
Guessing Games on Undirected Graphs
Dang, Anh Nhat

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/12790

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77041144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12790

Guessing Games on Undirected Graphs

Anh Nhat Dang

A thesis submitted for the degree of

Doctor of Philosophy

London 2015

Statement of Originality

I, Anh Nhat Dang, confirm that the research included within this thesis is my own

work or that where it has been carried out in collaboration with, or supported by

others, that this is duly acknowledged and my contribution indicated. Previously

published material is also acknowledged in the next page.

I attest that I have exercised reasonable care to ensure that the work is original, and

does not to the best of my knowledge break any UK law, infringe any third party’s

copyright or other Intellectual Property Right, or contain any confidential material.

I confirm that this thesis has not been previously submitted for the award of a degree

by this or any other university.

The copyright of this thesis rests with the author and no quotation from it or infor-

mation derived from it may be published without the prior written consent of the

author.

Anh Nhat Dang

Aug 3rd , 2015

Publications

Parts of this thesis have been published; Chapters 3, 4, and the second section of 5

have been published or under submission as the papers listed below, in chronological

order. Chapter 6 is currently under preparation for submission.

[23] Peter J. Cameron, Anh Nhat Dang, and Søren Riis. Guessing Games on

Triangle-free Graphs. CoRR, abs/1410.2405, 2014.

[5] Rahil Baber, Demetres Christofides, Anh Nhat Dang, Søren Riis, and Emil

Vaughan. Graph Guessing Games and non-Shannon Information Inequalities.

CoRR, abs/1410.8349, 2014.

[4] Rahil Baber, Demetres Christofides, Anh Nhat Dang, Søren Riis, and Emil

Vaughan. Multiple unicasts, graph guessing games, and non-Shannon inequali-

ties. In International Symposium on Network Coding, NetCode 2013, Calgary,

AB, Canada, June 7-9, 2013, pages 1–6, 2013.

Abstract

Guessing games for directed graphs were introduced by Riis for studying multiple uni-

cast network coding problems. In a guessing game, the players toss generalised die

and can see some of the other outcomes depending on the structure of an underlying

digraph. They later simultaneously guess the outcome of their own die. Their objec-

tive is to find a strategy that maximises the probability that they all guess correctly.

The performance of the optimal strategy for a digraph is measured by the guessing

number.

In general, the existence of an algorithm for computing guessing numbers of a graph

is unknown. In the case of undirected graphs, Christofides and Markström defined

a strategy that they conjectured to be optimal. One of the main results of this

thesis is a disproof of this conjecture. In particular, we illustrate an undirected

graph on 10 vertices having guessing number which is strictly larger than the lower-

bound provided by Christofides and Markström’s method. Moreover, even in case

the undirected graph is triangle-free, we establish counter examples to this conjecture

based on combinatorial objects known as Steiner systems.

The main tool thus far for computing guessing numbers of graphs has been infor-

mation theoretic inequalities. Using this method, we are able to derive the guessing

numbers of new families of undirected graphs, which in general cannot be computed

directly using a computer. A new result of the thesis is that Shannon’s information

inequalities, which work particularly well for a wide range of graph classes, are not

sufficient for computing the guessing number.

Another contribution of this thesis is a firm answer to the question concerning irre-

versible guessing games. In particular, we construct a directed graph G with Shannon

upper-bound that is larger than the same bound obtained when we reverse all edges

of G.

Finally, we initialize a study on noisy guessing game, which is a generalization of

noiseless guessing game defined by Riis.

We pose a few more interesting questions, some of which we can answer and some

which we leave as open problems.

5

TO MY FAMILY

Acknowledgements

First and foremost I would like to thank my advisor, Dr. Søren Riis, for his patient

guidance, generosity and friendship during these many years. He has always been

available for discussions and advice, not only on the ideas presented in this thesis but

also on general issues when I was lost within my research and future plans. I also

thank him for his works on guessing games which are the fundamental pillar for the

results developed in this thesis.

Secondly, I wish to thank Professor Peter Cameron for his advice, encouragement,

and kindness. Indeed, Professor Cameron has been my de facto co-supervisor and

the results on guessing games on triangle-free graphs would not exist without our

discussions on strongly regular graphs. I also want to thank Professor Cameron for

helping me shape my knowledge and determination to work in mathematics.

I am deeply grateful to my second advisor, Professor Peter Keevash, for his guidance,

generosity, and especially his feedback on my progress. Without his advice, the results

presented here would not be in optimal form.

I am thankful to my co-authors and former colleges Dr. Demetres Christofides, Dr.

Emil Vaughan, Dr. Maximilien Gadouleau and especially Dr. Rahil Baber. I deeply

appreciate their support and encouragement to extend the results of our papers. They

also deepened my knowledge in many areas of mathematics, especially graph theory

and group theory. Dr. Baber has always been a great mentor and friend who not

only contributed a large part in our first paper, but also gave me general advice about

PhD life.

I thank Dr. Mark Wildon and Prof. Klas Markström for their positive feedback on

the early version of this thesis. Many changes were made to improve the illustration

of this thesis are based on their carefully review and suggestions.

I also benefited greatly from joining several research study groups including the

QMUL Combinatoric Study Group and the London Number Theory Study Group.

Therefore, I am deeply indebted to professor Fred Diamond. He was the one who

introduced me to the London Number Theory Study Group. Thanks to him, I was

able to clearly define my mathematical research.

I also wish to thank my friends for their help and friendship. Their encouragement

plays an important role for me to complete this thesis. I especially want to thank Ms.

Marcela Schaefer for her careful edits on the language presented in this dissertation.

Most importantly, I would like to thank my family; their love has helped me over-

come all difficulties. Without the encouragement from my mother, Nguyen Thi Thu

Phuong, and my younger sister, Dang My Linh, I might not have been able to start

and continue until the very end of this long road. I thank my father, Dang Huy Binh,

for his support and advice all these years. I also thank members of my extended

family for their moral support.

I am grateful for the scholarship of the School of Electronic Engineering and Computer

Science, which covered my tuition fees and stipends to live in London. Finally, I thank

Melissa Yeo for her understanding and her help on my paper works.

8

Contents

1 Introduction 11

1.1 Motivation . 11

1.1.1 Are linear codes sufficient to provide the maximum throughput? 15

1.1.2 Can we compute the coding rate efficiently? 16

1.1.3 Guessing numbers . 19

1.2 Contributions . 22

1.3 Thesis structure . 28

2 Information Measures and Information Inequalities 30

2.1 Entropy and entropic functions . 30

2.1.1 Shannon’s information measures 30

2.1.2 Entropic vectors . 33

2.2 The region of Γ∗n . 34

3 Guessing Games 42

3.1 Definitions . 42

3.2 The asymptotic guessing number . 45

3.3 The code graph . 48

3.4 Lower bounds using the fractional clique cover 50

3.5 Upper bounds using entropy . 54

4 Refuting the Fractional Clique Cover Conjecture 59

4.1 The first counter example to FCCC 59

4.2 Speeding up the computer search . 67

4.3 Triangle-free graphs with large guessing number 72

5 Shannon and Non-Shannon Information Bounds 79

5.1 Graphs with guessing numbers matching Shannon bounds 79

5.1.1 Primarily . 79

9

5.1.2 The guessing number of a Theta graph 82

5.1.3 The guessing number of a lollipop graph 87

5.1.4 The guessing number of a spiral graph 88

5.1.5 The guessing number of a Cn�Pk graph 92

5.1.6 The guessing number of a dumbbell graph 95

5.1.7 The guessing number of a flower graph 101

5.1.8 The guessing number of certain regular graphs 107

5.2 Existence of non-Shannon bounds for guessing numbers of undirected

graphs . 107

6 Guessing Games with Noises 112

6.1 Motivation and discussion of related work 112

6.2 Definitions and some basic bounds 113

6.3 Case studies . 118

6.3.1 Noisy guessing games played on K2 118

6.3.2 Noisy guessing games played on P3 122

6.3.3 Noisy guessing games played on K3 125

7 Conclusions 130

7.1 Summary . 130

7.2 Open questions and future research 131

10

Chapter 1

Introduction

1.1 Motivation

Let us consider the following scenario: Suppose we have two ground stations, A and

B, in nonline-of-sight that wish to communicate with each other via a satellite C.

In this setting, each ground station can send a message that it wishes to deliver to

satellite C and C will broadcast this message to both stations. For simplicity, we

would assume that all the communication channels are noiseless, hence, each node in

this network can receive the exact data being sent. The best data scheme for this

problem using the traditional store-and-forward networking guarantees that the total

number of messages being sent by both station equals the number of messages being

broadcasted by satellite C. A question arises: Can we do better?

Ahlswede, Cai, Li, and Yeung [2] approached this problem from a new perspective.

In their paper “Network Information Flow,” a new data scheme is illustrated. In-

stead of letting nodes forward messages, vertices in the network are allowed to send

encoded messages, which are obtained by applying algebraic operations such as ad-

dition, subtraction, and XOR on incoming packages. As opposed to the traditional

store-and-forward point of view, where information is treated as commodity and data

communication is seen as sending packages through networks without changing the

content, the new approach by Ahlswede et al. sees data as liquid, which can be mixed

and manipulated, hence the name information flow.

Back to our example, a new data scheme can be adopted:

Suppose the ground station A wants to send message a, and ground station B wishes

to send b. When both of these messages reached C, a new message aXOR b is then

11

(a) Satellite problem

C

4

23

5

AB

(b) Multicast reformulation

Figure 1.1: Satellite communication problem and the multicast reformulation.

computed and broadcasted. At the terminal side, the original message can be re-

covered by applying the XOR operation on received data and sending data, e.g.

aXOR(aXOR b) = b. This new scheme allows us to reduce the number of messages

being broadcasted significantly. In the optimal case where the number of sent mes-

sages by both stations are equals, the number of broastcasting messages by satellite

C will be half of the total number of sent messages.

Our previous example is an instance of a problem known as a multicast problem.

This problem concerns raises a question: is it possible to deliver messages from one

source to all of its sinks simultaneously? The case of one source – one sink is answered

by the max-flow min-cut theorem stating that the amount of information that can

be delivered equals the capacity of the minimum cut separating the source and sink.

Moreover, the optimal value can be computed efficiently. However, when there are

more than one sink, as in our example, the problem changes significantly. Following

the same mindset of the max-flow min-cut theorem, the answer to the question in

this case requires us to compute a fractional packing of Steiner trees. Compared to

the fractional packing of paths needed for only one sink, the Steiner tree packing

problem is NP-hard [57]. Moreover, the “optimal” solution does not match the cut

upper bound – the minimum of all minimum source-sink cuts. In particular, the

fractional packing solution is a multiplicative factor of Ω((log n/ log log n)2) smaller

than the cut in directed graphs and lies between 36/31 and 1.55 the cut in undirected

graphs [1, 20].

With the information flow approach in mind, Ahlswede et al. [2] were able to prove

that the optimal coding rate is equal to the cut upper bound, hence we gain a huge

12

throughput in comparison with the traditional routing method. The work of Li et

al. [93] further shows that this optimality can be achieved by using a very simple

family of codes – the linear codes. Moreover, an optimal linear code can be found

in polynomial time [54]. Therefore, we do not have to worry about the NP-hard

packing problem in the classical setting. Surprisingly, this optimal solution can also

be achieved by randomized algorithms. In particular, with high probability, the

solution in which each node outputs a random linear combination of its input is

optimal [53]. These results motivate practical applications of network information

flow. An example of successful application in wireless networks is [59], where the new

communication framework provides faster transmission rates compared to traditional

routing. The term “network coding” is coined for this paradigm of encompassing

coding and retransmitting of messages at the intermediate nodes of the network.

The great starting point of multicast network coding motivates studies of this method

in other general settings, e.g. multiple-unicast network, multiple-multicast network.

A formal description of a network coding problem is as follows [13]:

Definition 1. [13] A network coding problem (G, I, Src, Snk) is specified by the fol-

lowing data:

• G = (V,E) is a directed acyclic graph.

• Each edge e ∈ E is assigned a non-negative integer c(e) called channel capacity.

• I is the set of k messages.

• Src : I → P(V) is called the source function, where P(V) is the power-set of V .

• Snk : I → P(V) is called the sink map.

In particular, a multicast problem is when |I| = | Src(I)| = 1.

For simplicity, we will always assume that messages in I are arbitrary elements of a

fixed finite alphabet Σi. We also choose a finite alphabet Σe, called the edge alphabet.

At any node v ∈ V , we define encoding function fev for every out-edge of v which

maps the symbols in Σe which are carried on the in-edges to v, or a symbol in Σi if

v is a source, to elements in Σe. Also each sink s ∈ V is associated with a decoding

function fs which maps elements which are carried on are carried on the in-edges to

s to elements in Σi.

Definition 2. [13] A network coding solution is a tuple (Σi,Σe, (fe)e∈E, (fs)s∈Snk(I))

where:

13

• Σi is called a source alphabet.

• Σe is called an edge alphabet.

• Encoding functions (fe)e∈E) and decoding functions (fs)s∈Snk(I) such that for

every k-tuple of messages x = (x1, x2, . . . , xk) ∈ Σk
i :

Edge-Source-Constraints For every edge (u, v) ∈ E, the function f(u,v) is computable from the func-

tions on in-edges to u and messages for which u is a source. By computable

we mean that f(u,v) is a well-defined deterministic map.

Edge-Sink-Constraints For every sink s that requires message i, the functions on in-edges to s to-

gether with the messages for which v is a source are sufficient to determine

the value of xi.

A network is said to be solvable if there exists a coding solution for it.

In a non-acyclic graph, the Edge-Source-Constraints is not a sufficient characteri-

zation of soluvability. One sufficient, but not necessary, characterization is to ad-

ditionally define an ordering on the edges and require that each function f(u,v) is

computable from the functions on in-edges to u preceding (u, v) in the ordering. See

[56, 50, 51, 14] for more discussions on how to define coding for graphs with cycles.

The coding rate is the supremum of logb(mini(|Σi|)) over b such that logb |Σe| ≤ c(e)

for all e ∈ E. It captures the amount of information received at each sink when we

insist that |Σi| = |Σj| for all messages i, j and scale down the message alphabet to

obey capacity constraints.

A variation of the general network coding problem that is intensively studied is called

multiple unicast, where each source has a unique corresponding sink, i.e. the case

where | Src(i)| = | Snk(i)| = 1 in Definition 1.

Regarding this general setting, questions arise: Are linear codes sufficient to provide

the maximum throughput? Can we compute the coding rate efficiently?

A large portion of literature has been dedicated to answering these questions for var-

ious optimization problems. A wide range of mathematical tools have been adopted

to solve open problems and also to create new ones. To name a few: abstract al-

gebraical objects, such as commutative rings or finite fields; combinatorial objects

such as matroids or graphs; geometry, and optimization among others. Furthermore,

recent progress in information theory plays a leading role in answering many com-

pelling questions about the coding capacity of an information flow networks. The

14

rapid growth of the field filled with many interesting studies indicates that network

coding theory and its application have been under the spotlight.

We now give a short overview of the previous work addressing our guiding questions

in relation to the general network coding problem and the multiple unicast problem.

This is my attempt to provide a bird’s-eye view on theoretical results in network

coding theory focusing on multiple-unicast setting and its interaction with information

theory. For a more encyclopaedic survey, we recommend the readers refer to [9], which

contains a comprehensive list of active areas in network coding and an extensive

bibliography. Otherwise, readers can refer to [41, 42, 31, 84] for theoretical surveys

and [33, 73] for applications.

1.1.1 Are linear codes sufficient to provide the maximum
throughput?

There are two classifications of linear codes in the literature: scalar linear codes, in

which messages are elements of a finite commutative ring such as Z /nZ or a finite

field Fq of order q, and vector linear codes, in which messages are elements of a

finite-dimensional vector space defined over some finite field. The work of Li, Yeung,

and Cai [93] showed that if a multicast network M is solvable, then by enlarging the

side of the alphabet (if needed), we can find a scalar linear solution for M . It was

Riis [80] who showed that we can find a linear solution over a vector space defined

over F2 for every solvable multicast network. A series of articles [76, 68, 55] inves-

tigate the properties of vector linear code, which proved to be more powerful than

scalar linear version for network coding in more general setting. In particular, there

are networks that have vector linear codes, but no scalar linear one. It is therefore

natural to hope that linear codes also provide at least a good approximation to an

optimal solution for coding. This conjecture was raised in [76] and was disproved in

[34]. A counter example was established by Dougherty, Freiling, and Zeger where a

non-linear code that exceeds the vector linear code by a factor of 11/10 [34]. The

intuition behind the construction of the network was explained in [36] and for the

first time, a new technique of building information networks from matroids was intro-

duced. This technique turned out to be influential and many variations of this core

idea were implemented in other settings such as [40, 15]. In fact, based on the tech-

nique introduced by Dougherty et. al. combined with properties of graph product,

15

Blasiak et. al. established an example of index coding instance where an Ω(n1/2−ε)

multiplicative gap between vector linear and non-linear coding exists.

1.1.2 Can we compute the coding rate efficiently?

The existence of an algorithm for computing the coding rate of a given network

is possibly the most important unanswered question in network coding. Despite a

significant body of work devoted to address this problem, we have achieved almost

no progress. It is suggested that there might be the case that no such algorithm

exist [67]. The potential undecidable property of this problem arises from the fact

that the size of an alphabet can be arbitrarily large, which implies that the optimal

encoding/decoding functions live in an infinite search space. Furthermore, even for

a fixed alphabet size, defining a good approximation algorithm is not a trivial task.

To the best of my knowledge, using a method of code graph developed in [45, 28]

(which we will recall in Section 3.3 Chapter 3), finding an optimal coding function is

equivalent to computing the independent number of a non-trivial graph of order kn,

where n is approximately the size of the multiple unicast networks and k is the size

of a fixed alphabet.

The potential undecidability of the problem implies that we have no result that relates

finding an optimal network coding solution to problems in P or NP classes. In fact,

it cannot be ruled out that there exists a linear time algorithm that computes coding

rates in the most general setting of the problem with arbitrary coding functions

over arbitrarily large alphabet sizes. However, when restricting the space of coding

functions to be linear codes over a fixed alphabet, Lehman and Lehman [68] showed

that finding the optimal scalar linear code of a multiple unicast network is equivalent

to a 3-SAT problem, which is known to be NP-hard. Moreover, even finding a constant

approximation of the optimal coding function in the space of all coding function

defined over a fixed alphabet size is hard, assuming the unique games conjecture [66].

As an alternative to computing exact coding capacities, there has been a significant

body of work devoted to determining bounds on the coding and linear coding capacity

of a network, since a good upper-bound provides us with a value that can be compared

to a lower bound derived by some well-known method. If in the best case, these two

values agree, we achieve an optimal solution. Otherwise, we know that the maximum

gap between the upper bound and the optimal solution cannot be too large, since this

gap sets a limit on the approximation ratio.

16

The most common strategy to derive an upper-bound is to use information-theoretic

arguments. The intuitive idea is that we can consider flows along edges in our net-

work as jointly distributed random variables over some probability space. Given a

probability distribution, we associate each subset of the edge set to an information

measure known as Shannon entropy of the jointly distributed random variables. A

collection of all entropy value with respect to the given distribution returns us a vec-

tor of non-negative numbers regarded as an entropic vector of the network code. It

was proved in [95] that the closure of the set of all entropic vectors of network codes

is a convex set. Therefore, finding an upper-bound of a network coding problem is

equivalent to an optimization problems over the mentioned space. There are two

constraints that characterize this space of entropic vectors:

The first constraint type is imposed by the combinatorial structure of the network [97].

In our case of directed acyclic graphs, this constraint stands for the computability

property of encoding/decoding functions given its input. In particular, it says that

at vertex v, the conditional entropy of a random variable which corresponds to an

out-edge of v given all random variables of in-edges of v equals 0. For the case where

the network contains a cycle, various constraints have been introduced over the years

[56, 50, 65, 51] yet a complete classification is still missing.

The second constraint type comes purely from information theory. These constraints

are information inequalities. Information inequalities are independent of the network

topology as they hold universally for all n-tuples of random variables. Those inequal-

ities are referred to as the law of information theory. Given a positive integer n ≥ 2,

we can consider the collection of all possible jointly distribution of n random variables

X1, . . . , Xn. For each joint distribution, we can form a corresponding entropic vector

of length 2n − 1. The set of all such vectors is denoted by Γ∗n with closure denoted

by Γ̄∗n. A complete characterization of Γ̄∗n requires finding all possible information in-

equalities [95]. A first list of information inequalities, known as Shannon inequalities,

are of the following form:

H(AC) +H(BC)−H(ABC)−H(C) = I(A;B|C) ≥ 0

A, B, C are disjoint collections of random variables. Using these inequalities, an

outer-bound of Γ∗n can be computed and we denote the set of all non-negative vectors

to satisfy these inequalities as Γn.

The Shannon inequalities can be rewritten in a form of polymatroidal axioms:

17

Monotonicity (H(A) ≤ H(AB)),

Non-negativity (H(A) ≥ 0),

Submodularity (H(A) +H(B) ≥ H(A ∪B) +H(A ∩B)).

For n ≤ 3, the set Γ̄∗n and Γn coincide [102]. However, for n > 3, Γ̄∗n (Γn [98].

In particular, this means that there exist additional inequalities other than Shannon

inequalities. These mysterious inequalities are called non-Shannon inequalities, and

deriving them is the main topic of a significant amount of work, e.g. [98, 72, 69, 99,

35, 75, 91, 26, 37].

One important observation from these works is that a satisfactory characterization

of Γ̄∗n is still far from complete. Even in case n = 4, there are infinitely many non-

Shannon inequalities coming in families [75, 91, 37].

Back to our story of network coding, a question was raised concerning whether a set

of all Shannon information inequalities combined with the network topological con-

strains provides us an exact bound for optimal network coding solution. The answer to

this question is negative, and the first counterexample was established by Dougherty

et al. in their influential paper [36] where a connection between non-representable

matroid and possible requirement for non-Shannon inequalities in computing net-

work code was illustrated. Furthermore, [25] shows that a complete description of

the capacity of network coding implies a depiction of Γn.

Other attempts to bounding the capacity regions by combining the sparsest cut, an

upper bound on the flow rate in the multicommodity flow problem, with information

inequalities. For example, it is known that the capacity of a cut that disconnects

all sinks from all sources is an upper bound on the network coding rate. Improving

this trivial bound requires complicated information-theoretic arguments [87, 48, 49,

65, 14]. Unfortunately, each of these bound can be larger than the coding rate by

a factor of the order of the underlying graph; therefore, these are not very good

approximations.

Considering all previous works, it is crystal clear that outside the multicast setting,

network coding is a hydra. The difficulty of the general problem has motivated works

defined over simplified settings. One such setting was thought of by Riis [82] and its

dual problem was introduced independently by Birk and Kol [11]. We will discuss the

class of problems introduced by Riis in the next section as it is more natural from

the our perspective.

18

1.1.3 Guessing numbers

Let us put the following restrictions on a multiple-unicast network coding problem

(G, I, Src, Snk):

• G is a directed acyclic graph.

• c(e) = 1 for every e ∈ E.

• For every i ∈ I, | Src(i)| = 1, and Src(i) 6= Src(j) for every i 6= j.

• For every i, j ∈ I, | Snk(i)| = | Snk(j)| = 1 and Snk(i) 6= Snk(j) for every i 6= j.

• The source alphabet Σi and the edge alphabet Σe are identical.

• Every node in G will broadcast its information via its out-edges.

In other words, we consider a multiple-unicast problem where edge capacity is 1 and

for every message i ∈ I, i is generated by a unique source node Src(i) and is demanded

by a unique sink node Snk(i), all using the same alphabets.

In this setting, Riis converted the multiple-unicast problem into a combinatorial prob-

lem defined on directed graphs, which is called the guessing game. He then introduced

a concept called “the guessing number of a digraph” [82] which connects graph theory,

network coding, and circuit complexity theory. This definition of guessing numbers

is particularly important because of the following theorem:

Theorem 1. [82] A multiple unicast network of n sources and n sinks defined on an

acyclic digraph D is solvable over a given alphabet if and only if the guessing game

played on the digraph D′ and the given alphabet has guessing number n.

The digraph D′ in the theorem is obtained from D by a deterministic process. In

particular, if D is the butterfly network, then D′ is a clique of order 3 (Figure 1.2).

Combined with results in [82] and [39], which show that any network coding instance

can be converted to an equivalent multiple-unicast problem, we are guaranteed that

the guessing number is a direct criterion on the solvability of network coding. Similar

to linear code of multiple-unicast network, we can define the linear guessing number,

which evaluates the solvability of a given network instance restricted to the class of

linear maps. Comparing these two quantities, we can evaluate the performance of

linear network coding in comparison with that of general network coding. Beside

this connection to network coding, the guessing number also found an application in

19

C

BA

C

AB

(a) The Butterfly network

A B

C

(b) guessing game on K3

Figure 1.2: The Butterfly network and its guessing game equivalence.

disproving a long-standing open conjecture in circuit complexity concerning with the

optimal Boolean circuit for a Boolean function [89].

Progression on bounding the value of the guessing number and the linear guessing

number of digraphs has been made. In particular, the guessing number and linear

guessing number for some families of digraphs have been completely characterized

[82, 90, 28]. Moreover, just like the case of general network coding, we can define an

entropic measure for a digraph. This value is called the entropy of that graph and it

was proved that the guessing number and the entropy of the same graph agree1 [82].

Following the works [102], [98] and [36], it indicates that it might be the case that

the entropy of a digraph cannot be derived by using the Shannon inequalities alone.

A complementary measure of the guessing number of a digraph is the so-called public

entropy [81]. This entropy measure the information defect which is known to be equal

to the length of a minimal index code induced on the graph D [81]. (We refer the

reader to [40] for the concept of index coding and its relation to network coding.)

Just like the case of general network coding, little is known about the guessing number

of a digraph, and even for undirected graphs (From now on, we treat an undirected

graph as a special type of digraph where an undirected edge represents two directed

edge going in opposite directions). In particular, we do not have an algorithm for

computing the guessing number, and our best attempt to provide a good upper-bound

for the guessing number is via linear programming using graph constraints and in-

formation inequalities. Fortunately, this work can be done by computer. However,

the program can only deal with graphs of small orders due to its limited computation

1We should not confuse this notion of graph entropy mentioned in this thesis and the graph
entropy for undirected graph introduced by Körner in [64]. These two quantities are fundamentally
different.

20

power. Despite this, progress has been made towards understanding the guessing

number. In the most general case of digraph, Gadouleau and Riis constructed an

algorithm for computing optimal coding functions under the constraint that the al-

phabet size is fixed [44]. As for finding a good approximation of a guessing number,

the paper [90] showed that the complement of the minimal rank over F2 of a ma-

trix representing D is a lower-bound. For the case where the underlying graph is

undirected, an explicit description of an lower bound for the guessing number was

introduced by Christofides and Markström [28]. This lower-bound provides an exact

bound for guessing numbers in a number of cases.

Concerning the index coding problem, new classes of codes have been developed, such

as the scalar linear codes hinging on a greedy clique-cover [11], or the matrix rank

linear coding schemes over F2 [7]. This class of codes turns out to be a generalization

of the result proved in [90]. Since the alphabet is not limited in F2, Lubetzky and Stav

[71] considered the problem of linear codes over general finite fields Fq. Combined

with arguments from Ramsey theory, they show that for every positive real number

ε there is a family of graphs on n(ε) vertices for which we can find a good linear

code over some finite field of odd characteristics, but not over F2. Moreover, by

defining index coding in a more general setting, Blasiak et. al. [15] were able to

construct a hypergraph in which the optimal coding function is non-linear and the

separation between non-linear coding and its vector linear counterpart is Ω(n1/2−ε).

This construction combined the matroid construction in Dougherty et. al. [36] and

graph product. Applications of matroid theory in constructing guessing game/index

coding instance can be found in [88, 40, 15].

Regarding the current development of the field, there are few questions that we would

like to address in this work. Firstly, we consider the problem of finding a good lower-

bound for guessing numbers. Solving this problem seems to be out of our reach when

our graphs are general digraphs. However, if we are restricted to the case of undirected

graphs, the lower-bound constructed by Christofides and Markström [28] seems to

be a good approximation, since at least it uses information about the symmetry of

the underlying undirected graph. Moreover, it is a generalisation of the linear code

introduced in [11]. Can we say this lower-bound is also the exact bound of guessing

numbers for every undirected graph? In addition, even in case the answer to the

previous question is negative, can we still find families of undirected graphs for which

the equality holds? The second problem that we wish to tackle is about the sufficiency

of Shannon information inequalities for bounding the guessing number of a digraph.

21

It is notable that if we use the construction introduced in [36, 88, 40, 15], what we

receive is generally a hypergraph. Therefore, even in case there are hypergraphs with

non-trivial broadcasting rate where in order to approximate this value, non-Shannon

inequalities must be involved, this construction might not be easily translated into

the language of guessing games on digraphs or undirected graphs.

1.2 Contributions

Chapter 4 and Section 5.2 of Chapter 5 are joint work with Rahil Baber, Demetres

Christofides, Peter J. Cameron, Emil Vaughan, and Søren Riis. These works appear

in [4], [5], [23]. The author is one of the main investigators of results in [4, 5], and is

the main researcher of [23].

Our contribution to guessing games over undirected graphs encompass the following

topics: exhibiting gaps between bounds on guessing numbers of undirected graphs, re-

versible and irreversible guessing games, the improvement of guessing numbers when

additional directed edges are introduced, and different bounds of information inequal-

ities.

The first part of Chapter 5 and all of Chapter 6 are an attempt by the author to

address the following problems:

• matching between vector-linear bounds and guessing numbers of undirected

graphs

• the generalization of guessing numbers with the introduction of noises.

We now give more details about all of our results and their locations in this thesis.

Different bounds of guessing numbers (Chapter 4)

The fractional clique cover bound introduced by Christofides and Markström [28]

is important as it indicates when an undirected graph has a vector linear optimal

guessing strategy over every finite field. That is, it shows that if a graph has its

guessing number matching its guessing number by fractional clique cover, then for

every finite field, we can find an optimal guessing strategy, which is a vector-linear.

We also have other bounds on guessing numbers such as the minimum rank of a matrix

representation of a guessing game over a fixed finite field. We can also generalise the

22

minimum rank of matrix representation to be the minimum rank of vector-matrix

representation defined over a fixed finite field.

