March 2015. This is in accordance with anecdotal evidence, there 

was visible evidence of a large algal bloom in the months after the spill. 

 Invertebrate biomass was also affected by both treatment and time (Table 8); 

the biomass of Baetis sp. was lower at impacted sites immediately after the pesticide 

spill (Figure 25) and recovered to become indistinguishable from that of the control 

sites by March 2014. G. pulex in contrast had a lower biomass in impacted sites through 

almost the entire sampling period (Figure 25) only returning to become 

indistinguishable from that of the control sites in March 2015. This confirms our 

second hypothesis, Baetis sp. recovered more quickly than G. pulex following the 

pesticide spill. Oligochaete worms had a higher biomass in impacted sites after the 

spill (Figure 25). Although the oligochaete biomass did not fall, it became 

indistinguishable from that of the control sites over time, confirming our third 

hypothesis.  

 Fish biomass was unaffected by treatment and time (Table 8), suggesting that 

the fish community was unaffected by the pesticide spill. 
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Table 8. Statistics of fit for the multiple mixed effects models. All models include a main effect 
of treatment, time nested within treatment, and a random effect of site on the intercept of the 
linear relationship.  

Response  
variable 

Predictor variable 
& interactions 

 d.f. F-value P-value 

Log(Chlorophyll-α  
concentration) 

Time/treatment  4 7.80 0.0001 
Time  3 28.64 0.0001 

Log(Baetis sp. biomass) Time/treatment  4 3.67 0.0144 
Time  3 2.12 0.1168 

Log(G. pulex  
biomass) 

Time/treatment  4 16.17 0.0001 
Time  3 5.99 0.0021 

Log(Oligochaeta biomass) Time/treatment  4 7.06 0.0003 
Time  3 4.92 0.0062 

Log(Fish biomass) Time/treatment  3 0.307 0.8199 
Time  2 0.094 0.9099 

Algae – arthropod  
link slopes 

Time/treatment  2 107.9   0.0001 
Time  1 0.06   0.805 

Algae – non-arthropod 
link slopes 

Time/treatment  2 7.45   0.0006 
Time  1 0.0001   0.999 

Arthropod – fish  
link slopes 

Time/treatment  2 0.879 0.416 
Time  1 0.513 0.474 

Non-arthropod – fish  
link slopes 

Time/treatment  2 0.501   0.607 
Time  1 0.0951   0.758 

Log(invertebrate mediated  
decomposition) 

Time/treatment  4 26.82 0.0001 
Time  3 15.17 0.0001 

Log(Microbial mediated  
decomposition) 

Time/treatment  4 1.97 0.1028 
Time  3 12.78 0.0001 

Log(Total decomposition) Time/treatment  4 43.54 0.0001 

Time  3 57.36 0.0001 
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Figure 24. The concentration of Chlorophyll-α over time in impacted (red, circles) and control (blue, 
triangles) sites. Points show mean values, ± s.e.m. Those time points where impact and control 
concentrations are different are indicated by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001, 
*** = p <= 0.001 = ***. 
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Figure 25. The biomass of Baetis sp. (top), G. pulex (middle) and Oligochaeta (bottom) over 
time in impacted (red, circles) and control sites (blue, triangles). Points show mean values, ± 
s.e.m. Those time points where impact and control biomasses are different are indicated by 
significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001, *** = p <= 0.001 = ***. 
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5.4.2 Food web 

The food web experienced significant re-structuring as a result for the pesticide 

(Figure 26), there was a thinning of the middle of the food web as pesticide-sensitive 

species were lost. In particular, G. pulex, which is an important detritivore and a 

keystone species (i.e. a species more abundant than expected for its size) was much 

reduced in both size and abundance and so lost its keystone position within the food 

web (black triangles in Figure 26). By September 2014 it had recovered to its normal 

positon within the food web. Baetis sp., another pesticide sensitive taxon was also 

reduced in both body mass and abundance in impacted sites. It also recovered by 

September 2014 (black upside down triangles in Figure 26). In contrast, Oligochaeta 

increased in both body size and abundance in impacted sites to take a dominant 

position within the food web, it still occupied this position in trivariate space in 

September 2014 (black squares in Figure 26). There was an appearance of larger 

diatoms, and larger diatom species immediately after the spill, these were lost by 

September 2014 (Figure 26), which is in accordance with our third hypothesis. 
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Figure 26. Trivariate food webs where species are plotted by their average mass on the x-axis 
and abundance on the y-axis. Trophic interactions between species are shown in grey. Green 
circles = algae, orange triangles = arthropods, blue squares = non-arthropod invertebrates, 
pink diamonds = fish. The locations of some key taxa have been highlighted; black upward 
pointing triangles = G. pulex, black downward pointing triangles = Baetis sp., black squares = 
Oligochaetes.  

 

This re-structuring of the food web is reflected in the changes in link slopes 

between resources and consumers within the food web (Figure 27; Table 8), in support 

of our fourth hypothesis. Link slopes between arthropods and their algae resources 

were more negative (i.e. steeper) in impacted sites than control sites in September 2013 

(top left Figure 27). This indicates altered mass-abundance scaling within the food 

web and reduced energy transfer efficiency through the algae-arthropod pathway 
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within impacted communities. Link slopes between algae and non-arthropod 

invertebrates were also affected by the pesticide (Table 8). Although pairwise mean 

comparisons revealed no within time point differences between impacted and control 

food webs there was a trend towards progressively less negative (i.e. shallower) 

primary link slopes for non-arthropod invertebrates in impacted sites over time (top 

right Figure 27). This indicates that over time the energy efficiency transfer from algae 

through non-arthropod invertebrates within impacted food webs increased, and 

decreased in control sites. 

 There was no effect of treatment and time of the slope of the links between 

arthropod and non-arthropod resources and their fish consumers (Table 8, Figure 27).  

  

  
 
Figure 27. Link angles between invertebrates (arthropods and non-arthropods) and their algal 
resources (primary links) and fish consumers, over time in impacted (red, circles) and control 
sites (blue, triangles). Points show mean values, ± s.e.m. Those time points where impact and 
control slopes are different are indicated by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 

0.001, *** = p <= 0.001 = ***. 



Chapter 5 | Food web recovery from a pesticide spill 
 

Page | 115  
 

5.4.3 Ecosystem processing 

Total decomposition of leaf litter was lower in impacted sites up to 6 months after the 

pesticide spill (top Figure 28; Table 8). This was driven by the decline in invertebrate 

mediated decomposition (middle Figure 28; Table 8). No effect of the pesticide was 

seen on the rate of microbial decomposition (bottom Figure 28; Table 8), despite a 

trend towards higher rates immediately after the spill. These results support our fifth 

and sixth hypotheses; here the rate of microbial decomposition was found to be 

unaffected by the pesticide (in contrast to Thompson et al.), while invertebrate 

mediated decomposition took up to a year to recover. The biomass of G. pulex, a 

keystone detritivore, took longer to recover after the pesticide spill than the rate of 

invertebrate leaf litter decomposition.   
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Figure 28. The decomposition rate expressed as temperature corrected rate of decomposition, 
over time in impacted (red, circles) and control sites (blue, triangles). Points show mean 
values, ± s.e.m. Those time points where impact and control means are different are indicated 
by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001, *** = p <= 0.001 = ***. 
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5.5 Discussion 

The spill of the insecticide chlorpyrifos on the River Kennet in 2013 affected almost 

all aspects of the ecological community. The loss of sensitive arthropod species caused 

significant reductions in the biomass of key invertebrate groups. These direct effects 

propagated through the food web, causing non-pesticide sensitive taxa to increase in 

biomass (increased biomass of Oligochaeta at impacted sites), this could be because 

those taxa were released from competitive pressure. Algae increased their biomass 

(increased chlorophyll-α concentration at impacted sites, larger diatoms in impacted 

sites), this could be because they were released from predation pressure from the 

pesticide sensitive taxa.  Mass-abundance scaling between arthropods and their 

resources and consumers was altered such that there was a potential reduction in the 

flow of biomass through arthropod mediated feeding pathways (steeper feeding link 

slopes). There were knock on effects for ecosystem processing as invertebrate 

mediated decomposition rates were reduced. In general recovery time was faster for 

ecosystem processing (decomposition) than for structural aspects of the community, 

the exception being Baetis, whose biomass recovered by March 2014, before 

decomposition rates had. The CCA showed clear recovery of community structure 

over time.  

 The response and trajectory of recovery of Oligochaeta and G. pulex is 

interesting as it suggests that the increased biomass of Oligochaeta may have been 

preventing the full recovery of G. pulex, perhaps through competitive exclusion. A 

mechanism like this has been suggested to be responsible for the slow biological 

recovery of freshwater food webs affected by acidification (Layer, Hildrew & 

Woodward 2013), whereby under acidified conditions generalist herbivore-

detritivores dominate and prevent the recolonization of specialist herbivores as pH 

increases. G. pulex is a highly generalist collector-gatherer species, feeding on both 

detritus and the algal biofilm, Oligochaeta is a broad taxonomic unit containing many 

taxa which also feed on both detritus and the algal biofilm, hence there is likely a high 
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overlap in the resources of these two nodes (Tachet et al. 2002). Alternatively G. pulex 

may have been slow to recover due to dispersal limitations, taxa such as Baetis sp. 

which have a winged adult stage which would have aided recovery, and indeed insect 

species did recover relatively quickly. G. pulex is fully aquatic as so would have likely 

recolonised from above and below the affected stretch of the river. If dispersal 

limitations were the cause of the slow recovery of G. pulex, then there would likely be 

a difference in the recovery rates of this species at the impacted sites, with the most 

upstream site, which is closest to a source population unaffected by the pesticide, 

recovering quickest. This trend was not apparent in the data but may emerge as more 

samples are processed from the remaining time points. 

 No effect of the pesticide was seen on the fish assemblage. This is unsurprising 

that there was no discernible effect on the fish biomass given how mobile they are and 

that their diet is known to be subsidised along the stretches of the river that 

commercial angling is found, which includes all of the impacted sites used here.  

 Previous work has revealed that these effects extend into the microbial world, 

Thompson et al. (2015), found that the functional potential of the microbial assemblage 

was higher in the impacted sites in September 2013, as was the abundance of genes 

associated with organophosphate use and ammonia oxidation which would likely be 

a response to the widespread arthropod death. Microbes account for most of the 

world’s biodiversity, they drive key ecosystem processes and biogeochemical cycles 

(e.g. nitrogen cycle) and interact with higher trophic levels. It is likely therefor that the 

direct effects on the microbial assemblage (through pesticide molecules available to 

metabolise), as well as indirect effects (through the glut of arthropod carcasses 

available for decomposition) in turn caused knock on effects for those species 

interacting with the microbial assemblage (such as the meiofauna). Thompson et al. 

(2015) found that microbe mediated leaf litter decomposition was higher at impacted 

sites immediately after the pesticide spill, and indeed this trend was seen here too, 

although not statistically significant. This suggests a compensatory mechanism such 
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that microbial decomposers were able to increase their decomposition rates, perhaps 

through increased biomass due to the glut of additional resources (in the form of 

arthropod carcasses) which partially compensated for the reduced invertebrate 

decomposition. 

Here we have demonstrated the use of food webs for better understanding the 

effects of perturbations as they propagate through the ecological community. Food 

webs have also been used to assess the effects of other stressors, such as acidification 

and eutrophication, where interactions within food webs can shape both the 

ecosystem impact and the rate and trajectory of recovery (Ledger & Hildrew 2005; 

Layer et al. 2010b; Rawcliffe et al. 2010). Thus, such an approach allows us to move 

beyond partial taxonomic or trait-based views to bioassessment, to one that explicitly 

incorporates species interactions in ecological networks and the ecosystem processes 

that result. 

This study demonstrates the resilience of freshwater communities to 

perturbations, whilst the structure and functioning of the food web was altered by the 

pesticide spill, there were many alternative pathways through which biomass could 

flow allowing the overall network structure to be resistant to change and dampening 

impacts on the top predators facilitating a short recovery time. As more samples from 

each time point are processed we will gain a better understanding of the resilience 

and resistance of the different components of the community, as well as their 

trajectory of recovery over time. 

There were instances in this data where impacted variable means became 

indistinguishable from control variable means, not through change over time in the 

impacted data, but due to change over time of control data, or change in both (i.e. in 

Baetis sp. and Oligochaeta biomass). Whilst counterintuitive, this can still be taken as 

evidence of recovery but highlights the need to better understand the baseline 

variability from season to season and year to year in these data. As more samples from 

each time point are processed a better understanding of this variability and more 
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robust trends will emerge. 

 Studies of the effects of pesticides at the ecosystem level are rare in natural 

settings (Köhler & Triebskorn 2013); this study contributes to filling this knowledge 

gap. The projected increase in the worldwide use of pesticides (Tilman et al. 2002) has 

the potential to cause substantial negative impacts to our waterways. For instance, 

Malaj et al. (2014) estimate there to be acute lethal effects of organic chemicals in 14%, 

and chronic long-term effects in 42% of European waterways. A deeper, more holistic 

understanding of the effects of pesticides which enter our waterways, as well as an 

understanding of how those effects propagate through the food web will facilitate 

more effective mitigation and restoration efforts.  
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6 | General Discussion 

The main aim of this project was to examine the suitability of food webs as a 

tool for monitoring the impacts of anthropogenic stressors on the environment. The 

evidence is clear that in some situations consideration of the structure of ecological 

networks is vital to fully understanding the response of an ecosystem to 

environmental change (e.g. Scheffer & Carpenter 2003; Tylianakis, Tscharntke & 

Lewis 2007; Henson, Craze & Memmott 2009), but these examples used detailed food 

webs with information about the weight of the nodes and links, information not 

usually available from biomonitoring schemes. Here I have demonstrated that food 

webs built from routine biomonitoring data, (i.e. species lists) and trophic information 

harvested from the literature can provide a deeper understanding of ecological 

communities than species lists alone (Chapters 3 & 4). Chapter 3 demonstrates that 

freshwater food webs built from routine biomonitoring data can reveal insights into 

how the structure of those food webs is affected by acidification, with implications for 

the ability of those food webs to recover from acidification. The results presented in 

Chapter 4 demonstrate that classifying carabid consumer species in the context of the 

food web in which they appear, and considering the structure of the resultant food 

web, leads to a more powerful prediction about the level of weed seed regulation. 

However I have also found instances where these coarse, binary food webs are not 

sensitive enough to be a useful biomonitoring tool; the freshwater food webs built in 

Chapter 3 were not sensitive enough to reveal consistent changes in community 

structure at each site over time, although we know from the species data that 

significant changes in the species assemblages, especially at the lower trophic levels, 

are apparent at many sites (Murphy et al. 2014). However when these food webs are 

augmented with information about the predicted biomass flows between nodes they 

reveal new insights into the apparent lag in biological recovery after the amelioration 

of acidification (Appendix A).  



Chapter 6 | Discussion 
 

Page | 122 
 

The food webs in Chapter 5 were built using mass and abundance data for each 

of the nodes. This additional information provided a deeper understanding of the 

effects of the pesticide on the substructure of the networks, the efficiency of energy 

transfer across the trophic levels, and the effects these changes had on ecosystem 

processing. Collecting data of this sort as part of routine biomonitoring would 

necessitate a greater workload, but this could be offset by the added value the data 

brings in terms of a deeper understanding of the dynamics of the community in 

question (Chapter 1; Gray et al. 2014). 

The key to fully realising the potential for ecological networks in biomonitoring 

science is to build networks which reflect the underlying changes in community 

dynamics which respond to environmental change. Chapter 2 (Gray et al. 2015b) 

clearly demonstrates that as the quality and quantity of the collection of trophic 

interactions increases, so too does the quality of the constructed food web. Hosting 

this dataset on an open access website 

(https://sites.google.com/site/foodwebsdatabase/), with an established mechanism 

for researchers to donate data should allow the quality and breadth of it to grow over 

time.  

An important step toward improving the quality of interaction datasets could 

be to assess the number of times a particular interaction appears in a particular 

dataset, as well as the number of times an interaction could have occurred but did not 

(i.e. species found at the same site but not found to interact). If a particular interaction 

has been observed many times across many systems, it is probably reasonable to 

assume it also occurs at other sites where those species co-exist.  However, if it has 

only been observed rarely, or at a site with very different characteristics than the one 

in question (for instance contrasting environmental conditions, or significantly 

different community assemblages) this assumption might not be so reasonable. 

Alongside this, the functional response of consumers to the abundance of their 

resources (Holling 1966), as well as the dependency of interaction strength on the 
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abundance of the consumer could be incorporated. As the volume of trophic 

information data continues to grow, the evaluation of the realism of predicted links 

will improve over time. 

With each passing year, methodological advancements are increasing the ease 

with which interactions between species can be characterised. A great number of 

published papers now use these methods to construct ecological networks or 

characterise interactions (e.g. Harper et al. 2005; Foltan et al. 2005; Navarro et al. 2010; 

Wilson et al. 2010; Clare et al. 2011; Newmaster et al. 2013). These advances also mean 

that biomonitoring data can be collected more quickly and cheaply (Gibson et al. 2015). 

Novel approaches to determining network structure are being developed all 

the time, for instance a machine leaning algorithm based on basic prior knowledge 

and some logical rules has been used to construct an agricultural invertebrate food 

web (Bohan et al. 2011b). With some alterations to the basic structure, it is possible that 

this algorithm could be applied to other suitable datasets. Bayesian approaches to 

predicting network structure has been used outside of ecology for many years (e.g. 

Heckerman, Geiger & Chickering 1995), researchers are now beginning to apply these 

methods to ecological datasets (e.g. de Sassi, Staniczenko & Tylianakis 2012). 

However, as is common in ecology, the widespread adoption of these new techniques 

is hindered by the quantity of suitable data available to develop these methods on. 

For instance, the method of Sassi et al. (2012) could be adapted to predict the strength 

of interactions in freshwater systems, but a detailed dataset of the biomass flow 

between freshwater consumers and resources, complete with body size and 

abundance information, is rare. 

Long term monitoring data could be very valuable in furthering our 

understanding of the realisation of and variability in strength of interactions between 

species. Just as species abundances can vary wildly from one year to the next, so too 

will the interactions between those species. Long term monitoring could help us to 

capture some of that variability, as well as understand the influences on that variation. 
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Long-term studies are rare, other than the Upland Waters Monitoring Network 

(UWMN; Kernan et al. 2010), classic examples include the work of Likens et al. (1977) 

at the Hubbard Brook Experimental Forest, and Slavik et al. (2004) at the Kuparuk 

River station of the Long-Term Ecological Research (LTER) network. Within the UK 

there is also the Environmental Change Network which has been running for more 

than 23 years. The UWMN recently changed its protocols such that biological samples 

are now stored in such a way that future molecular work, and in particular molecular 

identification of gut contents, is possible. The value of these datasets will increase 

progressively over time, as it is only with multiple decades of data that more subtle 

long-term trends, such as responses to climate change, are able to be detected. Despite 

the obvious value of long term monitoring data, it is often difficult to extract research 

funding for such strategic research, which often appears to fail to meet the “novelty” 

criteria of many research councils’ remits (Appendix D; Gray et al. 2015a). 

Large datasets are still relatively rare in ecological research, although this is 

beginning to change as more ‘Big Data’ approaches become available. Once ecological 

advances were limited by the labour-intensive methods by which empirical data was 

collected, and the resultant paucity of good quality datasets available for research. 

Now however, due to new technologies and advanced computing power the 

challenge for many researchers has shifted towards the ability to process the vast 

quantities of data that are being produced, and to interpret their ecological 

significance (Woodward et al. 2014). Furthermore, with large ecological datasets come 

additional challenges, such as sampling consistency or meta-data collection and 

curation  (Raffaelli et al. 2014). In particular, given a sufficiently large sample, a 

statistical test will almost always exhibit a significant difference, unless the effect size 

is exactly zero. Very small differences between samples, even if significant, may not 

be meaningful (Sullivan & Feinn 2012). Trends found in observation data may be 

slight, and accompanied by large variation, such as those found in Chapter 4, 

requiring a researcher to consider the effect size of the trend in question, and it’s 
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biological significance. Unlike significance tests, effect size is independent of and 

therefore not confounded by, sample size (Sullivan & Feinn 2012). One explanation 

for the small effect sizes seen in Chapter 4, is that 80% of the variation in this seed 

regulation data has already been ascribed to changes in the cropping regimes in the 

preceding years (Bohan et al. 2011c), although this is also likely to have an effect on 

the carabid assemblage and therefore the counts of herbivores at each site. As 

discussed in Chapter 4, often observational data is often best suited for the 

identification of trends in order to formulate formal hypotheses and design the 

accompanying experiments. 

Chapter 5 provides the opposite problem, that of small sample sizes. Here there 

was no true replication as all the experimental sites were along one river, and thus 

external forces affecting the whole river could not be controlled. Recovery of the 

impacted sites couldn’t be defined as change in the desired variable over time, but 

rather that the difference between control and impacted sites should eventually 

decrease to zero. This is related to a common problem in restoration ecology, that of 

‘shifting baselines’ (Pauly 1995), long term reference conditions may themselves be 

changing due to anthropogenic effects such as climate change (such as within the 

UWMN). In the short term, impacts such as other pollution incidents upstream of the 

control sites or changing weather will have affected the algal biomass or rate of 

decomposition along the river. Thus although decomposition rates at the impacted 

sites did not change over time (Figure 28), they can be considered recovered from the 

pesticide spill because the decomposition rates at the control sites did change over 

time (perhaps due to colder weather during September 2014 and March 2015), and 

became indistinguishable from the impacted sites. This perhaps counterintuitive 

result can be understood and interpreted correctly because multiple control and 

impacted sites were studied repeatedly over time. The ‘one reach at a time’ (Bernhardt 

et al. 2007)  approach to river restoration, where restorations tend to be ad-hoc and a 

combination of techniques unique to each site with little control or replication (Friberg 
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et al. 2011), inevitably suffers from this problem of small sample sizes, and leads to 

weak hypothesis testing and reduced predictive power. 

In addition to integrating ecological networks into biomonitoring approaches, 

incorporating a fully ecological and evolutionary perspective could also bring much 

added value (Appendix D; Gray et al. 2015a). Currently, the predictive capacity of 

traditional biomonitoring approaches is restricted and will have a limited ability to 

adapt in the face of rapid and global habitat modification and climate change. This 

approach alongside the incorporation of measures of ecosystem functioning and aided 

by new technologies such as novel molecular techniques, may facilitate the future 

development of a more comprehensive and effective biomonitoring framework.  
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Appendix A | The stability of the Upland Waters 

Monitoring Network food webs 

  



Appendix A | The stability of AWMN food webs 
 

Page | 137 
 

A.1 Introduction  

The relationship between complexity and stability in natural ecosystems has 

long been a central focus of ecological research (MacArthur 1955; Elton 1958; May 

1972; Yodzis 1981; Pimm 1984; McCann 2000). Initially it was suggested that diversity 

and complexity should stabilise food webs (MacArthur 1955; Elton 1958), as they 

increase the redundancy of nodes and links thus reducing the important of any one 

node or interaction. Early theoretical work by May (May 1972) contradicted this, and 

found that complexity increased instability. However, this work was done using 

randomly constructed food webs with interaction strengths sampled from a normal 

distribution, which is not what is observed in nature. In fact, Yodzis (1981) found that 

empirically constructed food webs were more stable than their random counterparts, 

suggesting that the distribution of interaction strengths could be crucial in 

determining the stability of natural systems.  

