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Abstract 

Type 1 diabetes is an autoimmune disease due to the interaction of genetic and 

non-genetic factors, leading to an immune response against insulin secreting islet 

cells. Concordance rates for type 1 diabetes in monozygotic twins vary widely and 

no single environmental factor has been shown to cause the disease. Therefore, 

epigenetics has been suggested to play a role in diabetes aetiology. Preliminary 

results identified DNA methylation changes in CD14+ monocytes from childhood-

onset type 1 diabetes which antedated the disease.  

 

Following on from this work, this present study was carried out to investigate whole-

genome DNA methylation profiles in CD14+CD16- monocytes, CD4+ T cells, CD19+ 

B cells and buccal cells from 24 monozygotic twin pairs discordant for type 1 

diabetes. DNA methylation was profiled using Illumina Infinium 

HumanMethylation450K BeadChip and analysed using the ChAMP pipeline. 

Bisulfite sequencing was also carried out on CD4+ cells from four monozygotic twin 

pairs also discordant for type 1 diabetes. Through bioinformatics analyses, 258 cell-

type specific differentially-methylated positions were identified from the 450K 

BeadChip and 125 differentially-methylated regions from bisulfite sequencing. DNA 

methylation was also shown to be stable, as similar methylation differences found in 

the preliminary study, were again detected in the same twin pairs sampled years 

later. As DNA methylation is a stable marker, it could be used as a biomarker. β-cell 

death in diabetes releases DNA with unmethylated CpG sites in the insulin promoter 

region into the blood circulation. To detect these differences, an assay was also 

developed testing serum samples from monozygotic twin pairs.  

 

The data presented provided comprehensive DNA methylation profiles in type 1 

diabetes from this discovery cohort. The methylation signature found will then be 

validated in diabetic, pre-diabetic and control singletons. This in turn will provide 

data for later functional analyses to identify genes associated with type 1 diabetes 

risk.  
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Units  

g Gram 

L Litre 

M Molar (mole/litre) 

mg Milligram 

mL Millilitre 

ng Nanogram 

nM Nanomolar 

pH Log [H+] 

SD Standard deviation 

µL Microlitre 

% Percentage 

± Standard deviation 

°C Degrees centigrade 

xg Centrifugal force 
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1 General introduction 

Epigenetic mechanisms have been studied in diseases such as systemic lupus 

erythematosus (SLE), rheumatoid arthritis (RA) (Dang et al., 2013; Lu, 2013) and 

cancer (Rodriguez-Paredes and Esteller, 2011), however, there is little research 

focusing on type 1 diabetes mellitus (T1D). This thesis will centre on identifying DNA 

methylation differences in monozygotic (MZ) twin pairs discordant for T1D with 

different methylation profiling technologies such as the Illumina Infinium 

HumanMethylation450K BeadChip and bisulfite sequencing. The following 

introduction focuses on the general aspects of autoimmunity, T1D and epigenetics. 

 

1.1 The immune system 

The immune system is complex and has evolved to defend the body from foreign 

pathogens. This system maintains homeostasis, which in turn avoids chronic 

inflammatory processes and autoimmune disease. The first lines of defence are the 

anatomic barriers such as skin, tears and saliva which function to prevent pathogens 

from entering the body (Turvey and Broide, 2010). However, some pathogens are 

still able to successfully enter the body. These pathogens would then encounter the 

innate immune system. Another subsystem is the adaptive immune system, which is 

antigen-specific. These different systems differ in the recognition of triggering factors 

and their ability to respond to these signals. 

 

1.1.1 Innate immunity 

Innate immunity refers to the rapid self-protection from foreign pathogens by 

discriminating between host cells and pathogens. This system acts quickly, 

responding within minutes or hours of exposure to the pathogen. The response that 

follows involves the recruitment of certain cell populations to engulf and kill 

pathogens at the site of infection. Haematopoietic cells involved include monocytes, 

macrophages, neutrophils, natural killer cells and eosinophils (Turvey and Broide, 

2010). Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) are 

expressed in the innate immune system to detect pathogen-associated molecular 

patterns (PAMPs) expressed by bacteria and viruses such as lipopolysaccharide 

(LPS), the major component of the outer wall of Gram-negative bacteria (Medzhitov 

and Janeway, 2002). Once a foreign pathogen has been detected, this activates 

immune cells such as monocytes to release stimulatory factors to begin the process 

of eliminating the infection (Medzhitov, 2001; Medzhitov, 2007). 
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1.1.1.1 Monocytes and macrophages 

Monocytes are necessary components in innate immunity and are released into the 

blood from the bone marrow. Monocytes are a heterogeneous cell population in 

which there are two main classes; classical monocytes (CD14+CD16-) which  

represent approximately 90-95% of total blood monocytes and the non-classical 

monocytes (CD14+CD16+) (Parihar et al., 2010; Gordon and Taylor, 2005). Aside 

from antigen presentation, differences between the subsets include cytokine 

production, however, exactly what cytokines are produced by which subset is still 

yet to be defined (Wong et al., 2012). The non-classical subset is also more 

susceptible to apoptosis induced by reactive oxygen species (Zhao et al., 2010a). 

TLR4 is the best characterised TLR and once LPS binds to TLR4, monocytes 

release inflammatory cytokines such as tumour necrosis factor (TNF) and 

interleukin-12 (IL-12) (Saha and Geissmann, 2011). These activating cytokines 

stimulate the cells to eliminate noxious stimuli. Upon inflammation, circulating 

monocytes which do not undergo apoptosis differentiate into macrophages in 

tissues. Macrophages are phagocytic cells which have pathogen-recognition 

receptors and induce the production of inflammatory cytokines (Geissmann et al., 

2010). Macrophages have longer life spans compared to monocytes which remain in 

the blood for up to three days before spontaneously undergoing apoptosis in order 

to regulate the immune cells (Gonzalez-Mejia and Doseff, 2009). Monocytes and 

macrophages are also involved in the activation of the adaptive immune response 

by stimulating T cell priming (Geissmann et al., 2008). 

 

1.1.2 Adaptive immunity 

The adaptive immune system responds less rapidly but creates an immunological 

memory from a primary response to a specific pathogen. Here, the adaptive 

component of the immune system generates an efficient immune response after 

three to five days against that specific pathogen and then more rapidly once the 

body is exposed to that pathogen again (Schenten and Medzhitov, 2011). The 

adaptive immune response uses T and B cells, with their respective receptor, to 

recognise potentially dangerous molecules. B cells are matured in the bone marrow 

and produce antibodies whereas the T cells are matured in the thymus and both are 

involved in the humoral immune response and cell-mediated immune response 

respectively (Zhao et al., 2012). 
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1.1.2.1 B cells 

B cells express cell surface immunoglobulin receptors that recognises specific 

antigenic epitopes (LeBien and Tedder, 2008) and accounts for 5-15% of circulating 

lymphocytes (Fettke et al., 2014). The main function of B cells is the production of 

antibodies against microbial antigens (Fettke et al., 2014). An antibody has two 

identical light and two identical heavy chains and the functional rearrangement of 

the Ig loci involves three segments: V, D and J in the heavy-chain variable region. 

These segments recombine randomly, in a process called VDJ recombination, to 

produce a unique variable domain in the immunoglobulin of each B cell (LeBien and 

Tedder, 2008). B cells develop in the bone marrow in several stages, differentiating 

from haematopoietic stem cells before migrating to secondary lymphoid tissues (Ichii 

et al., 2014). Pro-B cells are the earliest committed precursor of the B cell lineage. 

These pro-B cells become pre- B cells, leading to immature B cells and then mature 

B cells (Pieper et al., 2013). All B cells express CD19, even at the early stages of B 

cell development (LeBien and Tedder, 2008). Together with CD21, CD19 forms a 

protein complex which is essential for B cell activation (Depoil et al., 2008). 

 

Following cell maturation, B cells remain in peripheral tissues until they encounter 

an antigen. B cells can undergo T-cell independent antigen activation or T-cell 

dependent antigen activation (LeBien and Tedder, 2008). T-cell independent antigen 

activation involves B cell receptors (BCRs) directly binding to thymus-independent 

antigens which directly activates B cells in order to proliferate into immunoglobulin-

secreting cells. These antigens are normally of microbial origin such as LPS from 

Gram-negative bacteria. T-cell dependent antigen activation of B cells involves an 

antigen binding to BCRs which is then internalised and processed intracellularly. 

The antigenic peptides are bound to a major histocompatibility complex (MHC) II 

molecule and then presented on the B cell surface acting as an antigen-presenting 

cell (APC) to T cells (Wong et al., 2004). The activated T cell then secretes 

cytokines which go on to activate the B cell. Eventually upon activation, most B cells 

proliferate and differentiate into antibody-secreting plasma cells or memory B cells. 

Subsequent exposure to the same antigen leads to a greater antibody response 

through the production of large quantities of high-affinity, mono-specific class-

switched IgG antibodies. Naïve B cells, co-expressing IgM and IgD, exit the bone 

marrow and migrate to the spleen, where they divide into further three subsets: B1 

cells, follicular B cells and marginal zone B cells (Allman and Pillai, 2008). 
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1.1.2.2 T cells 

The development of T cells begins in the thymus, starting with a population of 

immature thymocytes (Naito et al., 2011). The thymocytes are classed as double-

negative as they do not express CD4 or CD8. As they progress, they become 

double-positive, CD4+CD8+. Double-positive thymocytes will then bind with MHC 

class I or MHC class II molecules to develop into CD8+ or CD4+ T cells respectively 

(Germain, 2002). These cells are then released from the thymus to peripheral 

tissues. Any cell that responds to the self-peptide-self MHC ligands undergoes 

negative selection, resulting in apoptosis. In addition, any cells that do not respond 

to the self-peptide-self-MHC ligand then undergo delayed apoptosis (Janeway, 

2001). Activating an immune response in naïve T cells, involves an interaction 

between the APCs, which displays antigens bound to MHC class I or class II 

molecules on its surface and presents them to the T cells (Naito et al., 2011). T cell 

receptors (TCRs) are integral membrane proteins and when coupled with CD3, 

induce a network of downstream signalling pathways, which eventually lead to cell 

proliferation and differentiation into specific effector cells. (Luckheeram et al., 2012). 

 

There are different subsets of CD4+ T cells, the majority of which are helper cells (TH 

cells) (Mueller et al., 2013). TH cells are involved in the activation of cytotoxic T cells 

and macrophages and assist in the maturation of B cells into plasma cells and 

memory B cells. Once TH cells are activated, they can divide into further subsets 

which include TH1, TH2 or TH17 cells which secrete different cytokines such as TNF-

α, IL-4 and IL-17 respectively (Farber et al., 2014). Memory T cells remain in the 

immune system long after an infection has resolved contributing to the life-long 

immunity that protects the body (Farber et al., 2014). Upon re-exposure to a 

previously encountered antigen, memory T cells mount a response to produce large 

numbers of effector T cells. Memory T cells are further divided into subsets, central 

memory (TCM) T cells and effector memory (TEM) T cells, which are differentiated by 

the expression of chemokine receptors CCR7 and CD62L (Farber et al., 2014). 

 

Regulatory T cells (Tregs) are involved in the maintenance of immunological 

tolerance. Their main role is to down-modulate an immune response in order to 

prevent autoimmune diseases by supressing autoreactive T cells that escaped 

negative selection in the thymus (Sakaguchi et al., 2008). The main markers for Tregs 

are forkhead box P3 (FOXP3), CD25, CTLA4 and CD127 (Rowe et al., 2012). 

FOXP3 is required for the Tregs suppressive function (Larosa and Orange, 2008). 
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Function mutations in the FOXP3 gene result in the inflammatory autoimmune 

disease immune dysregulation, polyendocrinopathy, enteropathy, X-linked 

syndrome (IPEX) (Bacchetta et al., 2006).  

 

1.2 Autoimmunity 

Normally the immune system protects the host against foreign pathogens through 

self-tolerance. However, the body can elicit an immune response targeted at an 

individual‟s own cells and tissues when self-reactive lymphocytes elude tolerance. 

This process is called autoimmunity and it can cause inflammation and damage 

(Bach, 2005; Goodnow et al., 2005). A disease can be defined as an autoimmune 

disease based on the following: there is direct evidence from transfer of pathogenic 

antibody or pathogenic T cells; there is indirect evidence based on reproduction of 

the autoimmune disease in experimental animals and there is circumstantial 

evidence from clinical clues (Rose and Bona, 1993). Examples of autoimmune 

diseases include SLE, RA, Graves‟ disease and T1D. 

 

1.2.1 Genetic factors in autoimmunity 

Disease concordance between identical twins indicates that genetic factors play a 

role in the prevalence of autoimmune diseases (Hewagama and Richardson, 2009). 

The MHC is the strongest association in most autoimmune diseases (Gregersen 

and Behrens, 2006). Many publications on genome wide association studies 

(GWAS) have identified other common variants which confer risk or protection in 

several autoimmune diseases (Baranzini, 2009; Lettre and Rioux, 2008). Some 

genes are associated with one or more disease (Zenewicz et al., 2010; Rioux and 

Abbas, 2005). For example, PTPN22, which is involved in T and B cell receptor 

signalling, is a risk factor for RA and T1D. Another is CTLA4, an inhibitory receptor 

expressed by T cells and is associated with RA and T1D (Kormendy et al., 2013; 

Chen et al., 2013). Autoimmune diseases such as coeliac disease, autoimmune 

thyroid disease and RA, share multiple susceptibility genes (Parkes et al., 2013). 

However, the same SNP in a number of loci shared between the autoimmune 

diseases, shows the strongest association, but in the opposite direction. The authors 

also reported that the risk alleles conferring the largest effect sizes were usually 

disease-specific.  
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Determining genetic variances in autoimmune diseases could benefit individuals at 

high risk as they can be closely monitored. This could also pave the way in finding 

therapeutic approaches for these diseases. However, despite having this 

information, developing a treatment or cure is still limited due to non-genetic factors. 

The interaction between genetic and environmental factors could also explain why 

there are differences in the clinical manifestations in different patients within the 

same disease group. 

 

1.2.2 Non-genetic factors in autoimmunity 

In twins and familial studies, the low concordance rate of diseases suggests that 

environmental factors contribute to the aetiology of autoimmune diseases. In the 

case of SLE, ultraviolet light, drugs and silica exposure have been associated with 

triggering the disease (D'Cruz, 2000). In coeliac disease, gluten (Troncone and 

Jabri, 2011) and rotavirus infections (Stene et al., 2006) are suggested to be triggers 

for the disease. In RA, smoking (Ruiz-Esquide and Sanmarti, 2012), infections 

(Meron et al., 2010), dietary factors (Hagen et al., 2009) and pollutants (Hart et al., 

2009) are important (Tobon et al., 2010). In multiple sclerosis (MS), viral and 

parasitic infections, smoking and vitamin D have been associated with the disease 

(Koch et al., 2013) and in Graves‟ disease, dietary iodine (Laurberg et al., 1991), 

infections (Marino et al., 2014) and smoking habits (Wiersinga, 2013) play a major 

role in eliciting the occurrences of the disease. In regards to infections associated 

with autoimmunity, the microbiome may also impact autoimmunity and has been 

associated with central nervous system autoimmunity (Ochoa-Reparaz and Kasper, 

2014), SLE (Zhang et al., 2014) and T1D (Giongo et al., 2011). 

 

The importance of gene-environment interaction in autoimmune disease is evident, 

however the precise mechanisms in the aetiology of each disease is still unknown. 

There seems to be some commonality between the diseases for example, the role 

of vitamin D and viral infections, however no single environmental factor has been 

conclusively proven to cause a particular disease. 
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1.3 Twin studies 

Twins studies are invaluable in medical research in providing answers to important 

questions regarding possible genetic traits on different phenotypes in the aetiology 

of human disease. MZ and dizygotic (DZ) twin studies assess the variance of 

phenotypes and attempts to determine how much of this is down to the contribution 

of genetic or environmental factors. MZ twins share nearly 100 percent of their 

genetic polymorphisms as they were developed from a single fertilised egg, however 

significant phenotypic discordance between them may still exist (Fraga et al., 2005). 

Studying MZ twins is an especially helpful experimental design as any genetic 

differences would not be an issue between genetically identical twins. The „normal‟ 

twin is a control for the diseased twin, thus minimising the effects of germline 

genetic variations and some environmental differences as they would have been 

brought up in very similar environments. A DZ twin, developed from two fertilised 

eggs, share approximately 50 percent of genes and this level of similarity is also 

seen in non-twin siblings (Boomsma et al., 2002). 

 

1.4 Type 1 diabetes mellitus 

T1D is believed to be a T-cell mediated autoimmune disease that is the result of the 

interaction of genetic and environmental factors (Atkinson et al., 2014) and can 

affect an individual at any age (Merger et al., 2013). These factors lead to an altered 

immune response to destruction of insulin secreting β-cells in the pancreas 

(Bluestone et al., 2010). This can lead to poor blood glucose control and diabetic 

patients are predisposed to complications associated with the disease. 

Hyperglycaemia, hypoglycaemia and diabetic ketoacidosis are examples of acute 

complications whereas retinopathy, nephropathy, neuropathy and retinopathy are 

examples of chronic complications (American Diabetes, 2009). Risk factors of 

developing T1D include increased maternal age at delivery (Bingley et al., 2000), 

and parental gender, that is the risk to the offspring when the father has T1D is 

greater than when the other has T1D. Monitoring blood glucose levels is important in 

order to help prevent hypo- or hyperglycaemia. Currently, treatment is with insulin 

injections to manage blood glucose levels. Insulin pumps, providing continuous 

subcutaneous infusions of insulin can also help control blood glucose levels and 

these pumps reduce the need for multiple insulin injections. 
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1.4.1 β-cell death 

T1D is characterised by the loss of pancreatic β-cell function leading to a deficiency 

in producing insulin (Nokoff and Rewers, 2013). About 80% of the β-cells are 

destroyed at the time of clinical symptoms due to insulitis (Notkins and Lernmark, 

2001; Cnop et al., 2005). Insulitis is the inflammation of the islets cells in the 

pancreas containing large numbers of mononuclear cells, CD8+ and CD4+ T cells 

(Itoh et al., 1993). This infiltration also contains macrophages and B cells, (Willcox et 

al., 2009) and exposure to soluble mediators released from these cells such as 

cytokines and nitric oxide (Eizirik and Mandrup-Poulsen, 2001). Natural killer cells 

are also suggested to be involved in islet inflammation (Dotta et al., 2007). 

Pancreatic tissue from six T1D patients and 26 healthy controls were analysed. 

CD94+ natural killer cells were identified in the mononuclear infiltrate of three of the 

six diabetic patients. Coxsackie B4 was also present in three of the six diabetic 

patients and the virus extracted from positive islet was able to infect β-cells from 

healthy donors. These studies imply that both the innate and adaptive immune 

systems are involved in the proinflammatory process leading to islet cell death. 

 

Although most β-cells are destroyed in T1D patients, residual β-cell mass and 

insulin secretion has been observed in patients with disease duration of more than 

50 years (Keenan et al., 2010). This was assessed by random serum C-peptide 

levels and response to mixed-meal tolerance test (MMTT) in 411 T1D patients. The 

C-peptide levels showed that more than 67.4% of the patients had levels in the 

minimal (0.03–0.2 nmol/l) or sustained range (≥0.2 nmol/l). The authors also 

reported that from the MMTT, over half of the patients responded by a two-fold or 

greater rise over the course of the test compared to fasting. Pancreatic islet 

transplantation is an alternative to replacing β-cells however this procedure is not 

suitable for all T1D patients and organs are scarce (Correa-Giannella and Raposo 

do Amaral, 2009). 
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Figure 1.1. Infiltration of immune cells in insulitis. Insulitis is an inflammatory infiltration 

of immune cells of the islets of Langerhans in T1D. Islet antigens (orange diamonds) are 

presented to the T cells (red circles) by APCs (green circles) in the pancreatic lymph node. 

The T cells become activated and attack the β-cells (purple circles) whilst releasing 

inflammatory factors (small black and blue circles) inducing insulitis. The infiltrate in the 

pancreatic islets are limited to the β-cells only, leaving the other cells such as the α-cells 

(blue circles) intact. 
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1.4.2 Epidemiology of type 1 diabetes mellitus 

T1D accounts for 5-10% of all cases of diabetes (American Diabetes, 2009) and in 

2000, the worldwide prevalence of T1D was estimated to be 171 million cases (Wild 

et al., 2004). T1D is seen more commonly in boys and men unlike in other 

autoimmune diseases where women are more commonly affected (Soltesz et al., 

2007). Two decades ago, the incidence of childhood-onset T1D around the world 

was determined as part of the World Health Organization Multinational Project for 

Childhood Diabetes (DIAMOND) Project. They reported that the highest incidence 

rates were found in Northern America and Northern Europe, in particular Finland 

(36.5/100,000 per year) and Sardinia (36.8/100,000 per year). The lowest incidence 

rates were found in Asia, Africa and South America, for example in China and 

Venezuela (0.1/100,000 per year) (Karvonen et al., 2000). There was an overall 

increase in T1D incidence of 3% per year between 1960 to 1996 in children, with a 

rapid increase of T1D worldwide in both high and low incidence populations 

(Onkamo et al., 1999). The incidence of T1D from 23 Epidemiology and Prevention 

of Diabetes (EURODIAB) centres from 19 countries in Europe, including Germany, 

Spain and the UK, increased by 3-4% per annum, observed in a 20 year period from 

1989 to 2008 (Patterson et al., 2012). 

 

It has also been reported that there was an overall north–south geographical 

gradient in T1D incidence seen in Europe (EURODIAB, 2000) and in North and 

South America (Soltesz et al., 2007). There was a seasonality effect in the incidence 

of T1D with peaks in October to January and troughs in June to August 

(Moltchanova et al., 2009). However, other studies have shown no evidence of any 

significant differences in the incidence of T1D during the different seasons, for 

example in the SEARCH for Diabetes in Youth Study (SEARCH study) in the US 

(Kahn et al., 2009). It was predicted that the number of T1D cases in children under 

the age of 15 in Europe will rise between 2005 and 2020 to 160,000 cases 

(Patterson et al., 2009). The UK has the fifth highest rate of T1D in children 

according to Diabetes UK, compiling data from the International Diabetes 

Foundation (Lacobucci, 2013). Compared to Finland and Sweden with incidence 

rates 57.6/100,000 and 43.1/100,000 respectively, the UK has an incidence rate of 

24.5/100,000. The lowest incidence rate is still in Venezuela. 
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1.4.3 Age-dependent type 1 diabetes incidence 

There are different classifications of T1D depending on phenotype at diagnosis. T1D 

was previously known as juvenile diabetes as many patients were diagnosed at 

childhood. However, more and more adults are diagnosed with T1D. Diagnosis at 

childhood suggests a more aggressive role from genetics, as adult-onset diabetes 

represents slow progress to the disease (Leslie and Delli Castelli, 2004). In cases of 

adult-onset diabetes, many have previously been diagnosed with type 2 diabetes 

mellitus (T2D) due to the age at diagnosis, but in combination with autoantibody 

testing, positivity for autoantibodies against glutamic acid decarboxylase 65 

(GAD65), insulinoma antigen 2 (IA-2) and/or zinc transporter 8 (ZnT8) signifies the 

result of an autoimmune process (Stenstrom et al., 2005). This in turn presents a 

subset of diabetic patients known as latent autoimmune diabetes of adults (LADA). 

 

LADA is a clinically distinct form of diabetes where the patient presents with an islet 

autoantibody such as glutamic acid decarboxylase (GADA). They also tend to be 

younger and leaner (Hawa et al., 2013). LADA patients do not go onto insulin 

treatment for at least six months post-diagnosis (Leslie et al., 2008), although the 

time that patients go onto insulin alone, should not solely be used to diagnose LADA 

(Brophy et al., 2008). There are also differences in the genetic background of T1D 

and LADA (Vatay et al., 2002). In a cohort of 69 T1D patients and 42 LADA patients, 

the frequency of the high risk haplotype DR3 was only seen in the T1D group. There 

was no significant difference between the LADA and control group. The DR3/DQ2 

haplotype was also found significantly more often among the T1D patients 

compared with the control group, whereas there was no difference between the 

LADA and control group. Immunological differences such as insulin resistance and 

islet proteins were also identified between T1D and LADA patients (Palmer et al., 

2005). 

 

1.5 The role of innate immunity in type 1 diabetes 

Immune cell dysfunction in innate immunity has been associated with T1D (Beyan et 

al., 2003; Grieco et al., 2011). T1D patients have been found to show abnormal 

monocyte gene expression (Padmos et al., 2008). Using quantitative reverse 

transcription PCR (qRT-PCR), 25 monocyte activation genes in 30 LADA, 30 

juvenile onset T1D, 30 adult-onset T1D and 49 healthy controls, were validated, of 

which were split into two distinct clusters. One cluster consisted of proinflammatory 
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genes including IL1B, IL6, TNF and CXCL2. The second cluster consisted of genes 

mainly involved in adhesion, motility, and metabolism such as CCL7, CCL2, and 

MAPK6. The first cluster was found mainly in the LADA and adult-onset T1D 

patients, compared to the childhood-onset T1D patients. Whereas the second 

cluster had the opposite effect and was found more in the childhood-onset T1D 

patients, indicating that age-dependent T1D incidence have different profiles and 

immune phenotypes. Of the 25 genes studied, 16 of the genes were then 

revalidated in 10 MZ twin pairs. Monocyte gene expression abnormality was also 

seen in identical twins discordant for childhood-onset T1D (Beyan et al., 2010). 

Aberrant monocyte gene expression was similar in the diabetic and non-diabetic 

twin compared to normal control twins and healthy control individuals. As there were 

differences found between the twin pairs discordant for T1D and the normal healthy 

twins, this suggests that the altered monocyte gene–expression profile could be due 

to shared gene-environment interaction. 

 

Evidence in support of monocyte gene expression changes in T1D, was reported by 

Kaizer et al. They showed changes in the overexpression of IL1B and MYC in 

peripheral blood mononuclear cells (PBMCs) (Kaizer et al., 2007). IL1B encodes for 

IL-1β, a cytokine that recruits inflammatory cells to the islets and have direct 

cytotoxic effects on β-cells (Sumpter et al., 2011). MYC encodes for a transcription 

factor which is involved in apoptosis (Laybutt et al., 2002). Perturbed monocyte 

gene expression in T1D, can distinguish T1D patients at disease onset (Irvine et al., 

2012). In this study, peripheral blood monocyte expression was profiled in six 

healthy subjects and 16 children with T1D diagnosed three months earlier. Using 

fluorescence-activated cell sorting (FACS) to assess the distribution of different 

monocyte subsets in the individuals, it was reported that CD14+CD16+ monocytes 

were underexpressed in T1D patients compared with healthy controls. There was 

also no difference in the proportions of CD14low/CD16+ and CD14hi/CD16- 

populations and the proportion of CD14low/CD16- cells was significantly increased in 

recent-onset T1D patients.  

 

The innate immune system may also drive the adaptive immune system in T1D 

(Bradshaw et al., 2009). Monocytes from T1D patients were found to spontaneously 

secrete IL-1β and IL-6, which induce and expand Th17 cells. The monocytes from 

T1D patients were also reported to have induced more IL-17-seceting cells from 

memory T cells than monocytes from healthy controls.  



  Chapter 1 General Introduction 

36 

1.6 The role of adaptive immunity in type 1 diabetes 

1.6.1 T cells in type 1 diabetes 

In the thymus, T cells form the ability to distinguish self from non-self (Kronenberg 

and Rudensky, 2005) whilst most of the self-reactive cells are eliminated. However, 

some self-reactive T cells avoid this process and can cause autoimmunity and in the 

case of T1D, are involved in β-cell destruction (Roep and Peakman, 2011). 

Dysregulation of T cells has been the main focus of the involvement of the adaptive 

immunity in T1D (Roep, 2003). In humans, it was reported that defective regulation 

of Tregs was involved in T1D regardless of disease duration (Lawson et al., 2008). 

Although there was no significant difference in the frequency of CD4+CD25hi Tregs in 

the T1D patients, the level of suppression by CD4+CD25hi Tregs was reduced in 44 

T1D patients compared to 44 controls. An additional finding was that there was no 

difference in FOXP3 or CD127 expression on CD4+CD25+hi cells in T1D patients 

suggesting that an alteration in the balance of Tregs and activated T cells does not 

contribute to the defective suppression in T1D. 

 

The altered frequency of Tregs is not associated with T1D but rather altered function 

of the cells, and has been supported by other studies (Brusko et al., 2005; Lindley et 

al., 2005). The former study investigated CD4+CD25+ T cells in 70 T1D patients and 

37 healthy individuals. Similar frequencies of CD4+CD25+ T cells were observed in 

T1D patients and healthy controls of similar age. There was also no difference 

between the newly-diagnosed patients and those with long-standing diabetes. The 

authors also reported defective suppression of the proliferation of effector cells in 

T1D patients and this was associated with reduced production of IL-2 and interferon-

γ. The latter study focussed on CD4+CD25+ Tregs in 21 T1D patients and 15 healthy 

control individuals. Frequency of CD4+CD25+ T cells were normal in T1D patients, 

there was an increase in secretion of interferon-γ and decreased IL-10 production.  

 

Although expression levels of FOXP3 and CD127 were not altered in T1D patients, 

in one study, messenger RNA (mRNA) levels of T cell genes (CD3G and CTLA4) 

and B cell genes (CD19 and CD20) were found to be underexpressed in long-term 

T1D patients, but this change was not detected in new-onset or at-risk T1D groups, 

suggesting these immune changes occurred during diabetes progression (Han et 

al., 2012). 
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1.6.2 B cells in type 1 diabetes 

The appearance of T1D-asociated autoantibodies and the involvement of T cells in 

B cell activation, suggest a role for B cells in the pathogenesis of T1D. There have 

been reports studying B cell function in T1D (Hinman and Cambier, 2014). A 

research group reported that B cells can promote T1D by secreting anti-islet 

autoantibodies to enhance the expansion of islet-reactive CD4 T cells (Silva et al., 

2011). However, a study by Wong et al. reported that antibody secretion is not 

essential for some of the diabetes-promoting roles of B cells (Wong et al., 2004). 

Also, treatment with rituximab can partially preserve β-cell function for one year in 

T1D patients (Pescovitz et al., 2009). This effect was observed by depleting B cells 

with the anti-CD20 monoclonal antibody drug and this resulted in reduced 

destruction of β-cells in patients with T1D of recent onset. The authors also reported 

improvement in the C-peptide levels and both the glycated haemoglobin level and 

insulin dose were significantly lowered in the rituximab group in comparison to the 

placebo group. 

 

Also, an increase in CD19+CD5+ B cells was reported in T1D children with recent 

onset of the disease (De Filippo et al., 1997). The authors investigated 16 children 

with T1D and the presence of CD19+CD5+ B cells to study the correlation between 

the number of circulating CD19+CD5+ B cells and the presence of anti-islet cell 

autoantibodies. Although the number of CD19+CD5+ B cells was higher in T1D 

children compared to the controls, no correlation was found between the B cells and 

presence of autoantibodies. In contrast, one study reported an increase in 

CD20+CD5+ cells in diabetic patients compared to controls but showed a positive 

correlation between the CD20+CD5+ B cells subset and GAD autoantibodies 

(Kadziela et al., 2003). Although there is evidence to suggest that B cells can play a 

role in T1D, individuals with the absence of B cells can still develop T1D (Martin et 

al., 2001). 

 

In mice, elevated CD19 expression on B cells promoted presentation of islet-specific 

glucose-6-phosphatase catalytic subunit-related protein (IGRP), mediating the 

expansion of autoreactive T cells specific for antigens to β-cells (Ziegler et al., 

2013). The authors also reported that downregulated expression of CD19 

significantly diminished the expansion of CD8+ T cells. This suggests that alterations 

to the CD19 signalling pathway may prevent expansion of islet-invasive T cells and 

preserve β-cell mass. 
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1.7 Role of genetic factors in type 1 diabetes mellitus 

Genetic influences are important in T1D and this is seen from twins and familial 

studies. Concordance rates for T1D in identical twins (approximately 50%) are 

higher than in non-identical twins (Renz et al., 2011; Redondo et al., 2008; Redondo 

et al., 2001); also the frequency of the disease is higher in siblings of diabetic 

patients than in the general population (Field, 2002). There have been several large 

studies set to identify genes involved in T1D, including The Wellcome Trust Case 

Control Consortium (WTCCC) (Wellcome Trust Case Control, 2007) and The 

International Type 1 Diabetes Genetics Consortium (T1DGC) (Noble et al., 2010). 

Since then, over 40 distinct genetic loci have been identified to be involved in T1D 

(Barrett et al., 2009; Pociot et al., 2010). The MHC is the main risk factor in T1D, 

with the insulin gene and other common variants involved in the aetiology of T1D. 

 

1.7.1 Major histocompatibility complex 

T1D is a polygenic disease and is strongly associated with several MHC II genes 

(Pociot and McDermott, 2002) with the major ones, HLA-DQB1 and HLA-DRB1 on 

chromosome 6p21.3, accounting for approximately 50% of genetic susceptibility for 

the disease (Noble et al., 1996). The HLA class II haplotypes DRB1*0401-

DQB1*0302 (DR4-DQ3) (Zhou and Jensen, 2013) and DRB1*0301-DQB1*0201 

(DR3-DQ2) confer the greatest susceptibility to T1D, and DRB1*1501 (DR15) and 

DQA1*0102-DQB1*0602 (DQ6.1) provide protection to the disease (Graham et al., 

1999). T1D incidence can vary between ethnic groups (Zipris, 2009). For example, 

in Caucasians, the DR3 and DR4 haplotypes are prevalent, however are rare in 

Japanese populations (Ikegami et al., 2006). Also, the DR4-DQ (DRB1*0405-

DQB1*0401) and DR9 (DRB1*0901-DQB1*0303) susceptible HLA haplotypes were 

found to be more common in the Japanese but rare in Caucasians (Kawabata et al., 

2002). Although the major genetic susceptibility regions have been associated with 

the MHC class II genes, MHC class I also plays a role in the aetiology of T1D 

(Nejentsev et al., 2007), particularly HLA-B*39, which was found to contribute to the 

aetiology of T1D. In this study, samples from 850 T1D affected siblings, 2,048 T1D 

patients and 1,912 controls were analysed, genotyping 254 polymorphic MHC loci. 

The strongest associations mapped to the MHC class II genes HLA-DQB1 and HLA-

DRB1, but there was also an association around HLA-B. The HLA-A*02 allotype has 

also been reported to be directly linked to T cell autoreactivity to insulin (Pinkse et 

al., 2005). 
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In twin studies, early-onset T1D increases the risk in co-twin of the index twin 

diagnosed (Hyttinen et al., 2003; Redondo et al., 2001). Also, non-diabetic siblings 

that have the high risk haplotype shared with their diabetic sibling had increased risk 

for islet autoimmunity, compared to siblings that did not share the HLA haplotype 

with their diabetic sibling (Aly et al., 2006). This is useful for identifying a subset of 

siblings that could be monitored for prevention of islet autoimmunity. In regards to 

sibling risk for T1D, siblings of patients have a 15-fold higher risk for T1D than in the 

general population (Steck and Rewers, 2011). HLA-encoded T1D susceptibility only 

accounts for less than 50% of the inherited disease risk, therefore non-HLA encoded 

genes such as the insulin gene, CTLA4 and IFIH1, also plays a role in T1D. 

 

1.7.2 Insulin gene 

The Insulin-Dependent Diabetes Mellitus 2 (IDDM2) locus, also known as the insulin 

gene (INS) region, contributes about 10% toward T1D susceptibility (Bennett and 

Todd, 1996) and is found on chromosome 11p15.5 (Lucassen et al., 1993). This 

locus has variable number of tandem repeats (VNTR), a type of minisatellite, There 

are three classes of VNTRs that are divided by the number of repeats. Class I VNTR 

has an average of 570 bp, class II 1,200 bp and class III 2,200 bp (Bennett et al., 

1995). Class I is the shortest of the three and is associated with high risk of 

developing T1D, whereas class III provides a more dominant protective effect (Julier 

et al., 1991; Bennett and Todd, 1996). 

 

In a twin study investigating two susceptibility genes in T1D, the insulin gene and 

HLA-DQB1, it was reported that a particular INS genotype (Hph I) was identified in 

87.5% of the concordant twins but only 59.5% of the discordant twins (Metcalfe et 

al., 2001). This suggests that the possession of the high-risk haplotype increases 

the likelihood of identical twins becoming concordant for T1D. 

 

1.7.3 Non-MHC or insulin loci associated with type 1 diabetes 

There are other genetic loci that contribute to disease risk such as the CTLA4 on 

chromosome 2q33 (Wang et al., 2014), IL12B on chromosome 5q33-34 (Nisticò et 

al., 2002), PTPN22 on chromosome 1p13 (Bottini et al., 2004), the interleukin 2 

receptor, alpha (IL2RA) (Todd et al., 2007b) and interferon induced with helicase C 

domain 1 (IFIH1) genes (Todd et al., 2007b).  
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PTPN22 was shown to regulate type I IFN-induced apoptosis in β-cells (Santin et 

al., 2011) and a gain-of-function mutation was linked to a decrease in T cell receptor 

signalling (Vang et al., 2005). A rare variant of the IL2RA gene was recently 

identified to be associated with the disease (Huang et al., 2012). IL2RA encodes 

CD25, the α-chain of the IL-2 receptor complex. An IL2RA haplotype has been 

reported to result in diminished IL-2 responsiveness, causing lower levels of FOXP3 

expression by Tregs (Garg et al., 2012) and a particular single nucleotide 

polymorphism (SNP) has been shown to be associated with lower circulating levels 

of CD25, suggesting a predisposition to T1D due to inherited lower immune 

responsiveness (Lowe et al., 2007). IFIH1, also known as melanoma differentiation-

associated protein 5 (MDA5), is a family of intracellular proteins that recognise viral 

RNA which can mediate the innate immune response (Downes et al., 2010). IFIH1 is 

part of the interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN), 

which is a network enriched for viral response genes (Heinig et al., 2010). More 

recently, four rare or low frequency variants within IFIH1 were associated with T1D, 

indicating the gene is causal (Nejentsev et al., 2009). These variants lowered T1D 

risk independently of each other in IFIH1, a gene located in a region previously 

associated with T1D by GWASs. Another SNP of IFIH1 associated with T1D was 

the IFIH1 rs2111485 genotype (Winkler et al., 2011). Islet autoantibody–positive 

children with the IFIH1 rs2111485 GG genotype had a faster progression to 

diabetes than children with the T1D protective GA or AA genotypes. These 

polymorphisms were associated with the progression to diabetes from autoimmunity 

but not the development of autoimmunity. 