It is important to note that we have not seen any example of a guessing game where

its guessing number can only be achieved by non-linear guessing strategies.

Moreover, a theorem by Riis [83] shows that if a multiple-unicast instance is weakly

irreversible 2, in which case the network must only have solutions that use a non-linear

coding method as its optimal code.

These results strengthen the belief that the vector-linear strategy at its most general

form is sufficient for all guessing games played on an undirected graph.

We know that the guessing number can be bounded from above via linear program-

ming with information-theoretic constrains. This upper bound is, in theory, larger

than the actual guessing number, but in practice, these two quantities agree for almost

every testable instance when our graph is undirected. In fact, this bound matches

the lower-bound provided by the fractional clique cover bound. Therefore, it was

conjectured that the fractional clique cover bound is in fact also the guessing number

of an undirected graph.

We disproved this conjecture by showing that there are undirected graphs where op-

timal guessing strategies out-perform the fractional clique cover strategies established

in [28]. The first counterexample is a graph on 10 nodes, where its guessing number

can only be obtained by using vector-matrix guessing strategy in its most general

form. This is Theorem 11 in Section 4.1. Notice that the vector-matrix guessing

strategy depends on the characteristic of the finite field. Based on this counter-

example, we constructed an undirected graph where its guessing number is obtained

by the minimum rank of a matrix representation, which is essentially a linear code.

Moreover, this guessing number cannot be obtained from the fractional clique cover

method. This is Theorem 12 in Section 4.1.

We show that even in case our graph is triangle-free, that is, we forbid the appearance

on any clique of order greater than 2, there are many graphs with guessing numbers

that are significantly higher than the bound provided by the fractional clique cover

2A multiple-unicast network is said to be weakly irreversible if the number of messages defined
over a given alphabet that can be send in the network does not equal the number of messages defined
over the same alphabet that can be sent in a reversed network which is obtained by reversing all the
edges in the underlying digraph.

23

method. We construct these results based on combinatorial structures known as

Steiner systems. The statements and proofs can be found in Section 4.3.

It is noticeable that all of our counterexamples to the fractional clique cover conjecture

are highly non-trivial and we can amplify the difference between these bounds by

various graph products discussed in the work of Blasiak et. al.

Effect of additional directed edges on guessing number of an undirected
graph (Chapter 4)

A challenging problem in the application of network coding is the variation of network

topology along time. A simplified question is: how much does the coding capacity

change when new communication channels are introduced to the already existing

topology? Back to the case of mutiple-unicast networks, can we ask for a network

in which its coding capacity is significantly changed when we add or remove a single

channel? An equivalent question is asking for a guessing game played on some digraph

such that the guessing number changes when a directed edge is introduced or removed

from the graph. An obvious example to this problem is by letting D be a directed

acyclic graph. Multiple authors have noticed that the guessing number of an acyclic

graph is 0. If we introduce a new directed edge to D such that the new digraph

contains a directed cycle, then it is easy to show that the guessing number of the new

digraph is exactly 1.

Beside these results, however, can we obtain the same effect when our underlying

graph is an undirected graph? The answer to this question is positive. It is interesting

to note that the construction was based on our counter-example to fractional clique

cover strategy. The statement of the problem and the proof can be found in Section

4.1.

Application of non-Shannon information inequalities (Chapter 5)

Just like the situation concerning the general network information flow problem, we

progressed very little towards finding an algorithm for computing the guessing number

of a given digraph. The closest answer to an algorithm is in the work of Gadouleau and

Riis [45], and Christofides and Markström [28]. In these works, putting a constraint

on the size of the alphabet, a guessing number over the given alphabet can be read

off as an logarithm of an independent number of a vertex-transitive undirected graph.

24

Unfortunately, the order of this non-trivial graph is exponentially large. In particular,

if the guessing game is played on a graph of order n over alphabet of size k, the order

of the associated vertex-transitive undirected graph is kn. Finding the independent

number for such graph is intractable with our current knowledge.

As an alternative to computing guessing numbers, we can adopt the method of us-

ing information-theoretic arguments to compute an upper bound for guessing num-

bers and match it up with some well-known lower bounds introduced above. As the

digraph is obtained by converting a multiple-unicast network coding instance with

directed acyclic topology, we can easily convert the constraints imposed on network

instance discussed above into the information constraints defined for the guessing

game. Therefore, these information constraints also consist of two types. The first

type reflects the combinatorial structure of the digraph, while the second type comes

purely from information theory. Constraints of the second type are essentially in-

formation inequalities. Naturally, a question arises: does the set of all Shannon

information inequalities combined with the graph topological constrains provide us

with an exact bound for guessing numbers?

Prior to this work, the answer to this question was open. Specifically, we only know

one core example of network (and some variations of it) in the literature where non-

Shannon information inequalities provide better bounds on coding capacity compared

to Shannon’s. The construction of the network, which was developed by Dougherty

et al. [36], was involved properties of the Vámos matroid, which is known to be

non-representable. The resulting network is a multiple-multicast instance; i.e., each

source has more than one sink. Variations of the matroidal method are developed

for index coding where the obtained graphs are generally hypergraphs. Therefore, we

cannot adopt the method introduced in [36] because the networks obtained from this

construction generally cannot be converted into an undirected graph.

Our new result shows that there exists a graph where non-Shannon inequalities pro-

vide a better approximation of the guessing number compared to using the Shannon

information inequalities alone. In fact, we show that there are gaps between the

bounds provided by the Zhang-Yeung inequalities and its alternative provided by the

Dougherty-Freiling-Zeger inequalities.

Following the general strategy set out in [15], it might be possible to extend these

gaps by using different type of graph products.

25

One important note in our result is the the example is an undirected graph of small

order. Therefore, it is possible to compute and check the calculation by computer. In

fact, the process of deriving these bounds is achieved by computer and data the file

can be obtained upon request. The result appears in Section 5.2.

Irreversible guessing games (Chapter 5)

The existence of an irreversible multiple-unicast network information flow instance

is still open. We say a multiple-unicast network D is irreversible if that the coding

capacity of D does not equal the coding capacity of the network Reverse(D) obtained

by reversing all edges of D3. Back to our setting of guessing game on digraph, we

can ask for an instance of a digraph where its guessing number is different from the

guessing number of the digraph obtained by reversing all the directed edges. We were

not be able to find an answer to this problem. However, we can provide an example

for a weaker question concerning the existence of a digraph where its Shannon-bound

is different from the Shannon-bound of its reverse. We show a related result, the

answer to this question is positive. The construction and the statement of the result

is demonstrated in Section 5.2.

Exact bound for the guessing numbers of families of undirected graphs
(Chapter 5)

As it is unknown to generally compute the guessing number even in cases of using

non-Shannon information inequalities, we may try to find graphs where we can verify

the upper-bound of guessing numbers provided by information inequalities and the

lower-bound by some well-known method match. Very few examples for families of

graphs can be found in the literature. Before this work, the guessing number of these

following families of undirected graphs were known:

• perfect graphs,

• Cn – the n cycle,

• Cc
n – the complement of the n cycle,

• 3-regular Cayley graphs of Z /nZ of special type,

3An example of a multiple-unicast problem where non-linear network code is involved was estab-
lished in [36]; however, this network does not satisfy our criteria.

26

• certain Circulant graphs.

The guessing numbers of perfect graphs are well understood. The calculation of the

guessing number of the n-cycle and its complement are completed independently by

Christofides and Markström [28], and Blasiak, Kleinberg, and Lubetzky [12]. The first

computation for C5 was established in [3, 8, 81]. The cases of 3-regular Cayley graphs

of Z /nZ of special type and certain Circulant graphs, the coding rate are computed

instead [12], but we can easily transfer their result into the setting a guessing game.

In this work, we calculated guessing numbers for many new families of undirected

graphs. None of these graphs are included in any of the families above. The list of

new families and their calculations can be found in Section 5.1.

Noisy guessing games (Chapter 6)

Thus far, the benefits achieved by network coding (efficiency, safety) are based on

one important assumption: the communication channels are error-free. What if some

channels are error-prone?

In this situation, we would have to face the problem of error propagation: a single

corrupted packet potentially corrupts all packets received at the terminals. One way

to deal with this is to apply the classical theory of error correcting codes which adds

redundancy to the transmission in the time domain and hence increases the success

rate of each communication channel. However, this method leaves out the information

about network topology, which essentially is the source of all properties of network

coding. In order to gain the full benefits of network coding, we need some methods

to add redundancy representing the spatial domain; that is, an existence of network

error correction framework.

In the case of multicast network, a theory proposed by Cai and Yeung [21, 96, 22]

extends all the knowledge of classical coding theory, including code distance, weight

measures, and coding bounds. A special attribute of this framework is that the

topological properties of a given network is encoded within the error correcting

mechanism to improve the noisy coding capacity. Based on this framework, vari-

ous algorithmic constructions of network error correcting codes have been studied in

[54, 92, 6, 74, 47, 53, 62, 17, 43, 46, 86, 100, 63, 101].

In the case of general network information flow problems, in contrast, a convinced

framework for network error correction remains elusive. The obstacle exists due to

27

the enigmatic interaction between coding function and noises in the network. In

this chapter, we initialize studies of interaction between coding functions and noises

restricted to our setting of guessing games. We proposed a definition of noisy guessing

numbers, which is a generalized version of the noiseless guessing number introduced by

Riis [82]. First few properties of this quantity together with show cases on undirected

graphs of small order are also established. The definition and properties of noisy

guessing numbers are proposed and proved in Section 6.2. Section 6.3 demonstrates

the computation of this quantity for graphs K2, P3, and K3.

1.3 Thesis structure

The organization of the thesis is as follows:

Chapter 2

In this chapter, we recall basic terminologies in discrete probability theory and infor-

mation theory. The aim is to provide the reader a rigorous yet gentle introduction

to the existing development of information theory. We aim to gather fundamental

concepts of information measures and their properties together with the newest pro-

gressions in characterizing the space of all entropic vectors of n jointly distributed

random variables in one place. Specifically, we hope that this chapter will give the

reader a clearer view about the method of deriving different families of information

inequality.

Chapter 3

Chapter 3 introduces the formal language of guessing games and provides rigorous

proofs of various properties of a guessing number. In particular, we show that the

definition of guessing number has asymptotic behaviour. We also recall different

known approaches to calculate lower-bounds of a guessing number including the code

graph [45, 28], and the fractional clique cover strategy defined in [28], which provides

a feasible computational method for calculating lower bounds of guessing numbers

for undirected graphs. A method for calculating upper bounds of guessing numbers

by making use of entropic arguments is also introduced in this chapter. The theory

28

presented in this chapter mainly follows the paper by Christofides and Markström

[28].

Chapter 4, Chapter 5, and Chapter 6

These chapters present the details of our results discussed in Section 1.2.

Chapter 7

We conclude the thesis with some open problems and future research directions.

29

Chapter 2

Information Measures and
Information Inequalities

In order to make this thesis self-contained, this chapter recalls some basic terminolo-

gies in discrete probability theory and information theory. It consists of two parts.

The first part is a summary of fundamental concepts in information theory and their

properties. Based on the information given in the first part, we will build up a small

survey on recent progress in characterizing the space of all entropic vectors of n jointly

distributed random variables, especially, we will focus on constructing different fam-

ilies of information inequality.

The content of this chapter is synthesized from several sources, e.g. None of the

results in this chapter were discovered by the author of this thesis ; a couple of proofs

for well-known results, e.g. Copy Lemma, Zhang-Yeung Inequality, are selected from

literatures.

2.1 Entropy and entropic functions

2.1.1 Shannon’s information measures

Throughout this thesis, we will only consider entropy of discrete random variables, i.e.

random variables with co-domains that are discrete sets. Let X be a random variable

with codomain X . We write pX for {pX(x) = P[X = x], x ∈ X} – the probability

distribution of X. When there is no ambiguity, we abbreviate pX(x) as p(x).

30

We write Supp(X) for the support of X. Supp(X) is the set of all x ∈ X with positive

probability, i.e. p(x) > 0. If Supp(X) = X , we say that pX is strictly positive.

Definition 3. The entropy H(X) of a random variable X is defined by

H(X) = −
∑
x

p(x) logs p(x),

where s > 1 is a chosen real number.

Note that in the above definition, in the case p(x) = 0 the value of p(x) log p(x) is

undefined. However, due to the continuity property of the entropy map (see [95,

Chapter 1, Section 1.3]), it is safe to adopt the convention p(x) log(x) = 0 if p(x) = 0,

or equivalently, the summation is taken over the support of X.

We observe that the entropy H(X) of a random variable X is a function of the

probability distribution p(x) and so it depends only on p(x) but not on the range of

X . Intuitively, H(X) measures our uncertain of the value of random variable X.

We recall the definition of other Shannon’s information measures, which are basically

linear combinations of entropy.

Definition 4. Let X1, . . . , Xn be n jointly distributed random variables. The joint

entropy H(X1, . . . , Xn) is defined by

H(X1, . . . , Xn) = −
∑

x1,...,xn

p(x1, . . . , xn) log p(x1, . . . , xn).

Definition 5. For random variables X and Y , the conditional entropy of X given Y

is defined by

H(X|Y) = −
∑
x,y

p(x, y) log p(x|y).

Straightforward calculation shows that

Proposition 1.

H(X, Y) = H(X) +H(Y |X) = H(Y) +H(X|Y).

For two random variables X and Y , we can define the mutual information I(X, Y)

which measures the amount of information of one random variable by provided the

other.

Definition 6. For random variables X and Y , the mutual information between X

and Y is defined by

I(X;Y) =
∑
x,y

log
p(x, y)

p(x)p(y)
.

31

Proposition 2. • I(X;Y) = I(Y ;X), i.e. mutual information is symmetrical in

X and Y .

• I(X;X) = H(X).

and

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)

= H(X) +H(Y)−H(X, Y).

Figure 2.1: Relationship between entropies and mutual information for two random
variables [95].

Similar to conditional entropy, one can define conditional mutual information of ran-

dom variables X and Y given random variable Z.

Definition 7. For random variables X, Y and Z, the mutual information between

X and Y conditioning on Z is defined by

I(X;Y |Z) =
∑
x,y,z

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)
.

As one might expect, conditional mutual information satisfies the same set of relations

for mutual information except that all the terms are now conditioned on a random

variable Z.

32

Proposition 3.

I(X;X|Z) = H(X|Z),

I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

= H(Y |Z)−H(Y |X,Z)

= H(X|Z) +H(Y |Z)−H(X, Y |Z).

There is another important information measure known as the Kullback-Leibler di-

vergence which indicates the difference between two probability distributions P and

Q. It is a non-symmetric measure which establishes the amount of information lost

when approximating P by Q. The definition of this measure is not recalled here as

it is irrelevant to the content of this thesis.

2.1.2 Entropic vectors

Let [n] = {1, 2, . . . , n} where n ≥ 2 be an index set. For each non-empty subset

α = {i1, . . . , im} ⊆ [n], we write X{α} for the set of jointly distributed random

variables {Xi1 , . . . , Xim}, and we write the joint entropy of {Xi1 , . . . , Xim} as H(Xα).

Definition 8. Let [n] = {1, 2, . . . , n} where n ≥ 2 be a finite set. We treat the set

of all non-empty subsets of [n] as an index set. A vector ε = [εα|α ⊆ [n]] ∈ R2n−1 is

an entropic vector if there exist a set of jointly distributed random variables X[n] :=

{Xi1 , . . . , Xim} such that εα = H(Xα) for all α ⊆ [n].

We write Γ∗n for the collection of all entropic vectors of n random variables and its

closure is denoted as Γ̄∗n. Elements of Γ∗n are also referred to as entropic functions.

Example 1. For n = 2, ε =
(
1 1 1

)
is an entropic vector as the following proba-

bility distribution over binary alphabet could be given

X2 = 0 X2 = 1
X1 = 0 0.5 0
X1 = 1 0 0.5

One of the main goals in information theory is to characterize the region of Γ∗n for

positive integer n. Even though many aspects of Γ∗n for n ≥ 4 are far from completely

understood, substantial progress has been made. These results will be presented in

the next section.

33

2.2 The region of Γ∗n

We first point out a few basic properties of Γ∗n which are direct consequences of its

definition.

• Let X1, . . . , Xn be n degenerate random variables taking constant values, hence

H(Xα) = 0 for all α. This implies that Γ∗n contains the origin.

• By definition, H(Xα) is always non-negative, hence we have Γ∗n ⊆ {ε|εα ≥
0 for all non-empty α ∈ 2[n]} ⊆ R2n−1.

In order to further characterize Γ∗n, an approach of constructing outer bounds of Γ∗n

via unconstrained information inequalities is generally adopted. Therefore, generating

such information inequalities is the main topic of this section.

Given an information expression – a linear combination of Shannon’s information

measures which involves a finite number of random variables, e.g. H(ABC)+H(C)−
H(AB) + H(AC), we can ask if such an expression satisfies some inequalities, e.g.

H(ABC) + H(C) − H(AB) + H(AC) ≥ 0. If an inequality exists and it holds for

any joint distributions of random variables appeared in the given expression, then we

regard such inequality as an information inequality.

Recall from the previous section that any Shannon’s information measures other than

joint entropy can be expressed as a linear combination of joint entropies by applying

the following identity:

I(X;Y |Z) = H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z).

Thus, any information expression involving n random variables can be written as a

linear combination of 2n− 1 associated joint entropies. We refer the latter expression

as the canonical form of an information expression. We might wonder whether a

canonical form of an information expression is unique. The answer to this question

is yes, and it is a corollary of the following theorem:

Theorem 2. Let f be an information expression. The unconstrained information

identity f = 0 always holds if and only if f is the zero function.

The idea of the proof is that assuming f is a non-zero function, the set f = 0 is

a hyperplane in R2n−1 which has Lebesgue measure 0. Now we can show that the

volume of Γ∗n has non-zero Lebesgue measure, hence Γ∗n cannot be contained in the

34

hyperplane f = 0. Therefore f must be a zero function. We omit detail of the proof,

and recommend readers to refer to [95, Chapter 12, Section 12.2].

Corollary 1. The canonical form of an information expression is unique.

Thanks to this corollary, it is justified to make the following definition

Definition 9. Let n be a positive integer, and let α1, . . . , αk be the non-empty subsets

of {1, . . . , n}. Let ai ∈ R for 1 ≤ i ≤ k. An inequality of the form

a1H({Xi : i ∈ α1}) + . . .+ akH({Xi : i ∈ αk}) ≥ 0

is called an information inequality if it holds for all jointly distributed random vari-

ables X1, . . . Xn.

Shannon proved the basic inequalities[85]:

H(A) ≥ 0 (2.1)

H(A|B) ≥ 0 (2.2)

I(A;B) ≥ 0. (2.3)

These inequalities are all special cases of the inequality

I(A;B|C) = H(AC) +H(BC)−H(C)−H(ABC) ≥ 0 (2.4)

For example, to obtain I(A;B) ≥ 0 we set C to be a degenerate random variable

taking constant value, hence

0 ≤ H(AC) +H(BC)−H(C)−H(ABC)

= H(A) +H(B)− 0−H(AB)

= I(A;B)

We can generate new inequalities by combining instances of these basic inequalities.

For example,
I(A;B|C)

2
+ I(A;C) ≥ 0

is a valid information inequality which holds for any jointly distributed random vari-

ables A, B, C. We can rewrite this inequality in its canonical form:

0 ≤ H(AC) +H(BC)−H(ABC)−H(C)

2
+H(A) +H(C)−H(AC)

=
2H(A) +H(C) +H(BC)−H(ABC)−H(AC)

2

35

Also we can permute the variables, e.g. A → B, B → C, C → A to obtain a “new”

information inequality:

0 ≤ 2H(B) +H(C) +H(AC)−H(ABC)−H(AB)

For the rest of this section, we will identify inequalities that can be obtained from an-

other using information identity, permutation of random variables, and a combination

of existing inequalities by algebraic operators.

The inequality H(AB) +H(BC)−H(ABC)−H(C) ≥ 0 proved by Shannon in his

monument paper [85] is historically important. This inequality stood alone for almost

half a century as the fundamental inequality. All information inequalities known in the

literature are consequences of this inequality [95]. We call information inequalities

which can be derived by adding special cases of inequality 2.4 as Shannon’s type

inequality.

Definition 10. A Shannon information inequality is any information inequality of

the form Xi ∑
i

αiI(Ai;Bi|Ci) ≥ 0 (2.5)

where each αi ≥ 0.

From the previous discussion, we see that every information inequality can be ex-

pressed in its canonical form ∑
α⊆[n]

aαH(Xα) = a>H ≥ 0,

and the set of all vectors in R2n−1 satisfying such inequality corresponds to the half-

space

Hn,a := {u ∈ R2n−1 |a>h ≥ 0}.

We denote Γn := ∩aHn,a the set of vectors u ∈ R2n−1 for which u satisfies all Shan-

non’s type inequalities. We can check if an unconstrained inequality a>h ≥ 0 is a

Shannon-type inequality by examining whether Γn is a subset of {u ∈ R2n−1 |a>h ≥
0}. The seminal work of Yeung [95] showed that this verification procedure can be

formulated as a linear programming problem if the number of random variables is

fixed.

Theorem 3. [95] An expression a>h ≥ 0 is a Shannon-type inequality if and only if

the minimum of the problem

36

Minimize a>h subjected to Gh ≥ 0,

where G is a m by 2n− 1 matrix representing all elementary inequalities in canonical

forms, is zero. In this case, the minimum occurs at the origin.

Theorem 3 enables a machine-proving approach to all Shannon-type inequalities. Im-

plementations of this algorithm are made freely available online, e.g. the Information

Theory Inequality Prover (ITIP) by Yeung and Yan [94], or Xitip developed by Pu-

likkoonattu, Perron and Diggavi [79].

We refer any information inequality that cannot be expressed in the form 2.4 as a

non-Shannon information inequality.

We have the following results concerning the region of Γ∗n for n < 4.

Theorem 4.

Γ∗2 = Γ2.

Theorem 5.

Γ∗3 (Γ̄∗3 = Γ3.

A corollary of these theorems is that all information inequalities involving fewer than

four random variables are Shannon inequalities.

Unlike cases n = 2 or n = 3, less is known about the region of Γ∗n when the number

of random variables is at least 4. However, we have the following characteristic:

Theorem 6. Γ̄∗n is convex.

The first non-Shannon-type information inequality was discovered by Zhang and Ye-

ung in their seminal work [98], [95, Theorem 14.7 on p.310].

Theorem 7. The following is a 4-variables non-Shannon information inequality:

2I(C;D) ≤ I(A;B) + I(A;C,D) + 3I(C;D|A) + I(C;D|B). (2.6)

The proof of Theorem 7 consists of two parts. The first part proves that the inequal-

ity is valid for every joint distribution on 4-random variables, and the second part

illustrates that it cannot be expressed in the form of 2.4.

To prove 2.6 is a valid information inequality, Zhang and Yeung introduced a basic

technique which until now is the only known approach to come up with new informa-

tion inequalities. Their method can be summarized as follows:

1 Start with a set of arbitrary random variables.

37

2 Add auxiliary random variables with special properties.

3 Apply known information inequalities to the enlarged set of random variables.

The most important part is Step 2 which is encapsulated in the Copy Lemma [98].

Lemma 1 (Copy Lemma). Let A, B, C, D be jointly distributed random variables.

There is another random variable R, jointly distributed with A, B, C, D with the

following properties.

1. The marginal distributions of (A,B,C) and (A,B,R) are the same with R re-

placing C.

2. I(CD;R|AB) = 0.

In this case we say that R is a D-copy of C over (A,B).

The proof is taken from [38].

Proof. Let A, B, C, D, denote the alphabets of the random variables A, B, C, D

resp. Let a, b, c, d denote arbitrary elements of A, B, C, D, resp. with probability

p(a, b, c, d). Let R be a new random variable and let r denote an arbitrary element of

its alphabet, which is C. Define the joint probability distribution of A, B, C, D, R

by

p′(a, b, c, d, r) =
p(a, b, c, d)

∑
d p(a, b, r, d)∑

c,d p(a, b, c, d)
.

It is clear that these are nonnegative. Summing over r we get

∑
r

p′(a, b, c, d, r) =
p(a, b, c, d)

∑
r,d p(a, b, r, d)∑

c,d p(a, b, c, d)

= p(a, b, c, d).

so that p′ is an extension of p, which also implies that the sum of all of the probabilities

p′ is 1. Similarly, the marginal distribution of (A,B,R) is given by

∑
c,d

p′(a, b, c, d, r) =

∑
c,d p(a, b, c, d)

∑
d p(a, b, r, d)∑

c,d p(a, b, c, d)

=
∑
d

p(a, b, r, d)

while the marginal distribution of (A,B,C) is given by
∑

d p(a, b, c, d), demonstrating

Condition 1.

38

If we write Condition 2 in terms of entropies, we get

H(ABCD) +H(ABR)−H(AB)−H(ABCDR) = 0.

But H(A,B,R) = H(A,B,C) by Condition 1, so it remains to show that

H(ABCDR) = H(ABCD) +H(ABC)−H(AB).

We compute H(ABCDR) as

H(ABCDR) =
∑

a,b,c,d,r

−p′(a, b, c, d, r) log p′(a, b, c, d, r)

=
∑

a,b,c,d,r

−p′(a, b, c, d, r) log p(a, b, c, d)

+
∑

a,b,c,d,r

−p′(a, b, c, d, r) log
∑
d

p(a, b, r, d)

−
∑

a,b,c,d,r

−p′(a, b, c, d, r) log
∑
c,d

p(a, b, c, d).

But ∑
a,b,c,d,r

−p′(a, b, c, d, r) log p(a, b, c, d)

=
∑
a,b,c,d

−p(a, b, c, d) log p(a, b, c, d)

= H(ABCD)∑
a,b,c,d,r

−p′(a, b, c, d, r) log
∑
d

p(a, b, r, d)

=
∑
a,b,r

∑
c,d

−p′(a, b, c, d, r) log
∑
d

p(a, b, r, d)

=
∑
a,b,r

∑
d

−p(a, b, r, d) log
∑
d

p(a, b, r, d)

= H(ABC)

and∑
a,b,c,d,r

−p′(a, b, c, d, r) log
∑
c,d

p(a, b, c, d)

=
∑
a,b,

∑
c,d,r

−p′(a, b, c, d, r) log
∑
c,d

p(a, b, c, d)

−
∑
a,b,

∑
d,r

−p(a, b, r, d) log
∑
c,d

p(a, b, c, d)

= H(AB).

Therefore, H(ABCDR) = H(ABCD) +H(ABC)−H(AB) as desired.

39

Proof of Theorem 7. By expanding mutual informations into entropies and cancelling

terms, one can verify the following identities

I(A;B) + I(C;R|A) + I(C;D|R) + I(AB;R|CD)

+ I(D;R|B) + I(A;B|RD) + I(D;R|A)

+ I(R;C|B) + I(A;B|CR) + I(C;R|ABD)

= 2I(A;B|C) + I(A;C|B) + I(B;C|A)

+ I(A;B|D) + I(C;D)

+ 2I(CD;R|AB)

+ I(A;B|R)− I(A;B|C)

+ I(A;R|B)− I(A;C|B)

+ I(B;R|A)− I(B;C|A).

Each of the conditional mutual information terms on the left-hand-side are non-

negative by Shannon’s inequalities. Thus, if these terms except I(A;B) are erased

and the “=” is replaced by “≤”, then we obtain a 5-variable Shannon-type inequality.

By the Copy Lemma we may choose R to be a D-copy of C over AB. Then, the term

2I(CD;R|AB) is zero by Condition 2, and each pair

I(A;B|R)− I(A;B|C) (2.7)

I(A;R|B)− I(A;C|B) (2.8)

I(B;R|A)− I(B;C|A). (2.9)

vanishes by Condition 1.

Hence 2.6 is a valid inequality for 4-random variables.

To show that 2.6 is not a Shannon’s type inequality, we can use the ITIP package

discussed above.

Corollary 2.

Γ∗4 ⊂ Γ̄∗4 (Γ4.

Since the seminal work [98], many other non-Shannon information inequalities have

been discovered. To name a few: Lněnička [69], Makarychev, Makarychev, Ro-

mashchenko, and Vereshchagin [72], Zhang [99], Zhang and Yeung [102], Mátus [75],

Chan and Grant [26], Xu, Wang, and Sun [91], Dougherty, Freiling, and Zeger [35]

[38].

40

Mátus constructed the first two infinite families of non-Shannon inequalities in [75].

He indexed elements in each of these families by the positive integers. A clever

manipulation of elements in the first list was used to show that no finite collection

of linear inequalities will ever be able to describe Γ∗n completely. Based on the list

provided in [75], Chan and Grant derived the first non-trivial non-linear information

inequality [26].

Xu-Wang-Sun added new information inequalities and a third infinite list in [91].

Dougherty, Freiling, and Zeger [38] combined exhaustive computer search and Zhang-

Yeung method to derive a new set of information inequalities which can be used to

derive information inequalities known in the literatures. They also presented a set

of rules for combining new inequalities from old ones which can be used iteratively

to generate uncountable collections of information inequalities. As an example, they

showed that the first list of inequalities provided by Matus and the third list produced

by Xu-Wang-Sun can be derived from this process.

41

Chapter 3

Guessing Games

3.1 Definitions

We start out by recalling some formal terminologies in graph theory that will be

used throughout the rest of this thesis. We follow standard graph theoretic language

introduced in standard text books such as [16] and [32].

Definition 11. A directed graph, or digraph for short, is a pair G = (V (G), E(G)),

where V (G) is the set of vertices of G and E(G) is a set of ordered pairs of vertices

of G called the directed edges of G. Given a directed edge e = (u, v), which we also

denote by −→uv, we call u the tail and v the head of e and say that e goes from u to v.

For the purposes of guessing games we will assume throughout that our digraphs are

loopless, i.e. they contain no edges of the form −→uu for u ∈ V (G).

Given a digraph G and a vertex v ∈ V (G), the in-neighbourhood of v is the set of

all vertices u in V (G) such that −→uv is an edge of G, i.e. Γ−(v) = {u : −→uv ∈ E(G)}.
Similarly, we define the out-neighbourhood of a vertex v to be the set of all vertices u

of G such that −→vu is a directed edge, i.e. Γ+(v) = {u : −→vu ∈ E(G)}.