The structure and stability of freshwater food webs as they recover from 

acidification is an important avenue of research, as it is the ‘ecological inertial’ of these 

food webs which is a cited mechanism to explain their slow recovery from 

acidification. It has been suggested that acidified food webs are more stable and 

resistant the re-invasion of acid sensitive species and thus resists change as acidity 

ameliorates (see Chapter 3; Lundberg et al. 2000; Ledger & Hildrew 2005; Kernan et al. 

2010; Layer et al. 2010). In an attempt to address this hypothesis, I have assessed the 

structure of the UWMN food webs and variability of the communities across the pH 

gradient. To do this I first approximated the likely biomass flows across the food webs 

using allometric scaling relationships based on body mass (Tang et al. 2014). I then 

measured multiple network metrics and assess their relationship with hydrochemical 

stress (pH gradient).  

Turnover of species and links is the reciprocal of persistence (the time a 

community remains unchanged after a perturbation; Figure 0.A; Pimm 1984), a more 

persistent community is a more stable community. Bray-Curtis link turnover is 
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measured much the same as species turnover. Similarly, variation in species 

abundances is a similar mechanism, and often linked to community stability (e.g. 

Pimm 1984; Mellin et al. 2010). A community whose species abundances were highly 

variable overtime would be expected to be more unstable.  

 

 
Figure 0.A. Some aspects of community stability. After a perturbation, persistence refers to 
the time a variable lasts before it is changed to a new variable, resilience refers to the time it 
takes for a variable to return to equilibrium, and resistance refers to the degree to which a 
variable is changed. 

 

Recent advances allow the examination of network substructure. The 

substructural scale lies between that of an individual node and the whole network. 

The concept of a core/periphery structure (Figure 0.B) in social networks, whereby 

the structure of a network is governed by a highly interconnected core surrounded by 

a more loosely connected periphery, has been a major avenue of investigation in 

complex network research (Borgatti & Everett 2000; Csermely et al. 2013). Examination 

of the relative core size yields an insight into the flexibility and controllability (Csete 

& Doyle 2004; Liu, Slotine & Barabási 2011) of a variety of networks. Within a 
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biological context, a large core might indicate greater redundancy within the flows of 

a network, and therefore greater robustness to perturbations such as species loss 

(Appendix B). Thus, given that a greater core size might provide greater redundancy, 

it might also provide greater persistence and resistance (the degree to which a 

community is changed following a perturbation; Figure 0.A) to perturbations. The rich 

club coefficient measures the connectivity between nodes within the core (Zhou & 

Mondragon 2004), highly connected nodes within the core of networks heavily 

influence the functioning of that network, as has been demonstrated in the flow of 

rumours in social networks (Masuda & Konno 2006) or the transfer of information in 

the Internet (Zhou & Mondragón 2004). The high connectivity of the core of freshwater 

food webs have been found to buffer the food web from the effects of drought 

(Appendix B; Lu et al. in review). Experimental food webs exposed to drought 

conditions lose many species to extinction, they undergo major re-wiring within the 

core which maintains the overall core/periphery structure which in turn maintains 

the networks robustness to simulated species removal.  

 

 

Figure 0.B. An example network with a strong core/periphery structure. Core nodes (solid 
black) are both highly connected, and highly connected to one another (blue links). Peripheral 
nodes (empty black) are both weakly connected, and weakly connected to core nodes. 
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The robustness of a food web to species extinctions gives another measure of 

stability. If a system is able to withstand many species extinctions before cascading 

secondary extinctions occur then that system is deemed to be more robust and hence 

more stable. Species extinctions from a food web can be simulated by sequential 

targeted removal of species, the systems robustness is determined from the point at 

which the food web collapses (Dunne et al. 2002). 

The distribution of flows across a food web is theoretically linked to the 

stability of that system, and the presence of few strong and many weak interactions 

within a system has been suggested to have a stabilising effect (Kokkoris et al. 2002; 

Neutel et al. 2007), thus unstable systems might be expected to have a more even 

distribution of biomass flows. The distribution of flows through a network can be 

measures using Ulanomicz’s (2004) Mutual Information metric. 

Borrelli (2015) analysed the substructure of food webs, and found that some 

three-node motifs were more dynamically stable than others (tri-trophic chain, 

apparent competition and direct competition), and also found that these same motifs 

appeared in ecological networks more often than would be expected by chance. Thus, 

the occurrence of these three-node motifs might have a stabilising effect on food web 

structure. 

Here I investigate the hypothesis that, concurrent with previous theory and 

findings (Lundberg et al. 2000; Ledger & Hildrew 2005; Kernan et al. 2010; Layer et al. 

2010), acidified food webs will be more stable than non-acidified food webs.  

 

A.2 Methods 

A.2.1 Community matrix 

The Upland Waters Monitoring Network (UWMN) food webs from chapter 3 

were used in this analysis. The community matrix for each food webs was augmented 
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with estimates of biomass flow using metabolic scaling theory using the method of 

Tang et al. (2014). The off-diagonal entries in the community matrix M was 

parameterised using Holling’s type 1 functional response. The type I functional 

response is given by the classic Lotka-Volterra equations: 

 
𝑑𝑥𝑖

𝑑𝑡
=  𝑥𝑖 [𝑔𝑖(𝑥𝑖) −  ∑ 𝑎𝑖𝑗𝑥𝑖𝑗 +  ∑ 𝑒𝑖𝑗𝑎𝑖𝑗𝑥𝑘

𝑘∈𝑝𝑟𝑒𝑦(𝑖)𝑗∈𝑝𝑟𝑒𝑑(𝑖)

]  (1) 

 

Where 𝑥𝑖 is the biomass of species 𝑖, 𝑔𝑖 is a function depending on 𝑥𝑖 only, usually 

representing the growth of species 𝑖, determined by its reproduction and death rates. 

For any consumer-resource pair, 𝑎𝑖𝑗 is the search rate of consumer 𝑖 for its resource 𝑗. 

𝑒𝑖𝑗 is the conversion efficiency of resource into consumer biomass.  

Next, metabolic scaling theory (Peters 1986; Yodzis & Innes 1992; Brown et al. 2004; 

Reuman et al. 2008, 2009; Pawar et al. 2012; Rall et al. 2012) was used to find estimates 

for these parameters. 

A. Body size scaling for biomass 𝑥𝑖
∗: 

Body size information harvested from the literature (Brose et al. 2006; Gilljam et al. 

2011; Pawar et al. 2012; Ledger et al. 2012) as well as data collected as part of the River 

Kennet study (see Chapter 5) was used to ascribe an average body mass to each 

UWMN species. In some cases it was necessary to use a genus averaged value as no 

data at the species level could be found. Equation (2) was used to ascribe a biomass to 

each species: 

 𝑥𝑖
∗ = 10𝑥0+3𝛾+ε𝑖  ∙  𝑚𝑖

1+𝛾
 (2) 

 

Where 𝑚𝑖 is the body mass of species 𝑖 in kg. The parameter 𝛾 is the scaling exponent 
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for numerical abundance, typically taking values between −1.25 and −0.1, and taken 

here to be −0.675 (as in Tang et al. (2014)). The intercept parameter 𝑥0 is negative and 

was set to −1.16 for all webs (Cyr et al. 1977; Leaper & Raffaelli 1999). ε𝑖’s denote the 

residuals of the regression line, and were sampled from a Gaussian distribution with 

mean zero and standard deviation of 0.1 (as in Tang et al. (2014)). 

 

B. Body size scaling for mass-specific search rate, 𝑎𝑖𝑗: 

To find a mass specific search rate for each consumer 𝑖 and resource 𝑗 the results 

of (Pawar et al. (2012), as in Tang et al. (2014) were used: 

 𝑎𝑖𝑗 = 10𝑎0𝑚𝑖
𝛽𝑖𝑓(𝑘𝑖𝑗) (3) 

 

where 𝑎0 = −3.50 is a constant, 𝑚𝑖 is the body size of consumer 𝑖 (in kg), and 𝑘𝑖𝑗 =  
𝑚𝑗

𝑚𝑖
 

is the resource to consumer body size ratio. 𝑓(𝑘𝑖𝑗) =  
𝑘𝑖𝑗

0.46

1+𝑘𝑖𝑗
𝐾 is a function that quantifies 

the well-documented unimodal relationship between search and consumption rates 

and size ratios (see Tang et al. 2014). As in Tang et al. (2014) and based on previous 

results 𝐾 = 2. To account for uncertainty in the scaling relationship, the exponent 𝛽𝑖 

was sampled independently from a normal distribution with mean -0.15 and standard 

deviation 0.052 for each consumer 𝑖. 

C. Conversion efficiency 𝑒𝑖𝑗 

Conversion efficiency was assumed to be a uniformly distributed random variable 

within empirically feasible ranges (0.2 ± 0.1 for herbivores, and 0.5 ± 0.1 for 

carnivores). Tang et al. (2014) found their main results were insensitive to choice of 𝑒𝑖𝑗. 
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A.2.2 Measure of hydrochamical stress 

Principal Component Analysis (PCA) was performed on the water chemistry 

data of each site. The water chemistry variables used were yearly average pH (also 

yearly minimum), Acid Neutralising Capacity (also yearly minimum), alkalinity, H+, 

conductivity, NO3, Soluble Monomeric Aluminium, Soluble Non-Labile Monomeric 

Aluminium, Soluble Labile Monomeric Aluminium, Dissolved Organic Carbon, Na, 

Cl, SO4, PO4. Yearly mean (or minimum) values for these variables were centred to 

zero and scaled by their standard deviations, and sample scores on the first PC axis 

(PC1) extracted for use as a proxy for water chemical stress.  

The Euclidean distance in multivariate space between the first and last 

sampling year for each site was recoded as a proxy for the degree of change in 

hydrochemical variables over the course of monitoring (Figure 0.C).  

Each network metric was regressed against PC1, or the Euclidean distance for 

that site, and any trend assessed with Generalised Linear Mixed Effects models. For 

each model, site and year were used as random effects, but a range of random effects 

structures were investigated for each response variable, the best model was selected 

on the basis of AIC.  
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Figure 0.C. An example of two sites plotted in multivariate hydrochemical space. Old Lodge 
is located in the south of England, it was highly acidified in the 1980’s and has changed 
markedly in its acidity over the course of monitoring. Loch Coir nan Arr is located in the far 
north west of Scotland, was not considered acidified at the onset of monitoring and it’s pH 
has changed very little since then. 

 

A.2.3 Measures of stability 

A range of metrics were used to quantify the stability of these food webs over 

time and in relation to the degree of hydrochemical stress they were under. Link 

turnover across the collection of food webs was measured using Bray-Curtis 

dissimilarity in the vegan package (Oksanen et al. 2012). 
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The coefficient of variation in the relative abundance of each species over time 

at each site was calculated, and a mean value across all species recorded for each site. 

The core/periphery structure of each food web was measured, the core of a 

food web is defined as a cohesive compartment of the network where species are both 

highly connected and highly interconnected. This structure is then surrounded by a 

more loosely connected periphery. To find the core/periphery boundary nodes were 

ranked by their degree (number of links). A node with a rank 𝑟 has degree 𝑘𝑟. The 

number of links that this node shares with nodes of a higher rank is 𝑘𝑟
+. The core is 

defined by detecting a change of the behaviour of 𝑘𝑟
+ as a function of 𝑟, and the 

boundary of the core is defined by the node with rank 𝑟∗ where 𝑘𝑟∗
+ > 𝑘𝑟

+ for 𝑟 > 𝑟∗ 

(Borgatti & Everett 2000). The size of each food webs core, proportional to its total size 

was recoded.  

The density of connections within the core of each food web was measured 

using the Rich Club score (Ma & Mondragón 2015): 

 
∅𝑟 =

2

𝑟(𝑟 − 1)
∑ 𝑘𝑖

+ =  
2𝐸𝑟

𝑟(𝑟 − 1)

𝑟

𝑖=1

 (4) 

 

where 𝐸𝑟 is the number of links shared by the highest ranked r nodes and 𝑟(𝑟 −

1)/2 is the maximum number of possible links among these nodes. The connectivity 

of a core is given by ∅𝑟∗ whereby a fully connected core has a value of ∅𝑟∗ = 1 and a 

fully disconnected core gives ∅𝑟∗ = 0.  

The robustness of each network to simulated species loss was recoded using 

the method of Dunne et al. (2002), where by species were ordered by their degree, and 

sequentially removed from the network. Secondary extinctions occurred where 

consumers were left with no resources. The total number of primary extinctions 

required to cause network collapse (the loss of 50% of the food web), proportional to 
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total network size was recoded.   

In order to examine the distribution of flows, the Mutual Information (MI) of 

each food web was measured. MI measures the evenness of flows across a network, 

such that high values indicate a more uneven distribution of flows (Ulanowicz 2004): 

 
𝑀𝐼 = 𝑘 ∑ (

𝑇𝑗𝑖

𝑇. .
)  𝑙𝑜𝑔 (

𝑇𝑗𝑖𝑇. .

𝑇𝑗.𝑇.𝑖
)

𝑗,𝑖

 (5) 

where 𝑇𝑖𝑗 is the rate of the internal transfer from resource species 𝑗 to consumer species 

𝑖, and 𝑘 is a scalar constant. 

 The occurrence of certain motifs within each food web was examined. For each 

food web, 30 null networks was created using the Curveball algorithm (Strona et al. 

2014), which maintains the number of consumers and resources each node has, but 

randomises who those connections are with. The frequency of each of teh three motifs 

was measured in each of the 30 randomisations of each food web, and a z-score 

computed as follows: 

 
𝑧𝑖 =  

𝑋𝑖 − 𝑋�̅�

𝜎𝑙
 (6) 

 

Where 𝑋𝑖 is the frequency of the 𝑖th motif in each empirical food web, 𝑋�̅�  the 

mean frequency of the 𝑖th motif in the randomised networks, and 𝜎𝑙  the standard 

deviation. A z-score greater than or less than 0 indicates that the occurrence of that 

particular motif in the food web is greater than or less than what you would expect 

by chance. 
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A.3 Results 

The first PCA axis (PC1) corresponded closely with the acidity gradient across the 

UWMN sites, where high PC1 values refer to low pH and high aluminium 

concentrations (Figure 0.D).  

 

 

Figure 0.D. Ordination of hydochemical data. The first axis corresponds strongly to an acidity 
gradient, while the second axis is more related to Ca2+ and DOC concentrations. min.pH = 
minimum yearly pH, ave.pH = mean yearly pH, min.ANC = minimum annual ANC, ave.Alk 
= mean yearly alkalinity, ave.ANC = mean yearly ANC, ave.DOC = mean yearly DOC, ave.Ca 
= mean yearly Ca2+, ave.Na = mean yearly Na+, ave.Cl = mean annual Cl-, ave.Cond = mean 
annual conductivity, ave.PO4 = mean annual PO4, ave.SO4 = mean annual SO4, ave.Nl_Al = 
mean annual non-labile aluminium, ave.HION = mean annual H+, ave.NO3 = mean annual 
NO3, ave.Sol_Al = mean annual soluable aluminium, ave.L_Al = mean annual labile 
aluminium.  
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Link turnover between food webs of consecutive years was greater for stream 

food webs under greater hydrochemical stress, and was unaffected by hydrochemical 

stress at lake sites (Table 0.1, Figure 0.E). The link composition of stream food webs 

experienced greater turnover from one year to the next under greater hydrochemical 

stress. 

Table 0.1. Statistics of fit for the multiple linear models. All mixed effects models include site 
and year as random effects (see main text for details). PC1 and PC2 refers to site scores taken 
from the first and second axis of the PCA performed on hydrochemical data (Figure 0.D). 

Response  
variable 

Predictor variable 
& interactions 

d.f. F-value P-value 

Mixed effects models 

Link turnover PC1 1 29.669 <0.0001 
PC2 1 24.551 <0.0001 

 type 1 127.765 <0.0001 
 PC2 * type 1 19.691 <0.0001 

Core size PC1 
type 

1 
1 

19.67 
37.94 

<0.0001 
<0.0001 

Rich club score PC1 
PC2 

1 
1 

11.44 
11.53 

0.0039 
0.0029 

Robustness PC1 
type 

1 
1 

22.31 
38.26 

<0.0001 
<0.0001 

Log(Mutual Information) PC1 1 72.07 <0.0001 

Linear models     

Coefficient of variation  
(species abundance) 

Euclidean distance 1 7.38 0.0129 
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Figure 0.E. Link turnover increases with hydrochemical stress at stream sites (blue), and is 
unchanged at lake sites (red). Lines give the fit of the mixed effects model (see Table 0.1). 
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Species relative abundances was more variable over time at those sites which 

had experienced the most change in their hydrochemistry (Figure 0.F). One site stood 

apart from the general relationship, Loch Coire Fionnaraich had the lowest variability 

in species abundances, but had also been monitored for fewest years, only 10 whilst 

for the other sites the mean ± s.e.m. was 19.64 ± 0.80 years. 

 

Figure 0.F. The mean coeficient of variation (CV) in individual species relative abundances 
for each site is greater at those sites who’s hydrochemistry had changed the most over the 
course of monitoring (the euclidean distance in multivariatye space between the first and 
years of monitoring for each site). The line gives the fit of the linear model (see Table 0.1). Blue 
= stream sites, red = lake sites. 
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The relative core size was greater in food webs under less hydrochemical stress 

(Figure 0.G). Acidified food webs had smaller cores, this relationship was the same 

for both streams and lakes, although stream food webs had larger cores than lake food 

webs.  

 

Figure 0.G. The size of the food web cores (relative to the whole network size) varies with 
hydrochemical stress. Those food webs under more hydrochemical stress have smaller cores. 
Lines give the fit of the mixed effects model (see Table 0.1). Blue = stream sites, red = lake 
sites. 
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The density of connections within the core of each food web, as measured by 

the rich club coefficient, was higher in those food webs which were under greater 

hydrochemical stress (Figure 0.H). As acidity increased, so too did the density of 

connections within the cores of the food webs, this relationship was found to be the 

same for streams and lakes. 

 

Figure 0.H. The density of connections within the core of each food web was higher for those 
food webs under greater hydrochemical stress. Line give the fit of the mixed effects model 
(see Table 0.1). Blue = stream sites, red = lake sites. 
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The robustness of food webs to the simulated removal of high degree nodes 

was lower for those which were under more hydrochemical stress (Figure 0.I). This 

relationship was found to be the same for lakes and streams, although lake food 

webs were less robust than stream food webs. 

 

Figure 0.I. The robustness of each food web to simulated species removal was lower for those 
food webs under higher hydochemical stress. Lines give the fit of the mixed effects model (see 
Table 0.1). Blue = stream sites, red = lake sites. 
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The distribution of flows across the food webs was affected by the 

hydrochemistry at that site, biomass flows were more evenly distributed in those food 

webs which were under greater hydrochemical stress (Figure 0.J). As acidity 

decreased the distribution of flows became more uneven, as reflected in a higher 

mutual information score. This was found to be the same for lake and stream sites. 

 

Figure 0.J. The mutual information was lower in food webs that were under higher 
hydrochemical stress. The distribution of flows was more even in food webs which were 
under more hydrochemical stress. Lines give the fit of the mixed effects models (see Table 
0.1). Blue = stream sites, red = lake sites. 
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All food webs, at all sites in all years were found to have a higher occurrence 

of motifs associated with dynamic stability (tri-trophic chain, apparent competition 

and direct competition) than would be expected by chance (Figure 0.K, Figure 0.L). 

This was not related to the level of acidity the food web was exposed to.  

 

Figure 0.K. The z-scores for the occurrence of three three-node motifs at each stream site. s1 
= tri-trophic chain, s4 = apparent competition, s5 = direct competition. Boxplots represent the 
median and interquartile range of the z-scores, one z-scores for each food web over the course 
on monitoring. 
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Figure 0.L. The z-scores for the occurrence of three three-node motifs at each lake site. s1 = tri-
trophic chain, s4 = apparent competition, s5 = direct competition. Boxplots represent the 
median and interquartile range of the z-scores, one z-scores for each food web over the course 
on monitoring. 
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A.4 Discussion 

Contrary to our hypothesis, in general food webs were found to be less stable 

under acidified conditions. Acidified food webs were found to have greater link 

turnover (stream food webs only), smaller cores, were less robust to simulated species 

removal and had more even distribution of biomass flows. Those sites which had 

changed their hydrochemistry the most over the monitoring period also experienced 

the greatest variability in species relative abundance. The only stability measure 

which increased with acidity was the density of connections within the core (Rich-

club coefficient), here acidified food webs had a more densely connected core, which 

may have a stabilising effect. There was no evidence of a relationship between the 

occurrence of stabilising motifs and the hydrochemical stress of a food web. 

These results contrast with previous work (Lundberg et al. 2000; Ledger & 

Hildrew 2005; Kernan et al. 2010; Layer et al. 2010). It is possible that acidified and non-

acidified food webs show different characteristics of stability, for instance acidified 

food webs might be more persistent and resist the invasion of acid sensitive species, 

while at the same time be less robust to species loss. The persistence and resilience of 

these food webs, would be better understood using controlled experiments, where the 

perturbation strength (and type, i.e. press or pulse perturbation) can be manipulated, 

and the persistence and recovery time could be measured. Additionally, although the 

metrics used here should be independent of network size, as they are measured 

proportional to total network size, it would be useful to demonstrate this conclusively 

using null-model simulations. 
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B.1 Summary  

Droughts are intensifying across the globe (Hartmann et al. 2013; Kendon et al. 

2013), with potentially devastating implications for fresh water ecosystems (Milly et 

al. 2005; Vorosmarty et al. 2010). We used novel network science approaches to 

investigate drought impacts on stream food webs and explored potential 

consequences for web robustness to future perturbations. The substructure of the 

webs was characterised by a core of richly-connected species (Ma & Mondragón 2015) 

surrounded by poorly-connected peripheral species. Drought caused the partial 

collapse of the food webs (Ledger et al. 2012) but loss of the most extinction-prone 

peripheral species triggered a substantial rewiring of interactions within the food web 

cores. These shifts in species interactions in the core conserved the underlying 

core/periphery substructure and stability of the drought-impacted webs. When we 

perturbed the webs by simulating species loss in silico, the rewired drought webs 

exhibited comparable robustness to the larger, undisturbed webs. Our research 

unearths previously unknown compensatory dynamics arising from within the core 

that can underpin food web stability in the face of environmental perturbations.  
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B.2 Main text 

Many areas of the world are becoming more prone to drought (Hartmann et al. 

2013; Kendon et al. 2013) and declining precipitation coupled with increasing demand 

for water could threaten the integrity of freshwater ecosystems across the globe (Milly 

et al. 2005; Vorosmarty et al. 2010). In rivers and streams, the elimination of sensitive 

species could potentially undermine food web structure and functioning (Closs & 

Lake 1994; Lake 2003; Lytle & Poff 2004), yet how this affects their stability - at both 

substructural and whole-network levels (Woodward et al. 2012) has yet to be fully 

elucidated. Responses to climate change are frequently interpreted autecologically, 

through analysis of individual species traits (McKee & Atkinson 2000) but these 

provide no information on alterations of species functional attributes and conceal 

potential compensatory behavioural mechanisms, such as resource switching. 

Synecological approaches that can address changing species interactions in the 

context of the whole food web (Tylianakis et al. 2007; Petchey et al. 2010; Woodward 

et al. 2010), and hence the potential trophic mechanisms behind community-level 

responses (Ebenman & Jonsson 2005; Borrvall & Ebenman 2008), remain scarce. In 

addition, there are non-random substructures in food webs which could underpin 

their responses to climate-induced perturbations (Garlaschelli et al. 2003). Emerging 

network science has linked the presence of a cohesive “core” of closely interacting 

nodes and a loosely connected “periphery”(Borgatti & Everett 2000; Csete & Doyle 

2004; Csermely et al. 2013; Ma & Mondragón 2015) to the stability of complex (non-

ecological) networks (Derényi et al. 2004; Brede 2010). The significance of this for food-

web responses to an environmental perturbation - drought - is reported here for the 

first time.  