 

The increasing incidence of T1D and relative stability of HLA gene polymorphisms 

indicates that this cannot be due to genetic selection pressures and is most likely 

the result of non-genetic factors. 

 

1.8 Role of non-genetic factors in type 1 diabetes mellitus 

Although genetic susceptibility plays a major role in the development of T1D, the 

rapid rise in T1D incidence cannot be explained by genetics alone. For example, the 

frequency of the diabetes-risk haplotype HLA-DR3/DR4 was higher in a group of 

childhood-onset diabetics diagnosed before 1965, compared to the group diagnosed 

after 1990 (Hermann et al., 2003). Other groups reported similar findings (Gillespie 

et al., 2004). The frequency of the protective haplotype, HLA-DR15 and HLA-

DR1301, was seen to be lower in diabetics diagnosed before 1965 than those 
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diagnosed after 1990. Therefore, the incidence of T1D is increasing too rapidly to be 

explained by an increase in genetic susceptibility. This emphasises the influence of 

environmental factors in the pathogenesis of T1D.  

 

Evidence for non-genetic effects include population studies, in which there is 

geographical variation in T1D incidence rates. For example, high incidence rates of 

T1D are found in northern Europe in comparison to Asia and South America 

(Serrano-Rios et al., 1999). Evidence from migrants studies investigating incidence 

of T1D in individuals from low incidence countries who moved to high incidence 

countries, is also suggestive of a non-genetic effect in T1D. One such example is a 

study investigating children with T1D in Yorkshire (Harron et al., 2011a). A 

comparison was made between children who originated from the UK and those 

whose parents were from South Asia, where there is a low incidence rate of T1D. 

There was a rise in incidence of T1D in both cohorts indicating a role of 

environmental factors in the development of diabetes. Siblings of diabetic patients 

have a higher risk of developing T1D and this could also be indicative for non-

genetic effects as the siblings would have been raised in a shared environment. This 

familial clustering (λs) is calculated as the ratio of the risk to siblings over the 

disease prevalence in the general population (Steck and Rewers, 2011). Non-

genetic effects in T1D are also evident by low concordance rates of T1D in MZ twins 

(Huber et al., 2008). Heritability for T1D was estimated to be 0.88 in the Finnish 

Twin Cohort with 44 MZ and 183 DZ twin pairs (Hyttinen et al., 2003), indicating an 

environmental component to T1D.  

 

Triggering mechanisms of the disease could involve the development of 

autoantibodies and several different hypotheses including hygiene, migration and 

viral infection which have been suggested to contribute to the aetiology of T1D. It 

has also been hypothesised that epigenetics could play a role in T1D. 

 

1.8.1 Autoantibodies 

The development of the diabetes-associated autoantibodies can be detected years 

before clinical symptoms occur and in early life (Ziegler and Nepom, 2010). Because 

MZ twins can be discordant for them they are likely non-genetically determined 

(Beyan et al., 2012b), indeed, this twin study suggested that both GADA and IA-2A 

were predominately due to unique environmental events. Antigens associated with 

T1D are GAD, IA-2, insulin and ZnT8 (Dang et al., 2011; Wenzlau et al., 2007; 



  Chapter 1 General Introduction 

42 

Leslie et al., 2001). Autoantibodies against these antigens are detected in patient 

samples and can differentiate between T1D and T2D in diagnosing a patient with 

similar phenotypes. Autoantibodies can be predictive of T1D, particularly in adult-

onset diabetes (Leslie, 2010). At the time of diagnosis of T1D, 70–80% of patients 

present with GADA (Notkins and Lernmark, 2001), 65% with IA-2A (Leslie et al., 

1999) and 26% with ZnT8A (if negative for the other two) (Wenzlau et al., 2007). 

Insulin autoantibodies (IAA) are more common in younger children with new-onset 

T1D than in adults. In diabetic patients, once insulin is administered, detection of 

IAA is no longer valid as exogenous insulin can prompt insulin antibody responses 

that cannot be distinguished from autoantibody production (Winter and Schatz, 

2011). 

 

Genetic factors play an important role in islet cell autoimmunity. In one study, the 

siblings of 53 MZ and 30 DZ twin pairs who had T1D were tested for autoantibodies 

(Redondo et al., 1999). Siblings of MZ twins expressed two or more antibodies more 

often than siblings of DZ twins. The siblings were also screened for high risk HLA 

class II haplotypes and it was found that the probability of developing positive 

autoantibodies was higher among the MZ twin siblings who were positive for HLA 

DQ8/DQ2 than in those without this genotype. Similar studies that were performed 

showed that children with high genetic risk also developed islet cell antibodies more 

often than those at moderate risk (Kupila et al., 2002). Together with HLA genetic 

predisposition to T1D, positivity for autoantibodies is highly predictive of the disease 

(Siljander et al., 2009; Winter and Schatz, 2011). 

 

Early seroconversion, from nine months to two years of age, to autoimmunity has 

been associated with a high rate of progression to T1D (Ziegler et al., 2012; Parikka 

et al., 2012). This suggests that environmental factors may play a role in the 

development of T1D very early on. The serum metabolome can also reveal 

abnormalities in diabetic children at birth (Oresic et al., 2008). The children who 

developed T1D had reduced serum levels of succinic acid and phosphatidylcholine 

at birth and increased levels of proinflammatory lysoPCs several months before 

seroconversion to autoantibody positivity. A later study by the same group also 

found lower concentrations of methionine in children with early autoimmunity 

compared to children who developed autoantibodies late and with children who 

remained autoantibody negative (Pflueger et al., 2011). 
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1.8.2 Aetiology of type 1 diabetes 

The aetiology of T1D is complex as there is evidence of an interplay between 

genetic and environmental factors (Todd, 2010). Several hypotheses have been 

investigated which provides evidence for non-genetic factors in the development of 

T1D. 

 

1.8.2.1 The migration hypothesis 

Migration studies are seen to support the role that the environment could account for 

the rapid increase in the incidence of autoimmune diseases in developed countries. 

These studies focus on migrants moving from a “low”-incidence area to a “high”-

incidence area. For example, children in the UK born to immigrants from Asian 

countries with a low T1D incidence were found to have an increased incidence of 

T1D compared to their parents' countries of origin (Bodansky et al., 1992). From this 

study, data on children from Bradford aged 0-16 years revealed that the incidence of 

T1D in these children, increased from 3.1/100,000 per year in 1978-81 to 

11.7/100000 per year in 1988-90, which was higher than the rates of the children of 

the indigenous population (10.5/100,000). This study also showed that there was a 

higher incidence of T1D in Asian males (8.8/100 000 per year) than Asian females 

(4.9/100000 per year). In a later study, the incidence of the migrants was still rising 

but not as steeply as reported and the incidence rates did not reach those of the 

host population (Harron et al., 2011b). Another example of a migration study carried 

out in the UK was by Raymond et al., studying children in Leicestershire (Raymond 

et al., 2001). Over a 10 year period, the authors reported that T1D incidence rates in 

46 South Asian children were similar to those for 263 children who were in the 

white/other ethnic group.  

 

Children born in Sweden have an increased risk for T1D where their origin is from 

low incidence countries such as East Asia, Eastern Europe and Latin America 

(Soderstrom et al., 2012). In a Swedish study cohort of children aged between 6-25 

years were split into four categories: international adoptees, immigrants, Swedish-

born with foreign-born parents and a comparison group with Swedish-born parents. 

The odds ratios for T1D were lower in the groups with an origin in low incidence 

regions compared to the group with Swedish-born parents. Further evidence of 

exposure to environmental factors in T1D was from a study investigating the age at 

onset of T1D in individuals aged between 0 and 30 years of age from the host 

population of Sweden compared to those with foreign born parents (Hussen et al., 



  Chapter 1 General Introduction 

44 

2013). The findings showed there was an almost identical pattern with a shift 

towards lower age at onset in both cohorts, pointing to increased exposures in early 

life that could initiate or accelerate β-cell destruction. Conversely, data collected on 

Japanese children diagnosed with T1D in Hawaii, showed incidence rates were 

comparable with rates in Japan (Patrick et al., 1997). In this study, 113 children of 

different ethnicity diagnosed with T1D were identified. The incidence rates between 

the different groups varied greatly. Children who were part Hawaiian had the highest 

incidence rates (15.34-16.58/100,000), followed by Caucasian children (6.21-

6.71/100,000) then Filipino children (3.66-3.96/100,000) and Japanese children 

(2.85-3.08/100,000). The low incidence rates in the Filipino and Japanese children 

in Hawaii suggest genetics may play a larger role in developing T1D than 

environmental factors. 

 

1.8.2.2 The hygiene hypothesis 

It has been observed that the incidence of T1D is higher in more industrialised 

countries with higher standards of living, and therefore higher levels of hygiene, than 

those with lower standards of living. This has led to the “hygiene hypothesis.” (Bach 

and Chatenoud, 2012). This hypothesis suggests that one of the causes of T1D is 

due to reduced exposure to infections, resulting in less protection from infectious 

agents (Bach, 2002). Maternal antibodies against enteroviruses were measured and 

it was found that increased frequency of enteroviral antibodies correlated with low 

risk of T1D development (Larsson et al., 2013). Enteroviruses may have 

immunoregulatory effects in humans as they have been found to be associated with 

low risk of IgE-mediated allergic sensitisation (Seiskari et al., 2007). The role of the 

microbiome has recently been claimed to influence T1D development (Dunne et al., 

2014) as the gut microbiota can modulate the function of the immune system 

(Vaarala, 2013). This may explain why there is an increase in incidence of T1D in 

the more developed countries. This hypothesis has been supported by studies 

carried out in farms focusing on children brought up in this environment (Heikkinen 

et al., 2013) where a variety of non-pathogenic microorganisms may have a 

protective effect on T1D. However, it has been suggested that it is the depletion of a 

certain species from the ecosystem of the human body, that may lead to allergic 

disease, contradicting suggestions that immune disease were the results of 

infections (Parker, 2014). 
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1.8.2.3 The diet hypothesis 

Dietary factors can play an important role in the development of T1D. For instance, 

breastfeeding has been suggested to play a protective role and that the introduction 

of cow‟s milk has an influence on the risk of developing diabetes (Pereira et al., 

2014; Hummel et al., 2014; Lund-Blix et al., 2014). The early introduction of cow‟s 

milk to an infant introduces antigenic bovine insulin which has been shown to 

increase an immune reaction by increased antigen presentation and increased β-

cell stress (Virtanen et al., 2000), which later on may turn into an autoimmune 

reaction against own insulin secretion (Vaarala et al., 2002). The early introduction 

of other components in cow‟s milk might also play a role and cause immune 

reactions in genetically predisposed individuals (Knip et al., 2010) in the same 

manner such as early introduction of gluten-containing food is a potential risk factor 

for developing T1D (Ziegler et al., 2003). While gluten-containing foods are a major 

risk factor for the development of coeliac disease, an autoimmune disease 

genetically closely related to T1D, the current evidence does not favour a role for 

milk and autoantibody risk (Knip et al., 2014). Knip et al. performed a double-blind 

randomised clinical trial of 2159 infants with HLA disease susceptibility and a first-

degree relative with T1D. The infants were either weaned to a hydrolysed casein 

formula or to a conventional cows‟ milk-based formula. The absolute risk of positivity 

for two or more islet autoantibodies was 13.4% among those randomized to the 

casein hydrolysate formula (n = 139) compared to 11.4% among those randomized 

to the conventional formula (n = 117). The authors had found that the use of the 

hydrolysed formula, did not reduce the incidence of diabetes-associated 

autoantibodies after seven years.  

 

In addition, children who were breast-fed for significantly shorter periods of time 

developed T1D (Kimpimaki et al., 2001a). Kimpimaki et al. studied children with the 

HLA susceptibility allele HLA-DQB1*02/*0302 and monitored them for islet cell 

antibodies. Children who had been breast-fed for at least four months had lower risk 

of seroconversion to positivity for IA-2A compared to infants who had been breast-

fed for less than two months. These findings suggest that short-term breastfeeding 

predispose young children who are genetically susceptible to T1D. Evidence from 

other studies suggests that prolonged breastfeeding can offer protection against 

development of T1D (Pereira et al., 2014; Alves et al., 2012). This could be due to 

constituents of cow‟s milk or breastfeeding confers protection by the transfer of 

immunity from mother to child. 
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1.8.2.4 Contribution of vitamin D 

There is a seasonality effect in the diagnosis of T1D in that it is more common in the 

winter months. This may be due to sunshine and vitamin D doses (Hitman et al., 

1998). It has also been shown that there is a north-south geographical gradient in 

the incidence of T1D, implying that there is an inverse correlation between the 

amount of sunshine and T1D incidence (Zhou et al., 2013). In T1D patients, it has 

been reported that at diagnosis there are lower serum concentrations of the active 

form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D) and its precursor 25-

hydroxyvitaminD (25(OH)D), compared to normal controls (Cooper et al., 2011). The 

group measured 25(OH)D concentrations in 720 cases and 2610 control plasma 

samples and tested genetic variants influencing 25(OH)D metabolism. They had 

found three key 25(OH)D metabolism genes, CYP27B1, DHCR7 and CYP2R1, that 

showed consistent evidence of association with T1D risk, indicating a genetic 

etiological role for vitamin D deficiency in T1D. These findings were supported by a 

study which investigated variants in CYP27B1 (Bailey et al., 2007). Conversely, in 

one study a group followed a cohort of children at increased risk of diabetes and 

recorded vitamin intake and obtain measurements in plasma 25(OH)D levels 

(Simpson et al., 2011). They had discovered that neither vitamin D intake nor 

25(OH)D levels were associated with the risk of islet autoimmunity or progression to 

T1D. 

 

There has been conflicting evidence to suggest that vitamin D levels during 

pregnancy have an effect on the risk of developing T1D. Vitamin D supplementation 

in particular, was associated with a decreased frequency of T1D (Hyppönen et al., 

2001). Taking vitamin D supplements during pregnancy can also lower the risk of 

the child developing T1D (Sørensen et al., 2012). The group compared serum 

concentrations of 25(OH)D in 109 women whose child went on to develop T1D and 

219 healthy control women. The odds of T1D was more than two-fold higher for the 

offspring of women with low levels of 25(OH)D compared to the control cohort. 

However, contrasting results showed that there was no difference in concentrations 

of 25(OH)D in serum samples from mothers whose children went on to develop T1D 

(Miettinen et al., 2012). 

 

1.8.2.5 The virus hypothesis 

As mentioned earlier, there is seasonal variation in the diagnosis of diabetes, with 

peaks in the autumn and winter months. High risk infants tested positive for 
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autoantibodies in the colder months (Kimpimaki et al., 2001b) suggesting that 

infectious agents may play a role in the pathogenesis of T1D (Craig et al., 2013). 

Viruses have been thought to trigger T1D, notably rubella and enteroviruses (Hyöty 

and Taylor, 2002; Yeung et al., 2011) in which these infections can occur several 

years before the onset of clinical diabetes (Lönnrot et al., 2000). One particular 

enterovirus, Coxsackie B4, has been linked to T1D. A study found that 64% of 

children who were diagnosed with T1D under the age of six, were positive for 

enterovirus RNA in serum samples (Clements et al., 1995). Enterovirus RNA has 

also been detected in sera of prediabetic children (Nairn et al., 1999), pancreas 

(Dotta et al., 2007) and small intestine (Oikarinen et al., 2008). The rate of 

progression from islet autoimmunity to overt T1D was increased after the detection 

of enteroviral RNA in serum samples (Stene et al., 2010). 

 

Genetic predisposition to T1D is also associated with enteroviral antibodies. It has 

been reported that children with the high risk haplotype HLA-DR3/DR4, had higher 

Coxsackie B4 antibody levels than children carrying the protective HLA-DR2 allele 

(Sadeharju et al., 2003). Furthermore, enteroviruses that were detected in the blood 

of newly-diagnosed diabetic patients were also found in their siblings and parents 

(Salvatoni et al., 2013). Besides genetic predisposition, the appearance of 

autoantibodies was also related to enterovirus positivity. Enteroviral RNA was more 

likely to be detected in T1D than in control subjects before the appearance of 

autoantibodies (Oikarinen et al., 2011) and this risk effect was seen to be stronger in 

boys than in girls. Conversely, there is evidence that has shown that there were no 

correlations found between the presence of enteroviruses and the development of 

autoantibodies (Simonen-Tikka et al., 2011; Cinek et al., 2014). 

 
There is lack of evidence to support one specific environmental trigger for T1D, even 

though there are numerous reports on proposed triggers such as early infant diet 

(Pereira et al., 2014), viral infections (Craig et al., 2013) and vitamin D supplements 

(Cooper et al., 2011). Autoantibodies are non-genetically determined and highly 

predictive of the disease. However, while these autoantibodies can reflect the 

presence of the disease process, there is no evidence to conclude that they cause 

the disease. Non-genetic events could also affect gene expression through 

epigenetics. 
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1.8.3 Epigenetics 

Epigenetics is defined as mitotically heritable changes in gene expression that do 

not directly alter the DNA sequence (Bird, 2007; Irizarry et al., 2009). As regulators 

of transcription, epigenetic mechanisms play a necessary role in maintaining normal 

growth, development, differentiation and genome stability (Bell and Spector, 2011). 

Genetics play a major role in diseases, however the environment can modify this 

introducing a complex interaction between the two (Figure 1.2). Environmental 

factors can also affect DNA by modifying epigenetic factors (Liu et al., 2008). For 

example in mice, paternal diet has been shown to affect cholesterol and lipid 

metabolism in the offspring (Carone et al., 2010). 

 

The best-characterised epigenetic modifications or marks are DNA methylation 

(Figure 1.3) and histone post-translational modifications (Figure 1.4) (Petronis, 

2010). Epigenetic dysregulation has been associated with several human diseases, 

most notably cancer (Laird, 2003; Feinberg, 2007). Studying disease in twin pairs is 

particularly useful in the field of epigenetics. The discordance seen between MZ 

twins may be determined by epigenetic factors operating on genetic expression 

(Poulsen et al., 2007). Studying identical twins in epigenetics is crucial in removing 

genetic confounding factors and helps to determine the extent of epigenetic 

heritability and stability (Bell and Saffery, 2012; Petronis, 2006). Differences have 

been found in DNA methylation and histone acetylation between young and elderly 

MZ twins (Fraga et al., 2005). The younger pairs were indistinguishable in their 

epigenetic markings and the older MZ pairs had substantial variations. This then 

suggests an explanation for age-accumulating epigenetic modifications. These 

differences contribute to the non-genetic influence involved in T1D pathogenesis as 

in DZ twins, there are differences not only in the DNA sequence, but also because 

they originated from epigenomically different zygotes (Kaminsky et al., 2009). 
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Figure 1.2. Interaction between genes, environment and epigenetics in disease. The 

genome can give rise to many phenotypes. Although genetics, epigenetics and the 

environment can affect phenotype outcomes independently, it is the complex interaction that 

gives rise to diseases such as T1D. Evidence for this includes MZ twin studies in which 

disease concordance was not 100%. Factors such as age and dietary nutrients have been 

shown to affect the epigenome and some of these epigenetic changes can occur in utero. 
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1.8.3.1 Epigenome-wide association studies 

As DNA methylation is so vital in normal development and irregularities are seen in 

disease, investigating these epigenetic marks requires high-quality and reliable 

approaches. There are several different profiling technologies for epigenome-wide 

association studies (EWAS) (Table 1.1) (Michels et al., 2013). Also the emergence 

of next-generation sequencing technologies has allowed researchers to obtain 

information of genome-wide variation at high resolution (Bock et al., 2010). Here 

they are able to assess epigenetic modifications at multiple pre-determined targets 

across the genome such as DNA methylation and post-translational histone 

modifications (Beck and Rakyan, 2008). 

 

The choice of tissue and cohorts is important in EWAS design as disease-

associated epigenetic variation can be tissue-specific (Lowe et al., 2013) and 

variation in methylation will be different in a cohort of MZ twin pairs compared to 

diseased singletons and their age-matched controls (Rakyan et al., 2011b). Several 

resources for human genome-wide tissue-specific DNA methylation profiles include 

methylation profile of DNA (mPOD) (Rakyan et al., 2008), where the authors had 

generated reference human genome-wide DNA methylation profiles for 13 normal 

somatic tissues, placenta and sperm. There are also published reference profiles of 

human chromosomes 6, 20 and 22 (Eckhardt et al., 2006). 

 

As our knowledge in the field increases, this is all applied to developing smaller, 

faster and cheaper technologies to investigate DNA methylation and histone 

modifications. The integration of EWAS and GWAS data can assist in identifying 

genomic and biological pathways that are associated with disease (Ke et al., 2013). 
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Table 1.1. Different epigenetic profiling technologies. Methylated DNA 

immunoprecipitation sequencing (MeDIP-seq); chromatin Immunoprecipitation Sequencing 

(ChIP-seq); Illumina Infinium HumanMethylationBeadChip450K (Illumina450K); bisulfite 

sequencing (BS-seq); reduced representation bisulphite sequencing (RRBS). 

 

 

Method Description Reference 

MeDIP-seq MeDIP-seq involves immunoprecipitating DNA 

containing methylated cytosines using a 

monoclonal antibody raised against 5-

methylcytosine (5-mC). The purified fraction of 

methylated DNA then undergoes next generation 

sequencing.  

(Taiwo et al., 

2012) 

ChIP-seq A protein of interest is enriched by 

immunoprecipitation from cross-linked cells, along 

with its associated DNA. Enriched genomic DNA 

sites then undergoes sequencing. 

(Landt et al., 

2012) 

Illumina450K Microarray that interrogates DNA at over 485,000 

CpG sites that includes 96% of CpG islands, 99% 

RefSeq genes and non-CpG methylated sites. 

Requires bisulfite converted DNA and is the 

successor of the Illumina27K BeadChip, which 

measures DNA methylation in over 27,000 CpG 

sites.  

(Sandoval et 

al., 2011) 

BS-seq BS-seq involves whole-genome sequencing of CpG 

sites. Requires bisulfite converted DNA which is 

fragmented and amplified. Currently considered to 

be the „gold standard‟ technique for the detection of 

5-mC. Provides highest level of coverage and 

resolution.  

(Li and 

Tollefsbol, 

2011) 

RRBS Reduced representation bisulphite sequencing 

involving single base resolution methylation 

analysis using bisulphite DNA sequencing of a 

representative part of a genome. 

(Meissner et 

al., 2005) 

MBD affinity 

purification 

DNA containing methylated CpG is 

immunoprecipitated using an MBD column. 

(Wielscher et 

al., 2011) 
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1.8.3.2 DNA methylation 

DNA methylation is essential for regulating the expression of mammalian genes. It is 

the covalent addition of a methyl group to the 5‟ carbon in a cytosine-phosphate-

guanine (CpG) dinucleotide from the methyl donor S-adenosylmethionine (Laird, 

2003). DNA methylation is associated with gene silencing and has been reported to 

be essential for embryonic development (Reik et al., 2001), genomic imprinting 

(Reik and Walter, 2001; Heijmans et al., 2008) and X-inactivation in mammals (Yang 

et al., 2011; Augui et al., 2011; Sharp et al., 2011). Environmental agents that are 

associated with altered DNA methylation include dietary sources such as folic acid, 

methionine and choline (Poirier, 2002; Cooney et al., 2002) and smoking (Besingi 

and Johansson, 2014). 

 

There are regions with higher CpG density called CpG islands (CGIs). CGIs are 

defined as the regions of DNA of at least 200 bp, with CG content of greater than 

50% and are mainly unmethylated (Gardiner-Garden and Frommer, 1987). 

However, different algorithms have been developed to identify such regions (Bock et 

al., 2006; Zhao and Han, 2009; Han and Zhao, 2009). CpG sites located at the non-

CGIs are mostly methylated in mammals (60-80%) (Smith and Meissner, 2013). 

CGIs can be found in the promoter regions of genes, and CpG methylation of these 

gene promoters is associated with transcriptional silencing (Klose and Bird, 2006). 

Approximately half of the CGIs are not restricted to the promoter region of genes 

and these CGIs are referred to as „orphan islands‟ (Illingworth et al., 2010). It is now 

shown that DNA methylation is not restricted to the CGIs. They can be identified in 

regions adjacent to the CGIs also known as CGI shores (Irizarry et al., 2009) and 

these are usually found approximately 2 kb up- or down-stream (Irizarry et al., 

2009). Although cytosine is typically methylated at the C5 position on the carbon, it 

can also be converted to 5-hydroxymethylcytosine (5-hmC), resulting from the 

enzymatic conversion of 5-mC into 5-hmC by the ten-eleven translocation (TET) 

family of cytidine oxygenases (Branco et al., 2011). DNA methylation can also occur 

in non-CpG sites (Ramsahoye et al., 2000). Ramsahoye et al. found that 

methylation of cytosines can occur at CpA and even CpT sites in embryonic stem 

cells. 

 

Although every cell has the same genome, the body consists of a large number of 

differentiated cells and tissue-types. DNA methylation shows tissue specificity 

(Rakyan et al., 2008), inter-individual variation and a bimodal distribution within the 
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MHC (Rakyan et al., 2004). DNA methylation patterns vary and some examples are 

ageing-associated differentially methylated regions (aDMRs) (Rakyan et al., 2010), 

tissue-specific-DMRs (tDMRs) (Rakyan et al., 2008), methylation variable positions 

(MVPs) and differentially-methylated positions (DMPs) (Rakyan et al., 2011b). 

 

Immune cell development has many steps that are regulated by a network of 

transcriptional factors and epigenetic machinery (Kanno et al., 2012; Zilbauer et al., 

2013). Current knowledge on the role of DNA methylation on gene expression and 

its effect on normal cell development is limited. In T cells, deletion of DNMT1 in early 

double-negative thymocytes led to impaired survival of TCRαβ+ cells and the 

generation of atypical CD8+TCRγδ+ cells in mice (Lee et al., 2001). This study 

suggests that DNMT1 is crucial in normal development of T cells. DNA methylation 

and gene expression changes were also studied in B cell development in healthy 

individuals (Lee et al., 2012b). DNA methylation changes were associated with 

effects on gene expression during early lineage commitment mainly in the gene 

body rather than the promoter sites, for example at CGIs and transcription factors 

such as EBF1 and PAX5 which are both regulators in B cell development. As the 

multipotent progenitors committed to pre-B cells, 79% of the 2966 DMRs were 

demethylated. The effect of DNA methylation on gene regulation was less in the 

later stages of B cell development. Methylation changes reported to be observed 

outside the promoter sites suggests that these regions play a major role in 

regulating gene expression.  
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1.8.3.3 DNA methyltransferases and methyl-CpG-binding proteins 

DNA methylation is mediated by a group of DNA methyltransferases (DNMTs): 

DNMT1, DNMT3a, DNMT3b, DNMT3L and DNMT2 (Ramsahoye et al., 2000). 

DNMT1 is responsible for the maintenance of methylation patterns during replication 

and for recognising and converting the unmethylated strand from a double stranded 

hemimethylated CpG pattern into a fully methylated pattern. DNMT3a and DNMT3b 

are responsible for de novo methylation (Bird, 2002). DNMT3L forms a 

heterotetramer with DNMT3a and stimulates the activity of the de novo DNA 

methylation mechanism (Jia et al., 2007). The role DNMT2 plays in DNA methylation 

is still unknown, however, it has been shown to have a role in the cellular response 

to stress (Thiagarajan, 2011). 

 

Along with DNMTs, methyl CpG binding domain (MBD) proteins also regulate 

methylation (Jaenisch and Bird, 2003). The MBD protein family (MBD1, MBD2, 

MBD3, MBD4 and MECP2) has a common motif that binds to cytosines that are 

methylated. They then recruit chromatin inactivation complexes, which leads to 

transcriptional silencing. DNA demethylation can occur as either passive or active 

DNA demethylation, as seen in the epigenetic reprogramming of germ cells (Reik et 

al., 2001). 
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Figure 1.3. DNA methylation and gene expression. A simplified schematic of DNA 

methylation and its effect on gene expression. DNA methylation occurs by the covalent 

addition of a methyl group to the 5‟ carbon of a cytosine nucleotide. Methylated CpG sites 

(filled lollipop) are associated with gene silencing, whereas unmethylated sites (unfilled 

lollipop) are associated with transcriptional activity. In the case of hydroxymethylation, at the 

5‟ carbon position, the hydrogen molecule is replaced by a hydroxymethyl group. 
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1.8.3.4 DNA methylation in type 1 diabetes 

Little is known about epigenetic mechanisms in the aetiology of T1D. Recently, 

evidence is emerging that epigenetic regulation can play a role in triggering T1D. 

Rakyan et al. performed an EWAS in CD14+ monocytes from T1D-discordant MZ 

twin pairs (Rakyan et al., 2011a). They identified 132 different CpG sites that were 

significantly linked with diabetic condition. Some of the genes they found to be 

hypomethylated or hypermethylated such as GAD2 and HLA-DQB1, are known to 

be associated with T1D. In the same study, T1D–associated methylation variable 

positions (T1D-MVPs) were found in islet autoantibody positive individuals many 

years before clinical diagnosis, indicating that they arise early in the disease 

process. Investigating monocytes is useful as they have been shown to display 

abnormal gene expression in T1D patients (Padmos et al., 2008). Another twin 

study had reported 88 CpG sites that showed significant methylation changes in MZ 

pairs discordant for T1D (Stefan et al., 2013). The group profiled Epstein-Barr virus 

(EBV) immortalized B cell lines from three MZ twin pairs discordant for T1D and six 

MZ twin pairs concordant for the disease using the Illumina Infinium 

HumanMethylation27K BeadChip. Functional analysis of distinct CpG methylation 

profiles in the T1D samples, showed differential DNA methylation of immune 

response and defence response pathways between the diabetic and non-diabetic 

twins. As with the study carried out by Rakyan et al., the data mapped several 

known T1D associated genes, such as HLA, INS and IL-2RB. 

 

Methylation patterns in the insulin promoter has been described by Fradin et al. 

(Fradin et al., 2012). They had found differences in methylation between T1D 

patients and non-diabetic controls and identified a 3-CpG-hypomethylation pattern 

that seemed to be present only in T1D patients. These three CpG sites are proximal 

to the transcription start site in the insulin promoter gene and therefore could be 

predictive of T1D. Moreover, 19 prospective CpG sites were identified that 

correlated with the time of onset of nephropathy, a major complication of T1D (Bell 

et al., 2010). Out of the 19 CpG sites, one CpG site was found to be 

hypermethylated. This mark was in the UNC13B gene which is associated with the 

risk of diabetic nephropathy. DNA methylation has also been suggested to be 

affected by hyperglycaemia. In a zebrafish study, the group showed that DNA 

hypomethylation due to hyperglycaemia was heritable (Olsen et al., 2012). 

Hyperglycaemia was induced in adult zebrafish and then had a recovery phase. 

However, hyperglycaemia-induced global DNA hypomethylation was seen in the 
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daughter cell tissue that was never exposed to hyperglycaemia. In humans, DNA 

methylation was studied in pancreatic duodenal homeobox 1 (PDX-1) which is a 

transcription factor that plays a role in pancreas development and function (Yang et 

al., 2012). It was reported that hyperglycaemia increased methylation and 

decreased gene expression of PDX-1 in the human islets of diabetic patients. These 

studies highlight the importance of metabolic memory in methylation and 

consideration should be made while analysing methylation data from diabetic 

patients.       

 

1.8.3.5 Histone post-translational modification 

Alterations in the chromatin structure affect the expression and repression of genes 

by enzymatic modification of core histones (Li, 2002). The modifications of the 

histones result in conformational changes of the chromatin that alter the access of 

promoters for transcription factors. The nucleosome, which is the basic repeat unit 

of chromatin, consists of two copies each of histones H2A, H2B, H3, and H4, 

wrapped by 146 base pairs of DNA (Li, 2002). The nucleosomes are then arranged 

to form chromatin fibres. Epigenetic modifications in the chromatin structure consist 

of lysine, arginine and serine residues in the N-terminal tails of core histones being 

post-translationally modified by acetylation, methylation, ubiquitination or 

phosphorylation (Strahl and Allis, 2000). These modifications alter the interaction 

between the histones, DNA and nuclear proteins, therefore affecting gene 

transcription (Talbert and Henikoff, 2006). 

 

The best characterised histone modification is lysine acetylation. N-acetylation 

prevents the ε-amino group from binding to DNA, helping to unwind the compact 

chromatin, while deacetylation of the terminal lysine residues contributes to gene 

silencing (Bernstein et al., 2007). Acetylation is regulated by histone 

acetyltransferases (HATs), which add an acetyl group to the histone tails, and 

histone deacetylases (HDACs) which remove the acetyl group (Peserico and 

Simone, 2011). There are 18 HDACs in humans and they require the interaction of 

MBDs for histone deacetylation (Marks, 2009). Examples of gene activation through 

these modifications include acetylation of histone H3 at lysines 9, 14, 18, 23, and 

56. Acetylation of histone H4 at lysines 5, 8, 12 and 16 is also associated with 

transcriptional activation (Biel et al., 2005). It was thought that DNA methylation and 

histone modification are interdependent processes. However, MBDs and HDACs 

can form complexes to induce gene silencing. Another main histone modification is 
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histone methylation. Histone methylation affects lysine or arginine residues in the 

tails and is regulated by histone methyltransferases, lysine-specific demethylase 1 

and Jumonji C domain-containing histone demethylase (Marks, 2009). Methylation 

of histone H3 at lysines 4, 36 and 79 is associated with enhanced gene expression, 

whereas methylation at lysine 9, 27 and H4 at lysine 20 is associated with gene 

silencing (Brooks et al., 2010; Hon et al., 2009). Histone phosphorylation occurs at 

H3 ser10, ser28 and of histone H4, serine 1 (Biel et al., 2005). 

 

Histone modifications have also been studied in normal immune cell development. 

In B cells, during the transition of pre-pro-B cell to pro-B cells, E2A-associated 

genes become monomethylated at lysine 4 on H3 (H3K4me) (Lin et al., 2010). 

Histone modifications are also involved in monocyte to macrophage differentiation 

(Tserel et al., 2010). During differentiation, monocyte-specific CD14, CCR2 and 

CX3CR1 had decreased levels of H3K4me3 but increased levels on dendritic cell 

specific TM7SF4/DC-STAMP, TREM2 and CD209/DC-SIGN genes. The FoxP3 

locus has been reported to be associated with varying histone methylation in Tregs 

(Floess et al., 2007). Acetylation at H3 and H4 and trimethylation at H3 were 

associated with the conserved FoxP3 region in CD25+CD4+ Tregs but not in CD25-

CD4+ T cells. Also the authors reported that in CD25-CD4+ T cells, the FoxP3 locus 

was packed in a more condensed, inaccessible chromatin structure in contrast to 

CD25+CD4+ Tregs, where the locus was located within open chromatin which 

supports evidence that FoxP3 is expressed in Tregs. The study concluded that the 

stabilised FoxP3 expression is needed for normal development of a permanent 

suppressor cell lineage in T cells.  
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Figure 1.4. Chromatin structure with histone modifications. Simplified schematic of the 

chromatin structure with histone modifications. Different modifications result in 

conformational changes to the chromatin. The nucleosome is made up of two copies of each 

histones H2A, H2B, H3 and H4, wrapped by 146 base pairs of DNA. Methylation of H3 on 

lysine at position 4, 36 and 79 leads to an actively transcribed open chromatin structure. 

Methylation at H3 on lysine at position 9 and 27 leads to transcriptional repression. P: 

phosphorylation, Ac: acetylation, Me: methylation. 
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1.8.3.6 Histone modification in type 1 diabetes 

Miao et al. used ChIP-chip to compare genome-wide histone H3K9me2 patterns in 

peripheral lymphocytes and monocytes from T1D patients and normal subjects 

(Miao et al., 2008). In lymphocytes, they found a significant increase in H3K9me2 in 

CTLA4, a high risk gene for T1D. It was suggested that the increase in the 

H3K9me2 mark in the promoter site shows a recent history of transcriptional 

activation and therefore, its mark would result in suppression of subsequent 

transcription due to its repressive role. The same group also investigated post-

translational modifications at the promoter and enhancer regions of T1D susceptible 

genes in lymphocytes and monocytes (Miao et al., 2012). They reported variations 

in H3K9Ac levels at the upstream regions of HLA-DRB1 and HLA-DQB1 in T1D 

monocytes compared to controls. H3K9Ac is a mark of actively transcribed 

promoters and HLA-DRB1 and HLA-DQB1 are highly associated with T1D. Hence, 

these results suggest that the H3K9Ac status of HLA-DRB1 and HLA-DQB1 show 

an important role of the chromatin status through genetic and epigenetic architecture 

to assess the functional association to T1D susceptibility. 