In this thesis, our main results will primarily be on undirected graphs which are

naturally treated as a special type of digraph G where −→uv ∈ E(G) if and only if
−→vu ∈ E(G). We call the pair of directed edges −→uv and −→vu, the undirected edge uv.

A major role in our guessing strategies will be played by cliques i.e. subgraphs in

which every pair of vertices are joined by an undirected edge. We will use standard

notations for the maximum degree and the independent, clique, chromatic, and frac-

tional chromatic numbers of an undirected graph as α(G), ∆(G), ω(G), χ(G), and

42

χf (G), respectively. (see [32] for definitions of these parameters).

Given a digraph G and an integer t ≥ 1, the t-uniform blowup of G which we will

write as G(t) is a digraph formed by replacing each vertex v in G with a class of t

vertices v1, . . . , vt with
−−→uivj ∈ E(G(t)) if and only if −→uv ∈ E(G).

Definition 12. A guessing game (G, s) is a game played on a digraph G and the

alphabet As = {0, 1, . . . , s − 1}. There are |V (G)| players working as a team. Each

player corresponds to one of the vertices of the digraph. Each player v is assigned an

integer xv from As uniformly and independently at random. Each player will be given

a list of the players in its in-neighbourhood with their corresponding values. Using just

this information each player must guess their own value. If all players guess correctly

they will all win, but if just one player guesses incorrectly they will all lose.

Throughout this work we will be freely speaking about the player v instead of the

player corresponding to the vertex v ∈ V (G).

Definition 13. Given a guessing game (G, s), for v ∈ V (G) a strategy for player v

is formally a function fv : A
|Γ−(v)|
s → As which maps the values of the in-neighbours

of v to an elements of As, which will be the guess of v. A strategy F for a guessing

game is a sequence of such functions (fv)v∈V (G) where fv is a strategy for player v.

We denote by Win(G, s,F) the event that all the players guess correctly when playing

(G, s) with strategy F .

Obviously, it is impossible for players to guess correctly every round. However, from

probabilistic point of view, we can restrict the objective into finding a strategy F
that maximises P[Win(G, s,F)].

Example 2. As an example we consider the guessing game (Kn, s), where Kn is the

complete (undirected) graph of order n, i.e. |V (Kn)| = n and E(Kn) = {uv : u, v ∈
V (G), u 6= v}. Naively we may think that since each player receives no information

about their own value that each player may as well guess randomly, meaning that the

probability they win is s−n. This however is not optimal. Certainly the probability

that any given player guesses correctly is 1/s, but Riis [82] noticed that by discussing

their strategies beforehand the players can in fact coordinate the moments where they

guess correctly, and therefore increase their chance of winning. For example before

the game begins they can agree that they will all play under the assumption that∑
v∈V (Kn)

av ≡ 0 mod s. (3.1)

43

Player u can see all the values except its own, and assuming (3.1) is true it knows

that

au ≡ −
∑

v∈V (Kn)

v 6=u

av mod s.

Consequently player u will guess that its value is −
∑

v∈V (Kn),v 6=u av mod s. Hence

if (3.1) is true every player will guess correctly and if (3.1) is false every player will

guess incorrectly. So the probability they all guess correctly is simply the probability

that (3.1) is true which is 1/s. This is clearly optimal as, irrespective of the strategy,

the probability that a single player guesses correctly is 1/s and so we can not hope to

do better.

We note that the optimal strategy given in the example was a pure strategy i.e. there

is no randomness involved in the guess each player makes given the values it sees.

The alternative is a mixed strategy in which the players randomly choose a strategy

to play from a set of pure strategies. The winning probability of the mixed strategy

is the average of the winning probabilities of the pure strategies weighted according

to the probabilities that they are chosen. This however is at most the the winning

probability of an optimal pure strategy as proved by the following lemma.

Lemma 2. Every randomised strategy for the guessing game (G, s) has winning prob-

ability at most P[Win(G, s,Fopt)], where Fopt is an optimal pure guessing strategy.

Proof. Following our previous paragraph, a randomised strategy G can be described

by assigning a probability P[G = F]) to each deterministic strategy F . The winning

probability of such a strategy is

P[Win(G, s,G)] =
∑
F

P[G = F]P[Win(G, s,F)]

≤ max
F

P[Win(G, s,F)] = P[Win(G, s,Fopt)]

Therefore we gain no advantage by playing a mixed strategy. As such throughout

this thesis we will only ever consider pure strategies.

We now define the guessing number of guessing game (G, s) which will be our measure

of the winning probability obtained by an optimal strategy for (G, s).

44

Definition 14. The guessing number gn(G, s) of a guessing game (G, s) is the largest

β such that there exists a strategy F for (G, s) satisfies that every player v guesses

its own value xv correctly with probability 1
sn−β

. In other words,

gn(G, s) = |V (G)|+ logs

(
max
F

P[Win(G, s,F)]
)
.

Although this looks like a cumbersome property to work with we can think of it as a

measure of how much better the optimal strategy is over the strategy of just making

random guesses, as

max
F

P[Win(G, s,F)] =
sgn(G,s)

s|V (G)| .

Later we will look at information entropy inequalities as a way of analyzing the

guessing game and in this context the definition of the guessing number will appear

more natural.

Example 3. In our previous example of guessing game (Kn, s), the guessing number

is gn(Kn, s) = n− 1.

3.2 The asymptotic guessing number

Note that the guessing number of the example (Kn, s) we discussed earlier is rep-

resented by gn(Kn, s) = n − 1 which does not depend on s. In general gn(G, s)

will depend on s and it is often extremely difficult to determine the guessing num-

ber exactly. Consequently we will instead concentrate our efforts on evaluating the

asymptotic guessing number gn(G) which we define to be the limit of gn(G, s) as

s tends to infinity. To prove the limit exists we first need to consider the guessing

number on the blowup of G.

Lemma 3. Given a digraph G, and integers s, t ≥ 1,

max
F

P[Win(G(t), s,F)] ≥
(

max
F

P[Win(G, s,F)]
)t

or equivalently gn(G(t), s) ≥ t gn(G, s).

Proof. The digraph G(t) can be split into t vertex disjoint copies of G. We can

construct a strategy for (G(t), s) by playing the optimal strategy of (G, s) on each of

the t copies of G in G(t). The result follows immediately.

45

Lemma 4. Given a digraph G, and integers s, t ≥ 1,

max
F

P[Win(G(t), s,F)] = max
F

P[Win(G, st,F)]

or equivalently gn(G(t), s) = t gn(G, st).

Proof. First we will show that the optimal probability of winning on (G, st) is at least

that of (G(t), s). This follows simply from the fact that the members of the alphabet

of size st, can be represented as t digit numbers in base s. Hence given a strategy on

(G(t), s), a corresponding strategy can be played on (G, st) by each player pretending

to be t players: More precisely, if player v gets assigned value a ∈ Ast , he writes it as

at−1 · · · a1a0 in base s and pretends to be t players, say v0, v1, . . . , vt−1, where player

vi, for 0 ≤ i ≤ t − 1, gets assigned value ai ∈ As. Furthermore, if player v sees the

outcome of player u, then he can construct the values assigned to the new players

u0, u1, . . . , ut−1. So these new fictitious players can play the (G(t), s) game using an

optimal strategy. But if the fictitious players can win the (G(t), s) game then the

original players can win the (G, st) game as we can reconstruct the value of a from

the values of a0, a1, . . . , at−1.

A similar argument can be used to show that the optimal probability of winning on

(G, st) is at most that of (G(t), s). We will show that for every strategy on (G, st)

there is a corresponding strategy on (G(t), s). Every vertex class of t players can

simulate playing as one fictitious player by its members agreeing to use the same

strategy. The t values assigned to the players in the vertex class can be combined

to give an overall value for the vertex class. The strategy on (G, st) can then be

played allowing the members of the vertex class to make a guess for the overall value

assigned to the vertex class. This guess will be the same for each member as they all

agreed to use the same strategy and have access to precisely the same information.

Once the guess for the vertex class is made its value can be decomposed into t values

from As which can be used as the individual guesses for each of its members.

Using these results about blowups of digraphs we can show that in some sense the

guessing number is almost monotonically increasing with respect to the size of the

alphabet.

Lemma 5. Given any digraph G, positive integer s, and real number ε > 0, there

exists t0(G, s, ε) > 0 such that for all integers t ≥ t0

gn(G, t) ≥ gn(G, s)− ε.

46

Proof. We will prove the result by showing that

gn(G, t) ≥ blogs tc
logs t

gn(G, s) (3.2)

holds for all t ≥ s. This will be sufficient since as t increases the right hand side of

(3.2) tends to gn(G, s).

We will prove (3.2) by constructing a strategy for (G, t). Let k = blogs tc and note

that sk is at most t. By considering only strategies in which every player is restricted

to guess a value in {0, 1, . . . , sk − 1} we get

max
F

P[Win(G, t,F)] ≥ P[av < sk for all v ∈ V (G)] max
F

P[Win(G, sk,F)].

Hence
tgn(G,t)

t|V (G)| ≥
(
sk

t

)|V (G)|
sk gn(G,sk)

sk|V (G)|

which rearranges to

gn(G, t) ≥ k

logs t
gn(G, sk). (3.3)

From Lemmas 3 and 4 we can show gn(G, sk) ≥ gn(G, s) which together with (3.3)

completes the proof of (3.2).

Theorem 8. For any digraph G, lim
s→∞

gn(G, s) exists.

We denote the value lims→∞ gn(G, s) by gn(G).

Proof. By definition gn(G, s) ≤ |V (G)| for all s, and maxs≤n gn(G, s) is an increasing

sequence with respect to n, therefore its limit exists which we will call `. Since

gn(G, s) ≤ ` for all s it will be enough to show that gn(G, s) converges to ` from

below.

By the definition of `, given ε > 0 there exists s0(ε) such that gn(G, s0(ε)) ≥ ` − ε.
From Lemma 5 we know that there exists t0(ε) such that for all t ≥ t0(ε), gn(G, t) ≥
gn(G, s0(ε))− ε which implies gn(G, t) ≥ `− 2ε proving we have convergence.

Before we move on to the next section it is worth mentioning that for any s the

guessing number gn(G, s) is a lower bound for gn(G). This follows immediately from

Lemma 5. Furthermore for any strategy F on (G, s) we have

gn(G, s) ≥ |V (G)|+ logsP[Win(G, s,F)].

Consequently we can lower bound the asymptotic guessing number by considering

any strategy on any alphabet size.

47

3.3 The code graph

In the previous section, we have seen that the asymptotic guessing number is a unique

value for each digraph G, and it is defined as the convergence of the almost increasing

series: gn(G) = lims→∞ gn(G, s). In this section, we investigate the value of gn(G, s)

for each finite s in terms of maximal independent set of code graph X(G, s) which was

introduced independently by Gadoleau, Riis in [45], and Christofides, Markström [28].

This section is our attempt to collect important properties of code graphs that we

will need for this thesis. As such, none of the results presented here were discovered

by the author of this thesis, and the proofs of statements are often omitted or lifted

almost verbatim from its original sources. The author thanks Dr. Gadoleau and Dr.

Riis for letting him reproduce parts of their work here. We strongly recommend our

readers to refer to the original paper by Gadoleau and Riis [45] for a beautiful and

comprehensive treatment of code graphs1.

Let G be a digraph on n vertices, and s be a positive integer, s ≥ 2. We play

the guessing game (G, s). According to our definition of guessing game, if the players

agreed to follow a pure strategy F = (fv1 , . . . , fvn), a game is won if the assigned value

(x1, . . . xn) equals to the guessing value (x̂1, . . . , x̂n) where each x̂i = fvi(xj1 , . . . xjk) is

the guessing value of player i using strategy fvi given the value of its neighbourhoods.

We call the set of all possible assignments (x1, . . . xn) ∈ Ans the space of configuration.

For each pure guessing strategy F , if a configuration x ∈ Ans satisfies that x = F(x),

then we call such configuration a fixed configuration of F . We denote AF the set of

all fixed configurations of F .

We construct our code graph X(G, s) having the space of configurations as its vertex

set, and for each guessing strategy F , the set of fixed configurations of F corresponds

to an independent set of X(G, s). As a result, the guessing number of (G, s) is

equivalent to the logarithm of the independence number of X(G, s).

Definition 15. [45] Let (G, s) be a guessing game. The code graph X(G, s) has Ans

as vertex set and two vertices x = (x1, . . . xn) and x′ = (x′1, . . . x
′
n) are adjacent if and

only if there is no guessing strategy F for (G, s) which fixes them both, i.e. x = F(x)

and x′ = F(x′).

Alternatively, we can take the following proposition as our definition of the code graph

as it provides a concrete and elementary description of the edge set of X(G, s).

1The graph X(G, s) is called guessing graph in [45] and code graph in [28]. We choose the latter
term to differentiate between guessing game of a graph and the code graph of such guessing game

48

Proposition 4. [45] The code graph X(G, s) has the following properties:

1 |V (X(G, s))| = sn.

2 The edge set of X(G, s) is E(X(G, s)) = ∪ni=1Ei(s), where Ei(s) = {xy :

xΓ−(vi) = yΓ−(vi) and xi 6= yi}.

3 X(G, s) is vertex-transitive. In particular, if x and x′ is adjacent, we have

– For any e ∈ Ans , x + e mod (s) and x′ + e mod (s) are also adjacent;

– For any π ∈ Aut(D), π(x) is adjacent to π(y).

– If we endow our alphabet the structure of a finite field Fs where s is power

of a prime, then λ1x1, . . . , λnxn is adjacent to λ1x
′
1, . . . , λnx

′
n where each

λi is a non-zero element of Fs.

4 X(G, s) is regular with degree

d(X(G, s)) =
∑

I indepedent set ofG

(−1)|I|−1(s− 1)|I|sn−|Γ
−(I)|−|I|,

where Γ−(I) = ∪vi∈IΓ−(vi).

Proof. Property 1 follows from our definition.

For Property 2, we see that if xx′ ∈ Ei(s) for some i, then for any local guessing

function fvi that fixes x, we have fvi(x
′
Γ−(xi)

) = fvi(xΓ−(xi)) = xi 6= x′i. Hence any

F = (. . . , fvi , . . .) does not fix x′. Conversely, if xx′ /∈ E(X(G, s)), then any guessing

strategy satisfying fvi(x
′
Γ−(xi)

) = x′i and fvi(xΓ−(xi)) = xi for all vi fixes both x and

x′.

Property 3 follows from the observation that xx′ ∈ E(X(G, s)) if and only if (x −
x′)Γ(vi) = 0 and (xi − x′i) 6= 0 for some vi.

Since every vertex-transitive graph is automatically regular. The degree of X(G, s)

therefore can be determined by the degree of 0 = (0, . . . , 0) ∈ Ans . By the inclusion-

exclusion principle, we have

d(X(G, s)) = d(0) = | ∪ni=1 |Ei(s) ∩ {0}| =
∑

R⊆V (G)

(−1)|R|−1|ER ∩ {0}|,

where ER = ∩vi∈REi, and hence we only have to determine |ER ∩ {0}| for all R ⊆
V (G). The configuration x adjacent to 0 satisfy ω(xR) = |R| and xΓ(R) = 0, while

xV−Γ(R)−R is arbitrary. If R is not independent, R∩ Γ(R) 6= ∅ the two conditions are

49

contradictory; otherwise R ∩ Γ(R) = ∅ and there are (s − 1)|R|sn−|Γ
−(R)|−|R| choices

for x.

Using Proposition 4, we can completely characterize the code graph of certain di-

graphs.

Example 4. [45]

• If G is an acyclic digraph, then X(G, s) is the complete graph.

• If G is an undirected clique Kn, then X(G, s) is the Hamming graph H(s, n),

where two configurations are adjacent if and only if they are at Hamming dis-

tance 1.

• If G is a directed cycle
−→
Cn, then X(G, s) is characterized by the condition that

two configurations are adjacent if and only if their Hamming distance is at most

n− 1.

Proof. Let G be an acyclic digraph. We sort the vertices of G in topological order,

such that Γ(vi) ⊆ {v1, ..., vi−1}. Let x, x′ in Ans be two distinct configurations. We

write l for min{i : xi 6= x′i}. It is easy to see that xΓ(vl) = x′Γ(vl)
and xx′ ∈ El(s).

If G is a clique Kn. It is clear that Ei(s) = {xx′ : xi 6= x′i, xV (G)−{i} = xV (G)−{i}}.
Therefore, x is adjacent to x′ if and only if the coordinates of x and x′ are identical

except one coordinate.

Let G be a directed cycle
−→
Cn. The edge set of G is {(vi, vi+1 mod n) : 0 ≤ i ≤ n−1}.

Suppose x and x′ are distinct configurations and xx′ is not an edge of X(G, s), we

show the i-th coordinate of x and x′ are distinct for all 0 ≤ i ≤ n−1. By assumption,

we can find a coordinate i such that xi 6= x′i. This implies that xx′ /∈ Ei(s), hence
xi−1 6= x′i−1. Applying this recursively, we obtain that xi 6= x′i for all 0 ≤ i ≤ n − 1.

The converse direction is clear.

3.4 Lower bounds using the fractional clique cover

In this section we will describe a strategy specifically for undirected graphs. As

shown in the previous section this can be used to provide a lower bound for the

asymptotic guessing number. Christofides and Markström [28] conjectured that this

bound always equals the asymptotic guessing number.

50

In Section 3.1 we saw that when an undirected graph is complete an optimal strategy

is for each player to play assuming the sum of all the values is congruent to 0 mod s

(where s is the alphabet size). We call this the complete graph strategy.

We can generalise this strategy to undirected graphs which are not complete. We

simply decompose the undirected graph into vertex disjoint cliques and then let the

players play the complete graph strategy on each of the cliques. If we are playing

on an alphabet of size s and we decompose the graph into t disjoint cliques, then on

each clique the probability of winning is s−1 and so the probability of winning the

guessing game, which is equal to the probability of winning in each of the cliques, is

s−t. Clearly the probability of winning is higher if we choose to decompose the graph

into as few cliques as possible. The smallest number of cliques that we can decompose

a graph into is called the minimum clique cover number of G and we will represent

it by κ(G). In this notation we have

gn(G) ≥ gn(G, s) ≥ |V (G)| − κ(G).

It is worth mentioning that finding the minimum clique cover number of a graph is

equivalent to finding the chromatic number of the graph’s complement. As such it is

difficult to determine this number in the sense that the computation of the chromatic

number of a graph is an NP-complete problem [58].

We can improve this bound further by considering blowups of G. From Lemma 4 we

know that gn(G, st) = gn(G(t), s)/t, hence by the clique cover strategy on G(t) we get

a lower bound of |V (G)|−κ(G(t))/t. The question is now to determine mint κ(G(t))/t.

We do this by looking at the fractional clique cover of G.

Let K(G) be the set of all cliques in G, and let K(G, v) be the set of all cliques

containing vertex v. A fractional clique cover of G is a weighting w : K(G) → [0, 1]

such that for all v ∈ V (G) ∑
k∈K(G,v)

w(k) ≥ 1.

The minimum value of
∑

k∈K(G) w(k) over all choices of fractional clique covers w is

known as the fractional clique cover number which we will denote by κf (G). (Al-

though we do not define it here, we point out that the fractional clique cover number

of a graph is equal to the fractional chromatic number of its complement.)

For the purposes of guessing game strategies it will be more convenient to instead

consider a special type of fractional clique cover called the regular fractional clique

51

cover. A regular fractional clique cover of G is a weighting w : K(G) → [0, 1] such

that for all v ∈ V (G) ∑
k∈K(G,v)

w(k) = 1.

The minimum value of
∑

k∈K(G) w(k) over all choices of regular fractional clique covers

w can be shown to be equal to the fractional clique cover number κf (G). To see this,

observe firstly that since all regular fractional clique covers are fractional clique covers

the minimum value of
∑

k∈K(G) w(k) over all choices of regular fractional clique covers

w is at least κf (G). Finally, to show it is at most κf (G) we simply observe that the

optimal fractional clique cover can be made into a regular fractional cover by moving

weights from larger cliques to smaller cliques. In particular, given a vertex v for which∑
k∈K(G,v) w(k) > 1 we pick a clique k1 ∈ K(G, v) with w(k1) > 0 and proceed as

follows: We change the weight of k1 from w(k1) to

w′(k1) = max

0, 1−
∑

k∈K(G,v)

k 6=k1

w(k)

 < w(k1)

We also change the weight of the clique k′1 = k1 \ {v} from w(k′1) to w′(k′1) = w(k′1) +

w(k1) − w′(k1). We leave the weight of all other vertices the same. In this way, the

total sum of weights over all cliques remains the same, the total sum of weights over

all cliques containing a given vertex v′ 6= v also remains the same, but the total sum

of weights over all cliques containing v is reduced. This process has to terminate

because whenever we change the weight of k1 it will either become equal to 0 or the

total sum of weight of all cliques containing v will become equal to 1.

Clearly κf (G) and an optimal regular fractional clique cover w can be determined

by linear programming. Since all the coefficients of the constraints and objective

function are integers, w(k) will be rational for all k ∈ K(G) as will κf (G). If we let

d be the common denominator of all the weights, then dw(k) for k ∈ K(G) describes

a clique cover of G(d). In particular it decomposes G(d) into dκf (G) cliques, proving

a lower bound of

gn(G) ≥ |V (G)| − κf (G). (3.4)

We claim that

min
t

κ(G(t))

t
≥ κf (G)

and therefore we cannot hope to use regular fractional clique cover strategies to

improve (3.4). To prove our claim we begin by observing that for all t we have

52

κ(G(t)) ≥ κf (G(t)). This is immediate as a minimal clique cover is a special type of

fractional clique cover, namely one where all weights are 0 or 1. Hence it is enough

to show that

κf (G(t)) = tκf (G).

This can be proved simply from observing that an optimal weighting of K(G(t)) can

always be transformed into another optimal weighting which is symmetric with respect

to vertices in the same vertex class. This can be done just by moving the weights

between cliques. Therefore determining κf (G(t)) is equivalent to determining κf (G)

but with the constraints
∑

k∈K(G,v) w(k) = t rather than 1. The result κf (G(t)) =

tκf (G) is a simple consequence of this.

A useful bound on κf (G) which we will make use of later is given by the following

lemma.

Lemma 6. For any undirected graph G

κf (G) ≥ |V (G)|
ω(G)

,

where ω(G) is the number of vertices in a maximum clique in G.

Proof. Let w be an optimal regular fractional clique cover. Since∑
k∈K(G,v)

w(k) = 1

holds for all v ∈ V (G), summing both sides over v gives us,∑
k∈K(G)

w(k)|V (k)| = |V (G)|,

where |V (k)| is the number of vertices in clique k. The result trivially follows from

observing ∑
k∈K(G)

w(k)|V (k)| ≤
∑

k∈K(G)

w(k)ω(G) = κf (G)ω(G).

Christofides and Markström [28] proved the following:

Theorem 9. If G is an undirected graph then

gn(G) ≥ |V (G)| − κf (G).

53

In [28] it was proved that the above lower bound is actually an equality for various

families of undirected graphs including perfect graphs, odd cycles and complements

of odd cycles. This led Christofides and Markström [28] to conjecture that we always

have equality.

Conjecture 1 (Fractional clique cover conjecture (FCCC)). If G is an undirected graph

then

gn(G) = |V (G)| − κf (G).

To prove or disprove such a claim we require a way of upper bounding gn(G). This

is the purpose of the next section.

3.5 Upper bounds using entropy

Recall that it is sufficient to only consider pure strategies on guessing games. Hence

given a strategy F on a guessing game (G, s) we can explicitly determine S(F) the

set of all assignment tuples (av)v∈V (G) that result in the players winning given they

are playing strategy F . In this context the players’ objective is to choose a strategy

that maximizes |S(F)|. We have

gn(G, s) = |V (G)|+ logs

(
max
F

P[Win(G, s,F)]
)

= |V (G)|+ max
F

logs
|S(F)|
s|V (G)|

= max
F

logs |S(F)|.

Consider the probability space on the set of all assignment tuples A
|V (G)|
s with the

members in S(F) occurring with uniform probability and all other assignments oc-

curring with 0 probability. For each v ∈ V (G) we define the discrete random variable

Xv on this probability space to be the value assigned to vertex v. The s-entropy of a

discrete random variable X with outcomes x1, x2, . . . , xn is defined as

Hs(X) = −
n∑
i=1

P[X = xi] logsP[X = xi],

where we take 0 logs 0 to be 0 for consistency. Note that traditionally entropy is

defined using base 2 logarithms, however it will be more convenient for us to work

with base s logarithms. We will usually write H(X) instead of Hs(x). We will

54

mention here all basic results concerning entropy that we are going to use. For more

information, we refer the reader to [30, 95].

Given a set of random variables Y1, . . . , Yn with sets of outcomes Im(Y1), . . . , Im(Yn)

respectively, recall from Section2.1 the joint entropy H(Y1, . . . , Yn) is defined as

−
∑

y1∈Im(Y1)

· · ·
∑

yn∈Im(Yn)

P[Y1 = y1, . . . , Yn = yn] logsP[Y1 = y1, . . . , Yn = yn].

Given a set of random variables Y = {Y1, . . . , Yn} we will also use the notation

H(Y) to represent the joint entropy H(Y1, . . . , Yn). Furthermore for sets of random

variables Y and Z we will use the notation H(Y, Z) as shorthand for H(Y ∪ Z). For

completeness we also define H(∅) = 0.

Observe that under these definitions, the joint entropy of the set of variables XG =

{Xv : v ∈ V (G)} is

H(XG) = −
∑

(av)∈S(F)

1

|S(F)|
logs

(
1

|S(F)|

)
= logs |S(F)|

Therefore by upper boundingH(XG) for all choices of F we can upper bound gn(G, s).

We begin by stating some inequalities that most hold regardless of F .
Theorem 10. Given X, Y, Z ⊂ XG,

1. H(X) ≥ 0.

2. H(X) ≤ |X|.

3. Shannon’s information inequality:

H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) ≥ 0.

4. Suppose A,B ⊂ V (G) with Γ−(u) ⊂ B for all u ∈ A. Let X = {Xv : v ∈ A}
and Y = {Xv : v ∈ B}. Then

H(X, Y) = H(Y).

Proof.

• Property 1 follows immediately from the definition of entropy.

55

• Property 2 follows from first observing that H(X) = E[logs(1/P[X])]. Since

the function x 7→ logs(x) is concave, by Jensen’s inequality we get that

H(X) ≤ logsE[1/P[X]] = logs | Im(X)|

where Im(X) is the set of outcomes for X. Since Im(X) = A
|X|
s we have the

desired inequality H(X) ≤ |X|.

• Property 3 again follows from Jensen’s inequality. First we observe that

H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) = EX,Y,Z

[
− logs

(
P[X,Z]P[Y, Z]

P[X, Y, Z]P[Z]

)]
.

By an application of Jensen’s inequality this is at least

− logs

(
EX,Y,Z

[
P[X,Z]P[Y, Z]

P[X, Y, Z]P[Z]

])
= − logs

(∑
X,Y,Z

P[X,Z]P[Y, Z]

P[Z]

)
= 0.

• Property 4 is a simple consequence of the fact that the values assigned to the

vertices in A are completely determined by the values assigned to the vertices

in B. Since P[X, Y] is either 0 or P[Y], the result is trivially attained by

considering the definition of H(X, Y) and summing over the variables in X.

From Theorem 10 we can form a linear program to upper bound H(XG). In particular

the linear program consists of 2|V (G)| variables corresponding to the values of H(X)

for each X ⊂ XG. The variables are constrained by the linear inequalities given in

Theorem 10 and the objective is to maximize the value of the variable corresponding

to H(XG). We call the result of the optimization the Shannon bound of G and denote

it by Sh(G).

Note that Sh(G) can be calculated without making any explicit use of F or s. Hence

it is not only an upper bound on gn(G, s) but also on gn(G).

More recently information entropy inequalities that cannot be derived from linear

combinations of Shannon’s inequality (Property 3 in Theorem 10) have been discov-

ered. The first such inequality was found by Zhang and Yeung [98]. The Zhang-Yeung

inequality states that

− 2H(A)− 2H(B)−H(C) + 3H(A,B) + 3H(A,C) +H(A,D)+

3H(B,C) +H(B,D)−H(C,D)− 4H(A,B,C)−H(A,B,D) ≥ 0

56

for sets of random variables A,B,C,D. By setting A = X ∪ Z, B = Z, C = Y ∪ Z,
D = Z, the Zhang-Yeung inequality reduces to Shannon’s inequality. By replacing the

Shannon inequality constraints with those given by the Zhang-Yeung inequality we

can potentially get a better upper bound from the linear program. However, we pay

for this potentially better bound by a significant increase in the running time of the

linear program. We will call the bound on gn(G) obtained by use of the Zhang-Yeung

inequality the Zhang-Yeung bound and denote it by ZY(G).

In fact there are known to be infinite families of non-Shannon inequalities even on 4

variables. We cannot hope to add infinite constraints to the linear program so instead

we will consider the 214 inequalities given by Dougherty, Freiling, and Zeger [38, Sec-

tion VIII]. We will refer to the resulting bound as the Dougherty-Freiling-Zeger bound

and denote it by DFZ(G). It is perhaps worth mentioning for those interested that the

214 Dougherty-Freiling-Zeger inequalities imply the Zhang-Yeung inequality (simply

sum inequalities 56 and 90) and therefore they also imply Shannon’s inequality.

The final bound we will consider is the Ingleton bound which we will denote by

Ingl(G). This is obtained when we replace the Shannon inequality constraints with

the Ingleton inequality

−H(A)−H(B) +H(A,B) +H(A,C) +H(A,D) +H(B,C)+

H(B,D)−H(C,D)−H(A,B,C)−H(A,B,D) ≥ 0.

The Ingleton inequality provides the outer-bound of the inner-cone of linearly repre-

sentable entropy vectors [27]. By setting A = Z,C = Y and B = D = X ∪ Z, the
Ingleton inequality reduces to Shannon’s inequality.

If each player’s strategy can be expressed as a linear combination of the values it sees,

then the Ingleton inequality will hold. Therefore the inequality holds for a strategy

on (G, st) that can be represented as a linear strategy on (G(t), s) (as described in

the proof of Lemma 4). As such, the Ingleton bound gives us an upper bound when

we restrict ourselves to strategies which are linear on the digits of the values. An

important such strategy is the fractional clique cover strategy [28] which leads to the

proof of Theorem 9.