The network “core” is a cohesive group of highly connected nodes that governs 

the functional attributes of a wide range of complex systems (Borgatti & Everett 2000). 

It determines system robustness because densely intertwined pathways within the 

substructure can provide redundancy by buffering external fluctuations (Borgatti & 
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Everett 2000; Csermely et al. 2013) without altering functioning (Kitano 2004); such 

structures are absent from less robust, regular small-world networks (Thompson et al. 

2012). Core-size relative to the rest of the web indicates a network’s state (Derényi et 

al. 2004; Csete & Doyle 2004; Brede 2010): large cores provide greater scope for 

redundancy of links and rewiring in the event of node and link failure, whilst small 

cores indicate vulnerability and systems being under stress.   

Here, we quantify experimentally how drought disturbance influences stream 

food web substructure and model how this then determines robustness to future 

perturbations. We analysed food webs from a stream mesocosm experiment in which 

benthic communities subjected to a drought treatment for two years were compared 

with undisturbed controls (four replicates; eight food webs in total; see Methods). 

Food webs were constructed from gut contents analysis of all 3,643 individuals 

collected at the end of the experiment. These exceptionally well-resolved webs 

encompassed 783 pairwise trophic interactions among 74 trophic elements, consisting 

of detrital resources, primary producers and a taxonomically diverse array of 

invertebrate consumers (Table S1). Ecological communities consist of coexisting taxa 

and species extinction can trigger rippling effects due to their interdependency; as a 

result, community fragility to disturbance can be influenced by structural properties, 

such as the distribution of trophic interactions (Ebenman & Jonsson 2005; Borrvall & 

Ebenman 2008). We hypothesised that the food webs were governed by a 

core/periphery structure, as detected recently in a range of non-ecological networks 

(Csete & Doyle 2004; Csermely et al. 2013; Ma & Mondragón 2015). Highly connected 

core species are functionally important because they provide alternative routes for the 

flux of matter and may therefore buffer the effects of perturbations and enhance 

stability in food webs. Peripheral species are less integral to the ecosystem in 

topological sense, and changes in the food web composition and configuration will 

likely lead to isolation (i.e. extinction) of these species, similar to previous 

observations in mutualistic networks (Burgos et al. 2007). Specialist consumers from 
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the web periphery will be especially vulnerable to extinction because they are more 

loosely connected and dependent on fewer resource species. Redundancy in the links 

within the core could, in theory, provide a means of withstanding the effect of species 

loss and rebalancing the structure of food webs, thereby conserving overall 

robustness.  

To test our hypotheses, we applied a novel graph profiling technique (Ma & 

Mondragón 2015) to characterise the cores of our eight highly-resolved food webs 

(Ledger et al. 2011a; Woodward et al. 2012). To generate a graph profile for a web, 

nodes were ranked by their degree (number of links). Starting from the highest degree 

node, we examined the interconnectedness among the high degree nodes as those of 

a lower rank were included sequentially. A point is reached whereby the connectivity 

among the high degree nodes peaks, reflecting the cohesiveness in the core and 

defining the core boundary followed by generally decreasing connectedness 

thereafter. The rest of the nodes form the periphery, which is only loosely connected 

to the core, and contains few or no links among its constituents. We then measured 

the density of interactions within the core and across the web using the “rich-club” 

coefficient (Zhou & Mondragon 2004). To gauge the level of organisation in the 

core/periphery structure between the drought and control treatments, we employed 

an ensemble of null networks, whereby links were reshuffled randomly while 

conserving network properties (Maslov et al. 2004). Graph profiles obtained from the 

null models represent network structures that would simply happen by chance, and 

they were used to benchmark the link patterns of the empirical webs. The further an 

empirical web deviates from its null models (i.e. a z-score greater or less than 0), the 

more significant, in statistical terms, its link patterns, which also indicates the level of 

organisation that has taken place to generate the observed pattern. To examine the 

effectiveness of the compensatory mechanism provided by the core, we studied 

network robustness by measuring the rate at which the structural integrity of food 

webs collapsed (Dunne et al. 2002) under two commonly simulated species removal 
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scenarios: i) random removal and ii) targeted removal of core species (i.e. high degree 

species).    

All eight food webs exhibited a clear core/periphery structure (Figure B.A), here 

evidenced by a distinct peak in their core profiles and a step-change in 

interconnectedness from high to low degree species (indicated by a vertical line in 

Figure B.A, at which the number of links 𝑘𝑟
+ is at its maximum, and after which it 

decreases steadily). The food web cores contained species from all trophic levels 

(Figure B.A) and accounted for (on average) 50% of the species. The proportion of core 

species was unchanged by drought (t-test on arcsine transformed proportion data, 

d.f.=3, p=0.16; Table B.1), despite absolute species losses of 25%. Core size was large 

relative to non-ecological networks (5-30% of total network size (Csermely et al. 2013; 

Ma & Mondragón 2015)), indicating that natural systems may possess far greater 

linkage redundancy. Species extinction was greatest in the periphery (one tailed t-test 

on arcsine transformed proportion data, d.f.=3, p=0.01; Table B.1), and as expected, 

species that fell into this category were mainly invertebrate consumers high in the 

food chain which lost all their resources. Drought caused more species in the core to 

migrate into the periphery of the web via a reshuffling of interactions, than vice versa 

(one tailed t-test test on arcsine transformed proportion data, d.f.=3, p=0.01, Table B.1 

and Figure B.B). Despite this drought-induced realignment of species, the 

preservation of the core/periphery structure (Figure B.B) and its relative size is 

suggestive of underlying inertia within the webs’ substructure.  
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Figure B.A. Core/periphery structure of control and drought food webs. Comparisons of one 
block of control and drought core profiles. Nodes are ranked by their decreasing order of 
degree and plotted by the number of links with nodes of a higher rank, 𝑘𝑟

+. The control web 
(dark thick line) is plotted alongside its respective drought web (light thin line). Species were 
classified as Basal (circles), Intermediate (squares) or Top (triangles). The maximum of the curve 
𝑘𝑟∗

+ , defines the boundary of the core for the control (dark thick line) and drought (light thin 
line) webs.  

 

Table B.1. Statistics from two independent samples t-tests. The effects of drought on the 
relative core size and robustness were tested using one-tailed t-test on arcsine transformed 
data. Two-tailed t-test on arcsine transformed data was applied to examine if peripheral 
species are more likely than core species to go extinct, and if more core species than periphery 
species realigned after drought. Significant differences are indicated in bold. 

 df p  df p 

Relative core size 3 0.16 
More extinction from 
periphery 

3 0.01 

Robustness 
(random) 

3 0.89 
More species realigned 
from core 

3 0.01 

Robustness 
(targeted) 

3 0.17 
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Figure B.B. Drought caused species re-alignment in substructures. Comparisons of one 
block of control (a) and drought (b) food web structures. Core species in the inner ring are 
surrounded by periphery species in the outer ring. In this web pair, drought caused 15 species 
to go extinct (filled diamonds) and 11 core species to shift to the periphery (light circles). 

 

Drought reduced the density of connections within the core (Figure B.Ca), as 

shown by lower rich-club coefficients, 𝜙𝑟. This phenomenon in non-ecological 

networks is a common response to stress (Derényi et al. 2004; Brede 2010), and in our 

case was a result of compensatory re-wiring as core species moved into the periphery: 

the density of connections in the periphery was unaffected by drought despite 

peripheral species loss. All webs showed a marked deviation in connectivity from 

their respective null models within their cores, revealing a systematic, non-random 

substructure (Figure B.Cb). Drought resulted in a greater decrease in the z-score 

within the core: i.e., link density inside was significantly lower than what would be 

expected by chance, suggesting even more intense organisation had taken place in 

response to the drought. This pronounced change in the core supports our hypothesis 
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about its governing role in the re-structuring of food webs under this stressor.    

 

 

Figure B.C. Drought reduced the link density in the core and caused further restructuring 
in the core. (a) The density of connections across the network measured by the rich-club 
coefficient, 𝜙𝑟, is shown for one block of control (dark thick line) and drought-disturbed (light 
thin line) mesocosms. Nodes were ordered by their degree which were then normalised by the 
size of the network. Boundaries of the cores are marked by vertical lines as in Figure B.A (b) 
Comparisons of the web pair’s deviance in connection density from their respective null 
models and more negative z-scores indicate greater deviance from the null model. 

 

Food webs were robust to simulated random species removal, and this was 

unaffected by drought: the amount of primary extinction required for 50% species loss 

was comparable in both treatments (t-test on arcsine transformed proportion data, 

d.f.=3, p=0.89; Table B.1). This can be explained by the conservation of the overall 

core/periphery structure and relative core size. As the loss of peripheral species 

would have skewed the probability of a core species being chosen under random 

removal in drought webs, the realignments of species from the core to the periphery 

rebalanced the overall network structure, conferring the same degree of resistance 

towards these perturbations. When more highly connected species were removed 

first, drought webs were as robust to species removal as control webs (t-test on arcsine 
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transformed proportion data, d.f.=3, p=0.17; Table B.1). This suggests that although 

the density of connections within the core was altered by drought, overall network 

integrity and ability to withstand further perturbations was conserved by species re-

alignment. It is conceivable that a threshold core connectance may exist, beyond which 

this redundancy is lost and the associated food web collapses, echoing ideas suggested 

by Dunne et al. (2002) and Krause et al. (2003). Identifying this threshold would allow 

us to better predict which communities are most at risk from environmental change. 

Our results demonstrate that drought disturbance triggered previously unknown 

substructural changes within real food webs, beyond the direct and obvious species 

losses that have been reported elsewhere when based on fixed autecological traits 

(Ledger et al. 2012; Woodward et al. 2012). While the underlying core/periphery 

structure was robust to perturbations, the composition and configuration of the food 

web substructures changed markedly, with a steep reduction in interactions among 

the remaining core species. The ability to predict which networks of species 

interactions are most vulnerable to anthropogenic pressures, and the identification of 

a core of species vital to the functioning and persistence of a community within an 

ecosystem, would greatly enhance our ability to direct conservation efforts more 

effectively in the face of environmental perturbations (Ebenman & Jonsson 2005; 

Borrvall & Ebenman 2008). Traditional network metrics were far less sensitive (Ledger 

et al. 2012) than the novel measures applied in this study, and therefore less useful for 

gauging changes in food webs exposed to perturbations. Substructural approaches 

that capture the plastic synecological traits defined by species interactions can help to 

unearth compensatory shifts within ecological networks, and provide us with a major 

new way to detect and understand the effects of environmental change on ecological 

communities.  



Appendix B | Drought rewires the cores of food webs 
 

Page | 171 
 

B.3 Methods 

B.3.1 Experimental design.  

Details of the experimental design and methods used to build the food webs 

are published elsewhere (Woodward et al. 2012; Ledger et al. 2013). To summarise the 

experiment ran for two years (March 2000-February 2002) in outdoor stream 

mesocosms that consisted of four pairs of channels subjected to either control or 

drought conditions. All channels were subject to two months of constant flow before 

a drought treatment (6 days of dewatering per month) was applied to one channel per 

pair. During the simulated drying periods, surface flows ceased and drying of 

exposed substrata occurred in patches, whereas the interstices beneath the bed surface 

remained wet, and small pools persisted at intervals along the length of the dewatered 

channels (Lancaster & Ledger 2015). Surfaces of exposed substrata dried at natural 

ambient rates such that the stress experienced by organisms stranded in the 

mesocosms was consistent with those in adjacent drying stream reaches (Harris 2006). 

This experimental design simulated periodic drying events occurring during a supra-

seasonal drought. Stream drying events have occurred during major droughts in 

Europe (Parry et al. 2012) and are expected to increase in frequency with climate 

change (Beniston et al. 2007). As with all mesocosm experiments, our design 

necessitated some trade-off between realism and replication (Ledger et al. 2008, 

2011b). The simulated flows may adequately capture the expected changes in the 

magnitude and frequency of drying in rivers under climate change but do not 

necessarily reflect the expected changes in seasonality of these events. At the end of 

the experiment all invertebrates were collected and identified and gut content analysis 

was performed: all individuals and their gut contents were identified to genus or 

species level, where possible. The resultant eight food webs are among the most 

highly resolved to date, comprising 783 pairwise trophic interactions and 74 trophic 

elements in the aggregate web. Comparison of the control channel food webs to data 

collected for 82 ‘natural’ river food webs showed the mesocosm channels contained 
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realistic webs, with consistent and similar size structures suggesting that patterns of 

energy flux between mesocosm consumers and resources were good analogues of 

those in natural systems (Brown et al. 2011). Species were categorised into three 

trophic levels: Basal (B), Intermediate (I) and Top (T). A basal species was defined as 

a species with no prey; a top-level species was referred to as a species with no 

predators; and the rest were defined as intermediate species. 

B.3.2 Food web profiling.  

The core profiling method identifies a substructure of highly interconnected 

species by ordering species with respect to the number of connections to other species 

and the extent to which those connections link to more highly connected species in the 

web (Ma & Mondragón 2015). Highly interconnected species constitute the web core, 

with less-connected nodes forming the periphery. Each food web was represented as 

a binary and undirected network with 𝑆 nodes (species) and 𝐸 links (the interaction 

between species). To obtain a core profile, nodes were ordered in descending order of 

their degree (i.e. number of links) and a node with a rank 𝑟 has degree 𝑘𝑟. The number 

of links that a node shares with nodes of a higher rank is 𝑘𝑟
+ and the number of links 

with nodes of a lower rank is therefore 𝑘𝑟 − 𝑘𝑟
+. Starting with the node with the highest 

rank, the value of 𝑘𝑟
+ fluctuates as nodes from further down the rank are being 

included. There will be a point 𝑟∗ where 𝑘𝑟
+ reaches its maximum and will always be 

less than 𝑘𝑟∗
+  thereafter, marking the boundary of the core. To quantify the density of 

links inside the core, the rich-club coefficient (Zhou & Mondragon 2004) was 

calculated, which is defined as:  

𝜙𝑟 =  
2

𝑟(𝑟 − 1)
∑ 𝑘𝑖

+

𝑟

𝑖=1

=  
2𝐸𝑟

𝑟(𝑟 − 1)
 

where 𝐸𝑟 is the number of links shared by the highest ranked r nodes and 𝑟(𝑟 − 1)/2 

is the maximum number of possible links among these nodes. The connectivity of a 

core is given by 𝜙𝑟∗ whereby a fully connected core has a value of 𝜙𝑟∗= 1 and a fully 

disconnected core gives 𝜙𝑟∗= 0. Given that drought webs contain fewer species than 
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their control counterparts, results could have been skewed by their reduced web size 

if their absolute values were used: to overcome this the species rank was normalised 

by the overall web size.  

B.3.3 Null model.  

A statistical null model was used to determine the probability of the 

connectivity observed in the empirical data. For each empirical food web, we applied 

a randomisation method (Maslov et al. 2004) to generate an ensemble of 100 networks 

by randomly reshuffling the links while conserving the properties of the empirical 

network, including the number of nodes, the number of links and the degree 

distribution. This allows us to assess the statistical significance of the patterns of 

interactions observed in the empirical webs with respect to patterns that would simply 

occur by chance. To quantify how the link density in the core differs from the random 

networks, we first referred the rich-club coefficient of the empirical food web and 

compared that to its null counterpart by calculating the z-score. A z-score of 0 means 

that the empirical data exhibits an organisation of links that is the same as what you 

would expect from a random case; a value > 0 means that the empirical has a higher 

than expected density of links, and vice-versa. This effectively describes the degree of 

organisation of species interactions in the sense that the more improbable a 

configuration of links is, the more organisation is required to be in place to attain the 

observed pattern. Again, the rank of species was normalised to compensate for the 

effect of different web sizes when comparing the control and drought food web pairs. 

B.3.4 Network robustness.  

To assess this, we simulated primary species loss in all the food webs by 

manually removing species (Dunne et al. 2002). Firstly, species were chosen randomly 

and removed from the food web, together with all their associated links, in an iterative 

manner. We recorded the total species at each step, which accounts for both primary 

loss and secondary extinction (as a result of species isolation from resource). 

Robustness was quantified by the amount of primary extinction required for a total 



Appendix B | Drought rewires the cores of food webs 
 

Page | 174 
 

loss of 50% of the species. We repeated this for 100 times for each web and results were 

averaged. Secondly, species were removed in the descending order of degree which 

is often considered as the worst case scenario as the most important (connected) nodes 

are being targeted. Similarly, species were removed in an iterative manner, but the 

degree order of nodes was re-calculated after each species removal as removing a 

node and its links may impact on the degree order among the rest of the nodes. Again, 

robustness was evaluated by the total primary extinction required for a cumulative 

50% species loss. 
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Appendix C | Gene-to-ecosystem impacts of a 

catastrophic pesticide spill: testing a multilevel 

bioassessment approach in a river ecosystem1 

C. Dummy heading 

  

  

1 Thompson, M.S.A., Bankier, C., Bell, T., Dumbrell, A.J., Gray, C., Ledger, M.E., Lehman, K., 

McKew, B.A., Sayer, C.D., Shelley, F., Trimmer, M., Warren, S.L. & Woodward, G. (2015). 

Gene-to-ecosystem impacts of a catastrophic pesticide spill: testing a multilevel bioassessment 

approach in a river ecosystem. Freshwater Biology. 
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C.1 Summary  

1. Pesticides can have strong deleterious impacts in fresh waters, but understanding 

how these effects cascade through natural ecosystems, from microbes to apex 

predators, is limited because research that spans multiple levels of biological 

organisation is rare. 

2. We report how an accidental insecticide spill altered the structure and functioning 

of a river across levels ranging from genes to ecosystems. We quantified the impacts 

on assemblages of microbes, diatoms, invertebrates and fish and measured leaf-litter 

decomposition rates and microbial functional potential at upstream control and 

downstream impacted sites two months after the spill.  

3. Both direct and indirect impacts were evident across multiple levels of organisation 

and taxa, from the base of the food web to higher trophic levels. At the molecular level, 

differences in functional gene abundance within the impacted sites reflected a 

combination of direct and indirect effects of the pesticide, via elevated microbial 

populations capable of utilising chlorpyrifos as a resource (i.e. direct effect) and 

oxidising ammonia released by decaying invertebrate carcasses (i.e. indirect effect).   

4. At the base of the food chains, diatom taxa found only in the impacted sites were 

an order-of-magnitude larger in cell-size than the largest comparable taxa in control 

communities, following the near-extirpation of their consumers. Population biomass 

of the key detritivore Gammarus pulex was markedly lower, as was the rate of litter 

decomposition in the impacted sites. This was partially compensated for, however, by 

elevated microbial breakdown, suggesting another indirect food-web effect of the 

toxic spill.  

5. Although many species exhibited population crashes or local extirpation, total 

macroinvertebrate biomass and abundance were largely unaffected due to a 

compensatory elevation in small tolerant taxa such as oligochaetes, and/or taxa which 

were in their adult terrestrial life-stage at the time of the spill meaning they avoided 
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contact with the polluted waters (e.g. chironomids). Mass-abundance scaling of 

trophic links between consumers and resources revealed extensive restructuring 

within the food web. 

6. This case study shows that pesticides can affect food-web structure and ecosystem 

functioning, both directly and indirectly across levels of biological organisation. It also 

demonstrates how an integrated assessment approach, as adopted here, can elucidate 

links between micro-biota, macroinvertebrates and fish, for instance, thus improving 

our understanding of the range of biological consequences of chemical contamination 

in natural ecosystems. 

 

C.2 Introduction 

Freshwaters are exposed to multiple pesticides and other toxic chemicals at 

local to global scales (Schinegger et al. 2011; Beketov et al. 2013; Stehle & Schulz 2015). 

Ecotoxicological experiments in the laboratory have revealed with great accuracy and 

precision how these can affect the survival of target species (e.g. G. pulex; Xuereb et al. 

2007), and community- and ecosystem-level responses have been demonstrated in 

micro- and mesocosm experiments (e.g. Van den Brink et al. 1995; Van Wijngaarden et 

al. 1996; Traas et al. 2004; Halstead et al. 2014) and field surveys (Chung, Wallace & 

Grubaugh 1993; Triebskorn et al. 2003; Malaj et al. 2014). In the last decade, new indices 

of community response have been proposed specifically to detect pesticide pollution 

(e.g. Liess & Ohe 2005; Schäfer et al. 2007; Liess, Schäfer & Schriever 2008) and to link 

community change to toxicants in the field (e.g. Kefford et al. 2010).  

Despite these advances, a mechanistic understanding of both the toxic effects 

of pesticides (i.e. direct) and those mediated via the food web (i.e. indirect) across 

multiple levels of biological organisation (i.e. from genes to ecosystems) is still limited 

in natural settings (Kohler & Triebskorn 2013). This is likely because there are 

relatively few opportunities to understand how pesticides affect whole rivers or lakes, 
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due to the logistical, ethical, and legal difficulties in conducting such a study in a 

controlled manner. Here, we address this research gap by quantifying the gene-to-

ecosystem consequences of a major pesticide spill that caused widespread kills of 

invertebrates over 15 km in a large lowland river by combining citizen science 

biomonitoring data with a suite of non-traditional measures of ecosystem impact.  

Invertebrate data were collected by citizen scientists prior to, during and after 

the spill enabling before-after-control-impact (BACI) assessment. These data enabled 

the UK Environment Agency to identify chlorpyrifos as the cause of the catastrophic 

mortality following the spill. Chlorpyrifos is a widely used organophosphate pesticide 

(insecticide and acaricide) which attacks insect (and arachnid) nervous systems. Since 

insects are core intermediate species in almost all stream food webs, perturbations to 

their populations have potential to ripple through the entire food web, as bottom-up 

effects on the fish assemblage and top-down effects on the microbial communities that 

drive a range of biogeochemical processes. Specifically, chlorpyrifos can affect 

microbial, invertebrate and fish populations, both directly and indirectly (see reviews 

by Barron & Woodburn 1995; Brock, Lahr & Van den Brink 2000; Giddings et al. 2014), 

food-web structure (Traas et al. 2004) and can suppress invertebrate-mediated litter 

breakdown (Maltby & Hills 2008). Placing the potentially subtle effects of pesticides 

within a coherent multilevel framework requires a combination of structural and 

functional measures from the microbial community at the base of the food web to apex 

predators. This has been partially achieved in some studies using mesocosms (e.g. Van 

den Brink et al. 1995; Van Wijngaarden et al. 1996; Kersting & Van den Brink 1997; 

Halstead et al. 2014), but rarely in natural settings (Kohler & Triebskorn 2013), and 

never in a manner that simultaneously captures molecular-level responses through to 

the full complexity of the food web in the same system.  

Here we present data that reveal how chlorpyrifos affected the structure and 

functioning of the river food web, based on several complementary approaches 

including the abundance of targeted functional genes, those responsible for the 
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degradation of chlorpyrifos (Kwak et al. 2012), for example, measures of microbial and 

invertebrate resource use and “trivariate analysis” (sensu Cohen et al. 2009). This 

collection of measures across multiple levels of organisation provides a vital bridge 

between field and laboratory-based findings and highlights the advantages of using a 

holistic approach to understand chemical stressor impacts in natural ecosystems.  

We test the following hypotheses: 

The structure (assessed using the abundance of functional gene loci) and functional 

capacity of the microbial assemblage will change due to direct effects (i.e. the pesticide 

provides an additional substrate) and indirect effects (i.e. increased organic substrates 

are derived from decaying invertebrates) of the pesticide.  

