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Abstract

Effective monitoring of the environment for anthropogenic impacts is essential
for managing and conserving ecosystems, especially in the face of global climate
change and an ever increasing human population. Yet current biomonitoring schemes
are grounded in species or trait based approaches, and lack the tools required to deal
with the effects of stressors on species and their interactions in complex natural
systems. Ecological networks can offer new insights into ecosystem degradation by
explicitly considering the interactions between species, adding value to current

taxonomically constrained schemes.

Here, I develop a formalisation of a method for constructing ecological
networks from species lists and trophic information harvested from the primary
literature (Chapter 2). I then use this method to augment traditional biomonitoring
data with information on the interaction between species to build large collections of
food webs (Chapters 3-5). I apply novel network analysis methods from complex
network research to examine the substructure of these networks. In Chapter 3, I find
that the structure, and substructure, of freshwater food webs are fundamentally
altered by hydrochemical stress (Appendix A). Chapter 4 demonstrates that the
structure of agricultural food webs are linked to the delivery of beneficial pest control
services, potentially allowing those services to be enhanced through management of
food web structure. Finally, in Chapter 5 I use more detailed food web data to
investigate how freshwater food webs are impacted by a catastrophic pesticide spill,
how the indirect effects propagate through the food web, and how the structure of the

community and ecosystem functioning recover over time.

The findings presented herein demonstrate that ecological networks constructed from
routine biomonitoring data can be a useful tool for understanding the impacts of
stressors on ecological communities. Considering the interactions between species is
vital if we are to fully understand, and mitigate against the negative effects of global

climate change on biodiversity.
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Chapter 1 | Introduction

| Ecological networks: the missing links in

biomonitoring science!
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Chapter 1 | Introduction

1.1 Biomonitoring in the 21st century

Biomonitoring programmes were first developed in the wake of the Industrial
Revolution to measure the effects of environmental stressors on the natural world.
They focus on measuring the biological response to environmental perturbations, as
biota integrate the changes in environmental quality over time into one measure (i.e.
presence, absence or composition), unlike chemical data which reflects only one point
in time. Most current programmes are taxonomically constrained and monitor
changes in biodiversity, although increasingly, aspects of ecosystem functioning are
being incorporated. A range of indices have been developed which score taxa on their
known sensitivity to particular stressors (e.g. Balloch, Davies & Jones. 1976; Wright,
Furse & Armitage 1993; Bonada et al. 2006; Murphy et al. 2013). Changes are assessed
against a baseline level relative to a reference or idealised level (e.g. targets for

restoration or acceptable levels of a response variable for that place and time).

This approach of assessing the biota of a site with respect to a ‘reference’ condition
now underpins many biomonitoring schemes across Europe (e.g. Simpson et al. 2005;
Murphy et al. 2013) and other parts of the world (Simpson & Norris 2000). However,
pre-industrial (i.e. pre 1800) target conditions for many habitats no longer exist, or are
very rare; many of European freshwater habitats are impacted (Friberg et al. 2011;
Malaj et al. 2014) and many grasslands worldwide have experienced eutrophication
driven by emissions and nitrogen deposition (Clark & Tilman 2008). Furthermore
preindustrial states are very difficult to model with confidence (Battarbee et al. 2005).
Additional challenges are provided by global climate change, since the reference
conditions themselves may be shifting (Pauly 1995, Bennion et al. 2011).
Unfortunately, this makes assigning appropriate reference conditions for

biomonitoring problematic.

Due to the paucity of baseline data, current biomonitoring schemes are still unable
to diagnose many perturbations, often there is also a generally poor understanding of
the underlying ecological mechanisms governing an ecosystems response to
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Chapter 1 | Introduction

environmental change (Friberg et al. 2011). Newly emerging environmental threats,
such as the many facets of climate change, pose new challenges for biomonitoring
schemes. Thus, there is a growing need to determine how best to assess the impact of
these emerging stressors, both in isolation and in combination. Also, the structural
biodiversity-centric focus of traditional methods (e.g. Wright, Furse & Armitage 1993;
Metcalfe-Smith 1996; Murphy et al. 2013) now needs to be augmented with more
explicitly functional measures (e.g. Young, Matthaei & Townsend 2008), to provide
complementary insights into the impacts of stressors (Woodward et al. 2012b).
Incorporating species interactions into biomonitoring approaches may help to
overcome many of the limitations of current biomonitoring approaches, and provide

a new template for ecosystem monitoring.

1.2 The advantages of incorporating species interactions into
biomonitoring schemes
Traditional biomonitoring schemes have focused on presence/absence or
abundance of taxa (network nodes') across environmental gradients, while ignoring
the network of pairwise interactions (‘links") between them (Friberg et al. 2011). Such
taxonomic grounding limits its ability to generalise beyond the characteristic biota of
a given region or system. For instance, when assessing the ecological status of
European rivers, huge effort has been devoted to harmonising approaches and data
across member states, forcing practitioners to resort to complex statistical inter-
calibration (see Birk et al. 2013). However, network approaches are not reliant on the
taxonomy of the nodes per se, and so, in theory, can be used to compare emergent
topologies of networks irrespective of biogeographical differences in species

composition.

Environmental legislation increasingly requires both the structural and

functional attributes of a particular community to be considered (e.g. the Water

3
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Chapter 1 | Introduction

Framework Directive; European Commission 2000), but the latter are often still
missing or inferred, despite increasing calls for them to be embedded in ecological
assessments. Network approaches can help address this gap as many ecosystem
processes and the services they provide depend on interactions between taxa
(Thompson, Dunne & Woodward 2012). Interactions between these network nodes
influence biodiversity and ecosystem functioning (Kremen 2005; Thompson, Dunne
& Woodward 2012) and a system'’s sensitivity to environmental change (Tylianakis,
Tscharntke & Lewis 2007). Changes in network structure can provide clues to altered

dynamics and ecosystem functioning.

A classic example of food web interactions determining alternative outcomes of
both structural and functional responses to environmental stressors comes from
shallow lakes. Here, catastrophic regime shifts are triggered by extreme nutrient
concentrations, but in intermediate conditions trophic cascades in the food web can
flip the ecosystem from one stable state to another, even in the absence of additional
environmental change (Scheffer & Carpenter 2003). Ecological hystereses, whereby
community recovery is modulated by the biota and not simply the reverse trajectory
of the response to an impact (Scheffer & Carpenter 2003), highlight how the network
of species interactions that underpin critical processes and services (such as clean
water, or fisheries) can influence both the internal dynamics of the system and its
resilience to environmental change (e.g. Thompson, Dunne & Woodward 2012). A
good example of this is that of Broadstone Stream (Figure 1), as the food web of this
small stream recovered from the effects of acidification, counterintuitive patterns
emerged. The community response did not simply show a straightforward reverse of
the trajectory of the response to acidification, and invertebrate numbers actually
declined as pH rose. These system-level responses only made sense when viewed in
the context of the food web: the declines in invertebrate numbers coupled with a
succession of invasions of progressively larger predators, represented increasing top-

down effects and the resultant restructuring of the mass-abundance scaling properties

4
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of the network even though the prey assemblage composition remained relatively
constant. Traditional biomonitoring techniques could not explain this ecological
response because they lacked the key ingredient: species interactions within the food

web.

Long term amelioration of acifification
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Figure 1. Broadstone stream food webs plotted in “trivariate’ space; as species abundance
versus body mass data, with links between nodes representing trophic interactions. The
abundance of invertebrates declines despite improving environmental conditions, as top-
down effects intensify. Redrawn from Layer et al. (2011).

Keystone species can be identified through a network approach (e.g. Jordan
2009), helping to focus monitoring efforts towards those that are ecologically most
significant, since highly connected species often determine network stability and
vulnerability to cascading secondary extinctions (Dunne, Williams & Martinez 2002b).
Similarly, a network approach can also help improve efficiency by identifying and
tracking those species or interactions that are most sensitive to change: thus, keystone
and indicator nodes could help provide novel early warning systems for detecting
impending regime shifts or catastrophic ecosystem collapse (Aizen, Sabatino &

Tylianakis 2012).

A network approach can help to reveal the complicated direct and indirect
effects of stressors on an ecological community, beyond the simple loss or gain of
species. For example, when freshwaters are acidified and specialist herbivores are

excluded, generalist herbivore-detritivore species occupy their niche space, slowing
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Chapter 1 | Introduction

their re-establishment (e.g. Layer, Hildrew & Woodward 2013). Translocation
experiments have shown that these acid tolerant consumers can perform just as well,
if not better, in the absence of interactions with more acid sensitive species in the
network, suggesting they are not simply acidophilous. Empirical and modelling work
has provided some evidence that generalist acidified networks are more robust than
their counterparts at higher pH: i.e. ecological inertia within the food web may be
modulating biological recovery as acidity ameliorates (Layer et al. 2010b; Layer,

Hildrew & Woodward 2013).

Network analysis has also revealed how another major environmental stressor -
drought - leads to a top-down erosion of stream food webs: large and rare species
high in the web are especially sensitive and overall ecosystem functioning is
compromised due to severely impaired biomass fluxes through the network (Ledger
et al. 2013). The complex interconnected consequences of environmental stress for a
particular system can thus only be fully understood from a network perspective,
allowing a priori predictions to be made and appropriate management strategies to be
developed. Ecotoxicology could also benefit from taking this more system-based
approach, as different pest control agents (insecticides, herbicides, fungicides) will
affect different trophic levels and compartments in the food web, with ramifications
that ripple far beyond the intended targets or other species with acute sensitivity to
the poison. Monitoring the network as a whole would help detect these potentially

critical indirect and often unanticipated effects (e.g. Baird et al. 2001).

Consideration of the interactions between species when assessing a community’s
response to perturbations can provide a deeper insight into the mechanisms
governing those responses (Scheffer & Carpenter 2003; Woodward et al. 2010a; Friberg
et al. 2011). An understanding of the characteristics of a “healthy’, unperturbed
community might remove the need for a ‘reference condition” approach to
biomonitoring altogether, allowing the limitations associated with that approach,

such as shifting baselines, to be circumvented.

6

Page




Chapter 1 | Introduction

1.3 Incorporating ecological networks into biomonitoring schemes

Although potentially useful, network-based approaches must still overcome
some significant challenges, particularly in terms of gathering data on interactions. In
some cases biomonitoring data are explicitly interaction-based, e.g. monitoring
pollinators by collecting individuals from flowers (as in Kremen, Ullman & Thorp
2011; Pocock, Evans & Memmott 2012) but, on the whole, direct monitoring of the
interaction itself is currently too labour intensive to be practical in routine
biomonitoring schemes (Hegland et al. 2010). For example, to characterise the
interactions in a traditional food web it is necessary to examine many hundreds of
guts for each consumer species (e.g. Woodward, Speirs & Hildrew 2005). If a networks
based approach to the widespread biomonitoring of the natural world is to be
adopted, then the efficiency with which ecological networks can be built must be

dramatically increased.

Where directly observing interaction data is impractical, one approach is to
augment monitoring data by inferring interactions based on prior knowledge. Such
inferences are especially valuable where assemblages across trophic levels are
routinely monitored, e.g in aquatic systems (fish, macroinvertebrates and algae in
freshwaters and whole fish assemblages in the sea). Interactions can be added from
previously observed interactions, e.g. from data papers (e.g. Brose et al. 2005; Barnes
2008) and online resources, such as the Interaction Web Database

(http:/ /www.nceas.ucsb.edu/interactionweb/index.html) or the Database of Insects

and their Food Plants (http:/ /www.brc.ac.uk/dbif/). For instance, Mulder and Elser

(2009) constructed a set of 22 food webs from biomonitoring data and published
trophic interactions to show how chemical soil properties influence network structure
and hence soil processes and services. Quantitative networks can be created from
these known interactions based on simple rules (e.g. Chapter 4; Pocock, Evans &

Memmott 2012). Where historic data exist (e.g. the UK Upland Waters Monitoring
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Network; Kernan et al. 2010) networks could even be inferred by hindcasting back

through time (Chapter 3).

Such inferred networks have potential limitations, however, as they ignore
possible behavioural differences in species between systems, (i.e. preferential feeding
depending on which resources are available) and unexpected or state-specific changes
in networks (e.g. those pre-empting regime shifts) could go undetected.
Notwithstanding these caveats, the potential benefits are substantial, as the
parameterisation of networks using simple allometric scaling rules could ultimately
allow interaction strengths or energy fluxes to be inferred and stability or productivity
to be modelled dynamically (e.g. Appendix A; Berlow et al. 2009; Layer et al. 2010b;
Tang, Pawar & Allesina 2014). This would provide a currently missing system-level
link between structure and (inferred) functioning. Inferring networks from the vast
amounts of biomonitoring data already in existence would bring the benefits of
ecological network science into aspects of biomonitoring, while circumventing the
huge effort required to construct each network anew from direct observation. To
achieve this, a systematic tool for the automated construction of large volumes of

ecological networks is required (Chapter 2; Gray et al. 2015b).

Just as the goals and aims of biomonitoring differ from site to site, the type of
network monitored is likely to also vary, as the ecosystem services and functions they
provide are prioritized differently from place to place. There is huge scope for further
development in this area, for example, in understanding the extent to which networks
can withstand restructuring before the goods and services, which they provide
become impaired (e.g. Chapter 5; Tylianakis et al. 2010; Thompson, Dunne &
Woodward 2012). Some systems show clear signs in their network structure of
impending regime shifts which have consequences for ecosystem functioning (e.g.
Rawcliffe et al. 2010), whereas other networks experience significant network
rearrangements without affecting some network metrics (Raffaelli & Friedlander

2012). Thus the interpretation of network data will depend upon the type of system
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Chapter 1 | Introduction

being monitored as well as the desired ecosystem goods and services.

1.4 Network metrics informing ecological research

Traditional ecological network research has focussed on the analysis of basic
network metrics such as linkage density (L/S; where L is the number of links, and S
the number of nodes), connectance (L/S?), generality (number of resources per
consumer), vulnerability (number of consumers per resources) of nodes, food chain
length and proportion of basal, intermediate and top nodes (Thompson et al. 2012).
How these basic metrics vary with the size of the network and with environmental
gradients has been extensively studied (Briand 1983; Briand & Cohen 1984; Morris et
al. 2014). Increasingly though as the quality of the underlying food web data have
improved, and analysis methods have advanced, these metrics are proving to be
heavily influenced by sampling effort and insufficient to answer the types of
ecological question under investigation (e.g. Goldwasser & Roughgarden 1997;

Heleno, Devoto & Pocock 2012; Morris et al. 2014).

It is important that any metrics used for analysis are rooted in ecological theory,
as those which have been traditionally used are, as well as appropriate for addressing
the hypothesis in question. Linkage density and connectance are both measures of
how well connected a community is, highly connected communities might be more
resilient to perturbations because redundant interactions might protect the
community from secondary extinctions (Dunne, Williams & Martinez 2002b; Thébault
& Fontaine 2010). As such, connectance has been proposed as an important and
holistic biological indicator (Gilbert 2009). However, a meta-analysis revealed that
there is no evidence that connectance is related to conservation value (Heleno, Devoto

& Pocock 2012).

Food chain length indicates the number of times energy has passed from a consumers

diet into consumer biomass (Figure 2), between a basal species and a top consumer in
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Chapter 1 | Introduction

a food web (the 'trophic level'; Williams & Martinez 2004). Food chain length can be
measured in a number of ways, Levine’s (1980) prey-averaged trophic height is a
commonly used variant, and is equal to 1 + the mean trophic level of all the
consumer’s resource. The calculation and ecological meaning of food chain length and
trophic heights is challenged by the ubiquity of omnivory, cannibalism and mutual
predation. There are theoretical constraints on the length of food chains, Elton (1927)
predicted that trophic levels are limited to be fewer than six, others have suggested
that food chains found in natural systems are shorter than you would expect by chance
(Pimm 1980; Lawton 1989; Yodzis 1989; Williams & Martinez 2000). However it is
unknown to what extent under-sampling has contributed to these findings (Lawton
1989; Huxham, Raffaelli & Pike 1995; Goldwasser & Roughgarden 1997; Marcogliese
& Cone 1997).

Generality is a measure of the breadth of a consumer’s diet. If a consumer has a
specialist (i.e. narrow) diet and is reliant on few resource nodes, then it might be
expected to be vulnerable to extinction as the loss of only a few species from the food
web might leave it with no resources. Equally if a consumer has low generality it is
likely to have low topological importance as it mediates few energy pathways through

the food web. Vulnerability is a measure of how many consumers are feeding on a

Figure 2. An imaginary food web. An example food chain of length three is highlighted in
blue. Trophic height (Levine 1980) is shown to the right. The generality of node i is three, as
it consumes three resource nodes. Its vulnerability is one as it is preyed upon by one

consumer. Page | 10



Chapter 1 | Introduction

particular resource species (Figure 2), and therefor how important that node is for the
flow of biomass through the food web. Generality and vulnerability scores can be
normalised to the size of the food web, allowing values to be compared across
different systems, or the standard deviation to be calculated to compare the variability
of those scores. Again, sampling effort has been found to strongly influence these
metrics, complicating their comparison between different systems (Lawton 1989;
Huxham, Raffaelli & Pike 1995; Goldwasser & Roughgarden 1997; Marcogliese &
Cone 1997).

Metrics from engineering have begun to enter ecological research, such as
measures of network efficiency. The efficiency of a network is a measure of how
reachable nodes are from any other node in the network, hence it builds upon the
more simplistic measure of connectance (Figure 3). This method reveals information
about the substructure of networks, it is more sophisticated than connectance which
provides information about the density of connections averaged across the whole
network, rather it is a descriptor of how well distributed these interactions are (Figure
3). This method has been applied to measure the global and local (i.e. node specific)

efficiency of neural networks (Latora & Marchiori 2001), but is yet to be applied to

a) b) <)

Low connectance High conneclance High connectance
Low efficiency High efficiency Low efficiency

Figure 3. Some example networks with high and low global efficiency and connectance. The
shortest path between nodes i and j are highlighted. Connectance is insensitive to the
distribution of links in a network, such that both b) and c) have the same connectance score.
However all the nodes in b) are within two links of one another, yielding a high efficiency
score, whilst the shortest path between nodes i and j in c) is four, yielding a low efficiency
score. Page | 11
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ecological networks. This method is related to the ‘small-world” phenomenon,
networks which display ‘small-world” characteristics have shorter path lengths
between nodes than would be expected for a network of that size (Figure 4), which
has important implications for the spread of perturbations through the network
(Watts & Strogatz 1998; Montoya & Solé 2002). More traditionally used metrics (such
as connectance) cannot capture this property. As such the nodes within a network
with high efficiency are more highly connected than expected, and are likely to be

robust to species and link loss.

The application of advanced complex network analysis techniques to ecological
networks is an exciting new avenue of research, many of these new tools may prove
useful in increasing our understanding of the structure and dynamics of natural

communities, allowing us to make predictions, and design conservation strategies

Figure 4. An example of a food web with small-world properties. This highly connected food
web is dominated by short path lengths between resources and consumers, an example of
which is highlighted; a = coarse particulate organic matter (e.g. leaf litter), b = Gammarus pulex,
¢ = Salmo trutta, d = Lutra lutra. The two concentric circles of nodes represent the shortest food
web distances to or from G. pulex; all nodes in the network are within two links G. pulex.
Symbols for nodes represent different trophic elements: green circles = producers, blue squares
= macroinvertebrates, purple diamonds = vertebrate ectotherms, red triangles = endotherm:s,

black circles = abiotic resources. Reproduced from Thompson et al. (2015).
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more effectively. Substructural analysis of ecological networks is in its infancy, the
analysis of large collections of replicated ecological networks using these novel tools
has the potential to provide a far deeper understanding of the response of ecological
networks to environmental change. Interdisciplinary collaboration will continue to
allow the flow of ideas and novel metrics from other applications of network science,
including biomedical research, social networks and information theory, into ecology
(e.g. Ulanowicz 2004) to yield ever more sophisticated tools: the challenge now is to
adopt and adapt these novel informatics approaches in a well-informed way to add

value to biomonitoring.
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1.5 Aims and thesis structure

The main aim of this project was to apply novel network analysis techniques,
taken from other fields of complex network research, to examine the suitability of
ecological networks, in particular food webs, as a biomonitoring tool for
understanding the impacts of anthropogenic stressors on the environment. To do this,
I first developed a function in the R statistical programming language to automate the
process of constructing food webs from species lists and trophic information
harvested from the literature. I then wuse this function to combine routine
biomonitoring data with information about the trophic interactions between species
to build unprecedentedly large collections of food webs spanning environmental
gradients. I then analyse these collections using methods taken from complex network
research to determine if their structure was sensitive to those environmental

gradients.

Chapter 2 - “Joining the dots: an automated method for constructing food webs from
compendia of published interactions’. Here I developed a novel R function which
automates the construction of food webs from taxonomic lists, and a dataset of trophic
interactions. While researchers have used this approach before, it is typically done by
hand, and without a clear output which allows the source of each interaction to be
traced. This R function provides an output which can be published alongside the food
web stating the source of each interaction, and any diet assumptions which might
have been made. I then tested the performance of this method against the traditional
method of constructing food webs through analysis of gut contents, as well as some
models which could be used to predict food web structure, and found that it matched
and often outperformed those models. I then used this method to construct the food

webs analysed in Chapters 3-5.

Chapter 3 - “The recovery of freshwater food webs from the effects of acidification’.
Here I augmented typical biomonitoring data which had been collected over the last
24 years in order to monitor the recovery of 23 lake and stream sites from the effects
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of acidification, and construct 451 food webs. I examined these food webs to assess
how their structure had recovered over time, and what the principal hydrochemical
determinants of food web structure were. A first for food web research, I measured
the global efficiency of the networks to make inferences about the connectivity of the

food webs as they respond to hydrochemical stress.

Chapter 4 - ‘Food web topological plasticity disrupts the provision of ecosystem
services’. Here I used biomonitoring data, which was collected to assess the impacts
of genetically modified crops on farmland biodiversity, to construct a collection of 374
carabid beetle food webs. Carabid beetles are known to regulate the abundance of
weed seeds in arable fields, and so provide a pest control service to farmers. I
examined the structure of these food webs to assess if the presence of alternative
resources, here gastropod prey, interfered with the interactions between carabid

consumers and their weed seed resources, and disrupted this pest control service.

Chapter 5 - “The recovery of a freshwater food web from a catastrophic pesticide spill’.
Here I present a study of 8 food webs constructed from samples taken from the River
Kennet in Wiltshire, UK, on which there was a major spill of the pesticide chlorpyrifos
in 2013. These food webs are more detailed than those built from routine
biomonitoring data, and contain mass and abundance data for each node allowing
more detailed network analysis to be performed. I examined how the efficiency of
energy transfer through these food webs was affected by, and recovered from the
pesticide spill. I applied complex network analysis techniques to examine the sub-
structure of these food webs, I measured the core size of these food webs. I linked
these changes in food web structure to changes in the ecosystem functions they

support, and how that recovered over time.
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| Joining the dots: an automated method for
constructing food webs from compendia of
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(2015). Joining the dots: an automated method for constructing food webs from

compendia of published interactions. Food Webs, 5, 11-20.
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2.1 Summary
Food webs are important tools for understanding how complex natural communities
are structured and how they respond to environmental change. However their full
potential has yet to be realised because of the huge amount of resources required to
construct them de novo. Consequently, the current catalogue of networks that are
suitable for rigorous and comparative analyses and theoretical development still

suffers from a lack of standardisation and replication.

Here, we present a novel R function, WebBuilder, which automates the
construction of food webs from taxonomic lists, and a dataset of trophic interactions.
This function works by matching species against those within a dataset of trophic
interactions, and ‘filling in” missing trophic interactions based on these matches. We
also present a dataset of over 20,000 freshwater trophic interactions, and use this and

four well-characterised freshwater food webs to test the method.

The WebBuilder function facilitates the generation of food webs of
comparable quality to the most detailed published food webs, but at a fraction of the
research effort or cost. Furthermore, it matched and often outperformed a selection of
predictive models, which are currently among the best, in terms of capturing key
properties of empirical food webs. The method is simple to use, systematic and,
perhaps most importantly, reproducible, which will facilitate (re-) analysis and data
sharing. Although developed and tested on a sample of freshwater food webs, this
method could easily be extended to cover other types of ecological interactions (such

as mutualistic interactions).
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2.2 Introduction

Characterising food webs (networks representing trophic interactions between
species) and other ecological networks (networks which represent any type of
ecological interaction, such as pollination) can help us understand and, ultimately
predict multispecies systems’ responses to changes in environmental conditions
(Tylianakis et al. 2010; Thompson et al. 2012). Food webs can reveal subtle but
important changes in the biotic interactions that underpin ecosystem functioning,
stability, and resilience to perturbations - higher-level phenomena that cannot be
inferred from studying the nodes (i.e., species or populations) alone (Thompson et al.

2012; Gray et al. 2014).

Despite the many advantages of a network-based approach to ecology,
significant challenges need to be overcome, particularly in terms of gathering
interaction data. Interactions occur between individuals and data are often collected
at this level: for example, via collection, rearing and identification of every leaf miner,
and subsequent leaf miner parasitoid along a transect to build herbivore-parasitoid
networks (Memmott, Martinez & Cohen 2000; Macfadyen et al. 2011), or through
dissecting and identifying consumer gut-contents via microscopy (Layer, Hildrew &
Woodward 2013). Such laborious methods require substantial investment of time and
resources, and it can take many thousands of lab hours to characterise just one food
web, which even then may still be undersampled for links between its rarer members
(see Table 1; e.g. Woodward et al. 2005; Olito & Fox 2014). Many hundreds or
thousands of individuals of each species are often needed to fully characterise the full
set of feeding links within a food web (e.g. Ings et al. 2009), which is rarely practical
given the financial and time restraints of research funding. In addition, such
comprehensive sampling is often destructive and can impose undesirable disturbance
on study systems. Consequently, empirical food webs are often incompletely
described and constructed from relatively small sample sizes (Kaiser-Bunbury et al.

2010; Layer, Hildrew & Woodward 2013). This limits the conclusions that can be
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drawn and the number of comparable food webs that are available both across and
within studies (Briand 1983; Bascompte et al. 2003; Olesen et al. 2007) although
exceptions to this exist (Bascompte et al. 2003; Cohen & Mulder 2014). Most studies
still have patchy and differing levels of sampling effort and taxonomic resolution,
making meta-analyses difficult or even inappropriate: the ability to construct large
numbers of realistic, comparable food webs across multiple systems would, therefore,

help realise the true potential of network approaches (Gray et al. 2014).

Page | 19



Chapter 2 | Methods for building food webs

Table 1. Methods for constructing food webs, with their advantages and disadvantages.

Method Advantages Disadvantages Examples
Observation  High confidence =~ Very slow and labour- ~Woodward et al.
of evidence  in links produced. intensive. (2005)

of interaction Rare interactions are Macfadyen et al.
(e.g. feeding often missed. (2011)

trials or gut

Interaction type is

Henson et al. (2009)

contents biased by the method  Ledger et al. (2012)
analysis) employed, e.g. the prey
of suctorial predators
cannot be determined
through gut contents
analysis.
Extrapolating Fair confidencein Reliant on the quality =~ Hall & Raffaelli
from links produced. of the data contained (1991)
previously Rare interactions  within the reference Goldwasser et al.
published can be included.  dataset. (1993)
interactions  Interactions from Can only be used to Havens (1993)
(e.g. multiple studies  construct ‘cumulative”  Piechnik et al. (2008)
WebBuilder determined or ‘summary’ food Pocock et al. (2012)
function) through different webs, i.e. temporal or  Layer et al.(2013)
methods can be spatial changes in Cohen & Mulder
easily feeding behaviour (2014)
incorporated. cannot be Strong & Leroux
Low effort and incorporated. (2014)
quick.
Predictive Ecological rules Require prior Cohen et al. (1985)
models and theory can be knowledge of the Williams & Martinez

incorporated.
Low effort and
quick.

structure of the food
web in order to
optimize parameter
values.

Many perform poorly
at predicting
individual interactions,
even when food web
structure is predicted
well.

(2000)

Petchey et al. (2008)
Allesina & Pascual
(2009)

Allesina (2011)
Olito & Fox (2014)

Ecological networks are often constructed by incorporating species interactions

from the published literature (Table 1) and many food webs are constructed entirely
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in this manner (Goldwasser & Roughgarden 1993; Havens 1993; Cohen & Mulder
2014; Strong & Leroux 2014), while other food webs contain a blend of observational
and extrapolated data (Pocock, Evans & Memmott 2012; Layer, Hildrew & Woodward
2013). By filling in ‘missing’ trophic interactions to a given species list, the implicit
assumption is made that, if a given pair of species have been observed to interact at
one site, they will interact in the same way at other sites where they co-occur (at least
in terms of a feeding link between the species being realised, or not). Food webs built
through this method are often referred to as ‘summary’ or ‘cumulative’ food webs as
they represent all potential interactions (of a particular type, for instance trophic
interactions within a food web) between species of a particular community, rather
than a snapshot in time. As such, food webs built through this method are unsuitable
for detecting changes in species feeding behaviour across sites or over time, but are
highly effective for detecting broad macro-ecological trends such as changes in food
web structure across environmental gradients (Piechnik, Lawler & Martinez 2008;

Mulder & Elser 2009; Layer et al. 2010b).

This approach can be taken further, by assigning interactions of species on the
basis of taxonomic similarity: i.e., species within the same genus are assumed to have
identical links if a link has been established through direct observation for at least one
congener (Goldwasser & Roughgarden 1993; Layer et al. 2010b). This process is often
used when constructing summary food webs for species the interactions of which
have not been fully characterised (e.g., as revealed from yield-effort curves) to
minimise potential biases arising from under-sampling, i.e. including only observed
links would otherwise significantly underestimate food web complexity, especially
among the rarer and/ or more obscure taxa (Woodward et al 2010). Recent work (Eklof
et al. 2012) has provided justification for this approach, by highlighting the strong
influence that taxonomy has in determining the structure of food webs. Thus, given
the prevalence of undersampling in even relatively well-described food webs, dietary

data extrapolated from the literature and generalised taxonomically can potentially
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produce far more complete and realistic summary food webs than those that rely

solely on observations made in a particular locale.

Despite the prevalence of these methods for constructing summary food webs
in the literature (Goldwasser & Roughgarden 1993; Havens 1993; Layer et al. 2010a;
Pocock, Evans & Memmott 2012; Cohen & Mulder 2014; Strong & Leroux 2014), there
is still no standard method for inferring feeding interactions, resulting in
inconsistencies among studies, even within the same ecosystem type. This is
especially problematic because authors rarely state explicitly which links have been
observed or extrapolated, or the source from which they have been drawn, or how
closely the previously published interactions match those reported in their particular
study, making replication impossible and preventing other researchers from

scrutinising published interactions fully (but see Strong & Leroux 2014).

Recent research has sought to develop predictive models of the structure of
ecological networks (Rohr et al. 2010; Eklof et al. 2012; Gravel et al. 2013; Olito & Fox
2014). Simple rules based on ecological theory have been used to model and predict
the structure and topology of food webs, the most successful of which include
deterministic models based on information on species’ body sizes, for example the
‘Difference’, ‘Ratio’, and ‘Difference/Ratio” models (Allesina 2011) and the Allometric
Diet Breadth Model (ADBM,; Petchey et al. 2008) which incorporates allometric scaling
and optimal foraging parameters. Whilst these models have been developed primarily
to advance ecological theory, they provide a possible tool through which food webs
could be built de novo in order to address questions about network structure across
environmental gradients or scales. However, to achieve their best performance
(proportion of correctly predicted links) these models require some prior knowledge
about the number of links in the network. For instance, for the models mentioned
above a researcher is required to go through a parameter optimisation procedure, by
fixing the number of links, values of constants and exponents can be derived, by

maximizing the number of links correctly predicted. When constructing a network for
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the first time for a particular system, a researcher would be required to fix the number
of links to an expected value which would bias the network structure towards that

which the researcher expected to find.

Additionally, recent work (Olito & Fox 2014) has highlighted that while
predictive models might perform well at predicting metrics of network structure, they
tend to perform poorly at predicting pairwise interactions (Vazquez, Chacoff &
Cagnolo 2009; Verda & Valiente-Banuet 2011; Sayago et al. 2013; Vizentin-Bugoni,
Maruyama & Sazima 2014), so whilst they may predict network structural metrics
well, they are doing so for the wrong reason as the underlying biological mechanisms
have not been fully incorporated into the predictive models (Petchey et al. 2011). To
the best of our knowledge, the models used here have not, up until now, been used to
predict network structure de novo, as this is not the scenario for which they were

developed.

Given the limitations of constructing food webs from observation of
interactions or predictive models, we need an automated, repeatable and reliable
method of building local food webs that can be applied across studies and, ultimately,
different ecosystem and network types. Here, we introduce a method, the
WebBuilder function that assembles food webs by systematically assigning links for
taxa based upon a given set of user-defined rules applied to a dataset of known trophic
interactions. We provide an implementation of our method for the R statistical
modelling language (R Core Team 2013), building upon the methods and data
structures provided by the Cheddar R package (Hudson et al. 2013). We tested the
method on four highly resolved freshwater food webs which have had their
interactions characterised through gut contents analysis, as these represent some of
the most complete food webs described to date, as a test case for our proof-of-concept.

Specifically, our key aims were to:

1. Collate a dataset of trophic interactions in a standard format to act as an

example system in which to test this method.
Page | 23



Chapter 2 | Methods for building food webs

2. Automate the process of constructing food webs from this reference dataset
in a repeatable and reliable manner.

3. Compare the performance of this method with the structure of food webs
with “known’ interactions, i.e. those which have been built through
observation of the interactions.

4. Compare the performance of this method with another way of predicting
food web structure; the ADBM, Difference, Ratio and Difference/Ratio

models.

2.3 Methods

2.3.1 Dataset of trophic interactions

We collated a dataset of 20,823 pairwise trophic interactions among species (or
the next highest level of resolution available, usually genus), from 51 different data
sources, most of which were primary literature (Table A.1, online supporting
material). It contains trophic interactions between primarily UK freshwater species,
including 203 producer taxa, 593 invertebrate taxa, 24 fish taxa, 10,348 producer-
animal links, 9,531 animal-animal links and 944 detritus-animal links. When the
necessary data were not available in the original publications, we contacted the
authors directly, where possible, to obtain the raw data. The taxonomy of every
resource and consumer has been standardised through the Global Names Resolver

(http:/ /resolver.globalnames.biodinfo.org/) using the Global Biodiversity

Information Facility dataset. For every resource-consumer link the taxonomy (species,
genus, subfamily, family, order, class) of both is given, along with life-stage
information, if relevant, and a literature reference for the source of the link. This
dataset builds upon the collection assembled by Brose et al (2005), and to the best of
our knowledge, represents the largest standardised collection of trophic links for
freshwater  organisms. This dataset is available to download at

https:/ /sites.google.com/site/foodwebsdataset/ (doi: 10.5281/zenodo.13751) and is
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designed to be easily updated by the iterative addition of new data (details of how to
submit new data to the dataset are given on the website), allowing its content to
improve over time, in an analogous manner to molecular-based bioinformatics
datasets. New data will be subjected to a quality assurance procedure prior to
inclusion in the dataset. Specifically, all taxa will be parsed through Global Names

Resolver (http:/ /resolver.globalnames.biodinfo.org/) using the Global Biodiversity

Information Facility dataset. Additionally the data will be eyeballed for irregularities.
It is anticipated that these data will exist as an open access resource, and as such the
community of researchers who access it will report any errors they find so they can be
double checked and removed. New iterations of the dataset can be produced, hosted
on the webpage alongside the original, and assigned a new DOJ, allowing researchers
to cite exactly which version of the dataset they have used for their research, allowing
analyses to be repeated using identical versions to those cited in a given study, if

required in the future.

2.3.2 The WebBuilder function
The method of constructing ecological networks by extrapolating from
previously published interactions is implemented in a new R function - WebBuilder
(see online supporting material for code). The user is required to provide the

following; firstly a list of taxa (i.e. nodes) in the community of interest (step I,

Figure 5), this data can be gathered from multiple sources and could be in the form of
survey or biomonitoring data. Secondly, for each node, the minimum level of
taxonomic generalisation (explained below; step II), and the taxonomic classification
of each node (step III). Lastly a registry - a dataset of known trophic interactions,
including taxonomic classification (step IV), an example of which is published here,
but which can also be created by the user or obtained elsewhere. It is recommended
that the user resolve the taxonomy of their taxa list and registry using the same

procedure so as to ensure that taxa are matched correctly, if the user were using the
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registry provided here they would need to parse their taxa list through Global Names

Resolver (http:/ /resolver.globalnames.biodinfo.org/) using the Global Biodiversity

Information Facility dataset. The function searches the registry for every possible
combination of resource-consumer interactions (for N taxa there are N2 possible
trophic interactions) which match the provided taxa list given the specified level of

taxonomic generalisation.

The minimum level of taxonomic generalisation determines the taxonomic
rank at which matches are made, thus generalising the resources or consumers of the
candidate node to the species, genus, subfamily, family, order etc level, as specified in

the input (step 1II,

Figure 5). For instance, a researcher might decide to ascribe the level of taxonomic
generalisation of ‘genus’ to the mayfly Baetis fuscatus, allowing it to be matched with

the more commonly studied species Baetis rhodani in the dataset, and take on the

/

Al Number of records
Dataset query H for each link
Citation of each

link

. . Level of taxonomic
WebBuilder function 0, resolution for each
A lind

Figure 5. A simplified workflow demonstrating the WebBuilder function. For a workable
example see online supporting material.