In searching for a counterexample to Conjecture 1 we carried out an exhaustive search

on all undirected graphs with at most 9 vertices. We compared the lower bound given

by the fractional clique cover with the upper bound given by the Shannon bound and

in all cases the two bounds matched. The bounds were calculated using floating point

57

arithmetic and so we do not claim this search to be rigorous, however it leads us to

make the following conjecture.

Conjecture 2. If G is an undirected graph then gn(G) = Sh(G).

58

Chapter 4

Refuting the Fractional Clique
Cover Conjecture

4.1 The first counter example to FCCC

In this section we provide counterexamples to Conjecture 1 is false. Counterexamples

were found by searching through all undirected graphs on 10 vertices or less. For

speed purposes, the search was done using floating point arithmetic and as such there

may be counterexamples that were missed due to rounding errors. (Although this is

highly unlikely, we do not claim that it is impossible. According to our knowledge,

Christofides and Markström had already computed the guessing number of some

undirected graphs of small order. This strengthens our belief that no such counter

example can be found for graphs of order less than 10.) Despite this, we feel that it is

still remarkable that of the roughly 12 million graphs that were checked we only found

2 graphs whose lower and upper bounds (given by the fractional clique cover, and

Shannon bound respectively) did not match: the graph R given in Figure 4.1, and

the graph R− which is identical to R but with the undirected edge between vertices

9 and 10 removed.

The graph R is particularly extraordinary as we will see that with a few simple

modifications we can create graphs which answer a few other open problems.

We begin our analysis of R and R− by determining their fractional clique cover

number.

Lemma 7. We have κf (R) = κf (R
−) = 10/3.

59

1

2

3

456

7

8

9 10

Figure 4.1: The undirected graph R.

Proof. By Lemma 6 we know that κf (R) and κf (R
−) are bounded below by 10/3. To

show they can actually attain 10/3 we need to construct explicit regular fractional

clique covers whose weights add up to 10/3.

For R− we give a weight of 1/3 to the cliques {1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 3, 9},
{2, 7, 10}, {3, 8, 9}, {4, 5, 10}, {4, 8, 10}, {5, 6, 9}, {6, 7, 8}, and a weight of 0 to all

other cliques. Note that this is also an optimal regular fractional clique cover for

R.

Theorem 11. We have

• Sh(R−) = 114/17 = 6.705 . . .

• Ingl(R−) = 20/3 = 6.666 . . .

From Lemma 7 and Theorem 11 we know that

20/3 ≤ gn(R−) ≤ 114/17,

and although we could not determine the asymptotic guessing number exactly we will

show that it does not equal the Shannon bound (see Section 5.2).

60

1

2

3

456

7

8

9 10

Figure 4.2: The undirected graph R−.

Proof of Theorem 11. Calculating the upper bounds involves solving rather large lin-

ear programs. Hence the proofs are too long to reproduce here and it is infeasible for

them to be checked by humans. Data files verifying our claims can be provided upon

request. We stress that although the results were verified using a computer that no

floating point data types were used during the verification. Consequently no rounding

errors could occur in the calculations making the results completely rigorous.

Although R is a counterexample to Conjecture 1 its optimal strategy is somewhat

complicated. So instead we will disprove the conjecture by showing a related graph

which we will call Rc is a counterexample. The undirected graph Rc is constructed

from R by cloning 3 of its vertices. (Cloning 3 vertices is equivalent to creating a

blowup of R with 2 vertices in 3 of the vertex classes and just 1 vertex in the other

classes.) The vertices we clone are 8, 9, 10, and we label the resulting new vertices

8′, 9′, and 10′ respectively.

Theorem 12. We have gn(Rc) = 9 while the fractional clique cover bound of Rc is

26/3 < 9. In particular, Rc provides a counterexample to Conjecture 1.

Proof. To prove that the fractional clique cover bound is 26/3 it is enough to show

that κf (Rc) = 13− 26/3 = 13/3. Lemma 6 tells us κf (Rc) ≥ 13/3. It is also easy to

61

1

2

3

456

7

8

9 10

8’

9’ 10’

Figure 4.3: The undirected graph Rc.

show κf (Rc) ≤ 13/3 as it trivially follows from extending the regular fractional clique

cover given in the proof of Lemma 7 by giving a weight of 1 to the clique {8′, 9′, 10′}.

The Shannon bound of Rc is 9 proving gn(Rc) ≤ 9. We do not provide the details

of the Shannon bound proof as it is too long to present here, however data files

containing the proof are available upon request.

All that remains is to prove gn(Rc) ≥ 9. Even though this proof was discovered

partly using a computer it can be easily verified by humans. In particular, the main

conclusion of this theorem, that Rc is a counterexample to Conjecture 1, can be

verified without the need of any computing power.

Recall that in Section 3.2 we showed that the asymptotic guessing number can be

lower bounded by considering any strategy on any alphabet size. We will take our

alphabet size s to be 3. Our strategy involves all players agreeing to play assuming

62

the following four conditions hold on the assigned values

a1 + a2 + 2a3 + a4 + 2a5 + a6 + 2a7 ≡ 0 mod 3, (4.1)

a2 + a5 + a8 + a8′ + a9 + a10′ ≡ 0 mod 3, (4.2)

a3 + a6 + a8 + a9′ + a10 + a10′ ≡ 0 mod 3, (4.3)

a4 + a7 + a8′ + a9 + a9′ + a10 ≡ 0 mod 3. (4.4)

Note that the terms in (4.1) consist of a1, and values which player 1 can see. Hence

(4.1) naturally gives us a strategy for player 1, i.e. that player 1 should guess −a2 −
2a3 − a4 − 2a5 − a6 − 2a7 mod 3. Similarly strategies for players 8, 8′, 9, 9′, 10, and

10′ can be achieved by rearranging conditions (4.3), (4.4), (4.2), (4.3), (4.4) and (4.2)

respectively. A strategy for player 2 can be obtained by taking a linear combination

of the conditions. In particular if we sum (4.3), (4.4), twice (4.1), and twice (4.2) we

get

2a1 + a2 + 2a3 + 2a7 + 2a9′ + 2a10 ≡ 0 mod 3,

which consists of a2 and values which player 2 can see, allowing us to construct a

strategy for player 2. We leave it to the reader to verify that by taking the following

linear combinations we obtain strategies for players 3, 4, 5, 6, and 7:

• For player 3, we sum (4.1),(4.2),(4.4) and twice (4.3).

• For player 4, we sum (4.2),(4.3), twice (4.1) and twice (4.4).

• For player 5, we sum (4.1),(4.3),(4.4) and twice (4.2).

• For player 6, we sum (4.2),(4.4), twice (4.1) and twice (4.3).

• For player 7, we sum (4.1),(4.2),(4.3) and twice (4.4).

The probability that all players guess correctly under this strategy is 3−4, i.e. the

probability that (4.1), (4.2), (4.3), (4.4) all hold. (It is not difficult to check that the

conditions are linearly independent.) Consequently

gn(Rc) ≥ |V (Rc)|+ log3 P[Win(Rc, 3,F)] = 9

as desired.

For completeness we give the asymptotic guessing number of R and note that it does

not match the fractional clique cover bound of 20/3 as claimed.

63

Theorem 13. We have gn(R) = 27/4.

Proof. The Shannon bound of R is 27/4 (data files can be provided upon request).

To show gn(R) ≥ 27/4 we will show gn(R, 81) ≥ 27/4. By Lemma 4 this can be

achieved if we can construct a strategy on the guessing game (R(4), 3) which has a

probability of winning 3−13 (which implies gn(R(4), 3) ≥ 27). To describe such a

strategy let us label the vertices of R(4) such that the four vertices that are con-

structed from blowing up v ∈ V (R) are labelled va, vb, vc, and vd. Under this la-

belling our strategy for R(4) is to have the cliques {1a, 2a, 3a}, {1b, 4a, 5a}, {1c, 6a, 7a},
{2b, 3b, 9a}, {2c, 3c, 9b}, {4b, 5b, 10a}, {4c, 5c, 10b}, {6b, 7b, 8a} and {6c, 7c, 8b} play the

complete graph strategy, and the remaining 13 vertices, which form a copy of Rc, to

play the strategy for Rc as described in the proof of Theorem. 12.

Now that we have shown that Conjecture 1 is not true, we turn our attention to other

open questions. Due to the limited tools and methods currently available, there are

many seemingly trivial problems on guessing games which still remain unsolved. One

such problem is the following.

Problem 3. Does there exist an undirected graph whose asymptotic guessing number

increases when a single directed edge is added?

Adding a directed edge gives one of the players more information, which cannot

lower the probability that the players win. However, surprisingly it seems extremely

difficult to make use of the extra directed edge to increase the asymptotic guessing

number. An exhaustive (but not completely rigorous) search on undirected graphs

with 9 vertices or less did not yield any examples.

As such, we significantly weaken the requirements in Problem 3 by introducing the

concept of a Superman vertex. We define a Superman vertex to be one that all other

vertices can see. I.e., given a digraph G, we call vertex u ∈ V (G) a Superman vertex

if uv ∈ E(G) for all v ∈ V (G) \ {u}. We can similarly define a Luthor vertex as one

which sees all other vertices. To be precise u is a Luthor vertex if vu ∈ E(G) for all

v ∈ V (G) \ {u}.
Problem 4. Does there exist an undirected graph whose asymptotic guessing number

increases when directed edges are added to change one of the vertices into a Superman

vertex (or a Luthor vertex)?

To change one of the vertices into a Superman or Luthor vertex will often involve

adding multiple directed edges, meaning the players will have a lot more information

64

at their disposal when making their guesses. We again searched all undirected graphs

on 9 vertices or less and remarkably still could not find any examples.

With the discovery of the graph R and in particular the graph Rc we can show the

answer is yes to Problem 3 and consequently Problem 4. We define the undirected

graph R−c to be the same as the graph Rc but with the undirected edge between

vertices 3 and 8 removed. We also define the directed graph R+
c to be the same as

R−c but with the addition of a single directed edge going from vertex 3 to vertex 8.

1

2

3

456

7

8

9 10

8’

9’ 10’

Figure 4.4: The graph R+
c .

Theorem 14. We have gn(R+
c) = 9.

Proof. The Shannon bound for R+
c is 9 (data files can be provided upon request).

We will prove gn(R+
c) ≥ 9 by observing that the strategy for (Rc, 3) (see the proof of

Theorem 12) is a valid strategy for (R+
c , 3). With the exception of player 3 all players

in (R+
c , 3) have access to the same information they did in (Rc, 3). Player 3 however,

now no longer has access to a8. By studying the strategy player 3 uses in (Rc, 3) we

will see that this is of no consequence. Summing conditions (4.1), (4.2), (4.4), and

twice (4.3), gives

a1 + 2a2 + a3 + 2a4 + 2a8′ + 2a9 ≡ 0 mod 3,

65

hence player 3 guesses −a1 − 2a2 − 2a4 − 2a8′ − 2a9 mod 3 in (Rc, 3). Since player 3

makes no use of a8 this validates our claims.

1

2

3

456

7

8

9 10

8’

9’ 10’

Figure 4.5: The digraph R−c .

Theorem 15. We have gn(R−c) = 53/6.

Proof. The Shannon bounds for R−c is 53/6 (data files can be provided upon request).

We complete our proof by showing gn(R−c) ≥ 53/6. We know gn(R−c) ≥ gn(R−c , 3
6) =

gn(R−c (6), 3)/6 so it is enough to show gn(R−c (6), 3) ≥ 53. Since R−c (6) had 78 vertices

we can do this by finding a strategy on (R−c (6), 3) that wins with a probability of

3−25. To this end, let us label the vertices of R−c (6) such that the six vertices that are

constructed from blowing up v ∈ V (R−c) are labelled va, vb, vc, vd, ve, and vf . Under

this labelling, our strategy for R−c (6) is to play the complete graph strategy on the

cliques

{1a, 2a, 3a}, {1b, 2b, 7a}, {1c, 3b, 4a}, {2c, 3c, 9′a}, {4b, 5a, 10′a},

{4c, 5b, 10′b}, {5c, 6a, 9′b}, {6b, 7b, 8a}, {6c, 7c, 8b}, {8c, 9′c, 10′c},

{8d, 9′d, 10′d}, {8e, 9′e, 10′e}, {8f , 9′f , 10′f},

66

and to play the Rc strategy on the vertices

{1d, 2d, 3d, 4d, 5d, 6d, 7d, 8′a, 8′b, 9a, 9b, 10a, 10b},

{1e, 2e, 3e, 4e, 5e, 6e, 7e, 8′c, 8′d, 9c, 9d, 10c, 10d},

{1f , 2f , 3f , 4f , 5f , 6f , 7f , 8′e, 8′f , 9e, 9f , 10e, 10f}.

The probability of winning in each of these 13 cliques is 3−1 while the probability of

winning in each of the three copies of Rc is 3−4. So the overall probability of winning

is indeed 3−25, therefore completing the proof.

4.2 Speeding up the computer search

In this section we mention a few of the simple tricks we used in order to speed up the

computer search which allowed us to search through all the 10 vertex graphs and find

the graph R. We hope that this may be of use to others continuing this research.

The majority of time spent during the searches was spent determining the Shannon

bound by solving a large linear program. By reducing the number of constraints that

we add to the linear program we can speed up the optimisation. Given a graph on

n vertices a naive formation of the linear program would result in considering all 23n

Shannon inequalities of the form

H(A,C) +H(B,C)−H(A,B,C)−H(C) ≥ 0 for A,B,C ⊂ XG.

However most of these do not need to be added to the linear program. In fact it is

sufficient to just include the inequalities given by the following lemma.

Lemma 8. Given a set of discrete random variables XG, the set of Shannon inequal-

ities

H(A,C) +H(B,C)−H(A,B,C)−H(C) ≥ 0 for A,B,C ⊂ XG,

is equivalent to the set of inequalities given by

1. H(Y) ≤ H(XG) for Y ⊂ XG with |Y | = |XG| − 1.

2. H(Y) + H(Z) − H(Y ∪ Z) − H(Y ∩ Z) ≥ 0 for Y, Z ⊂ XG with |Y | = |Z| =

|Y ∩ Z|+ 1.

Observe that for a graph on n vertices there are n inequalities of type (1) and n(n−
1)2n−3 inequalities of type (2). (Counting the inequalities of type (2) is equivalent

to counting the number of squares in the hypercube poset formed from looking at

67

the subsets of XG.) Overall, this is about the cube root of the initial number of

inequalities.

Proof of Lemma 8. Setting A = XG, B = XG, and C = Y , shows that the Shannon

inequalities imply the set of inequalities described by (1). Setting A = Y , B = Z,

and C = Y ∩ Z, shows that the Shannon inequalities imply (2).

To show (1) and (2) imply the Shannon inequalities we will first generalise (1) and

(2).

We will begin by showing that (2) implies

H(Y) +H(Z)−H(Y ∪ Z)−H(Y ∩ Z) ≥ 0

for any Y, Z ⊂ XG. Let Y \ (Y ∩ Z) = {Y1, Y2, . . . , Yn} and Z \ (Y ∩ Z) =

{Z1, Z2, . . . , Zm}, where Y1, . . . , Yn and Z1, . . . , Zm are single discrete random vari-

ables. Define Y ′i to be {Y1, . . . , Yi} for 1 ≤ i ≤ n and Y ′0 = ∅. We define Z ′i similarly.

Finally let Xi,j = (Y ∩Z)∪Y ′i ∪Z ′j, and note that X0,0 = Y ∩Z, Xn,0 = Y , X0,m = Z,

and Xn,m = Y ∪ Z. By (2) we have

0 ≤
n−1∑
i=0

m−1∑
j=0

[H(Xi+1,j) +H(Xi,j+1)−H(Xi+1,j+1)−H(Xi,j)].

Here, the right hand side is telescopic and simplifies to the desired expression

H(Y) +H(Z)−H(Y ∪ Z)−H(Y ∩ Z).

Next we will generalise (1) to show that for any Y ⊂ Z ⊂ XG with |Y | = |Z| − 1 we

have H(Y) ≤ H(Z). Let us define Z to be XG \ Z. Then, by the generalised version

of (2) we know that

H(Z) +H(Y ∪ Z)−H(Z ∪ (Y ∪ Z))−H(Z ∩ (Y ∪ Z)) ≥ 0

which simplifies to

H(Z) +H(Y ∪ Z)−H(XG)−H(Y) ≥ 0. (4.5)

Observe that |Y ∪ Z| = |XG| − 1, so (1) tells us that H(XG)−H(Y ∪ Z) ≥ 0 which

when added to (4.5) gives the inequality H(Z)−H(Y) ≥ 0 as required.

We can now further generalise (1) to show that for any Y ⊂ Z ⊂ XG we have that

H(Y) ≤ H(Z). To do this, let Z \ Y = {Z1, Z2, . . . , Zn}, where Z1, . . . , Zn are single

68

discrete random variables. Then, by repeated applications of our generalisation of (1)

we have

H(Y) ≤ H(Y, Z1) ≤ H(Y, Z1, Z2) ≤ · · · ≤ H(Y, Z1, . . . , Zn) = H(Z).

It is now a trivial matter to show that (1) and (2) imply Shannon’s inequality. Simply

set Y = A ∪ C and Z = B ∪ C in the generalised version of (2) to get

H(A,C) +H(B,C)−H(A,B,C)−H(A ∩B,C) ≥ 0

and since H(A∩B,C) ≥ H(C) by the improved version of (1), the result follows.

It is also worth mentioning that H(∅) = 0 together with the Shannon inequalities

imply H(Y, Z) ≤ H(Y) +H(Z) for disjoint Y, Z. Hence, the constraints H(X) ≤ |X|
for all X in the Shannon bound linear program are not all necessary and can be

reduced to H(X) ≤ |X| for |X| = 0, or 1.

When determining each graph’s asymptotic guessing number, the natural approach is

to calculate the lower bound using the fractional clique cover number, then calculate

the Shannon bound and check if they match. However the linear program that gives us

the fractional clique cover number also gives us a regular fractional clique cover from

which an explicit strategy can be constructed. It is easy to convert this strategy into

a feasible point of the Shannon bound linear program. Hence we can save a significant

amount of time by simply checking if this feasible point is optimal, rather than by

calculating the Shannon bound from scratch. Note that we check for optimality by

solving the same Shannon bound linear program with the modification that we remove

those constraints for which equality is not achieved by the feasible point.

The modified Shannon bound linear program is still the most time consuming process

in the search, so ideally we would like to avoid it when possible. Christofides and

Markström [28] show that for an undirected graph G

gn(G) ≤ |V (G)| − α(G),

where α(G) is the number of vertices in the maximum independent set. This can be

interpreted as a simple consequence of the fact that removing players increases the

probability the remaining players will win. (If the probability of winning decreased,

the players could just create fictitious replacement players before the game started.)

As such we present a simple generalization of this result.

69

Lemma 9. Given a digraph G and an induced subgraph G′,

max
F

P[Win(G, s,F)] ≤ max
F

P[Win(G′, s,F)]

or equivalently gn(G, s) ≤ |V (G)| − |V (G′)|+ gn(G′, s). Hence

gn(G) ≤ |V (G)| − |V (G′)|+ gn(G′).

This lemma is based on a simple fact that we can convert all guessing strategies played

on G into strategies played on induced subgraph G′ by assuming the assigned values

for vertices of G living outside of G′ are 0. The conclusion follows. Note that the

result gn(G) ≤ |V (G)| − α(G) is a simple corollary of this result as an independent

set has a guessing number of 0.

Given a graph G, if we can find a subgraph such that the upper bound given in

Lemma 9 matches the fractional clique cover bound, then we have determined the

asymptotic guessing number, and can avoid an expensive Shannon bound calculation.

This approach is particularly fast when doing an exhaustive search as all the smaller

graphs will have had their asymptotic guessing numbers already determined.

One issue with this method is that if we are looking for a counterexample to the

Shannon bound being sharp, there is a possibility that we may miss them because we

avoided calculating the Shannon bound for every graph. Consequently to alleviate

our fear we need the following result.

Lemma 10. Given a digraph G and an induced subgraph G′, we have

Sh(G) ≤ |V (G)| − |V (G′)|+ Sh(G′).

Proof. It is sufficient to prove the result only for induced subgraphs G′ for which

|V (G)| − |V (G′)| = 1, as the result then follows by induction on |V (G)| − |V (G′)|.
Let u ∈ V (G) be the vertex that is removed from G to produce G′.

The Shannon bound for G′ comes from solving a linear program, and as such the

solution to the dual program naturally gives us a proof that H(XG′) ≤ Sh(G′). In

particular, this proof consists of summing appropriate linear combinations of the

constraints. Suppose that in each such contraint we replace H(X) with H(X,Xu)−
H(Xu) for every X ⊂ XG′ . This effectively would replace constraints from the linear

program for G′ with inequalities which are implied from the linear program for G. For

example, H(X) ≥ 0 for G′, would become H(X,Xu)−H(Xu) ≥ 0 for G (which is true

by Shannon’s inequality). As another example, H(X) ≤ |X| becomes H(X,Xu) −

70

H(Xu) ≤ |X| (which is true as H(X,Xu) ≤ H(X) + H(Xu) ≤ |X| + H(Xu)). This

shows that all constraints in Theorem 10 of types (1) and (2) can be replaces as

claimed. The same happens for constraints of types (3) and (4). Consequently,

under this transformation, the proof that H(XG′) ≤ Sh(G′) becomes a proof that

H(XG)−H(Xu) ≤ Sh(G′). Since H(Xu) ≤ 1 the result immediately follows.

We have seen that by removing vertices from a graph G we make the game easier

allowing us to upper bound gn(G). Another way we can make the game easier is by

adding extra edges to G. Consequently we can avoid the Shannon bound calculation

by also using the asymptotic guessing number of supergraphs of G which have the

same number of vertices as G.

We end this section by considering the problem of how to calculate the non-Shannon

bounds, i.e. the Zhang-Yeung bound, the Dougherty-Freiling-Zeger bound, and the

Ingleton bound. They all involve inequalities on 4 variables and consequently a naive

approach is to add at least 24n inequalities to the linear program, where n is the order

of the graph. Unfortunately such a linear program is far too large to be computa-

tionally feasible. Our approach is given by the following algorithm:

• Let C be the set of Shannon bound constraints.

• Solve the linear program which consists only of constraints C.

• Check if the solution satisfies all required 4 variable information inequalities (e.g.

the Zhang-Yeung inequalities if we are calculating the Zhang-Yeung bound).

– If all the inequalities are satisfied then terminate, returning the objective

value.

– If one of the inequalities is not satisfied add this constraint to C and go

back to 4.2.

We note that due to the large number of inequalities, Step 4.2 can take a while. So it

is advisable to add some extra constraints to the linear program to limit the search to

a solution which is symmetric under the automorphisms of the graph (there always

exists such a solution due to the linearity of the problem). This extra symmetry can

be used to avoid checking a significant proportion of the inequalities in Step 4.2.

71

4.3 Triangle-free graphs with large guessing num-

ber

In the previous section, we have seen that the fractional clique cover strategy conjec-

ture does not hold for our graph R and its variation. However, we have noticed that

the graph R contains at least one triangle, i.e. clique of size 3. A natural question is

that if we forbid the appearance of triangle in undirected graph, then is the fractional

clique cover the best guessing strategy for our undirected graphs? In other words,

Conjecture 5. If G is an undirected triangle-free graph then

gn(G) = |V (G)| − κf (G).

Recall Lemma 6 that: for any undirected graph G

κf (G) ≥ |V (G)|
ω(G)

,

where ω(G) is the number of vertices in a maximum clique in G.

Therefore, for any triangle-free graph G, we have a simple bound for κf (G):

Corollary 3. For triangle-free graph G, the κf (G) ≥ |V (G)|/2.

We will show in this section that there are triangle-free graphs for which the asymp-

totic guessing gn(G) of G is strictly greater than |V (G)|/2. Combining this with

Corollary 3, we will prove that the answer to the Conjecture 5 is negative. Before

illustrating our results, we need to introduce the following definition:

Definition 16. Given graph G = (V,E) of order n, we say a square matrix M of

order n with entries selected from a finite field Fq of q elements with rows and columns

indexed by vertices i ∈ V (G) represents G over Fq if the diagonal entries of M are

non-zero and the non-diagonal entries mij are 0 whenever ij 6∈ E(G).

Let M be a representing matrix of G over Fq. We can form a guessing strategy for

(G, q) by asking each player i to adapt an assumption that the assigned values of

itself and every player in its neighbourhood are taken from Fq and satisfy a linear

equation

miixi +
∑
j∈Γ(i)

mijxj = 0

where xi, xjs are assigned values of players i, js, and coefficients mii and mij are the

(i, i)-th and (i, j)-th entries of M . Then the value of xi produced by this strategy is

xi = m−1
ii

∑
j∈Γ(i)

mijxj,

72

which is well-defined since mi 6= 0 by assumption.

The guessing game (G, q) is won by adopting strategy M if the assigned values X =(
x1 x2 · · · xn

)>
give a solution of a system of linear equations MX = 0 defined

over Fq.
gn(G, q,M) = logq |{X ∈ Fnq |MX = 0}| = n− rkFq(M) (4.6)

We note that MX = 0 always has a trivial solution X = 0 hence logq |{X ∈
Fnq |MX = 0}| is well defined.

The value n− rkFq(M) is a valid lower-bound of gn(G), i.e.

gn(G) ≥ gn(G, q,M) = n− rkFq(M).

It is clear that we can disprove Conjecture 5 by constructing a triangle-free graph

that has a representation matrix M with rkFq(M) < |V (G)|/2 over some finite field

Fq.
Definition 17. A Steiner system S(t, k, n) is a family of k-element subsets of {1, 2, . . . , n} =:

[n] with the property that each t-element subset of [n] is contained in exactly one el-

ement of S(t, k, n). Elements of S(t, k, n) are called blocks, and elements of [n] are

referred to as points.

For more information about Steiner systems, and the particular system used here, we

refer to [24, Chapter 1].

The following proposition plays a crucial role in our construction:

Proposition 5. The Steiner system S(3, 6, 22) has the following properties:

(a) S(3, 6, 22) contains 77 blocks.

(b) Any two blocks in S(3, 6, 22) intersect in zero or two points.

(c) No three blocks in S(3, 6, 22) are disjoint.

(d) Each point is contained in exactly 21 blocks.

Proof. (a) We simply count the number of blocks containing a fixed set of points.

Given two points i, j in [n], there are 20 choices of the third point k ∈ [n]\{i, j} to

form a group of 3 points. By definition, any 3 points of [n] belongs to exactly one

block, hence there are exactly 20 blocks containing both two fixed points i and j.

Let B and C be two blocks containing both i and j. We have B ∩ C = {i, j} and

there are 4 points in B other than i and j, so there are 20/4 = 5 blocks that contain

both i and j.

73

Now we fix one point i in [n]. There are 21 pairs of [n] containing i and if x is a block

that contains i then it also contains 5 pairs of [n] containing i, hence each point i of

[n] belongs to 21 · 5/5 = 21 blocks.

We repeat our argument for zero point of [n] and we derive that there are 22·21/6 = 77

blocks of S(3, 6, 22).

(b) We see in the first part that each point in S(3, 6, 22) belongs to 21 different blocks.

If we fix a point p, then there are 21 points q 6= p, and each of these points belongs

to 5 blocks that containing p. The system of 21 blocks on 21 points satisfies the

following properties:

(i) For every two distinct points q, l 6= p, there is exactly one block that contains

both points (by definition of S(3, 6, 22)).

(ii) Let B be a block in the set of 21 blocks containing p. For each point q 6= p in

B, there are exactly 5 blocks contains q including B (from (i)). Moreover, it is

clear that for any two distinct points q, l which are different from p, the set of

blocks containing q and the set of blocks containing l share B as their unique

common element. Since B is arbitrarily, this shows that for any two blocks B

and C in the set of 21 blocks containing a fixed point p, B and C intersect at

exactly one point beside p.

(iii) Let B be a block that contains the fixed point p. We choose other 3 points

q, k, l in B and a point h that does not belong to B. The set of four points

{q, k, l, h} obviously cannot be contained in one single block of the 21 blocks

having p as their element.

Hence these 21 blocks on 21 points form a projective plane where each block is a line

in this plane. A corollary is that any two blocks that contain a fixed point p must

also contain another point q. This proves that any two blocks in S(3, 6, 22) either

intersect in zero or two points.

(c) We fix a block B ∈ S(3, 6, 22). There are 16 points that are not in B. Moreover,

for every two distinct pairs of points of B, the set of blocks containing one pair and

the set of blocks containing the other pair share B as their unique common element.

Therefore, there are exactly 60 blocks having non-empty intersection with B. This

leaves 16 blocks that have empty intersection with B. From (b) we know that any two

blocks must intersect in zero or two points, this makes the 16 points and 16 blocks

74

a symmetric balanced incomplete block design (BIBD) (16, 6, 2). It follows from the

property of symmetric BIBD that any two blocks intersect in 2 points.

(d) This is already proved in part (a).

Theorem 16. There exists an undirected triangle-free graph G on 100 vertices with

gn(G) ≥ 77.

Proof. We define the vertex set of the graph G to be 22 points plus 77 blocks of the

Steiner system S(3, 6, 22) plus an extra point {∞}. There is an edge between two

vertices u and v if one of the following conditions is satisfied:

• u is {∞}, and v is a point.

• u is a point and v is a block which contains u as an element.

• u and v are blocks of S(3, 6, 22) and u ∩ v = ∅.

According to the previous proposition, the graph obtained form our construction is

triangle-free. It remains to show that there is a matrix representing G with rank less

than 50 over some finite field Fq.

The chosen matrix is A+I where A is the adjacency matrix of G and I is the identity

matrix of order 100. The rank of the matrix A + I is 23 over the finite field F3 (see

the next Proposition).

In this graph, the size of the maximal independent set is 22 (and the independent sets

of size 22 are the vertex neighbourhoods), hence the guessing number of this graph

is at most 78.

The constructed graph is in fact the Higman–Sims graph [52], which is a strongly

regular triangle-free graph with parameters (100, 22, 6). The Higman-Sims graph was

first introduced by Dale Mesner in his 1956 PhD thesis [77]; see [61] for a historical

account.

Proposition 6. If A is the adjacency matrix of the Higman–Sims graph, then the

rank of A+ I over F3 is 23.