 

T cells are involved in the destruction of β-cells therefore an assumption would be 

that epigenetic marks could alter the function of these cells. In one particular study, 

HDAC expression was found to be downregulated in CD4+ T cells in T1D (Orban et 

al., 2007). This suggests that the CD4+ T cells were hypo-responsive in T1D 

patients. Hyperglycaemia was also observed to affect histone methylation 

(Brasacchio et al., 2009). The upregulation of the NF-κB-p65 gene, due to the 

histone methylation of the promoter region of the gene, was a result of prior 

hyperglycaemia. The effects that epigenetics could have on metabolic memory and 

hyperglycaemia was further reviewed by Keating et al (Keating and El-Osta, 2012). 

In a twin study, gene expression differences in skin fibroblasts were reported in MZ 

twin pairs discordant for T1D (Caramori et al., 2012). The group had found 

differences in the expression levels of genes regulating epigenetic processes. 

Histone lysine methyltransferase (SET 7), H3K4 methyltransferase and HDAC 8 

were downregulated, whereas HDAC 4 was upregulated in the T1D twin. In a mice 

study, curcumin treatment was shown to increase acetylation of histone H3 (Tikoo et 

al., 2008). Curcumin has been used to treat other disease such as cancer and offers 

protection against nephropathy, a serious T1D complication. 
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1.8.3.7 Non-coding RNA mediated gene-silencing 

Gene expression can also be regulated by non-coding RNAs (ncRNAs). ncRNAs 

include short microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and large 

intergenic non-coding RNAs (lincRNAs) (Zaratiegui et al., 2007). miRNAs are 

genome-encoded 21 to 23 bps RNAs involved in post-translational regulation of 

gene expression (Tomankova et al., 2011). miRNAs target the RNA-induced 

silencing complex sites found at the 3‟ untranslated region of specific mRNAs. This 

leads to degradation or translational repression and affects the regulation of cellular 

processes such as embryonic development, cell differentiation, cell cycle and 

apoptosis (El Gazzar and McCall, 2011). More than 700 miRNAs have been 

identified in mammalian cells, and aberrant miRNA expression can lead to 

autoimmune diseases (Ha, 2011). miRNAs can also regulate DNA methylation and 

histone modifications (Tomankova et al., 2011). 

 

1.8.3.8 microRNA regulation in type 1 diabetes 

There is evidence that miRNAs are involved in the pathogenesis of T1D (Guay et 

al., 2011; McClelland and Kantharidis, 2014; Kumar et al., 2012; Mao et al., 2013). 

Sebastiani et al. analysed expression levels of miR-326 in peripheral lymphocytes 

from T1D patients possessing autoantibodies to GAD and IA-2 (Sebastiani et al., 

2011). They found that T1D patients with autoantibodies have an increase in 

expression of miR-326 compared to antibody-negative T1D patients. miRNAs have 

been associated with β-cell death. Thus, the upregulation of miR-21, in the 

experimental model of non-obese diabetic (NOD) mice, decreased the levels of 

PDCD4, a tumour suppressor that induces cell death via the Bax family of apoptotic 

proteins. On the other hand, decreased levels of PDCD4 in βcells made them more 

resistant to death (Ruan et al., 2011). Hezova et al. measured the expression of 

miRNAs in regulatory T cells in T1D patients (Hezova et al., 2010). They found that 

miR-342 and miR-191 were downregulated, whereas miR-510 was upregulated. In 

NOD mice, a group found that levels of miR-29a/b/c were increased in the islets 

before diabetes manifestation and in islets exposed to proinflammatory cytokines 

(Roggli et al., 2012). It was suggested that changes in the level of miR-29 could 

contribute to cytokine-mediated β-cell dysfunction in T1D. Numerous other miRNAs 

may be involved in the pathogenesis of T1D, as reviewed by Fernandez-Valverde 

(Fernandez-Valverde et al., 2011). 
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1.9 Epigenetic studies in other autoimmune diseases 

There is also a lack of complete concordance of other autoimmune diseases such 

as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) in identical 

twins (Hewagama and Richardson, 2009). In this section, different epigenetic 

mechanisms are discussed in RA, SLE and autoimmune thyroid disease.  

 

1.9.1 Epigenetic studies in rheumatoid arthritis 

RA is a chronic autoimmune disease that affects the joints. The characteristics of 

this disease include the thickening of the synovial lining in which inflammatory cells 

and synovial fibroblasts infiltrate, leading to chronic inflammation (King et al., 2014; 

Yalamanchali et al., 2015). There is a genetic susceptibility to RA as shown in 

monozygotic twin studies showing a concordance rate of 12-30% (Hewagama and 

Richardson, 2009). No one gene has been identified to be the cause of RA and 

several environmental factors have been associated with the aetiology of RA such 

as viral infections and exposure to chemicals (Lundgren et al., 2015). Due to the 

complexity of the disease, genetic factors can only be considered part of the story in 

the development of RA. Therefore epigenetics has been proposed to play a role in 

the aetiology of RA.  

 

1.9.1.1 DNA methylation in rheumatoid arthritis  

Rheumatoid arthritis synovial fibroblasts are cells that are involved in inflammation, 

and are distinguishable in RA. Epigenetic modifications in these cells may have a 

role in the pathogenesis of RA. DNA methylation was noticed to regulate the 

expression of CXCL12 in rheumatoid arthritis synovial fibroblasts (Lundgren et al., 

2014b). A study by Nile et al. (2008) (Lundstrom et al., 2014). observed that the 

hypomethylation of a single CpG site in the promoter region of IL-6 affects IL-6 gene 

regulation, leading to increased levels of IL-6, and may play a role in the 

pathogenesis of RA. A gene found to be hypermethylated in RA was death receptor 

3 (Lundgren et al., 2014a). Death receptor 3 is a member of the apoptosis-inducing 

Fas gene family. Therefore, hypermethylation of this gene results in the 

downregulation of the protein involved in apoptosis in RA synovial cells.  
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1.9.1.2 Histone modification in rheumatoid arthritis 

Enzymes involved in histone modification, HATs and HDACs, have been found to be 

associated with RA. Histone acetylation is dependent on the balance of HATs and 

HDACs and that can be affected by the environment (Todd et al., 2007a). In RA 

synovial tissues, the balance between HATs and HDACs activity is strongly shifted 

towards HATs activity, therefore, in RA patients, there is histone hyperacetylation 

(Huber et al., 2007). Studies involving histone modifications and RA have focused 

on the HDAC inhibitors and their use as potential treatments for RA. Several 

potential treatments for RA have been investigated recently and were reviewed, 

focusing on HDAC inhibitors, looking at effects on cytokine production, T cell 

differentiation and the function of macrophages, osteoclasts and synovial fibroblasts 

(Vojinovic and Damjanov, 2011). 

 

1.9.1.3 microRNA regulation in rheumatoid arthritis 

miRNAs have emerged to regulate several pathways and affect gene expression, 

and this has been studied in RA. miR-146a has been observed to be upregulated in 

CD4+ T cells, RA fibroblast-like synoviocytes and in peripheral blood mononuclear 

cells of RA patients (Li et al., 2010a; Chatzikyriakidou et al., 2010; Pauley et al., 

2008). A study by Li et al. (2010) (Li et al., 2010a) found miR-146a to be 

upregulated in CD4+ T cells, whereas miR-363 and miR-498 were downregulated. 

Also, miR-146a expression was positively correlated with levels of TNF-alpha, 

implicating that miR-146a is vital for the regulation of TNF-alpha production. This 

upregulation of miR-146a, in RA patients, was found to suppress T cell apoptosis 

and TRAF6 expression, a known miR-146a target. miR-146a was further proved to 

be associated with RA in a study which showed that a polymorphism in another 

target gene of miR-146a, interleukin-1 receptor-associated kinase, is associated 

with RA susceptibility (Chatzikyriakidou et al., 2010). miR-146a is seen to act as a 

negative regulator in innate immunity and this particular miRNA was discussed in 

more depth by Rusca and Monticelli (2011) (Rusca and Monticelli, 2011). Pauley et 

al. (2008) (Pauley et al., 2008) also found increased expression in miR-155, miR-

132, and miR-16, in peripheral blood mononuclear cells, in patients with RA, and low 

levels of miR-124a expression in synoviocytes of RA patients, compared to 

osteoarthritis patients, were observed (Nakamachi et al., 2009). Other miRNAs 

associated with RA include miR-223 in CD4+ T cells (Fulci et al., 2010), miR140 in 

chondrocytes (Miyaki et al., 2009) and miR-15a (Nagata et al., 2009).  
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1.9.2 Epigenetic studies on systemic lupus erythematosus 

SLE is a chronic autoimmune disease characterised by an acute and chronic 

inflammation, targeting several body components. Multiple genetic loci are 

associated with SLE susceptibility, which is supported from the evidence reported in 

monozygotic twin studies. The disease concordance between monozygotic twins is 

25-57% (Hewagama and Richardson, 2009) and environmental factors associated 

with SLE include mostly viral infections (Lundgren et al., 2015). Again, no specific 

agent has been described to initiate the disease process in SLE.  

 

1.9.2.1 DNA methylation in systemic lupus srythematosus  

Many DNA methylation profiles have shown that aberrant gene expression in 

several pathways, due to DNA demethylation, is associated with the development of 

SLE. Main candidate genes include ITGAL, CD70 and CD40LG. Other genes are 

listed in Table 2. It was established that T cells from patients with SLE were found to 

be globally hypomethylated [46]. This is now supported by several studies (Lu et al., 

2002; Lu et al., 2005). Liu et al. (2011) (Liu et al., 2011) investigated the DNA 

methylation levels and mRNA expression of DNMT1 and MBD2 in SLE. They found 

that the global methylation level of DNA was significantly decreased in the SLE 

patients compared to healthy controls, therefore resulting in a higher level of 

expression of DNMT1 and MBD2 mRNA. Javierre et al. (2010) (Javierre et al., 2010) 

studied monozygotic twins discordant for SLE and DNA methylation changes by 

means of high through-put analysis. They found global demethylation in the SLE 

samples compared to the healthy co-twin and controls. Changes in DNA methylation 

were found in a set of genes involved in the pathogenesis of SLE. Other genes that 

were hypomethylated in SLE CD4+ T cells were IL-10, IL1R2 (Lin et al., 2012), 

HTR1A (Xu et al., 2011), IL-13 (Zhao et al., 2010b), CD9, MMP9, PDGFRA, RUNX3 

(Jeffries et al., 2011) and the E1B promoter of CD5 (Garaud et al., 2009).   

 

1.9.2.2 Histone modification in systemic lupus erythematosus 

Histone modifications have also been observed in SLE. Examples include 

decreased global acetylation of H3 in active SLE CD4+ T cells. As with the studies 

investigating histone modifications in RA, the case is similar in SLE. The skewing of 

genes associated with SLE caused by histone deacetylase inhibitors suggests that 

deacetylation of histones is involved in SLE. Trichostatin A was found to reverse 

increased expression of CD40L and overproduction of IL-10 in SLE T cells (Mishra 
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et al., 2001). As this was the result of the introduction of the HDAC inhibitor, the 

modifications observed were suggested to be of histone acetylation status. Also, in 

CD4+ T cells, the TNFSF7 promoter region showed aberrant histone modifications, 

thus increasing the expression of CD70 involved in the development of SLE (Zhou 

et al., 2011).  

 

1.9.2.3 microRNA regulation in systemic lupus erythematosus 

Several miRNAs have been shown to be involved directly or indirectly with DMNT1 

by way of methylation of certain genes (Pan et al., 2010; Zhao et al., 2011) in CD4+ 

T cells. miR-21 and miR-148a were identified to be overexpressed in T cells from 

patients with SLE (Pan et al., 2010). miR-126 was observed to directly inhibit 

DNMT1 translation (Zhao et al., 2011). One study in particular observed that miR-

125a expression was reduced in SLE patients leading to elevated expression of 

RANTES (Zhao et al., 2010c). miR-146a also plays a role in SLE with its increased 

expression in peripheral blood mononuclear cells and synoviocytes in SLE patients 

(Tang et al., 2009; Pauley et al., 2008).  

 

1.9.3 Epigenetic studies in autoimmune thyroid disease 

Two main autoimmune thyroid diseases are Hashimoto‟s thyroiditis and Grave‟s 

disease; both are characterised by the loss of immunological self-tolerance 

(Weetman, 2001). Both diseases are more prevalent in women, with a 5- to 10-fold 

excess in the female gender (Vanderpump, 2011). In Hashimoto‟s thyroiditis, 

autoantibodies against thyroid peroxidase and thyroglobulin lead to the gradual 

destruction of the thyroid, resulting in hypothyroidism (Weetman, 2001). The 

concordance rate in monozygotic twin studies ranges from 35-55% (Huber et al., 

2008). In contrast, Grave‟s disease is characterised by an overactive thyroid 

producing an excessive amount of thyroid hormones caused by thyroid stimulating 

autoantibodies and resulting in an enlarged goiter and hyperthyroidism (Weetman, 

2000). The concordance rate for this disease in monozygotic twins is 20-35% 

(Huber et al., 2008; Weetman, 2000) and is thought to be the result of an interaction 

of genetic and environmental factors (Hemminki et al., 2010).  

 

So far there have been no reports with findings of DNA methylation and histone 

modifications associated with autoimmune thyroid diseases. 
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1.9.3.1 microRNA regulation in autoimmune thyroid disease 

X chromosome inactivation is a type of epigenetic modification thought to be 

regulated by miRNAs. X chromosome inactivation is an essential epigenetic event 

that takes place in the female embryonic development stage (Chabchoub et al., 

2009). It involves the transcriptional silencing of one of the X chromosomes in 

females for the dosage compensation of X chromosome products. Therefore, 

females are mosaics for two cell lines which usually display a 50:50 ratio of the two 

cell lines (Chabchoub et al., 2009). It has been reported in several studies that 

biased X chromosome inactivation may be involved in autoimmune thyroid diseases 

(Chabchoub et al., 2009; Brix et al., 2005). Brix et al. (2005) (Brix et al., 2005) 

conducted a study where they found skewed X chromosome inactivation in female 

twins with Grave‟s disease and Hashimoto‟s thyroiditis, which may increase the risk 

of developing autoimmune thyroid diseases. Skewing is defined as the X 

chromosome inactivation pattern showing 80% or more of the cells preferentially 

inactivated on the same X chromosome, therefore deviating from the normal 50:50 

ratio (Brix et al., 2005). Altogether these findings suggest a possible role of X 

chromosome inactivation, and therefore epigenetics, in autoimmune thyroid 

diseases.   

 

1.10 The epigenetic and genetic architecture in gene 

regulation 

There are different regulatory mechanisms that act on different levels to remodel the 

chromatin structure. For example, alterations in the chromatin structure can affect 

expression and repression of genes by enzymatic modification of core histones. The 

modifications of the histones result in conformational changes of the chromatin that 

alter the access of promoters to transcription factors. Alongside transcription factors, 

several cis-regulatory elements including enhancers, promoters, silencers and 

insulators, are crucial to the function of the genome. 

 

An enhancer is a region of DNA that enhances transcription levels of a gene through 

the binding of transcription factors (Hardison and Taylor, 2012). There are more 

than a million enhancers, therefore, many more than there are genes. Because of 

this, a number of genes are regulated by the same enhancer, which may co-localize 

with CpGs (Ziller et al., 2013). Also it has been suggested that lineage-determining 

transcription factors may define the epigenetic and transcriptomic states by selecting 
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enhancer sites, facilitating binding of signal-dependent factors (Heinz et al., 2013). 

Gene enhancers can be found upstream or downstream of genes and do not 

necessarily act on the closest promoter i.e. they can act as distant promoters. In 

order to do this, the DNA loops around bringing the specific promoter to the initiation 

complex; this enhancer-promoter loop has approximately 120 kilobases (de Laat 

and Duboule, 2013) (Figure 1.5). Enhancers may be accompanied by insulators, 

which are located between the enhancers and promoters of adjacent genes and can 

limit phenotypic gene expression despite genetic activation (Hardison and Taylor, 

2012). 

 

Genetic activation occurs following binding of transcription factors to DNA. A section 

of DNA is made available to transcription factors binding by unwinding of the 

chromatin with reduced nucleosome density, low DNA methylation and the 

availability of selected sites to cleavage by DNase enzymes (DNase hypersensitivity 

sites or DHSs) (Consortium, 2012). DHSs represent regions of transcriptionally 

active genome and there were approximately 2.9 million such DHSs identified by the 

Encyclopedia of DNA Elements (ENCODE) Consortium (Thurman et al., 2012). With 

the interaction between regulatory elements and epigenetic marks, regulation of 

gene expression is more complex than once thought (Hansen et al., 2006). 
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Figure 1.5. Interaction of regulatory elements. DNA is wrapped around a histone octamer 

and is joined to other nucleosomes by linker DNA. Post-translational modifications to the 

histone tails could occur by acetylation and methylation to alter the chromatin structure. An 

activator binds to an enhancer site, recruiting transcription factors (TF) to bind to the 

promoter site. This promoter site may be over 100kb away, therefore the DNA has to loop 

around. A pair of insulators interacts to block transcription occurring at a promoter site. A 

promoter site may have several CpG sites which could be methylated (black circles) or 

unmethylated (white circles). 
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1.11  Hypothesis 

DNA methylation is associated with gene repression and is maintained through DNA 

replication. Significant methylation differences between MZ twin pairs discordant for 

T1D, will strengthen the hypothesis that epigenetics is involved in T1D aetiology. A 

preliminary study had found DNA methylation differences between MZ twin pairs 

discordant for T1D. The diabetic twins were all diagnosed under 20 years of age. 

This study will include twin pairs with adult-onset T1D, therefore hypothesising that 

the adult-onset T1D twins may have a larger difference in methylation compared to 

their healthy co-twin, due to more exposure to the environment. 

 

In T1D patients, most β-cells are destroyed, releasing DNA into the circulation. It 

has been reported that in diabetic patients, unmethylated DNA from damaged β-

cells is tissue-specific and is released into the circulation. As DNA methylation 

marks are stable, it was hypothesized that differences in methylation between MZ 

twin pairs discordant for T1D from circulating DNA can be detected and can be used 

as a biomarker for monitoring β-cell death. 

 

1.12  Aims and objectives 

The aim of the thesis was to study and investigate the role of DNA methylation in 

T1D. This involved generating whole-genome DNA methylation profiles of 

CD14+CD16- monocytes, CD4+ T cells, CD19+ B cells and buccal cells from T1D-

discordant MZ twin pairs to identify any differentially methylated regions. Another 

objective was to compare T1D-MVPs with those already identified in childhood-

onset T1DM from the preliminary study. Also, an assay was developed to detect 

differences in DNA methylation in circulating DNA using serum samples from the 

same MZ twin pairs. 
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2 Methods 

The following methods were performed to identify possible methylation differences 

in MZ twin pairs discordant for T1D. Also, differences in unmethylated insulin DNA 

were investigated using patient serum. These studies were approved by the 

Northern and Yorkshire Research Ethics Committee (REC Reference Number: 

06/MRE03/22). All individuals had given informed consent. Materials and equipment 

are listed in Appendix I. 

 

2.1 Subject selection 

T1D-discordant MZ twins were ascertained from The British Diabetic Twin Study. All 

diabetic twins selected, had T1D as defined by the American Diabetes Association 

(American Diabetes, 2009) and were referred through their physicians. All twin pairs 

were of European origin and monozygosity was confirmed by DNA fingerprinting. 

Neither twin was receiving drugs other than human insulin and statins in the index 

case. Diabetes was excluded from the non-diabetic twin by random whole blood 

glucose at testing less than 7.0 mmol/L (Hawa et al., 1997). Blood glucose was 

measured using a Hemocue Glucose meter. The twins were also not conceived 

through artificial means. Average age at sampling was 43 years of age and the 

average age at diagnosis in the index twin was 19 years of age. 

 

2.2 Testing for GAD65, IA-2 and ZnT8 autoantibodies 

Radioimmunoassay was carried out to detect diabetes-associated autoantibodies to 

GAD65, IA-2 and ZnT8. Radioimmunoassay remains the “gold standard” assay to 

detect autoantibodies associated with T1D (Wenzlau and Hutton, 2013). The assays 

were carried out according to The Diabetes Antibody Standardization Program 

(DASP), which aims to standardise measurements of autoantibodies associated with 

T1D, between different laboratories (Schlosser et al., 2010). Full length 

complementary DNA (cDNA) were transcribed and translated in the pCR11 (IA-2), 

pB 1882 (GAD65) and pCDNA3.1 (ZnT8) vectors and were then used to detect the 

autoantibodies in patient serum. 

 



                              Chapter 2 Methods 

72 

2.2.1 Lysate transcription and translation for GAD65, IA-2 and 

ZnT8 

The transcription and translation method was performed using the TNT® Coupled 

Reticulocyte Lysate System from Promega. The TNT lysate reaction, using [35S] 

methionine, consisted of the mix: 25 µL TNT rabbit reticulocyte lysate, 2 µL TNT 

reaction buffer, 1 µL amino acid mixture, 1 µL RNasin ribonuclease inhibitor, 1 µL 

TNT RNA polymerase SP6 (GAD65) or T7 (IA-2 and ZnT8), 2 µL DNA templates 

from GAD65, IA-2 or ZnT8, 4 µL [35S] methionine (1,000 Ci/nmol at 10 Ci/mL) and 

14 µL nuclease free water to make the final volume to 50 µL. The reaction mix was 

incubated at 30°C in the water bath for 1.5 hours. Following incubation, a NAP-5 

column was washed five times with 1x Tris Buffered Saline tween (TTBS). The 

reaction mix was diluted with 200 µL 1x TTBS and was applied to the column. The 

column was washed with 400 µL 1x TTBS and a further 1 mL 1x TTBS was added 

to the column for elution. The first elute which was clear in colour, was discarded. 

The eluent, which contained haemoglobin, was collected. The excess radioactivity 

from the column was washed out with distilled water 25 times using an aspirator and 

then discarded. The translated protein was stored at -70°C until used for 

radioimmunoassay. 

 

2.2.2 Radioimmunoassay for GAD, IA-2 and ZnT8 autoantibodies 

Blood samples for the radioimmunoassay were collected in red top serum 

vacutainers and were left to clot at room temperature (RT) for at least 30 minutes. 

After the samples had clotted, the serum fractions were obtained by centrifugation, 

at 1,500 revolutions per minute (rpm) for 15 minutes at 20°C. These samples were 

split into three cryovials and frozen at -20°C. All samples were tested in duplicate, 

including positive and negative control standard sera. 

 

The radioactivity was determined by precipitation with 10% trichloroacetic acid. For 

the immunoprecipitation in each assay, 50 µL of the antigen labelled with 35S 

methionine was incubated with 2 µL serum in 1x TTBS in a 96-well filter plate. The 

plate was incubated for 24 hours at 4°C on a plate shaker (180 rpm for five minutes, 

then 70 rpm overnight). Protein A Sepharose was pre-swollen in 1x TTBS overnight, 

then was spun at 1,300 rpm for three minutes at 20°C, followed by a quick wash 

with 1x TTBS. The supernatant was discarded and 15 mL 1x TTBS was added to 

the pellet and mixed well. With this, 1 mg (50 µL) Protein A Sepharose was added to 
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each well. The plate was incubated at 4°C in a shaker for one hour at 180 rpm and 

then washed with 1x TTBS (200 µL/well) using a vacuum eight times. The plate was 

blot dried using a paper towel and then left to air dry for approximately 20 minutes at 

RT. A plastic seal was placed over the plate and the radioactivity was determined by 

scintillation counting using a Micro-β-counter. The results were exported onto 

Microsoft Excel and values were compared to the World Health Organisation (WHO) 

units and laboratory standards. This determined whether the patient was positive or 

not for diabetes-associated autoantibodies. 

 

2.3 DNA extraction from buccal cells 

Buccal cell brushes provide another way of obtaining DNA and are another 

approach for collecting a sample from subjects in a non-invasive way. Buccal cells 

have been found to have six times as many hypomethylated regions compared with 

peripheral blood (Lowe et al., 2013). Therefore, analysis of buccal cells may detect 

DNA methylation variation not picked up in other tissues such as peripheral blood. 

DNA was extracted from buccal cells using the Gentra Puregene Buccal Cell Kit 

from Qiagen according to manufacturer‟s instructions. Centrifugation was performed 

at 14,000 rpm at RT unless specified otherwise. 

 

Per person, buccal cell samples were collected with four cytology brushes. The 

brush was placed into an eppendorf tube and the stick was cut off. Into the tubes, 

600 µL Cell Lysis solution was added and stored at 4°C until DNA extraction of the 

samples. When ready to process, 2 µL Proteinase K was added to the tubes to 

degrade any proteins, inverted 25 times and incubated at 55°C overnight. The 

collecting brush was removed and 2 µL RNase A solution was added to prevent 

RNA contamination and mixed by inverting 25 times. The samples were incubated 

at 37°C for one hour and then placed on ice for one minute. 200 µL Protein 

Precipitation Solution was added to the tubes, vortexed for 20 seconds and 

incubated on ice for five minutes. The samples were spun for three minutes, placed 

on ice for five minutes and centrifugation was repeated. 600 µL isopropanol and 1 

µL glycogen solution were dispensed into new eppendorf tubes. Supernatant from 

the samples were decanted into the new eppendorfs and mixed by inverting gently 

50 times. The samples were spun for five minutes and supernatant discarded. The 

pellets were washed with 300 µL of 70% ethanol by spinning for one minute. 

Supernatant was discarded and left to air dry for at least 45 minutes. 30 µL DNA 

Hydration Solution was added to the tubes, vortexed for five seconds and then 
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incubated at 50°C for one hour. The samples from the same individual were 

combined at the end of the DNA extraction protocol. DNA concentration was 

determined by a Qubit instrument and visualised on a 2% agarose gel. 

 

2.4 Immune cell isolation 

Earlier studies have examined DNA methylation profiles in PBMCs in human 

diseases (Li et al., 2010b; Steegenga et al., 2014). However, any disease-related 

signatures identified would just display differences in the relative abundance of 

individual cell types as each cell subset generates a unique methylation profile 

(Reinius et al., 2012). Therefore it is important to isolate specific cell types to identify 

cell- or tissue-specific changes in DNA methylation to avoid confounding variables. 

This method involved isolating CD19+ B cells, CD14+CD16- monocytes and CD4+ T 

cells for epigenetic profiling. The classical CD14+CD16- monocytes were studied 

instead of CD14+ cells as in the preliminary study to remove proinflammatory 

macrophages (Ziegler-Heitbrock, 2007).  

 

2.4.1 B cell isolation 

Blood taken in heparin vacutainers was diluted 1:1 with Roswell Park Memorial 

Institute (RPMI) and left on the roller overnight. The diluted blood was carefully 

layered onto 12.5 mL Percoll 1.078g/mL in 50 mL Falcon tubes and centrifuged at 

800 xg for 20 minutes with no brake, at 20°C. Percoll was used as it is a simple 

method for isolating PBMCs (de Almeida et al., 2000). The sample had separated 

into different layers (Figure 2.1) where most of the plasma layer was removed 

before the PBMC ring was transferred to new 50 mL Falcon tubes. The tubes were 

topped up with phosphate buffered saline (PBS) and ethylenediaminetetraacetic 

acid (EDTA) and spun at 550 xg for eight minutes at 20°C. The cell pellets were 

pooled together and washed again. The cells were resuspended in 10 mL PBS and 

EDTA and counted using a haemocytometer. The tubes were topped up to 45 mL of 

PBS and EDTA and spun at 550 xg for six minutes at 4°C. CD19+ B cells were then 

positively selected by magnetic-activated cell sorting (MACS). MACS separates 

different cell populations through the use of magnetic beads coated with antibodies 

against the surface antigen of interest. The cells were then passed through a 

column in a magnetic field and the cells of interest were retained in the column to 

obtain a pure cell population. MACS has been shown to obtain high purities of 

isolated cell populations, and subsequent use of magnetic beads on a single sample 
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did not significantly affect gene expression (Lyons et al., 2007). The cell pellet was 

resuspended in 80 µL PBS and EDTA per 10 million cells. Then 20 µL of CD19 

microbeads was added per 10 million cells. This was left to incubate for 15 minutes 

at 4°C. The samples were washed with 2 mL of PBS and EDTA and spun at 300 xg 

for six minutes at 4°C. Whilst the samples were spinning, an LS column was washed 

with 3 mL PBS and EDTA through a pre-separation filter. The cells were 

resuspended in 500 µL of PBS and EDTA and applied to the column through the 

pre-separation filter. The flow-through was collected in another tube placed under 

the column. 3 mL of PBS and EDTA was added to the tubes to collect any remaining 

cells and added to the column three more times. The column was removed from the 

magnet and 5 mL of PBS and EDTA was added to the column. The purified cells 

were flushed out using the plunger. The flow-through and purified cells were spun at 

300 xg for six minutes at 4°C. The purified cells were applied to another column to 

order to increase the purity. Whilst the cells were spinning, an MS column was 

washed with 500 µL of PBS and EDTA. The supernatant from the CD19- tube was 

decanted and left on ice to one side. The CD19+ fraction was resuspended in 500 µL 

of PBS and EDTA and added to the MS column. 500 µL of PBS and EDTA was 

added to the tubes and then to the column three more times. The column was 

removed from the magnet and 2 mL of PBS and EDTA was added to the column to 

flush out the purified cells. The flow-through was discarded and purified cells 

counted. 
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Figure 2.1. Separation and isolation of immune cells. The PBMC layer was first 

separated using Percoll. The cells of interest were labelled with magnetic microbeads and 

then loaded onto a MACS column which was placed in the magnetic field of a MACS 

Separator. The magnetically-labelled cells were retained within the column and the 

unlabelled cells flowed through. The purified cells were eluted with buffer when the column 

was removed from the magnetic separator. An aliquot of the purified cells was stained for 

flow cytometry analysis and the remainder of the cells were lysed for DNA or RNA extraction. 
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2.4.2 Monocyte isolation 

The cell pellet left to one side from Section 2.4.1 (first CD19- fraction) was 

resuspended in 50 µL PBS and EDTA per 50 million cells. 50 µL of CD16 

microbeads was added per 50 million cells. The tubes were incubated for 30 

minutes at 4°C and washed by adding 2 mL of PBS and EDTA and then spun at 300 

xg for six minutes at 4°C. Whilst the cells were spinning, an LD column was washed 

with 2 mL PBS and EDTA. The cell pellet was resuspended in 500 µL of PBS and 

EDTA and applied to the column. 1 mL of PBS and EDTA was added to the tubes to 

collect any remaining cells and added to column twice more. The flow-through was 

collected and a cell count was performed. After depletion of the CD16+ cells, the 

sample was spun at 300 xg for six minutes at 4°C. The pellet was resuspended in 

80 µL PBS and EDTA per 10 million cells. 20 µL of CD14 microbeads was added 

per 10 million cells and incubated for 15 minutes at 4°C. The cells were washed with 

2 mL of PBS and EDTA and spun at 300 xg for six minutes at 4°C. Whilst the cells 

were spinning, an MS column was washed with 500 µL PBS and EDTA. The cells 

were resuspended in 500 µL of PBS and EDTA and applied to the column. 500 µL 

of PBS and EDTA was added to the tubes and then the column three times. The 

column was removed from the magnet and 2 mL of PBS and EDTA was added to 

flush out the purified cells. The flow-through was collected, counted and spun at 300 

xg for six minutes at 4°C. 

 

2.4.3 T cell isolation 

For CD4+ T cell isolation, the cell pellet from Section 2.4.2 was resuspended in 80 

µL PBS and EDTA per 10 million cells. 20 µL of CD4 microbeads was added per 10 

million cells. The tubes were incubated for 15 minutes at 4°C and washed with 2 mL 

of PBS and EDTA and spun at 300 xg for six minutes at 4°C. Whilst the cells were 

spinning, an MS column was washed with 500 µL PBS and EDTA. The cells were 

resuspended in 500 µL of PBS and EDTA and applied to the column. 500 µL of PBS 

and EDTA was added to the tubes and then to the column three times. The column 

was removed from the magnet and 2 mL of PBS and EDTA was added to the 

column to elute the purified cells. 

 

Aliquots of purified cells (CD14+CD16-, CD4+ and CD19+) were taken for flow 

cytometry analysis and the rest were split equally into two 1.5 mL eppendorf tubes 

and spun down at full speed for two minutes. One of the pellets was resuspended in 
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200 µL PBS and 200 µL Buffer AL from the QIAamp DNA Blood Mini Kit, Qiagen, 

vortexed and stored at -20°C for later DNA extraction. The other pellet was 

resuspended in 300 µL RNAProtect, vortexed and stored at -80°C for later RNA 

extraction. 

 

2.4.4 Optimisation of the immune cell isolation protocol 

Initially, PBMCs extracted from the samples were split into three to try and positively 

select the three different cell types. However, this resulted in low cell numbers and 

therefore would not obtain enough DNA for downstream experiments. The 

harvested PBMCs were then split into two, one to sort for CD19+ only and the other 

to sort for CD14+CD16- and then CD4+ cells. However, this also resulted in low cell 

numbers for CD19+. As CD19+ cells make up only 5-15% of lymphocytes (Fettke et 

al., 2014), it was crucial to start with all the PBMCs. 

 

Additionally, a second Percoll step was included in Section 2.4.1 to increase the 

purity of the cells and to reduce debris in the samples. However, this step was later 

removed as final cell numbers were low and subsequently, resulted in low DNA 

concentrations. The purity of CD19+ cells dropped significantly, hence the addition of 

another column step for this cell type to increase the purity to over 95%. 

 

2.5 Flow cytometry 

Flow cytometry is a system for detecting cells by a laser beam. The analysis and 

differentiation of the cells is based on size and granularity by measuring the relative 

scattering and colour discriminated fluorescence of the particles. Flow cytometry can 

be used for different purposes; from sorting cells to determining purity of specific 

cells in a sample. All cells were analysed for purity. 

 

2.5.1 Fluorescence compensation 

Separate detectors in the flow cytometer measure the fluorescence from different 

fluorochromes. However, some fluorescence may be detected in the wavelength 

range that is assigned to a different flurochrome. Therefore, when two or more dyes 

are used to stain cells, the spectral overlap can be corrected by a process called 

compensation (Herzenberg et al., 2006). Compensation estimates the percentage of 
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spectral overlap and subtracts it from the total detected signals resulting in an 

estimate of the actual amount of each dye. 

 

Fluorescence compensation was performed with anti-mouse Ig compensation 

beads. Each FACS tube for each fluorochrome had anti-mouse Ig, κ particles, the 

negative control and the fluorochrome measured. The mixture can determine distinct 

positive and negative stained populations which can be used to set compensation 

levels. 

 

2.5.2 Flow cytometry controls 

In order to establish gating boundaries or to identify staining issues, isotype controls 

and fluorescence minus one (FMO) controls were used. Unstained cells were also 

analysed by flow cytometry (Appendix II, Figure 8.1). 

 

2.5.2.1 Isotype controls 

Purified cell populations were stained with mouse IgG isotype control antibodies. 

Isotype controls were used to assess the level of background staining. The 

antibodies were specific for keyhole limpet hemocyanin and as this protein is not 

expressed on human cells, it can be used as a negative control to distinguish 

specific from non-specific binding of mouse IgG1 fluorochrome–conjugated 

antibodies to human cells. The gating can then be used as a reference for future 

experiments to determine the specific cell population being investigated. 

 

2.5.2.2 Fluorescence minus one controls 

FMO controls are a way to determine gating cells of interest. In an FMO control set, 

all antibodies were used when staining cells except the antibody for which the 

threshold is to be determined (Herzenberg et al., 2006). These controls will optimise 

the identification of the cells investigated and will also determine the cell 

population‟s autofluorescence (Appendix II, Figure 8.2). 
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2.5.3 Flow cytometry analyses 

Single-cell suspensions were prepared from the purified cell populations and 

assessed for purity on the BD FACSCanto™ II. The data obtained from the BD 

FACSCanto™ II were analysed on FlowJo, a software package that can analyse 

flow cytometry data. 

 

For surface staining, CD14+CD16- cells were stained with 20 µL FITC conjugated 

monoclonal mouse anti-human CD14, clone MφP9, 20 µL PE conjugated 

monoclonal mouse anti-human CD16, clone B73.1/leu11c, 5 µL PerCP-Cy5.5 

conjugated monoclonal mouse anti-human CD64, clone 10.1, 5 µL PE-CY7 

conjugated monoclonal mouse anti-human CD45, clone HI30. CD4+ cells were 

stained with 10 µL FITC conjugated monoclonal mouse anti-human CD4, clone M-

T466. CD19+ cells were stained 10 µL with PE conjugated monoclonal mouse anti-

human CD19, clone LT19. Cells were incubated for 15 minutes at 4°C, washed with 

2 mL PBS and EDTA and resuspended in 500 µL for FACS analysis. Expected 

overall percentage purity of the isolated cell populations was over 95%. 

 

In a PBMC sample, there were many different populations of cells, in particular, 

CD16+ cells (Figure 2.2A and B). For isolating the CD14+CD16- monocytes, it was 

important to deplete the sample of CD16+ cells. Flow cytometry analysis showed this 

to be effective (Figure 2.2C and D). The addition of two antibodies (CD64 and 

CD45) was used to also stain for monocytes (Figure 2.3A). The monocyte 

populations that were gated were then assessed for CD45 and CD64 markers 

shown in the middle panels. The purity of CD14+CD16- cells can be seen in the right 

panels. As expected, there was a higher purity of CD14+CD16- cells after the CD16 

depletion and CD14 purification steps. In this example, CD4+ T cells had the highest 

purity at 98.9% (Figure 2.3B) and CD19+ cells with 92.4% (Figure 2.3C). 
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Figure 2.2. Depletion of CD16
+
 cells from PBMC samples. Flow cytometry analysis of 

PBMC staining before magnetic beads separation (A). Gating for monocytes, this resulted in 

15.8% of the PBMC sample. Within this gate, 9.69% cells expressed CD16 (B). A total of 

10,000 events were recorded in the gates. Monocyte staining after CD16 depletion and 

positive selection for CD14 (C) resulted in a purer population of monocytes in the PBMC 

samples at 79.5%. Within this gate, 0.25% of cell expressed CD16, showing that the 

depletion of CD16 using MACS was effective (D). 
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Figure 2.3. FACS analyses of selected cells. FlowJo analyses of CD14
+
CD16

- 
sample 

after the CD16 depletion and CD14
+
 purification steps (A). Flowjo analysis of CD4

+
 cells (B). 