Compensatory mechanisms will be evident in the food web in the aftermath of the 

spill, with less pesticide-sensitive, small, opportunistic, vagile, and fast-growing taxa 

(e.g. chironomids) higher in abundance and/or biomass in the absence of larger, slow-

growing taxa (e.g. Gammarus pulex), relative to control communities. 

Leaf litter breakdown will be impaired by the loss of key detritivores, with microbial 

activity hence accounting for a greater proportion of total litter breakdown. 

The food web will undergo extensive restructuring, particularly in terms of altered 

mass-abundance scaling relationships of the links between nodes. Local extirpations 

of intermediate species (e.g. herbivorous insects) will release basal species under top-

down control (e.g. benthic algae) while suppressing bottom-up fluxes to higher 

trophic levels (e.g. fish). 
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C.3 Methods 

C.3.1 Study site 

The River Kennet is a lowland chalk tributary (catchment area 1200 km2) of the 

River Thames in southern England, designated as a UK Site of Special Scientific 

Interest (SSSI). The river is groundwater-dominated, has hard water and is nutrient-

rich (Figure C.A; Table C.1). Its diverse fauna is dominated by Gammaridae, Baetidae, 

Ephemerellidae, Simuliidae and Chironomidae, which support an economically 

important salmonid game fishery (Wright et al. 2002; 2004).  

On 1 July 2013, following their routine biomonitoring, a citizen-science group 

(Action for the River Kennet, ARK) reported a large-scale invertebrate kill along a 15-

km stretch of the river. On 2 July 2013, an Environment Agency pollution incident 

team collected the first samples for, and detected, the organophosphate chlorpyrifos. 

This insecticide attacks the nervous system of insects by inhibiting 

acetylcholinesterase, and can be toxic to fish and meiofauna (Carr, Ho & Chambers 

1997; DeLorenzo, Scott & Ross 1999). Concentrations of of 0.52-0.82µg L-l were 

recorded coming from the main tertiary sewage treatment works in Marlborough, 

Wiltshire, on 2 and 5 July, respectively (Figure C.A), probably resulting from a “down-

the-drain” incident. The peak concentration was most likely missed by the sampling 

team, but even the measured concentration is sufficient to be acutely toxic to 

arthropods (Giddings et al. 2014), particularly over extended periods (i.e. >24 hours; 

Rubach, Crum & Van den Brink 2011). Chlorpyrifos was also detected at 

concentrations between 0.06-0.07 µg L-l across the impacted study site on 5 July. By 9 

July 2013 the pesticide was undetectable, indicating that a single pulse was received 

and remained in the water column for a few days.  
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Figure C.A. River Kennet (UK) with study sites A-C (upward pointing triangles = control) 
and D-F (downward pointing triangles = impacted). Data for sites A, C, D and F (filled 
triangles) are presented here. Monitoring data for aquatic macroinvertebrates were collected 
by citizen scientists upstream (i.e. control site) at Stonebridge Lane and downstream at Elcot 
Mill (i.e. impacted site) of Marlborough sewage treatment works, where the pesticide entered 
the river. 

 

Table C.1. Locations of upstream control and downstream impacted sites as well as of water 
chemistry monitoring stations of the Environment Agency (EA). Mean and range, in brackets, 
of annual water chemistry concentrations from Environment Agency monitoring data are 
shown from sites located between control and impacted reaches. Oxidised nitrogen (oxidised 
N) is the sum of nitrate (NO3-) and nitrite (NO2-).  

Site Condition Latitude, Longitude 

A Control 51°4170'N, 1°7536'W 
EA Control Control 51°4235'N, 1°7165'W 
C Control 51°4227'N, 1°6982'W 
D Impacted 51°4227'N, 1°6982'W 
EA Impact Impacted 51°4170'N, 1°7536'W 
F Impacted 51°4163'N, 1°7325'W 

Water chemistry EA Control EA Impacted 

Alkalinity (mg L-1) 250 (187-262) 243 (189-254) 

Conductivity (µS cm-1) 626 (449-738) 609 (492-686) 

Oxidised N (mg L-1) 6.6 (4.4-7.5) 6.8 (4.4-7.6) 
Dissolved oxygen (mg L-1) 9.0 (6.9-10.0) 9.6 (6.9-10.9) 
Temperature (°C) 11.0 (5.7-14.4) 11.1 (5.7-14.5) 
pH  7.6 (7.4-7.8) 7.9 (7.4-8.1) 
Ortho-phosphate (mg L-1) 0.08 (0.02-0.36) 0.08 (0.02-0.34) 

 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 185 
 

C.3.2 Contribution of citizen scientists  

Citizen scientists from ARK were trained by the Riverfly Partnership to collect 

and identify aquatic macroinvertebrates and had collected data for multiple sites for 

several years prior to and following the spill (Fig. S1). During the current study, they 

collected one monthly kick sample (3-minutes duration) from an upstream control 

and downstream impacted site (Figure C.A). A standard hand net (1-mm mesh) was 

used following the Riverfly Monitoring Initiative standard protocol 

(http://www.riverflies.org). The invertebrates collected were identified live on the 

bank, without magnification, and abundance ranked per sample as: 0 = 0 individuals; 

1-9 = 1; 10-99 = 2; 100-1000 = 3; >1000 = 4, for eight key groups: 1. Cased Trichoptera; 

2. caseless Trichoptera; 3. Ephemeridae; 4. Ephemerellidae; 5. Heptageniidae; 6. 

Baetidae; 7. Plectoptera; 8. Gammaridae, which were summed to give a total score 

based on the number and diversity of the target taxa. These data provide a critical 

BACI element to the study, enabling us to track the impact of the spill through both 

space and time. 

Mean annual water chemistry data were obtained for Environment Agency 

monitoring stations located 2.3 km upstream and 2.7 km downstream from the spill 

and were similar across the study site (Table C.1). These water chemistry data, 

combined with the ARK monitoring data of macroinvertebrates, showed no evidence 

of organic pollution from the sewage treatment works, indicating that sewage was an 

unlikely cause of the invertebrate mortality event (Fig. S1).  

 

C.3.3 Sampling protocol 

Comprehensive biological sampling began in September 2013, as soon as 

possible after the chlorpyrifos spill had been identified as the causal agent, using an 

experimental design comprising three upstream control and three downstream 

impacted reaches, each 50m long, along a c. 6km river stretch (Figure C.A). Sites were 

c. 1km apart, with similar channel forms and riparian surroundings. Here we present 
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data from two control and two impacted reaches (Figure C.A) for a suite of structural 

and functional indicators to test a multilevel bioassessment approach. Three sediment 

samples, a stone scrape, three Surber samples and depletion electrofishing were used 

to characterise microbial, diatom, macroinvertebrate and fish structural attributes, 

respectively. At each site, 10 fine- (0.5mm) and 10 coarse-mesh (10mm) leaf-litter bags 

were used to determine rates of decomposition driven by microbes alone or by whole 

communities. In addition, a sample of river water was collected and incubated with a 

range of substrates to assess microbial functional capacity.   

  

C.3.4 Microbial functional gene abundance 

We used quantitative PCR (qPCR) to examine gene abundance for microbial 

functional and taxonomic marker genes. 16S rRNA gene abundance was used as a 

proxy for total bacterial abundance. Direct effects of the chlorpyrifos spill were 

examined using the organophosphate hydrolase gene (opd), which is responsible for 

the degradation of chlorpyrifos by bacteria; bacterial populations containing this gene 

have previously been demonstrated to increase in abundance at sites impacted by 

organophosphate (Kwak et al. 2012). Indirect effects were examined by quantifying 

the abundance of genes coding for enzymes involved in N-cycling: nitrite reductase 

(nirS) and ammonia monoxygenase (amoA) from ammonia-oxidising archaea (AOA) 

and bacteria (AOB) as these are most likely to reflect decomposition of dead 

arthropods in impacted sites. We hypothesised that decomposition of dead 

arthropods would result in an increased input of NH4+ from ammonification of 

organic N. We focused on nirS and amoA genes as both nitrification and denitrification 

pathways are important in removing N from systems and can be coupled when 

denitrifies reduce the NO3- produced by the nitrifiers that oxidised NH4+. By focusing 

on functions of a range of populations, a change across all populations combined 

provides an indicator for community-level effects of chlorpyrifos on river microbes. 

Full details of DNA isolation, primer details and qPCR cycling conditions are available 
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in the Microbial Functional Gene Abundance section in the Supplementary Material. 

 

C.3.5 Microbial functional potential 

Open-water samples were collected from each site and returned to the 

laboratory in an ice-chilled cooler. Samples were allowed to settle (>10 min), after 

which a 100-µL aliquot was pipetted into each well of a Biolog EcoPlate, which 

contained a single carbon substrate, including carbohydrates, polymers, fatty acids 

and amino acids. Each well also contained the redox dye tetrazolium, which is 

reduced during microbial respiration, resulting in a measurable colour change. Each 

EcoPlate contains 31 substrates plus a no-substrate control in triplicate. Plates were 

incubated in the dark at 22°C for 5 days, after which colour change was quantified by 

measuring optical density at 600 nm using a Biotek HT absorbance reader (Biotek, 

Swindon, UK). For each EcoPlate, we calculated the substrate usage by subtracting the 

mean of the three no-substrate controls from each measurement. Usage was ranked 

across the substrates in each replicate, and the ranked optical densities were plotted 

to visualise broad changes across sites. 

 

C.3.6 Population abundance, community structure and food web size-scaling 

Quantitative depletion electrofishing was undertaken, with population 

densities estimated using the R package FSA (Ogle 2012) and iterative Maximum 

Weighted Likelihood statistics (equation S1 and S2 in Supplementary Material; after 

Carle & Strub 1978). All fishes caught were identified to species and measured by fork 

length. For each species, individual dry mass was calculated from length using length-

mass regression equations generated from a sub-sample (see equations S1 and S2 in 

Supplementary Material).  

Invertebrates were collected (n = 3 samples per site) using a Surber sampler 
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(0.0625 m2, 335 µm mesh), preserved in 99.8% ethanol, and later sorted from debris, 

identified to the highest possible taxonomic resolution (usually species), and counted 

(Table S1). Dry masses of invertebrates were determined from regressions of linear 

dimensions using published equations (see Table S2); a subset of 60 individuals were 

measured per species per site, or every individual where abundance was below 60. 

We distinguished between arthropods (i.e. insect larvae and Crustacea) and other taxa 

(i.e. Tricladida, Annelida and Mollusca) based on their sensitivity to chlorpyrifos 

(Raven & George 1989; Giddings et al. 2014). 

Diatoms were scraped from 8.64 cm2 of the upper surface of one cobble at each 

site using a 3.6 by 2.4 cm photographic slide as a flexible quadrat and toothbrush, 

preserved using Lugol’s iodine, and prepared using standard methods (Battarbee et 

al. 2001). A minimum of 300 diatom valves were identified to species per sample using 

the keys of Krammer & Bertalot (1986), Krammer et al. (1986), Krammer & Lange-

Bertalot (1991a b) and abundances per unit area were determined as in Battarbee 

(1973). Linear dimensions were measured to the nearest 1µm to estimate diatom 

biovolume (Table S3; Hillebrand et al. 1999). The first 30 specimens of all common (n 

>30) species were measured and where species were encountered less frequently, all 

specimens in the count were measured. Carbon content was estimated (Rocha & 

Duncan 1985) and then converted to dry mass (Sicko-Goad, Schelske & Stoermer 

1984). 

We used these mass-abundance data from across the different taxa and trophic 

levels to construct whole-community 'trivariate food webs' - food webs ordinated by 

overlaying feeding links on the bivariate relationship between species mean body 

mass and their numerical abundance on a double logarithmic scale - to understand 

how chlorpyrifos alters food-web structure. Deviations in MN among species pairwise 

links can be used to identify alterations to biomass fluxes in the food web. For instance, 

altered consumer-resource feeding “link angles” can reveal rates of change in 

biomass, population production and population consumption between species-pairs, 
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through to the food web as a whole (sensu Cohen et al. 2009), and these changes can 

help us to interpret direct and indirect effects of chlorpyrifos.  

Trivariate webs were constructed for all sites. Feeding links were inferred from 

trophic interactions published in the literature (Table S4). We assumed that if a trophic 

interaction between two species has been reported in the literature and those same 

species were present at one of our sites, then that trophic interaction also occurred, as 

has been validated in other stream food webs (Layer et al. 2010; Layer, Hildrew & 

Woodward 2013).. In a few instances, feeding links were assigned on the basis of 

taxonomic similarity. For example, if a link had been established from the literature 

for at least one congener it was assumed that different species within the same genus 

fed upon the same resources and were consumed by the same consumers. It was 

necessary to extend this assumption to the family level in some instances where 

information in the primary literature was scarce (Table S5). This minimises bias 

between nodes where the quantity of directly observed information varies and allows 

the method to be reproduced exactly (Gray et al. 2014).  

 

C.3.7 Ecosystem functioning: leaf-litter decomposition 

At each site, the decomposition rate of leaf-litter was determined from leaf-

packs containing 3.0 g (±0.3 g SD) black alder (Alnus glutinosa) incubated in the river 

for 9 days. Coarse (150 mm by 100 mm, 10mm mesh) and fine (150 mm by 100 mm, 

500 µm mesh) mesh-aperture bags were used to determine the fraction of 

decomposition contributed by microbes (mass loss from fine mesh bags) and 

invertebrates (difference in mass loss from coarse and fine mesh bags). Leaf 

breakdown rates were expressed as the exponential decay rate coefficient, k (see 

equation S3; Woodward et al. 2012). 
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C.3.8 Data analysis 

Trivariate statistics were calculated using the method of Cohen et al (2009) in 

the R package Cheddar (Hudson et al. 2012). We used link angles to estimate changes 

in potential biomass flux between a resource and its consumer. In summary, a link can 

be viewed as a vector from a resource to its consumer and, considering that 

invertebrate taxa abundance and/or mass is predicted to decrease at impacted sites, a 

change in the angle of invertebrate upper- and lower-links would indicate a potential 

change in biomass flux (Figure C.B). 

 
 

 

Figure C.B. (a) Location of consumers sensitive to pesticides (Cs) and less sensitive to 
pesticides (Cl) in relation to the consumer resources (R) and predators (P) as viewed on a 
double-logarithmic scale of body mass versus abundance. (b) Changes within the food web 
following pesticide exposure can be assessed by using link angles as a proxy for changes in 
potential biomass flux within the food web: a predicted decrease in Cs MN following pesticide 
exposure and an increase in R MN due to the release from top-down consumer control can be 
assessed using the Cs link angles in relation to Cl and control data; a decrease in Cs lower-
link angles would indicate a potential reduction in biomass flux between R-Cs; an increase in 
Cs upper-link angle could indicate hysteresis within the network whereby P is yet to be 
impacted by the loss of Cs, or that P has increased reliance on other resources, or a 
combination of the two. 

 

Linear mixed effect models (LMM) were used to test for differences in mean 

annual water quality, with treatment and date as fixed and random factors, 

respectively. Differences in biotic response variables (link angles, species and 
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community abundance and/or biomass, gene abundances and microbial capacity) 

between treatments were tested using LMM with site and treatment as random and 

fixed factors, respectively. Where necessary a variance structure was used to account 

for unequal variance between sites in order to meet model assumptions (after Zuur et 

al. 2009). If data were not normally distributed they were Log10 transformed to meet 

the assumptions of the test. All LMM were performed using the nlme package in R 

(Pinheiro et al. 2011) and estimates were made using restricted maximum likelihood 

or, when testing for differences in group means (e.g. invertebrate communities within 

and between treatments), using general linear hypotheses tests in the R package 

multcomp (Hothorn et al. 2014). 

 

C.4 Results 

C.4.1 Macroinvertebrate monitoring by citizen scientists 

Within control sites, G. pulex had the highest relative abundance (61%), 

followed by Baetidae (17%), Ephemerellidae (12%), cased Trichoptera (9%) and 

Plecoptera (1%). The macroinvertebrate assemblage in the three months prior to the 

spill was similar but following the spill on July 1st 2013, there was a 99.5% reduction 

in total abundance from the previous month (Figure C.C). By September, total 

abundance had increased again, but was dominated by Ephemeroptera instead of G. 

pulex, the latter being the slowest taxa to recover, as recorded by the citizen scientists. 

When the citizen science macroinvertebrate data and Environment Agency water 

quality data were combined there was no evidence to suggest that nutrient pollution 

was the cause of the macroinvertebrate mortality event (results are presented in the 

Supplementary Material). 
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Figure C.C. Top: Aquatic macroinvertebrate monitoring data collected by citizen scientists 
show macroinvertebrate scores before and after the toxic spill (red arrows), based on total 
abundance of the target taxa. The red line represents an Environment Agency threshold for 
substantial ecological degradation. Bottom: abundance of key taxa in relation to scores 
collected from an upstream control at Stonebridge Lane and a downstream impacted site at 
Elcot Mill (see Figure C.A). 
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Figure C.D. Vertical arrows indicate notable differences between ecological data from control sites A and C and from impacted sites D and F 
two months after the toxic spill. (a) Molecular results from microbial qPCR assays targeting the (α) 16S rRNA (microbial abundance), (β) nirS 
(nitrite reductase) (γ) amoA (ammonia monooxygenase) AOB (ammonia oxidising bacteria), (δ) amoA (ammonia monooxygenase) AOA 
(ammonia oxidising archaea), (ε) opd (organophosphorus hydrolase) genes. (b) Ecoplate microbial functional potential on 31 carbon substrates 
(x-axis) and their usage (y-axis; measured as optical density at 600 nm after 5 days of incubation at 22 °C as defined in the Methods) (c) Biomass 
of macroinvertebrates (light shading) and a keystone detritivore, Gammarus pulex (dark shading), and leaf-litter breakdown rates by all consumers 
(light shading) and microbes only (dark shading); error bars represent standard error (d) Trivariate mass-abundance food webs: green circles = 
algae (large species found only in the impacted sites highlighted), yellow symbols = arthropods (decreased relative to controls), blue symbols = 
other macroinvertebrates, black filled diamond = G. pulex, black open diamond = Baetis, pink symbols = fishes.  
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C.4.2 Microbial functional gene abundance and functional potential 

Analyses of gene abundances revealed that ammonia oxidisers (amoA), 

particularly AOBs, were up to 30-fold higher (t2 = 4.99; p = 0.03), and populations 

capable of utilising organophosphate (oph) as a resource were up to 7-fold higher in 

impacted sites compared with control sites (Figure C.Da; t2 = 6.14; p = 0.02). The 

elevation in the abundance of these populations suggests both direct (i.e. microbes 

utilised the insecticide as a resource) and indirect effects (i.e. microbes utilised 

ammonia released by decaying invertebrates) of chlorpyrifos. However, there was no 

significant difference in the total abundance of bacteria, nor of the abundance of nitrite 

reducers or AOAs (Figure C.Da).  

The functional microbial assays showed impacted sites had higher overall 

substrate usage and a shallower rank abundance curve, indicating substantial 

functional changes in response to the spill. Mean overall carbon usage in the impacted 

sites differed from that in the control sites (Figure C.Db; t2 = 4.2, p = 0.05), with lower 

mean substrate usage in the latter. Differences among control and impacted sites 

suggested elevated rates of substrate usage of simple carbohydrates (e.g. glucose-1-

phosphate, t2 = 4.4, p = 0.05; α-D-lactose, t2 = 7.7, p = 0.02) and amino acids in the 

impacted sites, with little difference in the usage of complex polymers (e.g. Tween 40).  

 

C.4.3 Macroinvertebrate community structure and ecosystem functioning 

Total macroinvertebrate biomass and abundance did not significantly differ 

between the control and impacted sites (t2 = -1.43; p = 0.29; t2 = -2.11; p = 0.17). 

However, arthropod biomass was 92.9% lower in impacted sites than arthropod 

biomass in control sites and 80.4% lower than biomass of less pesticide-sensitive taxa 

in impacted sites (  
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Table C.2; Figure C.E). In addition, the biomass of macroinvertebrate taxa 

considered less sensitive to pesticides was 97.2% lower than that of the sensitive 

arthropods in control sites (Table C.2), thus the former were partly compensating for 

the loss of the latter within impacted sites. G. pulex biomass (99.6%) and abundance 

(99.2%) and Baetis biomass (18.7%) and abundance were lower (95.6%; Figure C.Dc; 

Figure C.Dd), but chironomid biomass (89.3%) and abundance (92.2%) and 

oligochaete biomass (85.4%) and abundance was higher in impacted sites compared 

to control sites (94.5%; Figure C.E; Table C.2). Macroinvertebrate diversity was similar 

between control and impacted sites (t2 = -0.39; p = 0.74), as was also true for fish 

diversity (Table C.3), whereas four taxa of large diatoms (Cymatopleura solea, 

Cymatopleura elliptica, Gyrosigma attenuatum and Surirella caproni) were present only in 

the impacted sites (Figure C.Dd). Microbial decomposition was higher, whereas total 

decomposition mediated by both microbes and detritivores was lower, in the 

impacted sites (Table C.2; Figure C.Dc), probably reflecting the decline of G. pulex and 

partial compensation by increased microbial activity. 
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Table C.2. General linear model tests of the biomass (mg) and abundance of arthropods and 
other macroinvertebrates (Tricladida, Annelida and Mollusca, which are considered to be less 
sensitive to chlorpyrifos than arthropods) per sample; Baetis, Gammarus pulex (i.e. K-selected 
taxa), chironomid and oligochaete (i.e. r-selected taxa) biomass and abundance; arthropod-
resource and other-resource trivariate lower link angles, Baetis and G. pulex upper-link angles 
and both total and microbial leaf-litter breakdown rate between control (C) and impacted (I) 
sites. Significant p values (<0.05) are highlighted in bold.  

Log10 (biomass +1) Estimate Std. Error z value p 

C:arthropods - C:other 1.62 0.09 17.53 <0.001 

I:arthropods - I:other -0.73 0.12 6.00 <0.001 

C:arthropods - I:arthropods 1.17 0.23 5.19 <0.001 

C:other - I:other -1.17 0.25 -4.73 <0.001 

Log10 (abundance +1)         

C:arthropods - C:other 1.28 0.19 6.82 <0.001 

I:arthropods - I:other -0.05 0.19 0.25 0.99 

C:arthropods - I:arthropods 0.56 0.24 2.37 0.06 

C:other - I:other -0.76 0.24 -3.23 0.005 

Log10 (biomass +1)         

C:Baetis - I:Baetis 0.62 0.16 4.00 <0.001 

C:G. pulex - I:G. pulex 2.30 0.15 15.82 <0.001 

C:chironomids - I:chironomids -0.93 0.15 -6.38 <0.001 

C:oligochaetes - I:oligochaetes -0.81 0.15 -5.49 <0.001 

Log10 (abundance +1)         

C:Baetis - I:Baetis 1.21 0.24 4.98 <0.001 

C:G. pulex - I:G. pulex 2.31 0.22 10.63 <0.001 

C:chironomids - I:chironomids -1.14 0.22 -5.24 <0.001 

C:oligochaetes - I:oligochaetes -1.12 0.23 -4.92 <0.001 

Invertebrate-resource lower-link angles 

C:arthropods - C:other -0.08 0.02 -3.8 <0.001 

I:arthropods - I:other 0.2 0.02 10.35 <0.001 

C:arthropods - I:arthropods -0.32 0.24 -1.36 0.44 

C:other - I:other -0.04 0.24 -0.18 >0.99 

Baetis and G. pulex upper-link angles 

C:Baetis – I:Baetis -103.71 24.3 -4.27 <0.001 

C:G. pulex – I:G. pulex -62.8 25.73 -2.44 0.03 

Leaf litter decomposition (k)         

I:total - C:total -0.05 0.01 -6.57 <0.001 

I:microbial - C:microbial 0.01 0.002 5.75 <0.001 
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Figure C.E. Macroinvertebrate mean biomass (per sample with standard error) at control and 
impacted sites in the River Kennet. 