Proof. Let rv be the row of B = A+I corresponding to vertex v. We write the vertex

set as {∞} ∪X ∪ Y , where X and Y are the neighbours and non-neighbours of ∞.

Consider the 22 vectors rx for x ∈ X. Since the graph is triangle-free, the restriction

of rx to the coordinates in X has a one in position x and zeros elsewhere; so these 22

vectors are linearly independent. Take the 23rd vector to be the all-1 vector j. Note

75

that j is not in the span of the first 22. For if it were, it would have to be their sum

(looking at the restriction to X. But the sum of the rx has coordinate 22 ≡ 1 mod 3

at ∞, 1 at each point of X, and 6 ≡ 0 mod 3 at each point of Y ; that is, it is r∞.

So our 23 vectors are linearly independent. Also, they are all contained in the row

space of B. (This is clear for the rx; also the sum of all the vectors rv is 2j, since all

column sums of B are 23 ≡ 2 mod 3, so j is also in the row space.

We claim that they span the row space. It is clear that their span contains all rx

for x ∈ X, and we just showed that it contains r∞. Take a vertex y ∈ Y . Consider

the sum of the vectors rx for the 16 vertices x ∈ X which are not joined to y. This

has coordinate 16 ≡ 1 mod 3 at ∞, 0 at points of X joined to y, and 1 at points

of X not joined to y. The coordinate at y is zero. If y′ is joined to y, then the six

neighbours of y′ in X are a subset of the 16 points not joined to y, so the coefficient

at y′ is 6 ≡ 0 mod 3. If y′ is not joined to y, then y′ is joined to two neighbours of y

in X and to four non-neighbours, so the coefficient at y′ is 4 ≡ 1 mod 3. Thus the

sum of our sixteen vectors is j − ry, showing that ry lies in the span of our 23 chosen

vectors.

Notice incidentally that B2 = 2B, so that the minimum polynomial of B is the

product of distinct linear factors, so B is diagonalisable.

We also found other strongly regular triangle-free graphs which have guessing number

larger than the lower bound given by fractional clique cover. See [24, Chapter 8] for

further details about these graphs.

Proposition 7. The following triangle-free graphs on n vertices have their guessing

number larger than n/2:

(a) The Clebsch graph on 16 vertices has 10 ≤ gn(G) ≤ 11.

(b) The Hoffman–Singleton graph on 50 vertices has 29 ≤ gn(G) ≤ 35.

(c) The Gewirtz graph on 56 vertices has 36 ≤ gn(G) ≤ 40.

(d) The M22 graph on 77 vertices has 55 ≤ gn(G) ≤ 56.

(e) The Higman-Sims graph on 100 vertices has 77 ≤ gn(G) ≤ 78.

The triangle-free graphs presented in Proposition 7 are strongly regular graph with

parameters (n, k, λ, µ) where n is the number of vertices, k is the degree, λ is the

number of common neighbours of every two adjacent vertices, and µ is the number

of common neighbours of every two non-adjacent vertices.

76

Proof. The upper bound for the guessing number derived for these graphs is gn(G) ≤
|V (G)| − α(G) where α(G) is the independence number [82]. The independence

numbers of the Clebsch graph, the Hoffman–Singleton graph, and the Gewirtz graph

are 5, 15, and 16, respectively [18]. The independence number of the M22 graph is

21, as shown below.

(a) The Clebsch graph is a triangle-free strongly regular graph with parameters

(16, 5, 0, 2) which is constructed as follows: We start with a finite set S = {1, 2, 3, 4, 5}.
The set V contains all subsets of size 1, and 2 of S, and V also contains an extra

single point set {∗}. We form the (16, 5, 0, 2) graph with vertex set V and an edge

between two vertices u and v if one of the following conditions is satisfied:

• u is {∞}, and v is a subset of S with cardinal 1.

• u is a subset of S with cardinal 1, v is a subset of S with cardinal 2, and u is a

subset of v.

• u and v are subsets of S with cardinal 2, and u intersect v is empty.

We have the rank of the matrix A + I is 6 over finite field F2. A basis of A + I is

{j} ∩ {rv|v ∈ Γ(∞)}, where rv is the row of A+ I corresponding to vertex v and j is

the all–1 vector.

(b) The Hoffman-Singleton graph which is triangle-free strongly regular with param-

eters (50, 7, 0, 1) has one way of construction as follows: We take five 5-cycles Ch and

their complements Cc
i , and we join vertex j of Ch to vertex hi+ j mod 5 of Cc

i . This

construction is due to Conway. The rank of the matrix A + 3I over finite field F5 is

211. A basis for this matrix over F5 is recorded in the file Basis.txt which can be

downloaded from https://www.eecs.qmul.ac.uk/~smriis/. This file also includes

a description for coordinates of each row in A+ 3I over F5 with respect to the given

basis.

(c) The Gewirtz graph with parameters (56, 10, 0, 2) can be constructed from the

S(3, 6, 22) by fixing an element and let the vertices be the 56 blocks not containing

that element. Two vertices are adjacent if the intersection of their corresponding

blocks is empty. The rank of the matrix A + I over finite field F3 is 20. A basis for

this matrix over F3 is recorded in the file Basis.txt.

1Brouwer and Van Eijl derived the same result for A + 3I over F5 [19, pages 340, 341] using
eigenvalue method.

77

Basis.txt
https://www.eecs.qmul.ac.uk/~smriis/
Basis.txt

(d) The triangle-free strongly regular graph M22 with parameters (77, 16, 0, 4) which

can be constructed by let the 77 blocks of S(3, 6, 22) be the vertices of the graph, and

an edge uv between two vertices u and v if u and v are disjoint as blocks. Note that

this is the induced subgraph of the Higman–Sims graph on the set of non-neighbours

of ∞.

To see that its independence number is 21, note that the vertices other than ∞ non-

adjacent to a vertex in X in the Higman–Sims graph form an independent set of

size 21; and there is no larger independent set, since all independent sets of size 22 in

the Higman–Sims graph are vertex neighbourhoods.

The rank of A+ I over finite field F3 is 22. A basis for this matrix over F3 is recorded

in the file Basis.txt.

(e) Theorem 16.

Remark 6. For a more extensive list of computations of ranks of matrices A+kI over

Fq for q = 2, 3, 5, 7 see EBasis.zip at https://www.eecs.qmul.ac.uk/~smriis/.

78

Basis.txt
EBasis.zip
https://www.eecs.qmul.ac.uk/~smriis/

Chapter 5

Shannon and Non-Shannon
Information Bounds

5.1 Graphs with guessing numbers matching Shan-

non bounds

In this section, we derive the exact guessing number of some new families of undirected

graphs.

5.1.1 Primarily

Firstly, let us introduce a definition concerning sum of two undirected graphs which

will be used throughout this section. Our definition mimics the definition the wedge

sum of two spaces established in the context of topology.

Definition 18. Let G, H be undirected graphs with vertex sets V (G) = {v1, v2, . . . , vn}
and V (H) = {u1, u2, . . . , um} respectively. We define a wedge sum

K := G
∨

vi1≡uj1 ,...,vik≡ujk

V

to be an undirected graph with the following data:

• V (K) is a quotient set of the disjoint union of V (G) and V (H) by the identifi-

cation vi1 ∼ uj1 , . . . , vik ∼ ujk .

• (u, v) ∈ E(K) if and only if (u, v) is either an edge of G or H.

79

All undirected graphs presented in this section have their guessing numbers obtained

using the fractional clique cover strategy. A special case of this strategy is the clique

cover strategy which is defined as follows:

Let G be an undirected graph with vertex set V . We can partition V (G) into vertex

disjoint cliques V1, . . . , Vk. When we play a guessing game (G, s), a strategy, which

each group of players corresponding to a clique Vi follows the clique strategy described

in 3.1, is a proper guessing strategy.

Definition 19. [28] The clique cover number κ(G) of an undirected graph G is the

minimum cardinality of a clique cover of G.

Note that the complement of a clique is an independent set, hence a clique cover of

G induce a proper vertex colouring of Gc-the complement of G. Therefore, κ(G) =

χ(Gc).

The following fact can be deduced from our definition of clique cover number:

Proposition 8. [28]

1. For every graph G and every positive integer s, gn(G, s) > |V (G)| − κ(G).

2. For every graph G and every positive integer s, gn(G, s) ≤ n−α(G) where α(G)

denotes the independence number of G.

If G satisfies that α(G) = κ(G), then, following the previous proposition, we have

gn(G) = n− α(G). The class of perfect graphs introduced by Berge [10] is a natural

class which satisfies this property. A graph is said to be perfect if χ(H) = ω(H) for

all induced subgraphs H of G.

Corollary 4. [28] If G is perfect then

gn(G) = n− α(G).

Proof. By Lovász’s perfect graph theorem [70], we know that a graph is perfect if and

only if its complement is perfect.

We have α(G) = ω(Gc) = χ(Gc) = κ(G).

Remark 7. The strong perfect graph theorem [29] tells us that a graph is perfect if

and only if it does not contain an odd hole (odd-length induced cycle of length greater

than 4) or an odd antihole (complement of an odd hole of length greater than 4).

When G is not perfect, we will try to compute an upper-bound of gn(G) using infor-

mation inequalities and graph constraints. Recall that for each v ∈ V (G), we define

80

the discrete random variable Xv on the probability space on the set of all assignment

tuples A
|V (G)|
s to be the value assigned to vertex v. The associated entropy value of

Xv is denoted H(Xv).

Follow the discussion in Section 3.5, we have the following proposition characterizing

the information upper-bound of guessing number:

Proposition 9. Let G = (V,E) be an undirected graph with V = {1, 2, . . . , n}. Given

X, Y, Z ⊂ XG = {X1, . . . , Xn},

positivity H(X) ≥ 0.

normality H(X) ≤ |X|.

submodularity Shannon’s information inequality:

H(X,Z) +H(Y, Z)−H(X, Y, Z)−H(Z) ≥ 0.

graph constraints Suppose A,B ⊂ V (G) with Γ−(u) ⊂ B for all u ∈ A. Let X = {Xv : v ∈ A}
and Y = {Xv : v ∈ B}. Then

H(X, Y) = H(Y).

Proposition 9 describes a linear program to upper bound H(XG). In particular the

linear program consists of 2|V (G)| variables corresponding to the values of H(X) for

each X ⊂ XG. The variables are constrained by the linear inequalities given in

Proposition 9 and the objective is to maximize the value of the variable corresponding

to H(XG). We call the result of the optimization the Shannon bound of G and denote

it by Sh(G).

All calculations in this section will explicitly use the linear program described above.

To ease the notation, we write H(I) for H(XI), and H(G) for H(XG) where I is a

subset of vertices of V (G).

Now we are ready to compute the guessing numbers of some families of undirected

graphs.

Remark 8. Unless otherwise stated, we always assume that our graphs are triangle-

free.

81

5.1.2 The guessing number of a Theta graph

Definition 20. Let Cm be them-cycle undirected graph with vertex set {1, 2, . . . , k, k+

1, . . . ,m}, and Ph be the path graph of order h with vertex set {1′, 2′, . . . , h′}. A theta

graph (l,m, h) is a planar triangle-free undirected graph which is isomorphic to the

graph K := Cm
∨

1≡1′,k≡h′ Ph.

Figure 5.1: The undirected Theta graph.

Theorem 17. Let G be a theta graph (l,m, h) of order n := m+h− 2. The guessing

number of G is

gn(G) =
n

2
.

Proof. Since G is triangle-free, the fractional clique cover strategy provides a lower

bound n
2
≤ gn(G) by Lemma 6. Therefore, all we need to show is gn(G) ≤ Sh(G) = n

2
.

To compute Sh(G), we will break the computation into four cases:

1. n is even and h is even.

2. n is even and h is odd.

3. n is odd and h is even.

4. n is odd and h is odd.

The first case is straightforward. If both n and h are even numbers, then G is a perfect

graph, and the result follows from our Corollary 4. The second case is established in

Lemma 11. The third and fourth cases are proved in Lemma 12 illustrated below.

82

Lemma 11. Let G be a theta graph (l,m, h) of even order n := m+h−2. Moreover,

we assume that h is an odd integer. The guessing number of G is

gn(G) =
n

2
.

Proof. The graph constraints give us the following equalities:

• H(1|2,m, 2′) = 0,

• H(i|i− 1, i+ 1 mod m) = 0 for i ∈ {2, 3, . . . , k − 1, k + 1, . . . ,m},

• H(k|k − 1, k + 1, (h− 1)′) = 0,

• H((i)′|(i− 1)′, (i+ 1)′) = 0 for 2 ≤ i ≤ h− 1. (Note that 1′ ∼ 1 and k ∼ h′.)

In particular, if k is odd, we have:

H(G) = H(G|1, 3, 5, . . . , k, k + 2, . . . ,m, 3′, 5′, . . . , (h− 2)′)

+H(1, 3, 5, . . . ,m, 3′, 5′, . . . , (h− 2)′) (conditional entropy)

= H(1, 3, 5, . . . ,m, 3′, 5′, . . . , (h− 2)′) (graph constraints)

≤ |{1, 3, 5, . . . ,m, 3′, 5′, . . . , (h− 2)′}| (normality)

= n/2 = Sh(G).

If k is even, we have:

H(G) = H(G|1, 3, 5, . . . ,m, 2′, 3′, . . . (h− 1)′) (5.1)

+H(1, 3, 5, . . . ,m, 2′, 3′, . . . (h− 1)′) (c.e.) (5.2)

= H(1, 3, 5, . . . ,m, 2′, 3′, . . . (h− 1)′) (g.c.) (5.3)

≤ H(1,m, 2′, 3′, . . . , (h− 1)′) (5.4)

+H(3, 5, . . . ,m− 2) (submodularity) (5.5)

≤ H(1,m, 2′, 3′, . . . , (h− 1)′) (5.6)

+ |{3, 5, . . . ,m− 2}| (n.) (5.7)

= H(1,m, 2′, 3′, . . . , (h− 1)′) +
m− 3

2
. (5.8)

83

Similarly,

H(G) = H(G|1, 2, 4, . . . ,m− 1,m, 2′, 3′, . . . , (h− 1)′) (5.9)

+H(1, 2, 4, . . . ,m− 1,m, 2′, 3′, . . . , (h− 1)′) (c.e.) (5.10)

= H(1, 2, 4, . . . ,m− 1,m, 2′, 3′, . . . , (h− 1)′) (g.c.) (5.11)

≤ H(1, 2, k,m− 1,m, 2′, 3′, . . . , (h− 1)′) (5.12)

+H(4, 6, . . . , k − 2, k + 2, k + 4, . . . ,m− 3) (s.) (5.13)

≤ H(1, 2, k,m− 1,m, 2′, 3′, . . . , (h− 1)′) (5.14)

+ |{4, 6, . . . , k − 2, k + 2, k + 4, . . . ,m− 3}| (n.) (5.15)

= H(1, 2, k,m− 1,m, 2′, 3′, . . . , (h− 1)′) +
m− 7

2
. (5.16)

Adding 5.8 and 5.16 we get that:

2H(G) ≤ H(1,m, 2′, 3′, . . . , (h− 1)′)

+H(1, 2, k,m− 1,m, 2′, 3′, . . . , (h− 1)′)

+
m− 3

2
+
m− 7

2
≤ H(1, 2,m, 2′, 3′, . . . , (h− 1)′)

+H(1,m− 1,m, k, 2′, 3′, . . . , (h− 1)′)

+
m− 3

2
+
m− 7

2
(s.)

= H(1, 2,m, 2′, 3′, . . . , (h− 1)′|2, 15, 2′, 4′, 6′, . . . , (h− 1)′)

+H(2,m, 2′, 4′, 6′, . . . , (h− 1)′)

+H(1,m− 1,m, k, 2′, 3′, . . . , (h− 1)′|1,m− 1, k, 3′, 5′, . . . , (h− 2)′)

+H(1,m− 1, k, 3′, 5′, . . . , (h− 2)′)

+m− 5. (c.e.)

= H(2,m, 2′, 4′, 6′, . . . , (h− 1)′)

+H(1,m− 1, k, 3′, 5′, . . . , (h− 2)′)

+m− 5. (g.c.)

≤ |{2,m, 2′, 4′, 6′, . . . , (h− 1)′}|

+ |{1,m− 1, k, 3′, 5′, . . . , (h− 2)′}|

+m− 5. (n.)

= n.

Therefore, Sh(G) = n/2.

84

Lemma 12. Let G be a theta graph (l,m, h) of odd order n := m + h − 2. The

guessing number of G is

gn(G) =
n

2
.

Proof. Since G has an odd order, we know that within the three cycles

• {1, 2, . . . , k − 1, k, k + 1, . . . ,m},

• {1, 2, . . . , k − 1, k, (h− 1)′, (h− 2)′, . . . , (2)′},

• and {1, (2)′, . . . , (h− 1)′, k, k + 1, . . . ,m}

at least one of them has odd length. Applying graph isomorphism, we can always

assume that m is odd.

The graph constraints give us the following equalities:

• H(1|2,m, 2′) = 0,

• H(i|i− 1, i+ 1 mod m) = 0 for i ∈ {2, 3, . . . , k − 1, k + 1, . . . ,m},

• H(k|k − 1, k + 1, (h− 1)′) = 0,

• H((i)′|(i− 1)′, (i+ 1)′) = 0 for 2 ≤ i ≤ h− 1. (Note that 1′ ∼ 1 and k ∼ h′.)

If k is odd, we have:

H(G) = H(G|1, 3, 5, . . . ,m− 2,m, 2′, 4′, . . . , (h− 2)′) (5.17)

+H(1, 3, 5, . . . ,m− 2,m, 2′, 4′, . . . , (h− 1)′) (c.e.) (5.18)

= H(1, 3, 5, . . . ,m− 2,m, 2′, 4′, . . . , (h− 1)′) (g.c.) (5.19)

≤ H(1,m, 2′) (5.20)

+H(3, 5, . . . ,m− 2, 4′, 6′, . . . , (h− 1)′) (s.) (5.21)

≤ H(1,m, 2′) (5.22)

+ |{3, 5, . . . ,m− 2, 4′, 6′, . . . , (h− 1)′}| (n.) (5.23)

= H(1,m, 2′) +
n+ 1

2
− 3. (5.24)

85

Likewise, we have

H(G) = H(G|1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 3′, 5′, . . . , (h− 1)′) (5.25)

+H(1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 3′, 5′, . . . , (h− 1)′) (c.e.) (5.26)

= H(1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 3′, 5′, . . . , (h− 1)′) (g.c.) (5.27)

≤ H(1, 2,m− 1,m, 2′, 3′) (5.28)

+H(4, 6, . . . ,m− 3, 5′, 7′, . . . , (h− 1)′) (s.) (5.29)

≤ H(1, 2,m− 1,m, 2′, 3′) (5.30)

+ |{4, 6, . . . ,m− 3, 5′, 7′, . . . , (h− 1)′}| (n.) (5.31)

= H(1, 2,m− 1,m, 2′, 3′) +
n+ 1

2
− 4 (5.32)

Adding 5.24 and 5.32 we get that

2H(G) ≤ H(1,m, 2′) +H(1, 2,m− 1,m, 2′, 3′) + n− 6

≤ H(m, 2′, 1, 2) +H(m− 1,m, 2′, 3′, 1) + n− 6 (s.)

= H(m, 2′, 1, 2|m, 2′, 2) +H(m, 2′, 2)

+H(m− 1,m, 2′, 3′, 1|m− 1, 1, 3′) +H(m− 1, 1, 3′)

+ n− 6 (c.e.)

= H(m, 2′, 2) +H(m− 1, 3′, 1) + n− 6 (g.c.)

≤ |{m, 2′, 2}|+ |{m− 1, 3′, 1}|+ n− 6 (n.)

= n.

Therefore, Sh(G) = n/2.

If k is even, we have that

H(G) = H(G|1, 3, 5, . . . ,m− 2,m, 3′, 5′, . . . , (h− 1)′) (5.33)

+H(1, 3, 5, . . . ,m− 2,m, 3′, 5′, . . . , (h− 1)′) (c.e.) (5.34)

= H(1, 3, 5, . . . ,m− 2,m, 3′, 5′, . . . , (h− 1)′) (g.c.) (5.35)

≤ H(1,m) (5.36)

+H(3, 5, . . . ,m− 2, 3′, 5′, . . . , (h− 1)′) (s.) (5.37)

≤ H(1,m) (5.38)

+ |{3, 5, . . . ,m− 2, 3′, 5′, . . . , (h− 1)′}| (n.) (5.39)

= H(1,m) +
n+ 1

2
− 2. (5.40)

86

Likewise, we have

H(G) = H(G|1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 4′, 6′, . . . , (h− 2)′) (5.41)

+H(1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 4′, 6′, . . . , (h− 2)′) (c.e.) (5.42)

= H(1, 2, 4, 6, . . . ,m− 3,m− 1,m, 2′, 4′, 6′, . . . , (h− 2)′) (g.c.) (5.43)

≤ H(1, 2,m− 1,m, 2′) (5.44)

+H(4, 6, . . . ,m− 3, 4′, 6′, . . . , (h− 2)′) (s.) (5.45)

≤ H(1, 2,m− 1,m, 2′) (5.46)

+ |{4, 6, . . . ,m− 3, 4′, 6′, . . . , (h− 2)′}| (n.) (5.47)

= H(1, 2,m− 1,m, 2′) +
n+ 1

2
− 4 (5.48)

Adding 5.40 and 5.48 we get that

2H(G) ≤ H(1,m) +H(1, 2,m− 1,m, 2′) + n− 5

≤ H(m, 2′, 1, 2) +H(m− 1,m, 1) + n− 5 (s.)

= H(m, 2′, 1, 2|m, 2′, 2) +H(m, 2′, 2)

+H(m− 1,m, 1|m− 1, 1) +H(m− 1, 1)

+ n− 5 (c.e.)

= H(m, 2′, 2) +H(m− 1, 1) + n− 5 (g.c.)

≤ |{m, 2′, 2}|+ |{m− 1, 1}|+ n− 5 (n.)

= n.

Therefore, Sh(G) = n/2.

Remark 9. The guessing number of Theta graph was independently computed by

Christofides and Markström (private communication).

5.1.3 The guessing number of a lollipop graph

Definition 21. Let Cm be them-cycle undirected graph with vertex set {1, 2, . . . , k, k+

1, . . . ,m}, and Ph be the path graph of order h with vertex set {1′, 2′, . . . , h′}. A

lollipop graph (m,h) is a planar triangle-free undirected graph which is isomorphic to

the graph K := Cm
∨

1≡1′ Ph.

Theorem 18. Let G be a lollipop graph (m,h) of order n := m+h−1. The guessing

number of G is

gn(G) =
n

2
.

87

Figure 5.2: The Lollipop graph.

Proof. Since G is triangle-free, the fractional clique cover strategy provides a lower

bound n
2
≤ gn(G) by Lemma 6. Therefore, all we need to show is gn(G) ≤ Sh(G) = n

2
.

We see that one can obtain a lollipop graph from a theta graph of same order by

removing one edge of a vertex of degree 3 in the theta graph. Therefore, it is clear

that the guessing number of a lollipop graph is at most the guessing number of a

theta graph of same order. Our claim is now a Corollary of Theorem 17.

5.1.4 The guessing number of a spiral graph

Definition 22. Let C := {Cn1 , Cn2 , . . . , Cnk} be a collection of {ni}ki=1-cycle graphs.

We denote the vertex set of Cni as {1i, 2i, . . . , (ni)i}. A spiral graph
∨
C is a planar

triangle-free undirected graph which is isomorphic to the graph K :=
∨

11≡12≡...≡1k
(C|C ∈

C.
Theorem 19. Let G be a spiral graph

∨
C of order n :=

∑k
i=1 ni−k+1. The guessing

number of G is

gn(G) =
n

2
.

Proof. The Spiral graph can be thought of as attaching k different cycles {Cni}i=1,...,k

with each other at vertex 11 ≡ 12 ≡ . . . ≡ 1k. Therefore, the process for computing

88

Figure 5.3: An example of a spiral graph.

the upper-bound of this graph is essentially a generalization of the computation used

to derive Shannon’s bound for the cycle graph Cn. For the sake of completeness, we

will prove here for the case when G is obtained by attaching two different cycles Cm

and Cn. The order of G is n+m− 1. For the general case, the deriving process can

be modified accordingly without any obstruction.

Since G is triangle-free, the fractional clique cover strategy provides a lower bound
n+m−1

2
≤ gn(G) by Lemma 6. Therefore, all we need to show is gn(G) ≤ Sh(G) =

n+m−1
2

.

To compute Sh(G), we will break the computation into three cases:

1. m and n are even.

2. m and n are odd.

3. m is even and n is odd.

For the first case, G is a perfect graph, so the result follows and the result follows

from our Corollary 4.

For a clear demonstration, we will denote the vertices in G as 1, 2m, . . .mm, and

2n, . . . , nn.

89

If m and n are odd, we have:

H(G) = H(G|1, 3m, 3n, . . . ,mm, nn) (5.49)

+H(1, 3m, 3n, . . . ,mm, nn) (c.e.) (5.50)

= H(1, 3m, 3n, . . . ,mm, nn) (g.c.) (5.51)

≤ H(1,mm, nn) (5.52)

+H(3m, 3n, . . . , (m− 2)m, (n− 2)n) (s.) (5.53)

≤ H(1,mm, nn) (5.54)

+ |{3m, 3n, . . . , (m− 2)m, (n− 2)n}| (n.) (5.55)

= H(1,mm, nn) +
n+m

2
− 3. (5.56)

Likewise, we have

H(G) = H(G|1, 2m, 2n, 4m, 4n, . . . , (m− 1)m, (n− 1)n,mm, nn) (5.57)

+H(1, 2m, 2n, 4m, 4n, . . . , (m− 1)m, (n− 1)n,mm, nn) (c.e.) (5.58)

= H(1, 2m, 2n, 4m, 4n, . . . , (m− 1)m, (n− 1)n,mm, nn) (g.c.) (5.59)

≤ H(1, 1, 2m, 2n, (m− 1)m, (n− 1)n,mm, nn) (5.60)

+H(4m, 4n, . . . , (m− 3)m, (n− 3)n) (s.) (5.61)

≤ H(1, 1, 2m, 2n, (m− 1)m, (n− 1)n,mm, nn) (5.62)

+ |{4m, 4n, . . . , (m− 3)m, (n− 3)n}| (n.) (5.63)

= H(1, 1, 2m, 2n, (m− 1)m, (n− 1)n,mm, nn) +
n+m

2
− 5. (5.64)

90

Adding 5.56 and 5.64 we get:

2H(G) ≤ H(1,mm, nn)

+H(1, 1, 2m, 2n, (m− 1)m, (n− 1)n,mm, nn)

+ n+m− 8

≤ H(1, (m− 1)m, (n− 1)n,mm, nn)

+H(1, 2m, 2n,mm, nn)

+m+ n− 8 (s.)

= H(1, (m− 1)m, (n− 1)n,mm, nn|1, (m− 1)m, (n− 1)n)

+H(1, (m− 1)m, (n− 1)n)

+H(1, 2m, 2n,mm, nn|2m, 2n,mm, nn)

+H(2m, 2n,mm, nn)

+m+ n− 8 (c.e.)

= H(1, (m− 1)m, (n− 1)n) +H(2m, 2n,mm, nn) +m+ n− 8 (g.c.)

≤ |{1, (m− 1)m, (n− 1)n}|+ |{2m, 2n,mm, nn}|+m+ n− 8 (n.)

= m+ n− 1.

The result follows.

If m is odd and n is even, we have:

H(G) = H(G|3m, 4m, 6m, . . . (m− 1)m, 1, 3n, . . . , (n− 1)n) (5.65)

+H(3m, 4m, 6m, . . . (m− 1)m, 1, 3n, . . . , (n− 1)n) (c.e.) (5.66)

= H(3m, 4m, 6m, . . . (m− 1)m, 1, 3n, . . . , (n− 1)n) (g.c.) (5.67)

≤ H(3m, 4m) +H(6m, . . . , (m− 1)m, 1, 3n, . . . , (n− 1)n) (s.) (5.68)

≤ H(3m, 4m) + |{6m, . . . , (m− 1)m, 1, 3n, . . . , (n− 1)n}| (n.) (5.69)

= H(3m, 4m) +
n+m+ 1

2
− 3. (5.70)

91

Likewise, we have

H(G) = H(G|2m, 3m, 4m, 5m, 7m, . . . ,mm, 2n, 4n, . . . , nn) (5.71)

+H(2m, 3m, 4m, 5m, 7m, . . . ,mm, 2n, 4n, . . . , nn) (c.e.) (5.72)

= H(2m, 3m, 4m, 5m, 7m, . . . ,mm, 2n, 4n, . . . , nn) (g.c.) (5.73)

≤ H(2m, 3m, 4m, 5m) +H(7m, 9m, . . . ,mm, 2n, 4n, . . . , nn) (s.) (5.74)

≤ H(2m, 3m, 4m, 5m) + |{7m, 9m, . . . ,mm, 2n, 4n, . . . , nn}| (n.) (5.75)

= H(2m, 3m, 4m, 5m) +
n+m+ 1

2
− 3. (5.76)

Adding 5.70 and 5.76 we get:

2H(G) ≤ H(3m, 4m) +H(2m, 3m, 4m, 5m) + n+m− 5

≤ H(2m, 3m, 4m) +H(3m, 4m, 5m) +m+ n− 5 (s.)

= H(2m, 3m, 4m|2m, 4m) +H(2m, 4m)

+H(3m, 4m, 5m|3m, 5m) +H(3m, 5m) +m+ n− 5 (c.e.)

= H(2m, 4m) +H(3m, 5m) +m+ n− 5 (g.c.)

≤ |{2m, 4m}|+ |{3m, 5m}|+m+ n− 5 (n.)

= m+ n− 1.

The result follows.

Remark 10. The proof presented above is just a special case of the Theorem 17.

However, we decided to illustrate a different proof as the computation process in this

case is much simpler and can be generalized for the Spiral graphs.

Remark 11. One can extend the proof above to the case where G ∼= Cm
∨

1≡v T where

Cm is an m-cycle with vertex set {1, 2, . . . ,m} and T is a tree and v ∈ V (T).

Following the previous remarks, we obtain:

Theorem 20. If G is a planar triangle-free graph having at most one vertex of degree

greater than 2, then the guessing number of G is

gn(G) =
|V (G)|

2
.