CD4
+
 cells were stained with antibodies labelled with FITC. Flowjo analyses of CD19

+
 cells 

(C). At least 10,000 events were recorded within the gates in all the FSC/SSC plots. Mouse 

anti-IgG antibodies was used to stain the cells to establish a negative control (light blue). 
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2.6 Staining of isolated cells 

Further staining of the purified cells enabled further determination of whether the 

right cell type was isolated. This was performed using Romanowsky staining. 

Romanowsky stains combine methylene blue and eosin dyes to stain the nucleus 

and cytoplasm (Jorundsson et al., 1999). The dyes bind to acidic nuclei and result in 

a blue to purple colour. 

 

The slides were pre-wetted with 50 µl of PBS and EDTA to wet the pad paper as the 

sample volume was too small. 25,000 cells in 100 µl of PBS and EDTA was added 

to the funnels in the cytospin clips and placed into the cytospin centrifuge. After 

spinning, the slides were left to air dry for approximately 20 minutes. The slides 

were immersed into the Rapid Romanowsky Solution A for 30 seconds. The slides 

were removed and excess tapped off, immersing the slides into Solution B (Eosin Y) 

for 30 seconds. The slides were removed and immersed into Solution C (Methylene 

Blue) for 30 seconds. The slides were removed and washed under running tap 

water to remove excess stain. The cytospins were air dried for 1 hour before 

mounting with DPX mounting medium. After using a Romanowsky stain kit, the 

slides were viewed with a light-emitting diode (LED) microscope (Figure 2.4). 
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2.7 DNA extraction from cells 

Genomic DNA was extracted from the lysed purified cell pellets using the QIAamp 

DNA Blood Mini Kit according to manufacturer‟s instructions. The Qiagen protease 

and Buffers AW1, AW2 were prepared following manufacturer‟s instructions. All 

centrifugation steps were performed at 8,000 rpm at RT unless stated otherwise. 

 

Frozen samples for DNA extraction from Section 2.4.3 were thawed at RT then 20 

μL Qiagen Protease was added to break down any proteins. The samples were 

mixed by pulse-vortexing for 15 seconds and then incubated at 56°C for 10 minutes. 

200 μL of 100% ethanol was added to the samples, mixed well and applied to the 

QIAamp Mini spin column. The columns were spun for one minute with the 

collection tube then discarded, placing the column into a new 2 mL collection tube. 

To wash the columns, 500 μL Buffer AW1 was added and the tubes were spun for 

one minute. The columns were placed into a new 2 mL collection tube and were 

washed again with 500 μL Buffer AW2. The tubes were spun at 14,000 rpm for three 

minutes. The columns were placed in new 1.5 mL tubes and centrifuged at 14,000 

rpm for one minute to remove any remaining buffer left in the columns. The columns 

were transferred to a new 1.5 mL tube and to elute the DNA, 150 μL Buffer AE was 

added to the column membranes. The tubes were centrifuged for one minute and 

the DNA was recovered and measured using the Qubit instrument according to 

manufacturer‟s instructions. The samples were also run on a 2% agarose gel. 
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Figure 2.4. Staining of isolated cells using Romanowsky stain. Once the purified cells 

had been isolated by MACS, the cells were spun onto a slide and stained with a 

Romanowsky stain kit. This was to confirm that the cells of interest were correctly purified in 

comparison to flow cytometry analyses. Monocytes present with a horse-shoe shaped 

nucleus (A). T cells have a single large nucleus, which takes up most of the cell leaving a 

small amount of cytoplasm (B). B cells also have large nuclei, similar to T cells (C). 
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2.8 Agarose gel electrophoresis 

DNA samples were run on a 2% agarose gel to assess the integrity of the samples. 

The 2% gel was prepared by dissolving 1.4 g agarose completely in 70 mL 

Tris/Borate/EDTA (TBE) buffer by mixing and heating. The gel was left to cool to 

approximately 55°C and 5 µL of ethidium bromide was added to the gel. The gel had 

to be cooled down before the addition of ethidium bromide to prevent toxic vapours 

as it is a mutagen. Ethidium bromide is a fluorescent dye that intercalates between 

bases of nucleic acids. This allows the visualisation of the samples in the gel. The 

tank was set up and the gel was slowly poured into the tank with a comb. The gel 

was left at RT to solidify. Whilst waiting for the gel to solidify, the samples were 

prepared. The samples and loading buffer were mixed in the ratio of 3:1. Once the 

gel had solidified, the comb was removed and the tank was filled with 1x TBE buffer. 

The samples were loaded into the wells and the gel was run at 70V for 

approximately 20 minutes. Once the run was completed, the gel was viewed in the 

UV Transilluminator. 

 

2.9 DNA extraction from cord blood 

In addition to the current samples, cord blood was analysed. Normally, blood 

samples from new-borns are taken in the form of dried blood spots, to screen for 

various diseases. Guthrie cards are useful with addressing issues such as causality 

of a disease, particularly in EWAS. Profiling the methylome using Guthrie cards may 

identify epigenetic variants that may indicate that it is disease casual as they appear 

before disease. DNA methylation variation has been shown to be stable for at least 

three years, indicating that there may be disease-related epigenetic marks that 

could be detected at birth (Beyan et al., 2012a). The dried blood spots (DBSs) 

consisted of cord blood dotted onto card, from 99 new-borns from a cohort in 

Sweden. 50 of those new-borns went on to develop T1D and the other 49 did not. 

The DBSs were processed using the GenSolve DNA recovery kit from Labtech, as 

per the manufacturer‟s instructions. The steps that required centrifugation were 

performed at 8,000 rpm at RT unless specified otherwise. 

 

The DBSs were stored in eppendorf tubes at 4°C. First, 620 μL Recovery Solution 

A/Protease mix was added to the tubes. The samples were placed in a thermomixer 

heated to 65°C and were set to shake at 14,000 rpm for one hour. The tubes were 

spun down briefly to collect any liquid off the cap. 20 μL Recovery Solution B was 
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added to new collection tubes and spin baskets were inserted. The DBSs from the 

previous step were transferred into the spin baskets. The tubes were then spun at 

14,000 rpm for two minutes at RT. The spin baskets were then discarded and the 

remaining samples were taken through to DNA extraction using the QIAamp DNA 

Blood Mini Kit from Qiagen. 600 μL of 100% ethanol was added to each tube and 

vortexed. The samples were loaded onto spin columns and spun for one minute. 

The columns were placed into new 2 mL collection tubes and 500 μL AW1 Buffer 

was added. The tubes were spun for one minute and the spin columns were 

transferred into new 2 mL collection tubes. 500 μL AW2 Buffer was added and the 

tubes were spun at 14,000 rpm for four minutes at RT. The columns were placed 

into new 1.5 mL collection tubes and spun at 14,000 rpm for 1.5 minutes at RT. DNA 

was eluted by adding 100 μL AE Buffer to the spin columns. The samples were 

incubated at RT for five minutes and then spun for one minute. Eluted DNA was 

measured using the Qubit instrument, visualised on a 2% agarose gel and stored at 

-20°C. 

 

2.10 Illumina Infinium HumanMethylation450K BeadChip 

DNA methylation plays an important role in regulating gene expression. One 

approach to detect differential methylation patterns in the genome has been 

developed by Illumina. The Illumina Infinium HumanMethylation450K BeadChip 

(Illumina450K) involves bisulfite converted DNA hybridized to the beadchip, creating 

a methylation profile detailing over 485,000 CpG sites per sample at single-

nucleotide resolution (Sandoval et al., 2011). The beadchip can analyse up to 12 

samples per array and only requires 500 ng of bisulfite-converted DNA per sample. 

Compared to its predecessor, the Illumina Infinium HumanMethylation27K 

(Illumina27K), the current beadchip has over 17-fold CpG sites and covers 99% of 

RefSeq genes, 96% of CpG islands and coverage in island shores (Touleimat and 

Tost, 2012). Additional regions covered include CpG sites outside of CpG islands, 

non-CpG methylated sites identified in human stem cells, CpG islands outside of 

coding regions and miRNA promoter regions. The Illumina450K BeadChip also 

retains approximately 90% of content contained on the Illumina27K BeadChip. The 

array has two bead types for each CpG site, Infinium I and Infinium II (Figure 2.5). 
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Figure 2.5. Illumina Infinium HumanMethylation450K BeadChip profiling technology. 

The Illumina450K BeadChip consists of two assays. The Infinium I assay interrogates each 

CpG using two bead types, methylated (M) and unmethylated (U) beads. If hybridization of 

an unmethylated locus occurs on the U bead, single-base extension with labelled 

nucleotides is performed. If a methylated locus hybridizes to the M bead, no single-base 

extension will occur, and vice versa. The Infinium II assay interrogates each CpG using a 

single bead type. Single-base extension always occurs at the end of the probe, therefore, 

methylation state is detected by the addition of a labelled 'G' or 'A' nucleotide. Following this, 

the BeadChip will then be fluorescently stained and scanned to measure the intensity of the 

beads corresponding to the unmethylated and methylated CpG sites. 
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2.10.1 Infinium Illumina450K BeadChip sample preparation 

The Infinium Illumina450K assay combines bisulfite conversion of genomic DNA and 

array technologies to determine the methylation state of over 485,000 CpG sites 

(Figure 2.6). 

 

2.10.1.1 Preparation of bisulfite-converted DNA 

After DNA extraction of the samples, 500 ng of genomic DNA of each sample were 

prepared into a total volume of 45 µL and then loaded into 96-well plates. The 

samples were randomised to avoid batch effects. Batch effects can display different 

behaviour across conditions which are unrelated to biological variable in a study 

(Leek et al., 2010). The automated BeadChip array was performed at the Genome 

Centre at University College London, UK. The samples were then treated with 

sodium bisulfite using EZ-96 DNA Methylation MagPrep kit according to the 

manufacturer‟s instructions. Sodium bisulfite treatment of DNA enables researchers 

to investigate DNA methylation. During sodium bisulfite treatment of the samples, 

unmethylated cytosines are converted to uracils; whereas methylated cytosines 

remain unchanged, therefore complete bisulfite conversion is crucial to identifying 

correctly the unmethylated or methylated fraction of the genome. After treating the 

DNA with sodium bisulfite, the samples were amplified. During amplification, 

unmethylated cytosines produce a T whereas the protected methylated cytosines 

retain the C (Figure 2.7). These products are then hybridized to custom microarrays 

that contained probes to discriminate converted versus unconverted cytosines at the 

CpG site of interest, thereby providing a readout of the original methylation state at 

that CpG site (Harris et al., 2010) (Figure 2.8). 
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Figure 2.6. Summary of sample preparation for the Illumina450K BeadChip array. Cells 

of interest were separated and isolated using MACS (A). Flow cytometry was used to 

determine the purity of the cells isolated (B). DNA was extracted from each cell type and 

visualised on a 2% agarose gel to assess DNA integrity (C). DNA was treated with sodium 

bisulfite. Methylated cytosines remain protected whereas unmethylated cytosines in CpG 

sites convert into uracils (D). The bisulfite converted DNA was then hybridized onto an 

Illumina Infinium HumanMethylation450K BeadChip and analysed (E). 
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Figure 2.7. Bisulfite conversion of cytosines. During bisuflite conversion, the 

unmethylated cytosine is deaminated to produce uracil. Methylated cytosines are protected 

from the conversion to uracil. The DNA will then be amplified, during the amplification step, 

uracils are amplified at thymines whereas methylated cytosines get amplified as cytosines. 

The DNA sequence was then analysed, determining the positions of unmethylated and 

methylated cytosines. 
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Figure 2.8. Summary of the automated Illumina450K protocol. Day 1 involves quantifying 

DNA, then the bisulfite conversion process begins, leaving it to incubate for 17-18 hours. On 

Day 2, the bisulfite conversion process was completed, creating MSA4 plate. MSA4 was left 

to incubate for 20-24 hours. On Day 3, MSA4 was fragmented and precipitated for 2 hours. 

MSA4 was resuspended for one hour, hybridized to the multi BeadChip and was left to 

incubate for 16-24 hours. On Day 4, the BeadChip was washed and stained, ready for it to 

be scanned. The image and data files were then transferred for bioinformatic analyses. 

MSA4: multi-sample amplification reagent 4. 
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2.11 Bisulfite sequencing of T cells 

Bisulfite sequencing (BS-seq) involves treatment of DNA with sodium bisulfite 

followed by DNA sequencing. BS-seq currently remains the “gold standard” 

technique for detection of 5-methylcytosine (5mC), providing the highest level of 

coverage and resolution, negligible bias towards CpG dense regions and a direct 

readout of non-CpG methylation (Rakyan et al., 2011b). Data from BS-seq can be 

used to compare against Illumina450k data, as BS-Seq provides a more 

comprehensive coverage of the CpG sites in the genome. 

 

The library preparation process was performed in the following stages: Sonication 

and clean-up of DNA, DNA end repair, adaptor ligation and purification, final repair, 

bisulfite conversion and amplification and purification. The library preparation was 

performed using the Ovation Ultralow Methyl-Seq Library Systems from Nugen. 

 

2.11.1 Sonication and clean-up of DNA 

Working aliquots of 300 ng genomic DNA was sonicated using a diagenode 

bioruptor resulting in DNA fragments of approximately 250 bp. The size was 

checked by running the samples on the bioanalzyer and then cleaned up using 

Ampure beads according to manufacturer‟s instructions. 1.8 volume of Ampure 

beads was mixed with 10 µL DNA and mixed thoroughly by pipetting. The samples 

were incubated at RT for 10 minutes. The tubes were placed on the magnet and left 

to stand for five minutes. The cleared solution was aspirated from the tubes and 

discarded. 200 µL of 70% ethanol was added to each tube and incubated for 30 

seconds at RT. The ethanol was aspirated and another wash was repeated. The 

beads were left to air dry for 10 minutes to ensure that the ethanol had evaporated. 

14 µL of 1x Tris-EDTA (TE) buffer was added to the tubes, mixed and was left to 

incubate at RT for one minute. The eluent was transferred to a new 0.2 mL tube. 

 

2.11.2 DNA end repair 

After sonication, the DNA fragments comprised of 3‟ or 5‟ overhangs. This step 

converted the overhangs into blunt ends. The master mix for one reaction contained 

2 µL ER1 Buffer Mix, 0.5 µL ER2 Enzyme Mix and 0.5 µL End repair Enhancer. 3 µL 

of the master mix was added to each sample. The samples were incubated in a 
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thermal cycler for 30 minutes at 25°C, followed by 10 minutes at 70°C and held at 

4°C.  

 

2.11.3 Ligate adapters to DNA fragments 

This step ligated adapters to the ends of the DNA fragments, preparing for 

hybridizization to a flow cell. 3 μL of the L2 Ligation Adapter Mix was added to each 

sample. A master mix for a single reaction consisted of 4.5 µL D1 water, 6 μL L1 

Buffer Mix and 1.5 μL L3 Enzyme Mix. 12 μL of the master mix was added to the 

samples and mixed thoroughly. The samples were incubated in a thermal cycler for 

30 minutes at 25°C, followed by 10 minutes at 70°C and hold at 4°C. Post-ligation 

purification followed with the addition of 45 μL of the bead suspension and was 

processed as described in Section 2.11.1. The final elution volume was 15 μL. The 

final repair step involved preparing a master mix, for each reaction combining 4.5 μL 

Buffer FR1 and 0.5 μL Buffer FR2. 5 μL of the Final Repair Master Mix was added to 

each sample tube. The tubes were placed in the thermal cycler and were 

programmed to run at 60°C for 10 minutes, holding at 4°C. 

 

2.11.4 Sodium bisulfite treatment of DNA samples 

Bisulfite treatment of DNA was carried out using the EpiTect Bisulfite Kit from 

Qiagen according to manufacturer‟s instructions. Centrifugation was at maximum 

speed for one minute unless specified otherwise. 

 

The 20 μL product of the Final Repair reaction was inputted directly into the bisulfite 

conversion kit. In the total reaction volume of 140 μL, 15 μL of DNA Protect Buffer 

and 85 μL Bisulfite Mix was added to the DNA, topping up with 20 μL RNase-free 

water. The bisulfite conversion was performed in a thermal cycler and was 

programmed to run at 95°C for five minutes, 60°C for 20 minutes, 95°C for five 

minutes, 60°C for 20 minutes and then hold at 20°C. The reactions were transferred 

to new 1.5 mL tubes and 560 μL of Buffer BL was added to each sample. The 

mixture was transferred to a spin column and then was spun. The flow-through was 

discarded and the column was placed back into the collection tube. 500 μL Buffer 

BW was added to each column and spun. The flow-through was discarded and 

column was placed back into the collection tube. 500 μL Buffer BD was added to 

each spin column and incubated at RT for 15 minutes. The column was spun. The 

flow-through was discarded and column placed back into the collection tube. 500 μL 
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BL was added to the column and spun. The column was placed into a new 2 mL 

collection tube and spun again to remove any residual liquid. The columns were 

then placed into new 1.5 mL tubes and then incubated at 56°C for five minutes. The 

column was placed into a new 1.5 mL tube and 20 μL Buffer EB was added to the 

columns. The purified DNA was eluted by spinning for one minute at 15,000 xg. 

 

2.11.5 Polymerase chain reaction and clean-up of DNA 

Polymerase chain reaction (PCR) is a technique which amplifies small amounts of 

DNA by a million-fold (Garibyan and Avashia, 2013). In a typical PCR reaction, DNA 

polymerase synthesizes a new DNA strand from the template strand. It does so with 

the help of primers, which are short single-stranded pieces of DNA that anneals to 

its complimentary sequence on the template once denatured. The DNA polymerase 

adds a nucleotide from the primers to create the new strand with deoxynucletide 

triphosphate (dNTPs). This in turn extends the annealed primer and amplifies the 

region of interest. 

 

Following sodium bisulfite treatment of the DNA samples, PCR amplification was 

performed with primers that anneal to the ends of the adapters (Appendix I, Table 

8.1). The master mix was prepared by combining 5 μL P2 and 25 μL P3 for each 

reaction. Then on ice, 30 μL of the master mix was added to each sample. The 

tubes were placed on the thermal cycler and programmed to run at 95°C for two 

minutes, eight cycles of 95°C for 15 seconds, 60°C for one minute and 72°C for 30 

seconds, then hold at 10°C. The PCR products were then purified using the 

Agencourt Beads as described in Section 2.11.1 starting with 50 μL of beads and 

eluting with 20 μL of 10 mM Tris buffer, pH 8. The samples were run on the 

Bioanalyzer High Sensitivity DNA Chip 1000 to see whether the inserts were of the 

correct size. The libraries were then sent off to another research institute for 

sequencing. 
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2.12 Analyses of methylation data 

After the samples had been sequenced, the data needed to be analysed and 

interpreted. There are different software tools for performing this (Bock, 2012). R is 

a software programming language that provides statistical and graphical techniques. 

Within R, graphical presentation of methylation data, such as clustering or principal 

component analysis, can be performed. There are different pipelines that are 

implemented in R for analysing methylation data. 

 

For this study, the Chip Analysis Methylation Pipeline (ChAMP) pipeline (Morris et 

al., 2014) was applied. Raw Intensity Data files (IDAT) files were imputed into R and 

with ChAMP, quality control and normalization was performed. The program also 

carries out batch effect analysis, SNP flagging and segmentation of MVPs into 

biologically relevant DMRs. Normalization is especially important, as the 

Illumina450k platform combines two different assays, Infinium I and Infinium II 

(Bibikova et al., 2011; Sandoval et al., 2011). BS-seq data were analysed using the 

bsseq package on the R platform (Hansen et al., 2012). Most of the variation within 

the data from a given cell type was driven by genetics, with the paired twin samples 

clustering together (data not shown). Therefore, a paired t-test was performed to 

identify DMPs. To correct for multiple testing, FDR was estimated using the R 

package q-value (Storey and Tibshirani, 2003). 
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2.13 Detection of β-cell death using real time PCR 

In T1D, 80-90% of β-cells are destroyed at diagnosis (Notkins and Lernmark, 2001; 

Cnop et al., 2005). DNA methylation differences have already been studied using 

patient serum samples in cancer (Anker et al., 2001) and recently in T1D (Akirav et 

al., 2011; Husseiny et al., 2014). This section describes the development of a real-

time PCR assay to detect unmethylated CpG sites in the insulin promoter region. 

 

2.13.1 Mini-preparation of plasmid DNA 

A pGL4 plasmid with the insulin promoter DNA sequence already inserted, was 

purchased from Addegene and deposited by Kevin Ferreri‟s laboratory (Figure 2.9A) 

(Kuroda et al., 2009). The promoter region was targeted as it was shown to have 

tissue-specific unmethylated CpG sites in the β-cells compared to other tissues such 

as kidney, liver and colon (Husseiny et al., 2014). The plasmid was then used as a 

positive control and to normalise the assay and to prepare a dilution series to test 

the amplification efficiency. 

 

2.13.1.1 Preparation of bacterial plasmid DNA 

The plasmid had already been transformed into DH5alpha (E.coli) bacteria and was 

received in a stab culture. In order to grow the transformed plasmid, an agar plate 

was made with Lysogeny broth (LB) agar (Invitrogen, UK). The agar medium was 

poured into sterile Petri dishes and was left to set. With disposable inoculating 

loops, bacteria from the stab culture were streaked across the plate to obtain single 

colonies. The plates were left overnight at 37°C. Single colonies were picked with a 

disposable tip and placed into a 50 mL Falcon tube with 5 mL LB medium and were 

left overnight shaking at 1,500 rpm at 37°C. 500 µL of the bacterial growth was 

added to 500 µL 50% glycerol in a 2 mL cryovial and stored at -80°C for long-term 

storage. 

 

2.13.1.2 Plasmid DNA extraction 

The rest of the bacterial growth was spun at 2000 xg for five minutes. The 

supernatant was decanted and pelleted bacterial cells were processed with the 

GeneJET Plasmid Miniprep kit according to manufacturer‟s instructions. The pellet 

was resuspended in 250 µL of Resuspension Solution and was transferred to a 

microcentrifuge tube. 250 μL of the Lysis Solution was added and mixed thoroughly 
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by inverting the tube until the solution became viscous and slightly clear. 350 μL of 

the Neutralization Solution was added and mixed immediately and thoroughly. The 

tubes were centrifuged for five minutes to pellet cell debris and chromosomal DNA. 

The supernatant was transferred to a GeneJET spin column and spun at 14,000 rpm 

for one minute. The flow-through was discarded and the column was placed back 

into the same collection tube. 500 μL of the Wash Solution was added to the column 

and was spun for one minute at 14,000 rpm at RT. The flow-through was discarded 

and the column was placed back into the same collection tube. The wash procedure 

was repeated with an additional spin for remove residual wash solution. The spin 

column was placed into a new 1.5 mL microcentrifuge tube and 50 μL of the Elution 

Buffer was added to the centre of spin column membrane to elute the plasmid DNA. 

The columns were incubated for two minutes at RT and centrifuged for two minutes. 

The column was discarded and the purified plasmid was stored at -20°C. 

 

2.13.1.3 Sequencing of plasmids 

To be certain the plasmids contained the right DNA insert, the plasmids were also 

sequenced. Primers are listed in Table 2.1. 

 

2.13.1.4 Restriction enzyme digest of isolated plasmids 

A restriction enzyme digest was performed as another way of determining that the 

plasmid had contained the right insert. The restriction enzyme digest protocol 

involves several restriction enzymes which cuts the plasmid at specific sites in order 

to identify if the plasmid purchased was the correct one. 

 

Two reactions for each plasmid were performed to check the identity of the plasmid. 

In a total reaction volume of 10 µL, one reaction consisted of 0.5 µL BgIII, 0.5 µL 

BamHI, 1 µL 10x Buffer, 3 µL water and 5 µL plasmid. The other reaction consisted 

of 0.5 µL NotI, 0.5 µL BamHI, 1 µL 10x Buffer, 3 µL water and 5 µL plasmid. The 

tubes were incubated at 37°C for two hours and then visualised on a 3% agarose 

gel to determine the lengths of the cut plasmid (Figure 2.9B). Alongside the PCR 

products, a 1kb ladder was also loaded. 
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2.13.1.5 Sodium bisulfite treatment of the plasmids 

To detect methylation at the CpG sites in the insulin promoter, the plasmids had to 

be bisulfite converted. This was performed using the EZ DNA methylation kit from 

Zymo according to manufacturer‟s instructions. All centrifugation steps were 

performed at 14,000 rpm for 30 seconds. 

 

In each reaction, 5 µL of M-Dilution Buffer was added to 500 ng of plasmid DNA. 

The samples were adjusted to 50 µL with water. The samples were incubated at 

37°C for 15 minutes. After the incubation, 100 µL of the CT Conversion Reagent 

was added to each sample and then was left to incubate at 50°C for 16 hours. After 

this step, the samples were incubated on ice for 10 minutes and 400 µL of M-

Binding Buffer was added to the samples. This buffer helps the samples to bind to 

the column. The samples were loaded onto a spin column placed into a 2 mL 

collection tube and centrifuged. The flow through was discarded and 200 µL of M-

Wash Buffer was added to the columns and spun. 200 µL of M-Desulphonation 

Buffer was added to the columns and was left to incubate at RT for 15 minutes. 

Unmethylated cytosines would then convert to uracil upon desulphonation. After 

incubation, the columns were centrifuged. The flow through was discarded and 200 

µL of M-Wash Buffer was added to the column and centrifuged. This step was 

repeated. The columns were placed into new 1.5 mL collection tubes and 10 µL M-

Elution Buffer was added to the column, directly onto the column matrix. The 

columns were spun to elute the bisulfite converted DNA. 
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Figure 2.9. Restriction enzyme digest of plasmid DNA. The insulin promoter was inserted 

into the pGL410 plasmid and deposited into Addgene by the Ferreri lab (Kuroda et al., 2009). 

Taken from http://www.addgene.org/49057/ (A). A restriction enzyme digestion was 

performed to quickly determine the identity of the plasmid. Three restriction enzymes were 

used in two separate reactions (B). The products were run on a 3% agarose gel with a 1kb 

ladder. The first reaction consisted of BamHI and NotI, resulting in products of 3538 bp and 

1076 (Lanes 2-7). The second reaction consisted of BamHI and BgIII, resulting in products of 

2464 bp and 2150 bp (lanes 8-13). The uncut plasmid was loaded into Lane 1. 

2464bp 

2150bp 
1076 bp 

3538 bp 
4614 bp 
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2.13.2 Methylation-specific PCR 

Methylation specific PCR (MSP) was developed in 1996 (Herman et al., 1996) and 

is highly sensitive in detecting methylated or unmethylated changes in DNA in a 

particular region. MSP is based on quantitative real-time PCR (qPCR) whereby a 

targeted DNA molecule is amplified and quantified. In qPCR, detection chemistries 

allow the investigator to visualise real time amplification during the early phase of 

the reaction. In this thesis, primer sets that were specific to unmethylated and 

methylated CpG sites were designed. Under optimal conditions, there was an initial 

hot start to complement the taq polymerase, followed by a denaturation step, 

whereby the double stranded DNA is separated in order for the polymerase to help 

assemble a new DNA strand. The annealing step involves the primers binding to the 

single stranded DNA which then leads to the elongation step. These steps are 

repeated over many cycles, normally 35-45. These reactions were quantified and 

recorded in real time, producing amplification curves. Two common detection 

chemistries used in qPCR are SYBR Green and Taqman. Both report amplified DNA 

in different ways. 

 

2.13.2.1 SYBR Green 

SYBR Green is a dye that binds to double-stranded DNA. As SYBR Green 

intercalates to any double-stranded DNA, it results in non-specific detection of 

nucleic acids (Zipper et al., 2004). After each cycle, once the dye binds to the DNA, 

it fluoresces and it is picked up by the thermal cycler (Figure 2.10). Normally after a 

run with SYBR Green, a melt curve is performed. A melt curve checks for the 

specificity of the assay by melting the amplicons. If unspecific binding or primer 

dimers occur, it is easily detected by the different peaks on the meltcurve as every 

product has a different dissociation temperature. For example, primer dimers tend to 

dissociate at a lower temperature than the amplicon of interest. Aside from this, is it 

advantageous to use SYBR Green as it can be performed at low cost and the 

experimental design is relatively straight-forward. 

 

2.13.2.2 Taqman 

Taqman technology incorporates taq polymerase, primers but also has the addition 

of a hydrolysis probe. This probe is an oligonucleotide that has a fluorescent 

reporter dye attached to the 5‟ end and a quencher on the 3‟ end (Figure 2.11). The 
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reporter dye is excited by the machine and its energy is passed on to the quencher 

by a process known as Fluorescence Resonance Energy Transfer (FRET) (Holland 

et al., 1991). As the probe binds to the amplicon during each cycle, it is intact and 

the quencher reduces the fluorescence emitted by the reporter dye, therefore no 

fluorescence is detected by the machine. However, when the Taq polymerase 

extends from the primer, it cleaves the probe due to the 5‟-3‟ exonuclease activity. 

This separates the reporter dye from the quencher, in turn increasing the 

fluorescence of the reporter dye. As this method is probe-based, the detection is 

more specific than non-probe based methods such as SYBR Green, which binds to 

any double-stranded DNA. Although the Taqman system is more costly than SYBR 

Green, it is more specific and has multiplex capabilities. 

 

2.13.2.3 Primer and probe design 

Primer design for DNA methylation is slightly different to standard qPCR but both 

must be optimized in order to perform a highly efficient assay. The main difference 

between designing primers for DNA methylation and standard qPCR, is that the 

change in DNA must be considered after bisulfite conversion. All non-CpGs 

cytosines and unmethylated cytosines at CpG sites will have converted to uracils. 

There are guidelines for optimal primer design for methylation assays (Li and 

Dahiya, 2002). For bisulfite-specific PCR (BSP), this guideline suggests that primers 

must not contain CpG sites to avoid discrimination against methylated or 

unmethylated DNA. For MSP, primers should have at least one CpG site and 

methylated and unmethylated primer pairs should have the same CpG sites. 

Generally, the length of primers should ideally be between 26-32bp, have similar 

annealing temperatures and the amplicon should ideally be between 100-300bp 

long. For Taqman assays, an additional probe has to be designed. The melting 

temperature (Tm) of the probe must be 8-10°C higher than the primers and must be 

placed near the primers. 

 

For the SYBR Green assay, there were three primers sets (Table 2.1). The BSP 

primer set did not discriminate between methylated and unmethylated CpG sites. 

The MSP1 primer set was positioned to detect unmethylated CpG sites at -357 and -

69. The MSP2 primer set was positioned to detect unmethylated CpG sites at -206 

and -135 (Figure 2.12). For the Taqman assay, there were two primer sets, BSP2 

and MSP2 (Table 2.1). 
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Figure 2.10. SYBR Green chemistry mechanisms in qPCR.  In a qPCR reaction, the 

SYBR Green dye fluoresces when bound to double-stranded DNA (A). At the start of the 

reaction, DNA was denatured, releasing the SYBR Green dye. This leads to the reduction of 

fluorescence (B). During the annealing and extension step, primers anneal to the template 

strand and then are extended by the polymerase and free nucleotides (C). Once the PCR 

products are generated, the SYBR Green dye binds to the double-stranded product, 

increasing the fluorescence that is detected by the ABI 7500 Real Time PCR System (D). 
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Figure 2.11. Taqman probe chemistry mechanisms in qPCR. At the start of the reaction, 

the probe and primers annealed to the DNA strand. Whilst the probe was intact, the reporter 

dye and quencher were in closer proximity to each other, allowing FRET to occur (A). The 

DNA polymerase then starts to extend the primer with dNTPs (B). Once the polymerase 

reaches the probe, the 5‟ nuclease activity of the polymerase, cleaves the probe (C). Once 

the probe was cleaved, the released reporter molecule will no longer be quenched (D). 
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Table 2.1. Primer sets designed for detecting methylation differences in serum.  

 

Primer Primer Sequence Bases 
Product 

size (bp) 
Tm 

RVpri3 CTAGCAAAATAGGCTGTCCC 20  60.7 

MSP1 
F: TGGGGATAGGGGTTTGGGGATAGTAGT 

R: CTCCCCTACCTCTCAACCCCTACCA 

27 
350 

71.6 

25 71.5 

MSP2 
F: TGGGTTTTTGGTTAAGATTTTAATGATTT 

R: CAACAAATAACTAAAAACTAAAACTACAATTTCCA 

29 
130 

65.6 

35 65.2 

BSP 
F: TGGGGATAGGGGTTTGGGGATAGTA 

R: CATCTCCCCTACCTCTCAACCCCTAC 

25 
350 

71.0 

26 70.1 

BSP2 
F: TTTAGTTGTGAGTAGGGATAGGTTTGGTTA 

R: TCCCCTACCTCTCAACCCCTAC 

30 
170 

66.0 

22 66.2 

Probe [6FAM]TGGTTTTGAGGAAGAGGTGTTGATGATTAAGGA[BHQ1] 33  74.1 
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Figure 2.12. Primer design and selection. MSP1 targeted the CpG sites at -357 and -69 

upstream of the transcription start site. MSP2 targeted the CpG sites -206 and -135 

upstream of the transcription start site. The 3‟ ends of the BSP primers sets were placed just 

upstream and downstream of the MSP1 primer set. The BSP primers did not discriminate 

between methylated and unmethylated CpG sites therefore providing the total amplifiable 

region for nested-MSP. The 3‟ ends of the BSP2 primer sets were placed upstream and 

downstream of the MSP2 primer set. The probe was placed in between the MSP2 primers 

(underlined).  
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2.13.3 Amplification efficiency 

High amplification efficiency is needed to ensure that with each cycle, the PCR 

product is amplified correctly and consistency. For example, the optimum reaction 

efficiency should be 100%, this is where PCR products doubles exactly in each 

cycle. The plasmids that were purified from Section 2.13.1.2 were used to create a 

10-fold serial dilution series in order to test the amplification efficiency of the assay. 

Selection of the primers targeting specific CpG sites was based on available 

literature (Husseiny et al., 2014). The qPCR reaction mixture of 10 µL in total 

consisted of 5 µL SYBR Green, 200 nM forward and reverse primers, 2 µL bisulfite 

converted genomic DNA and the rest was made up of water. Amplification and melt 

curves were analysed using the ABI Real-Time 7500 software. The products were 

run on a 3% agarose gel. 

 

A Taqman assay was also performed along with the SYBR Green assay to see if the 

increased specificity of Taqman, would result in a highly efficient assay. For the 

Taqman assay, a total reaction volume of 25 µL consisted of 12.5 µL Taqman 

master mix, 200 nM probe, 400 nM primers, 2 µL  of bisulfite converted genomic 

DNA template and the rest was made up with water. Amplification curves were 

analysed using the ABI Real-Time 7500 software and the products were run on a 

3% agarose gel. Efficiency was calculated using the quantification cycle (Cq) values. 

A Cq value is the number of cycles at which the fluorescent signal of the reaction 

crosses the threshold. Cq is used to calculate DNA copy number as the Cq value is 

inversely related to the starting amount of target i.e. a lower Cq correlates with 

higher target expression. The Cq values from a dilution series are plotted as a 

standard curve where the slope of the straight line and its intercept was used to 

calculate the efficiency: 

 

Efficiency (%) = (10(-1/slope)-1)*100 

 

Where the slope is -3.32, this would result in 100% efficiency. This means that for 

every cycle, the PCR products double exactly. Amplification efficiency was carried 

out three times. The primer efficiencies with SYBR Green were for BSP was 

98.5±3.4%, MSP1 98.7±4.1% and MSP2 90.5±6.6%. Primer efficiencies with 

Taqman were: BSP2 79% and MSP2 88%. 
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2.13.4 Distinguishing between methylated/unmethylated DNA 

To ensure that the primers were specific to unmethylated CpGs, an aliquot of the 

plasmid was fully methylated in a reaction with M.SssI CpG methyltransferase, 

which in turn, methylates all cytosine resides. 

 

In a 0.2 mL PCR tube with the total reaction volume of 20 µL, 1 µg plasmid DNA 

was added to 12 µL water, 2 µL 10x Buffer 2, 2 µL of diluted SAM and 1 µL of 

M.Sssl. The reaction was incubated at 37°C for two hours in a thermal cycler. The 

reaction was stopped by heating the reactions at 65°C for 20 minutes. The qPCR 

reaction mixture of total 10 µL, consisted of 5 µL SYBR Green, 200 nM forward and 

reverse primers, 2 µL bisulfite converted genomic DNA and the rest was made up of 

water. Amplification and melt curves were analysed using the ABI Real-Time 7500 

software and the products were run on a 3% agarose gel. 

 

2.13.5 Nested methylation-specific PCR 

Nested-MSP involved two rounds of amplification, normally with PCR-product from 

the first qPCR reaction being used as a template for the second round of qPCR. 

This is especially useful if there were low concentrations of starting material or to 

increase the specificity of the assay. In this method, nested-MSP was required as 

the starting material was DNA from serum, hence low DNA concentrations. Also, 

this assay needed high specificity to detect single base changes in the DNA (Figure 

2.13). 