 

 

C.4.4 Trivariate analysis 

Arthropod lower-link angles were less negative (i.e. shallower) than less 

pesticide-sensitive taxa in the control communities, but more negative (i.e. steeper) 

within the impacted communities (Table C.2). This indicates altered mass-abundance 

scaling relationships of the links between nodes (Figure C.B). G. pulex and Baetis had 
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the highest biomass and numerical abundance within the control macroinvertebrate 

community, respectively (Figure C.Dc, Figure C.Dd), and these species upper-link 

angles (i.e. to their predators) became shallower at impacted sites (Table C.2), thus 

indicating a potential decrease in biomass flux to fishes from both the detritivore and 

herbivore food chains. To illustrate the direction of biomass flux through the food web 

and the connection of a key species to all other taxa via relatively direct and short 

paths, we constructed an example food chain with G. pulex as the focal species (Figure 

C.F), which showed that even in this complex food web most species are only 1-2 links 

from all the others, highlighting the potential for perturbations to ripple rapidly 

through the network. More commonly used whole-network metrics, such as the 

regression slope and intercept, showed no clear differences that could be ascribed to 

the pesticide spill (Table C.3).  
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Figure C.F. Aggregated network for the River Kennet food web, highlighting an exemplar 
food chain from the basal resource to the apex predator; a = coarse particulate organic matter 
(e.g. leaf litter), b = Gammarus pulex, c = brown trout, Salmo trutta, d = Eurasian otter, Lutra 
lutra. The two concentric circles of nodes represent the shortest food web distances to or from 
G. pulex – those in the inner circle are a single link removed from G. pulex, those in the outer 
circle are separated by two links in the shortest path. Here, all species are at most 2 links away 
from G. pulex, although longer food chains are present in the network, as shown by a-b-c-d. 
Symbols for nodes represent different trophic elements: green circles represent producers, 
blue squares: macroinvertebrates, purple diamonds: vertebrate ectotherms, red triangles: 
endotherms, black circles: abiotic resources. Light blue and light purple circles represent 
cannibalistic nodes of invertebrates and vertebrate ectotherms, respectively. 
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Table C.3. Properties of the trivariate food webs at control and impacted stream sites. 

Property 

Site A Site C Site D Site F 

Control Control Impacted Impacted 

Number of nodes 68 60 64 73 
Number of fish species 4 4 5 3 
Number of macroinvertebrate 
taxa 35 23 20 32 
Number of diatom taxa 29 33 39 38 

Number of links 837 635 739 1060 
Linkage density 11.96 10.41 11.37 14.13 
Directed connectance 0.17 0.17 0.17 0.19 
Trivariate regression slope -0.98 -0.67 -0.92 -0.95 
Trivariate regression intercept 1.29 1.26 1.58 1.35 
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C.5 Discussion 

The documented insecticide spill in the River Kennet affected multiple 

organisational levels, from individual genes, through to food web structure and an 

ecosystem process. The location of pesticide-sensitive macroinvertebrate consumers 

relative to their resources in MN space shifted markedly, and the collapse in the 

population of a previously dominant keystone detritivore, G. pulex, was especially 

notable. This was associated with dramatically impaired rates of detritivore-mediated 

litter decomposition, with potential repercussions for the higher trophic levels. In this 

highly interconnected food web (Figure C.F) perturbations could potentially not only 

easily propagate through species interactions, but could also dissipate effectively. 

These properties could confer resilience on the system as a whole, as alternative 

feeding paths provide relatively direct “short-circuits” in the food web (Figure C.F). 

Various compensatory mechanisms and hystereses within the food web were evident 

following the spill, including elevated microbial decomposer activity in the absence 

of invertebrate detritivores (Figure C.Dc) and irruptions and growth of less pesticide-

sensitive and r-selected taxa capable of exploiting new resources (Figure C.E). The 

functional potential of the microbial assemblage in particular was higher in the 

impacted sites, as was the abundance of genes associated with organophosphate use 

and ammonia oxidation in the aftermath of widespread arthropod deaths (Figure 

C.Da; Figure C.Db). Extended temporal sampling will likely reveal if the sewage 

treatment work is potentially confounding our interpretation of this result, although 

there is no suggestion this is the case, as water quality is essentially identical above 

and below the works (Fig. S1).  

Microbial biodiversity accounts for most of a river’s biodiversity, drives key 

ecosystem processes and biogeochemical cycles (e.g. nitrogen cycle) and interacts with 

higher trophic levels. Our qPCR assays revealed that the abundance of genes 

associated with the turnover of organophosphate and ammonia was higher in 

polluted sediment, revealing both direct and indirect effects of the spill on microbial 
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activities. 

Strong links between changes in the structure and functioning of the microbial 

and invertebrate community were evident, as revealed by the changes in 

decomposition rates associated with these two major biotic drivers (Gessner & 

Chauvet 2002; Schäfer et al. 2007). The microbial community played a key role in 

maintaining litter decomposition following the invertebrate losses, and microbial 

functional potential assessed by Ecoplate assays was also elevated at the impacted 

sites.  The large-scale mortality of invertebrates was likely to have released resources 

readily available for microbial use, promoting the proliferation of fast-growing 

bacteria able to use a broad range of substrates. Additional data from more extended 

sampling will eventually help us to better understand the temporal dynamics of the 

recovery process, by providing deeper insights into the baseline variability. Even in 

the current absence of such additional data, our results clearly underline the potential 

of microbial bioindicators for assessing direct and indirect responses of river 

ecosystems to environmental impacts.  

Employing a highly resolved network-based perspective provided further 

insights into both direct and indirect effects of the perturbation - from genes to species 

and from food webs to the ecosystem as a whole - as we were able to connect structural 

and functional indicators across different levels of biological organisation, as well as 

improving understanding of the associated responses. For instance, G. pulex and Baetis 

represented key nodes in the major detritivore and herbivore food chains, 

respectively, as is the case in many lowland running waters (Woodward et al. 2008; 

Layer et al. 2010), and both populations collapsed in the impacted sites. Our broad 

multilevel approach revealed how the loss of consumers could result in the release of 

their resources (or potential competitors), and also how major conduits of energy and 

biomass flux to the species at the top of the food web, including ecologically important 

and economically valuable fish species, such as trout, could be compromised.   

Microcosm and mesocosm experiments have described ecosystem-level 
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responses to, and recovery from, combined pesticide and nutrient additions (Traas et 

al. 2004; Halstead et al. 2014), and observational field-based research has demonstrated 

that recovery of the invertebrate community and leaf-litter decomposition was related 

to aerial mobility of repopulating taxa (Chung et al. 1993). Our study represents a 

novel approach, integrating a broad range of assessment metrics at multiple levels and 

this has helped us to better understand the effects of a pesticide spill in a natural 

setting. The same approach is also more widely applicable to assessments of effects 

caused by other stressors, such as acidification and eutrophication, where interactions 

within food webs can shape both the ecosystem impact and the rate and trajectory of 

recovery (e.g. Ledger & Hildrew 2005; Layer et al. 2010; Rawcliffe et al. 2010). Thus, 

such an approach offers a way to move beyond partial taxonomic or trait-based views 

to one that explicitly incorporates species interactions in food webs and ecosystem 

processes in river bioassessment (Gray et al. 2014). 

Our study also highlights the value of citizen science in biomonitoring and 

bioassessment, as it enabled us to place the detailed data specifically and intensively 

collected after the toxic spill in the context of a wide before-and-after-control-and-

impact (BACI) -style “natural experiment”, which would have otherwise been 

impossible to employ in the search for causal relationships. Mobile Ephemeroptera 

(Baetis and Ephemerellidae, both active swimmers with an aerial adult that coincided 

with the pollution) repopulated the river more quickly than G. pulex (Figure C.C), as 

did the often opportunistic chironomid species and less sensitive non-arthropod taxa 

such as oligochaetes (Figure C.E). These responses echo those of small r-selected taxa 

preceding the recovery of larger K-selected species in previous studies on pesticide 

contamination  (Chung et al. 1993; Liess & Schulz 1999; Beketov et al. 2008).  

It has been hypothesised that ecological inertia can operate within freshwater 

food webs, creating ‘community closure’ or  recovery trajectories that are not simple 

reversals of impacts (e.g. Ledger & Hildrew 2005; Layer et al. 2011; Layer, Hildrew & 

Woodward 2013). Impacts on key nodes can alter important aspects of food-web 
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structure and associated processes, such that although the latter might operate at 

similar rates, they may be driven by microbes and r-selected taxa instead of K-selected 

taxa, as has been reported in response to pesticide contamination (Chung et al. 1993) 

and other stressors (Hladyz et al. 2011). Our initial data demonstrate that, while the R. 

Kennet’s ecological structure and functioning were significantly altered by the toxic 

spill, there were many alternative nodes and links within the food web that could help 

confer some level of resilience even in the face of catastrophic population losses. 

Future work will require well co-ordinated laboratory and field investigations 

based on matching methodologies to improve understanding of the links between 

microbiota and larger organisms before, if ever, one can be used as a proxy for the 

other (e.g. Triebskorn et al. 2003). Nonetheless, our study represents a proof-of-

concept as to how vastly different metrics might be linked and, as more data are 

generated over time, potential time × treatment interactions can also be more 

thoroughly explored. Additional metrics based on, for instance, next-generation 

sequencing (e.g. Rosi-Marshall et al. 2013) or measures of whole-ecosystem respiration 

(e.g. Young, Matthaei & Townsend 2008), could be incorporated to capture the extent 

of impacts and recovery trajectories more fully.  

Although covering only part of the spectrum of responses reported here, other 

multimetric bioassessments have yielded comparable results, including how 

pesticides can indirectly release prey species from predation (Papst & Boyer 1980), 

constrain consumer populations through loss of resources (Brazner & Kline 1990), 

affect the structure and functioning of aquatic communities in mesocosms (Downing 

et al. 2008; Relyea 2008; Halstead et al. 2014) or alter the structure and functioning of 

natural stream communities (Chung et al. 1993; Schäfer et al. 2007). Results from 

correlational studies also suggest that changes at multiple trophic levels may be 

related to organic chemical contaminants (mostly pesticides) at the continental scale 

(Malaj et al. 2014). Despite this and the worldwide use of, and projected increase in, 

pesticides, studies of their effects at the ecosystem-level are rare in natural settings 
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(Kohler & Triebskorn 2013). The present study contributes to bridging this gap. 

 

C.6 References 

Barron M.G. & Woodburn K.B. (1995) Ecotoxicology of chlorpyrifos. Reviews of 

Environmental Contamination and Toxicology 144, 1–93. 

Battarbee R.W. (1973) A new method for the estimation of absolute microfossil 

numbers, with reference especially to diatoms. Limnology and Oceanography 18, 

647–652. 

Battarbee R.W., Jones V.J., Flower R.J. & Cameron N.G. (2001) Diatoms. In: Tracking 

Environmental Change Using Lake Sediments. Vol. 3: Terrestrial, Algal, and 

Siliceous Indicators (Eds Smol J.P., Birks H.J.B., & Last W.M.) pp. 155–202. 

Kluwer Academic Publishers, Dordrecht. 

Beketov M.A., Kefford B.J., Schäfer R.B. & Liess M. (2013) Pesticides reduce regional 

biodiversity of stream invertebrates. Proceedings of the National Academy of 

Sciences of the United States of America 110, 11039–11043. 

Beketov M.A., Schäfer R.B., Marwitz A., Paschke A. & Liess M. (2008) Long-term 

stream invertebrate community alterations induced by the insecticide 

thiacloprid: Effect concentrations and recovery dynamics. Science of the Total 

Environment 405, 96–108. 

Brazner J.C. & Kline E.R. (1990) Effects of chlorpyrifos on the diet arid growth of larval 

fathead minnows, pimephales promelas, in littoral enclosures. Canadian Journal 

of Fisheries and Aquatic Sciences 47, 1157–1165. 

Brock T., Lahr J. & Van den Brink P.J. (2000) Ecological risks of pesticides in freshwater 

ecosystems. Part 2: Insecticides. Alterra, Green World Research, Wageningen, 

the Netherlands. 

Carle F.L. & Strub M.R. (1978) A new method for estimating population size from 

removal data. Biometrics, 621–630. 

Carr R.L., Ho L.L. & Chambers J.E. (1997) Selective toxicity of chlorpyrifos to several 

species of fish during an environmental exposure: biochemical mechanisms. 

Environmental Toxicology and Chemistry 16, 2369–2374. 

Chung K., Wallace J.B. & Grubaugh J.W. (1993) The impact of insecticide treatment on 

abundance, biomass and production of litterbag fauna in a headwater stream: a 

study of pretreatment, treatment and recovery. Limnologica 23, 93–106. 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 207 
 

Cohen J.E., Schittler D.N., Raffaelli D.G. & Reuman D.C. (2009) Food webs are more 

than the sum of their tritrophic parts. Proceedings of the National Academy of 

Sciences of the United States of America 106, 22335–22340. 

DeLorenzo M.E., Scott G.I. & Ross P.E. (1999) Effects of the agricultural pesticides 

atrazine, deethylatrazine, endosulfan, and chlorpyrifos on an estuarine 

microbial food web. Environmental Toxicology and Chemistry 18, 2824–2835. 

Downing A.L., DeVanna K.M., Rubeck-Schurtz C.N., Tuhela L. & Grunkemeyer H. 

(2008) Community and ecosystem responses to a pulsed pesticide disturbance in 

freshwater ecosystems. Ecotoxicology 17, 539–548. 

Gessner M.O. & Chauvet E. (2002) A case for using litter breakdown to assess 

functional stream integrity. Ecological Applications 12, 498–510. 

Giddings J.M., Williams W.M., Solomon K.R. & Giesy J.P. (2014) Risks to aquatic 

organisms from use of chlorpyrifos in the United States. Reviews of Environmental 

Contamination and Toxicology 231, 119–162. 

Gray C., Baird D.J., Baumgartner S., Jacob U., Jenkins G.B., O'Gorman E.J., et al. (2014) 

FORUM: Ecological networks: the missing links in biomonitoring science. Journal 

of Applied Ecology 51, 1444–1449. 

Halstead N.T., McMahon T.A., Johnson S.A., Raffel T.R., Romansic J.M., Crumrine 

P.W., et al. (2014) Community ecology theory predicts the effects of agrochemical 

mixtures on aquatic biodiversity and ecosystem properties. Ecology Letters 17, 

932–941. 

Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. & Zohary T. (1999) 

Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 

35, 403–424. 

Hladyz S., Åbjörnsson K., Chauvet E., Dobson M., Elosegi A., Ferreira V., et al. (2011) 

Stream ecosystem functioning in an agricultural landscape: the importance of 

terrestrial-aquatic linkages. Advances in Ecological Research 44, 211–276. 

Hothorn T., Bretz F., Westfall P., Heiberger R.M. & Schuetzenmeister A. (2014) 

Multcomp: simultaneous inference in general parametric models. R package 

version, 1.3–2. 

Hudson L.N., Emerson R., Jenkins G.B., Layer K., Ledger M.E., Pichler D.E., et al. 

(2012) Cheddar: analysis and visualisation of ecological communities in R. 

Methods in Ecology and Evolution 4, 99–104. 

Kefford B.J., Schäfer R.B., Liess M., Goonan P., Metzeling L. & Nugegoda D. (2010) A 

similarity-index-based method to estimate chemical concentration limits 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 208 
 

protective for ecological communities. Environmental Toxicology and Chemistry 29, 

2123–2131. 

Kersting K. & Van den Brink P.J. (1997) Effects of the insecticide Dursban® 4E (active 

ingredient chlorpyrifos) in outdoor experimental ditches: responses of 

ecosystem metabolism. Environmental Toxicology and Chemistry 16, 251–259. 

Kohler H.R. & Triebskorn R. (2013) Wildlife ecotoxicology of pesticides: can we track 

effects to the population level and beyond? Science 341, 759–765. 

Krammer K. & Bertalot L.H. (1986) Bacillariophyceae, 1. Teil: Naviculaceae. In 

Süßwasserflora von Mitteleuropa (eds H. Ettl, J. Gerloff, H. Heynig & D. 

Mollenhauer). Gustav Fischer Verlag, Stuttgart, Germany. 

Krammer K. & Bertalot L.H. (1986) Bacillariophyceae, 1. Teil: Naviculaceae. In 

Süßwasserflora von Mitteleuropa (Eds H. Ettl, J. Gerloff, H. Heynig & D. 

Mollenhauer). Gustav Fischer Verlag, Stuttgart, Germany. 

Krammer K., Lange-Bertalot H., Krammer K., Lange-Bertalot H., Bate N., Podzorski 

A., et al. (1986) Bacillariophyceae, 2. Teil: Bacillariaceae, Epithemiaceae, 

Surirellaceae. In Süßwasserflora von Mitteleuropa (Eds H. Ettl, J. Gerloff, H. 

Heynig & D. Mollenhauer). Gustav Fischer Verlag, Stuttgart, Germany. 

Krammer K. & Lange-Bertalot H. (1991a) Bacillariophyceae, 3. Teil: Centrales, 

Fragilariaceae, Eunotiaceae. In Süßwasserflora von Mitteleuropa (Eds H. Ettl, J. 

Gerloff, H. Heynig & D. Mollenhauer). Gustav Fischer Verlag, Stuttgart, 

Germany. 

Krammer K. & Lange-Bertalot H. (1991b) Bacillariophyceae, 4. Teil: Achnanthaceae, 

Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In 

Süßwasserflora von Mitteleuropa (Eds H. Ettl, J. Gerloff, H. Heynig & D. 

Mollenhauer). Gustav Fischer Verlag, Stuttgart, Germany. 

Kwak Y., Kim S.-J., Rhee I.-K. & Shin J.-H. (2012) Application of quantitative real-time 

polymerase chain reaction on the assessment of organophosphorus compound 

degradation in in situ soil. Journal of the Korean Society for Applied Biological 

Chemistry 55, 757–763. 

Layer K., Hildrew A.G. & Woodward G. (2013) Grazing and detritivory in 20 stream 

food webs across a broad pH gradient. Oecologia 171, 459–471. 

Layer K., Hildrew A.G., Jenkins G.B., Riede J.O., Rossiter S.J., Townsend C.R., et al. 

(2011) Long-term dynamics of a well-characterised food web: four decades of 

acidification and recovery in the Broadstone Stream model system. Advances in 

Ecological Research 44, 69–117. 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 209 
 

Layer K., Riede J.O., Hildrew A.G. & Woodward G. (2010) Food web structure and 

stability in 20 streams across a wide ph gradient. Advances in Ecological Research 

42, 265–299. 

Ledger M.E. & Hildrew A.G. (2005) The ecology of acidification and recovery: changes 

in herbivore-algal food web linkages across a stream pH gradient. Environmental 

Pollution 137, 103–118. 

Liess M. & Ohe von der P.C. (2005) Analyzing effects of pesticides on invertebrate 

communities in streams. Environmental Toxicology and Chemistry 24, 954–965. 

Liess M. & Schulz R. (1999) Linking insecticide contamination and population 

response in an agricultural stream. Environmental Toxicology and Chemistry 18, 

1948–1955. 

Liess M., Schäfer R.B. & Schriever C.A. (2008) The footprint of pesticide stress in 

communities. Science of the Total Environment 406, 484–490. 

Malaj E., Ohe von der P.C., Grote M., Kühne R., Mondy C.P., Usseglio-Polatera P., et 

al. (2014) Organic chemicals jeopardize the health of freshwater ecosystems on 

the continental scale. Proceedings of the National Academy of Sciences of the United 

States of America 111, 9549–9554. 

Maltby L. & Hills L. (2008) Spray drift of pesticides and stream macroinvertebrates: 

experimental evidence of impacts and effectiveness of mitigation measures. 

Environmental Pollution 156, 1112–1120. 

Ogle D.H. (2012) FSA: Fisheries stock analysis. R package version 0.2–8. 

Papst M.H. & Boyer M.G. (1980) Effects of two organophosphorus insecticides on the 

chlorophyll a and pheopigment concentrations of standing ponds. Hydrobiologia 

69, 245–250. 

Pinheiro J., Bates D., DebRoy S. & Sarkar D. (2011) R Development Core Team. 2010. 

nlme: linear and nonlinear mixed effects models. R package version 3.1-97. R 

Foundation for Statistical Computing, Vienna, Austria. 

Raven P.J. & George J.J. (1989) Recovery by riffle macroinvertebrates in a river after a 

major accidental spillage of chlorpyrifos. Environmental Pollution 59, 55–70. 

Rawcliffe R., Sayer C.D., Woodward G., Grey J., Davidson T.A. & Jones I.J. (2010) Back 

to the future: using palaeolimnology to infer long‐term changes in shallow lake 

food webs. Freshwater Biology 55, 600–613. 

Relyea R.A. (2008) A cocktail of contaminants: how mixtures of pesticides at low 

concentrations affect aquatic communities. Oecologia 159, 363–376. 

Rocha O. & Duncan A. (1985) The relationship between cell carbon and cell volume in 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 210 
 

freshwater algal species used in zooplanktonic studies. Journal of Plankton 

Research 7, 279–294. 

Rosi-Marshall E.J., Kincaid D.W., Bechtold H.A., Royer T.V., Rojas M. & Kelly J.J. 

(2013) Pharmaceuticals suppress algal growth and microbial respiration and 

alter bacterial communities in stream biofilms. Ecological Applications 23, 583–593. 

Rubach M.N., Crum S.J. & Van den Brink P.J. (2011) Variability in the dynamics of 

mortality and immobility responses of freshwater arthropods exposed to 

chlorpyrifos. Archives of Environmental Contamination and Toxicology 60, 708–721. 

Schäfer R.B., Caquet T., Siimes K., Mueller R., Lagadic L. & Liess M. (2007) Effects of 

pesticides on community structure and ecosystem functions in agricultural 

streams of three biogeographical regions in Europe. Science of the Total 

Environment 382, 272–285. 

Schinegger R., Trautwein C., Melcher A. & Schmutz S. (2011) Multiple human 

pressures and their spatial patterns in European running waters. Water and 

Environment Journal 26, 261–273. 

Sicko-Goad L.M., Schelske C.L. & Stoermer E.F. (1984) Estimation of intracellular 

carbon and silica content of diatoms from natural assemblages using 

morphometric techniques. Limnology and Oceanography 29, 1170–1178. 

Stehle S. & Schulz R. (2015) Agricultural insecticides threaten surface waters at the 

global scale. Proceedings of the National Academy of Sciences of the United States of 

America 112, 5750–5755. 

Traas T.P., Janse J.H., Van den Brink P.J., Brock T.C.M. & Aldenberg T. (2004) A 

freshwater food web model for the combined effects of nutrients and insecticide 

stress and subsequent recovery. Environmental Toxicology and Chemistry 23, 521–

529. 

Triebskorn R., Adam S., Behrens A., Beier S., Böhmer J., Braunbeck T., et al. (2003) 

Establishing causality between pollution and effects at different levels of 

biological organization: The VALIMAR project. Human and Ecological Risk 

Assessment 9, 171–194. 

Van den Brink P.J., van Donk E., Gylstra R., Crum S.J. & Brock T.C. (1995) Effects of 

chronic low concentrations of the pesticides chlorpyrifos and atrazine in indoor 

freshwater microcosms. Chemosphere 31, 3181–3200. 