5.1.5 The guessing number of a Cn�Pk graph

Definition 23. Let G and H be undirected graphs. The Cartesian product G�H is

a graph such that:

92

• V (G�H) = V (G)× V (H),

• two vertices (u, u′) and (v, v′) are adjacent in G�H if and only if wither u = v

and (u′, v′) ∈ E(H), or u′ = v′ and (u, v) ∈ V (G).

Figure 5.4: The graph Cn�P2.

Theorem 21. If G is a planar triangle-free graph which is isomorphic to Cn�Pk for

some positive integers n ≥ 4 and k ≥ 1, then the guessing number of G is

gn(G) =
nk

2
.

Proof. We will denote vertices of Cn as 1, . . . , n with Γi := {i−1, i+1} where addition
and subtraction are done modulo n. We also denote the vertices of Pk as 1, . . . , k.

Since G is obtained as the Cartesian product of Cn and Pk, its vertices are indexed

by a pair (i, j) where 1 ≤ i ≤ n, and 1 ≤ j ≤ k.

Similar to the previous theorem, we will only illustrate the computation for the prod-

uct Cn�P2 as for the general case Cn�Pk the computation can be modified accord-

ingly without any obstruction.

Since G is triangle-free, the fractional clique cover strategy provides a lower bound

n ≤ gn(G) by Lemma 6. Therefore, all we need to show is gn(G) ≤ Sh(G) = n.

To compute Sh(G), we will break the computation into two cases:

1. n is even,

2. n is odd.

93

Since k = 2, we will ease the notation by writing i for (i, 1) and i′ for (i, 2).

If Cn is an even cycle, then we have

H(G) = H(G|1, 2′, 3, . . . , n′) +H(1, 2′, 3, . . . , n′) (c.e.)

= H(1, 2′, 3, . . . , n′) (g.e.)

≤ |{1, 2′, 3, . . . , n′}| (n.)

= n.

This proves the first case.

If Cn is an odd cycle, then we have

H(G) = H(G|1, 2, 2′, 3′, 4, 5′, 6, 7′, . . . , n− 1, n′) (5.77)

+H(1, 2, 2′, 3′, 4, 5′, 6, 7′, . . . , n− 1, n′) (c.e.) (5.78)

= H(1, 2, 2′, 3′, 4, 5′, 6, 7′, . . . , n− 1, n′) (g.c.) (5.79)

≤ H(1, 2, 2′, 3′) +H(4, 5′, 6, 7′, . . . , n− 1, n′) (s.) (5.80)

≤ H(1, 2, 2′, 3′) + |{4, 5′, 6, 7′, . . . , n− 1, n′}| (n.) (5.81)

= H(1, 2, 2′, 3′) + n− 3. (5.82)

Likewise, we have

H(G) = H(G|n, 1, 1′, 2, 2′, 3, 3′, 4′, 5, 6′, 7, . . . , n− 2, (n− 1)′) (5.83)

+H(n, 1, 1′, 2, 2′, 3, 3′, 4′, 5, 6′, 7, . . . , n− 2, (n− 1)′) (c.e.) (5.84)

= H(n, 1, 1′, 2, 2′, 3, 3′, 4′, 5, 6′, 7, . . . , n− 2, (n− 1)′) (g.c.) (5.85)

≤ H(n, 1, 1′, 2, 2′, 3, 3′, 4) +H(5, 6′, 7, . . . , n− 2, (n− 1)′) (s.) (5.86)

≤ H(n, 1, 1′, 2, 2′, 3, 3′, 4) + |{5, 6′, 7, . . . , n− 2, (n− 1)′}| (n.) (5.87)

= H(n, 1, 1′, 2, 2′, 3, 3′, 4) + n− 5. (5.88)

Adding 5.82 and 5.88 we get:

2H(G) ≤ H(1, 2, 2′, 3′) +H(n, 1, 1′, 2, 2′, 3, 3′, 4′) + 2n− 8

≤ H(n, 1, 1′, 2, 2′, 3′) +H(1, 2, 2′, 3, 3′, 4′) + 2n− 8 (s.)

= H(n, 1, 1′, 2, 2′, 3′|n, 1′, 2, 3′) +H(n, 1′, 2, 3′)

+H(1, 2, 2′, 3, 3′, 4′|1, 2′, 3, 4′) +H(1, 2′, 3, 4′) + 2n− 8 (c.e.)

= H(n, 1′, 2, 3′) +H(1, 2′, 3, 4′) + 2n− 8 (g.c.)

≤ |{n, 1′, 2, 3′}|+ |{1, 2′, 3, 4′}|+ 2n− 8 (n.)

= 2n.

94

The proof is completed.

5.1.6 The guessing number of a dumbbell graph

Definition 24. Let Cm be the m-cycle undirected graph with vertex set {1, 2, . . . ,m},
Cn be the n-cycle undirected graph with vertex set {1′, 2′, . . . , n′}, and Pk be the path

graph of order k with vertex set {p1, p2, . . . , pk}. A dumbbell graph Db(m,n, k) is a

planar triangle-free undirected graph which is isomorphic to the graph

K := (Cm
∨

1≡p1

Pk)
∨
pk≡1′

Cn.

Figure 5.5: The Dumbbell graph.

Theorem 22. Let G be a dumbbell graph Db(m,n, k) of order m + n + k − 2. The

guessing number of G is

gn(G) =
m+ n+ k − 2

2
.

Proof. The graph constraints give us the following equalities:

• H(1|2,m, p2) = 0,

• H(i|i− 1, i+ 1 mod m) = 0 for 2 ≤ i ≤ m,

• H(1′|2′, n′, pk−1) = 0,

• H((i)′|(i− 1)′, (i+ 1 mod n)′) = 0 for 2 ≤ i ≤ n,

• H(pi|pi−1, pi+1) = 0 for 2 ≤ i ≤ k − 1 (Note that 1 ∼ p1 and pk ∼ 1′.)

Since G is triangle-free, the fractional clique cover strategy provides a lower bound
m+n+k−2

2
≤ gn(G) by Lemma 6. Therefore, all we need to show is gn(G) ≤ Sh(G) =

m+n+k−2
2

.

To compute Sh(G), we will break the computation into four cases: There are three

cases:

95

1. m and n are even,

2. m is odd and n is even,

3. m and n are odd.

Ifm and n are even numbers, then G is a perfect graph and the result follows from our

Corollary 4. The second case is established in Lemma 13. The third case is proved

in Lemma 14.

Lemma 13. Let G be a dumbbell graph with parameters (m,n, k) where m is odd and

n even. The guessing number of G is

gn(G) =
m+ n+ k − 2

2
.

Proof. There are two cases to prove:

1. k is even,

2. k is odd.

If k is even, we have:

H(G) = H(G|1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−1, 2
′, 4′, . . . , n′) (5.89)

+H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−1, 2
′, 4′, . . . , n′) (c.e.) (5.90)

= H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−1, 2
′, 4′, . . . , n′) (g.c.) (5.91)

≤ H(1, 2) +H(4, 6, . . . , (m− 1), p3, p5, . . . , pk−1, 2
′, 4′, . . . , n′) (s.) (5.92)

≤ H(1, 2) + |{4, 6, . . . , (m− 1), p3, p5, . . . , pk−1, 2
′, 4′, . . . , n′}| (n.) (5.93)

= H(1, 2) +
n+m+ k − 5

2
. (5.94)

Similarly,

H(G) = H(G|1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (5.95)

+H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (c.e.) (5.96)

= H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (g.c.) (5.97)

≤ H(1, 2, 3,m, p2) (5.98)

+H(5, 7, . . . , (m− 2), p2, p4, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (s.) (5.99)

≤ H(1, 2, 3,m, p2) (5.100)

+ |{5, 7, . . . , (m− 2), p2, p4, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′}| (n.) (5.101)

= H(1, 2, 3,m, p2) +
m+ n+ k − 9

2
. (5.102)

96

Adding 5.94 and 5.102 we get that:

2H(G) ≤ H(1, 2) +H(1, 2, 3,m, p2) +m+ n+ k − 7

≤ H(1, 2, 3) +H(m, 1, 2, p2) +m+ n+ k − 7 (s.)

= H(1, 2, 3|1, 3) +H(1, 3)

+H(m, 1, 2, p2|m, 2, p2) +H(m, 2, p2) +m+ n+ k − 7 (c.e.)

= H(1, 3) +H(m, 2, p2) +m+ n+ k − 7 (g.c.)

≤ |{1, 3}|+ |{m, 2, p2}|+m+ n+ k − 7 (n.)

= m+ n+ k − 2.

If k is odd, we have:

H(G) = H(G|1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (5.103)

+H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (c.e.)

(5.104)

= H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (g.c.)

(5.105)

≤ H(1, 2) +H(4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′) (s.)

(5.106)

≤ H(1, 2) + |{4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 3′, . . . , (n− 1)′}| (n.)

(5.107)

= H(1, 2) +
n+m+ k − 5

2
. (5.108)

Similarly,

H(G) = H(G|1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 2
′, 4′, . . . , n′) (5.109)

+H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 2
′, 4′, . . . , n′) (c.e.) (5.110)

= H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 2
′, 4′, . . . , n′) (g.c.) (5.111)

≤ H(1, 2, 3,m, p2) (5.112)

+H(5, 7, . . . , (m− 2), p2, p4, . . . , pk−1, 2
′, 4′, . . . , n′) (s.) (5.113)

≤ H(1, 2, 3,m, p2) (5.114)

+ |{5, 7, . . . , (m− 2), p2, p4, . . . , pk−1, 2
′, 4′, . . . , n′}| (n.) (5.115)

= H(1, 2, 3,m, p2) +
m+ n+ k − 9

2
. (5.116)

97

Adding 5.108 and 5.116 we get that:

2H(G) ≤ H(1, 2) +H(1, 2, 3,m, p2) +m+ n+ k − 7

≤ H(1, 2, 3) +H(m, 1, 2, p2) +m+ n+ k − 7 (s.)

= H(1, 2, 3|1, 3) +H(1, 3) +H(m, 1, 2, p2|m, 2, p2) +H(m, 2, p2)

+m+ n+ k − 7 (c.e.)

= H(1, 3) +H(m, 2, p2) +m+ n+ k − 7 (g.c.)

≤ |{1, 3}|+ |{m, 2, p2}|+m+ n+ k − 7 (n.)

= m+ n+ k − 2.

Lemma 14. Let G be a dumbbell graph with parameters (m,n, k) where m and n are

odd. The guessing number of G is

gn(G) =
m+ n+ k − 2

2
.

Proof. There are two cases to prove:

1. k is even,

2. k is odd.

If k is even, we have:

H(G) = H(G|1, 2, 4, 6, . . . , (m− 1), p2, p3, . . . , pk−1, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (5.117)

+H(1, 2, 4, 6, . . . , (m− 1), p2, p3, . . . , pk−1, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (c.e.)

(5.118)

= H(1, 2, 4, 6, . . . , (m− 1), p2, p3, . . . , pk−1, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (g.c.)

(5.119)

≤ H(1, 2, p2, p3, . . . , pk−1, 1
′, 2′) (5.120)

+H(4, 6, . . . , (m− 1), 4′, 6′, . . . , (n− 1)′) (s.)
(5.121)

≤ H(1, 2, p2, p3, . . . , pk−1, 1
′, 2′) (5.122)

+ |{4, 6, . . . , (m− 1), 4′, 6′, . . . , (n− 1)′}| (n.)
(5.123)

= H(1, 2) +
n+m− 6

2
. (5.124)

98

Similarly,

H(G) = H(G|1, 2, 3, 5, . . . ,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (5.125)

+H(1, 2, 3, 5, . . . ,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (c.e.) (5.126)

= H(1, 2, 3, 5, . . . ,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (g.c.) (5.127)

≤ H(1, 2, 3,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, n′) (5.128)

+H(5, 7, . . . , (m− 2), 5′, 7′, . . . , (n− 2)′) (s.) (5.129)

≤ H(1, 2, 3,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, n′) (5.130)

+ |{5, 7, . . . , (m− 2), 5′, 7′, . . . , (n− 2)′}| (n.) (5.131)

= H(1, 2, 3,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, n′) +

m+ n− 10

2
. (5.132)

Adding 5.124 and 5.132 we get that:

2H(G) ≤ H(1, 2, p2, p3, . . . , pk−1, 1
′, 2′)

+H(1, 2, 3,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′, n′)

+m+ n− 8

≤ H(1, 2, 3, p2, p3, . . . , pk−1, 1
′, 2′, n′)

+H(1, 2,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′)

+m+ n− 8 (s.)

= H(1, 2, 3, p2, p3, . . . , pk−1, 1
′, 2′, n′|1, 3, p3, p5, . . . , pk−1, 2

′, n′)

+H(1, 3, p3, p5, . . . , pk−1, 2
′, n′)

+H(1, 2,m, p2, p3, . . . , pk−1, 1
′, 2′, 3′|1, 2,m, p2, p4, . . . , pk−2, 1

′, 3′)

+H(1, 2,m, p2, p4, . . . , pk−2, 1
′, 3′)

+m+ n− 8 (c.e.)

= H(1, 3, p3, p5, . . . , pk−1, 2
′, n′)

+H(1, 2,m, p2, p4, . . . , pk−2, 1
′, 3′) +m+ n− 8 (g.c.)

≤ |{1, 3, p3, p5, . . . , pk−1, 2
′, n′}|

+ |{1, 2,m, p2, p4, . . . , pk−2, 1
′, 3′}|+m+ n− 8 (n.)

= m+ n+ k − 2.

99

If k is odd, we have:

H(G) = H(G|1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (5.133)

+H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (c.e.)

(5.134)

= H(1, 2, 4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 1
′, 2′, 4′, 6′, . . . , (n− 1)′) (g.c.)

(5.135)

≤ H(1, 2, 1′, 2′) (5.136)

+H(4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 4
′, 6′, . . . , (n− 1)′) (s.)

(5.137)

≤ H(1, 2, 1′, 2′) (5.138)

+ |{4, 6, . . . , (m− 1), p3, p5, . . . , pk−2, 4
′, 6′, . . . , (n− 1)′}| (n.)

(5.139)

= H(1, 2, 1′, 2′) +
n+m+ k − 9

2
. (5.140)

Similarly,

H(G) = H(G|1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (5.141)

+H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (c.e.) (5.142)

= H(1, 2, 3, 5, . . . ,m, p2, p4, . . . , pk−1, 1
′, 2′, 3′, 5′, . . . , n′) (g.c.) (5.143)

≤ H(1, 2, 3,m, 1′, 2′, 3′, n′, p2, pk−1) (5.144)

+H(5, 7, . . . , (m− 2), p4, p6, . . . , pk−3, 5
′, 7′, . . . , (n− 2)′) (s.) (5.145)

≤ H(1, 2, 3,m, 1′, 2′, 3′, n′, p2, pk−1) (5.146)

+ |{5, 7, . . . , (m− 2), p4, p6, . . . , pk−3, 5
′, 7′, . . . , (n− 2)′}| (n.) (5.147)

= H(1, 2, 3,m, 1′, 2′, 3′, n′, p2, pk−1) +
m+ n+ k − 15

2
. (5.148)

100

Adding 5.140 and 5.148 we get that:

2H(G) ≤ H(1, 2, 1′, 2′) +H(1, 2, 3,m, 1′, 2′, 3′, n′, p2, pk−1)

+m+ n+ k − 12

≤ H(1, 2, 3, 1′, 2′, 3′) +H(m, 1, 2, p2, 1
′, 2′, n′, pk−1)

+m+ n+ k − 12 (s.)

= H(1, 2, 3, 1′, 2′, 3′|1, 3, 1′, 3′) +H(1, 3, 1′, 3′)

+H(m, 1, 2, p2, 1
′, 2′, n′, pk−1|m, 2, p2, 2

′, n′, pk−1) +H(m, 2, p2, 2
′, n′, pk−1)

+m+ n+ k − 12 (c.e.)

= H(1, 3, 1′, 3′) +H(m, 2, p2, 2
′, n′, pk−1) +m+ n+ k − 12 (g.c.)

≤ |{1, 3, 1′, 3′}|+ |{m, 2, p2, 2
′, n′, pk−1}|+m+ n+ k − 12 (n.)

= m+ n+ k − 2.

5.1.7 The guessing number of a flower graph

Definition 25. Let T be a tree with k-leaves {1T , 2T , . . . , kT}. Let C = {Cn1 , . . . , Cnk}
be a collection of cycles of length ni’s. We denote the vertices of Cni as {1i, 2i, . . . , (ni)i}.
A flower graph T

∨
C is a planar triangle-free undirected graph which is isomorphic

to the graph

K :=

. . .
(T

∨
1T≡11

Cn1)
∨

2T≡12

Cn2

 . . .

 ∨
kT≡1k

Cnk

.

Theorem 23. Let G be a planar triangle-free graph which is isomorphic to a flower

graph T
∨
C, then the guessing number of G is

gn(G) =
|V (G)|

2
.

A key observation in proving Theorem 23 is that we can combine multiple copies

of the computation processes demonstrated in Lemma 13 and Lemma 14. These

calculations can be merged thanks to the following Lemma 15.

Let T be a tree with k-leaves {1, 2, . . . k}. Let us fix an order of all branches in T

corresponding to the order of its leaves.

We have the following facts about distances between leaves in T :

101

Figure 5.6: An instance of a Flower graph.

Observation 12. Let 1 ≤ i < j ≤ k be leaves of T with lowest common ancestor l(i, j).

Let Tl(i,j) be the subtree of T with l(i, j) as its root, then the shortest path between i

and j in T is is the union of the shortest path from i to l(i, j) and the shortest path

between l(i, j) and j in Tl(i,j).

Observation 13. Let T be as above with leaves {1, 2, . . . k}. Let 1 ≤ i < j < l ≤ k be

leaves of T with pairwise least common ancestors are l(i, j), l(j, k), l(i, k). We have:

• l(j, k) ≡ l(i, k),

• The shortest path between i and k must contain l(i, j).

Lemma 15. Let T be a tree having k-leaves {1, 2, . . . k}. We fix an order of all

branches in T corresponding to the order of its leaves. Let 1 ≤ i < j < l ≤ k be leaves

of T with pairwise distances are d(i, j), d(j, k), and d(i, k). We have the following

relation:

d(i, k) ≡ d(i, j) + d(j, k)− 1 mod 2.

Moreover, the set of all vertices u ∈ V (T) such that d(1, u) is odd is an vertex cover

of T .

Proof. From the previous observations, we have that both Tl(i,j) and Tl(j,k) are subtrees

of Tl(i,k). Moreover,

d(i, j) = d(i, l(i, j)) + d(l(i, j), j),

d(j, k) = d(j, l(j, k)) + d(l(j, k), k) = d(j, l(i, j)) + d(l(i, j), l(j, k)) + d(l(j, k), k),

d(i, k) = d(i, l(i, k)) + d(l(i, k), k) = d(i, j) + d(j, k)− 2d(l(i, j), j) + 1.

102

Proof of Theorem 23. By definition, G is the wedge sum of a tree T having k-leaves

with k different cycles {Cni}ki=1, each cycle is attached to a leaf of T . In order to

clarify the computation, we will make use of the following notation: for each leaf

iT ∈ V (T), we write piT for the parent node of iT .

By the graph constrain, we have the following equalities:

• H(vi|(v − 1)i, (v + 1 mod ni)
i) = 0 for any i ∈ {1, . . . , k} and v ∈ {2, . . . , ni}.

• H(1i|2i, nii, piT) = 0 for any i ∈ {1, . . . , k}.

• If v is a non-leaf of T , then H(v|w, u1, . . . , um) = 0, where w is the parent node

of v in T , and {u1, . . . , um} are children of v in T .

We will only need to prove the statement when G has at least one odd cycle. This is

because if all the cycles Cni are even, then G is perfect.

As we can always reorder the leaves of T , without loss of generality, we will assume

that Cn1 is an odd cycle.

We choose the set S as follows:

• If Cnj is an odd cycle then we select {1j, 2j, 4j, 6j, . . . , (nj − 1)j}.

• If Cnj is an even cycle then we select {1j, 2j, . . . , njj}.

• We select all v belonging to the T .

Since S is an vertex cover of G, we have:

H(G) = H(G|S) +H(S) (c.e.) (5.149)

= H(S) (g.c.) (5.150)

≤ H(S\P) +H(P) (s.) (5.151)

≤ H(S\P) + |P | (n.) (5.152)

where P = {(4j, 6j, . . . , (nj − 1)j)j : if nj is odd}.

We select the set L as follows:

• If Cnj is an odd cycle, then we select {1j, 2j, 3j, 5j, . . . , njj}.

• If Cnj is an even cycle then we select {1j, 2j, . . . , njj}.

• We select v if v belongs to the T .

103

Since L is an vertex cover of G, we have:

H(G) = H(G|L) +H(L) (c.e.) (5.153)

= H(L) (g.c.) (5.154)

≤ H(L\Q) +H(Q) (s.) (5.155)

≤ H(L\Q) + |Q| (n.) (5.156)

where Q = {(5j, 7j, . . . , (nj − 2)j)j : if nj is odd}.

Note that (S\P) ⊂ (L\Q).

Adding 5.152 and 5.156 we have:

2H(G) ≤ H(L\Q) +H(S\P) + |Q|+ |P | (5.157)

≤ H(X) +H(Y) + |P |+ |Q| (s.) (5.158)

where X contains the following elements:

• {11, 21, (n1)1},

• {1j, 2j, (nj)j} if nj is odd and d(11, 1j) is even,

• {1j, 2j, 3j} if nj is odd and d(11, 1j) is odd,

• {1j, 2j, . . . , njj} if nj is an even,

• v if v belongs to the T .

and Y consists of the following vertices:

• {11, 21, 31},

• {1j, 2j, 3j} if nj is odd and d(11, 1j) is odd,

• {1j, 2j, (nj)j} if nj is odd and d(11, 1j) is even,

• {1j, 2j, . . . , njj} if nj is an even,

• v if v belongs to the T .

It is clear that:

X ∪ Y = L\Q,

X ∩ Y = S\P.

All we need is to bound the value of H(X) and H(Y). For X, we have:

104

• H(11|21, (n1)1, piT) = 0.

• If Cnj is an odd cycle and d(11, 1j) is even, we have H(1j|2j, (n1)j, pjT) = 0.

• If Cnj is an odd cycle and d(11, 1j) is odd, we have

H(2j|1j, 3j) = 0.

• If vT is a node in T and d(11, vT) is even, we have

H(vT |wT , u1,T , . . . , um,T) = 0

where wT is parent node of vT , and u1,T , . . . , um,T are children of vT all are of

odd distance from 11 (follow Lemma 15).

• If Cnj is an even cycle and d(11, 1j) is odd, we have

H(2j, 4j, . . . njj|1j, 3j, . . . (nj − 1)j) = 0.

• If Cnj is an even cycle and d(11, 1j) is even, we have

H(1j, 3j, . . . (nj − 1)j|pjT , 2
j, 4j, . . . njj) = 0.

Therefore,

H(X) = H(X|Z) +H(Z) = H(Z) ≤ |Z|,

where Z is the set consisting of:

• 21, (n1)1,

• 2j, (n1)j if Cnj is an odd cycle and d(11, 1j) is even,

• 1j, 3j if Cnj is an odd cycle and d(11, 1j) is odd,

• vT if d(11, vT) is odd,

• 1j, 3j, . . ., (nj − 1)j if Cnj is an even cycle and d(11, 1j) is odd,

• 2j, 4j, . . ., njj if Cnj is an even cycle and d(11, 1j) is even.

For Y , we have:

• H(21|11, 31) = 0,

• If Cnj is an odd cycle and d(11, 1j) is even, we have

H(2j|1j, 3j) = 0.

105

• If Cnj is an odd cycle and d(11, 1j) is odd, we have

H(1j|2j, (n1)j, pjT) = 0.

• If vT is a node in T and d(11, vT) is odd, we have

H(vT |wT , u1,T , . . . , um,T) = 0

where wT is parent node of vT , and u1,T , . . . , um,T are children of vT all are of

even distance from 11 (follow Lemma 15).

• If Cnj is an even cycle and d(11, 1j) is odd, we have

H(1j, 3j, . . . (nj − 1)j|pjT , 2
j, 4j, . . . njj).

• If Cnj is an even cycle and d(11, 1j) is even, we have

H(2j, 4j, . . . njj|1j, 3j, . . . (nj − 1)j) = 0.

Therefore,

H(Y) = H(Y |W) +H(W) = H(W) ≤ |W |,

where W is the set consisting of:

• 11, 31,

• 1j, 3j if Cnj is an odd cycle and d(11, 1j) is even,

• 2j, (n1)j if Cnj is an odd cycle and d(11, 1j) is odd,

• vT if d(11, vT) is even,

• 2j, 4j, . . ., njj if Cnj is an even cycle and d(11, 1j) is odd,

• 1j, 3j, . . ., (nj − 1)j if Cnj is an even cycle and d(11, 1j) is even.

Combine all previous information, we have

2H(G) ≤ H(X) +H(Y) + |P |+ |Q|

= H(Z) +H(W) + |P |+ |Q|

≤ |Z|+ |W |+ |P |+ |Q|.

But since Z ∪W ∪ P ∪Q = V (G) and Z, W , P , Q are pairwise disjoint, we have:

2H(G) ≤ |V (G)|.

This completes our proof.

106

5.1.8 The guessing number of certain regular graphs

The following theorems are due to Blasiak et. al. [12]

Theorem 24. [12] For any n ≥ 4, a cyclic Cayley graph of Z /nZ with generators

S ⊆ {1, 2, . . . , bn/2c} such that it is also a 3-regular graph has broadcast rate β(G) =

n/2.

Theorem 25. [12] For any integers n ≥ 4 and k ≤ n−1
2
, the Cayley graph of Z /nZ

with generators {±1, . . . ,±k} has broadcast rate β = n/(k + 1).

We know that gn(G) = |V (G)| − β(G), hence we have:

Corollary 5. Let G be a graph described in Theorem 24. G has guessing number

gn(G) = n/2.

Corollary 6. Let G be a graph described in Theorem 25. G has guessing number

gn(G) = nk
k+1

.

5.2 Existence of non-Shannon bounds for guessing

numbers of undirected graphs

Prior to this work, a common method to come up with network information flow/in-

dex coding instances with gaps between bounds given by information inequalities

was to adopt the matroidal construction introduced by Dougherty et al. [36]. The

construction generally goes as follows:

Let M = (E, r) be the Vámos matroid1. This is an eight-element rank-four ma-

troid defined on a ground set E = {a, b, c, d, w, x, y, z} with dependent sets2 are all

the subsets which contain at least five elements in addition to the four-element sets

{b, c, x, y}, {a, c, w, y}, {a, b, w, x}, {c, d, y, z}, and {b, d, x, z}. This matroid is known

to be non-representable [78]. We can construct an index coding instance GM as

follows:

The message set of GM has 8 messages. Each message corresponds to one of the

element of the ground set E(M). If a is an element of E(M), we will be freely speaking

about the message a instead of the message corresponding to the element a. A receiver

1A matroid is a pair (E, r) where E is a finite set called ground set and r : 2E → N is called
a rank function. A rank function must satisfy a list of conditions, e.g. normality, monotonicity,
submodularity (see [78]).

2A subset S ⊆ E is a dependent set if r(S) < |S|

107

jC,e for each message e ∈ C and circuit C ⊆ E3. Receiver jC,e wants to obtain e and

it has side information C\e. Following some intricate calculations of entropy, it can

be shown that b(GM) = 4 and β(GM) ≥ 45/11 where b(GM) is the bound derived

from the Shannon inequalities while β(GM) is the optimal broadcasting rate. This

construction, by far, is the simplest example that we can find in the literature yet the

obtained graph GM is somewhat complicated.

It is noted that the index coding instance obtained here is a hypergraph, but not an

undirected graph. In fact, it is generally unknown whether we can construct an index

coding instance over an undirected graph having non-Shannon bounds sharper than

Shannon one using the matroidal construction.

Our new result demonstrates that a graph exists where non-Shannon inequalities pro-

vide a better approximation of the guessing number compared to using the Shannon

information inequalities alone. In fact, we show that there are gaps between the

bounds provided by the Zhang-Yeung inequalities and its alternative provided by the

Dougherty-Freiling-Zeger inequalities.

One important point to note in our result is that the example is an undirected graph

of small order. Therefore, it is possible to compute and check the calculation by

computer. In fact, the process of deriving these bounds is achieved by computer, and

data files can be obtained upon request.

We have

Theorem 26. • Sh(R−) = 114/17 = 6.705 . . .

• ZY(R−) = 1212/181 = 6.696 . . .

• DFZ(R−) = 59767/8929 = 6.693 . . .

• Ingl(R−) = 20/3 = 6.666 . . .

From Lemma 7 and Theorem 26 we know that

20/3 ≤ gn(R−) ≤ 59767/8929,

and although we could not determine the asymptotic guessing number exactly it does

show that it does not equal the Shannon bound, disproving Conjecture 2. Given

that the Shannon bound is not sharp we might be tempted to conjecture that the

asymptotic guessing number is the same as the Zhang-Yeung bound, but Theorem

3A subset C ⊆ E is called a circuit if it is a minimal dependent set.

108

1

2

3

456

7

8

9 10

Figure 5.7: The undirected graph R−.

11 also shows this to be false. Interestingly the Ingleton bound does match the lower

bound, showing that if we restrict ourselves to only considering linear strategies on

blowups we can do no better than the fractional clique cover strategy.

It remains an open question as to whether a non-linear strategy on R− can do better

than 20/3 or whether by considering the right set of entropy inequalities we can push

the upper bound down to 20/3.

Proof of Theorem 11. Calculating the upper bounds involves solving rather large lin-

ear programs. Consequently, the proofs are too long to reproduce here and it is

unfeasible for them to be checked by humans. Data files verifying our claims can be

provided upon request. We stress that although the results were verified using a com-

puter, no floating point data types were used during the verification. Consequently

no rounding errors could occur in the calculations, making the results completely

rigorous.

We finish this section by considering a problem motivated by the reversibility of

networks in network coding. Given a digraph G, let Reverse(G) be the digraph formed

from G by reversing all the edges, i.e. uv ∈ E(G) if and only if vu ∈ E(Reverse(G)).

109

Problem 14. Does a digraph G exist, such that gn(G) 6= gn(Reverse(G))?