 

2.13.5.1 First step MSP 

For all nested-MSP assays, the serum samples were prepared with DNA extraction 

and bisulfite conversion as described in Section 2.7 and 2.13.1.15 respectively. The 

only modification to the DNA extraction step was that the samples were eluted in 30 

µL AE Buffer instead of 150 µL. Nested-MSP was performed in a 96-well plate with 

a total reaction volume of 10 µL in duplicate. The primer sets used were BSP and 

MSP1. The master mix prepared for 1 reaction contained 5 µL QuantiTect® SYBR® 

Green, 0.2 µL forward sequence primer, 0.2 µL reverse sequence primer and 2.6 µL 

sterile water. MSP was performed on an ABI 7500 machine (Applied Biosystems, 

UK) with the first step undergoing an initial denaturation and enzyme activation step 

at 95°C for 15 minutes, followed by 15 amplification cycles of 95°C for 15 seconds 

and an annealing and elongation step at 60°C for one minute. A melting curve 
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analysis was performed afterwards. A reaction with the plasmid instead of the 

patient sample was used as a positive control. A no-template control (NTC) was also 

included. 

 

2.13.5.2 Clean up of PCR products 

After the first step, the PCR products were cleaned up using a Qiagen PCR 

Purification kit following the manufacturer‟s instructions. Cleaning up the reaction 

removes primers and salts from the previous reaction ensuring that it does not 

inhibit or interfere with the second step. All centrifugation steps were performed at 

14,000 rpm at RT unless specified otherwise.  

 

The PCR products were transferred to 1.5 mL eppendorf tubes and five volumes of 

Buffer PB was added to one volume of the PCR samples. The samples were mixed 

thoroughly and applied to the QIAquick column and centrifuged for one minute. The 

flow-through was discarded and the column was placed back into the same 

collection tube. 750 µL Buffer PE was added to the column and centrifuged for one 

minute. The flow-through was discarded, column placed back in the same collection 

tube and centrifuged the column for an additional minute to remove residual buffer. 

The column was placed in a new 1.5 mL microcentrifuge tube and 30 µL Buffer EB 

was added to the column. The column was left to stand at RT for one minute before 

spinning for one minute.  

 

2.13.5.3 Second step MSP 

The second step MSP was also performed on the ABI 7500 machine. The master 

mix prepared for one reaction contained 5 µL QuantiTect® SYBR® Green, 0.2 µL 

forward sequence primer, 0.2 µL reverse sequence primer, 2.6 µL sterile water. The 

MSP conditions were as follows with primer sets BSP and MSP2: an initial 

denaturation and enzyme activation step at 95°C for 15 minutes, followed by 40 

amplification cycles of 95°C for 15 seconds and annealing and elongation step at 

57°C for one minute. A melting curve analysis was performed after. A reaction with 

the plasmid instead of the patient sample was used as a positive control. A NTC 

was also included. 
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2.13.6 Optimisation of nested-MSP assay 

Initially, DNA methylation was studied in exon 2 of the insulin gene as CpG sites in 

that region were shown to be unmethylated in a tissue-specific manner (Akirav et al., 

2011). The primer sets used were against methylated and unmethylated CpG sites 

(Appendix I, 8.1.8). DNA extraction and bisulfite conversion was performed as 

described in Section 2.7 and 2.13.1.5 respectively. Nested-MSP was carried out 

involving standard PCR in a thermal cycler first, and then qPCR for the second step 

using SYBR Green. However, there was non-specificity between the two methylated 

and unmethylated primers. 

 

The next step was to focus on the promoter region, as this region was reported to 

also have unmethylated CpG sites (Kuroda et al., 2009). Here, both steps in the 

nested-MSP were performed with qPCR and SYBR Green. Optimisation steps 

included performing a primer matrix, using varying primer concentrations, designing 

new shorter primer sets, the use of different SYBR Green master mixes, use of 

different machines and including dimethyl sulfoxide (DMSO) in the reactions. After 

the optimisation steps, primer dimers appeared along with the products of interest. 

Therefore, Taqman was then used as it was more specific and it would be less likely 

for primer dimers to appear. 

 

2.13.7 Taqman assay to assess methylation  

As in Section 2.13.5.1, the samples were prepared with DNA extraction and sodium 

bisulfite. Unlike the nested-MSP, Taqman was carried out as a one-step assay as 

with the two-step assay, no PCR products were amplified. qPCR was performed in a 

96-well plate with a total reaction volume of 25 µL. The primer sets used were BSP2 

and MSP2. The master mix prepared for one reaction contained 12.5 µL Taqman 

gene Expession, 400 nM forward and reverse primers, 200 nM probe, 2.6 µL sterile 

water and 2 µL of the bisulfite converted template. qPCR was performed on an ABI 

7500 machine with the following conditions: 50°C for two minutes, initial 

denaturation and enzyme activation step at 95°C for 10 minutes, followed by 40 

amplification cycles of 95°C for 15 seconds and an annealing and elongation step at 

60°C for one minute. A reaction with the plasmid instead of the patient sample was 

used as a positive control. A NTC was also included. 
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2.13.8 Sequencing of PCR products 

After running the PCR products on a 3% agarose gel, the bands were cut out and 

cleaned up using the QIAquick Gel Extraction Kit according to manufacturer‟s 

instructions. All centrifugation steps were performed at 14,000 rpm at RT unless 

specified otherwise. 

 

Six volumes of Buffer QG were added to one volume of gel in a 1.5 mL eppendorf 

tube. The tubes were incubated for 10 minutes until the gel slice was completely 

dissolved. One volume of isopropanol was added to the sample, applied to a spin 

column and centrifuged for one minute. The flow-through was discarded and the 

column was placed back into the same collection tube. 500 µL Buffer QG was 

added to the column and centrifuged for one minute. The flow-through was 

discarded and the column was centrifuged for an additional minute. The column was 

placed in a new 1.5 mL tube, 30 μl of Buffer EB was added to elute the DNA and 

spun for one minute. An aliquot of the eluted sample was sequenced (Figure 2.14).  
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Figure 2.13. Summary of the protocol for monitoring β-cell death in serum samples. 

The transformed plasmid with the insulin promoter insert was grown, isolated and purified 

using the GeneJET Plasmid Miniprep kit (A). DNA from serum was extracted and treated 

with sodium bisulfite. Once the integrity of the plasmid was assessed on an agarose gel, the 

plasmid and patient samples were treated with sodium bisulfite (B). Amplification efficiency 

was performed and the PCR products were also sequenced (C). Patient samples were 

analysed using nested-MSP (D). 

A 
Growth of bacteria with transformed plasmid. 
Plasmid DNA extraction. 

B 
Bisulfite conversion of plasmids and samples.  

C 
Amplification efficiency and sequencing. 

D 
Nested-MSP.  
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Figure 2.14. An example of sequencing results of the insulin promoter region. The 

insulin promoter region was sequenced to ensure the primers were amplifying the correct 

region. At first, the original DNA sequence (top line) was treated with sodium bisulfite to 

convert unmethylated cytosines into uracils, in which after amplification would turn into 

thymines (bottom line). Once sequenced, methylated CpGs were distinguished from 

unmethylated CpGs from the chromatogram. Methylated cytosines remained protected 

(black arrows) whereas unmethylated cytosines were converted (blue arrows).  

                                                                   

 

  121 CCAGCTCTGCAGCAGGGAGGACGTGGCTGGGCTCGTGAAGCATGTGGGGGTGAGCCCAGG 

      ::||:|:||:||:||||||||++|||:||||:|++|||||:|||||||||||||:::||| 

  121 TTAGTTTTGTAGTAGGGAGGACGTGGTTGGGTTCGTGAAGTATGTGGGGGTGAGTTTAGG 

                                                                   

 

  181 GGCCCCAAGGCAGGGCACCTGGCCTTCAGCCTGCCTCAGCCCTGCCTGTCTCCCAGATCA 

      ||::::||||:||||:|::|||::||:||::||::|:||:::||::|||:|:::||||:| 

  181 GGTTTTAAGGTAGGGTATTTGGTTTTTAGTTTGTTTTAGTTTTGTTTGTTTTTTAGATTA 

                                                                   

 

  241 CTGTCCTTCTGCCATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCT 

      :|||::||:||::||||:::||||||||++::|::||::::||:|||++:||:|||:::| 

  241 TTGTTTTTTTGTTATGGTTTTGTGGATGCGTTTTTTGTTTTTGTTGGCGTTGTTGGTTTT 

                                                                   

 

  301 CTGGGGACCTGACCCAGCCGCAGCCTTTGTGAACCAACACCTGTGCGGCTCACACCTGGT 

      :||||||::|||:::||:++:||::||||||||::||:|::||||++|:|:|:|::|||| 

  301 TTGGGGATTTGATTTAGTCGTAGTTTTTGTGAATTAATATTTGTGCGGTTTATATTTGGT 

                                                                   

 

  361 GGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGCTTCTTCTACACACCCAAGACCCGCCG 

      |||||:|:|:||::|||||||++|||||++|||:||:||:||:|:|:::||||::++:++ 

  361 GGAAGTTTTTTATTTAGTGTGCGGGGAACGAGGTTTTTTTTATATATTTAAGATTCGTCG 

                                                                   

 

  421 GGAGGCAGAGGACCTGCAGGGTGAGCCAACTGCCCATTGCTGCCCCTGGCCGCCCCCAGC 

      |||||:||||||::||:||||||||::||:||:::||||:||::::|||:++:::::||: 

  421 GGAGGTAGAGGATTTGTAGGGTGAGTTAATTGTTTATTGTTGTTTTTGGTCGTTTTTAGT 

                                                                   

 

  481 CACCCCCTGCTCCTGGCGCTCCCACCCAGCATGGGCAGAAGGGGGCAGGAGGCTGCCACC 

      :|:::::||:|::|||++:|:::|:::||:|||||:|||||||||:||||||:||::|:: 

  481 TATTTTTTGTTTTTGGCGTTTTTATTTAGTATGGGTAGAAGGGGGTAGGAGGTTGTTATT 
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2.14 Detection of β-cell death using pyrosequencing 

Another technique to analyse DNA methylation is pyrosequencing. Pyrosequencing 

is a sequencing-by-synthesis method, in which during DNA elongation, 

pyrophosphate is released and then detected bioluminometrically (Elahi and 

Ronaghi, 2004). The assay involves several main steps (Figure 2.15). Bisulfite 

converted DNA was amplified using forward and reverse primers, one of which was 

biotinylated. The PCR products were then converted into single-stranded DNA 

(ssDNA) and retained by the biotinylated primer, as a template for the 

pyrosequencing reaction. A separate sequencing primer anneals to the DNA. When 

the DNA strand elongates, upon incorporation of a nucleotide, a pyrophosphate 

molecule is released and ATP-sulfurylase converts it to ATP, providing the energy 

for luciferase to generate visible light peaks that can be recorded using a camera. 

Pyrosequencing can be used as a validation method once CpG sites have been 

identified in methylation studies. 

 

Genomic DNA was extracted from patient serum and treated with sodium bisulfite as 

previously described in Section 2.13.7. The pyrosequencing assay was designed to 

investigate the methylation status of two CpG sites that were previously studied in 

Section 2.13.5 and 2.13.7. PCR and sequencing primers were designed with the 

PyroMark Assay software (Qiagen). For PCR, the total length of the amplicon was 

approximately 200 bp. The total reaction mixture of 60 µL, consisted of 12 µL 5x 

Buffer, 0.4 µL DNA polymerase and 300 nM of the following primers: forward 5'-

GGTTTGGTTATAGGGTTTTTGGTTAAGA-3' and reverse biotinylated 5'-

[Btn]CCCATCTCCCCTACCTCTCA-3'. The rest was adjusted with water. The PCR 

thermal cycling conditions were as follows: denaturation at 95°C for one minute; 40 

cycles of 95°C for 15 seconds, 55°C for 15 seconds, and 72°C for 10 seconds. PCR 

reactions were carried out with 3 µL of bisulfite-converted genomic DNA. A biotin-

labelled primer (reverse primer) was used to purify the PCR products with 

streptavidin-coated Sepharose beads. PCR products were bound to the Sepharose 

beads and washed, denatured by using NaOH solution, and washed again. Then 

pyrosequencing primer 1 (5‟-GTTATAGGGTTTTTGGTTAAGAT-3‟) was annealed to 

the purified single-stranded PCR product and the pyrosequencing was performed on 

a PyroMark Q96 ID (Qiagen) according to the manufacturer‟s instructions. The first 

pyrosequencing primers were stripped off and the second pyrosequencing primer 

was added (5‟-TTTTATAGATTTAGTATTAGGGAAA-3‟). Two sequencing primers 

were used as the CpG sites were too far apart for a single sequence to analyse.  
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2.14.1 Statistical analysis 

Data analysis was performed using PyroMark Q96 from Qiagen. Methylation levels 

from each twin pair were analysed using paired and unpaired t-tests using SPSS 

Statistics v17.0, using p < 0.05 to be considered statistically significant. 
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Figure 2.15. Summary of the pyrosequencing process. A PCR reaction involves two 

primers (forward and reverse) one of which is biotinylated (A). Once amplification is 

completed, the biotinylated amplicons were captured by binding to streptavidin-coated 

Sepharose beads (B). The DNA was denatured to produce ssDNA templates for the 

pyrosequencing assay (C). The ssDNA is released and the sequencing primer anneals to the 

template. During the pyrosequencing reaction, the primer is extended with the nucleotides 

(D). The incorporation of each nucleotide releases a pyrophosphate (PPi) molecule. 

Together with adenosine 5‟ phosphosulfate (APS), adenosine triphosphate (ATP) sulfurylase 

converts PPi to ATP. ATP provides the necessary energy to drive the luciferase conversion 

of luciferin to oxyluciferin. This in turn emits light that was detected by a camera. The 

enzyme apyrase degrades ATP and any unincorporated dNTPs.  
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3 Analysis of DNA methylation in immune cells 

associated with type 1 diabetes 

3.1 Introduction 

This chapter focuses on the role of DNA methylation in T1D in immune cells. This 

study was carried out as part of the BLUEPRINT European programme where it 

received funding for €30 million (Adams et al., 2012). BLUEPRINT is part of a larger 

consortium, the International Human Epigenome Consortium (IHEC), involving 39 

leading European universities, research institutes and small companies. The main 

aim of BLUEPRINT is to provide at least 100 reference epigenomes and to 

investigate epigenetics in blood-based diseases such as leukaemia and T1D by 

focussing on cell types of the haematopoietic system. Identification of potential 

epigenetic markers may eventually lead to the development of novel and more 

individualised medical treatments. 

 

T1D is an autoimmune disease characterised by the loss of insulin secreting β-cells, 

which in turn leads to exogenous insulin being injected into the patient (American 

Diabetes, 2004). Several genes such as PTPN22, INS and HLA confer susceptibility 

to T1D (Howson et al., 2011). As the development of T1D involves the interplay 

between genetic and non-genetic factors, epigenetics have been suggested to 

contribute to the non-genetic part of T1D aetiology. DNA methylation is the best 

characterised epigenetic mark, particularly in diseases such as SLE (Absher et al., 

2013) and cancer (Irizarry et al., 2009). Performing EWAS in MZ twins is useful as it 

removes genetic confounding factors. Recently, studies have identified several 

genes that were epigenetically modified in T1D. These genes include HLA-DQB1, 

NFKB1A, GAD2 (Rakyan et al., 2011a) INS, IL-2RB (Stefan et al., 2013) and IL2RA 

(Belot et al., 2013). 

 

DNA methylation was studied in T1D as one of the cell types implicated in disease 

aetiology, CD14+ monocytes, was profiled in a successful pilot study identifying 

several T1D-MVPs (Rakyan et al., 2011a). The methylation status in monocytes was 

reported in 15 MZ twin pairs discordant for T1D. They showed that intra-pair DNA 

methylation differences at T1D-MVPs ranged from 0.13% to 6.6%. Any T1D-MVPS 

identified in this present study, can be compared to the T1D-MVPs calls made in the 

preliminary study to see whether the methylation marks are stable in the same twin 

pairs. Also, any T1D-MVPs identified in BLUEPRINT can be compared to healthy 
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reference epigenomes that other BLUEPRINT partners are investigating. To 

investigate DNA methylation changes in T1D, blood and buccal samples from 24 

pairs of MZ twin pairs discordant for T1D were taken. Studying different cells types 

as opposed to PBMCs is important as each cell displays its own methylation profile 

(Reinius et al., 2012). Four cell types were isolated from peripheral blood from 

heparin tubes. CD14+CD16- monocytes were chosen as it has been reported to 

show abnormal expression in type 1 diabetic patients (Beyan et al., 2010; Padmos 

et al., 2008). In T1D, the pancreas is infiltrated with autoreactive T cells leading to 

insulitis and β-cell destruction (Roep, 2003), hence studying the CD4+ cell type. 

CD19+ B cells have been reported to be associated with T1D and undergo T-cell 

independent antigen activation (Pescovitz et al., 2009). Buccal samples provide 

another target tissue which is as easily obtainable as peripheral blood. In a recent 

study, it was shown that a buccal sample revealed more than six times 

hypomethylated regions than blood (Lowe et al., 2013). Therefore buccal samples 

may be useful in identifying new regions of methylation differences that may not be 

picked up in blood. 

 

In this study, different DNA methylation profiling technologies were used. BS-seq 

requires bisulfite converted DNA to assess whole genome-wide methylation status. 

It remains the „gold‟ standard method, however it is costly. Illumina450K was used to 

interrogate over 485,000 CpG sites and comprises of a different technology 

compared to the Illumina27K, which was used in the preliminary study. 

 

3.2 Aims and objectives 

The aim of this study was to identify any differences in DNA methylation in MZ twins 

discordant for T1D. PBMCs were isolated from whole blood using Percoll. The 

different cell types were sorted by MACS and then assessed for purity by FACS. 

DNA was extracted from the cells and treated with sodium bisulfite. The samples 

were then hybridized onto the Illumina450K BeadChip and sequenced to profile 

DNA methylation in the different cell types. Bisulfite sequencing was also performed 

to generate a whole genome-wide DNA methylation profile as the Illumina450K does 

not cover all the CpG sites. A summary of the hypotheses and experimental 

methods can be seen in Table 3.1. 
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3.3 Results  

3.3.1 Quality control of DNA methylation analysis 

To identify potential DNA methylation differences in MZ twins discordant for T1D, a 

total of 24 twin pairs aged 43±17 years were ascertained and sampled (Table 3.2). 

PBMCs were isolated from peripheral blood and sorted for CD14+CD16-, monocytes 

CD4+ T cells and CD19+ B cells using MACS. Buccal brush samples were also taken 

and were also analysed as methylation is tissue-specific (Rakyan et al., 2008). 

Buccal cells have been found to have six times as many hypomethylated regions 

compared with peripheral blood (Lowe et al., 2013). Therefore, analysis of buccal 

cells may detect DNA methylation variation not picked up in other tissues such as 

peripheral blood. Buccal samples are increasingly being used for epigenetic studies 

as they are easily obtainable than for example, colon tissue for study colorectal 

cancer (Ashbury et al., 2014) or pancreatic tissue for studies into diabetes. Cell 

purities determined by flow cytometry were 92±8% for monocytes, 95±4% for T cells 

and 79±14% for B cells. DNA from the sorted cells and buccal samples were treated 

with sodium bisulfite and DNA methylation profiling was performed using 

Illumina450K. 

 

The first batch of samples profiled from 16 twin pairs was analysed. The raw data 

were imported into R and analysed with the ChAMP pipeline (Morris et al., 2014). 

Quality control and normalisation of the array were performed. To assess whether 

the samples from the twins were paired correctly, 65 SNPs were analysed in each 

sample and compared to the co-twin. SNPs were measured as in MZ twins, 

concordance of SNPs between a pair is 100%. When one twin was compared to the 

co-twin in the same pair, there was a high positive correlation between the twin pairs 

(Figure 3.1A). However, when the SNP probes from a diabetic twin were compared 

to another diabetic twin in another pair, there are few similarities (Figure 3.1B). This 

check ensured that there were no technical inaccuracies regarding twin sampling. 

 

A principal component analysis (PCA) was performed to examine the differences or 

similarities between the different cell types. PCA is an algorithm for dimension 

reduction and identifies principal components, which are directions along which the 

variation in the data is maximal (Ringner, 2008). After performing PCA, it showed 

that DNA methylation patterns differed between cell populations but not 
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differentiating individuals, for example, not differentiating between diabetic and non-

diabetic twin (Figure 3.1C). 
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Table 3.2. Demographics of the twin pairs studied in this chapter.   

 

ID Sex T1D 
Age at 

diagnosis 

Age at 
specimen 
collection 

Disease 
duration 

at 
sampling 

Autoantibody status 

GAD IA-2 ZnT8 

354.1 F Y 14 46 31 Neg Neg Neg 

354.2 F N N/A 46 N/A Neg Neg Neg 

371.1 M Y 32 32 0 Neg Neg Neg 

371.2 M N N/A 32 N/A Pos Neg Neg 

84.1 F Y 13 56 43 Neg Neg Neg 

84.2 F N N/A 56 N/A Neg Neg Neg 

329.1 F Y 16 73 57 Neg Neg Pos 

329.2 F N N/A 73 N/A Neg Neg Neg 

145.1 F Y 10 46 36 Neg Neg Neg 

145.2 F N N/A 46 N/A Neg Neg Neg 

372.1 F Y 17 17 0 Pos Pos Pos 

372.2 F N N/A 17 N/A Neg Neg Neg 

373.1 F Y 57 58 0 Pos Pos Neg 

373.2 F N N/A 58 N/A Neg Neg Neg 

277.1 F Y 11 37 26 Pos Neg Pos 

277.2 F N N/A 37 N/A Neg Neg Neg 

375.1 M Y 33 34 1 Pos Neg Neg 

375.2 M N N/A 34 N/A Neg Neg Neg 

349.1 F Y 6 24 18 Pos Neg Neg 

349.2 F N N/A 24 N/A Neg Neg Neg 

210.1 M Y 20 58 37 Neg Neg Neg 

210.2 M N N/A 58 N/A Neg Neg Neg 

374.1 F Y 4 6 1 Pos Pos Pos 

374.2 F N N/A 6 N/A Pos Pos Pos 

360.1 F Y 42 60 18 Pos Neg Neg 

360.2 F N N/A 60 N/A Pos Neg Neg 

299.1 M Y 12 41 28 Neg Neg Neg 

299.2 M N N/A 41 N/A Neg Neg Neg 

43.1 F Y 8 47 39 Neg Neg Neg 

43.2 F N N/A 47 N/A Neg Neg Neg 

208.1 F Y 10 44 33 Neg Neg Neg 

208.2 F N N/A 44 N/A Neg Neg Neg 

376.1 F Y 20 21 0 Pos Pos Pos 

376.2 F N N/A 21 N/A Neg Pos Neg 

123.1 F Y 12 49 36 Neg Neg Neg 

123.2 F N N/A 49 N/A Neg Neg Neg 

369.1 F Y 8 12 4 Pos Pos Pos 

369.2 F N N/A 12 N/A Neg Neg Neg 

82.1 M Y 23 75 51 Neg Neg Neg 

82.2 M N N/A 75 N/A Pos Neg Neg 
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ID Sex T1D 
Age at 

diagnosis 

Age at 
specimen 
collection 

Disease 
duration 

at 
sampling 

Autoantibody status 

      GAD IA-2 ZnT8 

347.1 F Y 18 43 25 Pos Neg Neg 

347.2 F N N/A 43 N/A Neg Neg Neg 

99.1 M Y 12 54 41 Neg Neg Neg 

99.2 M N N/A 54 N/A Neg Neg Neg 

310.1 M Y 35 59 24 Neg Neg Neg 

310.2 M N N/A 59 N/A Neg Neg Neg 

355.1 M Y 26 44 17 Neg Neg Neg 

355.2 M N N/A 44 N/A Neg Neg Neg 
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Figure 3.1. Quality control analyses of samples from 16 twin pairs. SNP analysis of 

diabetic vs. healthy twin, across all 16 pairs (n=65 SNP probes). Shown was a high 

correlation between identical pairs (A). As a negative control, 65 SNP probes were 

compared between unrelated individuals (B). Principal component analysis of the 1,000 most 

variable positions from the first batch of samples that included 16 twin pairs (C). Differences 

were seen between cell populations but no inter-individual differences.  
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3.3.2 DNA methylation signature is stable after three years 

DNA methylation differences were found in CD14+ monocytes in 15 MZ twin pairs in 

an earlier study using the Illumina InfiniumHumanMethylation27K BeadChip array 

(Illumina27K) (Rakyan et al., 2011a), which assays over 27,000 CpG sites (Bibikova 

et al., 2009). T1D-MVPs identified from the earlier study were compared to all four 

cell types in the present study (Figure 3.2). The correlation was most significant 

when comparing the same cell type, CD14+ monocytes at 0.26, p-value=1.48e-03 

(Figure 3.2A). The correlation was weaker when the comparison was made with 

other cell types, CD19+ B cells correlation -0.17, p-value-9.71e-01 (Figure 3.2B), 

CD4+ T cells correlation 0.10, p-value=1.30e-01 (Figure 3.2C) and buccal cells 

correlation 0.13, p-value=7.66e-02 (Figure 3.2D). When comparing the CD19+ cells 

against the CD14+ cells, although weak, there was a negative correlation. This 

suggests that for example, hypomethylation seen in a gene in CD14+ cells may be 

hypermethylated in the CD19+ cells and vice versa.  

 

A comparison was also made between the twins from the preliminary study to 

different twin pairs to see whether DNA methylation differences would be detected in 

other twins. Of the 16 pairs of twins profiled, nine pairs were from the preliminary 

study. The correlation with the new individuals was a negative one at -0.13, 

p=9.24e-01 (Figure 3.3A), whereas between the same sampled individuals, the 

correlation was stronger at 0.47, p=1.46e-08 (Figure 3.3B). Individual correlation 

plots for each of the 16 pairs is shown in Appendix III, Figure 8.5. 

 

In summary, DNA methylation comparison between samples from the same pairs of 

twins taken years apart can be detected, suggesting that these marks are stable for 

at least three years. 
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Figure 3.2. Correlation of MVP calls in T1D compared against previously identified 

T1D-MVPs. T1D-MVPs identified in the discovery cohort (vertical axis) plotted against 

previously identified T1D-MVPs from CD14
+
 monocytes (horizontal axis) (Rakyan et al., 

2011a). Calls from Rakyan et al. were plotted against CD14
+
CD16

- 
monocytes (p = 1.48e-

03) (A), CD19
+
 B cells (p = 9.71e-01) (B), CD4

+
 T cells (p = 1.30e-01) (C) and buccal cells (p 

= 7.66e-02) (D). The strongest correlation was observed between the monocytes. D: 

diabetic; C: control. 
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Figure 3.3. Correlation of MVPs calls in T1D compared against same twin pairs.  T1D-

MVPs identified in the discovery cohort (vertical axis) plotted against previously identified 

T1D-MVPs from CD14
+
 monocytes (horizontal axis) (Rakyan et al., 2011a). Calls from 

Rakyan et al. were plotted against new twin pairs (p = 9.24e-01) (A), previously samples twin 

pairs (p = 1.46e-08) (B). 
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3.3.3 Discovery of DMPs using Illumina450K BeadChip platform 

An additional eight pairs of twins were added to the array, therefore the overall 

analysis encompassed 24 twin pairs. As small methylation differences were 

observed, the question here was to see if there were any new and more significant 

DNA methylation differences between the 24 twin pairs in the four cell types. The 

previous analysis with 16 twin pairs revealed 356 DMPs in which they were cell-

specific. CD4+ T cells had the strongest signal with 166 DMPs, followed by 

CD14+CD16- with 123, CD19+ B cells with 45 and buccal cells with 22 DMP. 

 

Quality control and normalisation of the array were performed resulting in the final 

probe set of 437,234 of a total 485,512. Hierarchical clustering showed clear 

separation of different cell types (Figure 3.4). The clustering was not based on 

disease status, age of sampling or age at diagnosis of the diabetic twin. The 

analysis also revealed 258 DMPs P<10-5, in which they were cell-specific (Figure 

3.5). The CD4+ T cells had the strongest signal with 170 DMPs, followed by the 

CD19+ B cells with 79, CD14+CD16- with 8 and buccal cells with 1 DMP.  

 

Another comparison was made with T1D-MVPs identified from the earlier study and 

the 242 twin pairs instead of 16 pairs (Figure 3.6). The correlation was most 

significant in the 24 pairs when comparing the same cell type, CD14+ monocytes at 

0.40, p-value=4.1e-06 (Figure 3.6A) compared to p = 1.48e-03). However, the result 

became less significant when the number of twin pairs increased. In the CD4+ cells, 

the p value was at first p = 1.30e-01 and then became p = 0.12. In the CD19+ cells, 

the p value was at first p = 9.71e-01 then became p = 0.15.  

 

A comparison was also made between the twins from the preliminary study to 

different twin pairs to see whether DNA methylation differences would be detected in 

other twins (Figure 3.7). Of the 24 pairs of twins profiled, nine pairs were from the 

preliminary study. The correlation with the new individuals was at first negative at -

0.13 (Figure 3.7A), then with the increased number of pairs became a positive 

correlation at 0.05, p=9.24e-01 (Figure 3.7C), whereas between the same sampled 

individuals, the correlation was stronger at 0.47, p=1.46e-08 (Figure 3.7B) and 

became slightly stronger at 0.50, p=4.4e-09 (Figure 3.7D). Individual correlation 

plots for each of the 16 pairs is shown in Appendix III, Figure 8.5. 
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Figure 3.4. Hierarchical clustering of methylation similarities in different cell types. 

Methylation differences were seen between the four different cell types. 
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Figure 3.5. Cell type-specific DMPs. A total of 258 DMPs with p<10-5 were identified, all 

signals were cell type-specific, with CD4
+
 cells obtaining the strongest signal. 
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Figure 3.6. Correlation of MVPs calls in 16 and 24 twin pairs.  T1D-MVPs identified in the 

discovery cohort (vertical axis) plotted against previously identified T1D-MVPs from CD14
+
 

monocytes (horizontal axis) (Rakyan et al., 2011a). Calls from Rakyan et al. were plotted 

against CD14
+
CD16

- 
monocytes in 24 pairs (p = 4.1e-06) (A) and 16 pairs (p = 1.48e-03) (B). 

CD4
+
 T cells in 24 pairs (p = 0.12) and 16 pairs (p = 1.30e-01) (D). CD19

+
 B cells in 24 pairs 

(p = 0.15) (E) and 16 pairs (p = 9.71e-01) (F). The strongest correlation was observed 

between the monocytes. D: diabetic; C: control. 

 

A B 

C D 

E F 



                                                       Chapter 3 Analysis of DNA Methylation in Immune Cells  

133 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Correlation of MVPs calls in T1D compared against same twin pairs.  T1D-

MVPs identified in the discovery cohort (vertical axis) plotted against previously identified 

T1D-MVPs from CD14
+
 monocytes (horizontal axis) (Rakyan et al., 2011a). Calls from 

Rakyan et al. were plotted against new twin pairs (16 pairs in total) (p = 9.24e-01) (A), 

previously samples twin pairs (16 pairs in total) (p = 1.46e-08) (B). When the number of twin 

pairs increased to 24, the new pair correlation was 0.05 compared to 0.50 with the previously 

sampled pairs.  
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3.3.4 Correcting for cell-type composition bias is important in 

EWAS 

As the DMPs appeared to be cell type-specific, an analysis assessing cell 

composition of the different cell types was carried out (Figure 3.8). This was 

important as studying DNA methylation in whole blood can detect variations in DNA 

methylation between different cell types such as mononuclear cells and 

granulocytes (Reinius et al., 2012). Since the purified cells were extracted to over 

95% purity in the case with the monocytes and T cells and 85% for B cells, this 

minimised the epigenetic changes seen due to cell heterogeneity. 

 

The proportions of the different cell types in the samples were determined (Figure 

3.8A). In the CD4+ samples, approximately 5% was estimated to have consisted of 

other cell types including B cells and CD8+ T cells. In the CD14+CD16- monocyte 

samples, approximately 5% was estimated to have consisted of CD4+ and CD8+ T 

cells and natural killer (NK) cells. In the CD19+ samples, approximately 20% 

consisted of CD8+ and CD4+ T cells, CD14+ monocytes, NK cells and granulocytes. 

The buccal samples varied in cell composition. Approximately 40% were 

granulocytes, 25% were CD4+ T cells and the rest were NK cells, B cells, monocytes 

but interestingly no CD8+ T cells. A graph was constructed to show cell purity of 

each individual sample (Figure 3.B). The spread of the CD19+ purity analysis 

corresponds to the cell composition in Figure 3.8A. 
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Figure 3.8. Analysing cell type composition in samples. For this study, the isolated cell 

populations were separated from PBMCs using Percoll and cell-types were positively 

selected using MACS. The cell purities were analysed using flow cytometry. Individual purity 

values from each sample analysed using FACS was plotted (A). Using bioinformatics, cell 

composition can be estimated (B). The cells were estimated to have the following average 

purities: CD4
+
 (~95%), CD14

+
CD16

-
 (~95%) and CD19

+
 (~75%) which mirrored the actual 

purities measured by FACS. 

A 

B 
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3.3.5 T1D-MVPs are associated with genes involved in immunity  

To assess the possible functional impact of the T1D-MVPs calls identified from 

these 24 twin pairs, a pathway analysis was performed using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID) (Huang et al., 2007). 

DAVID is a publically available high-throughput functional annotation tool and a 

gene list was created using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) databases (Table 3.3).  

 

From this early analysis, the T1D-MVPS were associated with genes in which 

several are known to be related with immunity and T1D. For example, the HLA class 

I gene HLA-DQA2 (Husain et al., 2008), HLA class II HLA-DOA (Santin et al., 2009) 

and HLA-DPB2 (Lie et al., 1999) have been linked to susceptibility to T1D. In the 

CD19 B cell dataset, several genes were listed that are involved in the insulin 

signalling pathway such as KRAS, GRB2 and PRKAR1B. Several MVPs for each 

cell type are listed in the appendix (Appendix III, Table 8.2, 8.3 and 8.4). Although 

there are genes listed that are associated with T1D, more twin pairs need to be 

ascertained to obtain more significant results.  
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Table 3.3. Functional annotation chart for CD4
+
, CD14

+
CD16

-
 and CD19

+
 cells.  