Van Wijngaarden R., Van den Brink P.J., Crum S.J., Brock T., Leeuwangh P. & Voshaar 

O.J.H. (1996) Effects of the insecticide Dursban® 4E (active ingredient 

chlorpyrifos) in outdoor experimental ditches: I. Comparison of short‐term 



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 211 
 

toxicity between the laboratory and the field. Environmental Toxicology and 

Chemistry 15, 1133–1142. 

Woodward G., Gessner M.O., Giller P.S., Gulis V., Hladyz S., Lecerf A., et al. (2012) 

Continental-scale effects of nutrient pollution on stream ecosystem functioning. 

Science 336, 1438–1440. 

Woodward G., Papantoniou G., Edwards F. & Lauridsen R.B. (2008) Trophic trickles 

and cascades in a complex food web: impacts of a keystone predator on stream 

community structure and ecosystem processes. Oikos 117, 683–692. 

Wright J.F., Clarke R.T., Gunn R., Kneebone N.T. & Davy-Bowker J. (2004) Impact of 

major changes in flow regime on the macroinvertebrate assemblages of four 

chalk stream sites, 1997–2001. River Research and Applications 20, 775–794. 

Wright J.F., Gunn R.J.M., Winder J.M., Wiggers R., Vowles K., Clarke R.T., et al. (2002) 

A comparison of the macrophyte cover and macroinvertebrate fauna at three 

sites on the River Kennet in the mid 1970s and late 1990s. Science of the Total 

Environment 282-283, 121–142. 

Xuereb B., Noury P., Felten V., Garric J. & Geffard O. (2007) Cholinesterase activity in 

Gammarus pulex(Crustacea Amphipoda): characterization and effects of 

chlorpyrifos. Toxicology 236, 178–189. 

Young R.G., Matthaei C.D. & Townsend C.R. (2008) Organic matter breakdown and 

ecosystem metabolism: functional indicators for assessing river ecosystem 

health. Journal of the North American Benthological Society 27, 605–625. 

Zuur A., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. (2009) Mixed Effects 

Models and Extensions in Ecology with R. Springer Science & Business Media. 

 

 

  



Appendix C | Gene-to-ecosystem pesticide impacts 
 

Page | 212 
 

C.7 Supporting Information 

Additional Supporting Information may be found in the online version of this article:  

Appendix S1. Supplementary material. Table S1. Mean numerical abundance at 

control and impacted sites for diatoms in the trivariate food webs shown in Figure 

C.Dd.  

Table S2. Mean numerical abundance at control and impacted sites for 

macroinvertebrates and fishes in the trivariate food webs shown in Figure C.Dd.  

Table S3. Shapes of diatom species used to calculate biovolumes (Hillebrand et al., 

1999).  

Table S4. Equations used to calculate macroinvertebrate individual dry mass (DM).  

Table S5. Sources of feeding interactions derived from the primary literature.  

Table S6. The taxonomic resolution (i.e. generality) assigned to each node in the 

networks to create links between nodes.  

Figure S1. UK Environment Agency water chemistry data and macroinvertebrate data 

collected by citizen scientists between July 2012 and July 2014. Water chem- istry 

samples were collected from an upstream control (grey; adjacent to site B) and a 

downstream impacted monitoring station (black; adjacent to site E); citizen science 

macroinvertebrate samples were collected from a control site at Stonebridge Lane and 

an impacted site at Elcot Mill (Figure C.A). 
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ecosystems. Aquatic Functional Biodiversity: Ecological and Evolutionary Approaches (eds 
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D.1 Summary 

Biomonitoring and conservation of freshwaters to date have fallen short of 

incorporating a fully ecological and evolutionary perspective. Due to this, the 

predictive capacity of current biomonitoring approaches is restricted and will have a 

limited ability to adapt in the face of rapid and global habitat modification and climate 

change. We briefly outline the present state of biomonitoring as well as some of its 

limitations. We then address how incorporating an ecological and evolutionary 

approach to biomonitoring and conservation will allow us to better understand 

interactions between the evolution and ecology of a species. This approach alongside 

the incorporation of measures of ecosystem functioning and aided by new 

technologies such as novel molecular markers or the use of microbes, may facilitate 

the future development of a more comprehensive and effective biomonitoring 

framework.   
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D.2 Current focus of aquatic biomonitoring and conservation  

  Freshwater biomonitoring, i.e. the repeated, quantitative assessment of surface 

waters using the presence and/or abundance of groups of organisms of known 

environmental sensitivity, currently provides a staple tool in aquatic management and 

conservation, and underpins wide-reaching environmental legislation including the 

European Union Water Framework Directive (EU WFD), Environmental Quality 

Standards for Surface Water in China (GB 3838-2002) and the Clean Water Act in the 

United States of America. Its scientific origins can be traced back to societal changes 

during the industrialisation of the developed world and simultaneous scientific 

developments in epidemiology and biological taxonomy - the impacts of rising human 

populations on the chemical and microbiological quality of urban water supplies 

necessitated the development of rapid and robust methods to assess risks to public 

health.  

The history of aquatic biomonitoring is extensively reviewed elsewhere (e.g. 

Metcalfe 1989; Rosenberg & Resh 1993; Friberg et al. 2011) and so will not be discussed 

in detail here but essentially biomonitoring hinges on two basic concepts: first that 

aquatic organisms tend to be unevenly distributed across environmental gradients, 

and should therefore have value as indicators of ecosystem state, and second, the biota 

provide a more temporally integrated indication of ecosystem quality than many 

abiotic measurements, such as spot sampled water chemistry.  

Three key developments over the course of the 20th century had major impacts 

on routine environmental assessment by regulatory authorities (Metcalfe 1989). First, 

Kolkwitz and Marsson (1902; 1909), introduced what became the “saprobien system”, 

in which groups of organisms were directly linked with perceived discrete levels of 

organic contamination and by inference, oxygen availability of waters. Second, 

biological diversity indices became popular around the middle of the century, based 

largely on the premise that species richness and evenness is reduced with increasing 

environmental disturbance. Finally, biotic indices that combined these methodologies 
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(such as the Trent Biotic Index, Chandler’s Score System and the Biological Monitoring 

Working Party) were developed.   Despite the widespread adoption of these indices 

(in particular the Average Score per Taxon (ASPT) approach), many surface waters 

are more likely to be compromised by other anthropogenic stressors, such as 

acidification, toxins, climate change, atmospheric deposition of reactive nitrogen and 

habitat modification.  

During the 1980s, the need to understand the causes behind surface water 

acidification stimulated investigation of diatoms as palaeobiological assessment tools 

(Renberg & Hellberg 1982; Battarbee & Charles 1986). These ubiquitous and 

chemically sensitive unicellular algae preserve well in lake sediments, thus enabling 

palaeo-ecologists to reconstruct the environmental history of a water body from 

sediment cores.  Statistical approaches based on weighted averaging procedures were 

developed to predict (or hindcast) lake chemistry on the basis of spatially derived 

“training sets” describing the chemical “optima” and tolerances of individual species 

(e.g. Birks et al. 1990). This approach has proved highly effective in the reconstruction 

of lake pH and has been applied to infer historical change in other environmental 

parameters with more mixed success. More recently various community-based 

multivariate regression approaches have been developed to interpret the 

environmental significance of trends in contemporarily monitored biota, including 

diatoms and macroinvertebrates (Monteith et al. 2005; Murphy et al. 2012) and to 

specifically address the extent to which biological trends can be explained by changes 

in water quality with time (Halvorsen et al. 2003).   

In recent years, more effective water treatment regimes and environmental 

regulations have improved surface water quality with respect to both organic 

pollution and water acidity in much of the developed world. The focus of 

biomonitoring has consequently begun to shift from basic quantification of 

environmental damage to consideration of how much surface water quality, with 

respect to these key drivers, still deviates from a desired “reference” condition relative 
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to a “pristine” state. The bio-assessment tool RIVPACS (River Invertebrate Prediction 

and Classification System) pioneered this field, by quantifying the differences in the 

macroinvertebrate assemblage between a site under investigation relative to its 

“expected” assemblage at unimpacted, but otherwise comparable sites. This approach 

and its derivatives now underpin most freshwater biomonitoring schemes across 

Europe (e.g. Simpson et al. 2005; Murphy et al. 2013) and other parts of the world 

(Simpson & Norris, 2000).  

Unfortunately, despite these advances, assigning appropriate reference 

conditions and current status is still problematic, as pre-industrial (i.e. pre 1800) target 

conditions are very difficult to model with confidence (Battarbee et al. 2005), as there 

are rarely useful palaeoecological data from running waters because therr sediments 

are well-mixed and there are also mismatches between palaeo and contemporay data 

in standing waters as the two rarely overlap in time, so ground-truthing is difficult.  

A notable exception is from some of the longer-term biomonitoring schemes, such as 

the United Kingdom Acid Waters Monitoring Network (Monteith et al 2005; Battarbee 

et al 2014), where, after several decades of lake biomonitoring using sediment traps, 

we are now finally able to compare contemporaneously collected data directly with 

palaeoecological data (Figure D.A). This has raised intriguing questions about stressor 

impacts: for instance in the Acid Waters Monitoring Network (AWMN) data, the lack 

of evidence of clear recovery among diatom communities along the acidification 

trajectory evident in the sediment core records (despite improvements in water 

chemistry), points to hystereses in these ecosystems, and to the potential ecological 

importance of other factors that could be setting new environmental states that and 

may not be reversed in the foreseeable future (Battarbee et al. 2013). The growing 

realisation that a return to a historical pre-impacted state may be unrealistic is now 

forcing us to consider shifting environmental baselines when assessing conservation 

and restoration, and determination of when an alternative state is acceptable with 

respect to its function, biodiversity and the ecosystem services it provides (UK 
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National Ecosystem Assessment, 2011; Millenium Ecosystem Assessment 2005). While 

this palaeoecological reference approach to aquatic monitoring is limited to lake 

ecosystems (as running water sediments are turned over), there is considerable 

potential to extend it to other biological proxies and biogeochemical indicators, such 

as pigments and stable isotopes, and pressures other than acidification (e.g. Smol 

2009).   

 

Figure D.A. Linking a sites contemporary biomonitoring data to its historical, reference 
condition (redrawn from data presented in (Battarbee et al. 2014). Percentage relative 
abundances of diatom species found in sediments of a UK upland lake (Round Loch of 
Glenhead). Species abundances in historical sediment core samples (left) shift from left to right 
reflecting increased water acidity during the industrial revolution. Abundances of the same 
species in contemporary sediment trap assemblages (right) indicate some recent reversal 
(decline) of some particularly acid-loving species, e.g. Tabellaria quadriseptata, as acidity has 
declined. However other species that increased during acidification are continuing to increase 
in abundance while others that were common prior to acidification show little indication of 
recovery.  
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All these approaches focus on linking attributes of biological assemblages to a 

system’s chemical or physical state and they have made important contributions to 

environmental assessment, policy and legislation across ecological and evolutionary 

timescales. The power of these methodologies can be largely attributed to the wide 

variation between taxa in tolerance to specific pressures, in particular the bio-

availability of oxygen, hydrogen and aluminium ions.  Newly emerging 

environmental threats, such as the many facets of climate change, contamination from 

organic micropollutants and nanoparticles etc., may not be quite so readily assessed 

by similar direct environment-taxa calibration-based approaches (Figure D.B)  

(Friberg et al. 2011). In some cases, other ecosystem metrics, other than the relative 

abundance of taxa, may yield clearer insights into significant environmental shifts 

(e.g. Layer et al. 2011). There is, therefore, a growing need to determine how best to 

assess the impact of these emerging stressors, both in isolation and in combination. 

Also, the structural biodiversity-centric focus of these traditional methods now needs 

to be augmented with more explicitly functional measures, to provide complementary 

insights into the impacts of stressors in freshwater ecosystems (e.g. Woodward et al. 

2012).  

In addition to largely lacking these explicitly functional ecosystem-level 

metrics, another common limitation of current taxonomic-based biomonitoring 

schemes is that, although there is an implicit evolutionary signal embedded within 

them, (i.e. in terms of the phylogenetic relatedness of the various indicator taxa, which 

constrains their functional traits), there is still no explicit recognition of the role of 

adaptation to new stressors and the potential for evolutionary rescue from stressors 

within species populations: and evolutionary responses can occur surprisingly 

quickly in many freshwater taxa (e.g. Melian et al. 2011). This could cause mismatches 

between the reference and impacted conditions, if species are able to adapt to new 

conditions, rather than acting as passive ciphers that are simply overlain on an 

environmental template (e.g. Bell & Gonzalez 2011).  This has resulted in a paradox of 
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biomonitoring, in which speciation is the mechanism that produces the response 

variables we measure but which is then ignored when relating species distributions 

to environmental conditions. Although research is beginning to fill this gap in 

understanding (e.g. Thuiller et al. 2011; Vonlanthen et al. 2012) currently in 

biomonitoring, this “inconvenient truth” is either ignored or attempts are made to 

circumvent it by removing the phylogenetic signal from the data (e.g. via trait-based 

approaches).   

 

 

Figure D.B. A hypothetical ordination to show the changes in the main drivers of habitat 
degradation in freshwaters in the developed world over time. In the developed world, over 
time increasing temperature and habitat modification have become the significant drivers of 
change in the principal components (Axes I-IV) of community composition, replacing the 
more historical stressors of organic pollution and pH change. However these historical 
stressors are still the major causes of habitat degradation in developing countries. 
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D.3 State of the art in the science of biomonitoring: from species 

traits to community and ecosystem 

The earliest attempts to combine ecological and evolutionary approaches to 

biomonitoring included the use of additional measures of biodiversity including 

phylogenetic diversity (or taxonomic distinctness) and functional diversity 

conditioned by evolution (e.g. May 1990; Paradis, Claude & Strimmer 2004; Webb, 

Ackerly & Kembel 2011), though most of the emphasis has been on the former, not the 

latter. A problem with focusing solely on taxonomy is that if species redundancy is 

high, as appears to be the case in many freshwaters (e.g. McKie et al. 2008; Perkins et 

al. 2010; Reiss et al. 2010; Reiss et al. 2011), then species loss is likely to only have 

strong effects when entire functional guilds are lost: but it is these that we still have 

limited understanding of due to the longstanding reliance on more traditional 

measures of biodiversity (e.g., species richness).  The realised species trait (or gene) 

profile at a local scale provides the means to link the potential effects of anthropogenic 

pressures on species (population) distribution and dynamics: i.e., the trait profile itself 

may therefore be used for diagnostic purposes (Statzner & Bêche 2010).  It is possible, 

however, that non-causal relationships between individual species traits and 

contemporary environmental conditions exist (e.g. Poff et al. 2006; Horrigan & Baird 

2008) because some traits may represent an evolutionary legacy rather than current 

adaptation (Gould & Lewontin 1979). Empirical studies have confirmed the large role 

played by phylogeny or taxonomic distinctness in freshwater ecosystems (Willby, 

Abernethy & Demars 2000; Poff et al. 2006; Demars et al. 2012) from the structural 

perspective, but their functional attributes remain far less well-understood.  

To interpret biomonitoring results (patterns in species composition) it is crucial 

to unravel its underlying mechanistic basis (processes which determine this pattern, 

both anthropogenically mediated or not). Species are not randomly distributed in time 

(e.g. Lyell & Deshayes 1830) or space (e.g. Humboldt 1849) and Demars and Edwards 

(2009) recently pointed out that even as far back as in the 19th Century Darwin (1872) 
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argued that environmental variables only played a subordinate role in the 

determination of species distribution. He offered a mechanistic explanation (pp. 318–

319): immigration of individuals from a species (individuals) pool controlled by 

dispersal barriers and descent with modification regulated through natural selection, 

with competition being the most important pressure. He attributed the wide 

distribution of freshwater organisms to favourable means of dispersal (Darwin, 1872, 

pp. 323–330, 343–347, e.g., Pollux and Santamaria et al., 2005) and lessened 

competition (Darwin, 1872, pp.346, e.g., Greulich and Bornette, 2003) in aquatic 

habitats. This debate of whether species distribution is more controlled by niche 

assembly (resource heterogeneity) or dispersal assembly is still on-going (Demars & 

Harper 2005; Heino 2013).  Moreover, numerous null models have reproduced 

biomonitoring patterns of species assembly:  e.g. random (Tokeshi 1990), niche 

(Tokeshi 1993), neutral (Bell 2001; Hubbell 2001), metabolic scaling (Allen, Brown & 

Gillooly 2002), fractal (Lennon et al. 2007), maximum entropy (Harte 2011).  

The general consensus is that patterns in species composition and community 

structure emerge from the interactions of chance, dispersal and resource heterogeneity 

in evolving meta-communities (Venail et al. 2008). This is supported by empirical 

studies using autocorrelation, spatial distances/isolation and dispersal abilities to 

infer proportion of resource (niche) versus dispersal community assembly (Moilanen 

& Hanski 2001; Demars & Harper 2005; Moilanen et al. 2005; Moilanen, Leathwick & 

Elith 2008; Bonada, Dolédec & Statzner 2012).  Essentially, this is explicitly adding the 

otherwise overlooked dynamical component to biomonitoring data, which are often 

seen as static snapshots whereby species simply map onto the environmental 

template.  It also starts to recognise the inherent role of dispersal and selection for 

particular functional traits, rather than simply focusing on the phylogenetic tree in 

isolation. 

Every species can be characterised by not only its taxonomic identity but also 

its biological (response) functional traits, which may be translated into functional 
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(effect) traits (Engelhardt 2006; Kerkhoff & Enquist 2006; López-Urrutia et al. 2006; 

Enquist et al. 2007) and eventually into ecosystem services (e.g. García-Llorente et al. 

2011). Mapping traits onto the tree of life reveals a convergence (independent 

appearance of a trait in separate clades) or divergence (appearance of a trait in a single 

clade) in evolution. This is highly relevant in the context of the insurance hypothesis 

or portfolio effect, whereby high species (or genetic) richness maintains high and 

constant ecosystem (or population) productivity and services in a stochastic 

environment (Yachi & Loreau 1999; Schindler et al. 2010). 
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BOX 1: Categorizing continuous variables in biomonitoring 

Figure D.C maps an example of a continuous ecological variable (habitat quality) onto 

discrete man-made categories. This human need to categorize complexity can be seen in 

many aspects of ecology, not just in the biomonitoring and conservation fields. Whether it’s 

the difficulties encountered when classifying all of life on earth into discrete species (e.g. 

Mayden 1997), or the questionable practice of assigning ‘typologies’ to a given lake or river 

(e.g. Friberg et al. 2011), the motivation comes from our historically poor ability to process 

large amounts of complex information. However, this process of classification and 

simplification has allowed us to make some informed generalisations and useful 

interpretations that otherwise would not be possible. Nevertheless, with the advent of rapidly 

accelerating computing power the challenge has now shifted away from our previous 

inability to process complex information, to the interpretation of complex information into 

simple messages. With expanding analytical ability comes the need to preserve as much 

ecological information as possible, which will allow a deeper understanding and more 

informed interpretations to develop the next necessary steps forward in biomonitoring 

science; the shift of focus away from the simple monitoring of species composition towards 

the monitoring of ecosystem functions and services. 

 

Figure D.C. Hypothetical graph showing fluctuations in four species abundances across a 
habitat quality gradient, alongside the discrete criteria of habitat quality (good, moderate, 
poor) that these continuous variables are categorized into. The dashed line shows species 
loss, whereas the solid black arrow shows sub-lethal effects to a particular species 
population. 
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The ecology of a species sets the scene in which evolution operates, whilst 

evolution may influence ecological dynamics by altering the frequency of phenotypes 

that are available to interact: thus, there are potentially important eco-evolutionary 

feedbacks, which are only now starting to be recognised (e.g. Melián et al. 2011; Moya-

Larano et al. 2012). The ability of a species to adapt to a changing environment is key 

to how it responds to stressors: species are not simply present or absent if 

environmental conditions are favourable or unfavourable (Text Box 1).  According to 

the old adage, there are three options - “adapt, perish or move” - that a species is faced 

with in a changing environment, yet biomonitoring and conservation schemes have 

largely ignored the first. 

An important issue here is that neither ecological nor evolutionary responses 

occur solely at the population level of organisation: no species is an island, and its 

interactions with those around it will determine both species-specific and the wider 

community’s responses to changing conditions (e.g. Rybicki & Landwehr 2007).  This 

explains why models derived from bioclimate envelopes and extrapolations from 

traditional biomonitoring techniques often fail to predict species responses in the real 

world, because their synecology (the ecology of communities of interacting 

organisms) is ignored (Woodward et al. 2010; Friberg et al. 2011).  The use of trait-

based approaches helps to grapple with issues related to functional biodiversity at the 

autecological level, but it fails to embrace the more complex, higher-level 

synecological functional roles that species play within multispecies systems such as 

food webs, which may have seemingly unpredictable emergent properties 

(Woodward 2009).  This can be exemplified by mismatches between real-time or 

experimental data that track transient dynamics, versus space-for-time substitutions 

where the different communities across the environmental gradient may already be 

at equilibrium (e.g. Layer et al. 2010; Layer et al. 2011). Unfortunately, such data are 

still rare, but where they are available there is compelling evidence that the functional 

role of species within the food web can have important indirect and direct 
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consequences that would be missed by relying on static data: a classic example is the 

seeming paradox of invertebrate abundance declining over several decades of 

deacidification, yet this response makes sense when the top-down effects of predators 

on the prey assemblage are included  (Layer et al. 2011). 

Figure D.D synthesises current thinking in the role of ecology and evolution of 

species distribution on which taxonomic, functional and phylogenetic diversity 

determine the dynamics of ecosystem functioning and services, and highlights how 

they can be integrated in future biomonitoring approaches.  

 

 

Figure D.D. Ecology and evolution of species distribution generates diversity patterns in 
species (grids), species traits (symbols) and phylogeny (trees). From a hypothetical null model 
(e.g. random assemblage) and species pool at regional scale, species are sorted through the 
effects of niche assembly (heterogeneity of resources) and species dispersal into patterns of 
local species distribution. Over time, local extinction, colonisation and speciation alter the 
regional species pool and associated phylogeny and trait diversity. The dimensions of 
diversity: taxonomic, abundance, functional and phylogenetic, determine the dynamics of 
ecosystem functions and services.  

 

 Functional diversity provides a more direct link between species richness and 

ecosystem functioning, and ultimately the provision of goods and services (Naeem 

2002; Woodward 2009). Two essential functions are primary production and 
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decomposition, which provide the two key energy inputs into any food web, thus 

ultimately driving the whole system’s trophic dynamics, stability and productivity. 

Production and decomposition thereby provide a variety of services, including the 

production of fish in fisheries and for recreational angling, or the processing of 

pollutants and waste products to produce clean water. These vital ecosystem 

processes are, however, not routinely measured in current biomonitoring techniques.  

Decomposition rates have been measured in some large-scale studies, but these too 

are still largely ignored in routine biomonitoring, and the responses remain complex 

and poorly understood (Woodward et al. 2012). Some functional measures, such as 

organic matter decomposition, has been the focus of attention (e.g. Young, Matthaei 

& Townsend 2008), and methods for standardising this measure across ecosystems 

have been developed (e.g. Kampfraath & Hunting et al. 2012) crucially allowing 

comparisons between studies, but these methods are yet to be adopted into 

biomonitoring schemes. 

 Functional indicators, and especially direct measures of ecosystem processes, 

should also play a larger role to quantify ecosystem services (Millenium Ecosystem 

Assessment 2005), which are being advocated increasingly for economic valuations of 

conservation, management and restoration projects (Costanza et al. 1997; Everard & 

McInnes 2013). Many ecosystem processes are either services in their own right (e.g. 

carbon sequestration, nutrient cycling), or they underpin them (e.g. invertebrate 

production supporting fisheries), and include hydraulic retention (water transient 

storage), sedimentation rate, and greenhouse gas transfer. The magnitude and rate of 

many of these processes are sensitive to anthropogenic pressures, highlighting the 

scope to use functional indicators as diagnostic tools (Odum 1969; Schindler 1987; 

Sweeney et al. 2004; Mulholland et al. 2008; Yvon-Durocher et al. 2010; Demars et al. 