1
| U d
System end ; ser en
1
1
: INPUTS
INPUTS I
1 \
IV. Dataset | RECOMMENDED
o 1
. 1 1 1
Ty M consumer  TéSOUICE consumer l.n!( pumam 1 I Ta.xa llst II_ Deslred level Of
genus genus  evidence I ¢ 5
i I : axonomic
23032 — Salmotrutta Asellus Salmo observed Thomas 1962 I y li t- f
P N
23043 Baetis rhodani  Salmotrutta  Baetis Salmo observed Thomas 1962 I e = genera Sa lon Or
23046  Baetisthodani Salmotrutta Baetis Salmo observed Thomas 1962 1 \
23047  Baetisthodani Salmotrutta  Baetis Salmo observed Thomas 1962 1 ey = g eaCh taxa.
23048 Baetis rhodani  Salmotrutta  Baetis Salmo observed Thomas 1962 N N ‘ 1‘
23049 Baetis thodani  Salmotrutta  Baetis Salmo observed Thomas 1962 : N = HI. Ta-Xa taxonomy
23050 Baetis thodani  Salmotrutta  Baetis Salmo observed Thomas 1962 N
051 Baetis thodani  Salmotrutta  Baetis Salmo observed Thomas 1962 : T 2 =
1
1
1
1

Page | 26


http://resolver.globalnames.biodinfo.org/

Chapter 2 | Methods for building food webs

appropriate feeding interactions of that species, i.e. those which include taxa also
present on the provided taxa list (see the first Scenario in Figure 6). This level of
taxonomic generalisation is selected based on knowledge of a candidate node’s
trophic interactions in relation to its sister taxa (i.e. if all members of the same
taxonomic unit can be assumed to have the same trophic interactions or not), and this
can be tailored depending on the resource/consumer status of the node. For example,
consumers of the larvae of the non-biting midge subfamily Tanypodinae tend to be
trophic generalists and would likely consume other larvae of the family
Chironomidae, while it is not likely that the resources of Tanypodinae larvae (which
are predominantly predatory) would be shared by all Chironomidae larvae (many of
which are grazers or filter feeders). Hence it would not be appropriate to assign the
trophic generalisation level ‘family” to both resource and consumer interactions of
Chironomidae. Instead a researcher might ascribe the ‘resource method” for
Tanypodinae as ‘family’, but the ‘consumer method” as ‘subfamily” (see the second
Scenario in Figure 6). The function output contains references to the original empirical
links, the number of matches that were found and the taxonomic level at which those
matches were found, so links can be additionally screened and scrutinised post hoc,
and analysis can be repeated easily because the function output contains the necessary

information. Example R code is supplied (see online supporting material).
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INPUT

Resource Consumer
Taxa Genus Subfamily Family method method
Salmotrutta Salmo Salmonidae exact exact
Baetis fuscatus Baets Baetidae =~ lgenus genus
Tanypodinae Tanypodinae  Chironomidae family subfamily
Navicula tripunctata  Navicula Navi_c_u'e.ce_a;/_gen_us_ e
Cocconeis placentula Cocconeis Cocconeidacgae  genus

PROCESS - WebBuilder function & Dataset

Resource’ Consumer Resource Consumer

Link ID Resource Consumer  genus genus subfamily subfamily Source
Navicula Baetis Bert et al.
7081 lanceolata 'scambus | «Navicula Baetis 2008
Cocconeis Baetis Bert et al.
7086  placentula  |scambus | Cocconeis Baets 2008
Ernie et al.

34136 Baetis Trissopelopia|Baetis Tanypodinae 2011
Bird et al.
23047 Baetisrhodani Salmo trutta Baetis  Salmo 1962
Ernie et al.
33415 |Tanypodinae | Salmo trutta Salmo Tanypodinae 2011

OUTPUT

Resource Consumer Number of records  Source

Baetis fuscatus ~  Salmotrutta 1 ~ Birdetal.1962
Tanypodinae I ~ Salmotrutta 1 ~ Ernieetal.2011
Baetis fuscatus | Tanypodinae 1 . Ernieetal. 2011
Navicula tripunctata | Baetis fuscatus 1 Bert et al. 2008

Cocconeis placentula Baetis fuscatus 1 Bert et al. 2008

Figure 6. An example of inputs and outputs for the WebBuilder function. Two different
scenarios are highlighted. Firstly in blue the taxa Baetis fuscatus is generalised to the genus
level for both its consumer and resource links, this allows it to be matched with B. scambus in
the registry and the Navicula tripunctata - B. fuscatus, and Cocconeis placentula - B. fuscatus links
to be included in the output. Secondly in green, the taxa Tanypodinae are generalised to the
family level for its resource links and subfamily level for its consumer links, allowing it to
matched with all entries in the registry with the subfamily Tanypodinae and the Tanypodinae
- Salmo trutta, and Baetis fuscatus - Tanypodinae links to be included in the output.
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2.3.3 Comparing the WebBuilder function with empirical food webs

The WebBuilder function was validated on a collection of highly-resolved
stream food webs which have had their trophic interactions characterised through
direct observation; Broadstone Stream (Woodward et al. 2010b), Afon Hirnant
(Woodward et al. 2010b; Gilljam et al. 2011), Tadnoll Brook (Edwards et al. 2009) and
the summary food web for the replicated four reference Mill Stream side-channels
(Ledger et al. 2012; Woodward et al. 2012a). The replicates for the Mill Stream data
were aggregated to aid comparison with the other food webs, which were all
constructed as a single summary food web. The Broadstone and Afon Hirnant food
webs contained only trophic interactions between macro-invertebrates, the Tadnoll
food web contained interactions between macro-invertebrates and fishes and the Mill
Stream data contain interactions between macroinvertebrates, algae and detritus.
When the WebBuilder function was used to generate the empirical food webs, in
turn each respective local dataset was first removed from the global dataset, so each
food web was generated in the absence of its own link information (to remove

circularities).

The performance of the WebBuilder function was evaluated by calculating
the True Skill Statistic (TSS; Allouche, Tsoar & Kadmon 2006). This statistic was used
as it can be seperated into its component parts to provide information on the types of
differences between the empirical and generated food webs, and builds upon the most
commonly used metric which is simply the proportion of links correctly generated
(Petchey et al. 2008; Woodward et al. 2010b; e.g. Allesina 2011). This statistic was
chosen over likelihood based approaches because we were not interested so much in
the efficiency of these predictive models, more the biological realism of the generated

food webs (Petchey et al. 2011). The TSS is calculated from the following formula:
TSS = (ad — bc)/[(a+ c)(b + d)]

where a is the number of links which were correctly generated by the function (the

True Positives Rate; TPR), b the number of links generated by the function but not
Page | 29



Chapter 2 | Methods for building food webs

observed empirically, ¢ the number of links not generated by the function but were
observed empirically and d the number of links neither generated by the function nor
observed empirically. TSS score values range from -1 to 1, where a score of -1
represents a generated food web that is the inverse of the empirically observed one
(no observed empirical links are seen in the generated food web, and every non-link
in the empirical food web is present in the generated food web), and 1 representing a

generated food web having the exact same links as the empirically observed one.

Each empirical food web was generated using the level of taxonomic
generalisation considered most appropriate (see online supporting material), this
mostly consisted of exact and genus level matches although some family and order
matches were used. To test how the generated food webs compared to their empirical
counterparts, a series of network metrics were calculated; number of links (L), linkage
density (L/S; where S is the number of nodes), connectance (C, where C=L/S?),
generality (the average number of resources per consumer), vulnerability (the average
number of consumers per resource), and proportion of top, intermediate and basal
nodes (with cannibalistic links removed). The difference between the generated and

empirical network metric was tested with paired Wilcoxon signed rank tests.

To test how the quality of the generated food webs varied with dataset size, the
dataset was randomly subsampled, in sequential steps of 5% from 5-100%, of the
original dataset size, and then used to generate each food web. Each subsample size
was repeated five times and each empirical food web was generated in the absence of
its own food web data as above, to remove circularities. For each node within each

network, the same level of taxonomic generalisation was used as above.

To test how the quality of the pairwise interactions generated by the
WebBuilder function varied with the level of taxonomic generalisation, each food
web was built using exact, genus, family or order taxonomic generalisation for all
nodes. The degree (the number of links into or out of a particular node), generality,

and vulnerability for every node in the generated food web was compared with that
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in the empirical network. The difference between the two for every node was recorded
so that a positive score represented interactions ‘missed” by the WebBuilder
function, and a negative score represented ‘extra’ interactions not found in the
empirical food web. The distribution of these scores gives an indication of how well
the WebBuilder function predicted pairwise interactions across the whole network:
i.e., if, on average, it tended to ‘miss” more interactions, or tended to pick up ‘extra’
interactions. To test if the mean was different from zero (indicating no difference in
the quality of pairwise interactions between the generated and empirical food webs)

a one sampled t-test was used.

234 Comparing the WebBuilder function to theoretical food web models
The performance of the WebBuilder function was compared with examples of some
of the best-performing predictive models currently available: the ‘Difference’, ‘Ratio’
and ‘Difference/Ratio” models (Allesina 2011) as well as the Allometric Diet Breadth
Model (ADBM; with ‘ratio” handling time, Petchey et al. 2008). The ‘Difference’, ‘Ratio’
and ‘Difference/Ratio” models all generate food web links on the basis of body size,
(either the difference between consumer body size and resource body size, the ratio
between the two, or the difference multiplied by the ratio). The ADBM builds on this
and incorporates allometries of body size and foraging behaviour of individual
consumers to model food web structure (see Petchey et al. 2008; Allesina 2011 for more
detailed explanations). Detritus nodes were first excluded from the Mill Stream food
web because these nodes had no body size or abundance data. For the ‘Difference’,
‘Ratio” and “Difference/Ratio” models two parameters required optimisation, a and b.
For the ADBM we used parameter values for the mass to attack rate constant (a),
resource mass to attack rate exponent (4;) and consumer mass to attack rate exponent
(7)) from the literature (Rall et al. 2012) rather than through parameter optimisation as
in Petchey et al. (2008), so as to simulate a situation for which the WebBuilder

function was designed, where food webs are being generated for the first time with
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no prior knowledge of the system other than the species richness. For two parameters
(mass to handling time constant, /.2, mass to handling time critical ratio, b) we were
unable to find information in the literature with which to value these parameters, so
went through the process of optimisation. For all models this was achieved by
constructing food webs with a range of values for each parameter, and selecting those
food webs which had a number of links that was within the range set by the
WebBuilder function, i.e. if the WebBuilder function generated K links, and there
were L empirical links and K-L=t we selected all possible solutions within the range
L-t:L+t, to make the comparison with the WebBuilder function fair. Note that for
some food webs the difference between L and K was large, leading to large variation
in the food web sizes generated by these models. Indeed for the Afon Hirnanlt food
web this range fell below zero, and so the range was arbitrarily set to be the same
proportional size as that of the Tadnoll food web, which had the next highest range.
Parameter optimisation was conducted without using the connectance of the
empirical food webs, hence although the same data have been used, results will vary
from previous publications. Prior knowledge of the connectance of food webs would
not be possible if a food web were being built de novo, so here we are using these

models in a different way from their original application.

2.4 Results

241 Comparing the WebBuilder function with empirical food webs

When we constructed food webs from random subsets of the dataset, the
quality (as measured by TSS scores) of the generated food webs improved as the
number of records in the dataset increased, allowing more complete resource and
consumer interactions to be ascribed to each taxa (Figure 7). The strength of this
relationship was food web specific, for instance Broadstone and Afon Hirnant did not

continue to improve beyond a dataset size of about 25%. These food webs are
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relatively simplistic compared to Tadnoll and Millstream, and so the WebBuilder
function reached its optimum performance when generating these food webs with a
fraction of the total dataset. Tadnoll and Millstream did not reach their asymptotes
suggesting that more data are needed to improve upon the quality of their generated

food webs.

The level of taxonomic generalisation for each node was important for the
quality of the generated food web; if the taxonomy of a given node list was generalised
too far (typically beyond the family level) then the ascribed links became
unrepresentative and the food web become over-connected resulting in an increased

FPR and lower TSS score (Figure A.1, online supporting material). At the scale of
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|_
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Database size

Figure 7. The quality of the generated food web increases with the size of the dataset.
Fluctuations in the TSS score are caused by changes in the component parts of the TSS, i.e.
while the TPR may increase as the dataset size increases, other metrics such as the FPR might
also increase, causing the total TSS to fall (see methods). Lines are fitted using a LOESS
smoother (Cleveland et al. 1992), grey shading indicates the 95% confidence intervals.
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individual trophic interactions, the difference in degree, generality and vulnerability
was generally positive when matching taxa exactly or at the genus level, and becomes
progressively more negative as the taxonomic generalisation increased, indicating
that the WebBuilder function was ‘missing’ links when matching nodes exactly or at
the genus level, and including progressively more links the further the taxonomy was
generalised (Figure 8). For Afon Hirnant and Tadnoll there was no significant
difference in the generality of consumers between the generated and empirical food
webs when taxa were matched at the genus level, and there was no significant
difference in vulnerability of resources for the Tadnoll food web when matched at the
genus level. This suggests that matching taxa at the genus level for these food webs
produces the most ‘accurate” pairwise interactions. For all other food webs and levels
of taxonomic generalisations the generated links were different from that of the

empirical food web (Figure 8).
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Figure 8. Box plots showing the changes in generated trophic interactions as the level of
taxonomic generalisation is varied. The difference in degree (top), generality (middle) and
vulnerability (bottom) of individual nodes between the generated and empirical food web,
thus the sample size reflects the number of nodes in the empirical food web. Positive values
represent links which were ‘missed” by the WebBuilder function, while negative values
represent additional links not found empirically. Box plots are colour coded: Broadstone (B;
blue), Afon Hirnant (A; red), Tadnoll (T; purple) and Mill Stream (M; green).Stars indicate if
the mean is different from zero (one sample t-test) and indicate if the generated trophic
interactions are different from that of the empirical food web, 0.05>=p >0.01 =%, 0.01 >=p >
0.001 =**, p <= 0.001="**
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The occurrence of each food web’s nodes in the dataset is given in Table 2. The
coverage of these within the reduced dataset (food web data were removed from the
dataset when used to generate the food web for that site) varied between 1,497
(Broadstone) and 6,704 occurrences (Mill Stream) (Table 2). Even at the family level
some nodes from Broadstone, Afon Hirnant and Mill Stream were not represented in
the dataset, meaning that those nodes needed to be generalised further still for the
WebBuilder function to generate their links. These nodes tended to be rare taxa
which were poorly represented in the dataset. The generated food webs (see online
supporting material for the generated trophic links) had similar network metrics to
the empirical food webs (Table 3), although the proportion of top nodes was
consistently lower in the generated food webs, and the proportion of intermediate and
basal nodes was consistently higher. All generated food web metrics were found to be
not significantly different to that of their empirical counterparts (paired Wilcoxon
signed rank test, p=>0.05). The TSS ranged from 0.405 (Broadstone) to 0.571 (Tadnoll
Brook). Two food webs (Broadstone and Afon Hirnant) contained nodes that were
found to have predatory links in the empirical food web but were not predicted to
have any by the WebBuilder function, and vice versa many nodes distributed across
all the food webs were predicted to have consumer links but were not found to have

any empirically (Figure 9).
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Table 2. The representation of the food web taxa within the full dataset and partial dataset
(i.e., diet data gathered from a food web were excluded from the generation of its own inferred

food web).
Number of Percen’fage. of nod.es
Appearances in dataset APPearing in partial dataset
Food web PP at each taxonomic level
Full data Partial data
set set exact genus family
Broadstone 2,196 1,497 81% 84% 94 %
Afon Hirnant 2,945 2,266 72% 79% 92%
Tadnoll 12,405 4,314 84% 91% 100%
Mill Stream 11,545 6,704 87% 96 % 97%

Table 3. The number of links (L), linkage density (L/S, where S=number of nodes), the
connectance (C, where C=L/S2), Generality, Vulnerability, proportion of top, intermediate
The performance of the
WebBuilder function (relative to the original empirical food web) is summarised by the TSS
statistic (which gives an overall measure of performance), and TPR (the proportion of links
correctly generated). All food web metrics for the generated food webs were found to be
similar to that of their empirical counterparts (paired Wilcoxon signed rank test, p = >0.05)

and basal species of the empirical and generated food webs.
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Figure 9. Predation matrices for the empirical food webs compared to those generated by the
AR method. Nodes are ordered by increasing body mass. A trophic link is represented by a

point indicating that the taxon in that column consumes the taxon in that row. Links generated

by the WebBuilder function are represented by empty circles, and those found empirically

are represented by smaller, filled circles.
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24.2 Comparing the WebBuilder function method to theoretical food web
models

The percentage of links correctly predicted (TPR) by the ADBM ranged from
12-43%, for the Difference model it was 0-46%, Ratio model it was 0-51% and the
Difference/Ratio it was 0-54% (Figure 10). All webs generated by the WebBuilder
function had higher TPR and TSS scores than the median values for the Difference,
Ratio and Difference /Ratio models (Figure 10). In general the WebBuilder function
had higher TPR and TSS scores than the ADBM, however the TPR score for Tadnoll
and Afon Hirnant were similar to the median ADBM TPR score for that particular
food web (as opposed to the overall median). Additionally the TSS score for Tadnoll
generated by the WebBuilder function was similar to the median ADBM TSS score

(Figure A.2, online supporting material).
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Figure 10. Box plots showing the performance of the WebBuilder function compared to the
ADBM, Difference, Ratio and Difference/Ratio models. The performance of the WebBuilder
function is plotted as four vertical lines, one for each of the empirical food webs; Broadstone
@, Afon Hirnant M, Tadnoll ¢ and Mill Stream 4. The TSS score (top panel) gives an overall
measure of the performance of the predictive method relative to empirical food webs, and
varies between 1 (a generated food web that is exactly the same as the empirical food web)
and -1 (a generated food web which is the exact inverse of the empirical food web). The TPR
(True Positives Rate; bottom panel) is the proportion of generated food web links that were
also found empirically, and varies between 0 (no links generated correctly) and 1 (all links
generated correctly). A box plot of each set of values is given, indicating the range, quartile
ranges and median of each set of values. For the WebBuilder function only the individual
scores for the four food webs are shown, for all others there are too many generated scores to
be shown individually; ADBM (n=508), Difference (n=32,025), Ratio (n=43,638) and
Difference/Ratio (n=41,602).
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2.5 Discussion

25.1 Strengths and weaknesses of the WebBuilder function

Here we have demonstrated a systematic and reproducible method for
building ecological networks from compilations of previously observed interactions.
The WebBuilder function facilitates comparability across studies, re-analysis and
data sharing. Although developed in the context of freshwater food webs, given its
simplicity and generality the WebBuilder function could be easily applied to other
systems, such as terrestrial food webs or even mutualistic networks. Plenty of other
datasets already exist which could be exploited similarly to produce comparable,
reproducible networks from marine and terrestrial systems (e.g., Barnes 2008;

Database of Insects and their Food Plants; http:/ /www.brc.ac.uk/dbif/).

The WebBuilder function is an effective tool for constructing summary
ecological networks for the first time. The overall performance (TSS) of the
WebBuilder function exceeded that of the ADBM, Difference, Ratio and Difference
/Ratio models. The proportion of correctly predicted links (TPR) was similar to or
exceeded that of the ADBM. The ADBM cannot predict links for nodes that have no
body-size information - either because it is not known or because the concept is
meaningless for the node, such as detrital resources. This problem does not apply to
the WebBuilder function. The ADBM, Difference, Ratio and Difference/Ratio
models have been used to generate the food webs presented here before, and have
performed better than we have achieved here (Petchey et al. 2008; Woodward et al.
2010b; Allesina 2011), however to achieve this accuracy the generated food webs were
constrained to have the same connectance as the empirical food webs, an approach
not available when building a food web for the first time. Indeed there were instances
here that the TPR and TSS of modelled food webs exceeded that of the WebBuilder
function, but from the range of possible food webs generated by these models, it is
impossible to select the most ‘accurate’ one without knowledge of the expected
number of links. The WebBuilder function does not rely on prior knowledge of the
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food web, only on the correct identification of the nodes, thus reducing biases and

restrictions.

It is perhaps unfair to compare the performance of the WebBuilder function
to that of the ADBM, Difference, Ratio and Difference/Ratio models due to the
inherent differences in the mechanisms through which they operate, and indeed it is
not our intention for this exercise to be taken as a criticism of these alternative
approaches. Rather, we have compared them here in order to place the WebBuilder
method in the broader context of some of other more widely-used predictive methods
currently available. Comparing our approach with the performance of the ADBM
essentially represents a test of, and a means of improving, our understanding of the
mechanistic theory behind these trophic interactions. Comparing the food webs
produced by our approach with empirical food webs represents a test of the quality
of the underlying data held within the dataset of trophic interactions. The
WebBuilder function should be used as tool with which to construct large collections
of food webs with which to test our understanding of food web structure across
environmental gradients. The WebBuilder function is particularly suited to
constructing food webs for data-poor systems, e.g., where there is no information
available about the abundance or body size of nodes, with the only information being
a list of species present. Clearly the ADBM or other predictive models would not be
suited to these conditions, as they were never designed to work in this way. The
WebBuilder function, however, would be able to generate reasonably realistic food
webs if given a reference dataset of relevant trophic interactions. The WebBuilder
function is adaptive, and can be improved upon over time; for instance, by increasing
the size and coverage of the dataset of interactions. Hence it requires a substantial
amount of data to perform well, unlike the predictive models analysed here. These
types of methods can be viewed as complementary: a researcher might use both in
conjunction in order to harness the advantages of both to better predict food web

structure: indeed we envisage combining the WebBuilder function and other

42

Page




Chapter 2 | Methods for building food webs

predictive approaches in parallel to build and understand food webs.

The four food webs presented here are among the most highly resolved and
complete freshwater food webs published to date, yet the links are still under-sampled
for many nodes (Woodward et al. 2010b), due to methodological issues and logistical
constraints on sampling effort. The WebBuilder function can help to overcome these
issues. Firstly, it can take many hundreds of individuals to characterise a species diet
(Ings et al. 2009) and thus the interactions between rare consumers and rare resources
are often under-sampled. The WebBuilder function helps to overcome this as rare
interactions need only be observed once in the dataset of previously published
interactions in order to be incorporated into applicable food webs as they are
constructed: i.e., potentially the “global diet” of a species is held within the dataset,
and can be expanded in future data collections. Secondly, the method of observing
interactions often limits the types of interactions which can be characterised; for
instance, the prey of suctorial predators (which are especially common in terrestrial
ecosystems) cannot be identified through traditional gut contents analysis, but if
characterised through other means (e.g. laboratory trials or molecular sequencing)
they can be included in the dataset and incorporated into generated food webs. For
instance, two suctorial predators in the Broadstone food web (Platambus maculatus and
Bezzia sp.) did not have their guts analysed for predatory links in the original study
(Woodward, Speirs & Hildrew 2005) and so had been previously excluded from the
food web (e.g. Petchey et al. 2008; Woodward et al. 2010b), these nodes would have
been predicted to prey upon other species by the WebBuilder function. This is due
to the WebBuilder function generalising the taxonomy of these nodes, and their
subsequent appearances in the dataset, as other studies have characterised the diets
of these taxa. Some links in the dataset of trophic interactions were known from just a
single data source, e.g. Cordulegaster boltonii as a consumer of Nemurella pictetii is
known only from the Broadstone food web. Therefore, when we excluded self-

referrential diet data, the WebBuilder function reconstruction of Broadstone did not
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predict a trophic link between C. boltonii and N. pictetii. We have not quantified how
often this effect occurred. As with other open-source datasets, anomalies will be
ironed out as the dataset is enriched with more observations as it grows, and its

coverage will improve over time.

Besides constructing food webs de novo, the WwebBuilder function could be
used to standardise a collection of networks gathered from different sources prior to
analysis. This would effectively standardise the sampling effort for included
interactions (although not for species richness or taxonomic resolution) and would
remove spatially or temporally explicit interactions (or lack thereof). If the analysis
was concerned with the structure of summary food webs from different locations and

habitat types then this might be an appropriate first step.

2.5.2 Future Directions

The realism of links generated by the WebBuilder function could be
addressed by assessing the number of times a particular interaction appears in the
dataset, as well as the number of times an interaction could have occurred but did not
(i.e. species found at the same site but not found to interact). If a particular interaction
has been observed many times across many systems, it is probably reasonable to
assume it also occurs at other sites where those species co-exist. However, if it has
only been observed rarely, or at a site with very different characteristics than the one
in question (for instance contrasting environmental conditions, or significantly
different community assemblages) this assumption might not be so reasonable. As the
size of the dataset continues to grow, evaluation of whether links are realised or not

will improve over time.

The WebBuilder function is designed to construct summary food webs, and
ignores potential behavioural shifts of species, hence it is unsuitable for constructing

temporally or spatially explicit food webs. Additional data such as abundance
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information could be used to weight interactions, this would, for instance, reduce the
weight of interactions between rare species reducing their influence on food web
structure and increasing the realism of the resulting food web. There is an increasing
body of literature detailing the importance of weak and strong interactions within
networks (de Ruiter, Neutel & Moore 1995; Berlow et al. 2004; Vazquez et al. 2007) and
a multitude of methods already exist for determining interaction strengths in food
webs (see Berlow et al. 2004) some of which can be employed alongside the
WebBuilder function. Thus, despite the ‘coarse’ nature of food webs built in this way
there is much potential for their use in ecological research, and by combining them
with models such as those presented here potential mismatches arising from

behavioural shifts could be highlighted.

It would be straightforward for the underlying code of the WebBuilder
function to be extended to incorporate a range of traits that could influence the
realisation of potential trophic interactions, other than phylogeny, such as life stage or
body size. For instance, within freshwater food webs body size is an important
determinant of trophic interactions, and food web structure predicted using body size
alone may be more accurate than those predicted using phylogeny alone (Woodward
et al. 2010b). This could further increase the realism of the constructed food webs and

hence their wider applicability and usefulness.

This dataset of trophic interactions was collated to test the performance of the
WebBuilder function when predicting the structure of the four empirical UK
freshwater food webs used here. It would be straightforward to extend the coverage
of this dataset by augmenting it with data collected from other geographic regions. If
this dataset is used to construct food webs in the future researchers will need to use
their discretion to decide how applicable it is to their system. For instance, this initial
version of the dataset does not provide good coverage of lentic species, or species from
across Europe or other parts of the world. However, interaction data are being

published at a rapidly accelerating rate (Ings et al. 2009) and this can be used to form

45

Page




Chapter 2 | Methods for building food webs

an iterative feedback process, improving data quality over time; the presence of links
predicted by the WebBuilder function can therefore be tested evermore rigorously
in the future. Identifying underrepresented nodes in the dataset will help target
further research more cost effectively: e.g., a great deal is known about the diet of a
handful of often economically valuable species in the dataset (for instance, brown
trout, Salmo trutta appears >3,000 times), but very little is known about many others.
Additionally, technologies such as those provided by recent advances in molecular
sequencing will improve the efficiency of trophic interaction detection (Clare 2014)
and therefore the volume of data which can be incorporated into the dataset. We
actively encourage researchers with suitable data to contribute them to this dataset.
Exciting initiatives such as Global Biotic Interactions (Poelen, Simons & Mungall
2014), by incorporating necessary information such as the method through which an
interaction was determined, could provide a global, open source repository of
interaction data which the WebBuilder function could access through R. As more of
these unknown links become known, nodes will not need to be generalised
taxonomically in order to find matches in the dataset, the links generated will more
closely match the known links for those species and therefore the quality of the

ecological food webs generated by the WebBuilder function will improve.

2.5.3 Conclusions

We have demonstrated that the food webs generated here are comparable to
empirically observed food webs and exceeded the accuracy of other potential methods
of predicting freshwater food webs. This method could be used to build vast numbers
of ecological networks from data that already exists, such as routine biomonitoring
data which is collected in huge volumes in many parts of the world (e.g., Dutch soil
biomonitoring data have recently been used to build a large collection of food webs;
Cohen & Mulder 2014). Producing collections of replicable networks is vital for

advancing ecological network research beyond the largely unreplicated case-study
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approach that has dominated to date: the WebBuilder function approach presents a

new robust and repeatable method that helps move us considerably closer to that goal.
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3 | The recovery of freshwater food webs from

the effects of acidification
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3.1 Summary
Recent work has shown that consideration of the structure of ecological
networks, such as food webs, can be vital for a full understanding of how ecological
communities respond to environmental change. Our understanding of how the
structure of food webs responds to acidification is hindered by small sample sizes and

a lack of replication.

We use a uniquely large and replicated collection of 451 freshwater food webs,
constructed with data from the UK Upland Waters Monitoring Network, to
investigate the changes in network structure that accompany recovery from
acidification. We assess if these food webs are suitable for addressing these research
questions by quantifying the extent to which they are undersampled through species
and link accumulation curves. From each food web we measured a range of network
metrics and used these to assess how the structure of the food webs has changed over
time at each site. There was no congruence between those sites exhibiting clear
chemical recovery trends and evidence of change in their network structure. However
when the food webs were modelled at the regional (UK) scale, food web generality,
vulnerability and network efficiency decreased with increasing acidity, while node
redundancy increased with acidity. Many acidity related variables, such as SO4, pH,
dissolved organic carbon, labile aluminium, acid neutralising capacity Ca, NO3s and
Cl were identified as drivers of community structure, while only NO3; was found to

drive changes in network structure.

These findings, which support previous work done using a far smaller collection
of food webs, indicate that community and food web structure are fundamentally
altered by acidity. There may be an inherent stability to acidified food webs, which

may be limiting biological recovery, however further investigation is required.

49

Page




Chapter 3 | Food webs recovery from acidification

3.2 Introduction

As we move further into the 6th mass extinction event, a deeper understanding
how complex systems respond to environmental change and recover from
perturbations is of crucial importance (Pimm et al. 1995). Previously work has shown
that biological recovery from perturbation does not necessarily follow a reversal in
the trajectory of decline (Scheffer & Carpenter 2003; Feld et al. 2011; Murphy et al.
2014). Species interactions confound attempts to scale up predictions made from
individuals or populations to the whole-community or ecosystem level (Ings et al.
2009; Thompson et al. 2012). The structure of the network created by the interactions
between species determines the stability of that community and thus modulates its
resistance and robustness to environmental change. Indeed, often it is the interactions
between species that are suggested as mechanisms which delay or alter the trajectory
of recovery (Scheffer & Carpenter 2003). Therefore it is necessary to consider these
interactions when attempting to assess the consequences of environmental change on

communities.

Acidification of freshwaters is caused by atmospheric pollution, such as
sulphur dioxide, which is deposited in the environment and subsequently washed
into freshwater systems, or taken up by moisture in the atmosphere to become “acid
rain’ (Driscoll et al. 2001). Acidification has profound ecological impacts, including the
loss of many acid-sensitive species from all trophic levels (e.g. Round 1990; Rosemond
et al. 1992; Sayer, Reader & Dalziel 1993). Increased surface water concentrations of
inorganic aluminium, which becomes more soluble in acidified soils, is toxic to many
species, in particular salmonid fishes (Sayer, Reader & Dalziel 1993) and a range of
macroinvertebrate taxa.. Controls on acidic emissions in Europe came into force in
1983 through the United Nations Economic Commission for Europe (UNECE)
Convention on Long Range Transboundary Air Pollution (LRTAP) with the specific
aim of reducing the impact of acid deposition on soils, vegetation and surface waters.

Since this point there has been a dramatic reduction in the emissions of SO2 and NOx
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gasses across Europe.

The Upland Waters Monitoring Network (UWMN, formerly the Acid Waters
Monitoring Network) was set up in 1988 to assess the chemical and biological recovery
of surface waters in the UK. The network comprises 23 stream and lake sites
distributed across acid sensitive, base poor geology regions of the UK (Figure 11). The
sites were chosen for their vulnerability to acidification. They are generally distributed
across the upland areas of the west coast of the UK where precipitation, and fluxes of
sulphur and nitrogen have tended to be high, and are predominantly located in
regions with base-poor geology and, hence, are particular susceptible to acidification.
The sites also include lakes and streams in areas overlying acid sensitive geologies in
regions receiving relatively little acid deposition, such as north- western Scotland
(Patrick et al. 1991). The design of the Network, sampling methodology and analytical
protocols are provided by Patrick et al. (1995).

The acidity of most UWMN sites has declined significantly since the onset of
monitoring (Monteith et al. 2014). Evidence for biological responses to chemical
improvement varies between sites (Murphy et al. 2014) with only half of the sites
showing significant trends. Similar, “sluggish”, biological recovery has also been
reported elsewhere (e.g. Arseneau ef al. 2011). Several hypotheses have been put
forward to explain the lag in biological recovery (Yan et al. 2003; Monteith et al. 2005),
including: dispersal limitations, ocasional acid episodes and food web dynamics
which might resist the re-establishment of more acid-sensitive species. The long
distance dispersal abilities of freshwater macroinvertebrates is now known to be
sufficient to recolonise UWMN sites and so cannot be the mechanism preventing
biological recovery (Masters et al. 2007; Hildrew 2009). Likewise, while many of the
stream sites experience episodic drops in pH which might hinder recovery (Evans,
Monteith & Harriman 2001), lakes are far less prone to dramatic fluctuations in
hydrochemistry, and both streams and lakes show limited biological recovery.

Additionally, across the network, the pH during more acidic episodes has fallen more
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rapidly than has the average tendency (Monteith et al. 2014), and thus occasional acidic
events is not considered to be limiting biological recovery (Monteith et al. 2005). It has
been proposed that the dynamics of the food web itself may be limiting biological
recovery. Generalist herbivore/detritivores macroinvertebrates are known to inhibit
the return of acid-sensitive specialist algal grazers (Ledger & Hildrew 2005; Layer,
Hildrew & Woodward 2013), and dynamic modelling has revealed that acidified food
webs are more robust over time, suggesting that they might resist re-invasion (Layer
et al. 2010b). Redundancy within networks is a property which may provide resistance
to perturbations, and hence may be a property of more stable systems (Naeem 1998;
Solé et al. 2003; Peralta et al. 2014). Likewise, some food webs have been found to
display ‘small-world” properties, namely have shorter path lengths between nodes
than expected (Watts & Strogatz 1998; Montoya & Solé 2002), which influences the
rate at which perturbations propagate (Montoya, Pimm & Solé 2006). Network
efficiency, which is a measure of how well connected a network is, was measured to

make inferences about a networks ‘small-world” properties (Latora & Marchiori 2001).

Food webs are a representation of the structure and functioning of
communities which, in turn, can regulate their sensitivity to environmental change
(Ings et al. 2009; Thompson et al. 2012). In particular, food web complexity and the
distribution of interaction strengths are key determinants of stability, influencing how
a community responds to environmental stress (May 1972; McCann 2000). For
example, food web size, linkage density and trophic height in acid sensitive waters all
decrease with exposure to lower pH (Layer et al. 2010b, 2011). Acidified food webs are
also smaller, simpler and have lower average interaction strengths than more
circumneutral freshwater food webs (Woodward & Hildrew 2002; Layer et al. 2010b).
To date, assessment of temporal dynamics of food webs in response to the
amelioration of acidification has been restricted by the resources required to map

them.

Here we use community data collected by the UWMN, coupled with an
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understanding of key trophic interactions gathered from the literature, to construct an
unprecedentedly large collection of food webs. We use this collection to investigate
how these complex networks re-assemble as the community recovers from

acidification. Specifically, we address the following questions:

1) Has there been directional change in network structure over the past 25 years
at UWMN sites? Do such changes indicate recovery from acidification?

2) What are the major environmental determinants of community composition
and network structure?

3) Do acidified food webs have greater redundancy and efficiency, as would be

expected for more stable networks?

3.3 Methods

3.3.1 Sites

The UWMN consists of 11 stream and 12 lakes distributed across the UK
(Figure 11): full site descriptions and sampling methodologies are provided in Patrick,
Monteith & Jenkins (1995) and Kernan et al. (2010). Water chemistry, epilithic diatom,
macroinvertebrate and fish sampling began in spring 1988 and continued
uninterrupted at most sites up to 2012, except for access restrictions to a few sites
during a foot-and-mouth disease outbreak in 2001, and some isolated adverse weather
conditions in other years (see Kernan et al. 2010). The sites are distributed along a
latitudinal gradient across the UK, which can be interpreted as a proxy for the degree
of acid deposition that each site was exposed to at the onset of monitoring as those
sites at high latitudes were exposed to relatively little acid deposition whilst those
sites at lower latitudes tended to be more heavily acidified (Patrick et al. 1991). One
lake site, Loch Coire nan Arr, was affected by damming that increased water levels
and was replaced in 2001 by Loch Coire Fionnaraich which has comparable

characteristics.
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ANCC - Allt na Coire nan Con 2 ARR - Loch Coire nan Arr
BEAH - Beaghs Burn @vb BLU - Blue Loch
BENC - Bencrom River BURNMT - Burnmoor Tarn

CONY - Coneyglen Burn CHN - Loch Chon
DARG - Dargall Lane LAG - Llyn Llagi
. LGR - Loch Grannoch
ETHR - River Etherow
GWY - Afon Gwy U

MYN - Llyn Cwm Mynach
HAFR - Afon Hafren ©

NAGA - Lochnagar

RLGH - Round Loch of Glenhead
LODG- Old Lodge 2 ﬁ
MHAR - Allt a Mharcaidh

SCOATT - Scoat Tarn
NART - Narrator Brook

TINK - Loch Tinker
VNG9402 - Loch Coire Fionnaraich

Figure 11. The Upland Waters Monitoring sites, consisting of 11 lakes (dark blue squares) and
12 streams (light blue circles).

3.3.2 Hydrochemistry

Hydrochemistry samples were taken monthly from stream sites, and quarterly
from lake sites. All dip samples were collected in acid-rinsed bottles. A large number
of chemical variables were recorded at each site, for more details see Kernan et al.
(2010) and Monteith et al. (2014). In total 14 variables considered to be key drivers or

indicators of acidification (Monteith et al. 2014) were used here; pH, Gran Alkalinity,
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H*, Conductivity, nitrate (NOs), non-labile aluminium, soluble aluminium, labile
aluminium, Dissolved Organic Carbon (DOC), sodium (Na+), sulphate (SO4%,
calcium (Ca?*) and Cl. Acid Neutralising Capacity (ANC) describes the ability of
water to resist acidification by a strong acid, and is calculated here from DOC and
labile aluminium concentrations, as well as alkalinity, see Kernan et al. (2010) for more

details.

Except for pH, we used the annual arithmetic mean of all hydrochemical data
as summary statistics for each site. Annual average pH was calculated by first
converting pH to H* concentration, calculating the annual arithmetic mean, and then
converted back to pH. In addition, minimum recorded pH and ANC were used to

produce annual hydrochemical summary statistics for each sites.

3.3.3 Biota

Benthic diatom, macroinvertebrate and fish populations were sampled
annually from 1988-2012. Benthic diatoms were sampled by selecting five cobble sized
stones at a depth below that of minimum flow in streams, or the permanently
submerged littoral zone in lakes. The stones were taken from discrete locations -
upstream, middle and downstream of a surveyed 50 m reach in streams, or three or
four surveyed locations around the shore of lakes, with areas close to inflow or
outflow streams being avoided. Epilithic diatoms were removed by brushing into a
clean funnel and plastic vial then preserved in Lugol’s Iodine immediately. Samples
were prepared using standard techniques (Battarbee et al. 2001) and examined by light
microscopy at x1000 magnification. Three hundred valves were counted from each

sample and identified to species level.