 

Term Count P value Genes 

CD4
+
 

Focal adhesion 23 0.001341 

TNXB, FLT1, COL4A1, TLN2, DIAPH1, FLT4, BCAR1, 

ITGB4, ITGA11, PIP5K1C, ITGA3, ACTN3, MAPK10, 

SRC, MYL9, PAK6, LAMA2, CCND1, TNR, MAPK3, 

COL11A2, SHC2, MYLK 

Hypertrophic 

cardiomyopathy (HCM) 
13 0.002109 

SLC8A1, PRKAG2, ITGA11, ITGB4, ITGA3, TTN, 

CACNA2D3, CACNA2D2, TGFB2, LAMA2, SGCD, 

RYR2, CACNA1C 

Arrhythmogenic right 

ventricular 

cardiomyopathy  

12 0.002621 
LAMA2, SLC8A1, ITGB4, ITGA11, RYR2, GJA1, SGCD, 

ITGA3, ACTN3, CACNA2D3, CACNA1C, CACNA2D2 

Regulation of actin 

cytoskeleton 
23 0.003172 

FGFR2, INS-IGF2, DIAPH1, MAP2K2, MRAS, ITGAE, 

BCAR1, ITGB4, ITGA11, PIP5K1C, ITGB2, ITGA3, 

ACTN3, MYL9, PAK6, KRAS, ITGAX, CHRM3, CHRM2, 

MAPK3, CYFIP1, CSK, MYLK 

Axon guidance 16 0.004364 

ABLIM2, NGEF, NTN4, LRRC4C, EPHB3, EPHB4, 

EPHB1, SLIT3, PAK6, SEMA6A, KRAS, ROBO1, 

MAPK3, SEMA4C, SEMA4B, NFATC1 

Neurotrophin signalling 

pathway 
15 0.007529 

IRAK2, MAP2K2, FOXO3, MAPK10, YWHAE, TP73, 

YWHAG, KRAS, RPS6KA1, MAPK3, NTRK2, SH2B2, 

CSK, SHC2, NGF 

Dilated cardiomyopathy 12 0.011311 

LAMA2, SLC8A1, ITGB4, ITGA11, RYR2, SGCD, 

ITGA3, CACNA2D3, TTN, CACNA1C, CACNA2D2, 

TGFB2 

Neuroactive ligand-

receptor interaction 
24 0.012421 

OPRM1, GPR156, C3AR1, GABRG3, THRB, GABRA6, 

ADCYAP1R1, PTH1R, GABBR1, OXTR, FPR3, 

GABBR2, ADORA1, VIPR2, SCTR, GH1, PRLR, 

CHRM3, GRM8, GRIA1, CHRM2, P2RY2, TUBB3, 

GRID1 

Prostate cancer 11 0.022978 
E2F1, FGFR2, CCND1, HSP90AA1, KRAS, MAP2K2, 

INS-IGF2, MAPK3, TGFA, CREB5, RB1 

Non-small cell lung 

cancer 
8 0.026866 

E2F1, CCND1, KRAS, MAP2K2, MAPK3, TGFA, RB1, 

FOXO3 

Circadian rhythm 4 0.031014 CRY2, CSNK1E, PER1, BHLHE41 

ECM-receptor interaction 10 0.039425 
LAMA2, SDC1, TNXB, COL4A1, TNR, ITGB4, HSPG2, 

ITGA11, ITGA3, COL11A2 

NOD-like receptor 

signalling pathway 
8 0.051644 

CCL11, NOD2, HSP90AA1, MAPK3, MAPK10, TRIP6, 

NLRP3, CCL7 

Chronic myeloid leukemia 9 0.051707 
E2F1, CCND1, BCR, KRAS, MAP2K2, MAPK3, RB1, 

SHC2, TGFB2 

Glioma 8 0.055501 
E2F1, CCND1, KRAS, MAP2K2, MAPK3, TGFA, RB1, 

SHC2 

Cell adhesion molecules 

(CAMs) 
13 0.057189 

PTPRC, NRXN2, NRXN3, NFASC, ITGB2, NRXN1, 

HLA-DQA2, PDCD1, CDH5, SIGLEC1, SDC1, 

CNTNAP2, HLA-DOA 

Bladder cancer 6 0.07778 E2F1, CCND1, KRAS, MAP2K2, MAPK3, RB1 

Viral myocarditis 8 0.09271 
LAMA2, CCND1, MYH15, SGCD, ITGB2, HLA-DOA, 

MYH8, HLA-DQA2 

Pancreatic cancer 8 0.098153 
E2F1, CCND1, KRAS, MAPK3, TGFA, MAPK10, RB1, 

TGFB2 

 



                                                       Chapter 3 Analysis of DNA Methylation in Immune Cells  

138 

 

 

 

CD14
+
CD16

-
 

Chemokine signalling 

pathway 
5 0.025638 CXCL1, PRKCZ, ADCY2, JAK3, PXN 

CD19
+
 

Endocytosis 15 0.004792 

PRKCZ, CLTA, RAB5B, RAB5C, MET, HLA-A, HLA-C, 

PIP5K1A, IGF1R, SMAP2, SH3GLB1, RAB11B, STAM, 

PARD6G, EHD2 

MAPK signalling pathway 19 0.005298 

FGF8, GRB2, RELB, NF1, TAOK3, DUSP10, PTPRR, 

MKNK1, CACNG2, MAP3K7, RPS6KA5, BDNF, ATF4, 

KRAS, RASGRP2, PPP3CB, PPP3CC, CACNA1C, IL1A 

Glioma 7 0.02203 IGF1R, KRAS, GRB2, CAMK2D, CDK6, RB1, SHC4 

Spliceosome 10 0.031686 
PPIL1, SNRPB2, SNRPD1, SNW1, ACIN1, HNRNPC, 

SFRS1, DDX5, DDX42, BAT1 

Melanoma 7 0.036998 IGF1R, FGF8, KRAS, MET, MITF, CDK6, RB1 

Natural killer cell 

mediated cytotoxicity 
10 0.042608 

MICB, KRAS, ULBP3, GRB2, HLA-A, NFAT5, PPP3CB, 

PPP3CC, HLA-C, SHC4 

Insulin signalling pathway 10 0.046144 
PRKCZ, PRKAR2A, EIF4E, KRAS, GRB2, PRKAR1B, 

MKNK1, SH2B2, SOCS4, SHC4 

Homologous 

recombination 
4 0.072847 RAD51L1, MUS81, RAD51L3, RAD52 

Axon guidance 9 0.081551 
ABLIM1, EPHA6, KRAS, ROBO1, CFL2, MET, NFAT5, 

PPP3CB, PPP3CC 

Long-term potentiation 6 0.088461 ATF4, KRAS, CAMK2D, PPP3CB, PPP3CC, CACNA1C 

Prostate cancer 7 0.090522 HSP90AB1, IGF1R, ATF4, KRAS, GRB2, NKX3-1, RB1 
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3.3.6 At least 50 twin pairs are needed for a statistical significant 

result 

The power of a study is important, particularly in human studies as with a small 

sample size, the study lacks power (Fitzner and Heckinger, 2010; Jones et al., 

2003). As there were no overlapping differences between the cell types and initial 

findings showed small differences between the twin pairs, the study was 

underpowered. The top 100 significant differences found in CD4+ T cells were used 

to produce a power curve (Figure 3.9). A power calculation was performed under the 

assumption that some of the differences found in the experiment were real (true 

positives) but are being swamped by other non-true differences (false positives). To 

increase the power of the study, the significance of the true positives must increase 

and the significance of the false positives must decrease. To do this, the number of 

twins must increase or the technical noise must be reduced. The technical noise 

was determined to be very low, therefore the number of samples have to be 

increased. 

 

It was calculated for 50 twin pairs to give 90% power for the top DMP, 64% power 

for the top 50 DMPs, 56% power for the top 100 DMPs. To obtain 90% power for the 

top 50 and 100 DMPs, at least 70 MZ pairs discordant for T1D would be needed. 

From this analysis, it was decided to asertain more twins to a total of 50 pairs 

discordant for T1D. 
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Figure 3.9. Power curves against number of twins. The top DMP (purple curve) has the 

most power at 90% for 50 twin pairs, and also the lowest number compared to the top 50 

DMPs (blue curve) and top 100 DMPs (red curve). At 50 twin pairs, the top 50 DMPs would 

give 56% power and for the top 100 DMPs, 64% power, which was low.  
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3.3.7 More hypermethylated regions in BS-seq data compared to 

Illumina450K  

To gain a more comprehensive look at methylation in the genome, further analysis 

was performed with BS-seq. To compare the datasets from Illumina450K and BS-

seq, CD4+ samples from four pairs of twins that were also profiled in the 

Illumina450K array were analysed. Analysis was performed using bsseq in R and 

resulted in an average of 3.5 reads per CpG (median ~5). The overall mapping 

efficiency was high at approximately 80% for the samples and duplication for these 

libraries was also quite low, on average less than 1%. Methylation levels for each 

CpG site were measured using beta values. The beta value is the ratio of the 

methylated probe intensity and the overall intensity and range from completely 

unmethylated (0 or 0%) to completely methylated (1 or 100%) on a continuous scale 

(Du et al., 2010). 

 

CpG sites that were covered by more than 10 reads across all samples were 

compared to the 450K sites in the same individual, twin and unrelated individual 

(Figure 3.10). The regions from the BS-seq data were significantly different to that of 

the Illumina450K data. In the same individual, there were more hypermethylated 

CpG sites than the Illumina450K (Figure 3.10A). The same was seen when 

comparing a twin pair (Figure 3.10B) and the one individual with an unrelated 

individual (Figure 3.10C). As expected, when comparing a twin pair with just 

Illumina450K data, there was a high correlation (Figure 3.10D). The high number of 

hypermethylated sites from the BS-seq data, may have been due to coverage issue. 

Therefore only CpG sites that had 30x coverage were analysed (Figure 3.11). By 

doing so, the majority of the hypermethylated sites were removed however there 

was still a trend of hypermethylation on BS-seq compared to Illumina450K. Whilst 

the correlation was high when comparing a twin pair using the Illumina450K dataset, 

when comparing the same sites in the twins analysed by BS-seq and unrelated 

individuals, there was still significant noise over these sites (Figure 3.12A and B). 

Further investigation revealed that there was no correlation between the differences 

called between the Diabetic vs Control from the 450K calls against the Diabetic vs 

Control from the BS-Seq data (Figure 3.12C). 
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Figure 3.10. Comparison of BS-seq and Illumina450K datasets.  Correlation plot of CpG 

sites from all samples from the BS-seq compared to the 450K sites in the same individual 

(A), Twin 1 against individual 1 (B) and unrelated individual and Individual 1 (C). 450K calls 

were compared with Individual 1 against the twin of individual 1 (D).  
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Figure 3.11. Clean up of BS-seq data at 30x coverage.  Correlation plot of CpG sites from 

all samples from the BS-seq compared to the 450K sites in the same individual (A), Twin 1 

against individual 1 (B) and unrelated individual and Individual 1 (C). 450K calls were 

compared with Individual 1 against the twin of individual 1 (D). There was less noise, 

however there was still a trend of hypermethylation on BS-seq.  
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Figure 3.12. Further comparisons of BS-seq data at 30x coverage in CD4
+
 cells.  

Comparison of the same sites from 450K data on BS-seq data from a twin pair (A) and 

unrelated indivudal (B). There was still significant noise over these sites. Differences 

between diabetic and non-diabetic calls from Illumina450K compared to difference between 

diabetic and non-diabetic calls from BS-seq were also plotted (C). There was no significant 

correlation.  

 

A B 

C 



                                                       Chapter 3 Analysis of DNA Methylation in Immune Cells  

145 

3.3.8 DMR sets overlapped CD4+ specific enhancer sites 

Once it was established that better coverage was required in order to find significant 

differences, the eight CD4+ samples were sequenced a second time. This time to try 

and identify new DMPs that existed outside of the regions not covered by 

Illumina450K, as there are approximately 27 million CpG sites in the human genome 

(McClay et al., 2014) and Illumina450K only assesses approximately 485,000 

(Sandoval et al., 2011), whereas BS-seq analyses all of the CpG sites (Li and 

Tollefsbol, 2011). 

 

Sequencing the samples the second time yielded minimum coverage of 5x 

compared to approximately 3.5x the first time the samples were sequenced. Data 

points with low coverage were omitted from the analysis leaving approximately 20 

million CpGs at median coverage approximately 14x. There was a possible twin 

effect seen at the CGI positions (Figure 3.13A) and CpG sites (Figure 3.13B) 

investigated. An example of a DMR was shown in Figure 3.13C. Further differential 

methylation analysis yielded 125 DMRs (Table 3.4). Most of which were found in 

CD4 enchancer sites marked by H3K4me1. 
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Figure 3.13. Coverage at CpG islands and CpG sites.  PCA over T1D data at CpG islands 

(A) and CpG sites (B). There could be a possible twin effect. An example of a DMR with the 

diabetic samples in red and the control in blue (C). The DMR is highlighted in red. At this 

particular DMR, hypomethylation was observed in the diabetic twin compared with the 

healthy co-twin.  
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Table 3.4. Differentially methylated regions across different genomic features.  

 

Feature Total Hyper Hypo % Hyper % Hypo % Total 

CGI 17 12 5 70.59 29.41 13.60 

DHS 44 26 16 59.09 36.36 35.20 

Exons 33 17 16 51.52 48.48 26.40 

Intergenic  37 22 15 59.46 40.54 29.60 

5‟UTR 3 2 1 66.67 33.33 2.40 

Known_genes 79 39 40 49.37 50.63 63.20 

LADS 8 8 0 100.00 0.00 6.40 

Lines 17 5 12 29.41 70.59 13.60 

lncRNA 6 5 1 83.33 16.67 4.80 

Promoters 57 28 29 49.12 50.88 45.60 

Repeats 49 24 25 48.98 51.02 39.20 

Shores 60 29 31 48.33 51.67 48.00 

CD4_enhancers 115 64 51 55.65 44.35 92.00 

TFBS 90 53 37 58.89 41.11 72.00 

3‟UTR 8 4 4 50.00 50.00 6.40 

Introns 69 33 36 47.83 52.17 55.20 

Genome  125 69 56 55.20 44.80 100.00 
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3.4 Discussion 

3.4.1 Significant correlation between preliminary study T1D-MVPs 

and discovery cohort 

This study investigated DNA methylation differences between MZ twin pairs 

discordant for T1D. MZ twin pairs are particularly useful in epigenetic studies as 

genetic variation is a confounding factor which was eliminated in this study. The 

similarities in methylation differences seen between the twin pairs from the 

preliminary cohort and the same pairs in the present cohort can serve as a 

validation study as it has same cohort profiled using different technologies. The fact 

that the Illumina450K array was able to detect significant differences between the 

diabetic and non-diabetic twin pairs in the same cell type, CD14+ monocytes, 

suggests that the DNA methylation signatures are stable. 

 

Rakyan et al. also focussed on promoter-associated single CpGs (Rakyan et al., 

2011a). This limitation was due to the use of the Illumina27K which interrogated 

CpG sites mapped to the promoter regions of genes (Bibikova et al., 2009). This 

present study was able to focus on genomic regions outside of the promoter region 

such as CGI shores and other regions flanking them, providing a more 

comprehensive methylome coverage. 

 

3.4.2 Differentially methylated positions are cell type-specific 

A novel finding from this study was that the methylation changes seemed to be cell 

type-specific. DNA methylation has already been shown to be tissue-specific 

(Rakyan et al., 2008) and Rakyan et al. had studied one cell type in a later study 

and identified 132 different CpG sites that were differentially methylated in MZ twins 

(Rakyan et al., 2011a). Here, four cell types were profiled using the successor of the 

Illumina27K. Over 485,000 CpGs were analysed compared to just the 27,000. From 

this analysis, a total of 258 DMPs were identified in the Illumina450K array, 170 of 

which were detected in CD4+ T cells, followed by the CD19+ B cells with 79, 

CD14+CD16- with 8 and buccal cells with 1 DMP. It was assumed that there would 

be some overlap between the four cell types. This was the case in one study 

investigating DNA methylation in SLE. A research group had assessed the role of 

DNA methylation in CD4+ T cells, CD19+ B cells and CD14+ monocytes also using 

the Illumina450K platform (Absher et al., 2013). They had collected blood samples 
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from 49 SLE patients and 58 controls and identified methylation differences in 166 

CpGs in CD19+ B cells, 97 in CD14+ monocytes and 1,033 in CD4+ T cells. The 

authors also reported differences that were common to all the cell types which are in 

contrast to the findings of this study, where the DNA methylation differences were 

cell type-specific.  

 

Following on from this, a preliminary functional analysis was performed. Several 

genes identified from the KEGG pathway are known to be associated with T1D. This 

included HLA class I HLA-DQA2 (Husain et al., 2008), HLA class II HLA-DOA 

(Santin et al., 2009) and HLA-DPB2 (Lie et al., 1999) and KRAS (Gout et al., 2013). 

Rakyan et al. had reported hypermethylation in TNF and hypomethylation in GAD2 

and HLA-DQB1 in twin pairs discordant for T1D (Rakyan et al., 2011a) and Stefan et 

al. reported hypomethylation in HLA-E and hypermethylation in CD226 and HLA-

DQA2 (Stefan et al., 2013), which was also identified in this study.  

 

3.4.3 Importance of individual cell populations in EWAS 

There are DNA methylation studies investigating the methylome using PBMCs (Li et 

al., 2010b). PBMCs are easy to extract and can provide useful information on the 

epigenomic landscape.  However, analysis in whole blood or even PBMCs could be 

problematic as each cell type has its own methylation profile (Reinius et al., 2012; 

Adalsteinsson et al., 2012). Therefore it was necessary to isolate and purify specific 

immune cells for this study and clear clustering of the different cell types was sown 

(Figure 3.1C), apart from the buccal samples which suggest there were a mixture of 

cell types that could have contaminated the samples.  

 

Correcting for cell type composition bias is important (Lowe and Rakyan, 2014). 

Through the use of bioinformatics, it is possible to distinguish different leukocyte 

subsets in whole blood (Accomando et al., 2014; Koestler et al., 2013). Although 

employing a bioinformatics-based approach in identifying the different leukocyte 

subsets in whole blood, there are subsets within each leukocyte. For example, T 

cells have subset including TH cells and Tregs (Figure 3.144). Identifying individual 

cell methylome would be interesting as epigenetic regulation plays a role in normal 

immune cell differentiation. Also, the balance between processing time and cost per 

sample for sorting cells must be considered in a study. 
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As previous analyses were based on reference datasets, Houseman et al have 

developed a method for conducting EWAS analysis when a reference dataset is 

unavailable (Houseman et al., 2014). This is particularly useful when reference 

datasets from tissues such as placenta, saliva or tumour tissue are unknown. 

Different groups are actively developing algorithms in order to predict and assess 

proportions of leukocytes in whole blood samples. If significant DNA methylation 

signatures in T1D emerge from this study, these T1D-MVPs will be looked for in 

whole blood, as this tissue is most readily available from any cohort. If the signature 

can be detected in whole blood, this reduces the cost and time of sorting particular 

cell types. 
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Figure 3.14. CD4
+
 T cell subsets analysed by flow cytometry. CD4

+
 T cells have several 

subsets. Within the lymphocyte population (A), CD4
+
 cells (B) are further separated into 

memory (left gate) or Tregs (right gate) (C). Memory cells are then sorted into central memory 

T cells (top left), effector memory T cells (bottom left) and naïve T cells (top right) (D). 
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3.4.4 DMRs identified overlapped CD4+ enhancers 

Initially, BS-seq data on the CD4 T cells did not provide enough coverage for 

analysis. The samples were sequenced a second time providing more coverage. 

Differential methylation analysis generated 125 DMRs which were found in CD4 

enhancers marked by H3K4me1 (ENCODE data). Enhancers are regions of DNA 

that enhances transcription levels of a gene through the binding of transcription 

factors (Hardison and Taylor, 2012). There are more than a million enhancers, 

therefore, many more than there are genes. Because of this, a number of genes are 

regulated by the same enhancer, which may co-localize with CpGs (Ziller et al., 

2013). As enhancers are important in cell type-specific regulation of gene 

expression (Sanyal et al., 2012; de Laat and Duboule, 2013), differential methylation 

at these enhancer sites could play a role in the development of disease. Particular in 

CD4+ T cells as T1D is believed to be a T cell mediated autoimmune disease. 

 

Enhancers are modulated by a combination of transcription factors, DNA 

methylation and histone modifications (Blattler et al., 2014). But do they correlate 

with alterations in other epigenetic marks such as histone modifications associated 

with T1D. There is evidence to suggest that histone modifications under diabetic 

conditions that could account for the progression or aetiology of the disease (Miao et 

al., 2014; Miao et al., 2012). Genetic factors are also important as GWAS SNPs 

were reported to be enriched in the regulatory DNA of disease-specific cell types 

(Maurano et al., 2012). Therefore the integration of GWAS and EWAS data to study 

gene expression and the local chromatin architecture will help define how DNA 

methylation can impact molecular outcomes in different immune cells and therefore 

disease.  
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3.5 Conclusion 

In conclusion, this study identified small but significant DNA methylation differences 

between 24 MZ twin pairs discordant for T1D. These epigenetic marks were found 

to be stable as they appeared in the same twin pairs sampled years before. This 

study used the Illumina450K array, the successor to Illumina27K, in which more 

CpG sites were interrogated, specifically outside of the promoter region. Different 

cell types have separate DNA methylation profiles therefore it was important to 

separate these cells from PBMCs, otherwise false positives results may be 

detected. The strongest methylation signal was detected in the CD4+ T cells. Out of 

258 DMPs, 170 were from the T cells, followed by the CD19+ B cells with 79, 

CD14+CD16- with 8 and buccal cells with 1 DMP.  

 

Although, T1D-associated genes were identified in a preliminary functional analysis, 

more twin pairs are needed to obtain sufficient power in the study. DMRs were also 

found to overlap CD4+ enhancer sites from the BS-seq analysis. Alterations to the 

chromatin by epigenetic modifications have been implicated in human disease which 

in turn can be used to identify potential therapeutic targets.  
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4 Analysis of DNA methylation in immune cells 

associated with type 1 diabetes 

4.1 Introduction 

This chapter focuses on whether the T1D-MVPs can be detected at birth. In addition 

to the current samples, cord blood was analysed. Normally, blood samples from 

new-borns are taken in the form of dried blood spots, to screen for various diseases. 

Guthrie cards are useful with addressing issues such as causality of a disease, 

particularly in EWAS. Profiling the methylome using Guthrie cards may identify 

epigenetic variants that may indicate that it is disease casual as they appear before 

disease. DNA methylation variation has been shown to be stable for at least three 

years, indicating that there may be disease-related epigenetic marks that could be 

detected at birth (Beyan et al., 2012a).  

 

To investigate DNA methylation changes in T1D, cord blood from 99 new-borns 

from a Swedish cohort (DIPIS) were analysed. DIPIS is a prospective study that 

studied risk factors of T1D by screening new-borns in Scania for HLA genotypes 

and autoantibodies.  The DIPIS study consists of 35, 853 children born during 2000-

2004 and has reported associations between HLA genetic factors and islet 

autoantibodies (Lynch et al., 2008). In one study, the authors reported that the 

presence of IA-2A in cord blood is a predictor of T1D development in the child 

(Lundgren et al., 2015). The impact of DIPIS was reported recently where the 

authors have stated that children that had participated in DIPIS had decreased 

incidence of ketoacidosis and better metabolic control due close monitoring 

(Lundgren et al., 2014b).  

 

4.2 Aims and objectives 

The aim of this study was to try and identify any differences in DNA methylation in 

cord blood from new-borns who later became either diabetic or non-diabetic. Cord 

blood samples were dotted onto filter paper and stored. DNA was then extracted 

and treated with sodium bisulfite. The samples were then hybridized onto the 

Illumina450K BeadChip and sequenced to profile DNA methylation. A comparison 

was made between the differences in DNA methylation between the normal and 

diabetic children and the differences in DNA methylation between the twin pairs in 

the preliminary study (Rakyan et al., 2011a). 
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4.3 Results  

4.3.1 Quality control of DNA methylation analysis 

In addition to the samples taken from the twins, 99 cord blood samples from a 

cohort of new-borns were processed. The new-borns were from a Swedish cohort, 

of which 50 went on to develop T1D and 49 that did not. Cord blood was studied to 

see if any significant methylation marks found in children or adults could be detected 

at birth. The cord blood samples were spotted onto card creating dried blood spots 

(DBSs) which were stored at 4°C until processing. 

 

T1D-MVPs identified in CD14+ from the preliminary study were compared to the 

DBS samples (Figure 4.1). Differences found between the diabetic and non-diabetic 

DBS samples were compared to the T1D-MVPs from the preliminary study. The 

correlation was 0.20, p=1.25e-02 revealing a weak correlation. As cord blood from 

the new-borns was not isolated for different cell types, as was the case of the 

present study, the weak correlation suggests detection of any significant DNA 

methylation differences in unsorted samples is really low. 
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Figure 4.1. Correlation of MVPs calls in T1D compared against cord blood.  T1D-MVPs 

identified in the discovery cohort (vertical axis) plotted against previously identified T1D-

MVPs from CD14
+
 monocytes (horizontal axis) (Rakyan et al., 2011a). Calls from Rakyan et 

al. were plotted against cord blood (p = 1.25e-02) (C). D: diabetic; C: control. 
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4.4 Discussion 

This study investigated DNA methylation differences in cord blood between new-

borns who did or did not progress to developing T1D. This was then compared to 

the preliminary findings reported by Rakyan et al.  

 

4.4.1 Cord blood will be useful in determining casual effects of 

methylation 

In epigenetic studies, it is difficult to determine whether a significant DNA 

methylation difference is a cause or consequence of a disease. It has been reported 

that T1D-MVPs appear before diagnosis of T1D in autoantibody positive individuals 

(Rakyan et al., 2011a), therefore a useful cohort to study would be individuals 

without autoantibodies but then go on to develop T1D. If the T1D-MVPs were not 

present in these individuals, then these MVPs may arise as a result with the 

appearance of autoantibodies, and in the case of  childhood onset diabetes, early 

seroconversion to autoantibodies can occur from nine months to two years of age 

(Ziegler et al., 2012; Parikka et al., 2012). If the T1D-MVPs were enriched in the 

individuals with no autoantibodies present, this indicates that the T1D-MVPs 

antedate the immune process which leads to T1D. Analysing methylation marks in 

cord blood provides an insight to whether these epigenetic marks were present in 

utero and therefore antedate disease. DNA methylation marks have also been 

shown to be stable for at least three years from birth (Beyan et al., 2012a). The 

group extracted genomic DNA from Guthrie cards to asses of in utero-derived DNA 

methylation variation. Inter-individual DNA methylation variation was identified at 

birth and three years later, suggesting that disease-relevant epigenetic variation 

could be detected at birth.  

 

However, with small differences identified in the sorted cells in this present study, it 

would be hard to detect in unsorted samples such as cord blood. However, the cell 

type composition in cord blood is different compare to adult whole blood (Beck and 

Lam-Po-Tang, 1994). For example, the percentages of cell types reported in the 

paper were (cord blood vs adult blood): CD3 (57.7% vs 74.1%, CD16 (18.7 vs 6.6%) 

and αβTCR (56.3 vs 71.1%). Although there was a weak correlation between the 

cord blood samples and the T1D-MVPs (from CD14+ monocytes) identified in the 

preliminary study, follow up samples from the same individuals from whom the cord 

blood was obtained from, will be collected. This is useful as later analyses 
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comparing cord blood with T1D-MVPs identified in the present study will be more 

informative as there were more cell types studied interrogating over 450,000 CpG 

sites.  
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4.5 Conclusion 

In conclusion, this study identified small but significant DNA methylation correlation 

between T1D-MVPs found in cord blood and the twin pairs discordant for T1D. 

Follow up samples from the new-borns who are now children, will be collected for 

future analyses. As with Chapter 3, this study used the Illumina450K array, the 

successor to Illumina27K, in which more CpG sites were interrogated.  
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5 Detection of unmethylated DNA in the human 

insulin gene for monitoring β-cell death 

5.1 Introduction 

Insulin controls blood glucose levels and is expressed mainly in the β-cells (Melloul 

et al., 2002), in which the baseline β-cell population is established before five years 

of age (Gregg et al., 2012). In T1D patients, most of the β-cells are destroyed, 

however patients with disease duration for over 50 years, still show some signs of 

insulin production (Keenan et al., 2010). In mice, it was shown that β-cell 

neogenesis occurs during embryogenesis and decreases shortly after birth, but 

neogenesis in murine adult pancreas does not occur (Xiao et al., 2013). However, 

combined treatment of DA-1229 and Pam3CSK4 could reverse T1D by increasing 

the number of replicating β-cells and β-cell mass (Kim et al., 2012). In humans, 

Lebastchi et al. reported preservation of β-cell function in patients who received 

teplizumab, an anti-CD3 monoclonal .antibody, compared to the placebo (Lebastchi 

et al., 2013). 

  

Currently, C-peptide secretion is one of the available clinical biomarkers to measure 

residual β-cell function in T1D (Barker et al., 2014). C-peptide produced is released 

in a 1:1 ratio with insulin after the cleavage of proinsulin (Wahren et al., 2012). C-

peptide measurement can be measured from serum samples to assess endogenous 

insulin reserve in diabetic individuals (Davis et al., 2014). It has also been proposed 

that protein phosphatase 1, regulatory (inhibitor) subunit 1A (PPP1R1A) can be 

used as a novel real-time biomarker for acute β-cell destruction (Jiang et al., 2013). 

Using immunoprecipitation, PPP1R1A was found to be released from injured islets 

and was proportionate to the extent of β-cell death. Free-circulating DNA have been 

studied for diagnostic purposes (Ziegler et al., 2002) for cancer, stroke (Tong and 

Lo, 2006) and sepsis (Rhodes et al., 2006) as higher levels of circulating DNA have 

been found in patients compared to the matched controls. In T1D, it has been 

reported that there were CpG sites that were uniquely unmethylated in the insulin 

gene promoter region, both in mice and humans (Kuroda et al., 2009). The same 

group analysed the same CpG sites in eight other tissues including liver, lung and 

spleen, and found these sites to be mainly methylated (Husseiny et al., 2014).  

Methylation of these unmethylated CpG sites in the insulin promoter suppressed 

gene activity by almost 90% (Kuroda et al., 2009). Detection of unmethylated insulin 

DNA in serum has already been performed by different research groups who 
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reported differences in β-cell death between diabetic patients and normal controls 

(Husseiny et al., 2014; Lebastchi et al., 2013). 

 

In this chapter, a method was developed to detect methylation differences between 

MZ twin pairs discordant for T1D in circulating DNA. The aim was to assess whether 

the insulin promoter CpG demethylation may play a crucial role in β-cell death. At 

first, tissue-specific unmethylation in the gene body (exon 2) of the inulin gene was 

investigated. The next step was to study DNA methylation in the promoter region of 

the insulin gene using methylation-specific PCR, previously described by other 

groups (Akirav et al., 2011; Husseiny et al., 2012). As mentioned previously, 

hypomethylated gene regions were found in insulin only in β-cells, therefore any β-

cell destruction would release unmethylated DNA into the circulation, hence the use 

of a sensitive assay such as qPCR to detect DNA from serum. The final part 

investigated the use of pyrosequencing to detect methylation levels in the twin 

samples. 

 

5.2 Aims and objectives 

The aim of this study was to develop an assay to detect unmethylated CpG sites in 

the insulin gene. Primers were designed for qPCR to amplify certain unmethylated 

CpG sites, which have been reported to be tissue-specific, in the insulin promoter 

region. This assay was used to try to identify whether there was a difference in 

methylation between MZ twins in serum samples. DNA was extracted from the 

serum samples and then bisulfite converted to analyse methylation. Pyrosequencing 

was used later to sequence four CpG sites in the insulin promoter. 
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5.3 Results  

5.3.1 Non-specificity of methylation state at exon 2 in the insulin 

gene 

To assess methylation in insulin, a nested PCR assay was developed. Initially exon 

2 of the insulin gene was studied as it was suggested that tissue-specific 

unmethylated CpG sites were located there (Lebastchi et al., 2013; Akirav et al., 

2011). DNA was extracted from 300 µL of serum, bisulfite converted and used in a 

nested PCR assay. The first step of the nested PCR was performed in a thermal 

cycler. The PCR product was ran on an agarose gel, cleaned up and then used as a 

template for the second step, which was performed in the ABI Real-Time 7500 

system. The primer sets in this reaction discriminated between unmethylated and 

methylated CpG sites +273 and +399 in exon 2. The qPCR products were confirmed 

by agarose gels and DNA sequencing. Samples from healthy controls were used for 

the dilution series (Figure 5.1A and D) and melting curves were performed (Figure 

5.1B and E). Primer efficiencies for the methylated and unmethylated primers were 

92% and 91% respectively (Figure 5.1C and F). 

 

Once the amplification efficiency testing was performed, no difference was seen 

between the two primer sets (Figure 5.2A). Different primer concentrations were 

used to try and optimise the assay. The different concentrations were 0.25 µM, 0.5 

µM, 1 µM, 1.5 µM and 2 µM. Nevertheless, there was still no difference between the 

two primer sets (Figure 5.2B). Samples from a twin pair discordant for T1D and a 

healthy control were used to try to differentiate the two primer sets as it has been 

reported that methylation levels differ between T1D patients and healthy controls 

(Lebastchi et al., 2013; Husseiny et al., 2014). All samples showed non-specificity 

between the methylated and unmethylated DNA (Figure 5.2C). 

 

In summary, non-specificity between methylated and unmethylated sites was a 

problem in this assay hence this method could not be used to monitor β-cell death in 

T1D patients. 
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Figure 5.1. Amplification and melting curves for the methylated and unmethylated 

primer sets. Amplification curves of the primer against the methylated CpG sites (A), 

melting curve (B) and standard curve (C). Amplification curves of the primer against the 

unmethylated CpG sites (D), melting curve (E) and standard curve (F). The single peaks in 

the melting curve plots represent a single specific product amplified. Primer efficiencies 

should be within 10% of each other for a high efficient assay.  
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Figure 5.2. Optimisation of qPCR revealed non-specificity between methylated and 

unmethylated CpG sites. Different optimisation steps showed non-specificity issues with 

the primer sets. There was no difference in specificity between the two primer sets with the 

10x dilution series (A). There was no difference in specificity using different primer 

concentrations (B) and there was no difference when comparing samples from a twin pair 

discordant for T1D and a healthy control (C). All melting curve plots showed two specific 

products that were amplified from the methylated and unmethylated primer sets.  
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5.3.2 Unmethylation at CpG sites in the insulin promoter region 

As non-specificity between the methylated and unmethylated CpG sites was an 

issue in exon 2, the attention turned to the promoter region of the insulin gene. 

There are nine CpG sites in the promoter region compared to exon 2 (8), intron 1 (2) 

and intron 2 (2) (Husseiny et al., 2014). In this section, four of the nine CpG sites 

were studied. In this assay, a nested PCR was performed also, however both steps 

were carried out in the ABI Real-Time 7500 system. Three sets of primers were 

designed as described previously (Husseiny et al., 2014), this time interrogating four 

CpG sites at -234, -206, 135 and -36 relative to the transcription start site (TSS). 

These four CpG sites were previously described to be unmethylated compared to 

other tissues such as lung, liver and spleen (Husseiny et al., 2014). 

 

A plasmid with the insulin gene insert was grown and purified for the serial dilutions 

to determine amplification efficiency and to use as a positive control in this assay. 

An amplification efficiency test was performed and showed that the BSP primers 

produced primer dimers (Figure 5.3). The appearance of the primer dimers were 

confirmed by gel electrophoresis (Figure 5.4). Primer dimers are an issue as SYBR 

Green binds to any double-stranded DNA. This made it difficult to determine 

whether the signal was coming from the primer dimer or the unmethylated CpG 

sites. Several optimisation steps were carried out for the BSP primer set only, as 

MSP1 and MSP2 did not need optimising. The concentrations of the primers were 

optimised by performing a primer optimisation matrix (Table 4.1). The appearance of 

primer dimers when using the BSP primers, resulted in no clear distinction of the 

signal between the samples and NTC (Figure 5.5). 

 

Different SYBR Green master mixes were also used as the master mixes contains 

different concentrations of magnesium chloride (Figure 5.6). Magnesium chloride 

assists the reaction as a cofactor for DNA polymerase, therefore the more 

magnesium chloride there is, the more powerful the reaction. The three master 

mixes used were Power SYBR Green (ABI), MESA Blue (Eurogentec) and 

QuantiTect SYBR Green (Qiagen). Primer dimers still appeared with all master 

mixes. Other optimisation steps included using DMSO (Appendix III, Figure 8.3) and 

shorter primers (Appendix III, Figure 8.4), but the primer dimers still occurred. 
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Figure 5.3. Amplification and melting curves for the three primer sets. Amplification and 

melting curves for the BSP (A and B), MSP1 (C and D) and MSP2 (E and F) primer sets are 

shown. The melting curve of the BSP primer set shows another peak other than the PCR 

product, this was a primer dimer effect. Primer dimers have a lower dissociating temperature 

as the products tend to be smaller than the amplicon of interest. The melting curves of the 

MSP1 and MSP2 primers set show one distinct peak, therefore there were no primer dimers. 

PD: primer dimer.  
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Figure 5.4. Primer efficiency and specificity of the three primer sets. Standard curves 

and PCR products visualised on an agarose gel for BSP (A and B, MSP1 (C and D) and 

MSP2 (E and F). Primer efficiency for each primer set were BSP 98.5±3.4%, MSP1 

98.7±4.1% and MSP2 90.5±6.6%. Primer dimers were seen with the BSP primer set at 

approximately 70 bp. PCR products sizes were BSP: ~350 bp, MSP1: ~350 bp and MSP2: 

~130 bp. 
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                   Table 5.2. Primer optimisation matrix.  

 

Forward primer 

(nM) 

Reverse primer (nM) 

100 200 400 

100 100/100 100/200 100/400 

200 200/100 200/200 200/400 

400 400/100 400/200 400/400 

 

 

 

 

 

 

 

Figure 5.5. Optimisation steps of methylation specific PCR. There was no distinct signal 

between the samples and NTC (A) when running with BSP primers. The primer dimers also 

showed up after running the products on a agarose gel (B). the primer dimer length came up 

to approximately 70 bp. Whereas when running with MSP1 primers, there was a distinct 

difference between the samples and NTC (C) and no primer dimers were seen until high 

concentrations of the primers were used (D).  
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Figure 5.6. qPCR reaction with different SYBR Green master mixes. Different SYBR 

Green master mixes were used to eliminate primer dimers from the assay. Power SYBR 

Green from ABI (A and B), MESA Blue from Eurogentec (C and D) and QuantiTect SYBR 

Green from Qiagen (E and F). Primer dimers occurred still with the different master mixes. 

PD: primer dimer.  
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5.3.3 Primers could distinguish between methylated and 

unmethylated templates 

To assess whether the primer sets could discriminate between methylated and 

unmethylated CpG sites, fully methylated and unmethylated plasmids with the 

insulin promoter was used in a qPCR reaction (Figure 5.7). The plasmids were fully 

methylated with M.SssI CpG methyltransferase, which methylated all cytosines 

residues. 

 

As expected, the BSP primers did not discriminate between methylated and 

unmethylated plasmids with similar Cq values (Figure 5.7A). The Cq differences 

between the unmethylated and methylated plasmid were 1.780±0.6893. The melting 

curve showed two distinct peaks (Figure 5.7B), which was expected as two different 

products were being amplified. The MSP1 primer set was able to distinguish the 

methylated and unmethylated plasmid, showing lower Cq for the unmethylated 

plasmid than the methylated plasmid (Figure 5.7C). This was also expected as the 

primer set was designed to amplify only unmethylated CpG sites. The Cq 

differences between the unmethylated and methylated plasmid were 4.768±0.5581. 

The melting curve showed two distinct peaks (Figure 5.7D). The MSP2 primer set 

was also able to distinguish the methylated and unmethylated plasmid, showing a 

lower Cq for the unmethylated plasmid than for the methylated plasmid (Figure 

5.7E). The Cq differences between the unmethylated and methylated plasmid were 

7.150±1.740. The melting curve showed two distinct peaks within one another 

(Figure 5.7F). This may be that both products were much smaller than the previous 

two primer sets. BSP and MSP1 both amplified a product or approximately 350 bp 

whereas MSP2 amplified a product approximately 130 bp. 

 

In summary, the BSP primer set did not discriminate between the methylated and 

unmethylated CpG sites however, the MSP1 and MSP2 did, as expected. Although 

the primers could detect unmethylated CpG sites of interested, the primer dimers 

made it difficult to determine whether the signal is coming from the CpG sites or the 

primer dimers therefore this assay cannot be used as a quantitative assay to 

monitor β-cell death. 
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Figure 5.7. Methylation analysis in fully methylated and unmethylated plasmids. There 

was no discrimination between the methylated and unmethylated plasmid with the BSP 

primer set (A). There were two distinct peaks in the melting curve from the two different 

products the unmethylated and methylated plasmids produced (B). MSP1 primer set was 

able to distinguish between the methylated and unmethylated plasmid (C and D), and similar 

results was shown from the MSP2 primer set (E and F).  
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5.3.4 Taqman assay was highly specific 

The Taqman assay was performed to eliminate primer dimers as this technology is 

highly specific. High specificity of the assay is due to the additional probe included in 

the reaction. The probe is an oligonucleotide that has a fluorescent reporter dye 

attached to the 5‟ end and a quencher on the 3‟ end. During each cycle, the probe is 

intact and the quencher reduces the fluorescence emitted by the reporter dye, 

therefore no fluorescence is detected by the machine. However, when a product is 

amplified, the probe breaks down, increasing the fluorescence of the reporter dye. 