2011). 

Important insights into ecological and evolutionary responses to stressors, as 

well as their functional consequences could be inferred from the large amounts of geo-
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referenced and dated lists of taxa currently filling a multitude of databases in local 

regulatory and conservation agencies, natural history and conservation societies.  

Many databases are now being assembled that contain some or all of these elements 

(e.g. FishBase [Frose & Pauly 2010] and Freshwater Life - 

http://www.freshwaterlife.org - supported by the Freshwater Biological 

Association). Scientists are collating decades of research to assemble species traits (and 

genes) in a phylogenetic context. Combining this with environmental data available 

from a wide range of government agencies and research bodies, and by organising 

this information into user-friendly databases (e.g. the Global Biotraits Database 

http://biotraits.ucla.edu/index.php) and connecting them to infer processes from 

patterns offers great potential for future research (e.g. Demars & Harper 2005; Demars 

& Trémolières 2009). 

The success of the next generation of biomonitoring will not come solely from 

assembling and interrogating these vast new databases to obtain new response 

variables, but also from explicitly testing ecological hypotheses and synthesising 

different branches of science, e.g. eco-enzymatic stoichiometry which allows us to link 

the elemental composition of microbial communities to their nutrient content and 

biomass production (Sinsabaugh, Hill & Shah 2009; Hill et al. 2012). Integrating 

biomonitoring schemes with experimental and modelling approaches will be crucial: 

combining whole ecosystem experiments with long-term monitoring can reveal 

spectacular responses to environmental change, although such large-scale, long-term 

studies are still very much in the minority.  Classic examples include the work of 

Likens et al. (1977) at the Hubbard Brook Experimental Forest, Schindler (1990), 

Carpenter et al. (2001) at the Experimental Lakes Area (ELA) in Canada 

(http://www.experimentallakesarea.ca) and Slavik et al. (2004) at the Kuparuk River 

station of the Long-Term Ecological Research (LTER) network.  Other work has made 

use of these long-term data to develop new dynamical models to link biodiversity 

change to ecosystem functioning, such as Petchey et al. (2004) study based on the 
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extensive time series data from the UKs Environmental Change Network. Recently, 

the American LTER network has been complemented by the National Ecological 

Observatory Network, NEON (http://www.neoninc.org/news/lterandneon), and 

the STReam Experimental Observatory Network (STREON, part of NEON) is now the 

one of the most ambitious long term biomonitoring schemes.  It combines comparative 

surveys across the USA with experimental design (nutrient enrichment and removal 

of large consumers) that extends previous LYNX programs (Mulholland et al. 2008). 

In the United Kingdom, the AWMN has also been very effective in providing scientific 

insights and influencing policy (Hildrew 2009; Layer et al. 2010; Friberg et al. 2011; 

Layer, Hildrew & Woodward 2013). Moreover, the value of AWMN has increased 

progressively over the three decades since its inception, as more subtle long-term 

trends, such as responses to climate change, are now able to be detected. The challenge 

is now to establish international networks with global coverage to tackle planet scale 

issues (e.g. Global Lakes Ecological Observatory Network, GLEON), which are also 

integrated with regional and local monitoring. Long-term monitoring can enable us 

to detect early warning signals of ecosystem shifts (Scheffer et al. 2009), but it is often 

difficult to extract research funding for such strategic research, which often appears 

to fail to meet the “novelty” criteria of many research councils’ remits. 

  

 

D.4 Future advances and new perspectives – genes to 

ecosystems 

Over the last 20 years huge progress has been made in understanding 

biodiversity-ecosystem functioning (B-EF) relationships, with an increasing emphasis 

on freshwater systems over the last decade in particular (Loreau, Naeem & Inchausti 

2002; Woodward 2009; Loreau 2010; Reiss et al. 2010). Whilst biomonitoring and 

conservation have tended to focus on the biodiversity end of the relationship, the 
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functioning part of the equation and its relationship with biodiversity has been largely 

ignored in the more applied fields of freshwater ecology (but see Dangles et al. 2004; 

Cardinale 2011). However, the lack of functional insights is changing, and many 

emerging legislative and regulatory frameworks are recognising the need for more 

functional approaches (e.g. the Water Framework Directive).  The main finding of B-

EF research to date has been the prevalence of high levels of redundancy. Species loss 

may have initially little impact, but once a critical threshold is passed when entire 

functional groups are lost, the impacts can be extremely powerful and sensitive to 

further species loss (Cardinale et al. 2006).  These experiments have also revealed 

evidence of idiosyncratic species responses being important, harking back to earlier 

ideas about keystone species, where they have both strong and unique influences on 

a process.  Despite these advances, there are still some glaring gaps in our knowledge: 

few studies have included more than one trophic level; most have measured just one 

process rather than functioning as a whole, and they have been conducted primarily 

in small experimental arenas over short timescales (Woodward 2009).  As such, many 

B-EF experiments lack the complexity of natural systems, though attempts are now 

being made to address these shortcomings (Reiss et al. 2010).  In the context of moving 

from an understanding of B-EF to B-ES (biodiversity-ecosystem services) 

relationships, there is a huge gap to be bridged in terms of the spatiotemporal scales 

that are important for the latter, as ecosystem services tend to be manifested at much 

larger landscape scales, where source-sink, metacommunity and food web dynamics, 

as well as eco-evolutionary processes (e.g. Melián et al. 2011), are likely to be 

important. 

 The application of network-based approaches can be especially powerful here, 

as there is a strong food web context to where ecosystem services are located, as well 

as a clear trophic gradient in the scope for insurance and adaptation, which increases 

down the web’s food chains (Figure D.E).  Certain stressors are associated with 

particular nodes in the web (e.g. biomagnification of organochlorine pesticides in apex 
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predators; antibiotics with the microbial loop at the base of the web), as well as 

different organisational levels (e.g. food web modules; functional groups, the network 

as a whole) acting as multiple biosensors.  For instance, allometries in food web 

properties from the level of pairwise links, to tritrophic food chains, to the system’s 

entire constraint space have been used recently to evaluate responses of experimental 

stream food webs to drought (Woodward et al. 2012; Ledger et al. 2013): these revealed 

that many of the more commonly used network metrics (such as connectance) were 

relatively robust to perturbations, whereas others were much more sensitive (e.g. 

allometric scaling of pairwise links and food chains).  The food web provides an 

intuitive prism through which to view both the lower and higher levels of 

organisation and how they respond to stressors, as it makes the interactions between 

species explicit in the response variables, whereas most biomonitoring and 

conservation approaches focus solely on (a few) nodes, and not the links between 

them at the system scale (Woodward, Gray & Baird 2013).  Considerable work has 

been done in freshwaters in terms of understanding how food webs respond to 

stressors, including acidification (e.g. Ledger & Hildrew 2005; Layer et al. 2010; Layer 

et al. 2011), eutrophication (e.g. Rawcliffe et al. 2010) and hydrological change (e.g. 

Ledger et al. 2012; Ledger et al. 2013). Such combinations of studies illustrate 

effectively that studying the feedbacks between the environment and the functioning 

of the whole system that are mediated by the food web can be extremely powerful, 

and may even induce regime shifts (Jones & Sayer 2003; Scheffer & Carpenter 2003). 
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Figure D.E. Mapping services onto the food web. When monitoring services we need to 
monitor the appropriate level of scale. The effects of stressors upon services won’t show at all 
levels of the food web, although may magnify through the food web, or cause trophic 
cascades. AP = apex predator, F = fish, C = carnivore, omnivore, D = detrivore, HD = 
herbivore/detritivore, H = herbivore, AH = aquatic hyphomycete, L = leaf-litter, P = plant, A 
= algae.  Adapted from Abrahams et al. (2013) Figure 4.1. 

 

 Eco-evolutionary dynamics and feedbacks within the food web can be much 

faster than previously thought (e.g. Melián et al. 2011), and impacts on the epigenome 

can lead to quicker adaptation than traditional adaptation of the genome, via genetic 

plasticity (Johnson & Tricker 2010).  Consequently, we are starting to perceive how 

species evolve in the context of both the biotic and abiotic environment, and how 

feedbacks and newly-discovered mechanisms can accelerate evolutionary responses 

(Moya-Larano et al. 2012). In addition to the discovery of these ecological and 

evolutionary interactions in recent years there have been rapid technological advances 

in Next Generation Sequencing (NGS, Text box 2) and associated molecular 

techniques (Hajibabaei et al. 2011; Hajibabaei 2012).  This has allowed for significant 

advances in broadening the coverage of the tree of life and for adopting an eco-
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evolutionary approach to biomonitoring in freshwaters: emerging NGS approaches 

include new generations of molecular markers, the ability to characterise microbes in 

situ, allowing them to be used to monitor the function of ecosystems as well as 

determining the function of microbes, metazoans and macrofaunal communities 

directly (Purdy et al. 2010). 

 

D.5 Novel molecular and microbial approaches 

An organism’s molecular state results from its interaction with the environment, and 

so measuring specific molecular machinery components can provide clues as to which 

stressors are present in the environment.  The first generation of molecular markers 

(Figure D.F) were developed from hypothesis-driven research and based on 

biochemical, histological, morphological and physiological changes in nucleic acids 

and proteins measured with conventional techniques (Ryan & Hightower 1996). The 

number of such biomarkers is relatively small but they include some very effective 

examples, such as the general xenobiotic response marker CYP1A (Celander 2011) the 

endocrine disruption marker vitellogenin (Celander 2011) and the metal stress marker 

metallothionein (Amiard et al. 2006). However, the hypothesis driven approach to 

biomarker discovery suffers from an important conceptual flaw, at least in this 

implementation: single genes whose expression is modulated in a highly specific 

manner are extremely rare.  

 In the last ten years, new functional genomics technologies have provided a 

potential solution to this issue. Since they allow the measurement of the expression of 

tens of thousands of genes, proteins and metabolites in single experiments, they 

provide the means to develop multi-gene signatures from the unbiased screening of 

genome-wide expression data (Van Aggelen et al. 2010; Figure D.F).  

 The challenge of identifying specific molecular signatures hidden within 

hundreds of thousands of noisy variables has driven the development of statistical 
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methods for the identification of molecular components that are differentially 

expressed in two or more sample groups (i.e. stressed versus controls). Although 

effective, this approach has limitations: in particular it cannot identify synergistic 

effects between variables, it has a relatively low statistical power, and biological 

interpretation is challenging. The introduction of more complex modelling techniques 

that can assess the predictive power of combinations of biomarkers (Li et al. 2010), has 

been a significant step forward, particularly when applied to linking phenotypic 

responses (e.g. physiology) to molecular responses, especially in a network context. 

Ultimately this has allowed the identification of more effective and ecologically 

relevant biomarkers (Ankley et al. 2010).  

 

 

 

Figure D.F. The evolution of Biomarker discovery from the first generation approaches which 
use single genes whose expression is modulated by specific stressors, to the most recent 
advances which allow the discovery of multicomponent molecular signatures. 

 



Appendix D | Biomonitoring from genes to ecosystems 
 

Page | 235 
 

 Despite the potential of these approaches, the vast number of possible 

combinations of individual measurements drastically limits their ability to explore a 

large portion of the solution space and therefore makes it extremely difficult to capture 

biologically relevant pathways that respond specifically to particular stressors. One 

way to address this challenge is reverse engineering, a branch of Systems Biology that 

aims to reconstruct the underlying structure of a biological pathway from 

experimental data. This has been tremendously effective in biomedical research for 

identifying pathways predictive of clinical response, drug resistance and novel 

therapeutic targets (Perkins et al. 2011). Again the biomedical-biomonitoring analogy 

can be used here to extend such approaches to environmental assessment. Because of 

the complexity of the datasets acquired using omics technologies, any reverse 

engineering approach must start from the identification of a high-level structure of 

the underlying biological networks and then progress to identifying more refined sub-

networks, which are associated with important phenotypic responses, such as changes 

in reproductive ability following stress. Although in its infancy, this approach has 

already been applied by a number of groups for identifying novel stress pathways 

(Williams et al. 2011). 

 Overall, the use of these approaches allows the identification of more effective 

biomarkers than the ones based on differential expression or and has opened up the 

possibility to develop specific multi-component molecular signatures that are truly 

representative of a large number of stressors and with high specificity. 

 The use of biomarkers as a biomonitoring tool relies on inferences from 

molecular analyses. Returning to the more traditional approach of biomonitoring of 

using taxa themselves, and given that NGS technologies have finally enabled us to 

identify microbes in field conditions, these taxa represent ideal candidates for 

assessing how stressors alter community structure and ecosystem functioning. The 

pioneering “everything is everywhere, but the environment selects” theory proposed 

by Baas Becking (1934) suggests that the presence of all microorganisms is ubiquitous, 



Appendix D | Biomonitoring from genes to ecosystems 
 

Page | 236 
 

but our ability to detect them via direct observation is limited by varying densities: 

i.e., rare microbes may be present but unobserved in ecological samples (de Wit & 

Bouvier 2006). Consequently, the presence of different microbial species should be 

dictated by the difference in environmental conditions, rather than distance and 

biogeography (Zarraonaindia, Smith & Gilbert 2013). If this is true, it could provide a 

truly globally comparable framework for bioassessment and monitoring.  Opposing 

theories exist, however, which suggest that microbial diversity is shaped by 

geography as well as the environment (Martiny et al. 2006; O’Malley 2008). The key 

question is whether the environment enhances the presence of certain microorganisms 

in different locations, allowing us to compare components of the microbial 

community for the monitoring of ecosystems. High-throughput technologies with 

increased detection capabilities can assist here and there is huge potential for these to 

be exploited by ecologists for monitoring purposes (Green, Bohannan & Whitaker 

2008; Purdy et al. 2010; Poisot, Pequin & Gravel 2013; Woodward, Gray & Baird 2013).  

 Microorganisms play important functional roles in the major biogeochemical 

cycles at local to global scales, as well as the recycling of nutrients and overall 

ecosystem functioning (Cotner & Biddanda 2002; Nemergut et al. 2011), and many of 

these are also either ecosystem services in their own right or key processes that 

support important services (e.g. carbon sequestration). Moreover, microbial 

communities are themselves influenced by environmental conditions. Accordingly, 

bacteria have been suggested as good indicators of environmental change due to some 

of their attractive biomonitoring properties, such as high diversity (thus broad range 

of environmental susceptibility), potential ubiquity, short life cycles and minimal 

disturbance of the site during sampling (Lear et al. 2009, see Figure D.G).    

  However, until recently their use was hindered by the inability to study them 

in situ as only 5% of species are considered to be cultivable with standard techniques 

(Amann, Ludwig & Schleifer 1995; Curtis, Sloan & Scannell 2002) leading to narrowly 

focused approaches of single species analysis, such as the targeting of specific 
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ecotypes of pathogens, rather than whole-community detection (Hellawell 1986; Port 

et al. 2012). High throughput sequencing is already replacing historical fingerprinting 

approaches (Text box 2) and has been used for the characterization of whole 

communities from a large variety of sources, from both terrestrial and aquatic systems 

(Roesch et al. 2007; Cole, Konstandinidis & Farris 2010; Gilbert & Dupont 2011; Foote 

et al. 2012; Port et al. 2012). Following sequence-based approaches, specific and 

identifiable microorganisms can be linked to environmental status and used as 

sensors for the assessment of anthropogenic threats such as eutrophication, 

acidification, climate change, and land use changes (Port et al. 2012; Yergeau et al. 

2012; Heino 2013). In aquatic ecosystems, whole bacterial cell analysis can also be used 

for the assessment of pollution effects (Lear et al. 2009) and detection of antibiotics in 

the water (Port et al. 2012).  

 Recent studies from terrestrial and marine systems (Pommier, Douzery & 

Mouillot 2012; Sun et al. 2012) suggest that bacterial communities are sensitive 

indicators of contaminant stress and also support the theory that presence of 

microorganisms is more related to environmental conditions than dispersal or 

geography.  However, in a freshwater study Lear et al. (2012) found microbial 

communities did not differ among different environmental pressures, whereas 

invertebrate sampling was the more effective monitoring tool, suggesting that either 

the studied microbial communities were unaffected by contaminants, or the 

discriminatory power of the molecular fingerprinting approaches used was 

insufficient. 

 Yergeau et al. (2012) used NGS of the 16S rRNA gene to determine the effect of 

pollution related to oil sands mining on nearby aquatic microbial community 

structure. Their findings suggest that the microbial community structure was 

significantly altered by the distance from mining sites and support the potential use 

of Bacteria and Archaea as bioindicators of pollution. Furthermore, Kisand et al. 

(2012), were able to compare the microbial community composition of a highly 
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impacted area, like the port of Genoa with that of a protected area (low anthropogenic 

impact), through metagenomic analysis of the microbial communities from water 

samples. Distinct microbial diversity and abundance counts were detected among the 

different sites which can be related to the differences of environmental conditions, 

again demonstrating the potential for use of metagenomics for monitoring of aquatic 

ecosystems. 
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Box 2: What is next generation sequencing/omics? 

The terms "next-generation" sequencing (NGS) or -omic technologies have 
been in use since a landmark paper (Margulies et al. 2005) detailed the use of 454 
massively parallel pyrosequencing. Since then, the development of NGS platforms, 
accompanied by exponential increases in throughput and decreasing costs has 
completely transformed the field of DNA sequencing. 

For investigating functional diversity, the NGS “-omic” approaches can 
conveniently be broken down into discrete categories of relevance to different levels 
of biological organisation. At the individual level, transcriptomic analyses measure 
differential gene expression via the analysis of expressed total RNA from specific 
tissues. At the community level, metagenetic or metabarcoding (Fonseca et al. 
2010b; Bik et al. 2012; Taberlet et al. 2012) studies estimate environmental taxonomic 
richness by the en masse sequencing of environmental DNA samples (Sun et al. 
2012). Shotgun metagenomic studies instead randomly sequence fragments of the 
total genomes present in an environmental DNA extraction(Knight et al. 2012), 
providing insights into both the functional and taxonomic capability of a given 
environment. Finally, metatranscriptomics enables researchers to investigate the 
actively transcribed mRNA from a community, giving an insight into the total gene 
expression from a local ecosystem (Filiatrault 2011; Gilbert & Hughes 2011). 
As with microarray studies, gene expression is likely to change significantly at both 
short (Gilbert & Hughes 2011) and large spatial and temporal scales, so 
transcriptomic analyses need to be designed around carefully and explicitly framed 
questions that account for environmental gene expression and short half-life of 
mRNA (i.e., transcript analyses are often not associated with protein composition) 
(Moran et al. 2013). These broad -omic categories are summarized in Figure 7.  

For ecological studies, a potential disadvantage of these approaches lies in 
the fact that most platforms incorporate various forms of clonal amplification in the 
sequencing approaches, thereby introducing potential quantitative biases into 
datasets. New "third-generation" sequencers and technologies (Ribeiro et al. 2012; 
Schneider & Dekker 2012; GridION™ and MinION™) that use single molecule 
sequencing approaches and therefore lack any clonal amplification step prior to 
sequencing could produce truly quantitative data, although these are currently 
tailored to analysing shorter numbers of very long reads and many had not reached 
market maturity at the time of writing. 

Continued… 
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D.6 The functional analysis of microbes, metazoans and 

macrofaunal communities 

Ecologists are increasingly striving to improve predictive power by not only 

identifying what organisms are present, but also by asking what are they doing? The 

majority of functional ecological studies use organismal trait information (Tilman et 

al. 1997; Petchey & Gaston 2006; Hagen et al. 2012) to provide a metric for quantitative 

analysis, but these cannot accurately reflect all of the functional attributes of 

individuals and species in complex ecological communities. In theory, the -omic 

Box 2: Continued 

 

Figure D.G. The many -omics approaches to sequencing life, from individuals to whole 
community techniques that can be adapted to each scenario. Methods applicable to a 
variety of scales are presented with their respective advantages and disadvantages. 
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toolbox can be employed to address this and to understand functional diversity in 

ways that have not been previously possible, although synergies with traditional 

ecology and taxonomy are essential if we are to fully understand the connections 

between biodiversity and ecosystem functioning and how they respond to stressors 

(Loreau et al. 2001).  

If we consider a hypothetical freshwater ecosystem, with both benthic and 

aquatic habitats, these can be studied first independently but then combined by 

investigating both the taxonomic and functional diversity of the entire community 

using the -omic toolbox (see Text Box 2) tailored to organismal genome size and 

complimented by biogeochemical and nutrient cycling analyses. Starting with the 

microbial fraction, taxonomy marker genes such as 16S (Caporaso et al. 2011), ITS 

(Nilsson et al. 2008) and 18S (Fonseca et al. 2010a; Pawlowski et al. 2012) can be used 

for the high throughput assessment of bacteria, archaea, fungi and meiobiota 

respectively from multiple samples. Phylogenetic diversity can then be used 

throughout all gene marker schemes as a proxy for functional diversity, by employing 

algorithms such as UniFrac (Lozupone & Knight 2005; Caporaso et al. 2010; Fierer et 

al. 2012). Metagenomic and metatranscriptomic analysis can be employed to 

investigate the functional capability and specific functioning of the prokaryotic size 

fraction characterised by organisms with small genomes (e.g. 2-4Mb) and their 

relatively small transcriptomes. Metatranscriptomic analyses are likely to be robust in 

simple communities of eukaryotic organisms where just a few species dominate 

(Durkin et al. 2012), but given the current limits of sequencing power, achieving 

effective coverage of replicated samples of complex eukaryotic communities (Bailly et 

al. 2007), whose transcriptomes can be very large (e.g. 20Mb), is still limited. Similarly, 

metagenomic sequencing of eukaryotic communities is unlikely to reach the 

appropriate depth of coverage for ecological synthesis, simply because eukaryotic 

genomes can be very large (the human genome alone is over 3Gb in size).  

Within prokaryotic communities, a new approach (PiCrust) (Langille et al. 
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2013) has emerged that links marker gene 16S studies to functional diversity maps 

environmental 16S reads to their closest ancestors with full genome sequences and 

predicts ancestral states of functional gene ontologies. Initial analyses suggest this 

outperforms low coverage shotgun metagenomic analyses in well-characterised 

communities, but further testing and examples will undoubtedly provide further 

insight. Nevertheless, the model provides a route between high throughput studies 

and full genome capability that may also eventually feature in the eukaryotic 

biosphere as more genomes are sequenced. 

Advances that are likely to be provided by the -omic toolbox regarding the 

functional diversity of eukaryotic communities (e.g. protists, fungi, meiobiota and 

macrofauna) are likely to be achieved by linking genotype phenotype data with the 

analysis of food webs and networks (Barberan et al. 2012; Rodriguez-Lanetty et al. 

2013). The Barcode of Life Project (Ratnasingham & Hebert 2007) strives for the 

provision of standardised and carefully curated DNA barcode data for organisms 

based on official barcode markers. So far, almost 200,000 species have been 

“barcoded”. Importantly, this endeavour provides a link between a standardised 

genotype and the taxonomy and ecology of the barcoded species. At the start of the 

barcoding movement, sequencing technologies were not mature enough to consider 

assessing multiple communities of organisms, but recently, a multitude of "meta-

barcoding" studies (Epp et al. 2012; Taberlet et al. 2012) have shown that approaches 

used for microbial communities can be conveniently transferred to macrofaunal 

communities. If the featured species in the meta-barcoding datasets have barcode 

reference data, this can provide a very powerful link to the functional attributes of the 

organisms comprising the sequenced communities. The maturation of the field of 

meta-barcoding not only provides a huge boost for our ability to assess large numbers 

of macrofaunal samples simultaneously (Ji et al. 2013), but also re-asserts the need for 

the generation of reference barcode libraries to provide the necessary links between -

omic technologies and functional ecology. Moreover, since gene marker-based studies 
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do not respect the boundaries between living and recently deceased, or even ingested 

species, dietary and food web analyses can be conveniently performed using either 

individual, or species-based sequencing of gut contents to investigate trophic 

interactions (Pompanon et al. 2012). 