Macroinvertebrates were sampled by taking five separate one minute kick
samples using a standard hand net (300pm mesh) from riffle sections of streams and
the dominant littoral habitat of lakes. Using a white tray, halogen lamp and fine
forceps, all invertebrates were picked out and preserved with 70% Industrial

Methylated Spirit. With the exception of Diptera, Oligochaeta and Bivalva, taxa were
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identified to species level. Diptera were further identified to family level and Bivalvia

to genus level. All taxa were counted.

Annual electric fishing surveys were employed to assess the abundance of
salmonid populations at each stream site and at the outflow streams immediately
downstream from each lake site. The presence of any non-salmonid fish species was
recorded although no abundance data were collected. Fishing occured between mid-
September and mid-October each year. The sampling procedure used three 50m
reaches distributed across 500m of the stream or lake outflow, Each 50m reach was
tished using stop nets and electric fishing apparatus. The fishing was repeated in each

reach three times, or more if no clear drop off in numbers occurred.

3.34 Food web construction

Binary food webs, in which species (nodes) and links are described in terms of
their presence/absence in each year at each site were constructed for all sites in all
years for which there was complete biological and hydrochemical data, this resulted
in the production of 451 food webs in total. Feeding links between species were
inferred from published literature, and filled in for each network using the
WebBuilder function (Chapter 2; Gray ef al. 2015) and associated dataset of trophic
interactions, in R (R Core Team 2013). This method is based on the assumption that all
feeding links between specific pairs of species that have been reported previously
would be realized wherever and whenever both species co-exist at a study site (Hall
& Raffaelli 1991; Martinez 1991; Layer et al. 2010b; Pocock, Evans & Memmott 2012).
In some instances, due to a paucity of trophic interaction data, feeding links were

assigned on the basis of taxonomic similarity.

3.3.5 Network metrics

A range of food web metrics were calculated from each food web. The number
of nodes in each network was measured as the total number of connected species.
Mean trophic height of each food web was calculated using the method of Levine

(1980) and defined as 1 plus the mean trophic level of a consumer’s resources,
Page | 56



Chapter 3 | Food webs recovery from acidification

averaged across all consumers. The maximum trophic height of each food web was
defined in the same way, except that the maximum value across all consumers was
taken. Mean generality (G; number of resources per consumer) and mean vulnerability
(V; number of consumers per resource) of each network was calculated. Additionally

for each taxon k, normalised G and V were calculated:

s
1
Gy = mz Aik (1)
i=1
S
1
Vie = mz Ajk (2)
=1

Where S is the number of nodes and L the number of links in a food web. a;;, = 1 if
taxon k consumes taxon i (otherwise a;;, = 0), and aj, = 1if taxon k is being consumed
by taxon j (otherwise aj, = 0). Mean G, and Vj in any given food web equal 1, making
their standard deviations, which give an indication of the variability in G and V
respectively across a network, comparable across networks of different size. These

metrics were all calculated using the R package cheddar (Hudson et al. 2013).

The global efficiency (Latora & Marchiori 2001) of a network describes the
‘reachability” of each node by any other node, and is a measure of the overall
connectivity of the network. The global efficiency of each network was calculated as

follows:

1 1
F= 5(5—1),2 dy )

i#jEG

Where d;; is the shortest path length between node i and j, using the sna R package
(Butts 2013).
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The proportional redundancy of each network was calculated by grouping

nodes into trophic species (i.e. nodes with common resources and consumers) and
then calculated as follows:

T
Redundancy =1 — 5 (4)

Where T is the number of trophic species within the network. Redundancy was

calculated using functions from the cheddar package (Hudson et al. 2013) in R.

3.3.6 Statistical data analysis

All statistical data analysis was done in R version 3.1.1 (R Core Team 2013).
Mann-Kendall trend tests determined whether there were significant trends in mean
pH, ANC, DOC, labile aluminium, and network metrics over time at each site. We
used x? contingency tests to assess the extent to which sites that exhibited clear
chemical recovery trends also showed evidence of change in their network structure
(Murphy et al. 2014). For each chemical variable, and for each network metric, we
counted the number of sites (out of 23) that exhibited (a) a trend in both, (b) a
biological but not a chemical trend, (c) a chemical but not a biological trend, and (d)
with neither trend. The x? test assessed whether the distribution of sites across these

four categories was different to that due to random chance.

Principal Component Analysis (PCA) was performed on the water chemistry
data of each site. Yearly mean (or minimum) values for key hydrochemical variables
were centred to zero and scaled by their standard deviations, and sample scores on
the first PC axis (PC1) extracted for use as a proxy for water chemical stress. Each
network metric was regressed against PC1, and any trend assessed with Generalised
Linear Mixed Effects models. Site type (lake or stream) was fitted as a fixed effect, and

any potential interactions with PC1 were assessed on the basis of stepwise model
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simplification and model AIC. For each model, site and year were used as random
effects, but a range of random effects structures were investigated for each response

variable, the best model was selected on the basis of AIC.

To assess the principal hydrochemical determinants of community structure, a
distance-based Redundancy Analysis (RDA) model was used in step-wise model
selection of hydrochemical variables based on their P-values and AIC scores. The
community matrix was constructed from the diatom, invertebrate and fish data,
which were counts of each species at each site in each year. As three different sampling
methodologies had been used to characterise the biota, the Wisconsin double
standardization was used; the abundance values were first standardized by each
species maximum score, and then by sample total, and by convention multiplied by
100 (Bray & Curtis 1957). Bray-Curtis dissimilarity scores were used. The
hydrochemical variables used here were further selected to minimise co-linearity, in
total 8 variables (yearly mean values) were used; pH, SO4, Dissolved Organic Carbon
(DOCQ), labile aluminium, Acid Neutralising Capacity (ANC), Ca, NOs and CL. In the
step-wise model selection procedure, first each hydrochemical variable was used as
the sole constrained explanatory variable within the RDA model, and the explained
variation by each model was recorded. Secondly the variables were ranked by the
explained variation in each of the constrained ordinations. Variables were then
sequentially added to the model, at each stage the significance of each variable was
assessed using Monte Carlo permutations and the variation explained by the
remaining variables was recalculated and the variables re-sorted by this value.
Variables were sequentially added to the model in this manner until the next best
variable no longer significantly improved the model. Comparison of variables is based
on AIC criteria and p-values from Monte Carlo permutation test (n=199). Finally the
explanatory power of each of the variables in the final model was assessed using
Permutational multivariate analysis of variance (PERMANOVA) with 9999

permutations. To determine the principle environmental determinants of network
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structure, the step-wise model selection procedure was repeated using a dataframe of
network metrics in the place of the community matrix and Euclidean distances. All
ordination analysis was performed using the vegan package in R (Oksanen et al. 2015).
Variance partitioning was used to assess the variation in community or food web

structure explained by the first four (or fewer) significant environmental variables.

3.4 Results

3.4.1 Has there been directional change in network structure?

Trends in hydrochemical variables varied across all sites. Several showed
significant increasing trends in average annual pH (13 out of 23; Figure C Appendix
E), Acid Neutralising Capacity (18 out of 23; Figure D Appendix E), Dissolved Organic
Carbon (20 out of 23; Figure E Appendix E) and significant decreasing trends in labile
aluminium (14 out of 23; Figure F Appendix E) suggesting that at least partial recovery
from acidification has occurred at most sites (Monteith et al. 2014). Some sites showed
significant increasing trends in mean trophic height (8 out of 23; Figure G Appendix
E), vulnerability (8 out of 23; Figure H Appendix E), and its standard deviation (7 out
of 23; Figure I Appendix E), significant decreasing trends in redundancy (11 out of 23;
Figure ] Appendix E), standard deviation in generality (10 out of 23; Figure K
Appendix E) and efficiency (6 out of 23; Figure L Appendix E). Generality increased
in two sites, and decreased in four others (Figure M Appendix E), likewise maximum
trophic height increased in one site, and decreased in two others (Figure N Appendix
E). These mixed trends were unrelated to the sites severity of acidification at the
beginning of monitoring. Indeed, x? tests revealed that there was no congruence
between those sites exhibiting chemical and biological recovery (Table A Appendix

Page | 60



Chapter 3 | Food webs recovery from acidification

3.4.2 What are the environmental determinants of community and food

web structure?

When food web data were analysed together at the regional (UK) scale,
network metrics were related to the degree of environmental stress that the food web
was exposed to (Figure 12). Generality, vulnerability and efficiency decreased with

increasing environmental stress (low pH) whilst redundancy increased with

increasing environmental stress (low pH).
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Figure 12. Network metrics vary with environmental stress. The acidity gradient is PC1
extracted from the PCA of the water chemistry data, and is strongly related to pH, ANC &
labile aluminium, such the x-axis can be interpreted as increasing environmental stress from
left to right. Lines indicate fitted values from GLMM where p < 0.05.
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The RDA model testing of the effects of environmental variables on community
structure was significant (p=0.001; Figure 13), the constrained component explained
16% of the variation in community structure while the conditional component (site
and year) explained 50% of the variation. All 8 environmental variables were included
in the model structure through step-wise model selection, after PERMANOVA they
all had a significant effect on community structure (Table 4). Variance partitioning

determined that SOs explained 2.02% of the variance in community structure, pH

3.7%, DOC 1.8% and labile aluminium 0.93%.

The RDA model testing of the effects of environmental variables on food web
structure was significant (p=0.008; Figure 14), the constrained component (NOs)
explained 0.3% of the variation in community structure while the conditional
component (site and year) explained 61% of the variation. Among the 10

environmental variables only NO; had an effect on food web structure (Table 5).
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Table 4. Effects of hydrochemical variables on community composition determined through
PERMANOVA with 9999 permutations, with site and year fitted as conditional variables. All
variables are yearly averages. Bold p-values indicate significance at a = 0.05.

Variable d.f. SS Pseudo- p-value
F
SO4 1 036 2.0535  0.001
pH 1 0251 14272  0.002
DOC 1 0334 19003 0.001
L_Al 1 0273 15568  0.001
ANC 1 0278 1.5853  0.002
Ca 1 0244 1.3883  0.004
NO3 1 0412 23487  0.001

Cl 1 0274  1.561 0.003
Residual 412 72.315

Table 5. Effects of hydrochemical variables on food web metrics determined through
PERMANOVA with 9999 permutations, with site and year fitted as conditional variables. All
variables are yearly averages. Bold p-values indicate significance at a = 0.05.

Variable d.f. SS Pseudo- p-value
F

NOs 1 0.01186 2.6749  0.017

Residual 419 1.85714
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Figure 13. Distance-based Redundancy Analysis with SOs;, pH, DOC, labile aluminium
(L_AI), ANC, Ca, NOs and Cl fitted as constrained variables and site and year as conditional
variables. Site scores (a) and species scores (b) are shown.
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Figure 14. Site scores from Distance-based Redundancy Analysis with NOs fitted as a
constrained variable and site and year as conditional variables. maxTH and meanTH are mean
and max trophic height respectively. sd.G and sd.V are the standard deviation in normalised
generality and vulnerability scores respectively. E is network efficiency and S is the number
of nodes.
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3.5 Discussion

It is clear that scale is an important consideration when assessing food web
data. When the current data were analysed at the site scale, site scale sources of
variation such as individual site characteristics or sampling error swamped any trends
in food web structure over time. For instance weather conditions immediately before
or during the time of sampling were largely uncontrolled for. Additionally the acidity
gradient that each site is exposed to is small relative to the gradient of the whole
dataset. When the data were aggregated and analysed at the regional (UK) scale then

significant trends emerged.

There were instances of contradictory trends within the network for instance
Afon Gwy and Old Lodge were recovering in terms of their hydrochemistry, but were
yet to show a trend in their invertebrate community composition. Conversely,
Coneyglen Burn’s invertebrate community had experienced significant turnover, but
its hydrochemistry did not shown a significant time series trend (Kernan et al. 2010).
Extreme events, and the small sampling window for each site has caused some sites
to lose and regain their significant trends in biota recovery over time (Monteith &
Evans 1998, 2005; Kernan et al. 2010). Results from the analysis of the aggregated data
are easier to interpret although attributing these trends to specific hydrochemical

drivers becomes more difficult.

3.5.1 Chemical, community and food web recovery across the network

Our results provide clear evidence, in concordance with other published
studies, for reductions in the acidity of acidified waters across the UWMN sites
(Monteith et al. 2014), which is consistent with other international assessments of

trends in acidified waters (Stoddard et al. 1999; Evans et al. 2001; Skjelkvale et al. 2005).

Average annual pH and ANC increased in almost all of the historically
acidified sites, indeed, Kernan et al. (2010) who used the full dataset (rather than

annual averages) found that seventeen of the 22 sites they studied (Loch Coire
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Fionnaraich was not included) showed significant increases in pH, and eighteen
showed significant increasing trends in ANC. However SO4 concentrations across the
network in 2012 remained several times higher at most sites than those found at the
least impacted sites (Monteith et al. 2014), so clearly there is further to go in terms of
chemical recovery at these sites. Labile aluminium has also fallen dramatically across
the UWMN sites, although in 2012 the concentration was still far higher than is typical
for sites unimpacted by acidification (Monteith et al. 2014).

The increasing trends in DOC in UWMN sites is mirrored in other
industrialised regions of the northern hemisphere (De Wit et al. 2007; SanClements et
al. 2012) and have been ascribed to an increase in the solubility of soil organic carbon
as a consequence of reductions in acid deposition (Monteith et al. 2007; Clark et al.
2011; Evans et al. 2012). This means that although there has been a marked reduction
in strong mineral acids (e.g. SO4) this has been partially buffered by an increase in
weak organic acids (DOC), and thus the expectation for recovery of pH has been
modified (Evans et al. 2008). However there is increasing evidence that DOC provides
an important ecosystem service as it helps to protect waters from acidification
(Monteith et al. 2014), and increasing DOC may well be part of a natural chemical

recovery trajectory.

The general increasing mean trophic height of food webs over time at each of
the sites is to be expected from what we know about how these systems respond to
de-acidification; under acidification species are lost throughout the food web but top
predators such as fish (Henriksen, Fjeld & Hesthagen 1999) and many predatory
macro-invertebrates are especially vulnerable (Layer et al. 2011). As these acid-
sensitive species re-colonise feeding chains will lengthen (Woodward & Hildrew
2001) and the average trophic height of the food web as a whole will increase. All of
the sites which experienced this lengthening of food chains were also increasing in
their pH, although not all sites increasing their pH also increased their mean trophic

height. This trend was not detected in the aggregated data across the stress gradient,
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suggesting that other environmental factors, other than pH (for instance DOC which
was closely related to PC2), may be impacting mean trophic height and complicating

the pH/trophic height story.

Along the hydrochemical stress gradient, vulnerability and generality both
decreased (Figure 12), although no trend in generality overtime in the individual sites
was detected, and vulnerability tended to increase over time at individual sites.
However there were only eight increasing vulnerability trends out of a possible 23,
and many sites showed complex patterns over time (Figure H Appendix E). Those
sites increasing their vulnerability were not those recovering from acidification (Table
A Appendix E) hence it seems reasonable to conclude that the analysis over the stress
gradient is more conclusive than the site by site analysis. The decreasing generality
and vulnerability with increasing hydrochemical stress is consistent with the theory
that as an acidified system recovers, specialist consumers and larger top predators re-
colonise (Woodward & Hildrew 2001; Layer, Hildrew & Woodward 2013) which
causes a reduction in the mean number of consumers per resource species
(vulnerability), and mean number of resources per consumer (generality). There are
known to be marked differences in the feeding patterns of primary-consumers across
a pH gradient, the species richness of both algal resources and primary consumers
increase with increasing pH, the composition of functional feeding groups within the
primary consumers switch from a generalist herbivore-detritivore dominated system
at low pH, to a more diverse community including specialist herbivore primary
consumers (Ledger & Hildrew 2005; Layer, Hildrew & Woodward 2013). This coupled
with the appearance of other acid-sensitive invertebrate species (such as the mayflies
Baetis sp. and Caenis sp., or the snail Radix balthica) and salmonid fish at high pH
explains the decreasing trend in vulnerability and generality with decreasing
environmental stress. Previous work has found that generality and vulnerability
increased with pH (Layer et al. 2010b), but used a far smaller sample size than that

used here.
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Network efficiency is a measure of how ‘reachable’ each node is from every
other node, and as such it is strongly related to how well connected a network is.
Decreasing network efficiency with increasing hydrochemical stress (Figure 12)
indicates that food webs under more stress are less well connected across the whole
network, for instance there may be pockets of species which are poorly connected to
other species, such that the average shortest path length between all pairs of nodes is
increased. The addition of top predators such as salmonid fish to the system
(Woodward & Hildrew 2001) may explain the increased efficiency of less stressed
food webs. Consumers in freshwater systems tend to be highly generalist engulfing
predators which will consume anything within a given size range. The addition of
these generalist interactions between top predators and a swathe of invertebrates
within the appropriate size range may well increase the reachability between those
resource nodes, as well as link together different feeding pathways (i.e. allochthonous

vs autochthonous).

Food webs under more hydrochemical stress contained proportionally more
redundant feeding pathways than their counterparts under less stress, the proportion
of “trophic species’, nodes feeding on and being fed on by the same species is larger at
low pH. This is congruent with the increase is specialist consumers as acidity
ameliorates. Additionally, food webs at low pH tend to have few species and few links

(Layer et al. 2010b), making the scope for unique feeding pathways small.

The “ecological inertia” of these food webs is an often cited mechanism to
explain the delay in biological recovery (Lundberg, Ranta & Kaitala 2000; Ledger &
Hildrew 2005; Kernan et al. 2010; Layer et al. 2010b), whereby food webs under
acidified conditions are dynamically stable and resistant to re-colonisation by acid-
sensitive species. Townsend et al. (1987) measured the persistence of 27 stream
invertebrate communities across a pH gradient, and found that those communities
from the most acidified sites were the most persistent. Likewise Layer et al. (2010b)

used dynamic modelling to determine the robustness of stream food webs to species
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extinctions, and found that food webs from more acidified conditions are more robust.
Here we provide some evidence in support of this theory, redundancy is an important
feature engineered into (non-ecological) stable systems, providing robustness against
node loss, this translates into biological systems and leads us to predict that food webs
with greater redundancy amongst its nodes might be more robust to simulated species
removal. In biological systems redundancy increases the reliability of ecosystem
functioning (Naeem 1998; Peralta et al. 2014). Here we found that food webs from
acidified waters had higher redundancy amongst their nodes suggesting that they
might provide more reliably ecosystem functioning rates (Naeem 1998; Peralta et al.
2014), and might be more robust. However, contrasting this we found that more
acidified food webs had lower global efficiency. The efficiency of a network is closely
related to its small world properties, highly efficient networks also exhibit small world
properties. Ecological networks with small world properties can be relatively stable
(Solé & Montoya 2001; Dunne, Williams & Martinez 2002a; however, see Appendix
A). These contrasting results warrant further investigation to reveal if acidified food
webs are more stable, or, if they are more stable in some regards and not others. For
instance, acidified food webs may be more persistent (the strength of perturbation
required to change a community; Pimm 1984) and at the same time less robust to

perturbation (Appendix A).

3.5.2 Environmental drivers of community & food web structure

The chief drivers of community structure were to be expected as they were all
either key drivers of (SO, Ca, NOs, Cl) or respond to (pH, ANC, DOC, labile
aluminium) changes in acidity. That these were not found to be the main drivers of
network structure is surprising, especially since they are clearly related to changes in
network structure (Figure 12). Many of the network metrics were relatively unrelated
to NOs (those aligned with the first unconstrained axis, such as redundancy, standard
deviation in generality, mean trophic height, efficiency) suggesting that the
hydrochemical variables analysed here were not, at least in isolation, the principal

determinants of network structure, rather their combined effect on the acidity of
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freshwater systems had significant implications for food web structure.

3.5.3 Food web construction

The use of inferred feeding links in food web studies has been criticised on the
basis that they might over estimate diet breadth, and fail to detect behavioural
differences between sites (Hall & Raffaelli 1997; Raffaelli 2007). However we believe
that the use of ‘summary’ food webs, which include the full complement of known
possible tropic interactions can still be a useful tool for understanding community
dynamics. Indeed, given the limitations of summary food webs, they are more likely
to be insensitive to environmental change rather than reveal erroneous trends. Hence
we believe that the trends revealed here are real, and warrant further examination
perhaps by building food webs in a more empirical manner, such as through gut

contents analysis (as in Woodward, Speirs & Hildrew 2005; Layer et al. 2010b).

Another potential limitation to the food webs produced here is that they don’t
include the full freshwater community, in particular the meiofauna and top predators
such as the European Dipper (Cinclus cinclus) or Otter (Lutra lutra) are missing. Top
predators have been shown to have a profound effect on community structure in these
systems (Layer et al. 2011), and so their exclusion may omit an important source of
variation in this data. However this was unavoidable since the presence of these
species has not been systematically recoded at these sites. Additionally, the fish
assemblage of the lake sites were sampled from the lake outflows, which likely contain
a different fish community to that in the main lake. For instance, Pike (Esox lucius) are
usually associated with slow moving or standing water bodies, and so would be
unlikely to be sampled in the lake outtlows, even if they were present in the main lake
(although Pike was found to be present at lake sites on fourteen sampling occasions).
Of the 434 sampling occasions on which fish were present at a site, Brown Trout was
found 434 times reflecting its dominance in these systems. The next most common
species was the European Eel (Anguilla anguilla), which was found on 136 sampling

occasions. All other species (Esox lucius, Gasterosteus aculeatus, Lampetra sp., Phoxinus
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phoxinus and Salmo salar) were found on less than 60 sampling occasions. The use of
presence/absence data for this analysis (rather than counts of each species at each site)

should help to overcome some of these limitations.

3.5.4 Conclusion

This is the first example, of which we are aware, of a large collection of
replicated food webs distributed over both time and space. Our study is one of the
tirst to address macroecological questions relating to the structure of food webs across
time and a broad environmental gradient. Our analysis reveals fundamental
structural changes occurring in the food webs as they respond to changes in acidity,
these structural changes could have profound implications for the stability of the
system, and may be limiting biological recovery. It would be instructive to further
investigate the stability of these food webs, in order to more fully explore if there is an

intrinsic food web inertia limiting the rate of recovery (Appendix A).
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4 | Food web topological plasticity disrupts the

provisioning of ecosystem services
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4.1 Summary

There have been calls recently to direct the management of ecosystem services
towards the conservation of the structure of ecological networks. However ecological
networks are made up of many interactions all with the potential to influence one
another. Thus, when directing management towards a particular desired interaction
it is important to consider it in the context of the whole network. Carabid consumers
in arable systems consume both weed seeds and gastropod resources, and can provide
a measurable pest control benefit to farmers. However it is unknown to what extent
the network in which these consumers are embedded rewires when alternative

resources, such as gastropods, are available.

Here we use an exceptionally large dataset of 374 half-fields distributed across
the UK and taken from the Farm Scale Evaluation (FSE) of genetically modified
herbicide tolerant crop. We use these food webs to test if the presence of gastropods
disrupts the ecosystem service of weed seed regulation. We found that increasing
numbers of gastropod species are associated with a decline in the number of
herbivores in each food web. There was a strong negative relationship between the
herbivore and predator interaction frequency in each food web. The number of
herbivores, and the herbivore interaction frequency was found to be related to the

strength of weed regulation found in each half-field.

These results suggest that if management were directed toward manipulating
network structure and reducing the carabid-gastropod interactions (i.e. by removing
gastropods from the system) then this might result in a stronger weed regulation

effect.
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4.2 Introduction

The sustainable provision of ecosystems services has become a cornerstone of
environmental research, management and policymaking (Royal Society 2009; Redford
et al. 2012). Many of the services that humanity requires are driven by interactions
between species (Montoya, Rogers & Memmott 2012), such as trophic interactions
between consumers and their resources for the delivery of biological control (e.g.
Macfadyen et al. 2011). Increasingly, we are learning that these interactions are
embedded in a network of other links which reflect the structure and dynamics of the
community present. Thus, any one interaction and the ecosystem service it supports
can be influenced both positively and negatively by the composition of interactions

making up the network in which it is embedded.

Changes in the composition of resource species within a food web, whether that
be presence and absence, or changes to their relative abundances, will necessarily
cause concomitant changes to their interactions with consumer species. Some
interactions may disappear altogether, others will be reformed while many may
change their relative strength. All these changes could potentially occur without
marked changes to the consumer assemblage. Alternatively, a change in prey
composition could lead to a rearrangement of all possible links and potentially
complete turnover of the consumer assemblage. These two component parts of link
turnover (Poisot et al. 2012) could go on to cause changes in the functioning and finally
service provisioning of a particular network. Such turnover of links is essentially a
rewiring of the existing network according to the composition and abundances of the

consumer and resource community.

We know that environmental change causes species turnover (e.g. Benedick et al.
2006; Clough et al. 2007; Novotny et al. 2007), indeed species turnover is commonly
evaluated as [-diversity between habitats and much of our attempts to manage
ecosystem services is predicated upon conserving species against turnover (e.g.

Benedick et al. 2006). More recently, an argument has been made that managing and
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conserving links in networks is an important mechanism for assuring the stable
delivery of ecosystem services (McCann 2007; Tylianakis et al. 2010; Gray et al. 2014).
In part this is because changes in the composition of interactions can lead to changes
in ecological functions despite no change in species richness (Tylianakis, Tscharntke
& Lewis 2007). What is unknown, however, is the importance and contribution of link
turnover to the support and delivery of ecosystem services in replicate networks of

real-world ecosystems.

Here we investigate the relative importance of link and species turnover in a
highly replicated network of two ecosystem services, weed seed and slug control,
delivered by a common community of carabid beetle species in agricultural fields
distributed across the UK. Carabid beetles are polyphagous predators and have been
the subject of much research as they regulate weed seeds in agricultural systems
(Bohan et al. 2011a) and consume gastropods pests (Bohan et al. 2000), both of which
contribute to reduced crop yields. Thus they are potentially important contributors to
the ecosystem service of pest control in agricultural systems. The diets of carabid
beetles have been studied extensively (e.g. Larochelle 1990; Mundy et al. 2000; Saska
2008), some taxa are considered to be generalist omnivores (e.g. Pterostichus sp.) whilst
others are specialists (e.g. Harpalus sp.). However the extent to which each species
contributes to the ecosystem service of pest control is unknown. If seed specialists
alone are enough to provide effective control of weed seeds, then the presence of
gastropod resources shouldn’t interfere with this service. However if omnivores are
required to control weed seeds, which would also feed upon gastropods when they
are present then the presence of gastropods in agricultural fields might disrupt the

ecosystem service of weed seed control.

The nodes of our networks were formed from the abundances of species of
weeds, slugs and carabids present in agricultural sample data, with observed trophic
links gathered from the literature. Changes in species and link turnover are thus

inferred by comparison between networks in different replicate fields, each with a
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distinct community of weed seeds, slugs and carabids. Taking weed seed regulation
as our standard ecosystem service, we ask: i) how this service is affected by the
potentially disruptive and competing function of slug predation; ii) do both link and
species turnover contribute towards this disruption; and, iii) should we manage

species or links in real-world networks of ecosystem services?

4.3 Methods

4.3.1 Experimental design and data collection
The Farm Scale Evaluation (FSE) experiment extensively sampled the
biodiversity in and around crop fields across the UK (Figure 15). Previously power
analyses have shown that the nodes in the FSE dataset are fully sampled (Perry et al.
2003). More details of the experimental design and protocols for data collection can be

found in (Champion et al. (2003) and Bohan et al. (2005), but briefly they are as follows:

The count data for the weed seedbanks, seed rain, carabids and gastropods
comes from 66 spring-sown beet, 55 spring maize and 66 spring oilseed rape fields.
The fields were distributed across the UK (Figure 15) and each field was sampled for
one cropping year (Firbank et al. 2003) between 2000 and 2004. Each field was divided
in two so that one half was sown with the conventional crop and the other the
Genetically Modified Herbicide Tolerant (GMHT) variety. Data from both treatments

were used for the analyses presented in this study, hence a total of 374 half-fields.

The pitfall-trapping of soil-surface-active invertebrates employed the method
described by Brooks et al. (2003). Pitfall traps were distributed along transects which
ran from the crop edge into the centre of each field in the spring (April May) and
summer (June/July), and in late summer (August). Viable seed available to the
carabids for consumption via the return of weed seed to the seedbank (seed rain) was
quantified using seed rain traps along the same transects within each field (Heard et

al. 2003). The traps were emptied every 2 weeks throughout the growing season.
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Gastropods were sampled as in Brooks et al. (2003), using baited refuge traps at the
same positions used for the pitfall trapping in late April and in early August for spring
oilseed rape, and in May and August for maize and beet. All invertebrates and non-
crop seeds were identified to species, and counted. Counts were then pooled, by
summation, to give a year-total estimate for each species in each half field, and from

this the relative abundance of each species was calculated.
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Figure 15. Map of the 187 sites from the FSE dataset used in this study.

4.3.2 Weed Regulation
To assess the regulation of weed seeds, seedbank samples were taken just prior

to sowing in the experimental cropping year (to) and just prior to sowing in the
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following cropping year (t1). Seedbank abundance was estimated by taking soil cores
along four transects running into each half field. Germinated seeds in the seedbank
sample were counted and identified to species (Squire, Rodger & Wright 2000; Heard
et al. 2003). The seedbank counts were then pooled, by summation, to give an estimate
of the seedbank in each half field (total weeds) as well as dicotyledon, monocotyledon
and individual species counts. Regulation was calculated from the change in seed

bank counts between to and t1, using the following formula:

t, + 0.5) )

on = 1 (
regulation = In L+ 05

so that for each half field a measure total, dicotyledon, monocotyledon and

individual weed species regulation was calculated.

4.3.3 Food web construction

The species sample data were supplemented with carabid dietary information
harvested from the literature. We assumed that where a carabid species, A, was
observed to consume a resource species, B, in the literature and both these species
were present in the sample data from one half field, then this interaction was realised
(as in Goldwasser & Roughgarden 1993; Havens 1993; Layer et al. 2010a; Pocock,
Evans & Memmott 2012). To standardise the (trophic interaction) sampling effort
across all carabid species, and account for poorly studied carabid species which did
not appear in the literature, it was assumed that each carabid would consume the
same resources as other carabids within the same genus (see Goldwasser et al. 1993;
Layer et al. 2010). A similar generalisation was made at the resource level. Where
particular carabids was recorded to feed upon one species of gastropod or weed in the
literature, we assumed that this carabid would also consume other resource species of
the same genus (Gray et al. 2015b). This generalisation was done to reduce the
numbers of isolated species within each network, and to avoid the bias towards more

studied species (Ings et al. 2009; Woodward et al. 2010b).
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Interaction frequency between each consumer and resource was calculated as
the product of consumer relative abundance and resource relative abundance. Species
abundance is known to be a major predictor of the strength of its interactions with
other species (e.g. Reuman & Cohen 2005), hence weighting the links in this manner
incorporates an estimate of the variation in interaction strength with species
abundance, within each food web. Incorporating weighted links in this way builds
upon the simple binary food web structure built from presence/absence data. Since
species abundances vary wildly in response to its local environment the resulting

network structure is also be more sensitive to change.

Following network construction, each carabid species was assigned to a trophic
group based upon their role in each replicate network in which they are found.
Carabid nodes linked only to gastropods were assigned to the “predator’ grouping,
while those consuming only weeds were ‘herbivores’, and ‘omnivores” were species
linked to both gastropods and weeds. Thus, a particular carabid species might be a

predator in one food web, a herbivore in another and an omnivore in yet another.

4.3.4 Statistical analysis
All analysis was done in R (R Core Team 2013) using the cheddar (Hudson et al.
2013), bipartite (Dormann, Gruber & Fruend 2008) and vegan (Oksanen et al. 2015)
packages. Food web plots were created with the HiveR package (Krzywinski et al.
2012). Herbivore or predator interaction frequency for each food web was calculated
as the sum of all those interactions belonging to these carabids feeding only on weeds
or gastropods respectively (i.e. those feeding on both resource types were classified as

omnivores and excluded).

Species and link turnover across the collection of food webs were measured
using Bray-Curtis dissimilarity in the vegan package (Oksanen et al. 2015). Each food
web is a realisation of interactions drawn from the metaweb (Dunne 2006), contingent
on local species composition and abundances. While the dissimilarity of species

between two sites is straightforward to quantify, link dissimilarity must be
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decomposed into two parts; differences in interactions between networks originate
from differences in species composition, and because shared species between the two
realisations may interact differently (Poisot et al. 2012). The link dissimilarity
presented here is that driven solely by changes in the underlying species composition.
In order to assess how species and link turnover changes across the
herbivore/predator gradient, we used the number of herbivores and predators within
each network as factor levels with which to categorise the food webs (i.e. food webs
with 1 herbivore, 2 herbivores, 3 herbivores etc). We ensured that no single food web
appeared in more than one group by randomly assigning food webs to either their
herbivore or predator group, and calculated the Bray-Curtis dissimilarity between the

herbivore and predator groups.

In all models each site was treated as a replicate, as there was no repeat sampling
from any one site. Linear regressions were used to test for a relationship between the
number of gastropod species and the number of weed species and specialist
herbivores within each food web. The count of weed and gastropod species, and
herbivores was log(x+0.5) transformed to obtain normality. The relationship between
number of herbivores and predators in each network was assessed using a
Generalised Linear Model and a Quasiposisson error distribution to account for
overdispersion, the number of predators in each network was log(x+0.5) transformed
and used as the predictor variable. The relationship between the number of herbivore
links and predator links for omnivore nodes only was assessed with linear regression
using log(x) transformed predictor and explanatory variables to obtain normality.
Due to the extreme distribution produced, the relationship between predatory
interaction frequency and herbivory interaction frequency was fitted using LOWESS
smoothing. The relationship between weed regulation and the number of herbivores
or herbivory interaction frequency was assed using linear regressions where the
number of herbivores had been log(x+0.5) transformed and the herbivory interaction
frequency was log(x) transformed after removal of zeros by addition of the minimum

value, to obtain normality. To directly test if the presence of gastropods interfered
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with any weed seed regulation, count of carabid species within each food web was

included as an interaction term.

4.4 Results

In total 811 unique trophic interactions were found between 41 carabid, 96 weed
and 9 gastropod species (Figure 16). In the ‘master’ amalgamated food web (Figure
16) there were 17 herbivore carabid species, 6 predatory species and 18 omnivore

species.

44.1 Service disruption

No pattern was found in the number of gastropod and weed species within
each food web (Figure 17a), however as the number of gastropod species increased,
the number of specialist herbivores within each food web decreased (F1372 = 11.8,

p=<0.0001, Figure 17b).

There was an inverse relationship between the number of herbivores and
predators within each food web (F1,372 = 339.5, p=<0.0001, Figure A Appendix F) and
between specialist predatory and herbivory interaction frequency (Figure 18). As the
predatory interaction frequency increased across the networks, the herbivory

interaction frequency reduced dramatically.
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Figure 16. The “‘master’ food web. Carabid (black circles), weed (green circles) and gastropod
(red circles) species nodes are sized proportionally to their ranked relative to how often they
were found across all food webs. Link colour intensity and thickness is proportional to the
strength of the interaction across all food webs.
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Figure 17. The relationships between the number of gastropod and weed species in each food
web (a), and between the number of gastropod species and the number of herbivores within

each food web (b).
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Food webs with more specialist herbivores had stronger weed regulation (F1333
= 3.98, p=0.047, Figure B Appendix F), this trend was also found for monocot (F1,333 =
6.42, p=0.01) and dicot weed regulation (F1,333 = 4.57, p=0.03). This trend was also
evident for total weed regulation by food webs with larger specialist herbivore
interaction frequencies (F1,333 = 5.16, p=0.02, Figure 19a), and also for monocot
regulation (F1,333 = 3.89, p=0.05) and dicot regulation (F1,333 = 5.76, p=0.02). Those food
webs which were more dominated by specialist herbivorous interactions more
strongly down regulated weed seeds. These relationships were not found when
considering the total herbivore interaction frequency (i.e. specialist herbivores plus
weed feeding omnivore links) for each food web (Table A Appendix F), suggesting
that it is the specialist herbivore interactions which are more strongly related to the

level of weed regulation.
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Figure 19. The level of total weed regulation (a), monocot regulation (b) and dicot regulation
(c) related to the sum herbivory interaction frequency for each network.

This indicates that the presence of gastropods in fields interferes with the
ecosystem service of weed regulation, their presence in a food web decreases the
number of specialist herbivore carabids (Figure 17b), which in turn weakens the
interaction frequency between specialist herbivore carabids and weeds (Figure 18)

which is related to a decreases in weed seed regulation (Figure 19).

Page | 86



Chapter 4 | Food web topological plasticity

44.2 Link turnover

The variation in network structure was driven more strongly by changes in link
composition than by changes in species composition (Figure 20). Although changes in
carabid species composition were low (mean dissimilarity 0.44 + 0.17), and most
carabid species were found in most food webs, carabids were able to alter their diets
across the gradient of available resources such that changes in link composition were

higher (mean dissimilarity 0.65 + 0.25).
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Figure 20. The turnover in carabid species (a) and links (b) between the food webs across the
herbivore/predator gradient.

4.4.3 Management of ecosystem services
For each carabid, in each food web, there was an inverse relationship between
the number of links to weed resources and number of links to gastropod resources
(Figure 21), even amongst the omnivores, no omnivore node was found to have high
numbers of links to both weeds and gastropods (t=-7.08, p=<0.0001, Table A, Figure
C Appendix F). The occupancy of the potential link space by the most common carabid
species Pterostichus melanarius is shown in Figure 21, this distribution was typical for
the most abundant carabid species, many of the species occupied most but not all of
this link space (Figure D in Appendix F), suggesting that most carabid species can
Page | 87



Chapter 4 | Food web topological plasticity

perform most roles in these networks.
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Figure 21. A density plot showing the inverse relationship between herbivore links and
predator links. Within each food web, for each carabid species, the number of links to weed
and gastropod resources are plotted. Some carabids were pure herbivores or predators, but
most were omnivores. Colour indicates the count of each particular weed-gastropod link
combination. The occupation of this space of potential feeding interactions for the most
common carabid species Pterostichus melanarius is shown in black.
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4.5 Discussion

This is the first study of which we are aware that explicitly links the replicated
structure of ecological networks to the provisioning of an ecosystem service. We have
presented evidence that the presence of alternative resources (gastropods) causes re-
wiring within the food web and could disrupt the delivery of effective weed seed
control; the presence of gastropods in the food webs reduced the strength of specialist
herbivore interactions, which in turn was related to reduced weed seed regulation.
Thus when targeting ecosystem management towards the delivery of desired services,
it is important to consider the interactions underpinning those services and the local
realisation of the regional metaweb, rather than the taxonomically defined trophic
designation of a species. For example P. meinarius is a highly abundant generalist
carabid species consuming both weed seeds and gastropods, but directing
conservation towards this species will not deliver stable service provision (Bohan et
al. 2011a). Directing conservation efforts towards removing carabid-gastropod links
from the system (i.e. through the use of molluscicides) might increase the specialist
carabid-weed seed interactions and ensure more stable service delivery. However this
mechanism would be best tested with experimental evidence, and direct examination
of the diet of carabids at the local scale, perhaps through molecular techniques (e.g.
Eskelson et al. 2011; Lundgren, Saska & Honék 2013).