The detection is more specific than non-probe based methods such as SYBR 

Green, which binds to any double-stranded DNA, therefore when the amplification 

efficiency assay was performed, the Cq values came up higher than those when 

using SYBR Green. Because of the high Cq values, a 5x dilution series was 

performed instead of a 10x dilution series (Figure 5.8A and B). A new primer set 

(BSP2), MSP2 and a probe was designed for this assay (Table 2.1). Primer 

efficiencies with Taqman were: BSP2 79% (Figure 5.8C) and MSP2 88% (Figure 

5.8D). The PCR products were then run on an agarose gel (Figure 5.8Eand F). 

  

As in Section 2.13.5.1, DNA was extracted from the serum samples and treated with 

sodium bisulfite. Unlike the nested PCR assay, Taqman was carried out as a one-

step assay as the two-step assay did not yield any results (data not shown). The 

assay was performed with a healthy control sample, however, the signal for MSP2 

was lower than the signal for BSP (Figure 5.9). This result was in contrast to what 

was expected as the BSP primer set did not discriminate between methylated and 

unmethylated CpG sites, hence more product should have been amplified compared 

to the MSP2 primer set. As the Taqman assay was highly specific and did not 

amplify as much DNA as SYBR Green, pyrosequencing was explored. 
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Figure 5.8. DNA methylation analysis using the Taqman technology.  Amplification 

curves showing with BSP2 (A) and MSP2 (B) primer sets. Standard curves of BSP2 (C) and 

MSP2 (D) primer sets. Gel images of BSP2 (E) and MSP2 (F) PCR products. The PCR 

products were approximately 200 bp and no product was seen for the NTC samples.  
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Figure 5.9. MSP2 signal was lower than BSP2 from a control sample. A serum sample 

from a healthy control was analysed using the Taqman technology. The signal for MSP2 was 

lower than BSP2 which was unexpected. There was no signal for the NTC samples.  
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5.3.5 Pyrosequencing 

5.3.6 Optimisation of the PCR step 

Pyrosequencing is a sequencing-by-synthesis method, where the incorporation of a 

single nucleotide causes a chain of reactions that produces visible light. Each light 

that is produced, determines which nucleotide was incorporated into the DNA 

sequence. The assay was performed to compare the methylation levels between the 

MZ twin pairs using serum samples. First, sample preparation before 

pyrosequencing had to be optimised. A gradient PCR was performed to establish 

the optimum annealing temperature (Figure 5.10A). Once the optimum annealing 

temperature was determined, PCR was performed with forward and reverse primers 

(Figure 5.10B), with the reverse primer biotinylated (Figure 5.11). The PCR products 

were loaded into a 96-well plate and then sent off to the Genome Centre for 

sequencing. 

 

This method was used to sequence short regions to interrogate the CpG sites which 

had been previously assessed by qPCR in Section 4.3.3 and 4.3.4. Two sequencing 

primers were designed, SP1 and SP2 (Figure 5.11). The sequencing primers also 

interrogated an additional two CpG sites which have been reported to also be 

unmethylated, at -180 and -102 (Husseiny et al., 2014). 
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Figure 5.10. Optimisation of PCR step. Once DNA had been treated with sodium bisulfite, 

a gradient PCR was performed to establish the optimum annealing temperature (A). A 50 bp 

ladder was loaded, annealing temperatures from Lanes 1 to 7 were 53.6°C, 54.9°C, 56.5°C, 

59.1°C, 62.2°C, 65.9°C and 70.3°C. The optimum annealing temperature was taken at 55°C. 

The optimised annealing temperature was then used in the cycling steps for PCR (B). A 50 

bp ladder was loaded. The primers amplified the DNA (Lanes 1 to 16). A negative control 

was loaded into Lane 17 and a positive control was loaded into Lane 18. The positive control 

was the plasmid that was purified in Section 2.13.1. 
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  421 GAGGGCTTTGCTCTCCTGGAGACATTTGCCCCCAGCTGTGAGCAGGGACAGGTCTGGCCA 

      |||||:||||:|:|::||||||:|||||:::::||:||||||:|||||:||||:|||::| 

  421 GAGGGTTTTGTTTTTTTGGAGATATTTGTTTTTAGTTGTGAGTAGGGATAGGTTTGGTTA 

                                                                   

 

  481 CCGGGCCCCTGGTTAAGACTCTAATGACCCGCTGGTCCTGAGGAAGAGGTGCTGACGACC 

      :++||::::|||||||||:|:||||||::++:||||::|||||||||||||:|||++|:: 

  481 TCGGGTTTTTGGTTAAGATTTTAATGATTCGTTGGTTTTGAGGAAGAGGTGTTGACGATT 

                                                                   

 

  541 AAGGAGATCTTCCCACAGACCCAGCACCAGGGAAATGGTCCGGAAATTGCAGCCTCAGCC 

      ||||||||:||:::|:|||:::||:|::|||||||||||:++|||||||:||::|:||:: 

  541 AAGGAGATTTTTTTATAGATTTAGTATTAGGGAAATGGTTCGGAAATTGTAGTTTTAGTT 

                                                                   

 

  601 CCCAGCCATCTGCCGACCCCCCCACCCCAGGCCCTAATGGGCCAGGCGGCAGGGGTTGAG 

      :::||::||:||:++|:::::::|::::|||:::|||||||::|||++|:|||||||||| 

  601 TTTAGTTATTTGTCGATTTTTTTATTTTAGGTTTTAATGGGTTAGGCGGTAGGGGTTGAG 

                                                                   

 

  661 AGGTAGGGGAGATGGGCTCTGAGACTATAAAGCCAGCGGGGGCCCAGCAGCCCTCAGCCC 

      ||||||||||||||||:|:|||||:|||||||::||++||||:::||:||:::|:||::: 

  661 AGGTAGGGGAGATGGGTTTTGAGATTATAAAGTTAGCGGGGGTTTAGTAGTTTTTAGTTT 

                                                                   

 

  721 TCCAGGACAGGCTGCATCAGAAGAGGCCATCAAGCAGGTCTGTTCCAAGGGCCTTTGCGT 

      |::||||:|||:||:||:||||||||::||:|||:||||:||||::|||||::||||++| 

  721 TTTAGGATAGGTTGTATTAGAAGAGGTTATTAAGTAGGTTTGTTTTAAGGGTTTTTGCGT 

 

 

 

 

Figure 5.11. Primer design of PCR and sequencing. Primers were designed using 

PyroMark (Qiagen, UK). The forward primer (green) and reverse primer with biotin (yellow) 

were used to produce an amplicon approximately 200 bp. Sequencing primer SP1 

(underlined) included CpG sites -206 and -180 and SP2 (grey and underlined) included CpG 

sites -135 and -102. CpG sites of interested are highlighted in blue and underlined.  
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5.3.7 Comparison of intra twin pair methylation 

Once the PCR step was optimised, the PCR products were sent off to the Genome 

Centre for sequencing. Samples from 33 twin pairs discordant for T1D were 

analysed, producing pyrograms (Figure 5.12). Two sequencing runs were performed 

as the two CpG sites of interest were too far apart to sequence at one time. The first 

sequencing primer (SP1) interrogated CpG -206 and the second sequencing primer 

(SP2) interrogated CpG -135. From the pyrogram, SP1 sequenced three CpG sites, 

with the first, the CpG of interest (Figure 5.12A). The second was CpG site -180 and 

the third was CpG site -135. The optimum amplicon for pyrosequencing tends to be 

between 80 bp to 150 bp. Although SP1 had sequenced three CpG sites, the last 

CpG site was omitted from analysis as sample checks had failed towards the end of 

the amplicon. The same applied to SP2, as it also sequenced three CpG sites 

(Figure 5.11). Therefore, in addition to CpG sites -206 (CpG 1) and -135 (CpG 3), 

CpG sites -180 (CpG 2) and -102 (CpG 4) were also analysed due to the sites being 

sequenced. Each sample produced a methylation percentage (Appendix III, Table 

8.5 and 8.6). 

 

Several pairs of the 33 pairs analysed were omitted from the final analyses due to 

the samples failing checks during sequencing. This was due to the low amount of 

DNA present initially. Hence for SP1, a total of 24 pairs were analysed and for SP2, 

a total of 23 pairs were analysed. Individual methylation levels were plotted for each 

CpG site (Figure 5.13). Methylation levels were higher for the twin pairs at CpG sites 

1 and 3 compared to CpG sites 2 and 4. Mean values for CpG 1 in T1D 

80.23±16.15%, Non-T1D 83.61±12.15%, CpG 2 T1D 61.71±13.57%, non-T1D 

65.17, CpG 3 73.45±13.79%, non-T1D 76.26±12.17% and CpG 4 T1D 59.19±11.93, 

non-T1D 64.40±13.55. Majority of the intra-pair methylation differences (non-

diabetic – diabetic) were small (Figure 5.14). 
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Figure 5.12. Pyrogram of CpG sites in the insulin promoter region in a twin pair.  

Pyrogram from the diabetic twin (A) and non-diabetic twin (B). The CpG sites are highlighted 

by the grey shaded area. Methylation values are boxed above the CpG sites.  
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Figure 5.13. Methylation levels of each individual at the four different CpG sites.  

Methylation levels were plotted for 24 twin pairs at CpG 1 and 2, 23 pairs at CpG 3 and 4. No 

significant difference was seen between the T1D and non-diabetic co-twin at each CpG site. 
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Figure 5.14. Methylation differences between MZ twin pairs. The methylation differences 

between each twin pair were plotted (Non-diabetic – diabetic) at CpG 1 (A), CpG 2 (B), CpG 

3(C) and CpG 4 (D). CpG 1 and 2 were sequenced by SP1, CpG 3 and 4 were sequenced 

by SP2.  
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5.3.8 Methylation differences between twin pairs 

Lebastchi et al. and Husseiny et al. analysed samples from newly diagnosed 

patients (Lebastchi et al., 2013; Husseiny et al., 2014). At diagnosis, most of the β-

cells are destroyed, however patients with disease duration for over 50 years, still 

show some signs of insulin production (Keenan et al., 2010). Here, samples were 

taken from five twin pairs where the index twin was diagnosed less than two years 

prior. The methylation levels from these twin pairs were compared to the remaining 

twins with long-standing diabetes at each CpG site to see if insulin DNA could still 

be detected in those with disease duration of more than two years from sampling 

(Figure 5.15). 

 

There were no significant differences between the groups at CpG 1 (Figure .15A), 

CpG 2 (Figure 5.15B), CpG 3 (Figure 5.15C) and CpG 4 (Figure 5.15D). Although at 

CpG 1, it was noticeable that there was hypomethylation in samples from the twins 

with shorter disease duration, compared to individuals with long standing diabetes 

and both groups of healthy co-twins (p <0.0536). 

 

Intra- and inter-pair methylation differences were also analysed (Figure 5.16). The 

inter-pair differences were expected to be greater in diabetic twins with shorter 

disease duration than those with long-standing diabetes. This was observed at CpG 

1 (p = 0.0398), but not at CpG 2 (p = 0.8959), CpG 3 (p = 0.3368) and CpG 4 (p = 

0.9083). There were also no significant intra-pair differences. 

 

Intra- and inter-pair methylation differences were analysed in groups separated by 

age at diagnosis (Figure 5.17). This analysis was performed to see whether the 

more aggressive form of diabetes in younger patients made a difference in the level 

of unmethylated insulin DNA compared to adult-onset diabetics. There were no 

significant intra- and inter-pair differences between the twin pairs. 

 

In summary, hypomethylation in the diabetic twin was observed at CpG 1 only due 

to disease duration, rather than age at diagnosis. 
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Figure 5.15. Methylation levels of each individual sorted by disease duration.  The two 

different groups were separated into disease duration at sampling at less than two years and 

long-standing diabetes. Methylation levels were plotted for CpG 1 (A), CpG 2, (B), CpG 3 (C) 

and CpG 4(D). Data presented as mean± SEM. 
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Figure 5.16. Methylation differences between twin pairs sorted by disease duration. 

The methylation differences (non-diabetic – diabetic) were compared between the two 

groups at each CpG site. There was one significant result between the newly-diagnosed 

group and long-standing diabetes group at CpG 1 (*p = 0.0398), whereas there were no 

significant intra- or inter-pair differences at the other CpG sites. Data presented as mean± 

SEM. 
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Figure 5.17. Methylation differences between twin pairs sorted by age at diagnosis.  

The methylation differences (non-diabetic – diabetic) were compared between childhood-

onset diabetes to adult-onset diabetes at each CpG site. There were no significant intra- or 

inter-pair methylation differences. Data presented as mean± SEM. 
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5.3.9 Tissue-specific unmethylation in the β-cells 

In the body, many cells can break down, releasing DNA into the circulation. To 

assess whether the unmethylated CpG sites at -206 and -135 were tissue-specific, 

DNA from liver, lung, uterus and pancreas were commercially obtained and treated 

with sodium bisulfite. The samples were then amplified and sequenced. 

 

Methylation levels were similar in liver, lung, uterus, pancreas as well as in the non-

diabetic twin at all CpG sites (Figure 5.18). The T1D sample was from a newly-

diagnosed twin and the methylation levels in the diabetic twin sample was much 

lower than the other tissues at CpG sites 1 (-206), 2 (-180), and 3 (-135). There was 

also a noticeable difference between the diabetic and non-diabetic twin at CpG sites 

1, 2 and 3 but not 4 (Figure 5.18A). The methylation levels of the diabetic samples 

at CpG 1, 2, 3 and 4 were 37.22%, 34.62%, 31.91% and 38.00% respectively. 

However, when the newly-diagnosed twin pair was swapped with a pair whose index 

twin had long-standing diabetes, methylation levels in all samples were similar 

across all CpG sites (Figure 5.18B). Similar patterns of methylation were seen in 

another pair of twins with the diabetic twin either newly-diagnosed or has long-

standing diabetes (Figure 5.18C and D). The hypomethylation in the newly-

diagnosed T1D sample was also evident in a heatmap analysis (Figure 5.19A and 

B). 
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Figure 5.18. Methylation differences between newly-diagnosed diabetics compared to 

those with long-standing diabetes. Liver, lung, uterus and pancreas DNA were 

commercially obtained and were treated with sodium bisulfite. In one twin pair, CpG 1, 2 and 

3, methylation level of the newly-diagnosed diabetic twin was much lower than the other 

tissues and non-diabetic twin (A). However, in long-standing diabetes, methylation levels 

were similar to the other tissues across all CpG sites (B). In another pair where there was a 

newly-diabetic, there was hypomethylation in CpG sites 1 and 3 (C) whereas there was no 

difference in another pair of twins with long-standing diabetes (D). 
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Figure 5.19. Methylation status in different tissues.  Heatmaps of the methylation levels 

from each tissue. Hypomethylation was observed in the sample from the newly-diagnosed 

diabetic (A), compared to the sample from the patient with long-standing diabetes (B). All 

other tissues had similar methylation levels.  
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5.4 Discussion 

5.4.1 Primers did not discriminate between methylated and 

unmethylated CpG sites in exon 2 

This study investigated the methylation status in the insulin gene. Insulin is 

expressed mainly in β-cells and in T1D, these cells are destroyed, releasing DNA 

into the circulation. Free circulating DNA has been investigated as a biomarker for 

disease (Swarup and Rajeswari, 2007; Holdenrieder et al., 2008). It is a non-

invasive, easy source of DNA to obtain and although the concentration of DNA in 

serum or plasma is low, sensitive assays such as qPCR can detect it. 

 

This method for monitoring β-cell death was previously reported (Akirav et al., 2011; 

Lebastchi et al., 2013) and had described a working nested-qPCR assay in 

detecting methylated and unmethylated CpG sites that were tissue-specific to β-

cells. Originally this method was performed using serum from mice and then trialled 

using human serum. A few changes were made to the method the authors had 

described. For example, they had included a gel purification step between the PCR 

and qPCR steps. This was replaced with a simple 1/1000 dilution of the first PCR 

product as the resulting amplification was the same. 2 µL of the diluted product was 

then used as a template for the qPCR reaction. This saved time and the cost of the 

commercial kit required for the gel purification step. Also, DNA recovered from the 

spin columns of the purification step may affect the total concentration and therefore 

skewing the number of unmethylated to methylated DNA. The main issue from this 

assay was that there was no differentiation between detecting unmethylated from 

methylated DNA in serum with the pre-designed primer sets. This may be due to the 

assay detecting methylated DNA from other tissues. The authors had only 

measured unmethylated insulin DNA in one other tissue, the kidney, which was 

found to be mainly methylated. However, there may be other tissues that may have 

the same trend in methylation as the β-cells. The non-specificity of the primers was 

also reported by another group (Husseiny et al., 2012). 

 

It also has been noted that the calculation Akirav et al. performed did not account for 

the efficiency of the assay (Husseiny et al., 2012). When the amplification efficiency 

was performed for all primer sets, they came up to less than 100%, therefore the Cq 

values are not completely reliable as they products are not amplifying at 100%. 
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5.4.2 Real-time PCR detected unmethylated insulin DNA but 

primer dimer issues occurred 

After the experiment described in Section 5.3.1 was unsuccessful, a different 

approach was taken. Husseiny et al.  described a method that detected only specific 

unmethylated CpG sites that were tissue-specific to β-cells, also using qPCR 

(Husseiny et al., 2014). As with Lebastchi et al., this method was first performed 

using serum from mice, and then with human patient serum. Husseiny et al. had 

analysed unmethylated insulin DNA in eight other tissues, including liver, lung and 

spleen, and reported that at CpG sites -206 and -135, were tissue-specific 

unmethylated compared to the other tissues. Moving forward with this, a nested-

MSP was designed to detect these CpG sites with primers discriminating between 

methylated and unmethylated CpG sites. The first step required the BSP primer set 

to amplify the total amplifiable region for analysis. During optimisation of all primer 

sets, primer dimers appeared with BSP. This was an issue as any signal that was 

detected using the BPS primer, could have been from the primer dimer and 

therefore was not able to sufficiently quantitate the methylation levels from a single 

sample. 

 

The issue with primer dimers did not resolve itself after numerous optimisation 

steps, therefore the Taqman technology was used. Taqman is highly specific, hence 

it was expected that primer dimers would not appear during this assay. However, 

when this assay was performed with a healthy control sample, the signal for MSP2 

was lower than the signal for BSP. This was unexpected as firstly, the result was the 

opposite of what was seen when using SYBR Green and secondly, as the BSP 

primer did not discriminate between unmethylated and methylated CpG sites, in 

theory it should have amplified more DNA than the MSP2 primers as the MSP2 

primers would amplify DNA with unmethylated CpG sites. 

 

5.4.3 Pyrosequencing revealed hypomethylation at CpG site -206  

As the qPCR assays were not able to sufficiently detect and discriminate between 

methylated and unmethylated templates, pyrosequencing was performed to 

determine the methylation levels of each sample. Pyrosequencing assesses DNA 

methylation by sequencing-by-synthesis, providing accurate and reliable results. 

Two sequencing primers were used to cover the two CpG sites of interest, -206 and 

-135. 
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There were a few interesting points from the data that was presented in Figure 5.13. 

First, the plot showed that there were no significant differences between the diabetic 

and their healthy co-twin at each CpG site. This could account for why no 

differences in methylation were seen between a MZ twin pair discordant for T1D in 

Section 5.3.1, Figure 5.2. Second, methylation levels were higher at CpG sites 1 

and 3 compared to 2 and 4. This was opposite to what was expected. This is 

because it has been reported that CpG 1 (-206) and 3 (-135) were unmethylated in a 

tissue-specific way, compared to CpG sites 2 (-180) and 4 (-102), which were mainly 

unmethylated across all nine tissues (Husseiny et al., 2014). Hence, an explanation 

for the general hypomethylation seen at CpG 2 and 4 could be that DNA from other 

tissues in the circulation that the assay was detecting was contributing to the overall 

hypomethylation. Third, a higher methylation state at CpG 1 and 3 could be down to 

the β-cells. In the papers published by Akirav et al. and Husseiny et al., CpG 1 and 

3 in the clones they had produced, were not completely unmethylated (Akirav et al., 

2011; Husseiny et al., 2014). Therefore, even though the unmethylated CpG sites 

were associated with β-cells, it is possible that the methylated DNA could be 

released by damaged β-cells. A way to potentially find out how much DNA from the 

tissues is contributing to the differing methylation levels is to analyse samples from 

patients who had undergone total pancreatectomies. These patients will have no β-

cells, therefore it will be a good indicator whether or not DNA methylation that was 

detected originated from β-cells or not.  

 

The twin pairs were then separated by disease duration. The groups were split into 

those who were diagnosed less than two years from sampling and the remaining 

twin pairs, who were considered to have long-standing diabetes. There was a 

significant methylation difference between the newly-diagnosed group and long-

standing diabetes at CpG 1 (p = 0.0398) (Figure 5.16). However, no significant intra- 

or inter-pair differences were detected at the other CpG sites. In newly-diagnosed 

T1D patients, most of the β-cells may still be undergoing apoptosis and therefore 

still releasing DNA, and as CpG 1 has been reported to be unmethylated in β-cells, 

the significant methylation difference between newly-diagnosed and long-standing 

diabetes was expected. However, it does not explain why then there were no 

differences between the diabetic and non-diabetic twin pair at the other CpG sites. 

There were also no differences between groups sorted by age at diagnosis, 

suggesting that hypomethylation in the diabetic twin observed at CpG 1 was due to 

disease duration, rather than age at diagnosis. 
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5.4.4 Insulin promoter hypomethylation may be a feature in 

newly-diagnosed T1D sample compared to other tissues 

In this study, DNA from other tissues was sequenced (Figure 5.18). There were no 

significant methylation differences between liver, lung, uterus and pancreas but 

there was noticeable hypomethylation in the samples from the newly-diagnosed 

diabetics. Higher methylation levels were seen in those with long-standing diabetes 

and this may be due to the fact that most of the β-cells are destroyed and the half-

life of insulin is approximately 5 minutes (Duckworth et al., 1998). 

 

Although in the several clones Akirav et al. and Husseiny et al., had produced, were 

not completely unmethylated, methylation at the CpG sites may not affect insulin 

transcription (Kuroda et al., 2009). In mice, the insulin promoter region only has 

three CpG sites. Kuroda et al. assessed individual methylation events at each CpG 

site. They reported that of the three sites, only one supressed insulin promoter 

activity by approximately 50%. And complete methylation of the human insulin gene 

promoter suppressed gene activity by 85%. However, the authors suggested that β-

cell specific demethylation was involved in the differentiation of β-cells rather than 

being involved in disease process. They observed that when culturing β-cells with 

normal glucose levels, the insulin promoter was unmethylated, suggesting that 

either the insulin gene was demethylated in the embryo and becomes preferentially 

methylated in all cells but the β-cells, or the gene was methylated in the embryo and 

becomes specifically demethylated in β-cells. They tested this hypothesis in the 

mice models and found in early differentiation steps in mouse embryonic stem cells, 

there was methylation. Complete demethylation was observed at the late step of 

differentiation of the β-cells. Therefore supporting the hypothesis that certain CpG 

sites in the insulin promoter region is unmethylated in a tissue-specific manner. 
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5.5 Conclusion 

In conclusion, early qPCR experiments detecting methylated and unmethylated CpG 

sites in exon 2 of the insulin gene were unsuccessful due to non-specificity of the 

primers. The attention then turned to the insulin promoter region where using SYBR 

Green and Taqman detected unmethylated CpG sites, however issues with primer 

dimer formation occurred. This made it difficult to determine whether the signal 

detected was from the amplified DNA of interest or from the primer dimers. 

 

Pyrosequencing was performed to acquire an accurate reading of bisulfite converted 

DNA in order to identify potential differences in methylation between MZ twin pairs 

discordant for T1D. Across all four CpG sites interrogated, there was no significant 

difference seen between the twin pairs, however when comparing a cohort of newly-

diagnosed patients with those with long-standing diabetes, there was a significant 

difference between the two groups. In newly-diagnosed patients, there was 

hypomethylation in newly-diagnosed diabetics at CpG site -206 in the insulin 

promoter compared to their healthy co-twin and in other tissues such as liver and 

lung. This suggests that at time at diagnosis, it is possible to detect DNA methylation 

from β-cells, therefore it is essential that sampling is performed within one or two 

years of diagnosis for monitoring of β-cell death. 
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6 General discussion 

Epigenetic modifications play a major role in the regulation of gene expression (Bird, 

2007; Irizarry et al., 2009). DNA methylation is the best characterised epigenetic 

mark and has been associated with different diseases, most notably cancer (Laird, 

2003; Feinberg, 2007). Different environmental agents can affect DNA methylation 

including smoking (Besingi and Johansson, 2014) and dietary sources such as folic 

acid and methionine (Cooney et al., 2002). T1D is a disease that is characterised by 

the destruction of insulin producing β-cells in the pancreas and accounts for 5-10% 

of all diabetes cases worldwide (American Diabetes, 2009). T1D is the result of the 

interaction of genetic and environmental factors (Atkinson et al., 2014) and it was 

suggested that epigenetics could play a part in the aetiology of T1D. In T1D, it has 

been reported that there were differences in methylation between MZ twin pairs 

discordant for the disease (Rakyan et al., 2011a). Studying epigenetics and disease 

in twin pairs is useful in removing genetic confounding factors (Bell and Saffery, 

2012) and there have been differences between MZ twin pairs in disease (Stefan et 

al., 2013) and an effect has been seen between twins of different ages (Fraga et al., 

2005). 

 

In this thesis, the aim was to investigate the role of DNA methylation in T1D by 

generating whole-genome-wide methylation profiles from CD14+CD16- monocytes, 

CD4+ T cells, CD19+ B cells and buccal cells. Different DNA profiling technologies 

were used. Also, an assay was developed to detect differences in DNA methylation 

in circulating DNA. From these studies, it was further established that DNA 

methylation marks are stable and that these differences were cell type specific. Also, 

DNA methylation differences could be detected in circulating DNA, which could be 

used as a potential biomarker. 

 

6.1 DMPs identified in the twin pairs were cell type-specific 

Previously, DNA methylation differences between MZ twin pairs discordant for T1D 

have not been studied in CD14+CD16- monocytes, CD4+ T cells, CD19+ B cells and 

buccal samples in a single study. The data presented in this thesis showed cell type-

specific DNA methylation differences between MZ twin pairs in the immune cells. 

The methylation differences were detected in nine of the 16 twin pairs that were 

sampled in a previous study carried out years before, therefore indicating that DNA 

methylation is a stable marker. However, the negative correlation in Figure 3.3A 
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between monocyte samples, suggests that a stable methylation mark is stable only 

within the same person, not necessary within the same cell type in other individuals. 

This weak correlation may also be due to the fact that different monocytes were 

profiled, CD14+CD16- in this study and CD14+ in the previous study highlighting the 

importance of that way the cells were isolated and cell composition.  

  

Cell composition is important as each cell type has its own methylation profile 

(Reinius et al., 2012; Lam et al., 2012). Although it is easier to ascertain PBMC 

samples, profiling specific cell types is crucial. Ideally, fresh samples from patients 

would be obtained and processed immediately, however this may not always be 

possible and studies have used cell lines to assess methylation (Stefan et al., 2013). 

Stefan et al. had used EBV transformed lymphoblastoid cell lines for DNA 

methylation profiling. However, DNA methylation profiles differ in leukocytes from 

peripheral blood to lymphoblastoid cell lines as the addition of EBV to immortalize 

human cells induces large-scale hypomethylation (Brennan et al., 2009; Hansen et 

al., 2014), therefore introducing bias. Another readily available type of sample is 

formalin-fixed paraffin-embedded (FFPE) tissue. A protocol has been developed to 

study archival FFPE tissue on the Illumina platform (Thirlwell et al., 2010). Although 

laboratories may not have access to fresh peripheral blood to study methylation, 

other types of tissue can be profiled. However, caution must be taken when 

analysing cell- or tissue-specific methylation. 

 

Hundreds of genetic variants identified by GWAS have been associated with 

complex diseases and deep sequencing can reveal rare variants that can contribute 

to disease pathogenesis (Hunt et al., 2013). However, most of the variants confer 

small increments in risk and missing heritability may account for the remaining risk 

(Manolio et al., 2009). The small DNA methylation differences shown in this thesis 

can contribute to missing heritability. It has been suggested that epigenetic variation 

can be an explanation for missing heritability as these modifications are stable and 

passed on through generations, therefore contributing to the risk of developing a 

disease (Slatkin, 2009; Koch, 2014). However, small differences in methylation 

between the twin pairs do not compare to differences found in alcohol consumption 

(~20%) (Zhu et al., 2012) and smoking (~12%) (Breitling et al., 2011). Small 

significant differences between the twin pairs in this study were a feature in the 

power calculation that was performed. It was then suggested to ascertain at least 50 

twin pairs for sufficient study power of over 90%. 
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6.2 The effects of ageing on methylation 

DNA methylation has been reported to have an inverse correlation with age in 

humans (Langevin et al., 2011; Steves et al., 2012) and in rats (Thompson et al., 

2010). This may be due to the cellular composition of blood being altered due to 

ageing, therefore presenting with a different methylation profile (Jaffe and Irizarry, 

2014) and this is referred to as „epigenetic drift‟ (Teschendorff et al., 2013b; Fraga 

and Esteller, 2007). This was supported by a study which reported over 10% 

methylation change over time in the same individual over 11 years (Bjornsson et al., 

2008). Intra-pair DNA methylation differences were described in childhood-onset 

diabetic patients (Rakyan et al., 2011a). This present study consisted of childhood-

onset and adult-onset diabetics, and it was expected that there would be larger 

methylation differences between adult-onset diabetics and their healthy co-twin due 

to age. However, this was not the case. Conversely, the more significant methylation 

differences came from twin pairs who were diagnosed with T1D at a younger age. 

This may be due to two things. First, there was a genuine effect or secondly, the 

effect was seen as those twins were the same pairs from the preliminary study 

where they analysed CD14+ monocytes from childhood-onset diabetic twin pairs and 

the same T1D-MVPs calls were identified. More twin pairs would then be needed to 

shed some light on this issue. 

 

The age of a human sample can now be predicted (Horvath, 2013) and it is 

important to have age-matched controls considering the change to an individual‟s 

methylome due to age when studying different diseases. Age-related DNA 

methylation changes have also been seen in a young cohort (Martino et al., 2011). 

Mononuclear cells were collected from new-borns and were subsequently sampled 

at ages 1, 2.5 and 5 years. There was a clear distinction in methylation between the 

age groups and after functional analyses, genes associated with methylation 

changes were with cell surface receptor and signal transduction events. An ideal 

study design may be to obtain samples from birth in the form of Guthrie cards or 

cord blood and follow up with samples from childhood through to adulthood. Guthrie 

cards gives a snapshot of what might have happened in utero (El Hajj et al., 2013) 

already showing DNA methylation differences in genes at birth (Lee et al., 2012a) 

and has been reported to be suitable for genome-wide DNA methylation profiling 

(Joo et al., 2013; Aberg et al., 2013). Limitations to studying these blood spots 

include issues with handling and storage, contamination, DNA degradation and they 

are difficult to obtain due to ethics (Ramagopalan and Rakyan, 2013). However, 
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generating DNA methylation profiles from birth will provide information on 

epigenomic variation in different human diseases. 

 

6.3 Illumina450K versus bisulfite sequencing 

In Chapter 3, two different DNA methylation profiling technologies were used. The 

Illumina450K BeadChip and BS-seq. Illumina450K interrogates over 485,000 CpG 

sites and contains two chemistry technologies: 135,000 probes from Infinium I array, 

350,000 probes from Infinium II (Sandoval et al., 2011). One advantage of this array 

is that the probes can be designed for CpG-poor regions, such as CpG island 

shores and shelves (Touleimat and Tost, 2012; Dedeurwaerder et al., 2011). A 

limitation of Illumina450K is that it does not generate a whole genome-wide 

methylation profile, however this is one of the advantages of performing a BS-seq 

analysis. 

 

As seen in Chapter 3, BS-seq resulted in more hypomethylated sites compared to 

Illumina450K. This was due to noise therefore requiring deeper coverage which 

costs more money. Running both platforms is ideal for comprehensive coverage of 

the methylome, however due to costing, one could be used for the main experiment 

and the other for validation. Limitations in both the Illumina450K array and BS-seq 

include incomplete conversion of unmethylated cytosines. Incomplete conversion 

will lead to false positives in methylation. Another limitation is the degradation of 

DNA during treatment with sodium bisulfite. Up to 90% of DNA is degraded during 

the process due to the high bisulfite concentrations, elevated temperatures and long 

incubation times (Tanaka and Okamoto, 2007). In both the Illumina450K array and 

BS-seq, bisulfite treatment cannot distinguish between 5-mC and 5-hmC (Krueger et 

al., 2012). Recently a new method has been proposed to detect this difference 

(Stewart et al., 2014). The authors had adapted a bisulfite-based 5-mC profiling 

technology for 5-hmC detection. They combined oxidative bisulfite (oxBS) chemistry 

with the Illumina450K BeadChip and have shown that the oxBS-450K protocol 

produced results that were highly reproducible compared to BS-seq. There are 

several other profiling technologies currently used by investigators (Bock, 2012; Liu 

et al., 2012; Lister and Ecker, 2009). On occasion, two different profiling methods 

can be combined for more comprehensive methylome coverage (Harris et al., 2010). 

These technologies are described in Section 1.8.3.1. 
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As well as different profiling technologies, there are many pipelines that specialise in 

analysing DNA methylation data such as Minfi (Aryee et al., 2014), WateRmelon 

(Pidsley et al., 2013) and RnBeads (Assenov et al., 2014). Each has its own uses 

(Wilhelm-Benartzi et al., 2013; Morris and Beck, 2014). In this study, ChAMP was 

performed in R. One other disadvantage of Illumina450K is the bias seen across the 

two different probes, however different R packages work to correct that bias 

(Teschendorff et al., 2013a). With profiling technologies costs lowering, there is a 

large number of DNA methylation data. A database that incorporates Illumina450K 

data from different methylation studies called Marmal-aid (Lowe and Rakyan, 2013). 

Marmal-aid currently holds DNA methylation data on 14,586 samples (true as of 

29/12/14) and is continuing to grow in size. This database enables an investigator to 

reprocess data and visualise the methylation state in different tissues.  

 

The use of certain profiling platforms and analysis methods is important, however, a 

confounding factor is different isolation methods, which affect analysis and therefore 

future functional studies. In a study comparing human monocyte functionality, 

different methods of cell isolation were tested. Anti-CD14 magnetic microbeads, 

non-monocyte depletion by antibody-conjugated magnetic microbeads, RosetteSep 

antibody cocktail and the classical adherence protocol were performed and it was 

reported that positive selection with magnetic microbeads gave the best results in 

term of purity and cell functionality (Zhou et al., 2012). Global DNA methylation is 

also affected by different DNA extraction methods (Soriano-Tarraga et al., 2013) 

and storage of samples (Mallone et al., 2011), therefore it is important to batch 

samples for analysis. 

 

6.4 DNA methylation differences detected in serum 

In diabetes, β-cells are invaded by immune cells leading to the destruction of these 

insulin secreting cells. Current methods of monitoring β-cell death are measuring 

fasting C-peptide levels (Wang et al., 2012) and PPP1R1A (Jiang et al., 2013). 

Chapter 4 described the use of nested methylation-specific PCR and 

pyrosequencing to determine levels of unmethylated insulin DNA in MZ twin pairs 

discordant for T1D. 

 

The qPCR experiments with SYBR Green and Taqman were not able to 

successfully detect unmethylated and methylated CpG sites, therefore 

pyrosequencing was performed. Pyrosequencing resulted in a significant difference 
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in methylation between twin pairs discordant for T1D where the diabetic was 

sampled less than two years from diagnosis. A limitation to this study was perhaps 

the newly-diagnosed patients. The sample size was small (5 vs 19 long-standing 

diabetics) and this difference would not be detected in those with long-standing 

diabetes. This may be that newly diagnosed patients still have β-cells compared to 

those with long-standing diabetes. Therefore, to determine how early this 

methylation difference can be detected, individuals who are at risk of developing 

T1D, that is those who have one or more diabetes-associated autoantibodies, 

should be studied. This would be useful to understand how quickly the autoimmune 

process progresses during the break down of the β-cells. 

 

There are several studies investigating different immunotherapies to preserve or 

regain β-cell regeneration and function. Lebastchi et al. reported preservation of β-

cell function in patients who received teplizumab, an anti-CD3 monoclonal antibody, 

compared to the placebo (Lebastchi et al., 2013). Another group administered lysine 

deacetylase inhibitors which saw a decrease in islet inflammation and increased 

numbers of Tregs in NOD mice (Christensen et al., 2014). Deciphering the β-cell 

epigenome in diabetes can have translational implications (Johnson and Evans-

Molina, 2014; Bramswig and Kaestner, 2012), leading to efforts to prevent, diagnose 

and monitor diabetes.  