Overlying these possibilities is the further opportunity to deduct functional 

relationships using the analysis of ecological networks at multispecies levels of 

organisation (Ings et al. 2009; Hagen et al. 2012). Following marker-based approaches 

and even metagenomic analyses, the resulting data is a familiar taxon-by-sample 

frequency matrix of genotype occurrence (Ji et al. 2013), that can be related back to 

phenotype occurrence (i.e. species). The quantitative nature of the associations can be 

estimated on the basis of the mode of evolution and genomic content of the markers 

used (while acknowledging potential PCR bias), but the co-occurrence incidence 

matrices will reflect the distribution of species in space and time. Such power 

potentially enables us to delimit co-occurring ecological networks (in space and/or 

time) and how individual networks respond to external drivers. Moreover, some 

components of the sequence data matrices will be annotated to a high degree of 

accuracy (e.g. species level for barcoded metabarcoding data) and for all other groups, 

potentially genus, order, family etc., but at least phylum, enabling the researcher to 

characterise biological interactions (parasitisim, predation, commensalism, 

mutualism, competition etc.) and ecological processes (Faust & Raes 2012). The 

additional strength of -omic high-throughput marker based approaches is that with 

the now routine analysis of ca. 50 complex samples simultaneously, a high degree of 

replication and sample coverage can be achieved on scales that are simply not possible 

using traditional approaches for either microbial or macrofaunal samples.  The 

combination of these emerging technologies and approaches promises a possible 

means of truly integrating ecological and evolutionary perspectives to responses to 

stressors across all the major domains of life in aquatic (and terrestrial) ecosystems.  
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D.7 Concluding remarks 

With an ever-increasing human population the need to monitor and predict our 

effects on the natural world has never been more important. In the developed world 

the predominant stressors have changed, presenting new challenges to biomonitoring 

science (Figure D.B), while developing nations such as India or China are facing the 

same stressors the western world was exposed to in the 20th century but on a far 

greater scale (Abate 1995; Yagishita 1995; Aggarwal et al. 2001). An eco-evolutionary 

approach to biomonitoring will allow us to better understand the dynamics between 

the selective forces of evolution and the ecology of species. The ability of a community 

to adapt to change is key to its response to a particular stressor (Woodward et al. 2010; 

Moya-Larano et al. 2012), and this needs to be considered alongside biomonitoring 

results. With new technologies such as the rise of new molecular markers (e.g. Van 

Aggelen et al. 2010; Williams et al. 2011), to the use of microbes (e.g. Lear et al. 2009) 

and the advances in NGS techniques (Text Box 2) there is a great variety in approaches 

now available to monitor the functional response of aquatic communities to 

environmental stress. 

 A shift in the culture surrounding legislative biomonitoring, governance and 

stakeholder implementation will be required before these advanced and promising 

approaches can be integrated into current protocols. There will likely be far fewer 

“traditional” taxonomists as NGS technologies take over, but many more 

bioinformaticians will be needed to process and analyse the NGS samples. The rate-

limiting step in biomonitoring will shift from the slow and laborious process of 

identifying individuals through microscopy (data acquisition) to limitations in the 

efficiency with which large volumes of data can be processed. It is not impossible to 

imagine a future where remote sensing stations which monitors environmental DNA 

or RNA and send sequence data back to the laboratory via telemetry, as weather 

stations do now; unmanned and automated transmitting results back to a central 

point. As bioinformatics solutions to data analysis and synthesis continue to develop 
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over time and its huge potential to the biomonitoring world, it is likely to be simply a 

matter of ‘when’ and not ‘if’ this revolution will take place on a truly global scale. 
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Table A. Results from the χ2 contingency test (see main text). p-values significant at the 0.1 
level are highlighted in bold. 

  ave.pH ave.ANC ave.DOC ave.L.Al 

meanTH 0.371314 1 0.530735 0.412294 

maxTH 0.241879 1 0.350825 0.245877 

E 0.090955 1 1 0.654173 

Vulnerability 1 0.634683 1 0.381809 

Generality 1 0.097951 0.145427 1 

sd.V 0.418791 1 0.22039 0.668166 

sd.G 0.087956 1 0.577211 0.662169 

redundancy 0.690655 0.635182 0.570715 0.68066 
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Figure C. Trends in average annual pH at each of the UWMN sites. Sites are arranged in order 
of their decreasing latitude, which can be used as a proxy for their initial acidified state, more 
acidified sites were generally in the south, while the least acidified sites were more northern. 
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Figure D. Trends in average annual Acid Neutralising Capacity at each of the UWMN sites. 
Site ordering is explained in the legend of Figure C. 
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Figure E. Trends in average annual Dissolved Organic Carbon at each of the UWMN sites. 
Site ordering is explained in the legend of Figure C. 
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Figure F. Trends in average annual labile aluminium at each of the UWMN sites. Site ordering 
is explained in the legend of Figure C. 
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Figure G. Trends in mean trophic height at each of the UWMN sites. Site ordering is explained 
in the legend of Figure C. 
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Figure H. Trends in average food web vulnerability at each of the UWMN sites. Site ordering 
is explained in the legend of Figure C. 
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Figure I. Trends in the standard deviation of food web vulnerability at each of the UWMN 
sites. Site ordering is explained in the legend of Figure C. 
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Figure J. Trends in food web redundancy at each of the UWMN sites. Site ordering is 
explained in the legend of Figure C. 



Appendix E | Chapter 3 SM 
 

Page | 270 
 

 

Figure K. Trends in the standard deviation of food web generality at each of the UWMN sites. 
Site ordering is explained in the legend of Figure C. 



Appendix E | Chapter 3 SM 
 

Page | 271 
 

 

 

Figure L. Trends in food web efficiency at each of the UWMN sites. Site ordering is explained 
in the legend of Figure C. 
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Figure M. Trends in food web generality at each of the UWMN sites. Site ordering is explained 
in the legend of Figure C. 
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Figure N. Trends in maximum trophic height at each of the UWMN sites. Site ordering is 
explained in the legend of Figure C. 
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Figure A. The number of herbivores and predators in each food web. The line shows the fit of 
a general linear model (see main text for details). 
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Figure B. The level of total weed regulation (a), monocot regulation (b) and dicot regulation 
(c) related to the number of herbivores in each network.  

 

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-2

0

2

4

log(Number of herbivores)

W
e
e
d
 r

e
g
u
la

ti
o
n

p = 0.0468

a)

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-2

0

2

4

log(Number of herbivores)

M
o
n
o
c
o
t 

re
g
u
la

ti
o
n

p = 0.012

b)

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-2

0

2

4

log(Number of herbivores)

D
ic

o
t 

re
g
u
la

ti
o
n

p = 0.033

c)



Appendix F | Chapter 4 SM 
 

Page | 277 
 

 

Figure C. The number of links to weeds and gastropods for omnivore nodes only within each 
food web. 
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Figure D. A density plot showing the trade-off in herbivore links and predator links. Within 
each food web, for each carabid species, the number of links to weed and gastropod resources 
are plotted. Some carabids were pure herbivores or predators, but most were omnivores. 
Colour indicates the count of each particular weed-gastropod link combination. The 
occupation of this space of potential feeding interactions for the most common carabid species 
Pterostichus melanarius is shown in the main text, the next four most common carabid species 
are shown here in black. 
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Table A. statistics of fit for the multiple linear regressions and Generalised Linear Models 
discussed in the main text. 

Linear regressions 

Response variable Explanatory variable F statistic  p-value 

Log(specialist 
herbivore interaction 
frequency) 

Number of weed species F1,365 = 11.883 0.0006 

Log(specialist 
predator interaction 
frequency) 

Number of gastropod 
species 

F1,258 = 15.47 0.0001 

Log(all herbivore 
interaction frequency) 

Number of weed species F1,365 = 5.41 0.020 

Log(all predatory 
interaction frequency) 

Number of gastropod 
species 

F1,258 = 0.04 0.84 

Log(omnivore 
predatory links) 

Log(omnivore herbivory 
links) 

F1,1583 = 66.981 <0.0001 

Total weed regulation Log(number of 
herbivores) 

F1,333 = 3.98 0.047 

Monocot weed 
regulation 

Log(number of 
herbivores) 

F1,333 = 6.42 0.012 

Dicot weed regulation Log(number of 
herbivores) 

F1,333 = 4.57 0.033 

Total weed regulation Log(specialist herbivore 
interaction frequency) 

F1,333 = 5.16 0.024 

Monocot weed 
regulation 

Log(specialist herbivore 
interaction frequency) 

F1,333 = 3.89 0.049 

Dicot weed regulation Log(specialist herbivore 
interaction frequency) 

F1,333 = 5.76 0.017 

Total weed regulation Log(all carabid - weed 
interaction frequency) 

F1,333 = 0.117 0.907 

Monocot weed 
regulation 

Log(all carabid - weed 
interaction frequency) 

F1,333 = 0.097 0.756 

Dicot weed regulation Log(all carabid - weed 
interaction frequency) 

F1,333 = 0.398 0.528 

Generalised linear models 

Response variable Explanatory 
variable 

Error 
distribution 

F statistic p-value 

Number of herbivores Log(number of 
predators + 
0.05) 

quasipoisson F1,372 = 339.5 <0.0001 

Number of omnivore 
links to weeds 

Log(number of 
omnivore links 
to gastropods) 

poisson  <0.0001 
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Table A. Equations used to calculate macroinvertebrate individual dry mass (DM). HW: head-capsule width (mm); BL: total body length (mm); SL: shell 

length (mm). Morphologically similar taxa or higher taxonomic levels, shown in parentheses, were used where equations were unavailable for a given 

taxon. 

Taxon y X Regression equation R2 Reference 

Agapetus fuscipes (Glossosoma) ln(DM) ln(HW) y =  -6.2 + 3.75x 0.71 Meyer (1989) 

Ancylus fluviatilis 
log10(DM) 

log10(SL
) 

y =  1.913 + 3.3x 
0.99 Calow  (1975) 

Asellus aquaticus  
ln(DM) Ln(BL) 

y =  1.2688 × x3.326 
0.69 

Baumgärtner & Rothhaupt  
(2003) 

Asellus meridianus (Asellus aquaticus) 
ln(DM) ln(BL) 

y =  1.2688 × x3.326 
0.69 

Baumgärtner & Rothhaupt  
(2003) 

Athripsodes (Oecetis spp.) ln(DM) ln(HW) y =  1.2688 × x3.326 0.67 Benke  et al. (1999) 

Baetis (Baetis spp.) DM HW y =  1.2688 × x3.326 0.96 Benke  et al. (1999) 

Baetis rhodani (Baetis spp.) DM HW y =  -4.13 + 1.12x 0.96 Benke  et al. (1999) 

Baetis scambus (Baetis spp.) DM HW y =  -0.91 + 3.35x 0.96 Benke  et al. (1999) 

Baetis vernus (Baetis spp.) DM HW y =  1.2688 × x3.326 0.96 Benke  et al. (1999) 

Bezzia sp. 
ln(DM) Ln(BL) 

y =  2.7842 × x2.835 
0.99 

Baumgärtner & Rothhaupt  
(2003) 

Caenis rivulorum (Caenis spp.) 
ln(DM) lnHW 

y =  0.0089 × x2.145 
0.63 

Baumgärtner & Rothhaupt  
(2003) 

Centroptilum luteolum (Baetis spp.) DM HW y =  -5.53 + 1.91x 0.96 Benke  et al. (1999) 

Chironomid (Chironomidae) DM HW y =  0.4109 + 3.1678x 0.9 Benke  et al. (1999) 

Dendrocoelum lacteum (Dugesia tigrina) DM BL y =  -4.4518 + 2.4724 0.81 Benke  et al. (1999) 

Dicranota sp. ln(DM) ln(BL) y =  -5.46 + 4.33x 0.54 Woodward  & Hildrew 
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(2001) 

Drusus annulatus (Limnephilidae) ln(DM) lnHW y =  -6.078 + 3.092x 0.83 Meyer (1989) 

Dysticidae sp. (Coleoptera, larvae) ln(DM) ln(BL) y =  -6.21 + 2.52x 0.57 Meyer (1989) 

Elmis aenea (Coleoptera, adults) ln(DM) ln(BL) y =  -3.20 + 2.22x 0.78 Burgherr  & Meyer (1997) 

Elmis aenea (Elmidae, larvae) ln(DM) ln(BL) y =  -4.95 + 2.83x 0.83 Towers  et al. (1994) 

Eloeophila sp. (Diptera) ln(DM) ln(BL) y =  -2.12 + 2x 0.83 Burgherr  & Meyer (1997) 

Erpobdella octoculata ln(DM) ln(BL) y =  -2.74 + 2.12x 0.78 Edwards  et al. (2009) 

Gammarus pulex (Gammarus fossarum) ln(DM) ln(BL) y =  -2.202 + 1.66 0.9 Burgherr  & Meyer (1997) 

Glossiphonia complanata ln(DM) ln(BL) y =  1.265 × x2.747 0.64 Edwards  et al. (2009) 

Helobdella stagnalis ln(DM) ln(BL) y =  1.30 + 3.62x 0.62 Edwards  et al. (2009) 

Hydracarina (Hydracarina spp.) 
ln(DM) ln(BL) 

y =  -4.4518 + 2.4724 
0.48 

Baumgärtner & Rothhaupt  
(2003) 

Hydropsyche siltalai (Hydropsyche spp.) DM HW y =  -4.4518 + 2.4724 0.87 Benke  et al. (1999) 

Hydroptilidae (Trichoptera, cased) 
ln(DM) lnHW 

y =  1.30 + 3.62x 
0.82 

Baumgärtner & Rothhaupt  
(2003) 

Hygrobia hermanni (Coleoptera, larvae) ln(DM) ln(BL) y =  0.8496 × x3.201 0.57 Meyer (1989) 

Ilybius sp. (Coleoptera, larvae) ln(DM) ln(BL) y =  0.4109 + 3.1678x 0.57 Meyer (1989) 

Lepidostomata hirtum (Trichoptera, cased) 
ln(DM) lnHW 

y =  -8.71 + 4.53x 
0.82 

Baumgärtner & Rothhaupt  
(2003) 

Leuctra spp. (Leuctridae) DM HW y =  –4.95 + 2.83x 0.9 Benke  et al. (1999) 

Limnephilus lunatus (Limnephilidae) ln(DM) lnHW y =  1.913 + 3.3x 0.83 Meyer (1989) 

Limnius volkmari (Limnius, larvae) ln(DM) lnHW y = (πr2 × 1.05x)/4 0.7 Burgherr  & Meyer (1997) 

Niphargus aquilex (Gammarus fossarum) ln(DM) ln(BL) y =  0.0618 × x2.502 0.9 Burgherr  & Meyer (1997) 

Oecetis sp. (Oecetis spp.) ln(DM) lnHW y =  -8.71 + 4.53x 0.67 Benke  et al. (1999) 
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Oligochaeta DM(g)  y =  -6.21 + 2.52x  Smock (1980)  

Oreodytes sanmarkii (Hydroporus, Dytiscidae) ln(DM) ln(BL) y =  -0.83 + 4.25x 0.71 Benke  et al. (1999) 

Oulimnius tuberculatus (Limnius, larvae) ln(DM) lnHW y =  -2.69 + 2.11x 0.7 Burgherr  & Meyer (1997) 

Oxycera sp. (Diptera) ln(DM) ln(BL) y =  0.0163 × x2.477 0.83 Burgherr  & Meyer (1997) 
Paraleptophlebia submarginata 
(Leptophlebiidae) ln(DM) lnHW 

y =  2.58 + 2.80x 
0.86 Burgherr  & Meyer (1997) 

Piscicola geometra (Hirudinea spp.) ln(DM) ln(BL) y =  0.0089 × x2.145 0.62 Edwards  et al. (2009) 

Pisidium sp. (DM) SL y =  0.4109 + 3.1678x 0.87 Benke  et al. (1999) 

Plectrocnemia (Plectrocnemia conspersa) 
logMeyer 

19890(μg) 
logMeyer 

19890HW 
y =  -6.21 + 2.52x 

 
Woodward  & Hildrew 
(2001) 

Polycelis tenuis (Dugesia tigrina) (DM) BL y =  1.55 + 3.21x 0.81 Benke  et al. (1999) 

Potamophylax latipennis (Limnephilidae) ln(DM) lnHW y =  0.7255 × x3.325 0.83 Meyer (1989) 

Psychoda sp. (Diptera) ln(DM) ln(BL) y =  0.8613 + 3.576x 0.83 Burgherr  & Meyer (1997) 

Rhyacophila dorsalis 
logMeyer 

19890(μg) 
logMeyer 

19890HW 
y = 0.20  + 3.32 x 

0.72 Edwards  et al. (2009) 

Serratella ignita (Serratella sp.) (DM) HW y =  2.1694 × x2.623 0.72 Benke  et al. (1999) 

Silo nigricornis (Goeridae) ln(DM) lnHW y = -5.30  + 2.36x 0.75 Meyer (1989) 

Simulium sp. ln(DM) lnHW y =  -6.2 + 3.75x 0.93 Burgherr  & Meyer (1997) 

Tanypodinae (DM) HW y =  1.913 + 3.3x 0.85 Benke  et al. (1999) 

Tipula yamatotipula (Tipula abdominalis) ln(DM) ln(BL) y =  -6.20 + 3.75x 0.93 Smock (1980) 
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Table B. The taxonomic resolution (i.e. generality) assigned to each node in the 
networks to create links between nodes. 

Node Resolution 

Achnanthes clevei genus 

Achnanthes conspicua genus 

Achnanthes helvetica genus 

Achnanthes hungarica genus 

Achnanthes lanceolata genus 
Achnanthes lanceolata 
abbreviata genus 
Achnanthes lanceolata 
bimaculata genus 
Achnanthes lanceolata 
lanceolata genus 
Achnanthes lanceolata 
rostrata genus 

Achnanthes minutissima genus 
Achnanthidium 
minutissimum genus 

Agapetus fuscipes genus 

Alboglossiphonia heteroclita family 

Amphipoda exact 

Amphora aequalis genus 

Amphora inariensis genus 

Amphora ovalis genus 

Amphora pediculus genus 

Amphora veneta genus 

Ancylus fluviatilis family 

Asellus aquaticus family 

Athripsodes sp. family 

Baetis sp. genus 

Baetis rhodani genus 

Baetis scambus genus 

Baetis vernus genus 

Bezzia sp. family 

Caenis rivulorum genus 

Caenis robusta genus 

Centroptilum luteolum genus 

Chironomidae family 

Cloeon simile genus 

Cocconeis pediculus genus 

Cocconeis placentula genus 

Cocconeis pseudothumensis genus 

Coleoptera exact 

Cottus gobio genus 

Cyclotella sp. genus 

Cyclotella meneghiniana genus 

Cyclotella radiosa genus 

Cymatopleura elliptica genus 

Cymatopleura solea genus 

Cymbella sp. genus 

Cymbella cistula genus 

Cymbella proxima genus 

Dystiscidae family 

Dendrocoelum lacteum family 

Diatoma vulgaris genus 

Dicranota sp. genus 

Diploneis oblongella genus 

Diploneis parma genus 

Diptera exact 

Drusus annulatus genus 

Elmis aenea genus 

Eloeophila sp. family 

Encyonema silesiacum genus 

Ephemeroptera exact 

Erpobdella octoculata genus 

Fragilaria sp. genus 

Fragilaria bidens genus 

Fragilaria capucina genus 

Fragilaria capucina gracilis genus 

Fragilaria capucina radians genus 

Fragilaria capucina rumpens genus 

Fragilaria construens venter genus 

Fragilaria elliptica genus 

Fragilaria leptostauron genus 

Fragilaria nitzschioides genus 

Fragilaria ulna genus 

Fragilaria vaucheriae genus 

Fragilariforma virescens genus 

Gammarus pulex family 

Gasterosteus aculeatus genus 

Glossiphonia complanata family 

Gomphonema sp. genus 

Gomphonema angustum genus 

Gomphonema augur genus 

Gomphonema clavatum genus 

Gomphonema olivaceum genus 

Gomphonema parvulum genus 

Gyrosigma acuminata genus 

Gyrosigma attenuatum genus 
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Hantzschia amphioxys genus 

Helobdella stagnalis family 

Hemerodromia sp. family 

Hydracarina family 

Hydraenidae genus 

Hydropsyche siltalai genus 

Hydroptila sp. genus 

Hydroptilidae family 

Hygrobia hermanni genus 

Ilybius sp. genus 

Lampetra planeri genus 

Lepidostoma hirtum genus 

Leuctra sp. genus 

Leuctra hippopus genus 

Leuctra inermis genus 

Limnephilidae family 

Limnephilus lunatus genus 

Limnius sp. genus 

  

Melosira varians genus 

Meridion circulare genus 

Navicula sp. genus 

Navicula atomus genus 

Navicula bacillum genus 

Navicula cincta genus 

Navicula cryptonella genus 

Navicula exilis genus 

Navicula ignota genus 

Navicula lanceolata genus 

Navicula margalithii genus 

Navicula minima genus 

Navicula seminulum genus 

Navicula slesvicensis genus 

Neidium dubium genus 

Niphargus aquilex family 

Nitzschia sp. genus 

Nitzschia amphibia genus 

Nitzschia capitellata genus 

Nitzschia dissipata genus 

Nitzschia fonticola genus 

Nitzschia frustulum genus 

Nitzschia heufleriana genus 

Nitzschia linearis genus 

Nitzschia palea genus 

Nitzschia recta genus 

Nitzschia sigmoidea genus 

Nitzschia sublinearis genus 

Oecetis sp. family 

Oligochaeta genus 

Oreodytes sanmarkii genus 

Oulimnius tuberculatus genus 

Oxycera sp. family 
Paraleptophlebia 
submarginata genus 

Phoxinus phoxinus genus 

Pinnularia sp. genus 

Piscicola geometra family 

Pisidium sp. genus 

Planaria torva family 

Planorbis sp. family 

Polycelis tenuis family 

Potamophylax latipennis genus 

Proasellus meridianus family 

Procloeon pennulatum family 

Psammodictyon constrictum genus 

Pseudostaurosira brevistriata genus 

Psychoda sp. family 

Pungitius pungitius genus 

Rhoicosphenia abbreviata genus 

Rhyacophila dorsalis genus 

Salmo trutta genus 

Scirtidae family 

Serratella ignita genus 

Silo nigricornis genus 

Simulium sp. genus 

Simulium vernum genus 

Stauroneis sp. genus 

Stauroneis smithii genus 

Staurosira construens genus 

Staurosira elliptica genus 

Staurosira pinnata genus 

Staurosirella lapponica genus 

Staurosirella leptostauron genus 

Staurosirella pinnata genus 

Surirella brebissonii genus 

Surirella capronii genus 

Synedra sp. genus 

Synedra parasitica genus 

Synedra ulna ulna genus 

Tanypodinae family 
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Thymallus thymallus family 

Tipula sp. genus 

Trichoptera exact 

Undifferentiated centric 
diatom exact 

CPOM exact 

FPOM exact 
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