The versatility and diet breadth of these species may be an important mechanism
maintaining network structure over time, eliminating alternative resources to direct
predation pressure on to weed seeds might cause carabid predators to be without
resources at certain times of the year (i.e. spring, or before seed fall) and so might be
lost from the system. This itself clearly poses a problem for stable service delivery, and

how best to manage this system over time is a matter for further research.

Our results demonstrate plasticity in species roles within these networks,
sometimes performing as specialist herbivores, sometimes specialist predators and

sometimes generalist omnivores, suggesting that the global niche of these species is
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modulated at the field scale. Carabid species are traditionally categorised into strict
feeding guilds (e.g. Lovei & Sunderland 1996), although increasingly it is being
recognised that these species are more versatile in their diet than previously thought
(e.g. Lundgren, Saska & Honék 2013). Our results demonstrate that the role a species
plays within a complex food web is defined by its synecology, and thus the
contribution each species makes toward a desired level of ecosystem functioning can
only be assessed in the context of the food web. Modern conservation literature
favours the maintenance of ecosystem functioning and the ecosystem services that
result. A food web approach towards service management is advantageous as it
explicitly considers the interactions between species which are the drivers of many
ecosystem functions (Thompson et al. 2012; Gray et al. 2014). Our work here has
identified a possible mechanism through which weed seed regulation could be
enhanced through management targeted at manipulating food web structure, rather

than the species composition per se.

The networks presented here are ‘summary’ food webs for the species found in
each half field, they are local realisations of the regional metaweb, and hence they are
not sensitive to behavioural differences between species across environmental
gradients. They are reliant on the trophic information data harvested from the
literature and as such there were many species for which no trophic information could
be found and so were excluded from the final networks, these were mostly weed
species (109), but also some gastropod species (3). Although links established from
forced feeding trials were excluded there may be biases in the food webs due to the
often small choice range available to carabids in laboratory trials. The sensitivity of
these food webs could be improved by gathering more information on the trophic
interactions found in these natural systems, for instance screening the guts of carabids
for molecular markers (e.g. Lundgren, Saska & Honék 2013) or resource DNA (e.g.
Eskelson et al. 2011) would facilitate the identification of species specific trophic
interactions. Given these limitations, a priori one might expect these food webs to be

relatively structurally invariant, thus the trends presented here may in reality be even
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more prominent in nature.

Weeds and gastropod pests exert a significant impact on agriculture, and
considerable resources are diverted towards controlling these sources of reduced
productivity. The negative effects of pesticides on the natural world are well
documented (Royal Society 2009). Our results indicate that by harnessing the natural
link plasticity found within these food webs, effective weed seed control through
targeted management of food web structure could be achieved, potentially reducing
the need for some pesticides (e.g. herbicides). Adopting a food web approach links
pest populations to food web dynamics and ecosystem service provisioning, which

can then be more accurately predicted and managed.
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| The recovery of a freshwater food web from a

catastrophic pesticide spill
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5.1 Summary
Pesticides have strong negative direct effects in fresh waters, but understanding
how these effects propagate through natural ecosystems is limited because research

that considers the whole ecological community in a natural setting is rare.

Here, we investigate how an accidental spill of the insecticide Chlorpyrifos affects
the structure and functioning of a natural river community. We quantify the direct
impacts on pesticide sensitive arthropods, and the indirect effects mediated through
the food web. We quantify the effect that this food web re-structuring had on a key
ecosystem function, leaf litter decomposition. We use data collected regularly for up

to 18 months after the spill to investigate the trajectory of recovery.

We find that the biomasses of pesticide sensitive species are reduced, while the
biomasses of their competitors and resources increased. Major restructuring occurred
within the food web such that the trophic transfer efficiency through the pesticide
sensitive nodes was reduced. Invertebrate mediated leaf litter decomposition was
reduced while microbial leaf litter decomposition was unchanged. Constrained
correspondence analysis showed that community structure recovered by one year on.
Ecosystem functioning (leaf litter decomposition) recovered more quickly than the
structural aspects of the community, perhaps due to the high redundancy within the
assemblage involved in leaf litter decomposition. This work demonstrates the
resilience of natural freshwater systems to pesticide spills, this deeper and more

holistic understanding will facilitate more effective mitigation and restoration efforts.
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5.2 Introduction

The global human population is growing rapidly, this coupled with trends
towards a more Western diet pattern has created an urgent need to assure future food
security (Godfray et al. 2010). Meeting this demand for food will lead to ever more
increased pesticide use, as the need to control agricultural pests becomes more
pressing. While technological advances and innovations such as ‘sustainable
intensification” (Royal Society 2009) may help us to meet this challenge in the future,
in the meantime the use of pesticides in agriculture continues to have wide ranging
negative impacts upon biodiversity and ecosystem functioning (Rockstrom et al. 2009).
A deeper understanding of the impacts of pesticides at the ecosystem scale is vital if

we are to effectively mitigate against these negative impacts.

Most ecotoxicological work to date has necessarily been laboratory or
mesocosm based, experiments in the laboratory have revealed precise toxicity and
effect levels for individual pesticides on the survival and life-history of target species
(e.g. Gammarus pulex; Xuereb et al. 2007). More complex, community level responses
to pesticides have been revealed in micro- and mesocosm experiments (van den Brink
et al. 1996; Van Wijngaarden et al. 1996; Traas et al. 2004) and field surveys (Chung,
Wallace & Grubaugh 1993; Triebskorn et al. 2003; Malaj et al. 2014). Little is known
about how pesticides affect natural whole communities, or how the ecosystem
processes of natural communities are affected, due to the lack of replicated, controlled
experiments in a natural setting. Additionally, little work has been done tracking the
trajectory of recovery for communities after exposure to pesticides, especially in a
natural setting (but see Raven & George 1989; Chung, Wallace & Grubaugh 1993).
Predicting how pesticides will influence natural communities and ecosystem
properties poses a far larger challenge than predicting responses of individual taxa in
isolation (Relyea 2009; Altenburger et al. 2013), due to the interplay between direct and
indirect effects (Brock, van Wijngaarden & van Geest 2000) and non-additive effects

such as synergisms and antagonisms (Relyea & Hoverman 2006).

Page | 94



Chapter 5 | Food web recovery from a pesticide spill

Chlorpyrifos is a widely used broad-spectrum organophosphate pesticide
(insecticide and acaricide) which attacks insect (and arachnid) nervous systems. It is
relatively non-persistent, measured natural water column half-lives for chlorpyrifos
typically range from <1 to 4.8 days, (Racke 1993; Barron & Woodburn 1995), and its
principal degradation products are less toxic than the parent chemical leading its
direct (toxic) effects to be relatively short-lived (Kramer et al. 1997). Specifically,
chlorpyrifos can be toxic to most invertebrate and fish species, but often only at high
concentrations, (Barron & Woodburn 1995). Within the invertebrates, crustaceans and
invertebrate larvae are among the most sensitive species for instance the lethal
concentration (LCsp) for the freshwater shrimp G. pulex is 0.07ug/L (Barron &
Woodburn 1995). Molluscs are among the most resistant species, with many taxa
having an LCsp of >100ng/L (Barron & Woodburn 1995). Most fish species are also
sensitive to chlorpyrifos toxicity given high enough concentrations, for instance, the
LCso for Rainbow Trout (Oncorhynchus mykiss) is 7ug/L (Barron & Woodburn 1995).
Compartments of the community not directly affected by chlorpyrifos toxicity are
affected indirectly (see reviews by Barron & Woodburn 1995; Brock, van Wijngaarden
& van Geest 2000; Giddings et al. 2014). For instance, Chlorpyrifos has been found to
alter food-web structure in microcosms (Traas et al. 2004). Little work has been done
to investigate the effects of Chlorpyrifos on the microbial community, which is an
important component of the food web and contribute towards many ecosystem
functions. Little work has been done linking chlorpyrifos exposure to ecosystem
functioning, however mesocosm studies have found macroinvertebrate-mediated

litter breakdown to be depressed (Brock et al. 1993; Cuppen et al. 1995).

Ecological networks such as food webs are a useful tool for studying the effects
of stressors on communities (Ings et al. 2009; Thompson et al. 2012; Gray et al. 2014). A
food web based approach to the study of pesticide exposure in natural ecosystems is
particularly useful as it implicitly encompasses the range of indirect effects, allowing

the full impacts of the pesticide on the whole community to be measured. The use of
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trivariate food webs (Cohen, Jonsson & Carpenter 2003), whereby the mass and
abundance of each node (taxa) in the network is incorporated, can reveal changes to
the energy transfer efficiency through the food web. Study of the structure of the food
web has provided explanations for unexpectedly slow recovery from perturbations in
other systems (Scheffer & Carpenter 2003; Layer et al. 2011), and it might provide an
explanation for the often slow recovery of natural communities following chlorpyrifos
exposure (Raven & George 1989). Food web models have been used to successfully
predict the indirect effects of mixtures of pesticides on experimental communities
(Halstead et al. 2014), but this is yet to be applied to natural communities. Much of the
research examining the indirect effects of pesticides on communities and ecosystem
functioning has been descriptive rather than mechanistic (but see Traas et al. 2004;
Halstead et al. 2014). As of yet the food web of natural communities exposed to

chlorpyrifos as not been investigated in a controlled and repeated manner.

There is a need for controlled, replicated investigations into the direct and
indirect effects of pesticides in natural ecosystems, as well as the trajectory of recovery
that these communities follow. A spill of the insecticide chlorpyrifos in the River
Kennet, Wiltshire UK, on 1st July 2013 provided an opportunity to address this gap.
The River Kennet is a lowland chalk tributary of the River Thames in southern
England, designated as a UK Site of Special Scientific Interest (SSSI). Its diverse
macroinvertebrate fauna is dominated by Gammaridae, Baetidae, Ephemerellidae,
Simuliidae and Chironomidae, which support an economically important salmonid
game fishery (Wright et al. 2002, 2004). The spill of chlorpyrifos was likely to be a
‘down-the-drain” incident, and entered the river through a water treatment works.
Concentrations of 0.52-0.82pg/L were recorded coming from the main tertiary
sewage treatment works in Marlborough, Wiltshire, on 2 and 5 July, respectively
(Appendix C; Thompson et al.). The peak concentration was most likely missed, but
even the recorded concentrations are sufficient to be acutely toxic to arthropods

(Barron & Woodburn 1995; Giddings et al. 2014), particularly over extended periods
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(i.e. >24h; Rubach et al. 2011).

Previous work has demonstrated the immediate effects of this spill on both
community structure and measures of ecosystem functioning (Appendix C;
Thompson et al.). Crucially, Thompson et al. (2015) used before-after-control-impact
(BACI) data, allowing them to detect causal relationships between the pesticide spill
and reduced invertebrate abundances. Thompson et al. (2015) found that the biomass
of pesticide sensitive species, in particular the keystone detritivore G. pulex, was
reduced in sites impacted by the pesticide, relative to control sites upstream of the
spill. Indirect effects were detected as the biomass of non-pesticide sensitive taxa such
as oligochaete worms, increased. Chlorophyll-a concentration, which is a proxy for
algal biomass, was also increased. When the food web was plotted in trivariate spece,
whereby the nodes of the network are plotted by their mass and abundance, the slope
of the interactions through the pesticide sensitive nodes steepened in response to the
pesticide. The slope of these interactions is a proxy for energy transfer through the
food web, steeper slopes indicating reduced energy transfer efficiency. These changes
to the structure of the food web was found to alter ecosystem functioning rates;
invertebrate mediated leaf litter decomposition was reduced in impacted sites, while

microbe driven decomposition was increased.

We build upon the work done by Thompson et al. (2015), and demonstrate the
recovery of the river ecosystem one year on. We quantify the initial impact and
recovery of the biomass of sensitive and non sensitive invertebrate species, use
detailed mass and abundance data to construct quantified food webs to make specific
predictions about the direct and indirect effects mediated through the food web, and

investigate the effects on and recovery of leaf litter decomposition.

Specifically we will address the following hypotheses:
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Community structure will be significantly impacted by the pesticide spill
at impacted sites, and recover towards that of the control sites by one year
on.

The biomass of pesticide sensitive taxa which have adult aerial life stage,
such as the mayfly Baetis sp., will recover more quickly than those who do
not, such as G. pulex.

The biomass of oligochaete worms and chlorophyll-a concentration, which
were higher in impacted sites immediately after the spill, will recover to
become indistinguishable from that of the control by one year on.

As the biomass of pesticide sensitive species recovers, so too will the
energy transfer efficency through those nodes; the slope of the feeding
interactions between pesticide sensitive taxa and their consumers and
resources will become shallower over time.

The rate of leaf-litter decomposition at impacted sites will recover to be
indistinguishable from that at the control sites by one year on. Microbial
decomposition rates will recover more quickly than invertebrate mediated
decomposition.

Structural changes to the community will take longer to recover than
invertebrate mediated decomposition rates due to high redundancy and a

mix of sensitive and non-sensitive species involved in decomposition.
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5.3 Methods

Sampling began in July 2013, approximately 2 weeks after the pesticide spill. Seven
sites were selected with similar channel forms and riparian surroundings, located
approximately 1km apart, except for the most downstream site which is located
approximately 5km from the second most downstream site (Figure 22). Each sampling
round was repeated in full every two months (with the exception of electrofishing
which was not done in every sampling round) up until the 9t sampling round in
March 2015, when there was a six month gap before the final (10th) sampling round in
September 2015. Due to limited resources not all samples from each site and date
could be processed, details of which samples, from which site at which time points

are presented below (Table 6).

Pesticide
entry point

s 1km

©Murray Thompson

Marlborough

Figure 22. Map of the River Kennet with study sites marked; three upstream of the pesticide entry
point in grey, and four below in red.

5.3.1 Community structure
To quantify the chlorophyll-a concentration, a proxy for algal biomass, ten
stones were randomly selected from each reach, and using a quadrat of known area

(17.28cm?) of the upper surface scraped and washed into a sample bottle. Samples
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were stored in the dark and frozen at -20°C until analysis. Data presented here were
from six samples (Table 6), from sites A-F, and four of the total ten time points. The
laboratory procedure was as follows: each sample was filtered through a Whatman
GF/C glass fiber filter placed in a Biichner funnel by applying a vacuum. The filter
was then quickly placed into 20ml of ice-cold 96 % ethanol, mashed up slightly with
a glass rod, and placed on ice covered with a dark plastic bag to prevent degradation
of chlorophyll molecules, which become highly sensitive to UV light during
extraction. Samples were kept at 4°C in the dark overnight. 200ul of sample was
transferred to a Nunc™ MicroWell™ 96-well optical bottom plate and chlorophyll-a
content was then measured spectrophotometrically using a Biotek HT absorbance
reader (Biotek, Swindon, U.K.). Absorption of the extraction was measured at 664
(chlorophyll-a) and 750 nm (turbidity), with and without the addition of 50ul of 0.1M
HCL. The addition of HCL degraded the chlorophyll-a into its degradation products,
pheophytins and pheophorbides (Steinman, Lamberti & Leavitt 2006), hence the skew
in absorption values created as a result of degradation products and not chlorophyll-
a was removed (Lorenzen 1967). The absorbance of the sample in a microplate was
converted into a 1-cm path length corrected absorbance using the measured path

length (Warren 2008):

Amicroplate_B
Aiem = T oz (1)

Where Amicroplate is the absorbance reading taken using the 96-well plate reader, B is
the mean absorbance of 10 control wells containing only 200ul of ethanol, and 7 is the

radius of the well (0.325cm).

After path length correction, the chlorophyll-a and pheophytin concentration
was calculated using the following equation (modified from Steinman, Lamberti &

Leavitt 2006):
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_ (Ag64—A750) " E - 10*

Chlorophyll-a & pheophytin (mm/m?2) = Crse @
- . . 4
Pheophytin (mm/m?) = (AHcL 664 :::% ;50) E-10 o)

Where Agq4 and A5 is the absorbance at 664nm and 750nm respectively, Ay 664 and
ApcL 750 1s the absorbance after the addition of HCL at 664nm and 750nm respectively.
E is the volume of ethanol used (20ml), 83.4 is the absorption coefficient for
chlorophyll-a in ethanol (1glem), and T is the scraped area of stone (17.28cm?).
Finally the concentration of chlorophyll-a was calculated by subtracting equation (3)

from equation (2).

The diatom assemblage was characterised by selecting ten permanently
submerged stones at each study site from unshaded areas. The biofilm was scrubbed
and washed from the upper stone surface. Samples were immediately preserved by
addition of Lugol’s iodine and stored until further processing. Data presented here
were from one sample processed (Table 6) from four sites (A, C, D and F) at 2 time
points (September 2013 and September 2014). Slide preparation followed Battarbee et
al. (2001), a minimum of 300 diatom valves were identified to species per sample using
standard keys (see Appendix G) and abundances per unit area were determined as in
Battarbee (1973). Linear dimensions were measured to the nearest 1um to estimate
diatom biovolume (Hillebrand et al. 1999). The first 30 specimens of all common (n >
30) species were measured, and where species were encountered less frequently, all
specimens in the count were measured. Carbon content of the diatoms was estimated
(Rocha & Duncan 1985) and then converted to dry mass (Sicko-Goad, Schelske &
Stoermer 1984).

To determine the abundance of the invertebrates, ten Surber samples (area
0.0625m?; mesh 330pm) were taken from randomly chosen stony riffles at each site

within a ~50m? stretch. Samples were immediately preserved in 96% ethanol until
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further processing. In the laboratory, samples from four sites (A, C, D and F) and four
time points (September 2013, March 2014, September 2014 and March 2015) were
prioritised (Table 6). For each site, in each time point three samples were processed;
invertebrates were sorted from debris, identified to species where possible (i.e. all
except Diptera [identified to Family] and Annelidae [identified to Subclass]), and
counted. Individuals were identified using a combination of published identification
keys (Appendix G). Body size measurements were taken in the form of linear
dimensions (head-capsule width or body length) for up to 60 specimens of each
species in each site at each time point using a calibrated ocular micrometer, and
individual dry mass determined from published length-dry mass regression

equations (Table A Appendix G).

Quantitative depletion electrofishing was undertaken at 6 time points
(September 2013, March 2014, September 2014, November 2014, March 2015 and
September 2015; some time points were omitted to minimise stress on the fish
assembledge) to assess fish abundance (Table 6). At each site a 50m stretch of the river
was electrofished (after Carle & Strub 1978). Stop-nets were installed at both ends of
the stretch, and three runs were completed, moving upstream and sweeping from one
side of the river to the other. All fishes were counted and measured (fork length and
body mass) before being released back into the stream alive. Population densities were
estimated using the R package FSA (Ogle 2012) and iterative Maximum Weighted
Likelihood statistics (Carle & Strub 1978). For each species, individual dry mass was

calculated using length-mass regression equations (Table A Appendix G).
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Table 6. The numbers of samples processed for each data type. Numbers in black indicate data
presented here, in grey are data processed but not presented here. In all instances (except fish) gaps
represent samples collected (see main text for numbers) but not yet processed. Fish were only surveyed
on the dates indicated, only those indicated with a black Y are presented here.

Site Jul-13 Sep-13 Nov-13 Mar-14 May-14 Jul-14 Sep-14 Nov-14 Mar-15 Sep-15

A 6 6 6 6 6 6 6
» B 6 6 6 6 6 6 6
;: C 6 6 6 6 6 6 6
S D 6 6 6 6 6 6 6
O
5 E 6 6 6 6 6 6 6
F 6 6 6 6 6 6 6
G 6 6 6
A 1 3 1
B 3
@ C 3
&
£ D 3
A E 3
F 1 3 1
G 3
A 4 3 3 3
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2 D
g E
E
F 3 3 3 3
G
A Y Y Y Y
B Y Y
C Y Y Y Y
<
= D Y Y Y Y
[
E Y Y
F Y Y Y Y
G Y Y
5§ A 10 10 10 10
7 B
o
£ C 10 10 10 10
o
g D 10 10 10 10
e
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= F 10 10 10 10
s
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5.3.2 Food web construction and analysis

Quantitative trivariate food webs were constructed, where nodes (species) are
plotted by their mass and abundance along with their interactions. This was done for
four sites (A, C, D & F) and two time points (September 2013 & September 2014),
which produced in total eight food webs. Feeding links were established by inferring
links from the literature, and filled in for each network using the WebBuilder function
(Chapter 2; Gray et al. 2015) in R (R Core Team 2013). This method is based on the
assumption that a described feeding link would be realized between two species at a
given study site if the same link has been described in another system where those
species co-exist (e.g. Hall & Raffaelli 1991; Martinez 1991; Layer et al. 2010b; Pocock,
Evans & Memmott 2012). In some instances, due to a paucity of trophic interaction

data, feeding links were assigned on the basis of taxonomic similarity, (Table B

Appendix G).

The slope of every trophic interaction in trivariate space was calculated using
the method of Cohen et al. (2009) in the R package Cheddar (Hudson et al. 2013). We
used link slopes to estimate changes in potential biomass flux between a resource and
its consumer (Thompson et al.). A trophic interaction can be viewed as a vector from
a resource to its consumer in mass-abundance space, a steepening of this slope

indicates less efficient energy transfer and reduced biomass flux (Cohen et al. 2009).

5.3.3 Leaf litter decomposition

Breakdown rates of black alder (Alnus glutinosa) leaf litter was determined for
each site at each time point. Ten replicates of bags with each of two mesh sizes were
deployed in each site at each time point, each bag containing 3.00+0.3 g of air-dried
leaf litter. Bags with fine mesh size (500pm) were used to exclude invertebrate
detritivores, while coarse mesh size (10mm) allowed invertebrates access to the leaf
litter. The bags were left to incubate in the river for 9 days, when collected they were
frozen at -20°C. In the laboratory samples from four sites (A, C, D and F) and four time

points (September 2013, March 2014, September 2014 and March 2015) were
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prioritised for processing (Table 6). All ten replicate samples were processed. The leaf-
litter was extracted and oven-dried at 80°C and re-weighed to determine the

proportion remaining.

Leaf breakdown rates were expressed as the exponential decay rate coefficient,

k (after Woodward et al. 2012b):

my
mo *C

k= —in (=) ad 5)

Where m, is the initial leaf litter weight, and m, is the final leaf litter weight, c
is an air-dry to oven-dry conversion factor (calculated separately; 0.968) and dd is the
number of degree-days (the temperature multiplied by the number of incubation
days). Total (k¢ptq) and microbially mediated breakdown rates (Kjicrope) Were
determined from the coarse-mesh and fine-mesh bags, respectively. Rates of
invertebrate-mediated breakdown were derived by calculating the percent of litter
mass remaining in coarse-mesh and fine-mesh bags in each bag pair and then

calculating a new k value (kinperteprate) based on this difference:

kinvertebrate =1- ((1 - Pcoarse) - (1 - Pfine)) (6)

Where P, 4,5 is the proportional weight of leaf litter remaining in a coarse bag,

and Py, is the proportional weight of leaf litter remaining in a fine bag.

To control for seasonal temperature differences across the sampling time
points, temperature data were obtained for Environment Agency monitoring stations
located within the sampling area. One temperature reading was selected to coincide
with each sampling time point, where possible temperature data from the same site

were used.
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5.3.4 Statistical analysis

All statistical analysis was done in R (R Core Team 2013). Constrained
Correspondence Analysis (CCA), with sampling time point (September 2013 or
September 2014) fitted as the sole constrained axis, was done to assess the impact of
the pesticide spill on, and recovery of, community structure. The explanatory power
of time, treatment and an interaction between the two was assessed using
Permutational multivariate analysis of variance (PERMANOVA) with 9999

permutations.

Generalised linear mixed effects models (GLMM) were used to test for a
significant effect of time and treatment on a range of response variables; chlorophyll-
a concentration, the biomass of some pesticide sensitive taxa (Baetis, G. pulex), non-
pesticide sensitive taxa (Oligochaeta), link slopes and decomposition rates. In all cases
treatment was nested within time in order to assess any differences between control
and impact at each time point. Site and sample month was treated as having a random
effect on the intercept of the linear relationship. Chlorophyll-a concentration and
biomasses were logio transformed to meet test assumptions. All GLMMs were

performed using the nlme package in R (Pinheiro ef al. 2014).
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5.4 Results

54.1 Community structure

The CCA model revealed that community structure was significantly affected
by the pesticide spill (Figure 23), and that the community had recovered one year on
from the spill (indicated by the reduction in distance separating the two treatments
over time). PERMANOVA revealed that the interaction between time and treatment
had an effect on community structure (Table 7). The treatment/time component of the

CCA model explained 30% of the variation. This confirms our first hypothesis.

CA1

CCA1

Figure 23. CCA plot with time fitted as the sole constrained variable. Site scores are shown as either
red squares (impacted sites), or blue circles (control sites). Species scores are shown in grey. Time points
are separated; T2 = September 2013, T7 = September 2014.
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Table 7. Effect of treatment and time on community structure (PERMANOVA).

Source d.f. SS Pseudo-F P-value
Treatment/time 3 1.11906 1.0881 0.0446
treatment 1 0.55254 1.0746 0.1092
Residual 4 2.05681

Both time and treatment had an effect on chlorophyll-a concentrations, (Table
8), chlorophyll-a concentrations were higher in impacted sites after the pesticide spill
but became indistinguishable from that of the control sites by one year on (September
2014) indicating that the algal assemblage was indirectly affected by the pesticide spill
(Figure 24), although the chlorophyll-a concentration at impacted and control sites
did diverge again in March 2015. This is in accordance with anecdotal evidence, there

was visible evidence of a large algal bloom in the months after the spill.

Invertebrate biomass was also affected by both treatment and time (Table 8);
the biomass of Baetis sp. was lower at impacted sites immediately after the pesticide
spill (Figure 25) and recovered to become indistinguishable from that of the control
sites by March 2014. G. pulex in contrast had a lower biomass in impacted sites through
almost the entire sampling period (Figure 25) only returning to become
indistinguishable from that of the control sites in March 2015. This confirms our
second hypothesis, Baetis sp. recovered more quickly than G. pulex following the
pesticide spill. Oligochaete worms had a higher biomass in impacted sites after the
spill (Figure 25). Although the oligochaete biomass did not fall, it became
indistinguishable from that of the control sites over time, confirming our third

hypothesis.

Fish biomass was unaffected by treatment and time (Table 8), suggesting that

the fish community was unaffected by the pesticide spill.
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Table 8. Statistics of fit for the multiple mixed effects models. All models include a main effect
of treatment, time nested within treatment, and a random effect of site on the intercept of the

linear relationship.

Response Predictor variable ~ d.f. F-value P-value
variable & interactions
Log(Chlorophyll-a Time/treatment 4 780 0.0001
concentration) Time 3  28.64 0.0001
Log(Baetis sp. biomass) Time/treatment 4  3.67 0.0144
Time 3 212 0.1168
Log(G. pulex Time/treatment 4 1617  0.0001
biomass) Time 3 599 0.0021
Log(Oligochaeta biomass)  Time/treatment 4 706 0.0003
Time 3 492 0.0062
Log(Fish biomass) Time/treatment 3 0307 0.8199
Time 2 0094  0.9099
Algae - arthropod Time/treatment 2 1079  0.0001
link slopes Time 1 0.06 0.805
Algae - non-arthropod Time/treatment 2 745 0.0006
link slopes Time 1 0.0001 0.999
Arthropod - fish Time/treatment 2 0879 0.416
link slopes Time 1 0513 0.474
Non-arthropod - fish Time/treatment 2 0501 0.607
link slopes Time 1 0.0951 0.758
Log(invertebrate mediated Time/treatment 4 2682 0.0001
decomposition) Time 3 1517 0.0001
Log(Microbial mediated Time/treatment 4 197 0.1028
decomposition) Time 3 1278 0.0001
Log(Total decomposition) Time/treatment 4 4354 0.0001
Time 3 5736  0.0001

Page | 109



Chapter 5 | Food web recovery from a pesticide spill

* * k% * %

g/m?)
|

E 100

Chlorophyll concentration (
o

Sept 2013 Mar 2014 _ Sept 2014 Mar 2015
Time

Figure 24. The concentration of Chlorophyll-a over time in impacted (red, circles) and control (blue,
triangles) sites. Points show mean values, + s.e.m. Those time points where impact and control
concentrations are different are indicated by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001,
k= p <=0.001 = ***.
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Figure 25. The biomass of Baetis sp. (top), G. pulex (middle) and Oligochaeta (bottom) over
time in impacted (red, circles) and control sites (blue, triangles). Points show mean values, +
s.e.m. Those time points where impact and control biomasses are different are indicated by
significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001, *** = p <= 0.001 = ***,
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5.4.2 Food web

The food web experienced significant re-structuring as a result for the pesticide
(Figure 26), there was a thinning of the middle of the food web as pesticide-sensitive
species were lost. In particular, G. pulex, which is an important detritivore and a
keystone species (i.e. a species more abundant than expected for its size) was much
reduced in both size and abundance and so lost its keystone position within the food
web (black triangles in Figure 26). By September 2014 it had recovered to its normal
positon within the food web. Baetis sp., another pesticide sensitive taxon was also
reduced in both body mass and abundance in impacted sites. It also recovered by
September 2014 (black upside down triangles in Figure 26). In contrast, Oligochaeta
increased in both body size and abundance in impacted sites to take a dominant
position within the food web, it still occupied this position in trivariate space in
September 2014 (black squares in Figure 26). There was an appearance of larger
diatoms, and larger diatom species immediately after the spill, these were lost by

September 2014 (Figure 26), which is in accordance with our third hypothesis.
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Figure 26. Trivariate food webs where species are plotted by their average mass on the x-axis
and abundance on the y-axis. Trophic interactions between species are shown in grey. Green
circles = algae, orange triangles = arthropods, blue squares = non-arthropod invertebrates,
pink diamonds = fish. The locations of some key taxa have been highlighted; black upward
pointing triangles = G. pulex, black downward pointing triangles = Baetis sp., black squares =
Oligochaetes.

This re-structuring of the food web is reflected in the changes in link slopes
between resources and consumers within the food web (Figure 27; Table 8), in support
of our fourth hypothesis. Link slopes between arthropods and their algae resources
were more negative (i.e. steeper) in impacted sites than control sites in September 2013
(top left Figure 27). This indicates altered mass-abundance scaling within the food

web and reduced energy transfer efficiency through the algae-arthropod pathway
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within impacted communities. Link slopes between algae and non-arthropod
invertebrates were also affected by the pesticide (Table 8). Although pairwise mean
comparisons revealed no within time point differences between impacted and control
food webs there was a trend towards progressively less negative (i.e. shallower)
primary link slopes for non-arthropod invertebrates in impacted sites over time (top
right Figure 27). This indicates that over time the energy efficiency transfer from algae
through non-arthropod invertebrates within impacted food webs increased, and

decreased in control sites.

There was no effect of treatment and time of the slope of the links between

arthropod and non-arthropod resources and their fish consumers (Table 8, Figure 27).
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Figure 27. Link angles between invertebrates (arthropods and non-arthropods) and their algal
resources (primary links) and fish consumers, over time in impacted (red, circles) and control
sites (blue, triangles). Points show mean values, + s.e.m. Those time points where impact and
control slopes are different are indicated by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to
0.001, *** = p <= 0.001 = ***,
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5.4.3 Ecosystem processing
Total decomposition of leaf litter was lower in impacted sites up to 6 months after the
pesticide spill (top Figure 28; Table 8). This was driven by the decline in invertebrate
mediated decomposition (middle Figure 28; Table 8). No effect of the pesticide was
seen on the rate of microbial decomposition (bottom Figure 28; Table 8), despite a
trend towards higher rates immediately after the spill. These results support our fifth
and sixth hypotheses; here the rate of microbial decomposition was found to be
unaffected by the pesticide (in contrast to Thompson et al.), while invertebrate
mediated decomposition took up to a year to recover. The biomass of G. pulex, a
keystone detritivore, took longer to recover after the pesticide spill than the rate of

invertebrate leaf litter decomposition.
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Figure 28. The decomposition rate expressed as temperature corrected rate of decomposition,
over time in impacted (red, circles) and control sites (blue, triangles). Points show mean
values, * s.e.m. Those time points where impact and control means are different are indicated
by significance stars; * = p = 0.05 to 0.01, ** = p = 0.01 to 0.001, *** = p <= 0.001 = ***.
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5.5 Discussion

The spill of the insecticide chlorpyrifos on the River Kennet in 2013 affected almost
all aspects of the ecological community. The loss of sensitive arthropod species caused
significant reductions in the biomass of key invertebrate groups. These direct effects
propagated through the food web, causing non-pesticide sensitive taxa to increase in
biomass (increased biomass of Oligochaeta at impacted sites), this could be because
those taxa were released from competitive pressure. Algae increased their biomass
(increased chlorophyll-a concentration at impacted sites, larger diatoms in impacted
sites), this could be because they were released from predation pressure from the
pesticide sensitive taxa. Mass-abundance scaling between arthropods and their
resources and consumers was altered such that there was a potential reduction in the
flow of biomass through arthropod mediated feeding pathways (steeper feeding link
slopes). There were knock on effects for ecosystem processing as invertebrate
mediated decomposition rates were reduced. In general recovery time was faster for
ecosystem processing (decomposition) than for structural aspects of the community,
the exception being Baetis, whose biomass recovered by March 2014, before
decomposition rates had. The CCA showed clear recovery of community structure

over time.

The response and trajectory of recovery of Oligochaeta and G. pulex is
interesting as it suggests that the increased biomass of Oligochaeta may have been
preventing the full recovery of G. pulex, perhaps through competitive exclusion. A
mechanism like this has been suggested to be responsible for the slow biological
recovery of freshwater food webs affected by acidification (Layer, Hildrew &
Woodward 2013), whereby under acidified conditions generalist herbivore-
detritivores dominate and prevent the recolonization of specialist herbivores as pH
increases. G. pulex is a highly generalist collector-gatherer species, feeding on both
detritus and the algal biofilm, Oligochaeta is a broad taxonomic unit containing many

taxa which also feed on both detritus and the algal biofilm, hence there is likely a high
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overlap in the resources of these two nodes (Tachet et al. 2002). Alternatively G. pulex
may have been slow to recover due to dispersal limitations, taxa such as Baetis sp.
which have a winged adult stage which would have aided recovery, and indeed insect
species did recover relatively quickly. G. pulex is fully aquatic as so would have likely
recolonised from above and below the affected stretch of the river. If dispersal
limitations were the cause of the slow recovery of G. pulex, then there would likely be
a difference in the recovery rates of this species at the impacted sites, with the most
upstream site, which is closest to a source population unaffected by the pesticide,
recovering quickest. This trend was not apparent in the data but may emerge as more

samples are processed from the remaining time points.

No effect of the pesticide was seen on the fish assemblage. This is unsurprising
that there was no discernible effect on the fish biomass given how mobile they are and
that their diet is known to be subsidised along the stretches of the river that

commercial angling is found, which includes all of the impacted sites used here.

Previous work has revealed that these effects extend into the microbial world,
Thompson et al. (2015), found that the functional potential of the microbial assemblage
was higher in the impacted sites in September 2013, as was the abundance of genes
associated with organophosphate use and ammonia oxidation which would likely be
a response to the widespread arthropod death. Microbes account for most of the
world’s biodiversity, they drive key ecosystem processes and biogeochemical cycles
(e.g. nitrogen cycle) and interact with higher trophic levels. It is likely therefor that the
direct effects on the microbial assemblage (through pesticide molecules available to
metabolise), as well as indirect effects (through the glut of arthropod carcasses
available for decomposition) in turn caused knock on effects for those species
interacting with the microbial assemblage (such as the meiofauna). Thompson et al.
(2015) found that microbe mediated leaf litter decomposition was higher at impacted
sites immediately after the pesticide spill, and indeed this trend was seen here too,

although not statistically significant. This suggests a compensatory mechanism such
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that microbial decomposers were able to increase their decomposition rates, perhaps
through increased biomass due to the glut of additional resources (in the form of
arthropod carcasses) which partially compensated for the reduced invertebrate

decomposition.

Here we have demonstrated the use of food webs for better understanding the
effects of perturbations as they propagate through the ecological community. Food
webs have also been used to assess the effects of other stressors, such as acidification
and eutrophication, where interactions within food webs can shape both the
ecosystem impact and the rate and trajectory of recovery (Ledger & Hildrew 2005;
Layer et al. 2010b; Rawcliffe et al. 2010). Thus, such an approach allows us to move
beyond partial taxonomic or trait-based views to bioassessment, to one that explicitly
incorporates species interactions in ecological networks and the ecosystem processes

that result.

This study demonstrates the resilience of freshwater communities to
perturbations, whilst the structure and functioning of the food web was altered by the
pesticide spill, there were many alternative pathways through which biomass could
flow allowing the overall network structure to be resistant to change and dampening
impacts on the top predators facilitating a short recovery time. As more samples from
each time point are processed we will gain a better understanding of the resilience
and resistance of the different components of the community, as well as their

trajectory of recovery over time.

There were instances in this data where impacted variable means became
indistinguishable from control variable means, not through change over time in the
impacted data, but due to change over time of control data, or change in both (i.e. in
Baetis sp. and Oligochaeta biomass). Whilst counterintuitive, this can still be taken as
evidence of recovery but highlights the need to better understand the baseline
variability from season to season and year to year in these data. As more samples from

each time point are processed a better understanding of this variability and more
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robust trends will emerge.