We were not able to solve this problem. We did, however, find a graph RS for which

the Shannon bound of RS and the Shannon bound of Reverse(RS) did not match. RS

is simply the digraph formed by making vertex 1 in R a Superman vertex. In other

words, we add three directed edges to R: the edge going from 1 to 8, from 1 to 9,

and from 1 to 10. Consequently Reverse(RS) is the graph formed by making vertex

1 in R a Luthor vertex. As such, we will refer to it as RL.

1

2

3

456

7

8

9 10

Figure 5.8: The digraph RS.

Theorem 27. We have Sh(RS) = 27/4 = 6.75.

Proof. The proofs are given in data files, which can be made available upon request.

Theorem 28. For RL we have the following bounds:

• Sh(RL) = 34/5 = 6.8.

• ZY(RL) = 61/9 = 6.777 . . .

• DFZ(RL) = 359/53 = 6.773 . . .

• Ingl(RL) = 27/4 = 6.75.

110

1

2

3

456

7

8

9 10

Figure 5.9: The digraph RL.

Proof. The proofs are given in data files, which can be made available upon request.

From the strategy on R we know that gn(RS) ≥ 27/4 and gn(RL) ≥ 27/4. Hence we

have gn(RS) = 27/4. We do not, however, know the precise value of gn(RL) so it is

possible that the asymptotic guessing numbers of RS and RL do not match.

111

Chapter 6

Guessing Games with Noises

6.1 Motivation and discussion of related work

The beauty of network coding comes from two aspects: modifiable data packages and

network topology. By choosing appropriate coding functions with respect to network

topology, we may gain a huge throughput in comparison to using the traditional

routing method. However, when a message is distorted, we face the problem of error

propagation, which may cause all terminals to decipher wrong data.

We can battle against the problem of error-pruned communication channels by ap-

plying the classical theory of error correcting codes, which adds redundancy to the

transmission in the time domain. With this approach, we can guarantee eliminating

some noise effects on communication channels. However, this mechanism leaves out

the information about network topology, which essentially is the source of all proper-

ties of network coding. In order to gain the full benefits of network coding, we wish

to encode the topological properties of a given network within our coding functions

as a method to improve the noisy coding capacity.

The first successful combination of linear network code and error correcting code was

accomplished by Cai and Yeung [21, 96, 22] for multicast networks. We know that

linear code is sufficient for multicast problems. Hence, in the case when there is a

corruption during the transmission, the reception at the sinks will only be affected

by a linear transformation of an error vector. Therefore, we can define the network

Hamming weight as a measure that depends on linear transformations of the error

vector. In particular, we would expect that if an error occurred but it was eliminated

at the terminals due to coding functions, then the weight of that vector would be

112

0. Moreover, if the weight of the difference of two error vectors is 0, then these

two error vectors must have the same weight. Once these expected properties of

network Hamming weight are identified, one can define the weights of an error vector,

a received vector, and a message vector. The coding distance and coding bounds

are naturally derived once the concept of coding weight is settled. Cai and Yeung

extended some useful bounds, e.g. Hamming bound, Singleton bound, and Gilbert-

Varshamov bound to network coding in their influential papers on network error

correction [21, 96, 22]. Based on this framework, various algorithmic constructions of

network error correcting codes have been proposed [54, 92, 6, 74, 47, 53, 62, 17, 43,

46, 86, 100, 63, 101].

In the case of general network information flow problems, in contrast, a convinced

framework for network error correction remains elusive. The obstacle exists due to

the enigmatic interaction between coding function and noises in the network. In

this chapter, we initialize studies of interaction between coding functions and noises

restricted to our setting of guessing games. We proposed a definition of noisy guessing

number which is a generalized version of the noiseless guessing number introduced by

Riis [82]. First few properties of this quantity together with show cases on undirected

graphs of small order are also established.

6.2 Definitions and some basic bounds

Definition 26. Let G be a directed graph and 0 ≤ ε ≤ 1/2 be a real number. A

guessing game with noises (G, 2, ε) is a game played on a digraph G and the alphabet

{0, 1}. There are |V (G)| players working as a team. Each player corresponds to

one of the vertices of the digraph. Each player v is assigned an integer xv from {0, 1}
uniformly and independently at random. Each player will be given a list of the players

in its in-neighbourhood with their corresponding values. However, for each u in v’s

in-neighbourhood, there is a probability ε that instead of giving xu to v, the organizer

will show v the flipped value (1 − xu) mod 2. This process is done independently

for each player. Using just the information about G and ε, each player must guess

his own value. If all players guess correctly, they will all win, but if just one player

guesses incorrectly they will all lose.

Note that we recover the original guessing game (G, 2) by letting ε = 0. Just like the

definition of a guessing strategy for a normal guessing game, we have definition for

guessing strategy in this noisy guessing game as follows:

113

Definition 27. Given a guessing game with noises (G, 2, ε), for v ∈ V (G) a strategy

for player v is formally a function fv : {0, 1}|Γ−(v)| → {0, 1} which maps the values

of the in-neighbours of v to an elements of {0, 1}, which will be the guess of v. A

strategy F for a guessing game is a sequence of such functions (fv)v∈V (G) where fv is

a strategy for player v.

We denote by Win(G, 2, ε,F) the event that all the players guess correctly when playing

(G, 2, ε) with strategy F .

When ε = 0, we can visualize the behaviour of a guessing strategy in terms of map-

pings from the space of all configurations {0, 1}|V (G)| into itself, i.e. F : {0, 1}|V (G)| →
{0, 1}|V (G)|. A correct guess on a given outcome of random numbers x = (xv)v∈V (G) ∈
{0, 1}|V (G)| by using strategy F is equivalent to a solution of the equation

F(x) = x. (6.1)

Thus the problem of maximizing the probability of winning can be interpreted as

finding a map F = (fv)v∈V (G) : {0, 1}|V (G)| → {0, 1}|V (G)| with as many fixed points

as possible, where fv is strategy for player v.

However, when ε > 0, the picture is much more complicated. Let us firstly introduce

some new notations to distinguish between an assigned value, an observed value, and

a guess value of each player v. For a player v ∈ V (G), we denote its assigned value as

xav which is either 0 or 1, and we write xa for (xav)v∈V (G). Note that xa ∈ {0, 1}|V (G)|.

If u is an in-neighbourhood of v, we denote the value assigned to u that v observes

as vx
o
u. We write xoΓv = (vx

o
u)u∈Γ−v

for the observed value of player v. Note that if

u and w belong to the out-neighbourhoods of v, ux
o
v might not equal wx

o
v. We write

xo = (xoΓv)v∈V (G) for the observed value by all players in one instance of the guessing

game. The tuple xo takes value in
⊕

v∈V (G)({0, 1}Γ−v). We denote the guess value

made by player v as xgv, and we write xg for (xgv)v∈V (G). Note that x
g again is a vector

in {0, 1}|V (G)|. Now we can rewrite the fixed points equation for the guessing game

with noise as follows:

xg := F(xo) = xa. (6.2)

For the special case when every player observes correctly the assigned value, i.e.

ux
o
v = xav for all u, v ∈ V (G), we write xa,o instead of xo, and we call xa a fixed point

for strategy F if

F(xa,o) = xa.

114

Equation 6.2 shows us two new phenomena in guessing a correct answer. The first

aspect is the ability of auto-correcting errors of a guessing strategy F . In particular,

the situation where xg = xa given that xa is a fixed point of F is now a random event

appearing if either no error occurs, i.e. xo = xa,o, or F(xo) = xa for some xo 6= xa,o,

in other words, F can auto-correct some errors caused by noises.

The second aspect is the noisy phenomenon appeared when xa is not a fixed point

of F , i.e. F(xa,o) 6= xa. Unlike in the classical situation where the probability that

everyone guesses correctly when x is not a fixed point of F is 0, it might be the case

that even when F has no fixed point, the game is won with a non-zero probability.

The first phenomena is a characteristic of a guessing strategy, while the second is the

work of noises. Our aim is to study the combination of these two characteristics on

guessing games; therefore, we make the following definition:

Definition 28. The winning probability of a guessing game (G, 2, ε) with strategy F
is defined to be:

P[Win(G, 2, ε,F)] =

∑
xa

∑
xo P[F(xo) = xa]

2|V (G)| . (6.3)

Our aim is finding a strategy F that maximizes P[Win(G, 2, ε,F)] given G and ε.

There are two types of guessing strategies for this guessing game: pure strategy and

mixed strategy. The guessing strategies of the first type are strategies in which there

is no randomness involved in the guess each player makes given the values it sees.

The alternative is a mixed strategy in which the players randomly choose a strategy

to play from a set of pure strategies. The winning probability of the mixed strategy

is the average of the winning probabilities of the pure strategies weighted according

to the probabilities that they are chosen. This, however, is at most the maximum of

the probabilities P[Win(G, 2, ε,F)] of the pure strategies as proved by the following

lemma.

Lemma 16. Every randomised strategy for the guessing game (G, 2, ε) has winning

probability at most P[Win(G, 2, ε,Fopt)], where Fopt is an optimal pure guessing strat-

egy.

Proof. Following our previous paragraph, a randomised strategy G can be described

by assigning a probability P[G = F] to each deterministic strategy F . The winning

115

probability P[Win(G, 2, ε,G)] of such a strategy is

P[Win(G, 2, ε,G)] =
∑
F

P[G = F]P[Win(G, 2, ε,F)]

≤ max
F

P[Win(G, 2, ε,F)] = P[Win(G, 2, ε,Fopt)]

Therefore, we gain no advantage by playing a mixed strategy. As such, throughout

this chapter we will only ever consider pure strategies.

We now define the noisy guessing number of a guessing game (G, 2, ε), which will be

our measure of the winning probability obtained by an optimal strategy for (G, 2, ε).

Definition 29. The noisy guessing number gn(G, 2, ε) of a guessing game (G, 2, ε) is

the largest β such that there exists a strategy F for (G, 2, ε) satisfies that

gn(G, 2, ε) = |V (G)|+ log2

(
max
F

P[Win(G, 2, ε,F)]
)
.

As it is suggested from the name of gn(G, 2, ε), the noisy guessing number shares

many common properties with the guessing number we have been investigated.

Proposition 10.

gn(G, 2, ε) ≤ gn(G, 2) ≤ gn(G). (6.4)

Proof. We denote F for the optimal strategy giving us gn(G, 2, ε) in our definition.

We have

P[Win(G, 2, ε,F)] =

∑
xa

∑
xo P[F(xo) = xa]

2|V (G)|

≤
∑

xa|F(xa,o)=xa 1

2|V (G)| = P[Win(G, 2,F)]

≤ max
H

P[Win(G, s,H)]

We have two direct consequences of Proposition 10:

Corollary 7. Let G be an undirected graph,

gn(G, 2, ε) ≤ |V (G)| − α(G),

where α(G) is the size of the maximal independent set of G.

and

116

Corollary 8. If G is acyclic, then

gn(G, 2, ε) = 0.

Proof. Since gn(G) = 0, the result follows from Proposition 10.

Based on our definition of noisy guessing games, it is clear that the winning probability

P[Win(G, 2, ε,F)] of such a strategy F is a continuous function with respect to ε. In

particular, we have the following Lemma.

Lemma 17. For a guessing strategy F played on the noisy guessing game (G, 2, ε),

P[Win(G, 2, ε,F)] is a polynomial with variable ε of order |V (G)|. Particularly,

P[Win(G, 2, ε,F)] is continuous with respect to ε.

Moreover,

lim
ε→0

P[Win(G, 2, ε,F)] = P[Win(G, 2, 0,F)] = P[Win(G, 2,F)]

Proof. We write the winning probability of F in terms of ε, and obtain a polynomial

of the form

P[Win(G, 2, ε,F)] = 2|−V (G)| (a0(1− ε)m + a1(1− ε)m−1ε+ . . .+ amε
m
)
,

where ai’s are the number of observed values for which their assignments can be

guessed correctly using strategy F under the condition that there are exactly i errors

occurred.

This is a continuous map with respect to ε and P[Win(G, 2, 0,F)] = a0

2|−V (G)| where a0

is the number of fixed points of strategy F .

The following theorem suggests that when the noise level is small enough, we are be

able to treat the noisy guessing game as if there is no noise involved.

Theorem 29. For every noisy guessing game (G, 2, ε), there exists a positive ε0 such

that for all ε < ε0, we can find an optimal guessing strategy of (G, 2, ε) which is also

an optimal guessing strategy for (G, 2, 0).

Proof. As the number of guessing strategies is finite, we can always choose a positive

ε0 which is small enough such that there is a guessing strategy F which is an optimal

guessing strategy for all positive noise level ε smaller than ε0. In particular, we do

not switch guessing strategy when ε goes to 0.

117

By Lemma 17, the noisy guessing number of strategy F is a continuous function

of ε, and the value 2|V (G)|P[Win(G, 2, ε = 0,F)] is equal a0 which is the number of

fixed points of F . Since 2|V (G)| limε→0 P[Win(G, 2, ε,F)] converges to a0 and by our

assumption, we do not have to switch to another strategy whenever 0 < ε ≤ ε0, this

forces the number of fixed points of F to be equal the number of fixed points of an

optimal strategy when ε = 0. Hence, F is an optimal strategy in a noiseless guessing

game.

6.3 Case studies

We study some examples of noisy guessing games. As we would need to investigate

all possible combinations of guessing strategies that can be played in our game, the

following fact comes in handy:

Proposition 11. The number of different guessing strategies for a single player v in

(G, 2, ε) is 22|Γ
−
v |.

Proof. The number of distinct inputs that one player can observe is 2|Γ
−
v |. Therefore,

it is sufficient to prove the statement by showing a bijection betweenMfv – the set

of distinct guessing strategies of player v and PΓ−v
the power set of distinct inputs

observed by that player. This map can be constructed explicitly as follows:

Mfv → PΓ−v

fv 7→ A := {x ∈ {0, 1}|Γ−v | : fv(x) = 1}

6.3.1 Noisy guessing games played on K2

Let us investigate the behaviour of guessing strategies with respect to noise level when

G is a clique of order two. In this situation, we have two players v1 and v2, each is

assigned a number xa1 and xa2 from {0, 1} uniformly and independently at random.

Player v1 observes a value xo2
1 such that{

P(xo2 = xa2) = 1− ε
P(xo2 = (1− xa2) mod 2) = ε.

1In previous section we use the notation 1x
o
2

118

Table 6.1: Guessing strategies of vi played in (K2, 2, ε)

Guessing strategies of vi observes 0 observes 1
f 1
vi

0 0
f 2
vi

1 1
f 3
vi

0 1
f 4
vi

1 0

Table 6.2: Representative of classes of guessing strategies for (K2, 2, ε)

(f 1
v1
, f 1
v2

) (f 1
v1
, f 2
v2

) (f 2
v1
, f 2
v2

)
(f 1
v1
, f 3
v2

) (f 1
v1
, f 4
v2

) (f 2
v1
, f 3
v2

) (f 2
v1
, f 4
v2

)
(f 3
v1
, f 3
v2

) (f 4
v1
, f 4
v2

)
(f 3
v1
, f 4
v2

)

Similarly for player x2 who observes a value xo1
2 such that{

P(xo1 = xa1) = 1− ε
P(xo1 = (1− xa1) mod 2) = ε.

Table 6.1 illustrates all possible guessing strategies we can form for player vi (i = 1, 2).

We have 16 possible combinations of guessing strategies (f iv1
, f jv2

) (i, j ∈ {1, 2, 3, 4}).
However, a lot of the pairs (f iv1

, f jv2
) are equivalent to each others due to the symmetry

of K2. For example, the pair (f 1
v1
, f 2
v2

) is equivalent to pair (f 2
v1
, f 1
v2

). Therefore, we

can divide all possible guessing strategies into 10 = 4 + 6 equivalent classes with

representatives, which are described in table 6.2

Table 6.3 shows the guessing outputs for each guessing strategies corresponding to

assigned values, and the winning probability for each guessing strategy is shown in

table 6.4.

We will explain in a few words how we computed the winning probability for each

guessing strategy appeared in table 6.4.

For guessing strategies F = (f 1
v1
, f 1
v2

), (f 1
v1
, f 2
v2

), (f 2
v1
, f 2
v2

), the guessing value of each

player is independent of the noises, therefore the winning probability for each of these

strategies equals the winning probability of our noiseless guessing game playing with

each of these strategies, which in turns equals the proportion of number of fixed points

of F over the order of the configuration space.

2In previous section we use the notation 2x
o
1

119

For the case where F is one of those {(f 1
v1
, f 3
v2

), (f 1
v1
, f 4
v2

), (f 2
v1
, f 3
v2

), (f 2
v1
, f 4
v2

)}, we see
that one of the player uses a guessing strategy which is independent to the its assigned

value, hence given a fixed point of the guessing strategy, the winning probability of

their game depends on whether the second player can guess correctly its assigned

value. The probability of this event is equal to the probability that no error appears

when the second player observes the assigned value of the first player. Therefore,

P[Win(G, 2, ε,F)] =
∑

(xai ,x
a
j)∈{0,1}2

P[ix
o
j = xaj]P[F(xa,oi , xa,oj) = (xai , x

a
j)]

= (1− ε)1

4
=

1− ε
4

.

We mentioned in the previous section the phenomenon where the interaction between

noises and guessing strategies comes into play. This aspect is illustrated in the case

where F is one of those {(f 3
v1
, f 3
v2

), (f 4
v1
, f 4
v2

)}. We demonstrate the calculation for

F = (f 3
v1
, f 3
v2

). In this situation, we have

P[Win(G, 2, ε,F)] =
∑

(xa)∈{0,1}2

∑
xo∈{0,1}2

P[F(xo) = xa]

= P[xa = 00]P[xo = 00] + P[xa = 11]P[xo = 11]

+ P[xa = 01]P[xo = 10] + P[xa = 10]P[xo = 10]

=
1

4
(1− ε)2 +

1

4
(1− ε)2

+
1

4
ε2 +

1

4
ε2

=
(1− 2ε+ 2ε2)

2
.

The ‘collaborative’ interaction between noises and a guessing strategy contributes a

portion of ε2

2
toward the winning probability.

The presence of this noisy phenomenon plays a significant role in the last type of

guessing strategy where F = (f 3
v1
, f 4
v2

). For this case

P[Win(G, 2, ε,F)] = P[xa = 00]P[xo = 10] + P[xa = 01]P[xo = 00]

+ P[xa = 10]P[xo = 11] + P[xa = 11]P[xo = 01]

= ε− ε2.

Following our calculation, we have

120

Table 6.3: Inputs–outputs of 10 representative guessing strategies for (K2, 2, ε)

(f 1
v1
, f 1
v2

) (f 1
v1
, f 2
v2

) (f 2
v1
, f 2
v2

)
00 00 01 11
01 00 01 11
10 00 01 11
11 00 01 11

(f 1
v1
, f 3
v2

) (f 1
v1
, f 4
v2

) (f 2
v1
, f 3
v2

) (f 2
v1
, f 4
v2

)
00 00 01 00 01
01 00 01 00 01
10 01 00 01 00
11 01 00 01 00

(f 3
v1
, f 3
v2

) (f 4
v1
, f 4
v2

)
00 00 11
01 10 01
10 01 10
11 11 00

(f 3
v1
, f 4
v2

)
00 01
01 11
10 00
11 10

Table 6.4: Winning probability of guessing strategies for (K2, 2, ε)

Guessing strategy F (f 1
v1
, f 1
v2

) (f 1
v1
, f 2
v2

) (f 2
v1
, f 2
v2

) (f 4
v1
, f 4
v2

)
P[Win(G, 2, ε,F)] 1

4
1
4

1
4

1
4

Guessing strategy F (f 1
v1
, f 3
v2

) (f 1
v1
, f 4
v2

) (f 2
v1
, f 3
v2

) (f 2
v1
, f 4
v2

)

P[Win(G, 2, ε,F)] (1−ε)
4

(1−ε)
4

(1−ε)
4

(1−ε)
4

Guessing strategy F (f 3
v1
, f 3
v2

) (f 4
v1
, f 4
v2

)

P[Win(G, 2, ε,F)] (1−2ε+2ε2)
2

(1−2ε+2ε2)
2

Guessing strategy F (f 3
v1
, f 4
v2

)
P[Win(G, 2, ε,F)] ε− ε2

121

Table 6.5: Guessing strategies of v1 and v3 played in (P2, 2, ε)

Guessing strategies of vi observes 0 observes 1
f 1
vi

0 0
f 2
vi

1 1
f 3
vi

0 1
f 4
vi

1 0

Theorem 30. For 0 ≤ ε < 1
2
, the highest probability of winning (K2, 2, ε) can be

obtained by using either guessing strategy (f 3
v1
, f 3
v2

) or strategy (f 4
v1
, f 4
v2

). The noisy

guessing number is

gn(G, 2, ε) = 1− log2(1− 2ε+ 2ε2).

When ε = 1
2
, gn(G, 2, ε) = 0.

6.3.2 Noisy guessing games played on P3

Let us consider another example of a noisy guessing game where G = P3. In this

situation, we have three players v1, v2 and v3, each is assigned a number xa1, x
a
2 and

xa3 from {0, 1} uniformly and independently at random. Player v1 observes a value

1x
o
2 such that {

P(1x
o
2 = xa2) = 1− ε

P(1x
o
2 = (1− xa2) mod 2) = ε.

Similarly for player v3 who observes a value 3x
o
2 such that{

P(3x
o
2 = xa2) = 1− ε

P(3x
o
2 = (1− xa2) mod 2) = ε.

For player v2, it observes values 2x
o
3,2 x

o
1 such that{

P(2x
o
1 = xa1) = 1− ε

P(2x
o
1 = (1− xa1) mod 2) = ε.

and {
P(2x

o
3 = xa3) = 1− ε

P(2x
o
3 = (1− xa3) mod 2) = ε.

Table 6.5 illustrates all possible guessing strategies we can form for player v1 and v3,

while all possible guessing strategies we can form for player v2 are demonstrated in

Table 6.6.

122

Table 6.6: Guessing strategies of v2 played in (P2, 2, ε)

Guessing strategies of v2 observes 00 observes 01 observes 10 observes 11
f 1
v2

0 0 0 0
f 2
v2

0 0 0 1
f 3
v2

0 0 1 0
f 4
v2

0 0 1 1
f 5
v2

0 1 0 0
f 6
v2

0 1 0 1
f 7
v2

0 1 1 0
f 8
v2

0 1 1 1
f 9
v2

1 0 0 0
f 10
v2

1 0 0 1
f 11
v2

1 0 1 0
f 12
v2

1 0 1 1
f 13
v2

1 1 0 0
f 14
v2

1 1 0 1
f 15
v2

1 1 1 0
f 16
v2

1 1 1 1

Proposition 12. The number of fixed points for any guessing strategies played in

(P3, 2, ε) can not be greater than 2.

Proof. According to the definition of fixed points, these are points for which the

guessing value is equal to the assigned value under the condition that no error oc-

curred. Therefore, fixed points of a guessing strategy in noisy guessing games (P3, 2, ε)

are also fixed points of the same guessing strategy played in noiseless guessing game

(P3, 2). From Section 3.3, we know that these points are equivalent to independent

set of code graph X(P3, 2). Figure 6.1 illustrates the code graph X(P3, 2), and it is

easy to see that this graph has independent number α(X(P3, 2)) = 2.

The automorphism group of P3 is of order 2; therefore we can classify all guessing

strategies for (P3, 2, ε) into equivalent classes similar to what was done in our previous

example (K2, 2, ε). However, since we are only interested in looking at the optimal

guessing strategy, we divide guessing strategies for (P3, 2, ε) into general categories as

follows:

• ClassM1 contains strategies of which guessing function used by each player is

a constant map.

123

2

1

3

(a) P3

000

001

010

011

100

101

110

111

(b) X(P3, 2)

Figure 6.1: Guessing game on P3 and its code graph X(P3, 2).

Table 6.7: Optimal guessing strategies for (P3, 2, ε)

Assigned value 000 001 010 011 100 101 110 111
(f 1
v1
, f 13
v2
, f 3
v3

) 011 001 010 000 011 001 010 000
(f 2
v1
, f 13
v2
, f 3
v3

) 011 001 110 100 011 001 110 100
(f 2
v1
, f 4
v2
, f 2
v3

) 000 010 101 111 000 010 101 111
(f 3
v1
, f 13
v2
, f 3
v3

) 111 101 010 000 111 101 010 000
(f 3
v1
, f 4
v2
, f 2
v3

) 100 110 001 011 100 110 001 011
(f 4
v1
, f 13
v2
, f 3
v3

) 111 101 110 100 111 101 110 100
(f 4
v1
, f 4
v2
, f 2
v3

) 100 110 101 111 100 110 101 111

• ClassM2 contains strategies of which two players use guessing functions which

are constant functions, and the last player guess its value based only on the

value of one of its neighbourhood.

• ClassM3 contains strategies of which at least two players collaborate.

Guessing strategies belonging to classM1, andM2 are generally similar to strategies

covered in the previous example. The winning probabilities for these strategies are
1
8
and (1−ε)

8
. The argument for computing the winning probability is similar to the

case (K2, 2, ε). Compared to the winning probability of similar strategies played in

(K2, 2, ε), we see that there is an extra factor of 1
2
since we have one extra player who

guesses its value randomly.

The interesting case is when we have at least two players collaborating with each

other. We would expect that the optimal winning probability can be achieved by

guessing strategies belonging to M3. In fact, this is the case. Table 6.7 provides a

list of all guessing strategies that obtain an optimal winning probability for (P3, 2, ε).

124

The winning probability using any of these strategies is

P[Win(G, 2, ε,F)] =
1

4
(1− ε)4 +

1

2
(1− ε)3ε+

1

2
(1− ε)2ε2 +

1

2
(1− ε)ε3 +

1

4
ε4.

As we are only concerned about the optimal winning probability, we do not cover other

strategies here as they provide a smaller chance of winning compared to strategies

listed in Table 6.7. We derived a complete list of winning probabilities for each

guessing strategy via computer calculation and the data will be provided upon request.

Following our calculation, we have

Theorem 31. For 0 ≤ ε < 1
2
, the highest probability of winning (P3, 2, ε) can be

obtained by using guessing strategies illustrated in Table 6.7. The noisy guessing

number is

gn(G, 2, ε) = 3 + log2(
1

4
(1− ε)4 +

1

2
(1− ε)3ε+

1

2
(1− ε)2ε2 +

1

2
(1− ε)ε3 +

1

4
ε4).

When ε = 1
2
, gn(G, 2, ε) = 0.

6.3.3 Noisy guessing games played on K3

Let us consider another example of noisy guessing game where G = K3. In this

situation, we have three players v1, v2 and v3, each is assigned a number xa1, x
a
2 and

xa3 from {0, 1} uniformly and independently at random. Each player vi observes values

ix
o
j ,i x

o
k such that {

P(ix
o
j = xaj) = 1− ε

P(ix
o
j = (1− xaj) mod 2) = ε.

and {
P(ix

o
k = xak) = 1− ε

P(ix
o
k = (1− xak) mod 2) = ε.

Table 6.8 illustrates all 16 possible guessing strategies that we can form for each player

vi (i = 1, 2, 3).

Proposition 13. The number of fixed points for any guessing strategy played in

(K3, 2, ε) cannot be greater than 4.

Proof. Based on the definition of fixed points, these are points for which the guessing

value equals the assigned value under the condition that no error occurred in observa-

tion. Therefore, fixed points of a guessing strategy in noisy guessing games (K3, 2, ε)

125

Table 6.8: Guessing strategies of vi played in (K3, 2, ε)

Guessing strategies of vi observes 00 observes 01 observes 10 observes 11
f 1
vi

0 0 0 0
f 2
vi

0 0 0 1
f 3
vi

0 0 1 0
f 4
vi

0 0 1 1
f 5
vi

0 1 0 0
f 6
vi

0 1 0 1
f 7
vi

0 1 1 0
f 8
vi

0 1 1 1
f 9
vi

1 0 0 0
f 10
vi

1 0 0 1
f 11
vi

1 0 1 0
f 12
vi

1 0 1 1
f 13
vi

1 1 0 0
f 14
vi

1 1 0 1
f 15
vi

1 1 1 0
f 16
vi

1 1 1 1

are also fixed points of the same guessing strategy played in noiseless guessing game

(K3, 2). From Section 3.3, we know that these points are equivalent to independent

set of code graph X(K3, 2). Figure 6.1 illustrates the code graph X(K3, 2), and it is

easy to see that this graph has the independent number α(X(K3, 2)) = 4.

We derived a complete list of winning probability for each guessing strategy via com-

puter calculation and the data will be provided upon request. Interestingly, the

optimal guessing strategy for (K3, 2, ε) depends heavily on the noise level ε. We give

1 2

3

(a) K3

000

001

010

011

100

101

110

111

(b) X(K3, 2)

Figure 6.2: Guessing game on K3 and its code graph X(K3, 2).

126

Table 6.9: Representative of optimal guessing strategies for (K3, 2, ε)

Assigned value 000 001 010 011 100 101 110 111
(f 10
v1
, f 10
v2
, f 10
v3

) 111 001 010 100 100 010 001 111
(f 9
v1
, f 9
v2
, f 9
v3

) 111 001 010 000 100 000 000 000
(f 1
v1
, f 13
v2
, f 13
v3

) 011 001 010 000 011 001 010 000

a list of representative guessing strategies for (K3, 2, ε) in Table 6.9

The winning probability for using strategy (f 10
v1
, f 10
v2
, f 10
v3

) is

P[Win(G, 2, ε,F)] = 2−3
(
4(1− ε)6 + 12(1− ε)4ε2 + 32(1− ε)3ε3 + 12(1− ε)2ε4 + 4ε6

)
.

The winning probability for using strategy (f 9
v1
, f 9
v2
, f 9
v3

) is

P[Win(G, 2, ε,F)] = 2−3(3(1− ε)6 + 6(1− ε)5ε+ 12(1− ε)4ε2 + 20(1− ε)3ε3

+ 15(1− ε)2ε4 + 6(1− ε)2ε4 + 2ε6).

The winning probability for using strategy (f 1
v1
, f 13
v2
, f 13
v3

) is

P[Win(G, 2, ε,F)] = 2−3(2(1− ε)6 + 8(1− ε)5ε+ 14(1− ε)4ε2 + 16(1− ε)3ε3

+ 14(1− ε)2ε4 + 8(1− ε)2ε4 + 2ε6).