 

6.5 Comparison of the different techniques to detect 

unmethylated CpG sites in circulating DNA 

In Chapter 4, patient serum was used to detect DNA methylation differences 

between twin pairs. Plasma also contains free circulating DNA, however it has been 

shown that higher amounts of DNA can be extracted from serum compared to 

plasma (Holdenrieder et al., 2005; Umetani et al., 2006). Either way, the assays 

performed in Chapter 4 were able to detect low levels of bisulfite converted DNA. At 

first, SYBR Green was used in qPCR as described by other groups studying 

methylation in T1D (Husseiny et al., 2014; Lebastchi et al., 2013), but also in cancer 

(Anker et al., 2001). SYBR Green is also inexpensive and easier to design than 

Taqman. However, as described in Section 5.3.2, primer dimers occurred due to the 

non-specificity nature of the assay and therefore could not be used. The use of the 

Taqman assay, although highly specific, is more costly. Another advantage of using 

Taqman is that it allows multiplexing to be performed, however, if interrogating more 

than two CpG sites, more probes will have to be designed, therefore raising the cost 
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of the experiment. Pyrosequencing combines PCR and sequencing-by-synthesis 

techniques to provide accurate CpG methylation measurement. Advantages of 

performing pyrosequencing are the cost for this assay is lower than the Sanger 

method, hundreds of thousands of sequence reads can be obtained in a single run 

and is very accurate (Siqueira et al., 2012). A limitation in performing 

pyrosequencing, is that the assay can only sequence short DNA sequences. Hence, 

in this study two sequencing primers were designed to assess the methylation levels 

of two CpG sites. A limitation in this study was the small sample size, particularly 

when comparing the newly-diagnosed twins to long-standing diabetes twins (5 to 19 

pairs respectively). Although there was a significant result in Figure 5.16, a power 

calculation should also be performed. Another limitation was primer design, this 

applied to all assays. The primers were checked for self-looping, primer dimer 

hybridization and cross-hybridization, however, primer dimer issues can still occur. 

 

qPCR can be performed in a standard diagnostic laboratory in a hospital setting and 

therefore would be a useful way to apply this method for monitoring β-cell death. It is 

also inexpensive and simple to perform compared to pyrosequencing, as not every 

laboratory will have a pyrosequencer. Another technique based on the same 

principle is Droplet Digital™ PCR (ddPCR) (Usmani-Brown et al., 2014). ddPCR 

involves the sample which is dispersed into droplets that acts as individual PCR 

reactions. The sensitivity of the assay is higher than qPCR and reduces 

contamination as there is no need for nested PCR. The ddPCR system would also 

be easily obtainable in a diagnostic laboratory. 

 

6.6 Biomarkers of β-cell death in diabetes 

In T1D, autoantibodies against GAD65, IA-2 and ZnT8 are established biomarkers 

for the disease (Dang et al., 2011; Leslie et al., 2001). As it is still unknown whether 

T1D-MVPs are the outcome of autoantibody presence or is involved in the 

seroconversion, they could potentially become biomarkers for T1D. DNA 

methylation differences seen between the twin pairs in this thesis indicate that 

methylation marks are stable and can be detected in the circulation. Further studies 

will have to be performed to observe whether the difference in unmethylated insulin 

DNA in diabetic patients compared to healthy controls, is significant enough to be 

considered as a diagnostic or monitoring tool for β-cell death. Nevertheless, other 

potential biomarkers have been studied and reported in diabetes. 
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Recently, preproinsulin (PPI) has been proposed as a potential biomarker to detect 

β-cell death (Fisher et al., 2013). PPI is a precursor molecule of insulin and following 

sequential cleavage of PPI and proinsulin, insulin is synthesised in the β-cells. The 

group developed an assay to detect the methylation status of circulating PPI DNA in 

mice. Using dual fluorescent-probe multiplex PCR, they showed a significant 

increase in demethylation prior to onset of hyperglycemia. The authors also reported 

a decrease in demethylation following diabetes development, likely reflecting the 

absence of further β-cell death. Therefore this assay could be used in detect β-cell 

death in newly-diagnosed patients. Key miRNAs can also be detected in circulation, 

therefore demonstrating the potential to become predictive biomarkers for disease 

(Nielsen et al., 2012; Klein et al., 2013). miRNAs are small non-coding RNA 

molecules that are involved in post-translational regulation of gene expression 

(Tomankova et al., 2011). Nielsen et al. compared expression levels of sera miRNA 

related to β-cell function and glycaemic control from newly-diagnosed T1D children 

and age-matched healthy controls. They reported several miRNAs that were in 

upregulated in the T1D patients such as miR-27a, miR-29a and miR-210. In 

particular, miR-25 was significantly negatively associated with residual β-cell 

function (p = 0.0037). This study suggested that miR-25 may be tissue-specific for 

glycaemic control after T1D diagnosis therefore may be a useful biomarker for the 

disease. Epigenetic alterations in disease have a crucial role for the clinics. These 

modifications can pave the way for personalised medicine including for future 

diagnosis, prognosis and prediction of response to therapies (Heyn and Esteller, 

2012; Herold et al., 2013). 



 

 

 

Chapter 7 
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7 Further work and conclusion 

7.1 Further work  

The data from this thesis provided new evidence on DNA methylation differences in 

MZ twin pairs discordant for T1D. More twin pairs will be ascertained as the power 

analysis suggested recruiting 50 MZ twin pairs to obtain 90% power. Once the DNA 

methylation signatures have been identified in the discovery cohort, it is important to 

replicate and validate the findings. As the DMPs were cell-specific, these DMPs may 

be found in whole blood. Sorting cells from blood is a costly and time-consuming 

process, therefore if the signatures can be detected in whole blood, sampling and 

processing of samples would be easier. To perform the replication experiment, 

whole blood samples from T1D singletons and control singletons will be analysed. 

There are several methods in which the methylation signatures can be detected, 

one of which is MethyLight. MethyLight is based on Taqman technology where 

several CpG sites can be interrogated at the same time through multiplexing (Eads 

et al., 2000). The assay requires small DNA concentrations, approximately 50 ng, 

and is relatively simple to perform. In addition to the 24 twin pairs profiled on the 

Infinium450K BeadChip, eight CD4+ T cell samples from four MZ twin pairs were 

analysed using BS-seq. Validation will involve CD4+ lymphocytes from the 24 pairs 

and profiling them on the Fluidigm platform. The Fluidigm platform enables the 

investigator to study DNA methylation in a single cell. Once the signatures have 

been replicated and validated, it would be useful to understand the functional 

outcomes of these DNA methylation differences at a molecular level, how it affects 

the chromatin structure and its impact on gene expression. 

 

Rakyan et al. had analysed individuals who were autoantibody positive but did not 

develop T1D (Rakyan et al., 2011a). Methylation differences were detected when 

comparing these high risk individuals with controls, leading to the question whether 

or not these methylation differences arise before or after seroconversion of 

diabetes-associated autoantibodies. If the DMPs appeared before the presence of 

autoantibodies, this would suggest that they could cause disease and not become 

the result of secondary autoantibody-associated immune process. If the DMPs were 

detected before autoantibody positivity, then these marks could potentially be 

detected at birth. Although there was a small correlation found in cord blood, follow 

up samples from the 99 children are currently being collected to see if these 

signatures are detected much later on. 
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Although detecting methylation differences was difficult through the use of qPCR, 

differences were found between newly diagnosed twin pairs compared to twins who 

had long-standing diabetes through pyrosequencing. The results from 

pyrosequencing set a platform for further studies into β-cell death. In both qPCR and 

pyrosequencing assays, it was possible that the DNA amplified, may have come 

from other tissues. An experiment analysing samples from patients who have had 

total pancreactomies may shed some light on the source of circulating DNA. 

 

7.2 Conclusion 

This thesis has investigated DNA methylation in T1D. In a preliminary study, it was 

shown that DNA methylation antedated T1D and differences were identified 

between MZ twin pairs discordant for T1D. Following on from this, the present study 

investigated whole genome-wide DNA methylation profiles using a more extensive 

array (Illumina450K) in a broader range of cells, CD14+CD16- monocytes, CD4+ T 

cells, CD19+ B cells and buccal cells from a larger cohort of MZ twin pairs discordant 

for T1D. 

 

Evidence presented here has shown that DNA methylation marks are stable, at least 

for three years which has been reported before (Beyan et al., 2012a). Although DNA 

methylation differences between the twin pairs were small, DMPs identified were cell 

type specific. DMRs were also found to overlap CD4+ enhancer sites through the 

use of BS-seq. As CD4+ cells play a role in T1D, further investigations into 

chromatin remodelling and disease should be performed. However, it was found that 

even larger number of twins are needed to achieve sufficient power (>85%). Further 

replication and validation studies are required in turn to confirm disease-associated 

epigenetic markers and could be of diagnostic or therapeutic value. Detection of 

DNA methylation differences in serum could present a novel way to monitor β-cell 

death and help in the assessment of immunotherapy. 

 

There is some evidence to suggest that DNA methylation has a role in disease 

aetiology, albeit small methylation differences between twin pairs discordant for 

T1D. Whether it is a cause effect or the result of disease remains to be investigated 

as analyses of DNA methylation in cord blood was inconclusive. Integration of 

GWAS and EWAS data can pave the way to better understand complex 

autoimmune diseases such as T1D.  
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9 Appendix 

9.1 Appendix I – Materials and equipment 

9.1.1 Chemical reagents and enzymes 

 

10x PfuTurbo Cx reaction buffer Agilent Technologies, UK 

20% Human Albumin  PAA, UK 

2-Mercaptoethanol Sigma Aldrich, UK 

2-propanol Sigma Aldrich, UK 

50 bp ladder Invitrogen, UK 

Agencourt AMPure XP - PCR Purification  Beckman Coulter, UK 

Ammonium chloride  Sigma Aldrich, UK 

Ampicillin  Sigma Aldrich, UK 

BgIll New England Biolabs, UK 

BamHI New England Biolabs, UK 

Boric acid Sigma Aldrich, UK 

CpG Methyltransferase (M.SssI) New England Biolabs, UK 

dATP PCR Grade, sodium salt  Roche Applied Science, UK 

dNTP mix  New England Biolabs, UK 

DEPC water, molecular biology grade Invitrogen, UK 

DNA Polymerase I, Large (Klenow) Fragment  New England Biolabs, UK 

EDTA  Sigma Aldrich, UK 

Ethanol  Sigma Aldrich, UK 

Ethidium bromide Sigma Aldrich, UK 

Klenow Fragment (3’→5’ exo-)  New England Biolabs, UK 

LB Agar, powder (Lennox) Life technologies, UK 

LB Broth, powder (Lennox) Life technologies, UK 

MESA BLUE qPCR MasterMix Plus for SYBR® Assay Eurogentec, UK 

MyTaq™ HS DNA Polymerase Bioline, UK 

NEBuffer 3 New England Biolabs, UK 

Notl New England Biolabs, UK 

PBS 1X  Sigma Aldrich, UK 

PBS 10X  Sigma Aldrich, UK 

Percoll  GE Healthcare, UK 

PfuTurbo Cx Hotstart DNA Polymerase  Agilent Technologies, UK 
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Penicillin 1000u/ml-Streptomycin100μg/ml Invitrogen, UK 

Potassium bicarbonate  Sigma Aldrich, UK 

Power SYBR® Green PCR Master Mix Life Technologies, UK 

Protein A Sepharose GE Healthcare, UK 

QuantiTect SYBR Green PCR Kit Qiagen, UK 

Quick Ligation™ Kit  New England Biolabs, UK 

Scintillation fluid PerkinElmer, UK 

Sodium citrate tribasic dihydrate  Sigma Aldrich, UK 

T4 DNA Polymerase  New England Biolabs, UK 

T4 Polynucleotide Kinase  New England Biolabs, UK 

TaqMan® Universal PCR Master Mix Life Technologies, UK 

TaqMan® Gene Expression Master Mix Life Technologies, UK 

Tris-Base Sigma Aldrich, UK 

Trypan blue 0.4%   Sigma Aldrich, UK 

UltraPure™ Agarose  Invitrogen, UK 
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9.1.2 Equipment 

 

7500 Real Time PCR System  Applied Biosystems, UK 

Agarose gel electrophoresis tank  Bio-rad, UK 

BD FACS Canto II BD, UK 

Bioanalyzer  Agilent Technologies, UK 

Biorupter Diagenode, BE 

Glucose meter  HemoCue, UK 

Haemocytometer  Hawksley, UK 

Heatblock Grant Instruments, UK 

MACS stand and separator Miltenyi Biotech, UK 

Megafuge® 1.0 R  Heraeus, UK  

Microcentrifuge Hettich, SZ 

Nanodrop Thermo Scientific, UK 

PTC-225 Peltier Thermal Cycler  MJ Research, US 

Pyrosequencer PSQ96 Qiagen, UK 

Qubit Fluorometer  Invitrogen, UK 

QuadroMACS Separation Unit  Miltenyi Biotech, UK 

Roller Luckham ltd, UK 

SafeFAST Elite fume hood Faster S.r.l., IT 

Shandon Cytospin 3 Centrifuge  Thermo Scientific, UK 

UV Transilluminator Alpha Innotech 

Corporation, US 

Vortex Grant Instruments, UK 

Water bath Grant Instruments, UK 
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9.1.3 Consumables 

 

50ml and 15ml Flacon tubes  Sarstedt, DE 

1.5ml eppendorf tubes  Eppendorf, UK 

0.2ml pcr tubes  Starlab, UK 

Adhesive PCR sealing film Invitrogen, UK 

96 well flat bottom plates Orange Scientific, BE 

96 well plates Invitrogen, UK 

96-well plates (filtered) Milipore, UK 

BD Vacutainer® Sodium Heparin tube  BD, UK 

BD Vacutainer® Plastic Serum tube with Red BD 

Hemogard™ closure 
BD, UK 

BD Vacutainer® Plastic K3EDTA tube  BD, UK 

B-glucose microcuvettes  HemoCue, UK 

BD Safety-Lok; Blood Collection Set BD, UK 

Cryovials Starlab, UK 

Falcon® 5mL Round Bottom Polystyrene Test Tube Corning, UK 

Filter Cards for Shandon* Cytospin Fisher Scientific, UK 

LD columns  Miltenyi Biotech, UK 

LS columns  Miltenyi Biotech, UK 

MS columns  Miltenyi Biotech, UK 

Pre-separation filters Miltenyi Biotech, UK 

Pasteur Pipette Single Wrap SLS, UK 

Slides Invitrogen, UK 
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9.1.4 Kits 

 

Agilent High Sensitivity DNA Kit  Agilent Technologies, UK 

DNA Clean and Concentrator-5 kit Zymo Research, US 

EpiTect Bisulfite Kit Qiagen, UK 

EZ DNA Methylation™ Kit  Zymo Research, US 

EZ-96 DNA Methylation MagPrep kit Zymo Research, US 

GeneJET Plasmid Miniprerp kit Thermo Scientific, UK 

GenSolve DNA recovery kit Labtech, UK 

Gentra Puregene Buccal Cell Kit  Qiagen, UK 

Ovation Ultralow Library Systems Nugen, US 

QIAamp DNA Blood Mini Kit  Qiagen, UK 

QIAquick Gel Extraction Kit Qiagen, UK 

QIAquick PCR Purification Kit  Qiagen, UK 

Qubit® dsDNA HS Assay Kit Invitrogen, UK 

Qubit® dsDNA BR Assay Kit Invitrogen, UK 

Rapid Romanowsky stain kit  Fisher Scientific, UK 

RNeasy Mini kit  Qiagen, UK 
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9.1.5 Buffers and Media 

 

10 xTTBS 78.8 g Tris  

116.8 g sodium chloride 

Adjust to pH 7.2 

100 mL of Tween 20  

1M trisodium citrate 29.4 g trisodium citrate in 100ml of water through 

a filter 

Buffer 2 PBS 1X  

2 mM EDTA  

500 mL PBS  

2 mL 0.5M EDTA    

Buffer 3 PBS 1X 

13mM NaCitrate  

500 mL PBS 

6.6 mL 1 M trisodium citrate  

LB agar 6.4 g of LB agar powder topped up to 500 mL 

with distilled water 

100 µL ampicillin 

LB broth 8 g of LB broth powder, topped up to 500 mL with 

distilled water 

100 µL ampicillin  

Lysis Buffer 4.15 g ammonium chloride  

0.5 g potassium bicarbonate 

100 µL 0.5 M EDTA to 500 mL of water 

Percoll 1.078 g/mL (561 mL) 300 mL Percoll 

16 mL PBS 10X 

144 mL PBS 1X 

9.2 mL 20% human albumin 

4.8 mL 1 M trisodium citrate 

RPMI  5 mL penicillin streptomycin  

5 mL human serum albumin to 500 mL RPMI 

1640 Medium, GlutaMAX™, HEPES (Invitrogen) 

TBE buffer 10x  

 

108 g tris base 

51g  boric acid 

40 mL EDTA  

500 mM  

pH 8.0 

  



  Chapter 9 Appendix 

258 

9.1.6 Antibodies 

 

Anti-Mouse Ig, κ/Negative Control (FBS) Compensation 

Particles Set 

BD Biosciences, UK 

CD14 microbeads, human  Miltenyi Biotech, UK 

CD16 microbeads, human  Miltenyi Biotech, UK 

CD4 microbeads, human  Miltenyi Biotech, UK 

CD19 FITC, human  Miltenyi Biotech, UK 

CD19 microbeads, human  Miltenyi Biotech, UK 

CD66b FITC antibody  NHS, UK 

CD16 PE antibody  Miltenyi Biotech, UK 

CD45 PE antibody  Invitrogen, UK 

FITC conjugated monoclonal mouse anti-human CD14, 

clone MφP9 

BD Biosciences, UK 

FITC conjugated monoclonal mouse anti-human CD4, 

clone M-T466 

Miltenyi Biotech, UK 

Ig, κ light chain FITC TB28-2 Ms IgG1, κ BD Biosciences, UK 

Ig, κ Light Chain PE TB28-2 Ms IgG1, κ BD Biosciences, UK 

PE conjugated monoclonal mouse anti-human CD19, 

clone LT19 

Miltenyi Biotech, UK 

PE conjugated monoclonal mouse anti-human CD16, 

clone B73.1/leu11c 

BD Biosciences, UK 

PerCP-Cy5.5 conjugated monoclonal mouse anti-human 

CD64, clone 10.1 

BD Biosciences, UK 

PE-CY7 conjugated monoclonal mouse anti-human 

CD45, clone HI30 

Invitrogen, UK 

PerCP-Cy™5.5 Mouse IgG1 κ Isotype Control BD Biosciences, UK 

PE-Cy® 7  Mouse IgG1 Invitrogen, UK 
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9.1.7 Databases and software 

 

7500 Software v2.0.6  

Chromas Lite http://chromas-

lite.software.informer.com/  

DAVID http://david.abcc.ncifcrf.gov/tools.jsp  

Flowjo v8.0 and v10.0  

GraphPad Prism v5.0  

MethPrimer design http://www.urogene.org/cgi-

bin/methprimer/methprimer.cgi  

Microsoft Office 2007 and 2010  

PubMed http://www.ncbi.nlm.nih.gov/pubmed/  

R http://www.r-project.org/  

SPSS v17.0  

UCSC Genome Browser http://genome.ucsc.edu/  

http://chromas-lite.software.informer.com/
http://chromas-lite.software.informer.com/
http://david.abcc.ncifcrf.gov/tools.jsp
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.r-project.org/
http://genome.ucsc.edu/
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9.1.8 DNA oligonucleotides 

 

Table 9.1. Table of DNA oligonucleotides. 

All primers were purchased from Sigma Aldrich, UK.  

 

Bisulfite sequencing 

PE PCR Primer 1.01 

 

5‟–

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCT

ACACGACGCTCTTCCGATCT*T 

PE PCR Primer 2.01 

 

5‟–

CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATT

CCTGCTGAACCGCTCTTCCGATC*T 

 

Methylated adapters 

PE Adapters1 

5' P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG 

5' ACACTCTTTCCCTACACGACGCTCTTCCGATCT 

Methylation specific PCR 

First step PCR_Forward TTAGGGGTTTTAAGGTAGGGTATTTGGT 

First step PCR_Reverse ACCAAAAACAACAATAAACAATTAACTCACCCTACAA 

MSP_Methylated Forward TAGTCGTAGTTTTTGTGAATTAATATTTGTGC 

MSP_Methylated Reverse CACCCTACAAATCCTCTACCTCCCG 

MSP_Unmethylated 

Forward 
TTAGTTGTAGTTTTTGTGAATTAATATTTGTGT 

MSP_Unmethylated 

Reverse 
CACCCTACAAATCCTCTACCTCCCA 
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9.2 Appendix II - Methods 

 

 

 

 

 

 

 

 

Figure 9.1. Unstained controls for FACS analysis. Unstained controls for each cell type 

were analysed alongside CD14
+
CD16

-
 monocytes (A), CD4

+
 T cells (B) and CD19

+
 B cells 

(C) stained with the conjugated antibodies. Unstained controls were used to detect 

autofluorescence or background staining of the cells. 
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Figure 9.2. Fluorescence-minus-one controls for FACS analyses. FMO controls were 

used to identify and gate cells due to the multiple antibodies staining panel. PBMC samples 

were stained. The controls were set up by omitting the fluorochrome being analysed, FITC 

(A), PE (B), PerCP-CY5.5 (C) and PE-CY7 (D). 
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9.3 Appendix III - Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3. qPCR optimisation step with DMSO. One of the optimisation steps was to use 

DMSO as it lowers the Tm of the primer-template hybridization reaction and reduce 

secondary structures. However, this did not remove the primer dimers as shown in the 

amplification plot (A) and melting curve analysis (B).  

 

 

 

 

 

 

A B 
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Figure 9.4. qPCR optimisation step with new, shorter primer sets.  Shorter primers were 

designed as the original primer lengths were thought to have self-hybridized to produce 

primer dimers (A and C). The amplification curves were slightly better, however, primer 

dimers still appeared in the reactions (B and D).  

A 

C 

B 

D 
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Figure 9.5. Individual correlation plots for each MZ twin pair from the Illumina450K 

analysis. The plots were ordered by age at diagnosis (left to right, top to bottom) with nine 

pairs of twins previously profiled using Illumina27K (red correlation).  
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Table 9.2. MVP calls for CD4
+
 cells.  

 

Probes p.val CHR Arm Gene Feature  Enhancer 

cg19845159 5.96E-07 8 q ZNF34 5'UTR Island NA 

cg20066488 1.19E-06 14 q PPP1R13B TSS1500 S_Shore NA 

cg08216099 1.67E-06 2 p PXDN Body 

 

TRUE 

cg21240640 3.93E-06 2 p C2orf16 5'UTR 

 

NA 

cg09569760 3.93E-06 5 q RNF130 Body 

 

TRUE 

cg00895997 3.93E-06 7 q SLC13A1 TSS200 

 

NA 

cg25851842 3.93E-06 1 q TGFB2 TSS200 Island NA 

cg05090359 3.93E-06 2 p TPO Body N_Shore NA 

cg16297569 5.13E-06 1 p GFI1 TSS1500 Island NA 

cg01587049 5.13E-06 14 q MIR329-2 TSS1500 

 

NA 

cg25567280 6.56E-06 3 q RNF13 Body  NA 

cg27362718 8.34E-06 16 q ZFPM1 Body  TRUE 

cg25892296 1.05E-05 4 q C4orf51 Body  TRUE 

cg00303919 1.31E-05 1 p REG4 3'UTR  TRUE 

cg26894854 1.31E-05 1 q SLC45A3 Body N_Shore TRUE 

cg16492417 1.63E-05 14 q FLRT2 5'UTR  NA 

cg12828294 1.63E-05 8 q HAS2 5'UTR  TRUE 

cg21266698 1.63E-05 1 q KIAA0040 5'UTR  NA 

cg00333843 1.63E-05 16 q MAF 3'UTR S_Shelf NA 

cg08427977 2.01E-05 10 q C10orf72 TSS1500 S_Shore NA 

cg10846775 2.01E-05 12 q FAM101A 5'UTR S_Shelf NA 

cg07955474 2.01E-05 16 q IRF8 5'UTR S_Shelf NA 

cg27130665 2.01E-05 11 p LRRC4C TSS1500  NA 

cg00647232 2.01E-05 1 q SEC16B 5'UTR  NA 

cg08320359 2.47E-05 16 p C16orf45 TSS200  TRUE 

cg15030712 2.47E-05 7 p CHN2 Body  TRUE 

cg22821560 2.47E-05 1 q KCNK2 TSS200  NA 

cg00537210 2.47E-05 2 p KLHL29 Body S_Shore TRUE 

cg08827674 2.47E-05 17 q LLGL2 5'UTR Island NA 

cg00442646 2.47E-05 6 q OSTCL Body  NA 

cg10084554 3.02E-05 10 q ADAM12 Body  TRUE 

cg22307508 3.02E-05 17 p ASPA TSS1500 S_Shelf NA 

cg26073101 3.02E-05 8 q EEF1D Body  NA 

cg18703935 3.02E-05 6 p HLA-H Body Island NA 

cg11287400 3.02E-05 3 p MITF Body  TRUE 

cg23898305 3.02E-05 2 q MYO7B Body N_Shelf NA 

cg21626573 3.02E-05 12 q NCOR2 Body N_Shore TRUE 

cg22929506 3.02E-05 2 q PNKD 3'UTR S_Shelf NA 

cg05352321 3.02E-05 10 q SH3PXD2A Body  TRUE 

cg10734448 3.02E-05 6 p TNXB Body N_Shelf NA 

cg10339152 3.66E-05 20 p C20orf54 TSS1500  NA 

cg03625136 3.66E-05 3 p CACNA2D2 Body S_Shore NA 

cg15330117 3.66E-05 10 p FLJ45983 TSS1500 Island NA 

cg05346902 3.66E-05 19 q MEIS3 Body Island TRUE 

cg17895496 3.66E-05 15 q PLA2G4F TSS1500  NA 

cg25290617 3.66E-05 17 q RPTOR 3'UTR Island NA 

cg17803589 3.66E-05 21 q SLC19A1 Body N_Shelf NA 

cg22842189 3.66E-05 3 p THRB 5'UTR  TRUE 

cg21535670 3.66E-05 8 q TRAPPC9 Body  NA 

cg07718813 3.66E-05 1 p ZBTB48 Body S_Shore NA 
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Table 9.3. MVP calls for CD14
+
CD16

-
 cells. 

 

Probes p.val CHR Arm Gene Feature  Enhancer 

cg10350689 1.63E-05 4 q CXCL1 Body S_Shore NA 

cg25409040 3.02E-05 11 p CSTF3 TSS1500 S_Shore NA 

cg00955686 3.02E-05 1 p MAP7D1 TSS1500 N_Shore NA 

cg03454705 4.42E-05 17 q FOXK2 Body S_Shore NA 

cg04557883 6.39E-05 6 p C6orf145 TSS1500 S_Shore NA 

cg00031162 7.63E-05 17 p TNFSF12 Body S_Shore TRUE 

cg15472754 9.08E-05 3 q MUC4 TSS1500 

 

NA 

cg17194243 0.000127 13 q FAM48A 5'UTR Island NA 

cg02974499 0.000127 11 q FAU TSS200 Island NA 

cg13681781 0.000127 9 q QSOX2 Body 

 

NA 

cg14723284 0.00015 21 q C21orf70 Body S_Shelf TRUE 

cg15808604 0.00015 15 q LOC283731 Body N_Shore NA 

cg18449187 0.00015 19 q NLRP7 TSS1500  NA 

cg10476558 0.000175 20 q TPX2 TSS200 N_Shore NA 

cg12243582 0.000175 7 q ZNF138 TSS1500 N_Shore NA 

cg09837298 0.000205 14 q ITPK1 Body  TRUE 

cg13088038 0.000205 2 q LOC440839 Body  TRUE 

cg17926869 0.000239 19 p CCDC124 5'UTR S_Shore NA 

cg25877019 0.000239 7 p FOXK1 3'UTR S_Shore NA 

cg17869960 0.000239 6 p PHACTR1 5'UTR  NA 

cg22828990 0.000239 14 q SERPINA1 5'UTR  TRUE 

cg17589866 0.000278 2 p ALK Body  TRUE 

cg15630071 0.000278 3 p TRIM71 Body Island NA 

cg06058311 0.000322 8 q EFR3A TSS1500 N_Shore NA 

cg11807539 0.000322 12 q GALNT9 Body N_Shore NA 

cg16156617 0.000322 6 p SLC17A4 Body  NA 

cg20973958 0.000373 13 q ATP11A Body N_Shelf TRUE 

cg02047809 0.000373 14 q COCH TSS1500 N_Shore TRUE 

cg07464125 0.000373 10 q KCNMA1 Body  NA 

cg03585888 0.000373 19 q MYH14 Body S_Shore NA 

cg04043892 0.000373 12 q PXN Body S_Shore NA 

cg00364357 0.000373 15 q SNX22 TSS1500 Island NA 

cg00285317 0.00043 2 q MLPH Body  TRUE 

cg27039218 0.00043 10 p NRP1 Body  TRUE 

cg13063900 0.00043 12 p PDE3A Body  TRUE 

cg18262201 0.00043 10 p PFKFB3 Body Island NA 

cg26129110 0.000494 5 p ADCY2 Body  TRUE 

cg04391205 0.000494 2 q C2orf88 TSS1500 N_Shore NA 

cg17459497 0.000494 2 p COLEC11 Body  NA 

cg07597706 0.000494 17 q CUEDC1 5'UTR S_Shore NA 

cg06215782 0.000494 12 p EFCAB4B Body  NA 

cg05786348 0.000494 2 q GPD2 5'UTR S_Shelf NA 

cg12879013 0.000494 4 q KIAA1211 5'UTR  NA 

cg18368669 0.000494 4 p PCGF3 Body Island NA 

cg12094903 0.000494 6 p PSMB8 3'UTR N_Shelf NA 

cg21582758 0.000494 5 q RASGEF1C Body S_Shore NA 

cg12006544 0.000494 13 q RNF17 Body  NA 

cg15392029 0.000494 11 q TMEM136 TSS1500 N_Shore NA 

cg20555564 0.000568 14 q C14orf133 TSS1500 Island NA 

cg08224238 0.000568 16 q CA5A Body  TRUE 
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Table 9.4. MVP calls for CD19
+
 cells. 

 

Probes p.val CHR Arm Gene Feature  Enhancer 

cg01934142 5.96E-07 4 p RFC1 TSS200 Island NA 

cg19866406 2.98E-06 1 p SLC6A17 Body 

 

TRUE 

cg06899836 8.34E-06 6 q CD164 TSS1500 Island NA 

cg05392764 1.05E-05 1 q FCRLB Body Island NA 

cg16161418 1.05E-05 6 p KIAA1949 3'UTR S_Shelf NA 

cg13031595 1.31E-05 20 q ARFGEF2 3'UTR 

 

NA 

cg04481722 1.31E-05 22 q DGCR6 TSS200 Island NA 

cg08136747 1.31E-05 19 p PGPEP1 TSS200 Island NA 

cg06454848 1.31E-05 19 q ZNF260 5'UTR Island NA 

cg14088052 2.01E-05 7 p CCM2 TSS1500 N_Shore NA 

cg13529064 2.01E-05 7 p URGCP Body  NA 

cg27629776 2.47E-05 20 q FAM83C TSS200 S_Shore NA 

cg21310336 2.47E-05 6 p ZNF311 TSS1500  NA 

cg03801030 3.02E-05 11 p APBB1 TSS1500 S_Shore NA 

cg24863569 3.02E-05 5 q COL23A1 Body  NA 

cg19057227 3.02E-05 2 p TTC15 Body  NA 

cg06145508 3.66E-05 10 q ABLIM1 Body  NA 

cg07510303 3.66E-05 6 q ADAT2 3'UTR  TRUE 

cg03639021 3.66E-05 5 q GNB2L1 TSS200 Island NA 

cg27622515 3.66E-05 16 p LMF1 Body N_Shore NA 

cg05786278 3.66E-05 2 p MYT1L 5'UTR  NA 

cg16248277 4.42E-05 10 q FGF8 TSS1500 Island NA 

cg20460101 5.33E-05 7 q CDK6 5'UTR Island NA 

cg16141228 5.33E-05 5 q CLINT1 TSS200 S_Shore NA 

cg17832805 5.33E-05 6 q HMGN3 TSS200 Island NA 

cg01021488 5.33E-05 15 q IGF1R Body Island NA 

cg08571639 5.33E-05 2 q LRRFIP1 Body  TRUE 

cg14204738 5.33E-05 1 q RORC TSS1500  NA 

cg12484411 5.33E-05 8 q TRHR TSS200  NA 

cg26178529 6.39E-05 6 q ATG5 TSS200 Island NA 

cg09008417 6.39E-05 3 p CCDC13 TSS200 Island TRUE 

cg01282921 6.39E-05 10 q DLG5 Body  TRUE 

cg16435469 6.39E-05 2 q LYPD6 5'UTR  NA 

cg01525976 6.39E-05 12 q PTPRR Body  TRUE 

cg09728637 6.39E-05 18 p TYMS Body S_Shore NA 

cg07148743 7.63E-05 5 p BRD9 Body N_Shore NA 

cg09301086 7.63E-05 2 p COLEC11 Body Island NA 

cg20356147 7.63E-05 3 q EEFSEC Body  TRUE 

cg04342999 7.63E-05 5 q MATR3 TSS200 Island NA 

cg02248037 7.63E-05 6 p MICB 5'UTR Island NA 

cg26646397 7.63E-05 5 q NDST1 Body S_Shelf TRUE 

cg27389262 7.63E-05 1 q OTUD7B TSS200 Island NA 

cg13363640 7.63E-05 11 p SNORA54 TSS200  NA 

cg20594671 7.63E-05 2 p SNTG2 Body  NA 

cg19334452 7.63E-05 19 p TLE2 Body Island TRUE 

cg00320608 7.63E-05 2 p WDR43 TSS1500 N_Shore NA 

cg10982358 9.08E-05 1 p CDKN2C TSS200 S_Shore NA 

cg13560576 9.08E-05 9 p ERMP1 TSS1500 S_Shore NA 

cg02426093 9.08E-05 6 q FBXO5 TSS1500 S_Shore NA 

cg01382281 9.08E-05 19 q FIZ1 Body Island NA 
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Table 9.5. Pyrosequencing results from sequencing primer 1. Twin pairs have been 

omitted from the analysis due to failed checks in the assay. Difference in methylation 

between the twin pairs were calculated as follows: Non-T1D minus T1D. Negative values are 

in red.  

 

 

 CpG1 CpG2 

Twin pair T1D Non-T1D Difference % T1D Non-T1D Difference % 

2 81.06 100 18.94 59.89 66.62 6.73 

3 89.34 78.31 -11.03 62.96 60.61 -2.35 

4 90.13 95.56 5.43 50.42 69.45 19.03 

6 89.43 84.91 -4.52 58.15 48.36 -9.79 

8 89.16 89.3 0.14 82.92 76.32 -6.6 

9 64.86 73.1 8.24 59.73 61.8 2.07 

10 90.22 85.72 -4.5 67.76 82.55 14.79 

11 99.4 68.48 -30.92 72.37 67.71 -4.66 

12 94.23 97.34 3.11 68.55 74.87 6.32 

13 52.55 80.1 27.55 37.39 69.85 32.46 

14 92.32 87.74 -4.58 71.79 77.06 5.27 

15 81.58 84.56 2.98 63.88 74.66 10.78 

16 76.29 87.21 10.92 82.12 58.4 -23.72 

17 83.38 79.07 -4.31 58.97 57.74 -1.23 

18 96.48 100 3.52 84.2 59.85 -24.35 

20 79.33 84.89 5.56 69.28 75.12 5.84 

21 89.32 87.77 -1.55 58.86 78.75 19.89 

22 84.15 62 -22.15 55.58 59.89 4.31 

24 65.36 47.8 -17.56 34.75 41.16 6.41 

25 82.89 93.26 10.37 58.11 56.38 -1.73 

26 37.22 73.02 35.8 34.62 52.41 17.79 

31 44.27 88.86 44.59 50.98 57.95 6.97 

32 87.73 88.98 1.25 71.96 62.25 -9.71 

33 84.76 88.65 3.89 65.91 74.43 8.52 
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Table 9.6. Pyrosequencing results from sequencing primer 2. Twin pairs have been 

omitted from the analysis due to failed checks in the assay. Difference in methylation 

between the twin pairs were calculated as follows: Non-T1D minus T1D. Negative values are 

in red.  

 

 

 CpG1 CpG2 

Twin pair T1D Non-T1D Difference % T1D Non-T1D Difference % 

1 75.02 71.18 -3.84 55.79 60.21 4.42 

2 73.37 80.22 6.85 59.37 74.24 14.87 

3 70.03 80.99 10.96 48.81 67.48 18.67 

4 71.81 91.93 20.12 70.34 59.87 -10.47 

6 78.02 68.95 -9.07 81.85 49.14 -32.71 

8 74.04 85.93 11.89 53.84 65.38 11.54 

10 85.97 77.26 -8.71 69.69 73.97 4.28 

12 74.01 75.82 1.81 73.25 64.01 -9.24 

13 76.73 84.39 7.66 39.26 57.92 18.66 

14 83.15 84.64 1.49 65.3 78.21 12.91 

15 78.58 88.04 9.46 62.72 78.3 15.58 

16 75.02 78.82 3.8 75.55 59.32 -16.23 

17 75.48 73.94 -1.54 60.19 63.13 2.94 

19 33.46 76.98 43.52 52.88 76.1 23.22 

20 78.96 78.05 -0.91 62.89 54.59 -8.3 

21 73.22 85.22 12 52.6 68.92 16.32 

24 67.56 33.27 -34.29 69.53 33.49 -36.04 

25 87.8 76.44 -11.36 58.69 64.11 5.42 

26 31.91 53.33 21.42 38 39.62 1.62 

30 80.44 73.83 -6.61 49.01 100 50.99 

31 79.27 80.99 1.72 36.01 68.28 32.27 

32 82 73.34 -8.66 62.82 61.01 -1.81 

33 83.53 80.36 -3.17 63.07 63.96 0.89 

 

 

 

 