Studies of the effects of pesticides at the ecosystem level are rare in natural
settings (Kohler & Triebskorn 2013); this study contributes to filling this knowledge
gap. The projected increase in the worldwide use of pesticides (Tilman et al. 2002) has
the potential to cause substantial negative impacts to our waterways. For instance,
Malaj et al. (2014) estimate there to be acute lethal effects of organic chemicals in 14%,
and chronic long-term effects in 42% of European waterways. A deeper, more holistic
understanding of the effects of pesticides which enter our waterways, as well as an
understanding of how those effects propagate through the food web will facilitate

more effective mitigation and restoration efforts.
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6 | General Discussion

The main aim of this project was to examine the suitability of food webs as a
tool for monitoring the impacts of anthropogenic stressors on the environment. The
evidence is clear that in some situations consideration of the structure of ecological
networks is vital to fully understanding the response of an ecosystem to
environmental change (e.g. Scheffer & Carpenter 2003; Tylianakis, Tscharntke &
Lewis 2007; Henson, Craze & Memmott 2009), but these examples used detailed food
webs with information about the weight of the nodes and links, information not
usually available from biomonitoring schemes. Here I have demonstrated that food
webs built from routine biomonitoring data, (i.e. species lists) and trophic information
harvested from the literature can provide a deeper understanding of ecological
communities than species lists alone (Chapters 3 & 4). Chapter 3 demonstrates that
freshwater food webs built from routine biomonitoring data can reveal insights into
how the structure of those food webs is affected by acidification, with implications for
the ability of those food webs to recover from acidification. The results presented in
Chapter 4 demonstrate that classifying carabid consumer species in the context of the
food web in which they appear, and considering the structure of the resultant food
web, leads to a more powerful prediction about the level of weed seed regulation.
However I have also found instances where these coarse, binary food webs are not
sensitive enough to be a useful biomonitoring tool; the freshwater food webs built in
Chapter 3 were not sensitive enough to reveal consistent changes in community
structure at each site over time, although we know from the species data that
significant changes in the species assemblages, especially at the lower trophic levels,
are apparent at many sites (Murphy et al. 2014). However when these food webs are
augmented with information about the predicted biomass flows between nodes they
reveal new insights into the apparent lag in biological recovery after the amelioration

of acidification (Appendix A).
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The food webs in Chapter 5 were built using mass and abundance data for each
of the nodes. This additional information provided a deeper understanding of the
effects of the pesticide on the substructure of the networks, the efficiency of energy
transfer across the trophic levels, and the effects these changes had on ecosystem
processing. Collecting data of this sort as part of routine biomonitoring would
necessitate a greater workload, but this could be offset by the added value the data
brings in terms of a deeper understanding of the dynamics of the community in

question (Chapter 1; Gray et al. 2014).

The key to fully realising the potential for ecological networks in biomonitoring
science is to build networks which reflect the underlying changes in community
dynamics which respond to environmental change. Chapter 2 (Gray et al. 2015b)
clearly demonstrates that as the quality and quantity of the collection of trophic
interactions increases, so too does the quality of the constructed food web. Hosting
this dataset on an open access website
(https:/ /sites.google.com/ site/foodwebsdatabase/), with an established mechanism
for researchers to donate data should allow the quality and breadth of it to grow over

time.

An important step toward improving the quality of interaction datasets could
be to assess the number of times a particular interaction appears in a particular
dataset, as well as the number of times an interaction could have occurred but did not
(i.e. species found at the same site but not found to interact). If a particular interaction
has been observed many times across many systems, it is probably reasonable to
assume it also occurs at other sites where those species co-exist. However, if it has
only been observed rarely, or at a site with very different characteristics than the one
in question (for instance contrasting environmental conditions, or significantly
different community assemblages) this assumption might not be so reasonable.
Alongside this, the functional response of consumers to the abundance of their

resources (Holling 1966), as well as the dependency of interaction strength on the
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abundance of the consumer could be incorporated. As the volume of trophic
information data continues to grow, the evaluation of the realism of predicted links

will improve over time.

With each passing year, methodological advancements are increasing the ease
with which interactions between species can be characterised. A great number of
published papers now use these methods to construct ecological networks or
characterise interactions (e.g. Harper et al. 2005; Foltan et al. 2005; Navarro et al. 2010;
Wilson et al. 2010; Clare et al. 2011; Newmaster et al. 2013). These advances also mean

that biomonitoring data can be collected more quickly and cheaply (Gibson et al. 2015).

Novel approaches to determining network structure are being developed all
the time, for instance a machine leaning algorithm based on basic prior knowledge
and some logical rules has been used to construct an agricultural invertebrate food
web (Bohan et al. 2011b). With some alterations to the basic structure, it is possible that
this algorithm could be applied to other suitable datasets. Bayesian approaches to
predicting network structure has been used outside of ecology for many years (e.g.
Heckerman, Geiger & Chickering 1995), researchers are now beginning to apply these
methods to ecological datasets (e.g. de Sassi, Staniczenko & Tylianakis 2012).
However, as is common in ecology, the widespread adoption of these new techniques
is hindered by the quantity of suitable data available to develop these methods on.
For instance, the method of Sassi et al. (2012) could be adapted to predict the strength
of interactions in freshwater systems, but a detailed dataset of the biomass flow
between freshwater consumers and resources, complete with body size and

abundance information, is rare.

Long term monitoring data could be very valuable in furthering our
understanding of the realisation of and variability in strength of interactions between
species. Just as species abundances can vary wildly from one year to the next, so too
will the interactions between those species. Long term monitoring could help us to

capture some of that variability, as well as understand the influences on that variation.
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Long-term studies are rare, other than the Upland Waters Monitoring Network
(UWMN; Kernan et al. 2010), classic examples include the work of Likens et al. (1977)
at the Hubbard Brook Experimental Forest, and Slavik et al. (2004) at the Kuparuk
River station of the Long-Term Ecological Research (LTER) network. Within the UK
there is also the Environmental Change Network which has been running for more
than 23 years. The UWMN recently changed its protocols such that biological samples
are now stored in such a way that future molecular work, and in particular molecular
identification of gut contents, is possible. The value of these datasets will increase
progressively over time, as it is only with multiple decades of data that more subtle
long-term trends, such as responses to climate change, are able to be detected. Despite
the obvious value of long term monitoring data, it is often difficult to extract research
funding for such strategic research, which often appears to fail to meet the “novelty”

criteria of many research councils’ remits (Appendix D; Gray et al. 2015a).

Large datasets are still relatively rare in ecological research, although this is
beginning to change as more ‘Big Data” approaches become available. Once ecological
advances were limited by the labour-intensive methods by which empirical data was
collected, and the resultant paucity of good quality datasets available for research.
Now however, due to new technologies and advanced computing power the
challenge for many researchers has shifted towards the ability to process the vast
quantities of data that are being produced, and to interpret their ecological
significance (Woodward et al. 2014). Furthermore, with large ecological datasets come
additional challenges, such as sampling consistency or meta-data collection and
curation (Raffaelli et al. 2014). In particular, given a sufficiently large sample, a
statistical test will almost always exhibit a significant difference, unless the effect size
is exactly zero. Very small differences between samples, even if significant, may not
be meaningful (Sullivan & Feinn 2012). Trends found in observation data may be
slight, and accompanied by large variation, such as those found in Chapter 4,

requiring a researcher to consider the effect size of the trend in question, and it’s
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biological significance. Unlike significance tests, effect size is independent of and
therefore not confounded by, sample size (Sullivan & Feinn 2012). One explanation
for the small effect sizes seen in Chapter 4, is that 80% of the variation in this seed
regulation data has already been ascribed to changes in the cropping regimes in the
preceding years (Bohan et al. 2011c), although this is also likely to have an effect on
the carabid assemblage and therefore the counts of herbivores at each site. As
discussed in Chapter 4, often observational data is often best suited for the
identification of trends in order to formulate formal hypotheses and design the

accompanying experiments.

Chapter 5 provides the opposite problem, that of small sample sizes. Here there
was no true replication as all the experimental sites were along one river, and thus
external forces affecting the whole river could not be controlled. Recovery of the
impacted sites couldn’t be defined as change in the desired variable over time, but
rather that the difference between control and impacted sites should eventually
decrease to zero. This is related to a common problem in restoration ecology, that of
‘shifting baselines” (Pauly 1995), long term reference conditions may themselves be
changing due to anthropogenic effects such as climate change (such as within the
UWMN). In the short term, impacts such as other pollution incidents upstream of the
control sites or changing weather will have affected the algal biomass or rate of
decomposition along the river. Thus although decomposition rates at the impacted
sites did not change over time (Figure 28), they can be considered recovered from the
pesticide spill because the decomposition rates at the control sites did change over
time (perhaps due to colder weather during September 2014 and March 2015), and
became indistinguishable from the impacted sites. This perhaps counterintuitive
result can be understood and interpreted correctly because multiple control and
impacted sites were studied repeatedly over time. The ‘one reach at a time” (Bernhardt
et al. 2007) approach to river restoration, where restorations tend to be ad-hoc and a

combination of techniques unique to each site with little control or replication (Friberg
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et al. 2011), inevitably suffers from this problem of small sample sizes, and leads to

weak hypothesis testing and reduced predictive power.

In addition to integrating ecological networks into biomonitoring approaches,
incorporating a fully ecological and evolutionary perspective could also bring much
added value (Appendix D; Gray et al. 2015a). Currently, the predictive capacity of
traditional biomonitoring approaches is restricted and will have a limited ability to
adapt in the face of rapid and global habitat modification and climate change. This
approach alongside the incorporation of measures of ecosystem functioning and aided
by new technologies such as novel molecular techniques, may facilitate the future

development of a more comprehensive and effective biomonitoring framework.
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Al Introduction

The relationship between complexity and stability in natural ecosystems has
long been a central focus of ecological research (MacArthur 1955; Elton 1958; May
1972; Yodzis 1981; Pimm 1984; McCann 2000). Initially it was suggested that diversity
and complexity should stabilise food webs (MacArthur 1955; Elton 1958), as they
increase the redundancy of nodes and links thus reducing the important of any one
node or interaction. Early theoretical work by May (May 1972) contradicted this, and
found that complexity increased instability. However, this work was done using
randomly constructed food webs with interaction strengths sampled from a normal
distribution, which is not what is observed in nature. In fact, Yodzis (1981) found that
empirically constructed food webs were more stable than their random counterparts,
suggesting that the distribution of interaction strengths could be crucial in

determining the stability of natural systems.

The structure and stability of freshwater food webs as they recover from
acidification is an important avenue of research, as it is the “ecological inertial” of these
food webs which is a cited mechanism to explain their slow recovery from
acidification. It has been suggested that acidified food webs are more stable and
resistant the re-invasion of acid sensitive species and thus resists change as acidity
ameliorates (see Chapter 3; Lundberg et al. 2000; Ledger & Hildrew 2005; Kernan et al.
2010; Layer et al. 2010). In an attempt to address this hypothesis, I have assessed the
structure of the UWMN food webs and variability of the communities across the pH
gradient. To do this I first approximated the likely biomass flows across the food webs
using allometric scaling relationships based on body mass (Tang et al. 2014). I then
measured multiple network metrics and assess their relationship with hydrochemical

stress (pH gradient).

Turnover of species and links is the reciprocal of persistence (the time a
community remains unchanged after a perturbation; Figure 0.A; Pimm 1984), a more
persistent community is a more stable community. Bray-Curtis link turnover is
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measured much the same as species turnover. Similarly, variation in species
abundances is a similar mechanism, and often linked to community stability (e.g.
Pimm 1984; Mellin et al. 2010). A community whose species abundances were highly

variable overtime would be expected to be more unstable.

4 Perturbation

ll"orsis tence Resilience

Resistance

Community metric

A J

Time

Figure 0.A. Some aspects of community stability. After a perturbation, persistence refers to
the time a variable lasts before it is changed to a new variable, resilience refers to the time it
takes for a variable to return to equilibrium, and resistance refers to the degree to which a
variable is changed.

Recent advances allow the examination of network substructure. The
substructural scale lies between that of an individual node and the whole network.
The concept of a core/periphery structure (Figure 0.B) in social networks, whereby
the structure of a network is governed by a highly interconnected core surrounded by
a more loosely connected periphery, has been a major avenue of investigation in
complex network research (Borgatti & Everett 2000; Csermely et al. 2013). Examination
of the relative core size yields an insight into the flexibility and controllability (Csete

& Doyle 2004; Liu, Slotine & Barabasi 2011) of a variety of networks. Within a
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biological context, a large core might indicate greater redundancy within the flows of
a network, and therefore greater robustness to perturbations such as species loss
(Appendix B). Thus, given that a greater core size might provide greater redundancy,
it might also provide greater persistence and resistance (the degree to which a
community is changed following a perturbation; Figure 0.A) to perturbations. The rich
club coefficient measures the connectivity between nodes within the core (Zhou &
Mondragon 2004), highly connected nodes within the core of networks heavily
influence the functioning of that network, as has been demonstrated in the flow of
rumours in social networks (Masuda & Konno 2006) or the transfer of information in
the Internet (Zhou & Mondragén 2004). The high connectivity of the core of freshwater
food webs have been found to buffer the food web from the effects of drought
(Appendix B; Lu et al. in review). Experimental food webs exposed to drought
conditions lose many species to extinction, they undergo major re-wiring within the
core which maintains the overall core/periphery structure which in turn maintains

the networks robustness to simulated species removal.

Figure 0.B. An example network with a strong core/periphery structure. Core nodes (solid
black) are both highly connected, and highly connected to one another (blue links). Peripheral
nodes (empty black) are both weakly connected, and weakly connected to core nodes.
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The robustness of a food web to species extinctions gives another measure of
stability. If a system is able to withstand many species extinctions before cascading
secondary extinctions occur then that system is deemed to be more robust and hence
more stable. Species extinctions from a food web can be simulated by sequential
targeted removal of species, the systems robustness is determined from the point at

which the food web collapses (Dunne et al. 2002).

The distribution of flows across a food web is theoretically linked to the
stability of that system, and the presence of few strong and many weak interactions
within a system has been suggested to have a stabilising effect (Kokkoris et al. 2002;
Neutel et al. 2007), thus unstable systems might be expected to have a more even
distribution of biomass flows. The distribution of flows through a network can be

measures using Ulanomicz’s (2004) Mutual Information metric.

Borrelli (2015) analysed the substructure of food webs, and found that some
three-node motifs were more dynamically stable than others (tri-trophic chain,
apparent competition and direct competition), and also found that these same motifs
appeared in ecological networks more often than would be expected by chance. Thus,
the occurrence of these three-node motifs might have a stabilising effect on food web

structure.

Here I investigate the hypothesis that, concurrent with previous theory and
tindings (Lundberg et al. 2000; Ledger & Hildrew 2005; Kernan et al. 2010; Layer et al.

2010), acidified food webs will be more stable than non-acidified food webs.

A2 Methods

A.21 Community matrix
The Upland Waters Monitoring Network (UWMN) food webs from chapter 3

were used in this analysis. The community matrix for each food webs was augmented
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with estimates of biomass flow using metabolic scaling theory using the method of
Tang et al. (2014). The off-diagonal entries in the community matrix M was
parameterised using Holling’s type 1 functional response. The type I functional

response is given by the classic Lotka-Volterra equations:

dxi
dt

= x;|9:(x;) — Z a;jxij + z €ijaij Xy (1)
jepred(i) keprey(i)

Where x; is the biomass of species i, g; is a function depending on x; only, usually
representing the growth of species i, determined by its reproduction and death rates.
For any consumer-resource pair, a;; is the search rate of consumer i for its resource j.

e;j is the conversion efficiency of resource into consumer biomass.

Next, metabolic scaling theory (Peters 1986; Yodzis & Innes 1992; Brown et al. 2004;
Reuman et al. 2008, 2009; Pawar et al. 2012; Rall et al. 2012) was used to find estimates

for these parameters.
A. Body size scaling for biomass x;:

Body size information harvested from the literature (Brose et al. 2006; Gilljam et al.
2011; Pawar et al. 2012; Ledger et al. 2012) as well as data collected as part of the River
Kennet study (see Chapter 5) was used to ascribe an average body mass to each
UWMN species. In some cases it was necessary to use a genus averaged value as no
data at the species level could be found. Equation (2) was used to ascribe a biomass to

each species:

. 1+
xi* = 10%ot3v+e; . m; 14 (2)

Where m; is the body mass of species i in kg. The parameter y is the scaling exponent
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for numerical abundance, typically taking values between —1.25 and -0.1, and taken
here to be —0.675 (as in Tang et al. (2014)). The intercept parameter x, is negative and
was set to —1.16 for all webs (Cyr et al. 1977; Leaper & Raffaelli 1999). ;’s denote the
residuals of the regression line, and were sampled from a Gaussian distribution with

mean zero and standard deviation of 0.1 (as in Tang et al. (2014)).

B. Body size scaling for mass-specific search rate, a;;:

To find a mass specific search rate for each consumer i and resource j the results

of (Pawar et al. (2012), as in Tang et al. (2014) were used:

a;; = 10%mPif (k;)) 3)

where a, = =3.50 is a constant, m; is the body size of consumer i (in kg), and k;; = %
l
}0:46
is the resource to consumer body size ratio. f (ki j) = 1:1( %z is a function that quantifies
i

the well-documented unimodal relationship between search and consumption rates
and size ratios (see Tang et al. 2014). As in Tang et al. (2014) and based on previous
results K = 2. To account for uncertainty in the scaling relationship, the exponent p;
was sampled independently from a normal distribution with mean -0.15 and standard

deviation 0.052 for each consumer i.
C. Conversion efficiency e;;

Conversion efficiency was assumed to be a uniformly distributed random variable
within empirically feasible ranges (0.2 * 0.1 for herbivores, and 0.5 + 0.1 for

carnivores). Tang et al. (2014) found their main results were insensitive to choice of e;;.
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A.2.2 Measure of hydrochamical stress

Principal Component Analysis (PCA) was performed on the water chemistry
data of each site. The water chemistry variables used were yearly average pH (also
yearly minimum), Acid Neutralising Capacity (also yearly minimum), alkalinity, H*,
conductivity, NOs, Soluble Monomeric Aluminium, Soluble Non-Labile Monomeric
Aluminium, Soluble Labile Monomeric Aluminium, Dissolved Organic Carbon, Na,
Cl, SO4, PO4. Yearly mean (or minimum) values for these variables were centred to
zero and scaled by their standard deviations, and sample scores on the first PC axis

(PC1) extracted for use as a proxy for water chemical stress.

The Euclidean distance in multivariate space between the first and last
sampling year for each site was recoded as a proxy for the degree of change in

hydrochemical variables over the course of monitoring (Figure 0.C).

Each network metric was regressed against PC1, or the Euclidean distance for
that site, and any trend assessed with Generalised Linear Mixed Effects models. For
each model, site and year were used as random effects, but a range of random effects
structures were investigated for each response variable, the best model was selected

on the basis of AIC.
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Figure 0.C. An example of two sites plotted in multivariate hydrochemical space. Old Lodge

is located in the south of England, it was highly acidified in the 1980’s and has changed
markedly in its acidity over the course of monitoring. Loch Coir nan Arr is located in the far
north west of Scotland, was not considered acidified at the onset of monitoring and it's pH
has changed very little since then.

A.2.3 Measures of stability

A range of metrics were used to quantify the stability of these food webs over
time and in relation to the degree of hydrochemical stress they were under. Link
turnover across the collection of food webs was measured using Bray-Curtis

dissimilarity in the vegan package (Oksanen et al. 2012).
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The coefficient of variation in the relative abundance of each species over time

at each site was calculated, and a mean value across all species recorded for each site.

The core/periphery structure of each food web was measured, the core of a
food web is defined as a cohesive compartment of the network where species are both
highly connected and highly interconnected. This structure is then surrounded by a
more loosely connected periphery. To find the core/periphery boundary nodes were
ranked by their degree (number of links). A node with a rank r has degree k,. The
number of links that this node shares with nodes of a higher rank is k;. The core is
defined by detecting a change of the behaviour of k; as a function of r, and the
boundary of the core is defined by the node with rank r* where k}, > k;} for r > r*
(Borgatti & Everett 2000). The size of each food webs core, proportional to its total size

was recoded.

The density of connections within the core of each food web was measured

using the Rich Club score (Ma & Mondragén 2015):

2 ., 2
Q)T:r(r—l);ki T rr-1) @

where E, is the number of links shared by the highest ranked r nodes and r(r —
1)/2 is the maximum number of possible links among these nodes. The connectivity
of a core is given by @,.. whereby a fully connected core has a value of @, =1 and a

fully disconnected core gives @, = 0.

The robustness of each network to simulated species loss was recoded using
the method of Dunne et al. (2002), where by species were ordered by their degree, and
sequentially removed from the network. Secondary extinctions occurred where
consumers were left with no resources. The total number of primary extinctions

required to cause network collapse (the loss of 50% of the food web), proportional to
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total network size was recoded.

In order to examine the distribution of flows, the Mutual Information (MI) of
each food web was measured. MI measures the evenness of flows across a network,

such that high values indicate a more uneven distribution of flows (Ulanowicz 2004):

Mi= 1> (25 tog (21
=k (7) tog T.T, ®)
c T

where Tj; is the rate of the internal transfer from resource species j to consumer species

i, and k is a scalar constant.

The occurrence of certain motifs within each food web was examined. For each
food web, 30 null networks was created using the Curveball algorithm (Strona et al.
2014), which maintains the number of consumers and resources each node has, but
randomises who those connections are with. The frequency of each of teh three motifs
was measured in each of the 30 randomisations of each food web, and a z-score
computed as follows:

_Xi— X

zZy = ———— (6)
0y

Where X; is the frequency of the ith motif in each empirical food web, )?l the
mean frequency of the ith motif in the randomised networks, and o; the standard
deviation. A z-score greater than or less than 0 indicates that the occurrence of that
particular motif in the food web is greater than or less than what you would expect

by chance.
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A3 Results
The first PCA axis (PC1) corresponded closely with the acidity gradient across the
UWMN sites, where high PC1 values refer to low pH and high aluminium

concentrations (Figure 0.D).
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Figure 0.D. Ordination of hydochemical data. The first axis corresponds strongly to an acidity
gradient, while the second axis is more related to Ca2* and DOC concentrations. min.pH =
minimum yearly pH, ave.pH = mean yearly pH, min. ANC = minimum annual ANC, ave.Alk
= mean yearly alkalinity, ave. ANC = mean yearly ANC, ave.DOC = mean yearly DOC, ave.Ca
= mean yearly Ca?*, ave.Na = mean yearly Na*, ave.Cl = mean annual Cl-, ave.Cond = mean
annual conductivity, ave.PO4 = mean annual POy, ave.5O4 = mean annual SO, ave.NI_Al =
mean annual non-labile aluminium, ave. HION = mean annual H*, ave.NO3 = mean annual
NOs, ave.Sol_Al = mean annual soluable aluminium, ave.L_Al = mean annual labile
aluminium.
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Link turnover between food webs of consecutive years was greater for stream
food webs under greater hydrochemical stress, and was unaffected by hydrochemical
stress at lake sites (Table 0.1, Figure 0.E). The link composition of stream food webs
experienced greater turnover from one year to the next under greater hydrochemical
stress.

Table 0.1. Statistics of fit for the multiple linear models. All mixed effects models include site

and year as random effects (see main text for details). PC1 and PC2 refers to site scores taken
from the first and second axis of the PCA performed on hydrochemical data (Figure 0.D).

Response Predictor variable = d.f. F-value P-value

variable & interactions

Mixed effects models

Link turnover PC1 1 29.669  <0.0001
PC2 1 24551  <0.0001
type 1 127.765 <0.0001
PC2 * type 1 19.691  <0.0001

Core size PC1 1 19.67 <0.0001
type 1 37.94 <0.0001

Rich club score PC1 1 11.44 0.0039
PC2 1 11.53 0.0029

Robustness PC1 1 22.31 <0.0001
type 1 38.26 <0.0001

Log(Mutual Information) PC1 1 72.07 <0.0001

Linear models

Coefficient of variation Euclidean distance 1 7.38 0.0129
(species abundance)
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Link Turnover

Figure 0.E. Link turnover increases with hydrochemical stress at stream sites (blue), and is
unchanged at lake sites (red). Lines give the fit of the mixed effects model (see Table 0.1).
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Species relative abundances was more variable over time at those sites which
had experienced the most change in their hydrochemistry (Figure 0.F). One site stood
apart from the general relationship, Loch Coire Fionnaraich had the lowest variability
in species abundances, but had also been monitored for fewest years, only 10 whilst

for the other sites the mean + s.e.m. was 19.64 + 0.80 years.
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Figure 0.F. The mean coeficient of variation (CV) in individual species relative abundances
for each site is greater at those sites who’s hydrochemistry had changed the most over the
course of monitoring (the euclidean distance in multivariatye space between the first and
years of monitoring for each site). The line gives the fit of the linear model (see Table 0.1). Blue
= stream sites, red = lake sites.
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The relative core size was greater in food webs under less hydrochemical stress
(Figure 0.G). Acidified food webs had smaller cores, this relationship was the same
for both streams and lakes, although stream food webs had larger cores than lake food

webs.

- & Conditignal Rsqu =
0.535

o8 - - ® - L

Cong size

5 Q &

Figure 0.G. The size of the food web cores (relative to the whole network size) varies with
hydrochemical stress. Those food webs under more hydrochemical stress have smaller cores.
Lines give the fit of the mixed effects model (see Table 0.1). Blue = stream sites, red = lake
sites.
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The density of connections within the core of each food web, as measured by
the rich club coefficient, was higher in those food webs which were under greater
hydrochemical stress (Figure 0.H). As acidity increased, so too did the density of

connections within the cores of the food webs, this relationship was found to be the

same for streams and lakes.

Conditional Rsqu = .
0.458 . . .

Rich club score

PC1

Figure 0.H. The density of connections within the core of each food web was higher for those
food webs under greater hydrochemical stress. Line give the fit of the mixed effects model
(see Table 0.1). Blue = stream sites, red = lake sites.

Page | 152



Appendix A | The stability of AWMN food webs

The robustness of food webs to the simulated removal of high degree nodes
was lower for those which were under more hydrochemical stress (Figure 0.I). This

relationship was found to be the same for lakes and streams, although lake food

webs were less robust than stream food webs.

%
Conditional Rsqu =
: . 0721

Robustness

Figure 0.1. The robustness of each food web to simulated species removal was lower for those
food webs under higher hydochemical stress. Lines give the fit of the mixed effects model (see

Table 0.1). Blue = stream sites, red = lake sites.
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The distribution of flows across the food webs was affected by the
hydrochemistry at that site, biomass flows were more evenly distributed in those food
webs which were under greater hydrochemical stress (Figure 0.]J). As acidity
decreased the distribution of flows became more uneven, as reflected in a higher

mutual information score. This was found to be the same for lake and stream sites.

10 4 ° e * Conditional Rsqu =
' L4 0.142
L ]

Mutual Information

PC1

Figure 0.J. The mutual information was lower in food webs that were under higher
hydrochemical stress. The distribution of flows was more even in food webs which were
under more hydrochemical stress. Lines give the fit of the mixed effects models (see Table
0.1). Blue = stream sites, red = lake sites.
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All food webs, at all sites in all years were found to have a higher occurrence
of motifs associated with dynamic stability (tri-trophic chain, apparent competition
and direct competition) than would be expected by chance (Figure 0.K, Figure 0.L).

This was not related to the level of acidity the food web was exposed to.
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Figure 0.K. The z-scores for the occurrence of three three-node motifs at each stream site. s1
= tri-trophic chain, s4 = apparent competition, s5 = direct competition. Boxplots represent the
median and interquartile range of the z-scores, one z-scores for each food web over the course
on monitoring,.
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Figure 0.L. The z-scores for the occurrence of three three-node motifs at each lake site. s1 = tri-
trophic chain, s4 = apparent competition, s5 = direct competition. Boxplots represent the
median and interquartile range of the z-scores, one z-scores for each food web over the course
on monitoring,.
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A4 Discussion

Contrary to our hypothesis, in general food webs were found to be less stable
under acidified conditions. Acidified food webs were found to have greater link
turnover (stream food webs only), smaller cores, were less robust to simulated species
removal and had more even distribution of biomass flows. Those sites which had
changed their hydrochemistry the most over the monitoring period also experienced
the greatest variability in species relative abundance. The only stability measure
which increased with acidity was the density of connections within the core (Rich-
club coefficient), here acidified food webs had a more densely connected core, which
may have a stabilising effect. There was no evidence of a relationship between the

occurrence of stabilising motifs and the hydrochemical stress of a food web.

These results contrast with previous work (Lundberg et al. 2000; Ledger &
Hildrew 2005; Kernan et al. 2010; Layer et al. 2010). It is possible that acidified and non-
acidified food webs show different characteristics of stability, for instance acidified
food webs might be more persistent and resist the invasion of acid sensitive species,
while at the same time be less robust to species loss. The persistence and resilience of
these food webs, would be better understood using controlled experiments, where the
perturbation strength (and type, i.e. press or pulse perturbation) can be manipulated,
and the persistence and recovery time could be measured. Additionally, although the
metrics used here should be independent of network size, as they are measured
proportional to total network size, it would be useful to demonstrate this conclusively

using null-model simulations.
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B.1 Summary

Droughts are intensifying across the globe (Hartmann et al. 2013; Kendon et al.
2013), with potentially devastating implications for fresh water ecosystems (Milly et
al. 2005; Vorosmarty et al. 2010). We used novel network science approaches to
investigate drought impacts on stream food webs and explored potential
consequences for web robustness to future perturbations. The substructure of the
webs was characterised by a core of richly-connected species (Ma & Mondragén 2015)
surrounded by poorly-connected peripheral species. Drought caused the partial
collapse of the food webs (Ledger et al. 2012) but loss of the most extinction-prone
peripheral species triggered a substantial rewiring of interactions within the food web
cores. These shifts in species interactions in the core conserved the underlying
core/periphery substructure and stability of the drought-impacted webs. When we
perturbed the webs by simulating species loss in silico, the rewired drought webs
exhibited comparable robustness to the larger, undisturbed webs. Our research
unearths previously unknown compensatory dynamics arising from within the core

that can underpin food web stability in the face of environmental perturbations.
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B.2 Main text

Many areas of the world are becoming more prone to drought (Hartmann et al.
2013; Kendon et al. 2013) and declining precipitation coupled with increasing demand
for water could threaten the integrity of freshwater ecosystems across the globe (Milly
et al. 2005; Vorosmarty et al. 2010). In rivers and streams, the elimination of sensitive
species could potentially undermine food web structure and functioning (Closs &
Lake 1994; Lake 2003; Lytle & Poff 2004), yet how this affects their stability - at both
substructural and whole-network levels (Woodward et al. 2012) has yet to be fully
elucidated. Responses to climate change are frequently interpreted autecologically,
through analysis of individual species traits (McKee & Atkinson 2000) but these
provide no information on alterations of species functional attributes and conceal
potential compensatory behavioural mechanisms, such as resource switching.
Synecological approaches that can address changing species interactions in the
context of the whole food web (Tylianakis et al. 2007; Petchey et al. 2010; Woodward
et al. 2010), and hence the potential trophic mechanisms behind community-level
responses (Ebenman & Jonsson 2005; Borrvall & Ebenman 2008), remain scarce. In
addition, there are non-random substructures in food webs which could underpin
their responses to climate-induced perturbations (Garlaschelli et al. 2003). Emerging
network science has linked the presence of a cohesive “core” of closely interacting
nodes and a loosely connected “periphery” (Borgatti & Everett 2000; Csete & Doyle
2004; Csermely et al. 2013; Ma & Mondragén 2015) to the stability of complex (non-
ecological) networks (Derényi et al. 2004; Brede 2010). The significance of this for food-
web responses to an environmental perturbation - drought - is reported here for the

first time.

The network “core” is a cohesive group of highly connected nodes that governs
the functional attributes of a wide range of complex systems (Borgatti & Everett 2000).
It determines system robustness because densely intertwined pathways within the

substructure can provide redundancy by buffering external fluctuations (Borgatti &
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Everett 2000; Csermely et al. 2013) without altering functioning (Kitano 2004); such
structures are absent from less robust, regular small-world networks (Thompson et al.
2012). Core-size relative to the rest of the web indicates a network’s state (Derényi et
al. 2004; Csete & Doyle 2004; Brede 2010): large cores provide greater scope for
redundancy of links and rewiring in the event of node and link failure, whilst small

cores indicate vulnerability and systems being under stress.

Here, we quantify experimentally how drought disturbance influences stream
food web substructure and model how this then determines robustness to future
perturbations. We analysed food webs from a stream mesocosm experiment in which
benthic communities subjected to a drought treatment for two years were compared
with undisturbed controls (four replicates; eight food webs in total; see Methods).
Food webs were constructed from gut contents analysis of all 3,643 individuals
collected at the end of the experiment. These exceptionally well-resolved webs
encompassed 783 pairwise trophic interactions among 74 trophic elements, consisting
of detrital resources, primary producers and a taxonomically diverse array of
invertebrate consumers (Table S1). Ecological communities consist of coexisting taxa
and species extinction can trigger rippling effects due to their interdependency; as a
result, community fragility to disturbance can be influenced by structural properties,
such as the distribution of trophic interactions (Ebenman & Jonsson 2005; Borrvall &
Ebenman 2008). We hypothesised that the food webs were governed by a
core/ periphery structure, as detected recently in a range of non-ecological networks
(Csete & Doyle 2004; Csermely et al. 2013; Ma & Mondragoén 2015). Highly connected
core species are functionally important because they provide alternative routes for the
flux of matter and may therefore buffer the effects of perturbations and enhance
stability in food webs. Peripheral species are less integral to the ecosystem in
topological sense, and changes in the food web composition and configuration will
likely lead to isolation (i.e. extinction) of these species, similar to previous

observations in mutualistic networks (Burgos et al. 2007). Specialist consumers from
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the web periphery will be especially vulnerable to extinction because they are more
loosely connected and dependent on fewer resource species. Redundancy in the links
within the core could, in theory, provide a means of withstanding the effect of species
loss and rebalancing the structure of food webs, thereby conserving overall

robustness.

To test our hypotheses, we applied a novel graph profiling technique (Ma &
Mondragén 2015) to characterise the cores of our eight highly-resolved food webs
(Ledger et al. 2011a; Woodward et al. 2012). To generate a graph profile for a web,
nodes were ranked by their degree (number of links). Starting from the highest degree
node, we examined the interconnectedness among the high degree nodes as those of
a lower rank were included sequentially. A point is reached whereby the connectivity
among the high degree nodes peaks, reflecting the cohesiveness in the core and
defining the core boundary followed by generally decreasing connectedness
thereafter. The rest of the nodes form the periphery, which is only loosely connected
to the core, and contains few or no links among its constituents. We then measured
the density of interactions within the core and across the web using the “rich-club”
coefficient (Zhou & Mondragon 2004). To gauge the level of organisation in the
core/ periphery structure between the drought and control treatments, we employed
an ensemble of null networks, whereby links were reshuffled randomly while
conserving network properties (Maslov et al. 2004). Graph profiles obtained from the
null models represent network structures that would simply happen by chance, and
they were used to benchmark the link patterns of the empirical webs. The further an
empirical web deviates from its null models (i.e. a z-score greater or less than 0), the
more significant, in statistical terms, its link patterns, which also indicates the level of
organisation that has taken place to generate the observed pattern. To examine the
effectiveness of the compensatory mechanism provided by the core, we studied
network robustness by measuring the rate at which the structural integrity of food

webs collapsed (Dunne et al. 2002) under two commonly simulated species removal
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scenarios: i) random removal and ii) targeted removal of core species (i.e. high degree

species).

All eight food webs exhibited a clear core/periphery structure (Figure B.A), here
evidenced by a distinct peak in their core profiles and a step-change in
interconnectedness from high to low degree species (indicated by a vertical line in
Figure B.A, at which the number of links k; is at its maximum, and after which it
decreases steadily). The food web cores contained species from all trophic levels
(Figure B.A) and accounted for (on average) 50% of the species. The proportion of core
species was unchanged by drought (t-test on arcsine transformed proportion data,
d.f.=3, p=0.16; Table B.1), despite absolute species losses of 25%. Core size was large
relative to non-ecological networks (5-30% of total network size (Csermely et al. 2013;
Ma & Mondragoén 2015)), indicating that natural systems may possess far greater
linkage redundancy. Species extinction was greatest in the periphery (one tailed t-test
on arcsine transformed proportion data, d.f.=3, p=0.01; Table B.1), and as expected,
species that fell into this category were mainly invertebrate consumers high in the
food chain which lost all their resources. Drought caused more species in the core to
migrate into the periphery of the web via a reshuffling of interactions, than vice versa
(one tailed t-test test on arcsine transformed proportion data, d.f.=3, p=0.01, Table B.1
and Figure B.B). Despite this drought-induced realignment of species, the
preservation of the core/periphery structure (Figure B.B) and its relative size is

suggestive of underlying inertia within the webs’ substructure.
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Figure B.A. Core/periphery structure of control and drought food webs. Comparisons of one
block of control and drought core profiles. Nodes are ranked by their decreasing order of
degree and plotted by the number of links with nodes of a higher rank, k;5. The control web
(dark thick line) is plotted alongside its respective drought web (light thin line). Species were
classified as Basal (circles), Intermediate (squares) or Top (triangles). The maximum of the curve
k., defines the boundary of the core for the control (dark thick line) and drought (light thin
line) webs.

Table B.1. Statistics from two independent samples t-tests. The effects of drought on the
relative core size and robustness were tested using one-tailed t-test on arcsine transformed
data. Two-tailed t-test on arcsine transformed data was applied to examine if peripheral
species are more likely than core species to go extinct, and if more core species than periphery
species realigned after drought. Significant differences are indicated in bold.

i p af P
Relativecoresize 3 016  ioreextinction from 3 0.01
periphery
Robustness 3 0.89 More species realigned 3 0.01
(random) from core
Robustness
(targeted) 3 0.17
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Figure B.B. Drought caused species re-alignment in substructures. Comparisons of one
block of control (a) and drought (b) food web structures. Core species in the inner ring are
surrounded by periphery species in the outer ring. In this web pair, drought caused 15 species
to go extinct (filled diamonds) and 11 core species to shift to the periphery (light circles).

Drought reduced the density of connections within the core (Figure B.Ca), as
shown by lower rich-club coefficients, ¢,. This phenomenon in non-ecological
networks is a common response to stress (Derényi et al. 2004; Brede 2010), and in our
case was a result of compensatory re-wiring as core species moved into the periphery:
the density of connections in the periphery was unaffected by drought despite
peripheral species loss. All webs showed a marked deviation in connectivity from
their respective null models within their cores, revealing a systematic, non-random
substructure (Figure B.Cb). Drought resulted in a greater decrease in the z-score
within the core: i.e., link density inside was significantly lower than what would be
expected by chance, suggesting even more intense organisation had taken place in

response to the drought. This pronounced change in the core supports our hypothesis
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about its governing role in the re-structuring of food webs under this stressor.
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Figure B.C. Drought reduced the link density in the core and caused further restructuring
in the core. (a) The density of connections across the network measured by the rich-club
coefficient, ¢,., is shown for one block of control (dark thick line) and drought-disturbed (light
thin line) mesocosms. Nodes were ordered by their degree which were then normalised by the
size of the network. Boundaries of the cores are marked by vertical lines as in Figure B.A (b)
Comparisons of the web pair’s deviance in connection density from their respective null
models and more negative z-scores indicate greater deviance from the null model.