We observe a very interesting phenomenon in this example where the optimal guessing

strategy depends heavily on the noise level. In particular, when 0 ≤ ε < 0.17, the

guessing strategy (f 10
v1
, f 10
v2
, f 10
v3

) is invoked. This strategy provides 4 fixed points

and it is equivalent to the optimal guessing strategy played in a noiseless guessing

game (K3, 2). When 0.17 ≤ ε < 0.35, the guessing strategy (f 9
v1
, f 9
v2
, f 9
v3

) is adopted.

Interestingly, this strategy only provides 3 fixed points; therefore, it is non-linear.

When 0.35 ≤ ε < 0.5 the guessing strategy (f 1
v1
, f 13
v2
, f 13
v3

) is selected. This guessing

strategy provides only 2 fixed points. When ε = 0.5, every guessing strategy provides

the same result with winning probability equal to 1
8
. Table 6.10 provides a list of

all guessing strategies that have a similar winning probability for (K3, 2, ε). We note

that the values 0.17, 0.35 are approximations taken from the data file.

Following our calculation, we have

Theorem 32. For 0 ≤ ε < 0.17, the highest probability of winning (K3, 2, ε) can be

obtained by using either guessing strategy (f 10
v1
, f 10
v2
, f 10
v3

) or its equivalences (presented

127

Table 6.10: Classes of optimal guessing strategies for (K3, 2, ε)

Representative Guessing strategies Range of ε
(f 10
v1
, f 10
v2
, f 10
v3

) (f 10
v1
, f 10
v2
, f 10
v3

) (f 7
v1
, f 7
v2
, f 7
v3

) 0 ≤ ε < 0.17
(f 9
v1
, f 9
v2
, f 9
v3

) (f 15
v1
, f 15
v2
, f 15
v3

) (f 14
v1
, f 2
v2
, f 12
v3

) (f 12
v1
, f 12
v2
, f 2
v3

) 0.17 ≤ ε < 0.35
(f 8
v1
, f 5
v2
, f 5
v3

) (f 9
v1
, f 9
v2
, f 9
v3

) (f 5
v1
, f 8
v2
, f 9
v3

)
(f 2
v1
, f 14
v2
, f 14
v3

) (f 3
v1
, f 3
v2
, f 8
v3

)
(f 1
v1
, f 13
v2
, f 13
v3

) (f 13
v1
, f 13
v2
, f 13
v3

) (f 13
v1
, f 4
v2
, f 4
v3

) (f 11
v1
, f 13
v2
, f 13
v3

) 0.35 ≤ ε ≤ 0.5
(f 11
v1
, f 4
v2
, f 4
v3

) (f 2
v1
, f 4
v2
, f 4
v3

) (f 10
v1
, f 13
v2
, f 13
v3

)
(f 10
v1
, f 4
v2
, f 4
v3

) (f 7
v1
, f 13
v2
, f 13
v3

) (f 7
v1
, f 4
v2
, f 4
v3

)
(f 6
v1
, f 13
v2
, f 13
v3

) (f 6
v1
, f 4
v2
, f 4
v3

) (f 4
v1
, f 13
v2
, f 13
v3

)
(f 4
v1
, f 4
v2
, f 4
v3

) (f 15
v1
, f 13
v2
, f 13
v3

) (f 15
v1
, f 4
v2
, f 4
v3

)
(f 14
v1
, f 13
v2
, f 13
v3

) (f 14
v1
, f 4
v2
, f 4
v3

) (f 12
v1
, f 13
v2
, f 13
v3

)
(f 12
v1
, f 4
v2
, f 4
v3

) (f 8
v1
, f 13
v2
, f 13
v3

) (f 8
v1
, f 4
v2
, f 4
v3

)
(f 16
v1
, f 13
v2
, f 13
v3

) (f 16
v1
, f 4
v2
, f 4
v3

) (f 1
v1
, f 13
v2
, f 13
v3

)
(f 1
v1
, f 4
v2
, f 4
v3

) (f 9
v1
, f 13
v2
, f 13
v3

) (f 9
v1
, f 4
v2
, f 4
v3

)
(f 5
v1
, f 13
v2
, f 13
v3

) (f 5
v1
, f 4
v2
, f 4
v3

) (f 3
v1
, f 13
v2
, f 13
v3

)
(f 3
v1
, f 4
v2
, f 4
v3

) (f 2
v1
, f 13
v2
, f 13
v3

)

in Table 6.10) The noisy guessing number in this case is

gn(K3, 2, ε) = log2(4(1− ε)6 + 12(1− ε)4ε2

+ 32(1− ε)3ε3 + 12(1− ε)2ε4 + 4ε6).

For 0.17 ≤ ε < 0.35, the highest probability of winning (K3, 2, ε) can be obtained

by using either guessing strategy (f 9
v1
, f 9
v2
, f 9
v3

) or its equivalences (presented in Table

6.10) The noisy guessing number in this case is

gn(K3, 2, ε) = log2(3(1− ε)6 + 6(1− ε)5ε+ 12(1− ε)4ε2

+ 20(1− ε)3ε3 + 15(1− ε)2ε4 + 6(1− ε)2ε4 + 2ε6.).

For 0.35 ≤ ε < 0.5, the highest probability of winning (K3, 2, ε) can be obtained by

using either guessing strategy (f 1
v1
, f 13
v2
, f 13
v3

) or its equivalences (presented in Table

6.10) The noisy guessing number in this case is

gn(K3, 2, ε) = log2(2(1− ε)6 + 8(1− ε)5ε+ 14(1− ε)4ε2

+ 16(1− ε)3ε3 + 14(1− ε)2ε4 + 8(1− ε)2ε4 + 2ε6).

When ε = 1
2
, gn(G, 2, ε) = 0.

128

Figure 6.3: Noisy guessing number/Number of fixed points vs Noise level (%)

129

Chapter 7

Conclusion

7.1 Summary

The guessing game played on digraphs is a combinatorial framework that is based on

a simplified version of multiple-unicast network coding. This game lies in the inter-

section of graph theory, network coding, and circuit complexity theory. In particular,

it connects the solvability of a multiple-unicast network with the value of a combina-

torial number known as guessing number. Moreover, the guessing number is proved

to be equal to the order of the entropy of the same digraph. Hence, the nature of this

problem is strongly influenced by fundamental characteristics of information theory.

In this paper, we have shown that the guessing game, even in its simplest form

which is a game being played on an undirected graph, possesses ‘conjecturally’ all

informatic properties that are admitted by a general network coding problem. In

particular, we have established examples of guessing games played on (un)directed

graphs possessing the property that there are gaps between different bounds provided

by different families of information inequalities. These graphs add new test cases

to the list of graphs with special informatic properties which previously contained

the Vámos network and its variations. Moreover, our examples are of small order,

therefore, the calculation and verification can be done entirely by computer. In fact,

the process of deriving these bounds is achieved by computer. In addition, using the

method of constructing a new graph based on graph product, our example leaves

room for improvement in terms of extending these gaps further.

Another question that we improved is the existence of an irreversible guessing game

on digraph. Even-though we could not find an answer to this problem in its strongest

130

form, we established an example which justifies the conjectured. Our example RS has

the property that the Shannon bound of RS and the Shannon bound of Reverse(RS)

did not match.

Unfortunately, we made no serious improvement to the problem of tracing for an al-

gorithm that can compute the guessing number of an arbitrary graph. Limited by the

number of tools at our disposal, we added to the literature new families of graphs with

their exact guessing numbers derived. In addition, we managed to disprove a conjec-

ture which links the guessing number with a combinatorial value defined purely based

on the graph topology. In establishing our counter-examples, we also showed the be-

haviour of different lower-bounds which are coming from different families of codes.

To construct some of our examples, combinatorial structures known as the Steiner

system were invoked. These structures are very interesting on its own, which have

found applications in representation theory – an influential branch of pure mathemat-

ics. The existence of a generalization of the Steiner system was proved by Keevash

[60]. This vital work opens the door for us towards constructing many more instances

of guessing games with interesting combinatorial properties.

Last but not least, we initialize the study of noisy guessing games. Though our results

are simple and naive, they are remarks of an effort of dealing with ‘practical’ problems

in network coding. Notably, many interesting phenomena have already appeared in

our studies, which are worth investigation further.

7.2 Open questions and future research

At this point, we can see clearly that there are many open questions can be raised in

our study ranging from specific examples to broadly defined ideas, e.g.

• What is the exact value of the guessing number of R−? We emphasise that R− is

the only undirected graph on at most 10 vertices whose guessing number remains

undetermined in our calculation. Any lower bound that implies gn(R−) > 20/3

would show that there exists a non-linear guessing strategy that outperforms

the fractional clique cover strategy for R−.

• Whether there exists an irreversible guessing game, i.e. a guessing game G

such that gn(G) 6= gn(Reverse(G)). This can be answered in the affirmative

if gn(RL) can be shown to be strictly larger than 27/4 = 6.75. Unfortunately,

131

this might be hard to prove as it would establish the existence of a non-linear

guessing strategy that improves the lower bound we derived.

• Can we compute the guessing numbers of the Higman–Sims graph, Clebsch

graph, Hoffman–Singleton graph, Gewirtz graph, and M22? We notice that

these graphs are large and therefore we have no powerful computation system

to derive the upper-bound of these graphs using the entropy arguments. How-

ever, these graphs are triangle-free and strongly regular, which implies that the

associated code graphs possess interesting symmetrical structures, which may

help us derive the guessing number in a combinatorial way.

• Can we find an algorithm to compute the guessing number? Or can we prove

that no such algorithm exists?

• Can we define a noisy guessing number independently from the alphabet size

assuming that the communication channels are symmetric? Can we define noisy

guessing numbers for more general types of communication channels?

Each of these questions are directly concerned with some of the deepest open problems

in information theory. Therefore, it is unlikely to expect an answer to these problems

within a short period of time. However, there are reasonable yet non-trivial open

questions that we are also interested in. These questions arise from our works of

computing exact guessing numbers of families of graphs appeared in Chapter 5. It is

noticeable that all of the counter-examples to the fractional clique cover conjecture

that appeared in this thesis are non-planar. This fact can be easily proved following

the Kuratowski’s theorem saying that:

Theorem 33 (Kuratowski’s theorem). A finite graph is planar if and only if it con-

tains no subgraph homeomorphic to K5 (complete graph on five vertices) or K3,3

(complete bipartite graph on six vertices, three of which connect to each of the other

three).

Obviously, our graphs R and R− contain subgraphs that are homeomorphic to K3,3.

Moreover, each strongly regular triangle-free planar graph appeared in Section 4.3

contains copies of the Petersen graph which in turns contains a minor isomorphic to

the K3,3 graph.

In contrast, the families of graphs that we derived their exact guessing numbers in

Chapter 5 are planar triangle-free graphs. This observation motivates our following

conjecture:

132

Conjecture 15. The fractional clique cover conjecture holds if the underlying graph is

a planar triangle-free graph.

We can even hope for a more general statement:

Conjecture 16. The fractional clique cover conjecture holds if the underlying graph is

a planar graph.

Note that this conjecture holds when our graph is K4 which is a planar graph but is

not a triangle-free graph.

These conjectures, by far, are the most general conjectured statements about guessing

numbers of families of undirected graphs which remain open.

Another problem that might be within our reach is about building asymptotic state-

ments about guessing numbers of families of graphs. When we say “a family of graphs,”

we mean a sequence of (un)directed graphs {G1, G2, . . . , Gn, . . .}, where Gi is isomor-

phic to a subgraph of Gi+1 plus some extra conditions. An asymptotic behaviour

is a behaviour of the sequence {gn(G1), gn(G2), . . . , gn(Gn), . . .} under different con-
straints in defining the family {G1, G2, . . . , Gn, . . .}.

133

References

[1] A. Agarwal and M. Charikar. On the advantage of network coding for improving

network throughput. In Information Theory Workshop, 2004. IEEE, pages 247–

249, Oct 2004.

[2] R. Ahlswede, Ning Cai, S.-Y.R. Li, and R.W. Yeung. Network information flow.

Information Theory, IEEE Transactions on, 46(4):1204–1216, Jul 2000.

[3] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hassidim. Broadcasting

with side information. In Foundations of Computer Science, 2008. FOCS ’08.

IEEE 49th Annual IEEE Symposium on, pages 823–832, Oct 2008.

[4] Rahil Baber, Demetres Christofides, Anh N. Dang, Søren Riis, and Emil R.

Vaughan. Multiple unicasts, graph guessing games, and non-shannon inequal-

ities. In International Symposium on Network Coding, NetCod 2013, Calgary,

AB, Canada, June 7-9, 2013, pages 1–6, 2013.

[5] Rahil Baber, Demetres Christofides, Anh Nhat Dang, Søren Riis, and Emil R.

Vaughan. Graph guessing games and non-shannon information inequalities.

CoRR, abs/1410.8349, 2014.

[6] Hossein Bahramgiri and Farshad Lahouti. Robust network coding against path

failures. Communications, IET, 4(3):272–284, 2010.

[7] Z. Bar-Yossef, Y. Birk, T.S. Jayram, and T. Kol. Index coding with side infor-

mation. Information Theory, IEEE Transactions on, 57(3):1479–1494, March

2011.

[8] Ziv Bar-Yossef, Yitzhak Birk, TS Jayram, and Tomer Kol. Index coding with

side information. In Foundations of Computer Science, 2006. FOCS’06. 47th

Annual IEEE Symposium on, pages 197–206. IEEE, 2006.

134

[9] R. Bassoli, H. Marques, J. Rodriguez, K.W. Shum, and R. Tafazolli. Net-

work coding theory: A survey. Communications Surveys Tutorials, IEEE,

15(4):1950–1978, Fourth 2013.

[10] Claude Berge. Perfect graphs. In Six Papers on Graph Theory, Indian Statistical

Institute, 1963., 1963.

[11] Y. Birk and T. Kol. Coding on demand by an informed source (iscod) for

efficient broadcast of different supplemental data to caching clients. Information

Theory, IEEE Transactions on, 52(6):2825–2830, June 2006.

[12] A. Blasiak, R. Kleinberg, and E. Lubetzky. Broadcasting with side information:

Bounding and approximating the broadcast rate. Information Theory, IEEE

Transactions on, 59(9):5811–5823, Sept 2013.

[13] Anna Blasiak. A Graph-Theoretic Approach to Network Coding. PhD thesis,

Cornell University, 2013.

[14] Anna Blasiak and Robert Kleinberg. The serializability of network codes. In

Proceedings of the 37th International Colloquium Conference on Automata, Lan-

guages and Programming: Part II, ICALP’10, pages 100–114, Berlin, Heidel-

berg, 2010. Springer-Verlag.

[15] Anna Blasiak, Robert Kleinberg, and Eyal Lubetzky. Lexicographic products

and the power of non-linear network coding. In IEEE 52nd Annual Symposium

on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,

October 22-25, 2011, pages 609–618, 2011.

[16] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business

Media, 1998.

[17] Martin Bossert and Ernst M Gabidulin. One family of algebraic codes for

network coding. In Proceedings of the 2009 IEEE international conference on

Symposium on Information Theory-Volume 4, pages 2863–2866. IEEE Press,

2009.

[18] A. Brouwer. Graph descriptions.

[19] A. E. Brouwer and C. A. Van Eijl. On the p-rank of the adjacency matrices

of strongly regular graphs. Journal of Algebraic Combinatorics 1, 4:329–346,

1992.

135

[20] Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità.

Steiner tree approximation via iterative randomized rounding. J. ACM,

60(1):6:1–6:33, February 2013.

[21] Ning Cai and Raymond W Yeung. Network coding and error correction.

[22] Ning Cai, Raymond W Yeung, et al. Network error correction, ii: Lower bounds.

Communications in Information & Systems, 6(1):37–54, 2006.

[23] Peter J. Cameron, Anh N. Dang, and Søren Riis. Guessing games on triangle-

free graphs. CoRR, abs/1410.2405, 2014.

[24] Peter J Cameron and Jacobus Hendricus Van Lint. Designs, graphs, codes, and

their links. Cambridge University Press, 1992.

[25] T. Chan and A. Grant. Dualities between entropy functions and network codes.

Information Theory, IEEE Transactions on, 54(10):4470–4487, Oct 2008.

[26] Terence Chan and Alex Grant. Non-linear information inequalities. Entropy,

10(4):765–775, 2008.

[27] Terence H Chan. Capacity regions for linear and abelian network codes. In In-

formation Theory and Applications Workshop, 2007, pages 73–78. IEEE, 2007.

[28] Demetres Christofides and Klas Markström. The guessing number of undirected

graphs. Electr. J. Comb., 18(1), 2011.

[29] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The

strong perfect graph theorem. Ann. Math. (2), 164(1):51–229, 2006.

[30] Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.).

Wiley, 2006.

[31] M. Di Renzo, M. Iezzi, and F. Graziosi. Beyond routing via network coding:

An overview of fundamental information-theoretic results. In Personal Indoor

and Mobile Radio Communications (PIMRC), 2010 IEEE 21st International

Symposium on, pages 2745–2750, Sept 2010.

[32] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in

mathematics. Springer, 2012.

[33] A.G. Dimakis, K. Ramchandran, Y. Wu, and Changho Suh. A survey on net-

work codes for distributed storage. Proceedings of the IEEE, 99(3):476–489,

March 2011.

136

[34] R. Dougherty, C. Freiling, and K. Zeger. Insufficiency of linear coding in network

information flow. Information Theory, IEEE Transactions on, 51(8):2745–2759,

Aug 2005.

[35] R. Dougherty, C. Freiling, and K. Zeger. Six new non-shannon information

inequalities. In Information Theory, 2006 IEEE International Symposium on,

pages 233–236, July 2006.

[36] R. Dougherty, C. Freiling, and K. Zeger. Networks, matroids, and non-

shannon information inequalities. Information Theory, IEEE Transactions on,

53(6):1949–1969, June 2007.

[37] Randall Dougherty, Chris Freiling, and Kenneth Zeger. Non-shannon infor-

mation inequalities in four random variables. arXiv preprint arXiv:1104.3602,

2011.

[38] Randall Dougherty, Christopher F. Freiling, and Kenneth Zeger. Network cod-

ing and matroid theory. Proceedings of the IEEE, 99(3):388–405, 2011.

[39] Randall Dougherty and Kenneth Zeger. Nonreversibility and equivalent con-

structions of multiple-unicast networks. Information Theory, IEEE Transac-

tions on, 52(11):5067–5077, 2006.

[40] S. El Rouayheb, A. Sprintson, and C. Georghiades. On the index coding problem

and its relation to network coding and matroid theory. Information Theory,

IEEE Transactions on, 56(7):3187–3195, July 2010.

[41] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network coding:

An instant primer. SIGCOMM Comput. Commun. Rev., 36(1):63–68, January

2006.

[42] Christina Fragouli and Emina Soljanin. Network coding applications. Founda-

tions and Trends in Networking, 2(2):135–269, 2007.

[43] EM Gabidulin and Martin Bossert. Algebraic codes for network coding. Prob-

lems of Information Transmission, 45(4):343–356, 2009.

[44] Maximilien Gadouleau and Søren Riis. Computing without memory. CoRR,

abs/1111.6026, 2011.

[45] Maximilien Gadouleau and Søren Riis. Graph-theoretical constructions for

graph entropy and network coding based communications. IEEE Transactions

on Information Theory, 57(10):6703–6717, 2011.

137

[46] Maximilien Gadouleau and Zhiyuan Yan. Packing and covering properties of

subspace codes for error control in random linear network coding. Information

Theory, IEEE Transactions on, 56(5):2097–2108, 2010.

[47] Xuan Guang, Fang-Wei Fu, and Zhen Zhang. Construction of network error

correction codes in packet networks. Information Theory, IEEE Transactions

on, 59(2):1030–1047, 2013.

[48] Nicholas J. A. Harvey and et al. Comparing network coding with multicom-

modity flow for the k-pairs communication problem, 2004.

[49] Nicholas J. A. Harvey and Robert Kleinberg. Tighter cut-based bounds for

k-pairs communication problems, 2005.

[50] Nicholas J.A. Harvey, R. Kleinberg, and A.R. Lehman. On the capacity of

information networks. Information Theory, IEEE Transactions on, 52(6):2345–

2364, June 2006.

[51] N.J.A. Harvey, R. Kleinberg, C. Nair, and Yunnan Wu. A “chicken & egg”

network coding problem. In Information Theory, 2007. ISIT 2007. IEEE In-

ternational Symposium on, pages 131–135, June 2007.

[52] Donald G Higman and Charles C Sims. A simple group of order 44,352,000.

Mathematische Zeitschrift, 105(2):110–113, 1968.

[53] Tracey Ho, M. Medard, R. Koetter, D.R. Karger, M. Effros, Jun Shi, and

B. Leong. A random linear network coding approach to multicast. Information

Theory, IEEE Transactions on, 52(10):4413–4430, Oct 2006.

[54] S. Jaggi, P. Sanders, P.A. Chou, M. Effros, S. Egner, K. Jain, and L.M.G.M.

Tolhuizen. Polynomial time algorithms for multicast network code construction.

Information Theory, IEEE Transactions on, 51(6):1973–1982, June 2005.

[55] Sidharth Jaggi, Michelle Effros, T Ho, and Muriel Médard. On linear network

coding. Proc. of the 42nd Allerton Conference, 2004.

[56] K. Jain, Vijay V. Vazirani, R. Yeung, and G. Yuval. On the capacity of multiple

unicast sessions in undirected graphs. In Information Theory, 2005. ISIT 2005.

Proceedings. International Symposium on, pages 563–567, Sept 2005.

[57] Kamal Jain, Mohammad Mahdian, and Mohammad R. Salavatipour. Packing

steiner trees. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium

138

on Discrete Algorithms, SODA ’03, pages 266–274, Philadelphia, PA, USA,

2003. Society for Industrial and Applied Mathematics.

[58] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[59] S. Katti, H. Rahul, Wenjun Hu, D. Katabi, M. Medard, and J. Crowcroft.

Xors in the air: Practical wireless network coding. Networking, IEEE/ACM

Transactions on, 16(3):497–510, June 2008.

[60] Peter Keevash. The existence of designs. arXiv preprint arXiv:1401.3665, 2014.

[61] Mikhail H. Klin and Andrew J. Woldar. Dale mesner, higman & sims, and the

strongly regular graph with parameters (100, 22, 0, 6). Bulletin of the Institute

of Combinatorics and its Applications, 63:13–35, 2011.

[62] Ralf Koetter and Frank R Kschischang. Coding for errors and erasures in ran-

dom network coding. Information Theory, IEEE Transactions on, 54(8):3579–

3591, 2008.

[63] Ralf Koetter and Muriel Médard. An algebraic approach to network coding.

IEEE/ACM Transactions on Networking (TON), 11(5):782–795, 2003.

[64] J Körner. Coding of an information source having ambiguous alphabet and the

entropy of graphs. 6th Prague conference on information theory, pages 411–425,

1973.

[65] Gerhard Kramer and SerapA. Savari. Edge-cut bounds on network coding rates.

Journal of Network and Systems Management, 14(1):49–67, 2006.

[66] M. Langberg and A. Sprintson. On the hardness of approximating the network

coding capacity. In Information Theory, 2008. ISIT 2008. IEEE International

Symposium on, pages 315–319, July 2008.

[67] April Rasala Lehman. Network Coding. PhD thesis, Massachusetts Institute of

Technology.

[68] April Rasala Lehman and Eric Lehman. Complexity classification of network

information flow problems. In Proceedings of the Fifteenth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA ’04, pages 142–150, Philadelphia,

PA, USA, 2004. Society for Industrial and Applied Mathematics.

[69] Radim Lněnička. On the tightness of the zhang-yeung inequality for gaussian

vectors. Communications in information and systems, 3(1):41–46, 2003.

139

[70] L LovÕász. A characterization of perfect graphs. Journal of Combinatorial

Theory, Series B, 13(2):95 – 98, 1972.

[71] E. Lubetzky and U. Stav. Nonlinear index coding outperforming the linear

optimum. Information Theory, IEEE Transactions on, 55(8):3544–3551, Aug

2009.

[72] Konstantin Makarychev, Yury Makarychev, Andrei Romashchenko, and Niko-

lai Vereshchagin. A new class of non-shannon-type inequalities for entropies.

Communications in Information and Systems, 2:147–165, 2002.

[73] Takahiro Matsuda, Taku Noguchi, and Tetsuya Takine. Survey of network

coding and its applications. IEICE transactions on communications, 94(3):698–

717, 2011.

[74] Ryutaroh Matsumoto. Construction algorithm for network error-correcting

codes attaining the singleton bound. IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Sciences, 90(9):1729–1735, 2007.

[75] F. Matús. Infinitely many information inequalities. In Information Theory,

2007. ISIT 2007. IEEE International Symposium on, pages 41–44, June 2007.

[76] Muriel Medard, Michelle Effros, David Karger, and Tracey Ho. On coding for

non-multicast networks. In IN PROC. 41ST ANNUAL ALLERTON CONFER-

ENCE ON COMMUNICATION, CONTROL AND COMPUTING, 2003.

[77] Dale M. Mesner. PhD thesis, 1956.

[78] James G. Oxley. Matroid theory. Oxford: Oxford University Press, 1992.

[79] Etienne Perron Rethnakaran Pulikkoonattu and Suhas Diggavi. X information

theoretic inequality prover (xitip), software.

[80] Søren Riis. Linear versus non-linear boolean functions in network flow. 38th

Annual Conference on Information Science and Systems (CISS), Princeton,

NJ, 2004.

[81] Søren Riis. Graph entropy, network coding and guessing games. CoRR,

abs/0711.4175, 2007.

[82] Søren Riis. Information flows, graphs and their guessing numbers. Electr. J.

Comb., 14(1), 2007.

140

[83] Søren Riis. Reversible and irreversible information networks. IEEE Transac-

tions on Information Theory, 53(11):4339–4349, 2007.

[84] Michele Sanna and Ebroul Izquierdo. A survey of linear network coding and net-

work error correction code constructions and algorithms. International Journal

of Digital Multimedia Broadcasting, 2011, 2011.

[85] Claude Shannon. A mathematical theory of communication. Bell System Tech-

nical Journal, 27:379–423, 623–656, 1948.

[86] Danilo Silva and Frank R Kschischang. On metrics for error correction in

network coding. Information Theory, IEEE Transactions on, 55(12):5479–5490,

2009.

[87] Lihua Song, R.W. Yeung, and Ning Cai. Zero-error network coding for acyclic

networks. Information Theory, IEEE Transactions on, 49(12):3129–3139, Dec

2003.

[88] Y. Sun. Network coding and graph entropy. PhD thesis, Queen Mary, University

of London.

[89] Leslie G Valiant. Why is boolean complexity theory difficult? In Poceedings of

the London Mathematical Society symposium on Boolean function complexity,

pages 84–94. Cambridge University Press, 1992.

[90] Taoyang Wu, Peter J. Cameron, and Søren Riis. On the guessing number of

shift graphs. J. Discrete Algorithms, 7(2):220–226, 2009.

[91] Weidong Xu, Jia Wang, and Jun Sun. A projection method for derivation of

non-shannon-type information inequalities. In 2008 IEEE International Sym-

posium on Information Theory, pages 2116–2120, 2008.

[92] Shenghao Yang, Raymond W Yeung, and Chi Kin Ngai. Refined coding bounds

and code constructions for coherent network error correction. Information The-

ory, IEEE Transactions on, 57(3):1409–1424, 2011.

[93] Shuo yen Robert Li, Senior Member, Raymond W. Yeung, and Ning Cai. Linear

network coding. IEEE Transactions on Information Theory, 49:371–381, 2003.

[94] R. W. Yeung and Y. O. Yan. Information theory inequality prover (itip), soft-

ware.

141

[95] Raymond W. Yeung. A First Course in Information Theory (Information Tech-

nology: Transmission, Processing and Storage). Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

[96] Raymond W Yeung, Ning Cai, et al. Network error correction, i: Basic concepts

and upper bounds. Communications in Information & Systems, 6(1):19–35,

2006.

[97] R.W. Yeung and Z. Zhang. Distributed source coding for satellite communi-

cations. Information Theory, IEEE Transactions on, 45(4):1111–1120, May

1999.

[98] Z. Zhang and R.W. Yeung. On characterization of entropy function via informa-

tion inequalities. Information Theory, IEEE Transactions on, 44(4):1440–1452,

Jul 1998.

[99] Zhen Zhang. On a new non-shannon type information inequality. Communica-

tions in Information and Systems, 3(1), 2003.

[100] Zhen Zhang. Linear network error correction codes in packet networks. Infor-

mation Theory, IEEE Transactions on, 54(1):209–218, 2008.

[101] Zhen Zhang. Theory and applications of network error correction coding. Pro-

ceedings of the IEEE, 99(3):406–420, 2011.

[102] Zhen Zhang and R.W. Yeung. A non-shannon-type conditional inequality of in-

formation quantities. Information Theory, IEEE Transactions on, 43(6):1982–

1986, Nov 1997.

142

	Introduction
	Motivation
	Are linear codes sufficient to provide the maximum throughput?
	Can we compute the coding rate efficiently?
	Guessing numbers

	Contributions
	Thesis structure

	Information Measures and Information Inequalities
	Entropy and entropic functions
	Shannon's information measures
	Entropic vectors

	The region of n*

	Guessing Games
	Definitions
	The asymptotic guessing number
	The code graph
	Lower bounds using the fractional clique cover
	Upper bounds using entropy

	Refuting the Fractional Clique Cover Conjecture
	The first counter example to FCCC
	Speeding up the computer search
	Triangle-free graphs with large guessing number

	Shannon and Non-Shannon Information Bounds
	Graphs with guessing numbers matching Shannon bounds
	Primarily
	The guessing number of a Theta graph
	The guessing number of a lollipop graph
	The guessing number of a spiral graph
	The guessing number of a Cn Pk graph
	The guessing number of a dumbbell graph
	The guessing number of a flower graph
	The guessing number of certain regular graphs

	Existence of non-Shannon bounds for guessing numbers of undirected graphs

	Guessing Games with Noises
	Motivation and discussion of related work
	Definitions and some basic bounds
	Case studies
	Noisy guessing games played on K2
	Noisy guessing games played on P3
	Noisy guessing games played on K3

	Conclusions
	Summary
	Open questions and future research