Food webs were robust to simulated random species removal, and this was
unaffected by drought: the amount of primary extinction required for 50% species loss
was comparable in both treatments (t-test on arcsine transformed proportion data,
d.f.=3, p=0.89; Table B.1). This can be explained by the conservation of the overall
core/periphery structure and relative core size. As the loss of peripheral species
would have skewed the probability of a core species being chosen under random
removal in drought webs, the realignments of species from the core to the periphery
rebalanced the overall network structure, conferring the same degree of resistance
towards these perturbations. When more highly connected species were removed

tirst, drought webs were as robust to species removal as control webs (t-test on arcsine
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transformed proportion data, d.f.=3, p=0.17; Table B.1). This suggests that although
the density of connections within the core was altered by drought, overall network
integrity and ability to withstand further perturbations was conserved by species re-
alignment. It is conceivable that a threshold core connectance may exist, beyond which
this redundancy is lost and the associated food web collapses, echoing ideas suggested
by Dunne et al. (2002) and Krause et al. (2003). Identifying this threshold would allow

us to better predict which communities are most at risk from environmental change.

Our results demonstrate that drought disturbance triggered previously unknown
substructural changes within real food webs, beyond the direct and obvious species
losses that have been reported elsewhere when based on fixed autecological traits
(Ledger et al. 2012; Woodward et al. 2012). While the underlying core/periphery
structure was robust to perturbations, the composition and configuration of the food
web substructures changed markedly, with a steep reduction in interactions among
the remaining core species. The ability to predict which networks of species
interactions are most vulnerable to anthropogenic pressures, and the identification of
a core of species vital to the functioning and persistence of a community within an
ecosystem, would greatly enhance our ability to direct conservation efforts more
effectively in the face of environmental perturbations (Ebenman & Jonsson 2005;
Borrvall & Ebenman 2008). Traditional network metrics were far less sensitive (Ledger
et al. 2012) than the novel measures applied in this study, and therefore less useful for
gauging changes in food webs exposed to perturbations. Substructural approaches
that capture the plastic synecological traits defined by species interactions can help to
unearth compensatory shifts within ecological networks, and provide us with a major
new way to detect and understand the effects of environmental change on ecological

communities.
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B.3 Methods

B.3.1 Experimental design.

Details of the experimental design and methods used to build the food webs
are published elsewhere (Woodward et al. 2012; Ledger et al. 2013). To summarise the
experiment ran for two years (March 2000-February 2002) in outdoor stream
mesocosms that consisted of four pairs of channels subjected to either control or
drought conditions. All channels were subject to two months of constant flow before
a drought treatment (6 days of dewatering per month) was applied to one channel per
pair. During the simulated drying periods, surface flows ceased and drying of
exposed substrata occurred in patches, whereas the interstices beneath the bed surface
remained wet, and small pools persisted at intervals along the length of the dewatered
channels (Lancaster & Ledger 2015). Surfaces of exposed substrata dried at natural
ambient rates such that the stress experienced by organisms stranded in the
mesocosms was consistent with those in adjacent drying stream reaches (Harris 2006).
This experimental design simulated periodic drying events occurring during a supra-
seasonal drought. Stream drying events have occurred during major droughts in
Europe (Parry et al. 2012) and are expected to increase in frequency with climate
change (Beniston et al. 2007). As with all mesocosm experiments, our design
necessitated some trade-off between realism and replication (Ledger et al. 2008,
2011b). The simulated flows may adequately capture the expected changes in the
magnitude and frequency of drying in rivers under climate change but do not
necessarily reflect the expected changes in seasonality of these events. At the end of
the experiment all invertebrates were collected and identified and gut content analysis
was performed: all individuals and their gut contents were identified to genus or
species level, where possible. The resultant eight food webs are among the most
highly resolved to date, comprising 783 pairwise trophic interactions and 74 trophic
elements in the aggregate web. Comparison of the control channel food webs to data

collected for 82 ‘natural’ river food webs showed the mesocosm channels contained
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realistic webs, with consistent and similar size structures suggesting that patterns of
energy flux between mesocosm consumers and resources were good analogues of
those in natural systems (Brown et al. 2011). Species were categorised into three
trophic levels: Basal (B), Intermediate (I) and Top (T). A basal species was defined as
a species with no prey; a top-level species was referred to as a species with no

predators; and the rest were defined as intermediate species.

B.3.2 Food web profiling.

The core profiling method identifies a substructure of highly interconnected
species by ordering species with respect to the number of connections to other species
and the extent to which those connections link to more highly connected species in the
web (Ma & Mondragén 2015). Highly interconnected species constitute the web core,
with less-connected nodes forming the periphery. Each food web was represented as
a binary and undirected network with S nodes (species) and E links (the interaction
between species). To obtain a core profile, nodes were ordered in descending order of
their degree (i.e. number of links) and a node with a rank r has degree k,.. The number
of links that a node shares with nodes of a higher rank is k;f and the number of links
with nodes of a lower rank is therefore k,. — k; . Starting with the node with the highest
rank, the value of k; fluctuates as nodes from further down the rank are being
included. There will be a point r* where k;/ reaches its maximum and will always be
less than k;, thereafter, marking the boundary of the core. To quantify the density of
links inside the core, the rich-club coefficient (Zhou & Mondragon 2004) was

calculated, which is defined as:

2 ., 2

where E, is the number of links shared by the highest ranked r nodes and r(r — 1) /2
is the maximum number of possible links among these nodes. The connectivity of a
core is given by ¢,, whereby a fully connected core has a value of ¢,.= 1 and a fully

disconnected core gives ¢,.= 0. Given that drought webs contain fewer species than
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their control counterparts, results could have been skewed by their reduced web size
if their absolute values were used: to overcome this the species rank was normalised

by the overall web size.

B.3.3 Null model.

A statistical null model was used to determine the probability of the
connectivity observed in the empirical data. For each empirical food web, we applied
a randomisation method (Maslov et al. 2004) to generate an ensemble of 100 networks
by randomly reshuffling the links while conserving the properties of the empirical
network, including the number of nodes, the number of links and the degree
distribution. This allows us to assess the statistical significance of the patterns of
interactions observed in the empirical webs with respect to patterns that would simply
occur by chance. To quantify how the link density in the core differs from the random
networks, we first referred the rich-club coefficient of the empirical food web and
compared that to its null counterpart by calculating the z-score. A z-score of 0 means
that the empirical data exhibits an organisation of links that is the same as what you
would expect from a random case; a value > 0 means that the empirical has a higher
than expected density of links, and vice-versa. This effectively describes the degree of
organisation of species interactions in the sense that the more improbable a
configuration of links is, the more organisation is required to be in place to attain the
observed pattern. Again, the rank of species was normalised to compensate for the

effect of different web sizes when comparing the control and drought food web pairs.

B.3.4 Network robustness.

To assess this, we simulated primary species loss in all the food webs by
manually removing species (Dunne et al. 2002). Firstly, species were chosen randomly
and removed from the food web, together with all their associated links, in an iterative
manner. We recorded the total species at each step, which accounts for both primary
loss and secondary extinction (as a result of species isolation from resource).

Robustness was quantified by the amount of primary extinction required for a total
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loss of 50% of the species. We repeated this for 100 times for each web and results were
averaged. Secondly, species were removed in the descending order of degree which
is often considered as the worst case scenario as the most important (connected) nodes
are being targeted. Similarly, species were removed in an iterative manner, but the
degree order of nodes was re-calculated after each species removal as removing a
node and its links may impact on the degree order among the rest of the nodes. Again,
robustness was evaluated by the total primary extinction required for a cumulative

50% species loss.
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Appendix C | Gene-to-ecosystem impacts of a
catastrophic pesticide spill: testing a multilevel

bioassessment approach in a river ecosystem!

1 Thompson, M.S.A., Bankier, C., Bell, T., Dumbrell, A J., Gray, C., Ledger, M.E., Lehman, K.,
McKew, B.A., Sayer, C.D., Shelley, F., Trimmer, M., Warren, S.L. & Woodward, G. (2015).

Gene-to-ecosystem impacts of a catastrophic pesticide spill: testing a multilevel bioassessment

approach in a river ecosystem. Freshwater Biology.

Page | 178



Appendix C | Gene-to-ecosystem pesticide impacts

Cl Summary
1. Pesticides can have strong deleterious impacts in fresh waters, but understanding
how these effects cascade through natural ecosystems, from microbes to apex
predators, is limited because research that spans multiple levels of biological

organisation is rare.

2. We report how an accidental insecticide spill altered the structure and functioning
of a river across levels ranging from genes to ecosystems. We quantified the impacts
on assemblages of microbes, diatoms, invertebrates and fish and measured leaf-litter
decomposition rates and microbial functional potential at upstream control and

downstream impacted sites two months after the spill.

3. Both direct and indirect impacts were evident across multiple levels of organisation
and taxa, from the base of the food web to higher trophic levels. At the molecular level,
differences in functional gene abundance within the impacted sites reflected a
combination of direct and indirect effects of the pesticide, via elevated microbial
populations capable of utilising chlorpyrifos as a resource (i.e. direct effect) and

oxidising ammonia released by decaying invertebrate carcasses (i.e. indirect effect).

4. At the base of the food chains, diatom taxa found only in the impacted sites were
an order-of-magnitude larger in cell-size than the largest comparable taxa in control
communities, following the near-extirpation of their consumers. Population biomass
of the key detritivore Gammarus pulex was markedly lower, as was the rate of litter
decomposition in the impacted sites. This was partially compensated for, however, by
elevated microbial breakdown, suggesting another indirect food-web effect of the

toxic spill.

5. Although many species exhibited population crashes or local extirpation, total
macroinvertebrate biomass and abundance were largely unaffected due to a
compensatory elevation in small tolerant taxa such as oligochaetes, and / or taxa which

were in their adult terrestrial life-stage at the time of the spill meaning they avoided

Page | 179



Appendix C | Gene-to-ecosystem pesticide impacts

contact with the polluted waters (e.g. chironomids). Mass-abundance scaling of
trophic links between consumers and resources revealed extensive restructuring

within the food web.

6. This case study shows that pesticides can affect food-web structure and ecosystem
functioning, both directly and indirectly across levels of biological organisation. It also
demonstrates how an integrated assessment approach, as adopted here, can elucidate
links between micro-biota, macroinvertebrates and fish, for instance, thus improving
our understanding of the range of biological consequences of chemical contamination

in natural ecosystems.

C.2 Introduction

Freshwaters are exposed to multiple pesticides and other toxic chemicals at
local to global scales (Schinegger et al. 2011; Beketov et al. 2013; Stehle & Schulz 2015).
Ecotoxicological experiments in the laboratory have revealed with great accuracy and
precision how these can affect the survival of target species (e.g. G. pulex; Xuereb et al.
2007), and community- and ecosystem-level responses have been demonstrated in
micro- and mesocosm experiments (e.g. Van den Brink et al. 1995; Van Wijngaarden et
al. 1996; Traas et al. 2004; Halstead et al. 2014) and field surveys (Chung, Wallace &
Grubaugh 1993; Triebskorn et al. 2003; Malaj et al. 2014). In the last decade, new indices
of community response have been proposed specifically to detect pesticide pollution
(e.g. Liess & Ohe 2005; Schéfer et al. 2007; Liess, Schéfer & Schriever 2008) and to link

community change to toxicants in the field (e.g. Kefford et al. 2010).

Despite these advances, a mechanistic understanding of both the toxic effects
of pesticides (i.e. direct) and those mediated via the food web (i.e. indirect) across
multiple levels of biological organisation (i.e. from genes to ecosystems) is still limited
in natural settings (Kohler & Triebskorn 2013). This is likely because there are

relatively few opportunities to understand how pesticides affect whole rivers or lakes,
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due to the logistical, ethical, and legal difficulties in conducting such a study in a
controlled manner. Here, we address this research gap by quantifying the gene-to-
ecosystem consequences of a major pesticide spill that caused widespread kills of
invertebrates over 15 km in a large lowland river by combining citizen science

biomonitoring data with a suite of non-traditional measures of ecosystem impact.

Invertebrate data were collected by citizen scientists prior to, during and after
the spill enabling before-after-control-impact (BACI) assessment. These data enabled
the UK Environment Agency to identify chlorpyrifos as the cause of the catastrophic
mortality following the spill. Chlorpyrifos is a widely used organophosphate pesticide
(insecticide and acaricide) which attacks insect (and arachnid) nervous systems. Since
insects are core intermediate species in almost all stream food webs, perturbations to
their populations have potential to ripple through the entire food web, as bottom-up
effects on the fish assemblage and top-down effects on the microbial communities that
drive a range of biogeochemical processes. Specifically, chlorpyrifos can affect
microbial, invertebrate and fish populations, both directly and indirectly (see reviews
by Barron & Woodburn 1995; Brock, Lahr & Van den Brink 2000; Giddings et al. 2014),
food-web structure (Traas et al. 2004) and can suppress invertebrate-mediated litter
breakdown (Maltby & Hills 2008). Placing the potentially subtle effects of pesticides
within a coherent multilevel framework requires a combination of structural and
functional measures from the microbial community at the base of the food web to apex
predators. This has been partially achieved in some studies using mesocosms (e.g. Van
den Brink et al. 1995; Van Wijngaarden et al. 1996; Kersting & Van den Brink 1997;
Halstead et al. 2014), but rarely in natural settings (Kohler & Triebskorn 2013), and
never in a manner that simultaneously captures molecular-level responses through to

the full complexity of the food web in the same system.

Here we present data that reveal how chlorpyrifos affected the structure and
functioning of the river food web, based on several complementary approaches

including the abundance of targeted functional genes, those responsible for the
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degradation of chlorpyrifos (Kwak et al. 2012), for example, measures of microbial and
invertebrate resource use and “trivariate analysis” (sensu Cohen et al. 2009). This
collection of measures across multiple levels of organisation provides a vital bridge
between field and laboratory-based findings and highlights the advantages of using a

holistic approach to understand chemical stressor impacts in natural ecosystems.
We test the following hypotheses:

The structure (assessed using the abundance of functional gene loci) and functional
capacity of the microbial assemblage will change due to direct effects (i.e. the pesticide
provides an additional substrate) and indirect effects (i.e. increased organic substrates

are derived from decaying invertebrates) of the pesticide.

Compensatory mechanisms will be evident in the food web in the aftermath of the
spill, with less pesticide-sensitive, small, opportunistic, vagile, and fast-growing taxa
(e.g. chironomids) higher in abundance and/ or biomass in the absence of larger, slow-

growing taxa (e.g. Gammarus pulex), relative to control communities.

Leaf litter breakdown will be impaired by the loss of key detritivores, with microbial

activity hence accounting for a greater proportion of total litter breakdown.

The food web will undergo extensive restructuring, particularly in terms of altered
mass-abundance scaling relationships of the links between nodes. Local extirpations
of intermediate species (e.g. herbivorous insects) will release basal species under top-
down control (e.g. benthic algae) while suppressing bottom-up fluxes to higher

trophic levels (e.g. fish).
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C3 Methods

C.3.1 Study site
The River Kennet is a lowland chalk tributary (catchment area 1200 km?) of the
River Thames in southern England, designated as a UK Site of Special Scientific
Interest (SSSI). The river is groundwater-dominated, has hard water and is nutrient-
rich (Figure C.A; Table C.1). Its diverse fauna is dominated by Gammaridae, Baetidae,
Ephemerellidae, Simuliidae and Chironomidae, which support an economically

important salmonid game fishery (Wright et al. 2002; 2004).

On 1 July 2013, following their routine biomonitoring, a citizen-science group
(Action for the River Kennet, ARK) reported a large-scale invertebrate kill along a 15-
km stretch of the river. On 2 July 2013, an Environment Agency pollution incident
team collected the first samples for, and detected, the organophosphate chlorpyrifos.
This insecticide attacks the nervous system of insects by inhibiting
acetylcholinesterase, and can be toxic to fish and meiofauna (Carr, Ho & Chambers
1997; DeLorenzo, Scott & Ross 1999). Concentrations of of 0.52-0.82pg L1 were
recorded coming from the main tertiary sewage treatment works in Marlborough,
Wiltshire, on 2 and 5 July, respectively (Figure C.A), probably resulting from a “down-
the-drain” incident. The peak concentration was most likely missed by the sampling
team, but even the measured concentration is sufficient to be acutely toxic to
arthropods (Giddings et al. 2014), particularly over extended periods (i.e. >24 hours;
Rubach, Crum & Van den Brink 2011). Chlorpyrifos was also detected at
concentrations between 0.06-0.07 pg L' across the impacted study site on 5 July. By 9
July 2013 the pesticide was undetectable, indicating that a single pulse was received

and remained in the water column for a few days.
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Figure C.A. River Kennet (UK) with study sites A-C (upward pointing triangles = control)
and D-F (downward pointing triangles = impacted). Data for sites A, C, D and F (filled
triangles) are presented here. Monitoring data for aquatic macroinvertebrates were collected
by citizen scientists upstream (i.e. control site) at Stonebridge Lane and downstream at Elcot
Mill (i.e. impacted site) of Marlborough sewage treatment works, where the pesticide entered

the river.

Table C.1. Locations of upstream control and downstream impacted sites as well as of water
chemistry monitoring stations of the Environment Agency (EA). Mean and range, in brackets,
of annual water chemistry concentrations from Environment Agency monitoring data are
shown from sites located between control and impacted reaches. Oxidised nitrogen (oxidised
N) is the sum of nitrate (NO3-) and nitrite (NO2-).

Site Condition Latitude, Longitude
A Control 51°4170'N, 1°7536'W
EA Control Control 51°4235'N, 1°7165'W
C Control 51°4227'N, 1°6982'W
D Impacted 51°4227'N, 1°6982'W
EA Impact Impacted 51°4170'N, 1°7536'W
F Impacted 51°4163'N, 1°7325'W
Water chemistry EA Control EA Impacted

Alkalinity (mg L1)
Conductivity (uS cm-1)
Oxidised N (mg L)
Dissolved oxygen (mg L1)
Temperature (°C)

pH

Ortho-phosphate (mg L1)

250 (187-262)
626 (449-738)
6.6 (4.4-7.5)
9.0 (6.9-10.0)
11.0 (5.7-14.4)
7.6 (7.4-7.8)
0.08 (0.02-0.36)

243 (189-254)
609 (492-686)
6.8 (4.4-7.6)
9.6 (6.9-10.9)
11.1 (5.7-14.5)
7.9 (7.4-8.1)
0.08 (0.02-0.34)
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C.3.2 Contribution of citizen scientists

Citizen scientists from ARK were trained by the Riverfly Partnership to collect
and identify aquatic macroinvertebrates and had collected data for multiple sites for
several years prior to and following the spill (Fig. S1). During the current study, they
collected one monthly kick sample (3-minutes duration) from an upstream control
and downstream impacted site (Figure C.A). A standard hand net (1-mm mesh) was
used following the Riverfly Monitoring Initiative standard protocol
(http:/ /www.riverflies.org). The invertebrates collected were identified live on the
bank, without magnification, and abundance ranked per sample as: 0 = 0 individuals;
1-9 =1, 10-99 = 2; 100-1000 = 3; >1000 = 4, for eight key groups: 1. Cased Trichoptera;
2. caseless Trichoptera; 3. Ephemeridae; 4. Ephemerellidae; 5. Heptageniidae; 6.
Baetidae; 7. Plectoptera; 8. Gammaridae, which were summed to give a total score
based on the number and diversity of the target taxa. These data provide a critical
BACI element to the study, enabling us to track the impact of the spill through both

space and time.

Mean annual water chemistry data were obtained for Environment Agency
monitoring stations located 2.3 km upstream and 2.7 km downstream from the spill
and were similar across the study site (Table C.1). These water chemistry data,
combined with the ARK monitoring data of macroinvertebrates, showed no evidence
of organic pollution from the sewage treatment works, indicating that sewage was an

unlikely cause of the invertebrate mortality event (Fig. S1).

C.3.3 Sampling protocol
Comprehensive biological sampling began in September 2013, as soon as
possible after the chlorpyrifos spill had been identified as the causal agent, using an
experimental design comprising three upstream control and three downstream
impacted reaches, each 50m long, along a c. 6km river stretch (Figure C.A). Sites were

c. 1km apart, with similar channel forms and riparian surroundings. Here we present
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data from two control and two impacted reaches (Figure C.A) for a suite of structural
and functional indicators to test a multilevel bioassessment approach. Three sediment
samples, a stone scrape, three Surber samples and depletion electrofishing were used
to characterise microbial, diatom, macroinvertebrate and fish structural attributes,
respectively. At each site, 10 fine- (0.5mm) and 10 coarse-mesh (10mm) leaf-litter bags
were used to determine rates of decomposition driven by microbes alone or by whole
communities. In addition, a sample of river water was collected and incubated with a

range of substrates to assess microbial functional capacity.

C.3.4 Microbial functional gene abundance

We used quantitative PCR (qPCR) to examine gene abundance for microbial
functional and taxonomic marker genes. 165 rRNA gene abundance was used as a
proxy for total bacterial abundance. Direct effects of the chlorpyrifos spill were
examined using the organophosphate hydrolase gene (opd), which is responsible for
the degradation of chlorpyrifos by bacteria; bacterial populations containing this gene
have previously been demonstrated to increase in abundance at sites impacted by
organophosphate (Kwak et al. 2012). Indirect effects were examined by quantifying
the abundance of genes coding for enzymes involved in N-cycling: nitrite reductase
(nirS) and ammonia monoxygenase (amoA) from ammonia-oxidising archaea (AOA)
and bacteria (AOB) as these are most likely to reflect decomposition of dead
arthropods in impacted sites. We hypothesised that decomposition of dead
arthropods would result in an increased input of NHs* from ammonification of
organic N. We focused on nirS and amoA genes as both nitrification and denitrification
pathways are important in removing N from systems and can be coupled when
denitrifies reduce the NO3- produced by the nitrifiers that oxidised NHa*. By focusing
on functions of a range of populations, a change across all populations combined
provides an indicator for community-level effects of chlorpyrifos on river microbes.

Full details of DNA isolation, primer details and qPCR cycling conditions are available
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in the Microbial Functional Gene Abundance section in the Supplementary Material.

C.3.5 Microbial functional potential

Open-water samples were collected from each site and returned to the
laboratory in an ice-chilled cooler. Samples were allowed to settle (>10 min), after
which a 100-uL aliquot was pipetted into each well of a Biolog EcoPlate, which
contained a single carbon substrate, including carbohydrates, polymers, fatty acids
and amino acids. Each well also contained the redox dye tetrazolium, which is
reduced during microbial respiration, resulting in a measurable colour change. Each
EcoPlate contains 31 substrates plus a no-substrate control in triplicate. Plates were
incubated in the dark at 22°C for 5 days, after which colour change was quantified by
measuring optical density at 600 nm using a Biotek HT absorbance reader (Biotek,
Swindon, UK). For each EcoPlate, we calculated the substrate usage by subtracting the
mean of the three no-substrate controls from each measurement. Usage was ranked
across the substrates in each replicate, and the ranked optical densities were plotted

to visualise broad changes across sites.

C.3.6 Population abundance, community structure and food web size-scaling
Quantitative depletion electrofishing was undertaken, with population
densities estimated using the R package FSA (Ogle 2012) and iterative Maximum
Weighted Likelihood statistics (equation S1 and S2 in Supplementary Material; after
Carle & Strub 1978). All fishes caught were identified to species and measured by fork
length. For each species, individual dry mass was calculated from length using length-
mass regression equations generated from a sub-sample (see equations S1 and S2 in

Supplementary Material).

Invertebrates were collected (n = 3 samples per site) using a Surber sampler
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(0.0625 m?2, 335 pm mesh), preserved in 99.8% ethanol, and later sorted from debris,
identified to the highest possible taxonomic resolution (usually species), and counted
(Table S1). Dry masses of invertebrates were determined from regressions of linear
dimensions using published equations (see Table S2); a subset of 60 individuals were
measured per species per site, or every individual where abundance was below 60.
We distinguished between arthropods (i.e. insect larvae and Crustacea) and other taxa
(i.e. Tricladida, Annelida and Mollusca) based on their sensitivity to chlorpyrifos

(Raven & George 1989; Giddings et al. 2014).

Diatoms were scraped from 8.64 cm? of the upper surface of one cobble at each
site using a 3.6 by 2.4 cm photographic slide as a flexible quadrat and toothbrush,
preserved using Lugol’s iodine, and prepared using standard methods (Battarbee et
al. 2001). A minimum of 300 diatom valves were identified to species per sample using
the keys of Krammer & Bertalot (1986), Krammer et al. (1986), Krammer & Lange-
Bertalot (1991a b) and abundances per unit area were determined as in Battarbee
(1973). Linear dimensions were measured to the nearest 1um to estimate diatom
biovolume (Table S3; Hillebrand et al. 1999). The first 30 specimens of all common (n
>30) species were measured and where species were encountered less frequently, all
specimens in the count were measured. Carbon content was estimated (Rocha &
Duncan 1985) and then converted to dry mass (Sicko-Goad, Schelske & Stoermer
1984).

We used these mass-abundance data from across the different taxa and trophic
levels to construct whole-community 'trivariate food webs' - food webs ordinated by
overlaying feeding links on the bivariate relationship between species mean body
mass and their numerical abundance on a double logarithmic scale - to understand
how chlorpyrifos alters food-web structure. Deviations in MN among species pairwise
links can be used to identify alterations to biomass fluxes in the food web. For instance,
altered consumer-resource feeding “link angles” can reveal rates of change in

biomass, population production and population consumption between species-pairs,
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through to the food web as a whole (sensu Cohen et al. 2009), and these changes can

help us to interpret direct and indirect effects of chlorpyrifos.

Trivariate webs were constructed for all sites. Feeding links were inferred from
trophic interactions published in the literature (Table S4). We assumed that if a trophic
interaction between two species has been reported in the literature and those same
species were present at one of our sites, then that trophic interaction also occurred, as
has been validated in other stream food webs (Layer et al. 2010; Layer, Hildrew &
Woodward 2013).. In a few instances, feeding links were assigned on the basis of
taxonomic similarity. For example, if a link had been established from the literature
for at least one congener it was assumed that different species within the same genus
fed upon the same resources and were consumed by the same consumers. It was
necessary to extend this assumption to the family level in some instances where
information in the primary literature was scarce (Table S5). This minimises bias
between nodes where the quantity of directly observed information varies and allows

the method to be reproduced exactly (Gray et al. 2014).

C.3.7 Ecosystem functioning: leaf-litter decomposition

At each site, the decomposition rate of leaf-litter was determined from leaf-
packs containing 3.0 g (0.3 g SD) black alder (Alnus glutinosa) incubated in the river
for 9 days. Coarse (150 mm by 100 mm, 10mm mesh) and fine (150 mm by 100 mm,
500 pm mesh) mesh-aperture bags were used to determine the fraction of
decomposition contributed by microbes (mass loss from fine mesh bags) and
invertebrates (difference in mass loss from coarse and fine mesh bags). Leaf
breakdown rates were expressed as the exponential decay rate coefficient, k (see

equation S3; Woodward et al. 2012).
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C.3.8 Data analysis
Trivariate statistics were calculated using the method of Cohen et al (2009) in
the R package Cheddar (Hudson et al. 2012). We used link angles to estimate changes
in potential biomass flux between a resource and its consumer. In summary, a link can
be viewed as a vector from a resource to its consumer and, considering that
invertebrate taxa abundance and/or mass is predicted to decrease at impacted sites, a
change in the angle of invertebrate upper- and lower-links would indicate a potential

change in biomass flux (Figure C.B).

Iuwc_r—l ink

Log abundance

upper-link
Log body mass

Figure C.B. (a) Location of consumers sensitive to pesticides (Cs) and less sensitive to
pesticides (Cl) in relation to the consumer resources (R) and predators (P) as viewed on a
double-logarithmic scale of body mass versus abundance. (b) Changes within the food web
following pesticide exposure can be assessed by using link angles as a proxy for changes in
potential biomass flux within the food web: a predicted decrease in Cs MN following pesticide
exposure and an increase in R MN due to the release from top-down consumer control can be
assessed using the Cs link angles in relation to Cl and control data; a decrease in Cs lower-
link angles would indicate a potential reduction in biomass flux between R-Cs; an increase in
Cs upper-link angle could indicate hysteresis within the network whereby P is yet to be
impacted by the loss of Cs, or that P has increased reliance on other resources, or a
combination of the two.

Linear mixed effect models (LMM) were used to test for differences in mean
annual water quality, with treatment and date as fixed and random factors,

respectively. Differences in biotic response variables (link angles, species and
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community abundance and/or biomass, gene abundances and microbial capacity)
between treatments were tested using LMM with site and treatment as random and
tixed factors, respectively. Where necessary a variance structure was used to account
for unequal variance between sites in order to meet model assumptions (after Zuur et
al. 2009). If data were not normally distributed they were Logio transformed to meet
the assumptions of the test. All LMM were performed using the nlme package in R
(Pinheiro et al. 2011) and estimates were made using restricted maximum likelihood
or, when testing for differences in group means (e.g. invertebrate communities within
and between treatments), using general linear hypotheses tests in the R package

multcomp (Hothorn et al. 2014).

C4 Results

C.4.1 Macroinvertebrate monitoring by citizen scientists

Within control sites, G. pulex had the highest relative abundance (61%),
followed by Baetidae (17%), Ephemerellidae (12%), cased Trichoptera (9%) and
Plecoptera (1%). The macroinvertebrate assemblage in the three months prior to the
spill was similar but following the spill on July 1st 2013, there was a 99.5% reduction
in total abundance from the previous month (Figure C.C). By September, total
abundance had increased again, but was dominated by Ephemeroptera instead of G.
pulex, the latter being the slowest taxa to recover, as recorded by the citizen scientists.
When the citizen science macroinvertebrate data and Environment Agency water
quality data were combined there was no evidence to suggest that nutrient pollution
was the cause of the macroinvertebrate mortality event (results are presented in the

Supplementary Material).
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Figure C.C. Top: Aquatic macroinvertebrate monitoring data collected by citizen scientists
show macroinvertebrate scores before and after the toxic spill (red arrows), based on total
abundance of the target taxa. The red line represents an Environment Agency threshold for
substantial ecological degradation. Bottom: abundance of key taxa in relation to scores
collected from an upstream control at Stonebridge Lane and a downstream impacted site at
Elcot Mill (see Figure C.A).
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Figure C.D. Vertical arrows indicate notable differences between ecological data from control sites A and C and from impacted sites D and F
two months after the toxic spill. (a) Molecular results from microbial qPCR assays targeting the (a) 16S rRNA (microbial abundance), (B) nirS
(nitrite reductase) (y) amoA (ammonia monooxygenase) AOB (ammonia oxidising bacteria), (8) amoA (ammonia monooxygenase) AOA
(ammonia oxidising archaea), (¢) opd (organophosphorus hydrolase) genes. (b) Ecoplate microbial functional potential on 31 carbon substrates
(x-axis) and their usage (y-axis; measured as optical density at 600 nm after 5 days of incubation at 22 °C as defined in the Methods) (c) Biomass
of macroinvertebrates (light shading) and a keystone detritivore, Gammarus pulex (dark shading), and leaf-litter breakdown rates by all consumers
(light shading) and microbes only (dark shading); error bars represent standard error (d) Trivariate mass-abundance food webs: green circles =
algae (large species found only in the impacted sites highlighted), yellow symbols = arthropods (decreased relative to controls), blue symbols =
other macroinvertebrates, black filled diamond = G. pulex, black open diamond = Baetis, pink symbols = fishes.
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C.4.2 Microbial functional gene abundance and functional potential

Analyses of gene abundances revealed that ammonia oxidisers (amoA),
particularly AOBs, were up to 30-fold higher (t. = 4.99; p = 0.03), and populations
capable of utilising organophosphate (oph) as a resource were up to 7-fold higher in
impacted sites compared with control sites (Figure C.Da; t» = 6.14; p = 0.02). The
elevation in the abundance of these populations suggests both direct (i.e. microbes
utilised the insecticide as a resource) and indirect effects (i.e. microbes utilised
ammonia released by decaying invertebrates) of chlorpyrifos. However, there was no
significant difference in the total abundance of bacteria, nor of the abundance of nitrite

reducers or AOAs (Figure C.Da).

The functional microbial assays showed impacted sites had higher overall
substrate usage and a shallower rank abundance curve, indicating substantial
functional changes in response to the spill. Mean overall carbon usage in the impacted
sites differed from that in the control sites (Figure C.Db; t> = 4.2, p = 0.05), with lower
mean substrate usage in the latter. Differences among control and impacted sites
suggested elevated rates of substrate usage of simple carbohydrates (e.g. glucose-1-
phosphate, t> = 4.4, p = 0.05; a-D-lactose, t> = 7.7, p = 0.02) and amino acids in the

impacted sites, with little difference in the usage of complex polymers (e.g. Tween 40).

C.4.3 Macroinvertebrate community structure and ecosystem functioning

Total macroinvertebrate biomass and abundance did not significantly differ
between the control and impacted sites (f> = -1.43; p = 0.29; t, = -2.11; p = 0.17).
However, arthropod biomass was 92.9% lower in impacted sites than arthropod
biomass in control sites and 80.4% lower than biomass of less pesticide-sensitive taxa

in impacted sites (
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Table C.2; Figure C.E). In addition, the biomass of macroinvertebrate taxa
considered less sensitive to pesticides was 97.2% lower than that of the sensitive
arthropods in control sites (Table C.2), thus the former were partly compensating for
the loss of the latter within impacted sites. G. pulex biomass (99.6%) and abundance
(99.2%) and Baetis biomass (18.7%) and abundance were lower (95.6%; Figure C.Dc;
Figure C.Dd), but chironomid biomass (89.3%) and abundance (92.2%) and
oligochaete biomass (85.4%) and abundance was higher in impacted sites compared
to control sites (94.5%; Figure C.E; Table C.2). Macroinvertebrate diversity was similar
between control and impacted sites (> = -0.39; p = 0.74), as was also true for fish
diversity (Table C.3), whereas four taxa of large diatoms (Cymatopleura solea,
Cymatopleura elliptica, Gyrosigma attenuatum and Surirella caproni) were present only in
the impacted sites (Figure C.Dd). Microbial decomposition was higher, whereas total
decomposition mediated by both microbes and detritivores was lower, in the
impacted sites (Table C.2; Figure C.Dc), probably reflecting the decline of G. pulex and

partial compensation by increased microbial activity.
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Table C.2. General linear model tests of the biomass (mg) and abundance of arthropods and
other macroinvertebrates (Tricladida, Annelida and Mollusca, which are considered to be less
sensitive to chlorpyrifos than arthropods) per sample; Baetis, Gammarus pulex (i.e. K-selected
taxa), chironomid and oligochaete (i.e. r-selected taxa) biomass and abundance; arthropod-
resource and other-resource trivariate lower link angles, Baetis and G. pulex upper-link angles
and both total and microbial leaf-litter breakdown rate between control (C) and impacted (I)
sites. Significant p values (<0.05) are highlighted in bold.

Logio (biomass +1) Estimate Std. Error  z value p
C:arthropods - C:other 1.62 0.09 17.53 <0.001
L:arthropods - I:other -0.73 0.12 6.00 <0.001
C:arthropods - L:arthropods 1.17 0.23 519 <0.001
C:other - L:other -1.17 0.25 -4.73 <0.001
Logio (abundance +1)

C:arthropods - C:other 1.28 0.19 6.82 <0.001
Larthropods - L:other -0.05 0.19 0.25 0.99
C:arthropods - I:arthropods 0.56 0.24 2.37 0.06
C:other - L:other -0.76 0.24 -3.23 0.005
Logio (biomass +1)

C:Baetis - I:Baetis 0.62 0.16 4.00 <0.001
C:G. pulex - I:G. pulex 2.30 0.15 15.82 <0.001
C:chironomids - I:chironomids -0.93 0.15 -6.38 <0.001
C:oligochaetes - I:oligochaetes  -0.81 0.15 -5.49 <0.001
Logio (abundance +1)

C:Baetis - 1:Baetis 1.21 0.24 4.98 <0.001
C:G. pulex - I:G. pulex 231 0.22 10.63 <0.001
C:chironomids - I:chironomids -1.14 0.22 -5.24 <0.001
C:oligochaetes - I:oligochaetes ~ -1.12 0.23 -4.92 <0.001
Invertebrate-resource lower-link angles

C:arthropods - C:other -0.08 0.02 -3.8 <0.001
L:arthropods - L:other 0.2 0.02 10.35 <0.001
C:arthropods - Liarthropods -0.32 0.24 -1.36 0.44
C:other - L:other -0.04 0.24 -0.18 >0.99
Baetis and G. pulex upper-link angles

C:Baetis - 1:Baetis -103.71 243 -4.27 <0.001
C:G. pulex - I.G. pulex -62.8 25.73 -2.44 0.03
Leaf litter decomposition (k)

L:total - C:total -0.05 0.01 -6.57 <0.001
I:microbial - C:microbial 0.01 0.002 5.75 <0.001
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Figure C.E. Macroinvertebrate mean biomass (per sample with standard error) at control and
impacted sites in the River Kennet.

C.4.4 Trivariate analysis
Arthropod lower-link angles were less negative (i.e. shallower) than less
pesticide-sensitive taxa in the control communities, but more negative (i.e. steeper)
within the impacted communities (Table C.2). This indicates altered mass-abundance

scaling relationships of the links between nodes (Figure C.B). G. pulex and Baetis had
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the highest biomass and numerical abundance within the control macroinvertebrate
community, respectively (Figure C.Dc, Figure C.Dd), and these species upper-link
angles (i.e. to their predators) became shallower at impacted sites (Table C.2), thus
indicating a potential decrease in biomass flux to fishes from both the detritivore and
herbivore food chains. To illustrate the direction of biomass flux through the food web
and the connection of a key species to all other taxa via relatively direct and short
paths, we constructed an example food chain with G. pulex as the focal species (Figure
C.F), which showed that even in this complex food web most species are only 1-2 links
from all the others, highlighting the potential for perturbations to ripple rapidly
through the network. More commonly used whole-network metrics, such as the
regression slope and intercept, showed no clear differences that could be ascribed to

the pesticide spill (Table C.3).
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Figure C.F. Aggregated network for the River Kennet food web, highlighting an exemplar
food chain from the basal resource to the apex predator; a = coarse particulate organic matter
(e.g. leaf litter), b = Gammarus pulex, ¢ = brown trout, Salmo trutta, d = Eurasian otter, Lutra
lutra. The two concentric circles of nodes represent the shortest food web distances to or from
G. pulex - those in the inner circle are a single link removed from G. pulex, those in the outer
circle are separated by two links in the shortest path. Here, all species are at most 2 links away
from G. pulex, although longer food chains are present in the network, as shown by a-b-c-d.
Symbols for nodes represent different trophic elements: green circles represent producers,
blue squares: macroinvertebrates, purple diamonds: vertebrate ectotherms, red triangles:
endotherms, black circles: abiotic resources. Light blue and light purple circles represent
cannibalistic nodes of invertebrates and vertebrate ectotherms, respectively.
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Table C.3. Properties of the trivariate food webs at control and impacted stream sites.

Site A Site C Site D Site F
Property Control Control Impacted Impacted
Number of nodes 68 60 64 73
Number of fish species 4 4 5 3
Number of macroinvertebrate
taxa 35 23 20 32
Number of diatom taxa 29 33 39 38
Number of links 837 635 739 1060
Linkage density 11.96 10.41 11.37 14.13
Directed connectance 0.17 0.17 0.17 0.19
Trivariate regression slope -0.98 -0.67 -0.92 -0.95
Trivariate regression intercept 1.29 1.26 1.58 1.35
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C5 Discussion

The documented insecticide spill in the River Kennet affected multiple
organisational levels, from individual genes, through to food web structure and an
ecosystem process. The location of pesticide-sensitive macroinvertebrate consumers
relative to their resources in MN space shifted markedly, and the collapse in the
population of a previously dominant keystone detritivore, G. pulex, was especially
notable. This was associated with dramatically impaired rates of detritivore-mediated
litter decomposition, with potential repercussions for the higher trophic levels. In this
highly interconnected food web (Figure C.F) perturbations could potentially not only
easily propagate through species interactions, but could also dissipate effectively.
These properties could confer resilience on the system as a whole, as alternative
feeding paths provide relatively direct “short-circuits” in the food web (Figure C.F).
Various compensatory mechanisms and hystereses within the food web were evident
following the spill, including elevated microbial decomposer activity in the absence
of invertebrate detritivores (Figure C.Dc) and irruptions and growth of less pesticide-
sensitive and r-selected taxa capable of exploiting new resources (Figure C.E). The
functional potential of the microbial assemblage in particular was higher in the
impacted sites, as was the abundance of genes associated with organophosphate use
and ammonia oxidation in the aftermath of widespread arthropod deaths (Figure
C.Da; Figure C.Db). Extended temporal sampling will likely reveal if the sewage
treatment work is potentially confounding our interpretation of this result, although
there is no suggestion this is the case, as water quality is essentially identical above

and below the works (Fig. S1).

Microbial biodiversity accounts for most of a river’s biodiversity, drives key
ecosystem processes and biogeochemical cycles (e.g. nitrogen cycle) and interacts with
higher trophic levels. Our qPCR assays revealed that the abundance of genes
associated with the turnover of organophosphate and ammonia was higher in

polluted sediment, revealing both direct and indirect effects of the spill on microbial
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activities.

Strong links between changes in the structure and functioning of the microbial
and invertebrate community were evident, as revealed by the changes in
decomposition rates associated with these two major biotic drivers (Gessner &
Chauvet 2002; Schéfer et al. 2007). The microbial community played a key role in
maintaining litter decomposition following the invertebrate losses, and microbial
functional potential assessed by Ecoplate assays was also elevated at the impacted
sites. The large-scale mortality of invertebrates was likely to have released resources
readily available for microbial use, promoting the proliferation of fast-growing
bacteria able to use a broad range of substrates. Additional data from more extended
sampling will eventually help us to better understand the temporal dynamics of the
recovery process, by providing deeper insights into the baseline variability. Even in
the current absence of such additional data, our results clearly underline the potential
of microbial bioindicators for assessing direct and indirect responses of river

ecosystems to environmental impacts.

Employing a highly resolved network-based perspective provided further
insights into both direct and indirect effects of the perturbation - from genes to species
and from food webs to the ecosystem as a whole - as we were able to connect structural
and functional indicators across different levels of biological organisation, as well as
improving understanding of the associated responses. For instance, G. pulex and Baetis
represented key nodes in the major detritivore and herbivore food chains,
respectively, as is the case in many lowland running waters (Woodward et al. 2008;
Layer et al. 2010), and both populations collapsed in the impacted sites. Our broad
multilevel approach revealed how the loss of consumers could result in the release of
their resources (or potential competitors), and also how major conduits of energy and
biomass flux to the species at the top of the food web, including ecologically important

and economically valuable fish species, such as trout, could be compromised.

Microcosm and mesocosm experiments have described ecosystem-level
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responses to, and recovery from, combined pesticide and nutrient additions (Traas et
al. 2004; Halstead et al. 2014), and observational field-based research has demonstrated
that recovery of the invertebrate community and leaf-litter decomposition was related
to aerial mobility of repopulating taxa (Chung et al. 1993). Our study represents a
novel approach, integrating a broad range of assessment metrics at multiple levels and
this has helped us to better understand the effects of a pesticide spill in a natural
setting. The same approach is also more widely applicable to assessments of effects
caused by other stressors, such as acidification and eutrophication, where interactions
within food webs can shape both the ecosystem impact and the rate and trajectory of
recovery (e.g. Ledger & Hildrew 2005; Layer et al. 2010; Rawcliffe et al. 2010). Thus,
such an approach offers a way to move beyond partial taxonomic or trait-based views
to one that explicitly incorporates species interactions in food webs and ecosystem

processes in river bioassessment (Gray et al. 2014).

Our study also highlights the value of citizen science in biomonitoring and
bioassessment, as it enabled us to place the detailed data specifically and intensively
collected after the toxic spill in the context of a wide before-and-after-control-and-
impact (BACI) -style “natural experiment”, which would have otherwise been
impossible to employ in the search for causal relationships. Mobile Ephemeroptera
(Baetis and Ephemerellidae, both active swimmers with an aerial adult that coincided
with the pollution) repopulated the river more quickly than G. pulex (Figure C.C), as
did the often opportunistic chironomid species and less sensitive non-arthropod taxa
such as oligochaetes (Figure C.E). These responses echo those of small r-selected taxa
preceding the recovery of larger K-selected species in previous studies on pesticide

contamination (Chung et al. 1993; Liess & Schulz 1999; Beketov et al. 2008).

It has been hypothesised that ecological inertia can operate within freshwater
food webs, creating ‘community closure’ or recovery trajectories that are not simple
reversals of impacts (e.g. Ledger & Hildrew 2005; Layer et al. 2011; Layer, Hildrew &

Woodward 2013). Impacts on key nodes can alter important aspects of food-web
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structure and associated processes, such that although the latter might operate at
similar rates, they may be driven by microbes and r-selected taxa instead of K-selected
taxa, as has been reported in response to pesticide contamination (Chung et al. 1993)
and other stressors (Hladyz et al. 2011). Our initial data demonstrate that, while the R.
Kennet's ecological structure and functioning were significantly altered by the toxic
spill, there were many alternative nodes and links within the food web that could help

confer some level of resilience even in the face of catastrophic population losses.

Future work will require well co-ordinated laboratory and field investigations
based on matching methodologies to improve understanding of the links between
microbiota and larger organisms before, if ever, one can be used as a proxy for the
other (e.g. Triebskorn et al. 2003). Nonetheless, our study represents a proof-of-
concept as to how vastly different metrics might be linked and, as more data are
generated over time, potential time X treatment interactions can also be more
thoroughly explored. Additional metrics based on, for instance, next-generation
sequencing (e.g. Rosi-Marshall et al. 2013) or measures of whole-ecosystem respiration
(e.g. Young, Matthaei & Townsend 2008), could be incorporated to capture the extent

of impacts and recovery trajectories more fully.

Although covering only part of the spectrum of responses reported here, other
multimetric bioassessments have yielded comparable results, including how
pesticides can indirectly release prey species from predation (Papst & Boyer 1980),
constrain consumer populations through loss of resources (Brazner & Kline 1990),
affect the structure and functioning of aquatic communities in mesocosms (Downing
et al. 2008; Relyea 2008; Halstead et al. 2014) or alter the structure and functioning of
natural stream communities (Chung et al. 1993; Schéfer et al. 2007). Results from
correlational studies also suggest that changes at multiple trophic levels may be
related to organic chemical contaminants (mostly pesticides) at the continental scale
(Malaj et al. 2014). Despite this and the worldwide use of, and projected increase in,

pesticides, studies of their effects at the ecosystem-level are rare in natural settings
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(Kohler & Triebskorn 2013). The present study contributes to bridging this gap.
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C.7 Supporting Information

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Supplementary material. Table S1. Mean numerical abundance at

control and impacted sites for diatoms in the trivariate food webs shown in Figure

C.Dd.

Table S2. Mean numerical abundance at control and impacted sites for

macroinvertebrates and fishes in the trivariate food webs shown in Figure C.Dd.

Table S3. Shapes of diatom species used to calculate biovolumes (Hillebrand et al.,

1999).
Table S4. Equations used to calculate macroinvertebrate individual dry mass (DM).
Table S5. Sources of feeding interactions derived from the primary literature.

Table S6. The taxonomic resolution (i.e. generality) assigned to each node in the

networks to create links between nodes.

Figure S1. UK Environment Agency water chemistry data and macroinvertebrate data
collected by citizen scientists between July 2012 and July 2014. Water chem- istry
samples were collected from an upstream control (grey; adjacent to site B) and a
downstream impacted monitoring station (black; adjacent to site E); citizen science
macroinvertebrate samples were collected from a control site at Stonebridge Lane and

an impacted site at Elcot Mill (Figure C.A).
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Appendix D | Freshwater conservation and
biomonitoring of structure and function: genes to

ecosystems!

1 Gray, C,, Bista, L, Creer, S., Demars, B.O.L., Falciani, F., Monteith, D.T., Sun, X. & Woodward,
G. (2015). Freshwater conservation and biomonitoring of structure and function: genes to
ecosystems. Aquatic Functional Biodiversity: Ecological and Evolutionary Approaches (eds

A. Belgrano, G. Woodward & U. Jacob). Elsevier.
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D.1 Summary
Biomonitoring and conservation of freshwaters to date have fallen short of
incorporating a fully ecological and evolutionary perspective. Due to this, the
predictive capacity of current biomonitoring approaches is restricted and will have a
limited ability to adapt in the face of rapid and global habitat modification and climate
change. We briefly outline the present state of biomonitoring as well as some of its
limitations. We then address how incorporating an ecological and evolutionary
approach to biomonitoring and conservation will allow us to better understand
interactions between the evolution and ecology of a species. This approach alongside
the incorporation of measures of ecosystem functioning and aided by new
technologies such as novel molecular markers or the use of microbes, may facilitate
the future development of a more comprehensive and effective biomonitoring

framework.
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D.2 Current focus of aquatic biomonitoring and conservation

Freshwater biomonitoring, i.e. the repeated, quantitative assessment of surface
waters using the presence and/or abundance of groups of organisms of known
environmental sensitivity, currently provides a staple tool in aquatic management and
conservation, and underpins wide-reaching environmental legislation including the
European Union Water Framework Directive (EU WFD), Environmental Quality
Standards for Surface Water in China (GB 3838-2002) and the Clean Water Act in the
United States of America. Its scientific origins can be traced back to societal changes
during the industrialisation of the developed world and simultaneous scientific
developments in epidemiology and biological taxonomy - the impacts of rising human
populations on the chemical and microbiological quality of urban water supplies

necessitated the development of rapid and robust methods to assess risks to public

health.

The history of aquatic biomonitoring is extensively reviewed elsewhere (e.g.
Metcalfe 1989; Rosenberg & Resh 1993; Friberg et al. 2011) and so will not be discussed
in detail here but essentially biomonitoring hinges on two basic concepts: first that
aquatic organisms tend to be unevenly distributed across environmental gradients,
and should therefore have value as indicators of ecosystem state, and second, the biota
provide a more temporally integrated indication of ecosystem quality than many

abiotic measurements, such as spot sampled water chemistry.

Three key developments over the course of the 20th century had major impacts
on routine environmental assessment by regulatory authorities (Metcalfe 1989). First,
Kolkwitz and Marsson (1902; 1909), introduced what became the “saprobien system”,
in which groups of organisms were directly linked with perceived discrete levels of
organic contamination and by inference, oxygen availability of waters. Second,
biological diversity indices became popular around the middle of the century, based
largely on the premise that species richness and evenness is reduced with increasing

environmental disturbance. Finally, biotic indices that combined these methodologies
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(such as the Trent Biotic Index, Chandler’s Score System and the Biological Monitoring
Working Party) were developed. Despite the widespread adoption of these indices
(in particular the Average Score per Taxon (ASPT) approach), many surface waters
are more likely to be compromised by other anthropogenic stressors, such as
acidification, toxins, climate change, atmospheric deposition of reactive nitrogen and

habitat modification.

During the 1980s, the need to understand the causes behind surface water
acidification stimulated investigation of diatoms as palaeobiological assessment tools
(Renberg & Hellberg 1982; Battarbee & Charles 1986). These ubiquitous and
chemically sensitive unicellular algae preserve well in lake sediments, thus enabling
palaeo-ecologists to reconstruct the environmental history of a water body from
sediment cores. Statistical approaches based on weighted averaging procedures were
developed to predict (or hindcast) lake chemistry on the basis of spatially derived
“training sets” describing the chemical “optima” and tolerances of individual species
(e.g. Birks et al. 1990). This approach has proved highly effective in the reconstruction
of lake pH and has been applied to infer historical change in other environmental
parameters with more mixed success. More recently various community-based
multivariate regression approaches have been developed to interpret the
environmental significance of trends in contemporarily monitored biota, including
diatoms and macroinvertebrates (Monteith et al. 2005, Murphy et al. 2012) and to
specifically address the extent to which biological trends can be explained by changes

in water quality with time (Halvorsen et al. 2003).

In recent years, more effective water treatment regimes and environmental
regulations have improved surface water quality with respect to both organic
pollution and water acidity in much of the developed world. The focus of
biomonitoring has consequently begun to shift from basic quantification of
environmental damage to consideration of how much surface water quality, with

respect to these key drivers, still deviates from a desired “reference” condition relative
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to a “pristine” state. The bio-assessment tool RIVPACS (River Invertebrate Prediction
and Classification System) pioneered this field, by quantifying the differences in the
macroinvertebrate assemblage between a site under investigation relative to its
“expected” assemblage at unimpacted, but otherwise comparable sites. This approach
and its derivatives now underpin most freshwater biomonitoring schemes across
Europe (e.g. Simpson et al. 2005; Murphy et al. 2013) and other parts of the world
(Simpson & Norris, 2000).

Unfortunately, despite these advances, assigning appropriate reference
conditions and current status is still problematic, as pre-industrial (i.e. pre 1800) target
conditions are very difficult to model with confidence (Battarbee et al. 2005), as there
are rarely useful palaeoecological data from running waters because therr sediments
are well-mixed and there are also mismatches between palaeo and contemporay data
in standing waters as the two rarely overlap in time, so ground-truthing is difficult.
A notable exception is from some of the longer-term biomonitoring schemes, such as
the United Kingdom Acid Waters Monitoring Network (Monteith et al 2005; Battarbee
et al 2014), where, after several decades of lake biomonitoring using sediment traps,
we are now finally able to compare contemporaneously collected data directly with
palaeoecological data (Figure D.A). This has raised intriguing questions about stressor
impacts: for instance in the Acid Waters Monitoring Network (AWMN) data, the lack
of evidence of clear recovery among diatom communities along the acidification
trajectory evident in the sediment core records (despite improvements in water
chemistry), points to hystereses in these ecosystems, and to the potential ecological
importance of other factors that could be setting new environmental states that and
may not be reversed in the foreseeable future (Battarbee et al. 2013). The growing
realisation that a return to a historical pre-impacted state may be unrealistic is now
forcing us to consider shifting environmental baselines when assessing conservation
and restoration, and determination of when an alternative state is acceptable with

respect to its function, biodiversity and the ecosystem services it provides (UK
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National Ecosystem Assessment, 2011; Millenium Ecosystem Assessment 2005). While
this palaeoecological reference approach to aquatic monitoring is limited to lake
ecosystems (as running water sediments are turned over), there is considerable
potential to extend it to other biological proxies and biogeochemical indicators, such
as pigments and stable isotopes, and pressures other than acidification (e.g. Smol

2009).
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Figure D.A. Linking a sites contemporary biomonitoring data to its historical, reference
condition (redrawn from data presented in (Battarbee et al. 2014). Percentage relative
abundances of diatom species found in sediments of a UK upland lake (Round Loch of
Glenhead). Species abundances in historical sediment core samples (left) shift from left to right
reflecting increased water acidity during the industrial revolution. Abundances of the same
species in contemporary sediment trap assemblages (right) indicate some recent reversal
(decline) of some particularly acid-loving species, e.g. Tabellaria quadriseptata, as acidity has
declined. However other species that increased during acidification are continuing to increase
in abundance while others that were common prior to acidification show little indication of
recovery.
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All these approaches focus on linking attributes of biological assemblages to a
system’s chemical or physical state and they have made important contributions to
environmental assessment, policy and legislation across ecological and evolutionary
timescales. The power of these methodologies can be largely attributed to the wide
variation between taxa in tolerance to specific pressures, in particular the bio-
availability of oxygen, hydrogen and aluminium ions. Newly emerging
environmental threats, such as the many facets of climate change, contamination from
organic micropollutants and nanoparticles etc., may not be quite so readily assessed
by similar direct environment-taxa calibration-based approaches (Figure D.B)
(Friberg et al. 2011). In some cases, other ecosystem metrics, other than the relative
abundance of taxa, may yield clearer insights into significant environmental shifts
(e.g. Layer et al. 2011). There is, therefore, a growing need to determine how best to
assess the impact of these emerging stressors, both in isolation and in combination.
Also, the structural biodiversity-centric focus of these traditional methods now needs
to be augmented with more explicitly functional measures, to provide complementary
insights into the impacts of stressors in freshwater ecosystems (e.g. Woodward et al.

2012).

In addition to largely lacking these explicitly functional ecosystem-level
metrics, another common limitation of current taxonomic-based biomonitoring
schemes is that, although there is an implicit evolutionary signal embedded within
them, (i.e. in terms of the phylogenetic relatedness of the various indicator taxa, which
constrains their functional traits), there is still no explicit recognition of the role of
adaptation to new stressors and the potential for evolutionary rescue from stressors
within species populations: and evolutionary responses can occur surprisingly
quickly in many freshwater taxa (e.g. Melian et al. 2011). This could cause mismatches
between the reference and impacted conditions, if species are able to adapt to new
conditions, rather than acting as passive ciphers that are simply overlain on an

environmental template (e.g. Bell & Gonzalez 2011). This has resulted in a paradox of
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biomonitoring, in which speciation is the mechanism that produces the response
variables we measure but which is then ignored when relating species distributions
to environmental conditions. Although research is beginning to fill this gap in
understanding (e.g. Thuiller et al. 2011; Vonlanthen et al. 2012) currently in
biomonitoring, this “inconvenient truth” is either ignored or attempts are made to
circumvent it by removing the phylogenetic signal from the data (e.g. via trait-based

approaches).
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Figure D.B. A hypothetical ordination to show the changes in the main drivers of habitat
degradation in freshwaters in the developed world over time. In the developed world, over
time increasing temperature and habitat modification have become the significant drivers of
change in the principal components (Axes I-IV) of community composition, replacing the
more historical stressors of organic pollution and pH change. However these historical
stressors are still the major causes of habitat degradation in developing countries.
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D.3 State of the art in the science of biomonitoring: from species

traits to community and ecosystem

The earliest attempts to combine ecological and evolutionary approaches to
biomonitoring included the use of additional measures of biodiversity including
phylogenetic diversity (or taxonomic distinctness) and functional diversity
conditioned by evolution (e.g. May 1990; Paradis, Claude & Strimmer 2004; Webb,
Ackerly & Kembel 2011), though most of the emphasis has been on the former, not the
latter. A problem with focusing solely on taxonomy is that if species redundancy is
high, as appears to be the case in many freshwaters (e.g. McKie et al. 2008; Perkins et
al. 2010; Reiss et al. 2010; Reiss et al. 2011), then species loss is likely to only have
strong effects when entire functional guilds are lost: but it is these that we still have
limited understanding of due to the longstanding reliance on more traditional
measures of biodiversity (e.g., species richness). The realised species trait (or gene)
profile at a local scale provides the means to link the potential effects of anthropogenic
pressures on species (population) distribution and dynamics: i.e., the trait profile itself
may therefore be used for diagnostic purposes (Statzner & Béche 2010). It is possible,
however, that non-causal relationships between individual species traits and
contemporary environmental conditions exist (e.g. Poff et al. 2006; Horrigan & Baird
2008) because some traits may represent an evolutionary legacy rather than current
adaptation (Gould & Lewontin 1979). Empirical studies have confirmed the large role
played by phylogeny or taxonomic distinctness in freshwater ecosystems (Willby,
Abernethy & Demars 2000; Poff et al. 2006; Demars et al. 2012) from the structural

perspective, but their functional attributes remain far less well-understood.

To interpret biomonitoring results (patterns in species composition) it is crucial
to unravel its underlying mechanistic basis (processes which determine this pattern,
both anthropogenically mediated or not). Species are not randomly distributed in time
(e.g. Lyell & Deshayes 1830) or space (e.g. Humboldt 1849) and Demars and Edwards
(2009) recently pointed out that even as far back as in the 19th Century Darwin (1872)
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argued that environmental variables only played a subordinate role in the
determination of species distribution. He offered a mechanistic explanation (pp. 318-
319): immigration of individuals from a species (individuals) pool controlled by
dispersal barriers and descent with modification regulated through natural selection,
with competition being the most important pressure. He attributed the wide
distribution of freshwater organisms to favourable means of dispersal (Darwin, 1872,
pp. 323-330, 343-347, e.g., Pollux and Santamaria et al., 2005) and lessened
competition (Darwin, 1872, pp.346, e.g., Greulich and Bornette, 2003) in aquatic
habitats. This debate of whether species distribution is more controlled by niche
assembly (resource heterogeneity) or dispersal assembly is still on-going (Demars &
Harper 2005; Heino 2013). Moreover, numerous null models have reproduced
biomonitoring patterns of species assembly: e.g. random (Tokeshi 1990), niche
(Tokeshi 1993), neutral (Bell 2001; Hubbell 2001), metabolic scaling (Allen, Brown &
Gillooly 2002), fractal (Lennon et al. 2007), maximum entropy (Harte 2011).

The general consensus is that patterns in species composition and community
structure emerge from the interactions of chance, dispersal and resource heterogeneity
in evolving meta-communities (Venail et al. 2008). This is supported by empirical
studies using autocorrelation, spatial distances/isolation and dispersal abilities to
infer proportion of resource (niche) versus dispersal community assembly (Moilanen
& Hanski 2001; Demars & Harper 2005; Moilanen et al. 2005; Moilanen, Leathwick &
Elith 2008; Bonada, Dolédec & Statzner 2012). Essentially, this is explicitly adding the
otherwise overlooked dynamical component to biomonitoring data, which are often
seen as static snapshots whereby species simply map onto the environmental
template. It also starts to recognise the inherent role of dispersal and selection for
particular functional traits, rather than simply focusing on the phylogenetic tree in

isolation.

Every species can be characterised by not only its taxonomic identity but also

its biological (response) functional traits, which may be translated into functional
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(effect) traits (Engelhardt 2006; Kerkhoff & Enquist 2006; Lopez-Urrutia et al. 2006;
Enquist et al. 2007) and eventually into ecosystem services (e.g. Garcia-Llorente et al.
2011). Mapping traits onto the tree of life reveals a convergence (independent
appearance of a trait in separate clades) or divergence (appearance of a trait in a single
clade) in evolution. This is highly relevant in the context of the insurance hypothesis
or portfolio effect, whereby high species (or genetic) richness maintains high and
constant ecosystem (or population) productivity and services in a stochastic

environment (Yachi & Loreau 1999; Schindler et al. 2010).
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BOX 1: Categorizing continuous variables in biomonitoring

Figure D.C maps an example of a continuous ecological variable (habitat quality) onto
discrete man-made categories. This human need to categorize complexity can be seen in
many aspects of ecology, not just in the biomonitoring and conservation fields. Whether it’s
the difficulties encountered when classifying all of life on earth into discrete species (e.g.
Mayden 1997), or the questionable practice of assigning ‘typologies’ to a given lake or river
(e.g. Friberg et al. 2011), the motivation comes from our historically poor ability to process
large amounts of complex information. However, this process of classification and
simplification has allowed us to make some informed generalisations and useful
interpretations that otherwise would not be possible. Nevertheless, with the advent of rapidly
accelerating computing power the challenge has now shifted away from our previous
inability to process complex information, to the interpretation of complex information into
simple messages. With expanding analytical ability comes the need to preserve as much
ecological information as possible, which will allow a deeper understanding and more
informed interpretations to develop the next necessary steps forward in biomonitoring
science; the shift of focus away from the simple monitoring of species composition towards
the monitoring of ecosystem functions and services.

Species abundance
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Figure D.C. Hypothetical graph showing fluctuations in four species abundances across a
habitat quality gradient, alongside the discrete criteria of habitat quality (good, moderate,
poor) that these continuous variables are categorized into. The dashed line shows species
loss, whereas the solid black arrow shows sub-lethal effects to a particular species
population.
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The ecology of a species sets the scene in which evolution operates, whilst
evolution may influence ecological dynamics by altering the frequency of phenotypes
that are available to interact: thus, there are potentially important eco-evolutionary
feedbacks, which are only now starting to be recognised (e.g. Melian et al. 2011; Moya-
Larano et al. 2012). The ability of a species to adapt to a changing environment is key
to how it responds to stressors: species are not simply present or absent if
environmental conditions are favourable or unfavourable (Text Box 1). According to
the old adage, there are three options - “adapt, perish or move” - that a species is faced
with in a changing environment, yet biomonitoring and conservation schemes have

largely ignored the first.

An important issue here is that neither ecological nor evolutionary responses
occur solely at the population level of organisation: no species is an island, and its
interactions with those around it will determine both species-specific and the wider
community’s responses to changing conditions (e.g. Rybicki & Landwehr 2007). This
explains why models derived from bioclimate envelopes and extrapolations from
traditional biomonitoring techniques often fail to predict species responses in the real
world, because their synecology (the ecology of communities of interacting
organisms) is ignored (Woodward et al. 2010; Friberg et al. 2011). The use of trait-
based approaches helps to grapple with issues related to functional biodiversity at the
autecological level, but it fails to embrace the more complex, higher-level
synecological functional roles that species play within multispecies systems such as
food webs, which may have seemingly unpredictable emergent properties
(Woodward 2009). This can be exemplified by mismatches between real-time or
experimental data that track transient dynamics, versus space-for-time substitutions
where the different communities across the environmental gradient may already be
at equilibrium (e.g. Layer et al. 2010; Layer et al. 2011). Unfortunately, such data are
still rare, but where they are available there is compelling evidence that the functional

role of species within the food web can have important indirect and direct
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consequences that would be missed by relying on static data: a classic example is the
seeming paradox of invertebrate abundance declining over several decades of
deacidification, yet this response makes sense when the top-down effects of predators

on the prey assemblage are included (Layer et al. 2011).

Figure D.D synthesises current thinking in the role of ecology and evolution of
species distribution on which taxonomic, functional and phylogenetic diversity
determine the dynamics of ecosystem functioning and services, and highlights how

they can be integrated in future biomonitoring approaches.

regional species pool local species distribution

nichie I
random assembly |
assembly
- it
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l ' disparsal
assembly

colonisation, extinction, speciation

Figure D.D. Ecology and evolution of species distribution generates diversity patterns in
species (grids), species traits (symbols) and phylogeny (trees). From a hypothetical null model
(e.g. random assemblage) and species pool at regional scale, species are sorted through the
effects of niche assembly (heterogeneity of resources) and species dispersal into patterns of
local species distribution. Over time, local extinction, colonisation and speciation alter the
regional species pool and associated phylogeny and trait diversity. The dimensions of
diversity: taxonomic, abundance, functional and phylogenetic, determine the dynamics of
ecosystem functions and services.

Functional diversity provides a more direct link between species richness and
ecosystem functioning, and ultimately the provision of goods and services (Naeem

2002; Woodward 2009). Two essential functions are primary production and
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decomposition, which provide the two key energy inputs into any food web, thus
ultimately driving the whole system’s trophic dynamics, stability and productivity.
Production and decomposition thereby provide a variety of services, including the
production of fish in fisheries and for recreational angling, or the processing of
pollutants and waste products to produce clean water. These vital ecosystem
processes are, however, not routinely measured in current biomonitoring techniques.
Decomposition rates have been measured in some large-scale studies, but these too
are still largely ignored in routine biomonitoring, and the responses remain complex
and poorly understood (Woodward et al. 2012). Some functional measures, such as
organic matter decomposition, has been the focus of attention (e.g. Young, Matthaei
& Townsend 2008), and methods for standardising this measure across ecosystems
have been developed (e.g. Kampfraath & Hunting et al. 2012) crucially allowing
comparisons between studies, but these methods are yet to be adopted into

biomonitoring schemes.

Functional indicators, and especially direct measures of ecosystem processes,
should also play a larger role to quantify ecosystem services (Millenium Ecosystem
Assessment 2005), which are being advocated increasingly for economic valuations of
conservation, management and restoration projects (Costanza et al. 1997; Everard &
MclInnes 2013). Many ecosystem processes are either services in their own right (e.g.
carbon sequestration, nutrient cycling), or they underpin them (e.g. invertebrate
production supporting fisheries), and include hydraulic retention (water transient
storage), sedimentation rate, and greenhouse gas transfer. The magnitude and rate of
many of these processes are sensitive to anthropogenic pressures, highlighting the
scope to use functional indicators as diagnostic tools (Odum 1969; Schindler 1987;
Sweeney et al. 2004; Mulholland et al. 2008; Yvon-Durocher et al. 2010; Demars et al.
2011).

Important insights into ecological and evolutionary responses to stressors, as

well as their functional consequences could be inferred from the large amounts of geo-
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referenced and dated lists of taxa currently filling a multitude of databases in local
regulatory and conservation agencies, natural history and conservation societies.
Many databases are now being assembled that contain some or all of these elements
(e.g. FishBase [Frose & Pauly 2010] and  Freshwater Life -
http:/ /www freshwaterlife.org - supported by the Freshwater Biological
Association). Scientists are collating decades of research to assemble species traits (and
genes) in a phylogenetic context. Combining this with environmental data available
from a wide range of government agencies and research bodies, and by organising
this information into user-friendly databases (e.g. the Global Biotraits Database
http:/ /biotraits.ucla.edu/index.php) and connecting them to infer processes from
patterns offers great potential for future research (e.g. Demars & Harper 2005; Demars

& Trémolieres 2009).

The success of the next generation of biomonitoring will not come solely from
assembling and interrogating these vast new databases to obtain new response
variables, but also from explicitly testing ecological hypotheses and synthesising
different branches of science, e.g. eco-enzymatic stoichiometry which allows us to link
the elemental composition of microbial communities to their nutrient content and
biomass production (Sinsabaugh, Hill & Shah 2009; Hill et al. 2012). Integrating
biomonitoring schemes with experimental and modelling approaches will be crucial:
combining whole ecosystem experiments with long-term monitoring can reveal
spectacular responses to environmental change, although such large-scale, long-term
studies are still very much in the minority. Classic examples include the work of
Likens et al. (1977) at the Hubbard Brook Experimental Forest, Schindler (1990),
Carpenter et al. (2001) at the Experimental Lakes Area (ELA) in Canada
(http:/ /www.experimentallakesarea.ca) and Slavik et al. (2004) at the Kuparuk River
station of the Long-Term Ecological Research (LTER) network. Other work has made
use of these long-term data to develop new dynamical models to link biodiversity

change to ecosystem functioning, such as Petchey et al. (2004) study based on the
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extensive time series data from the UKs Environmental Change Network. Recently,
the American LTER network has been complemented by the National Ecological
Observatory Network, NEON (http://www.neoninc.org/news/lIterandneon), and
the STReam Experimental Observatory Network (STREON, part of NEON) is now the
one of the most ambitious long term biomonitoring schemes. It combines comparative
surveys across the USA with experimental design (nutrient enrichment and removal
of large consumers) that extends previous LYNX programs (Mulholland et al. 2008).
In the United Kingdom, the AWMN has also been very effective in providing scientific
insights and influencing policy (Hildrew 2009; Layer et al. 2010; Friberg et al. 2011;
Layer, Hildrew & Woodward 2013). Moreover, the value of AWMN has increased
progressively over the three decades since its inception, as more subtle long-term
trends, such as responses to climate change, are now able to be detected. The challenge
is now to establish international networks with global coverage to tackle planet scale
issues (e.g. Global Lakes Ecological Observatory Network, GLEON), which are also
integrated with regional and local monitoring. Long-term monitoring can enable us
to detect early warning signals of ecosystem shifts (Scheffer et al. 2009), but it is often
difficult to extract research funding for such strategic research, which often appears

to fail to meet the “novelty” criteria of many research councils” remits.

D.4 Future advances and new perspectives - genes to
ecosystems

Over the last 20 years huge progress has been made in understanding
biodiversity-ecosystem functioning (B-EF) relationships, with an increasing emphasis
on freshwater systems over the last decade in particular (Loreau, Naeem & Inchausti

2002; Woodward 2009; Loreau 2010; Reiss et al. 2010). Whilst biomonitoring and

conservation have tended to focus on the biodiversity end of the relationship, the
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functioning part of the equation and its relationship with biodiversity has been largely
ignored in the more applied fields of freshwater ecology (but see Dangles et al. 2004;
Cardinale 2011). However, the lack of functional insights is changing, and many
emerging legislative and regulatory frameworks are recognising the need for more
functional approaches (e.g. the Water Framework Directive). The main finding of B-
EF research to date has been the prevalence of high levels of redundancy. Species loss
may have initially little impact, but once a critical threshold is passed when entire
functional groups are lost, the impacts can be extremely powerful and sensitive to
further species loss (Cardinale et al. 2006). These experiments have also revealed
evidence of idiosyncratic species responses being important, harking back to earlier
ideas about keystone species, where they have both strong and unique influences on
a process. Despite these advances, there are still some glaring gaps in our knowledge:
few studies have included more than one trophic level; most have measured just one
process rather than functioning as a whole, and they have been conducted primarily
in small experimental arenas over short timescales (Woodward 2009). As such, many
B-EF experiments lack the complexity of natural systems, though attempts are now
being made to address these shortcomings (Reiss et al. 2010). In the context of moving
from an understanding of B-EF to B-ES (biodiversity-ecosystem services)
relationships, there is a huge gap to be bridged in terms of the spatiotemporal scales
that are important for the latter, as ecosystem services tend to be manifested at much
larger landscape scales, where source-sink, metacommunity and food web dynamics,
as well as eco-evolutionary processes (e.g. Melidn et al. 2011), are likely to be

important.

The application of network-based approaches can be especially powerful here,
as there is a strong food web context to where ecosystem services are located, as well
as a clear trophic gradient in the scope for insurance and adaptation, which increases
down the web’s food chains (Figure D.E). Certain stressors are associated with

particular nodes in the web (e.g. biomagnification of organochlorine pesticides in apex
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predators; antibiotics with the microbial loop at the base of the web), as well as
different organisational levels (e.g. food web modules; functional groups, the network
as a whole) acting as multiple biosensors. For instance, allometries in food web
properties from the level of pairwise links, to tritrophic food chains, to the system’s
entire constraint space have been used recently to evaluate responses of experimental
stream food webs to drought (Woodward et al. 2012; Ledger et al. 2013): these revealed
that many of the more commonly used network metrics (such as connectance) were
relatively robust to perturbations, whereas others were much more sensitive (e.g.
allometric scaling of pairwise links and food chains). The food web provides an
intuitive prism through which to view both the lower and higher levels of
organisation and how they respond to stressors, as it makes the interactions between
species explicit in the response variables, whereas most biomonitoring and
conservation approaches focus solely on (a few) nodes, and not the links between
them at the system scale (Woodward, Gray & Baird 2013). Considerable work has
been done in freshwaters in terms of understanding how food webs respond to
stressors, including acidification (e.g. Ledger & Hildrew 2005; Layer et al. 2010; Layer
et al. 2011), eutrophication (e.g. Rawcliffe et al. 2010) and hydrological change (e.g.
Ledger et al. 2012; Ledger et al. 2013). Such combinations of studies illustrate
effectively that studying the feedbacks between the environment and the functioning
of the whole system that are mediated by the food web can be extremely powerful,

and may even induce regime shifts (Jones & Sayer 2003; Scheffer & Carpenter 2003).
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Figure D.E. Mapping services onto the food web. When monitoring services we need to
monitor the appropriate level of scale. The effects of stressors upon services won’t show at all
levels of the food web, although may magnify through the food web, or cause trophic
cascades. AP = apex predator, F = fish, C = carnivore, omnivore, D = detrivore, HD =
herbivore/detritivore, H = herbivore, AH = aquatic hyphomycete, L = leaf-litter, P = plant, A
= algae. Adapted from Abrahams et al. (2013) Figure 4.1.

Eco-evolutionary dynamics and feedbacks within the food web can be much
faster than previously thought (e.g. Melidn et al. 2011), and impacts on the epigenome
can lead to quicker adaptation than traditional adaptation of the genome, via genetic
plasticity (Johnson & Tricker 2010). Consequently, we are starting to perceive how
species evolve in the context of both the biotic and abiotic environment, and how
feedbacks and newly-discovered mechanisms can accelerate evolutionary responses
(Moya-Larano et al. 2012). In addition to the discovery of these ecological and
evolutionary interactions in recent years there have been rapid technological advances
in Next Generation Sequencing (NGS, Text box 2) and associated molecular
techniques (Hajibabaei et al. 2011; Hajibabaei 2012). This has allowed for significant

advances in broadening the coverage of the tree of life and for adopting an eco-
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evolutionary approach to biomonitoring in freshwaters: emerging NGS approaches
include new generations of molecular markers, the ability to characterise microbes in
situ, allowing them to be used to monitor the function of ecosystems as well as
determining the function of microbes, metazoans and macrofaunal communities

directly (Purdy et al. 2010).

D.5 Novel molecular and microbial approaches
An organism’s molecular state results from its interaction with the environment, and
so measuring specific molecular machinery components can provide clues as to which
stressors are present in the environment. The first generation of molecular markers
(Figure D.F) were developed from hypothesis-driven research and based on
biochemical, histological, morphological and physiological changes in nucleic acids
and proteins measured with conventional techniques (Ryan & Hightower 1996). The
number of such biomarkers is relatively small but they include some very effective
examples, such as the general xenobiotic response marker CYP1A (Celander 2011) the
endocrine disruption marker vitellogenin (Celander 2011) and the metal stress marker
metallothionein (Amiard et al. 2006). However, the hypothesis driven approach to
biomarker discovery suffers from an important conceptual flaw, at least in this
implementation: single genes whose expression is modulated in a highly specific

manner are extremely rare.

In the last ten years, new functional genomics technologies have provided a
potential solution to this issue. Since they allow the measurement of the expression of
tens of thousands of genes, proteins and metabolites in single experiments, they
provide the means to develop multi-gene signatures from the unbiased screening of

genome-wide expression data (Van Aggelen et al. 2010; Figure D.F).

The challenge of identifying specific molecular signatures hidden within

hundreds of thousands of noisy variables has driven the development of statistical
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methods for the identification of molecular components that are differentially

expressed in two or more sample groups (i.e. stressed versus controls). Although

effective, this approach has limitations: in particular it cannot identify synergistic

effects between variables, it has a relatively low statistical power, and biological

interpretation is challenging. The introduction of more complex modelling techniques

that can assess the predictive power of combinations of biomarkers (Li et al. 2010), has

been a significant step forward, particularly when applied to linking phenotypic

responses (e.g. physiology) to molecular responses, especially in a network context.

Ultimately this has allowed the identification of more effective and ecologically

relevant biomarkers (Ankley et al. 2010).

First generation

Maolecular Biology
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Experiments
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Statistical modelling
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ASKAYS Analysis of Biological
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Figure D.F. The evolution of Biomarker discovery from the first generation approaches which
use single genes whose expression is modulated by specific stressors, to the most recent
advances which allow the discovery of multicomponent molecular signatures.
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Despite the potential of these approaches, the vast number of possible
combinations of individual measurements drastically limits their ability to explore a
large portion of the solution space and therefore makes it extremely difficult to capture
biologically relevant pathways that respond specifically to particular stressors. One
way to address this challenge is reverse engineering, a branch of Systems Biology that
aims to reconstruct the underlying structure of a biological pathway from
experimental data. This has been tremendously effective in biomedical research for
identifying pathways predictive of clinical response, drug resistance and novel
therapeutic targets (Perkins et al. 2011). Again the biomedical-biomonitoring analogy
can be used here to extend such approaches to environmental assessment. Because of
the complexity of the datasets acquired using omics technologies, any reverse
engineering approach must start from the identification of a high-level structure of
the underlying biological networks and then progress to identifying more refined sub-
networks, which are associated with important phenotypic responses, such as changes
in reproductive ability following stress. Although in its infancy, this approach has
already been applied by a number of groups for identifying novel stress pathways

(Williams et al. 2011).

Overall, the use of these approaches allows the identification of more effective
biomarkers than the ones based on differential expression or and has opened up the
possibility to develop specific multi-component molecular signatures that are truly

representative of a large number of stressors and with high specificity.

The use of biomarkers as a biomonitoring tool relies on inferences from
molecular analyses. Returning to the more traditional approach of biomonitoring of
using taxa themselves, and given that NGS technologies have finally enabled us to
identify microbes in field conditions, these taxa represent ideal candidates for
assessing how stressors alter community structure and ecosystem functioning. The
pioneering “everything is everywhere, but the environment selects” theory proposed

by Baas Becking (1934) suggests that the presence of all microorganisms is ubiquitous,
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but our ability to detect them via direct observation is limited by varying densities:
i.e., rare microbes may be present but unobserved in ecological samples (de Wit &
Bouvier 2006). Consequently, the presence of different microbial species should be
dictated by the difference in environmental conditions, rather than distance and
biogeography (Zarraonaindia, Smith & Gilbert 2013). If this is true, it could provide a
truly globally comparable framework for bioassessment and monitoring. Opposing
theories exist, however, which suggest that microbial diversity is shaped by
geography as well as the environment (Martiny et al. 2006, O'Malley 2008). The key
question is whether the environment enhances the presence of certain microorganisms
in different locations, allowing us to compare components of the microbial
community for the monitoring of ecosystems. High-throughput technologies with
increased detection capabilities can assist here and there is huge potential for these to
be exploited by ecologists for monitoring purposes (Green, Bohannan & Whitaker

2008; Purdy et al. 2010; Poisot, Pequin & Gravel 2013; Woodward, Gray & Baird 2013).

Microorganisms play important functional roles in the major biogeochemical
cycles at local to global scales, as well as the recycling of nutrients and overall
ecosystem functioning (Cotner & Biddanda 2002; Nemergut et al. 2011), and many of
these are also either ecosystem services in their own right or key processes that
support important services (e.g. carbon sequestration). Moreover, microbial
communities are themselves influenced by environmental conditions. Accordingly,
bacteria have been suggested as good indicators of environmental change due to some
of their attractive biomonitoring properties, such as high diversity (thus broad range
of environmental susceptibility), potential ubiquity, short life cycles and minimal

disturbance of the site during sampling (Lear et al. 2009, see Figure D.G).

However, until recently their use was hindered by the inability to study them
in situ as only 5% of species are considered to be cultivable with standard techniques
(Amann, Ludwig & Schleifer 1995; Curtis, Sloan & Scannell 2002) leading to narrowly

focused approaches of single species analysis, such as the targeting of specific
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ecotypes of pathogens, rather than whole-community detection (Hellawell 1986; Port
et al. 2012). High throughput sequencing is already replacing historical fingerprinting
approaches (Text box 2) and has been used for the characterization of whole
communities from a large variety of sources, from both terrestrial and aquatic systems
(Roesch et al. 2007; Cole, Konstandinidis & Farris 2010; Gilbert & Dupont 2011; Foote
et al. 2012; Port et al. 2012). Following sequence-based approaches, specific and
identifiable microorganisms can be linked to environmental status and used as
sensors for the assessment of anthropogenic threats such as eutrophication,
acidification, climate change, and land use changes (Port et al. 2012; Yergeau et al.
2012; Heino 2013). In aquatic ecosystems, whole bacterial cell analysis can also be used
for the assessment of pollution effects (Lear et al. 2009) and detection of antibiotics in

the water (Port et al. 2012).

Recent studies from terrestrial and marine systems (Pommier, Douzery &
Mouillot 2012; Sun et al. 2012) suggest that bacterial communities are sensitive
indicators of contaminant stress and also support the theory that presence of
microorganisms is more related to environmental conditions than dispersal or
geography. However, in a freshwater study Lear et al. (2012) found microbial
communities did not differ among different environmental pressures, whereas
invertebrate sampling was the more effective monitoring tool, suggesting that either
the studied microbial communities were unaffected by contaminants, or the
discriminatory power of the molecular fingerprinting approaches used was

insufficient.

Yergeau et al. (2012) used NGS of the 165 rRNA gene to determine the effect of
pollution related to oil sands mining on nearby aquatic microbial community
structure. Their findings suggest that the microbial community structure was
significantly altered by the distance from mining sites and support the potential use
of Bacteria and Archaea as bioindicators of pollution. Furthermore, Kisand et al.

(2012), were able to compare the microbial community composition of a highly
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impacted area, like the port of Genoa with that of a protected area (low anthropogenic
impact), through metagenomic analysis of the microbial communities from water
samples. Distinct microbial diversity and abundance counts were detected among the
different sites which can be related to the differences of environmental conditions,
again demonstrating the potential for use of metagenomics for monitoring of aquatic

ecosystems.
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Box 2: What is next generation sequencing/omics?

The terms "next-generation" sequencing (NGS) or -omic technologies have
been in use since a landmark paper (Margulies et al. 2005) detailed the use of 454
massively parallel pyrosequencing. Since then, the development of NGS platforms,
accompanied by exponential increases in throughput and decreasing costs has
completely transformed the field of DNA sequencing.

For investigating functional diversity, the NGS “-omic” approaches can

conveniently be broken down into discrete categories of relevance to different levels
of biological organisation. At the individual level, transcriptomic analyses measure
differential gene expression via the analysis of expressed total RNA from specific
tissues. At the community level, metagenetic or metabarcoding (Fonseca et al.
2010b; Bik et al. 2012; Taberlet et al. 2012) studies estimate environmental taxonomic
richness by the en masse sequencing of environmental DNA samples (Sun et al.
2012). Shotgun metagenomic studies instead randomly sequence fragments of the
total genomes present in an environmental DNA extraction(Knight et al. 2012),
providing insights into both the functional and taxonomic capability of a given
environment. Finally, metatranscriptomics enables researchers to investigate the
actively transcribed mRNA from a community, giving an insight into the total gene
expression from a local ecosystem (Filiatrault 2011; Gilbert & Hughes 2011).
As with microarray studies, gene expression is likely to change significantly at both
short (Gilbert & Hughes 2011) and large spatial and temporal scales, so
transcriptomic analyses need to be designed around carefully and explicitly framed
questions that account for environmental gene expression and short half-life of
mRNA (i.e., transcript analyses are often not associated with protein composition)
(Moran et al. 2013). These broad -omic categories are summarized in Figure 7.

For ecological studies, a potential disadvantage of these approaches lies in
the fact that most platforms incorporate various forms of clonal amplification in the
sequencing approaches, thereby introducing potential quantitative biases into
datasets. New "third-generation" sequencers and technologies (Ribeiro et al. 2012;
Schneider & Dekker 2012; GridION™ and MinlON™) that use single molecule
sequencing approaches and therefore lack any clonal amplification step prior to
sequencing could produce truly quantitative data, although these are currently
tailored to analysing shorter numbers of very long reads and many had not reached
market maturity at the time of writing.

Continued...
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Box 2: Continued

* Metagenetics and metabarcoding use highly conserved primers to PCR-
amplify small (e.g-100-600 base pair) taxonomic marker genes fram
community derived DNA or RMNA to assess biodiversity.

= Can represent living only (RNA) and living/recently dead organisms (DNAJ.

= ca. £10-20/sample.

Gene-based diversity
measures

High throughput

. = “Shotgun” sequencing of total community genomic DNA.
Meta genomics * Taxonomic and functional gene analysis of predeminantly prokaryote
communities that have small genomes (e.g. 2-4 million base pairs).
Lower throu gh put * Represents both living and recently dead organisms.

* £100-£200/sample,

*» Directed sequencing of the actively transcribed RNA from a community.

1 C * Represents the highly dynamic gene expression [e.g. ribosomal and
S E el Nyl CeTy T © e ving communities, The functional mANA willikely
need enriching from the highly expressed ribosomal RNA.

Lowest throu gh put » £200-500/sample requiring large coverage for eukaryotic transcriptomes.

Figure D.G. The many -omics approaches to sequencing life, from individuals to whole
community techniques that can be adapted to each scenario. Methods applicable to a
variety of scales are presented with their respective advantages and disadvantages.

D.6 The functional analysis of microbes, metazoans and

macrofaunal communities

Ecologists are increasingly striving to improve predictive power by not only
identifying what organisms are present, but also by asking what are they doing? The
majority of functional ecological studies use organismal trait information (Tilman et
al. 1997; Petchey & Gaston 2006; Hagen et al. 2012) to provide a metric for quantitative
analysis, but these cannot accurately reflect all of the functional attributes of

individuals and species in complex ecological communities. In theory, the -omic
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toolbox can be employed to address this and to understand functional diversity in
ways that have not been previously possible, although synergies with traditional
ecology and taxonomy are essential if we are to fully understand the connections

between biodiversity and ecosystem functioning and how they respond to stressors

(Loreau et al. 2001).

If we consider a hypothetical freshwater ecosystem, with both benthic and
aquatic habitats, these can be studied first independently but then combined by
investigating both the taxonomic and functional diversity of the entire community
using the -omic toolbox (see Text Box 2) tailored to organismal genome size and
complimented by biogeochemical and nutrient cycling analyses. Starting with the
microbial fraction, taxonomy marker genes such as 16S (Caporaso et al. 2011), ITS
(Nilsson et al. 2008) and 18S (Fonseca et al. 2010a; Pawlowski et al. 2012) can be used
for the high throughput assessment of bacteria, archaea, fungi and meiobiota
respectively from multiple samples. Phylogenetic diversity can then be used
throughout all gene marker schemes as a proxy for functional diversity, by employing
algorithms such as UniFrac (Lozupone & Knight 2005; Caporaso et al. 2010; Fierer et
al. 2012). Metagenomic and metatranscriptomic analysis can be employed to
investigate the functional capability and specific functioning of the prokaryotic size
fraction characterised by organisms with small genomes (e.g. 2-4Mb) and their
relatively small transcriptomes. Metatranscriptomic analyses are likely to be robust in
simple communities of eukaryotic organisms where just a few species dominate
(Durkin et al. 2012), but given the current limits of sequencing power, achieving
effective coverage of replicated samples of complex eukaryotic communities (Bailly et
al. 2007), whose transcriptomes can be very large (e.g. 20Mb), is still limited. Similarly,
metagenomic sequencing of eukaryotic communities is unlikely to reach the
appropriate depth of coverage for ecological synthesis, simply because eukaryotic

genomes can be very large (the human genome alone is over 3Gb in size).

Within prokaryotic communities, a new approach (PiCrust) (Langille et al.
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2013) has emerged that links marker gene 16S studies to functional diversity maps
environmental 16S reads to their closest ancestors with full genome sequences and
predicts ancestral states of functional gene ontologies. Initial analyses suggest this
outperforms low coverage shotgun metagenomic analyses in well-characterised
communities, but further testing and examples will undoubtedly provide further
insight. Nevertheless, the model provides a route between high throughput studies
and full genome capability that may also eventually feature in the eukaryotic

biosphere as more genomes are sequenced.

Advances that are likely to be provided by the -omic toolbox regarding the
functional diversity of eukaryotic communities (e.g. protists, fungi, meiobiota and
macrofauna) are likely to be achieved by linking genotype phenotype data with the
analysis of food webs and networks (Barberan et al. 2012; Rodriguez-Lanetty et al.
2013). The Barcode of Life Project (Ratnasingham & Hebert 2007) strives for the
provision of standardised and carefully curated DNA barcode data for organisms
based on official barcode markers. So far, almost 200,000 species have been
“barcoded”. Importantly, this endeavour provides a link between a standardised
genotype and the taxonomy and ecology of the barcoded species. At the start of the
barcoding movement, sequencing technologies were not mature enough to consider
assessing multiple communities of organisms, but recently, a multitude of "meta-
barcoding" studies (Epp et al. 2012; Taberlet et al. 2012) have shown that approaches
used for microbial communities can be conveniently transferred to macrofaunal
communities. If the featured species in the meta-barcoding datasets have barcode
reference data, this can provide a very powerful link to the functional attributes of the
organisms comprising the sequenced communities. The maturation of the field of
meta-barcoding not only provides a huge boost for our ability to assess large numbers
of macrofaunal samples simultaneously (Ji et al. 2013), but also re-asserts the need for
the generation of reference barcode libraries to provide the necessary links between -

omic technologies and functional ecology. Moreover, since gene marker-based studies
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do not respect the boundaries between living and recently deceased, or even ingested
species, dietary and food web analyses can be conveniently performed using either
individual, or species-based sequencing of gut contents to investigate trophic

interactions (Pompanon et al. 2012).

Overlying these possibilities is the further opportunity to deduct functional
relationships using the analysis of ecological networks at multispecies levels of
organisation (Ings et al. 2009; Hagen et al. 2012). Following marker-based approaches
and even metagenomic analyses, the resulting data is a familiar taxon-by-sample
frequency matrix of genotype occurrence (Ji et al. 2013), that can be related back to
phenotype occurrence (i.e. species). The quantitative nature of the associations can be
estimated on the basis of the mode of evolution and genomic content of the markers
used (while acknowledging potential PCR bias), but the co-occurrence incidence
matrices will reflect the distribution of species in space and time. Such power
potentially enables us to delimit co-occurring ecological networks (in space and/or
time) and how individual networks respond to external drivers. Moreover, some
components of the sequence data matrices will be annotated to a high degree of
accuracy (e.g. species level for barcoded metabarcoding data) and for all other groups,
potentially genus, order, family etc., but at least phylum, enabling the researcher to
characterise biological interactions (parasitisim, predation, commensalism,
mutualism, competition etc.) and ecological processes (Faust & Raes 2012). The
additional strength of -omic high-throughput marker based approaches is that with
the now routine analysis of ca. 50 complex samples simultaneously, a high degree of
replication and sample coverage can be achieved on scales that are simply not possible
using traditional approaches for either microbial or macrofaunal samples. The
combination of these emerging technologies and approaches promises a possible
means of truly integrating ecological and evolutionary perspectives to responses to

stressors across all the major domains of life in aquatic (and terrestrial) ecosystems.
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D.7 Concluding remarks

With an ever-increasing human population the need to monitor and predict our
effects on the natural world has never been more important. In the developed world
the predominant stressors have changed, presenting new challenges to biomonitoring
science (Figure D.B), while developing nations such as India or China are facing the
same stressors the western world was exposed to in the 20th century but on a far
greater scale (Abate 1995; Yagishita 1995; Aggarwal et al. 2001). An eco-evolutionary
approach to biomonitoring will allow us to better understand the dynamics between
the selective forces of evolution and the ecology of species. The ability of a community
to adapt to change is key to its response to a particular stressor (Woodward et al. 2010;
Moya-Larano et al. 2012), and this needs to be considered alongside biomonitoring
results. With new technologies such as the rise of new molecular markers (e.g. Van
Aggelen et al. 2010; Williams et al. 2011), to the use of microbes (e.g. Lear et al. 2009)
and the advances in NGS techniques (Text Box 2) there is a great variety in approaches
now available to monitor the functional response of aquatic communities to

environmental stress.

A shift in the culture surrounding legislative biomonitoring, governance and
stakeholder implementation will be required before these advanced and promising
approaches can be integrated into current protocols. There will likely be far fewer
“traditional” taxonomists as NGS technologies take over, but many more
bioinformaticians will be needed to process and analyse the NGS samples. The rate-
limiting step in biomonitoring will shift from the slow and laborious process of
identifying individuals through microscopy (data acquisition) to limitations in the
efficiency with which large volumes of data can be processed. It is not impossible to
imagine a future where remote sensing stations which monitors environmental DNA
or RNA and send sequence data back to the laboratory via telemetry, as weather
stations do now; unmanned and automated transmitting results back to a central

point. As bioinformatics solutions to data analysis and synthesis continue to develop
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over time and its huge potential to the biomonitoring world, it is likely to be simply a

matter of ‘when” and not ‘if” this revolution will take place on a truly global scale.
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Table A. Results from the x2 contingency test (see main text). p-values significant at the 0.1

level are highlighted in bold.

ave.pH ave ANC ave.DOC ave.L.Al
meanTH 0.371314 1 0.530735 0.412294
maxTH 0.241879 1 0.350825 0.245877
E 0.090955 1 1 0.654173
Vulnerability 1 0.634683 1 0.381809
Generality 1 0.097951 0.145427 1
sd.V 0.418791 1 0.22039 0.668166
sd.G 0.087956 1 0577211 0.662169
redundancy 0.690655 0.635182 0.570715 0.68066
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Figure C. Trends in average annual pH at each of the UWMN sites. Sites are arranged in order
of their decreasing latitude, which can be used as a proxy for their initial acidified state, more
acidified sites were generally in the south, while the least acidified sites were more northern.
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Figure D. Trends in average annual Acid Neutralising Capacity at each of the UWMN sites.
Site ordering is explained in the legend of Figure C.
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Figure E. Trends in average annual Dissolved Organic Carbon at each of the UWMN sites.
Site ordering is explained in the legend of Figure C.
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is explained in the legend of Figure C.
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Figure J. Trends in food web redundancy at each of the UWMN sites. Site ordering is
explained in the legend of Figure C.
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Figure K. Trends in the standard deviation of food web generality at each of the UWMN sites.
Site ordering is explained in the legend of Figure C.
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Figure M. Trends in food web generality at each of the UWMN sites. Site ordering is explained
in the legend of Figure C.
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Figure N. Trends in maximum trophic height at each of the UWMN sites. Site ordering is
explained in the legend of Figure C.
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Figure C. The number of links to weeds and gastropods for omnivore nodes only within each

food web.
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Figure D. A density plot showing the trade-off in herbivore links and predator links. Within
each food web, for each carabid species, the number of links to weed and gastropod resources
are plotted. Some carabids were pure herbivores or predators, but most were omnivores.
Colour indicates the count of each particular weed-gastropod link combination. The
occupation of this space of potential feeding interactions for the most common carabid species
Pterostichus melanarius is shown in the main text, the next four most common carabid species
are shown here in black.
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Table A. statistics of fit for the multiple linear regressions and Generalised Linear Models
discussed in the main text.

Linear regressions

Response variable Explanatory variable F statistic p-value

Log(specialist Number of weed species ~ Fi365 = 11.883 0.0006

herbivore interaction

frequency)

Log(specialist Number of gastropod Fi2s8 =15.47 0.0001

predator interaction species

frequency)

Log(all herbivore Number of weed species ~ Fi365 = 5.41 0.020

interaction frequency)

Log(all predatory Number of gastropod F1,258 = 0.04 0.84

interaction frequency) species

Log(omnivore Log(omnivore herbivory  Fi158 = 66.981 <0.0001

predatory links) links)

Total weed regulation = Log(number of F1,33 = 3.98 0.047
herbivores)

Monocot weed Log(number of F1333 = 6.42 0.012

regulation herbivores)

Dicot weed regulation Log(number of F1,333 = 4.57 0.033
herbivores)

Total weed regulation Log(specialist herbivore F1333 =5.16 0.024
interaction frequency)

Monocot weed Log(specialist herbivore F1333 = 3.89 0.049

regulation interaction frequency)

Dicot weed regulation Log(specialist herbivore F1333 =5.76 0.017
interaction frequency)

Total weed regulation Log(all carabid - weed Fi1333 = 0.117 0.907
interaction frequency)

Monocot weed Log(all carabid - weed Fi333 = 0.097 0.756

regulation interaction frequency)

Dicot weed regulation Log(all carabid - weed F1333 = 0.398 0.528
interaction frequency)

Generalised linear models

Response variable Explanatory Error F statistic p-value
variable distribution

Number of herbivores Log(number of = quasipoisson Fi372=339.5 <0.0001
predators +
0.05)

Number of omnivore  Log(number of  poisson <0.0001

links to weeds

omnivore links
to gastropods)

Page | 279



Appendix G | Chapter 5 SM

Appendix G | Supplementary material for
Chapter 5

Page | 280



Appendix G | Chapter 5 SM

List of identification keys used

Bass, J. (1998) Last-Instar Larvae and Pupae of the Simuliidae of Britain and Ireland: a Key with
Brief Ecological Notes. Freshwater Biological Association Scientific Publication No. 55.
Titus Wilson and Son Ltd., Kendal, UK.

Brooks, S. (2004) Field guide to the dragonflies and damselflies of Great Britain and Ireland. British
Wildlife Publishing, Gillingham, UK.

Edington, ].M. & Hildrew, A.G. (1995) Caseless caddis larvae of the British Isles. Freshwater
Biological Association Scientific Publication No. 53. Titus Wilson and Son Ltd., Kendal,
UK.

Elliott, ].M., Humpesch, U.H. & Macan, T.T. (1988) Larvae of the British Ephemeroptera.
Freshwater Biological Association Scientific Publication No. 49. Titus Wilson and Son
Ltd., Kendal, UK.

Friday, L.E. (1988) A key to the adults of British water beetles. Fields Studies, Vol 7 No.1, Dorset
Press, Dorset, UK.

Harding, P. (Ed.) (2004) Freshwater Fishes in Britain: the species and their distribution. Harley
Books, Colchester, UK.

Hynes, H.B.N. (1993) Adults and nymphs of the British Stoneflies (Plecoptera). Freshwater
Biological Association Scientific Publication No. 17. Titus Wilson and Son Ltd., Kendal,
UK.

Krammer, K. & Lange-Bertalot, H. (1986) Bacillariophyceae, 1. Teil: Naviculaceae. In:
Siifswasserflora von Mitteleuropa (Eds. H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer),
Gustav Fischer Verlag, Stuttgart, Germany.

Krammer, K. & Lange-Bertalot, H. (1988) Bacillariophyceae, 2. Teil: Bacillariaceae,
Epithemiaceae, Surirellaceae. In: Stiffwasserflora von Mitteleuropa (Eds. H. Ettl, ]. Gerloff, H.
Heynig, D. Mollenhauer), Gustav Fischer Verlag, Stuttgart, Germany.

Krammer, K. & Lange-Bertalot, H. (1991a) Bacillariophyceae, 3. Teil: Centrales,
Fragilariaceae, Eunotiaceae. In: Siiffwasserflora von Mitteleuropa (Eds. H. Ettl, J. Gerloff, H.
Heynig, D. Mollenhauer), Gustav Fischer Verlag, Stuttgart, Germany.

Krammer, K. & Lange-Bertalot, H. (1991b) Bacillariophyceae, 4. Teil: Achnanthaceae,
Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema. In: Siiffwasserflora
von Mitteleuropa (Eds. H. Ettl, ]. Gerloff, H. Heynig, D. Mollenhauer), Gustav Fischer
Verlag, Stuttgart, Germany.

Macan, T.T. (1960) A key to the British fresh- and brackish-water Gastropods. Freshwater
Biological Association Scientific Publication No. 13. Titus Wilson and Son Ltd., Kendal,
UK.

Maitland, P.S. (2004) Keys to the Freshwater Fish of Britain and Ireland, with notes on their

Page | 281




Appendix G | Chapter 5 SM

distribution and ecology. Freshwater Biological Association Scientific Publication No. 62.
Titus Wilson and Son Ltd., Kendal, UK.

Wallace, I.D., Wallace, B. & Philipson, G.N. (2003) Keys to the case-bearing caddis larvae of
Britain and Ireland. Freshwater Biological Association Scientific Publication No. 61. Titus
Wilson and Son Ltd., Kendal, UK.

Savage, A.A. (1989) Adults of the British Aquatic Hemiptera Heteroptera: a key with ecological notes.
Freshwater Biological Association Scientific Publication No. 50. Titus Wilson and Son Ltd.,

Kendal, UK.

Page | 282



Appendix F | Chapter 5 SM

Table A. Equations used to calculate macroinvertebrate individual dry mass (DM). HW: head-capsule width (mm); BL: total body length (mm); SL: shell

length (mm). Morphologically similar taxa or higher taxonomic levels, shown in parentheses, were used where equations were unavailable for a given

taxon.
Taxon y X Regression equation R? Reference
Agapetus fuscipes (Glossosoma) In(DM) In(HW) y= -6.2+3.75x 0.71 Meyer (1989)
o log10(SL 3
Ancylus fluviatilis log1o(DM) ) y = 1.913 + 3.3x 099 Calow (1975)

Baumgirtner & Rothhaupt

Asellus aquaticus y = 1.2688 x x3326

In(DM)  Ln(BL) 0.69 (2003)
Asellus meridianus (Asellus aquaticus) In(DM) nBL) YT 1.2688 x x3:326 0.69 ](5’23016r;gartner & Rothhaupt
Athripsodes (Oecetis spp.) In(DM) In(HW) y= 1.2688 x x3-326 0.67 Benke et al. (1999)
Baetis (Baetis spp.) DM HW y = 1.2688 x x3-326 0.96 Benke efal. (1999)
Baetis rhodani (Baetis spp.) DM HW y= -413 +1.12x 0.96 Benke et al. (1999)
Baetis scambus (Baetis spp.) DM HW y = -0.91 + 3.35x 0.96 Benke et al. (1999)
Baetis vernus (Baetis spp.) DM HW y = 1.2688 x x3-326 0.96 Benke et al. (1999)

Baumgartner & Rothhaupt
= 2.835

In(DM)  Ln(BL) Y 27842%X 0.99  (2003)

y = 0.0089 x x2145 Baumgartner & Rothhaupt

Bezzia sp.

Caenis rivulorum (Caenis spp.)

InDM)  InHW 0.63 (2003)
Centroptilum luteolum (Baetis spp.) DM HW y = -5.53 + 1.91x 0.96 Benke et al. (1999)
Chironomid (Chironomidae) DM HW y= 04109 +3.1678x 0.9  Benke et al. (1999)
Dendrocoelum lacteum (Dugesia tigrina) DM BL y = -44518 +2.4724  0.81 Benke et al. (1999)
Dicranota sp. In(DM) In(BL)  y= -5.46+4.33x 054 Woodward & Hildrew
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(2001)
Drusus annulatus (Limnephilidae) In(DM) InHW  y= -6.078 +3.092x 0.83 Meyer (1989)
Dysticidae sp. (Coleoptera, larvae) In(DM) In(BL) y= -6.21 +2.52x 0.57 Meyer (1989)
Elmis aenea (Coleoptera, adults) In(DM) In(BL) y = -3.20 + 2.22x 0.78 Burgherr & Meyer (1997)
Elmis aenea (Elmidae, larvae) In(DM) In(BL) y = -4.95 + 2.83x 0.83 Towers et al. (1994)
Eloeophila sp. (Diptera) In(DM) In(BL) y= -212+2x 0.83 Burgherr & Meyer (1997)
Erpobdella octoculata In(DM) InBL) y= -2.74+212x 0.78 Edwards et al. (2009)
Gammarus pulex (Gammarus fossarum) In(DM) In(BL) y = -2.202 + 1.66 0.9  Burgherr & Meyer (1997)
Glossiphonia complanata In(DM)  In(BL) y= 1.265x x2747 0.64 Edwards et al. (2009)
Helobdella stagnalis In(DM) In(BL) y= 1.30+3.62x 0.62 Edwards et al. (2009)
Hydracarina (Hydracarina spp.) In(DM) In(BL) y = -4.4518 +2.4724 0.48 Z%%r;gartner & Rothhaupt
Hydropsyche siltalai (Hydropsyche spp.) DM HW y = -4.4518 +2.4724 0.87 Benke etal. (1999)
Hydroptilidae (Trichoptera, cased) In(DM mEw Y 1.30 + 3.62x 0.82 Z%%I;gartner & Rothhaupt
Hygrobia hermanni (Coleoptera, larvae) In(DM) In(BL) y = 0.8496 x x3.201 0.57 Meyer (1989)
Ilybius sp. (Coleoptera, larvae) In(DM In(BL) y= 04109 +3.1678x  0.57 Meyer (1989)

Baumgirtner & Rothhaupt

Lepidostomata hirtum (Trichoptera, cased) y = -8.71 + 4.53x

InDM)  InHW 0.82  (2003)
Leuctra spp. (Leuctridae) DM HW y = -4.95 + 2.83x 0.9  Benke etal. (1999)
Limnephilus lunatus (Limnephilidae) In(DM) InHW  y= 1.913 +3.3x 0.83 Meyer (1989)
Limnius volkmari (Limnius, larvae) In(DM) InHW  y = (mr? x 1.05x)/4 0.7  Burgherr & Meyer (1997)
Niphargus aquilex (Gammarus fossarum) In(DM) In(BL)  y= 0.0618 x x2502 0.9  Burgherr & Meyer (1997)
Oecetis sp. (Oecetis spp.) In(DM) InHW  y= -8.71+4.53x 0.67 Benke et al. (1999)
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Oligochaeta DM(g) y = -6.21 + 2.52x Smock (1980)
Oreodytes sanmarkii (Hydroporus, Dytiscidae) In(DM) In(BL) = -0.83 +4.25x 0.71 Benke et al. (1999)
Oulimnius tuberculatus (Limnius, larvae) In(DM) InHW y = -2.69 + 2.11x 0.7  Burgherr & Meyer (1997)
Oxycera sp. (Diptera) In(DM) In(BL) y = 0.0163 x x2477 0.83 Burgherr & Meyer (1997)
Paraleptophlebia submarginata
(Leptgplﬁebiidae) ’ In(DM) InHW y = 258 +280x 0.86 Burgherr & Meyer (1997)
Piscicola geometra (Hirudinea spp.) In(DM) In(BL)  y= 0.0089 x x2145 0.62 Edwards et al. (2009)
Pisidium sp. (DM) SL y = 04109 +3.1678x  0.87 Benke et al. (1999)
. . logMeyer logMeyer Woodward & Hildrew

Plectrocnemia (Plectrocnemia conspersa) 1950 (}j’g) 19859;0H}%N y = -6.21 + 2.52x (2001)
Polycelis tenuis (Dugesia tigrina) (DM) BL y = 1.55 +3.21x 0.81 Benke et al. (1999)
Potamophylax latipennis (Limnephilidae) In(DM) InHW y = 0.7255 x x332% 0.83 Meyer (1989)
Psychoda sp. (Diptera) In(DM) In(BL) y = 0.8613 + 3.576x 0.83 Burgherr & Meyer (1997)

. , logmeyer logmeyer
Rhyacophila dorsalis 198%(1)\/([}1yg) 198%(1)\;—1}’\/\/ y =020 +3.32x 072 Edwards et al. (2009)
Serratella ignita (Serratella sp.) (DM) HW y = 2.1694 x x2623 0.72 Benke et al. (1999)
Silo nigricornis (Goeridae) In(DM) InHW  y=-5.30 + 2.36x 0.75 Meyer (1989)
Simulium sp. In(DM) InHW = -6.2+3.75x 0.93 Burgherr & Meyer (1997)
Tanypodinae (DM) HW y = 1.913 + 3.3x 0.85 Benke et al. (1999)
Tipula yamatotipula (Tipula abdominalis) In(DM) In(BL) = -6.20 + 3.75x 0.93  Smock (1980)
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Table B. The taxonomic resolution (i.e. generality) assigned to each node in the
networks to create links between nodes.

Node Resolution Cyclotella meneghiniana genus
-Achnanthes clevei genus Cyclotella radiosa genus
Achnanthes conspicua genus Cymatopleura elliptica genus
Achnanthes helvetica genus Cymatopleura solea genus
Achnanthes hungarica genus Cymbella sp. genus
Achnanthes lanceolata genus Cymbella cistula genus
Achnanthes lanceolata Cymbella proxima genus
abbreviata genus Dystiscidae family
Achnanthes lanceolata Dendrocoelum lacteum family
bimaculata genus Diatoma vulgaris genus
Achnanthes lanceolata Dicranota sp. genus
lanceolata genus Diploneis oblongella genus
Achnanthes lanceolata Diploneis parma genus
rostrata genus Diptera exact
Achnanthes minutissima genus Drusus annulatus genus
Aghnaﬁtl'zidium Elmis aenea genus
minubissumum genus Eloeophila sp. family
Agapetus fuscipes genus Encyonema silesiacum genus
Alboglossiphonia heteroclita ~ family Ephemeroptera exact
Amphipoda : exact Erpobdella octoculata genus
Amphora aequalis. genus Fragilaria sp. genus
Amphora marienss genus Fragilaria bidens genus
Amphora OWZ'ZS genus Fragilaria capucina genus
Amphora pediculus genus Fragilaria capucina gracilis ~ genus
Amphora veneta genus Fragilaria capucina radians ~ genus
Ancylus fluviatilis family Fragilaria capucina rumpens  genus
Asellus aquaticus family Fragilaria construens venter ~ genus
Athripsodes sp. family Fragilaria elliptica genus
Buetl's P genus Fragilaria leptostauron genus
Bae fis rhodani geNus Fragilaria nitzschioides genus
B”dl's scanbus genus Fragilaria ulna genus
Bae fis vernus genus Fragilaria vaucheriae genus
Bezzia sp. family Fragilariforma virescens genus
Caenis rivulorum genus Gammarus pulex family
Caenis 70?7 usta geNus Gasterosteus aculeatus genus
Centroptilum luteolum genus Glossiphonia complanata family
Chirono.m%dae family Gomphonema sp. genus
Cloeon s‘zmzle : genus Gomphonema angustum genus
Cocconez‘s pediculus genus Gomphonema augur genus
Cocconeis placentula _ genus Gomphonema clavatum genus
Cocconeis pseudothumensis ~ genus Gomphonema olivaceum genus
Coleoptera exact Gomphonema parvulum genus
Cottus gobio genus Gyrosigma acuminata genus
Cyclotella sp. genus Gyrosigma attenuatum genus
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Hantzschia amphioxys genus Nitzschia sigmoidea genus
Helobdella stagnalis family Nitzschia sublinearis genus
Hemerodromia sp. family Oecetis sp. family
Hydracarina family Oligochaeta genus
Hydraenidae genus Oreodytes sanmarkii genus
Hydropsyche siltalai genus Oulimnius tuberculatus genus
Hydroptila sp. genus Oxycera sp. family
Hydroptilidae family Paraleptophlebia
Hygrobia hermanni genus submarginata genus
Ilybius sp. genus Phoxinus phoxinus genus
Lampetra planeri genus Pinnularia sp. genus
Lepidostoma hirtum genus Piscicola geometra family
Leuctra sp. genus Pisidium sp. genus
Leuctra hippopus genus Planaria torva family
Leuctra inermis genus Planorbis sp. family
Limnephilidae family Polycelis tenuis family
Limnephilus lunatus genus Potamophylax latipennis genus
Limnius sp. genus Proasellus meridianus family
Procloeon pennulatum family
Melosira varians genus Psammodictyon constrictum  genus
Meridion circulare genus Pseudostaurosira brevistriata  genus
Navicula sp. genus Psychoda sp. family
Navicula atomus genus Pungitius pungitius genus
Navicula bacillum genus Rhoicosphenia abbreviata genus
Navicula cincta genus Rhyacophila dorsalis genus
Navicula cryptonella genus Salmo trutta genus
Navicula exilis genus Scirtidae family
Navicula ignota genus Serratella ignita genus
Navicula lanceolata genus Silo nigricornis genus
Navicula margalithii genus Simulium sp. genus
Navicula minima genus Simulium vernum genus
Navicula seminulum genus Stauroneis sp. genus
Navicula slesvicensis genus Stauroneis smithii genus
Neidium dubium genus Staurosira construens genus
Nipharqus aquilex family Staurosira elliptica genus
Nitzschia sp. genus Staurosira pinnata genus
Nitzschia amphibia genus Staurosirella lapponica genus
Nitzschia capitellata genus Staurosirella leptostauron genus
Nitzschia dissipata genus Staurosirella pinnata genus
Nitzschia fonticola genus Surirella brebissonii genus
Nitzschia frustulum genus Surirella capronii genus
Nitzschia heufleriana genus Synedra sp. genus
Nitzschia linearis genus Synedra parasitica genus
Nitzschia palea genus Synedra ulna ulna genus
Nitzschia recta genus Tanypodinae family
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Thymallus thymallus family
Tipula sp. genus
Trichoptera exact
Undifferentiated centric

diatom exact
CPOM exact
FPOM exact
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