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ABSTRACT

Music content analysis (MCA) systems built using scat-
tering transform features are reported quite successful in
the GTZAN benchmark music dataset. In this paper, we
seek to answer why. We first analyse the feature extraction
and classification components of scattering-based MCA
systems. This guides us to perform intervention experi-
ments on three factors: train/test partition, classifier and
recording spectrum. The partition intervention shows a de-
crease in the amount of reproduced ground truth by the
resulting systems. We then replace the learning algorithm
with a binary decision tree, and identify the impact of spe-
cific feature dimensions. We finally alter the spectral con-
tent related to such dimensions, which reveals that these
scattering-based systems exploit acoustic information be-
low 20 Hz to reproduce GTZAN ground truth. The source
code to reproduce our experiments is available online. 1

1. INTRODUCTION

Music content analysis (MCA) systems trained and tested
in [2] reproduce a large amount of the ground truth of
the benchmark music dataset GTZAN [18], and are among
the “best” reported in the literature [14]. They use sup-
port vector machines (SVM) classifiers trained on fea-
tures extracted from audio by the scattering transform, a
non-linear spectrotemporal modulation representation us-
ing a cascade of wavelet transforms [8]. The mathemati-
cal derivation of the scattering transform enforces invari-
ances to local time and frequency shifts, which is a desir-
able property for music classification tasks. Scattering fea-
tures are considered to have perceptual relevance [2], and
can be related to modulation features [5]. Such features
are potentially useful for timbre-related music classifica-
tion tasks, such as instrument recognition [11], or genre
recognition [7].

Reproducing the ground truth of a dataset does not nec-
essarily reflect the ability of a system to address a particu-

1 https://code.soundsoftware.ac.uk/projects/scatter-analysis

c© Francisco Rodrı́guez-Algarra, Bob L. Sturm, Hugo
Maruri-Aguilar. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Francisco Rodrı́guez-
Algarra, Bob L. Sturm, Hugo Maruri-Aguilar. “Analysing Scattering-
based Music Content Analysis Systems: Where’s the Music?”, 17th In-
ternational Society for Music Information Retrieval Conference, 2016.

ω""

• Acoustic information below 20 Hz (outside the lim-
its of human hearing) both without and with modu-
lations (feature b and c vectors)

– enormous difference of FoM between training
regimens

– it is likely that the faults of the dataset provide
significant amount of identifying information
to most of the labels.

– (“rock” particularly relevant?)
– there appears to be little additional discimina-

tive information using the 1.6 Hz modulation
of rectified FB1 bands.

• Acoustic information above 4186 Hz
– without using the modulation, the FoM are not

as good as those from using acoustic informa-
tion below 20 Hz.

– including the modulations makes a remarkable
difference in the FoM.

– the FoM for “rock” appears to have become
very poor now.

• Combining all feature dimensions from acoustic in-
formation below 20 Hz and above 4186 Hz.

– (Rock recovers partly)

3.3 Filtering Intervention

An oracle intervention attempts to make a system S be-
have in certain ways for a test dataset D , by applying a
transformation T to the input signals. In our case, S is
a Support Vector Machines classifier trained with different
scattering feature sets (a - f, as defined in Table 1) com-
puted from the excerpts in the train partition of GTZAN
under condition (ii) of Section 3.1. D , thus, is the test
partition of GTZAN under the same condition. The trans-
formation T we apply is a time-invariant filtering based
on near-perfect reconstruction filters [3].

In deflation mode, the oracle attempts to make the sys-
tem’s performance consistent with a system randomly se-
lecting labels in a procedure as follows [3]:

1. Identify all recordings in D that S maps “cor-
rectly”.

2. Create a transformation T .
3. Apply T to all recordings found in (1).
4. Have S map transformed recordings.
5. Find the recordings that S maps “correctly”.
6. For each recording in (1) that System now maps

“correctly” in (5), replace it in D with its trans-
formed version.

7. Return to (1); repeat until performance of S is con-
sistent with random Figures-of-Merit, or a maxi-
mum number of iterations is reached.

If we see the number of errors S makes increases notably,
we conclude that its performance strongly relies upon the
factors transformed by T .

Figure 3 shows our results from 30 deflation steps for
feature sets (a-f). The first step corresponds to the error
on the “original” test set. We observe two different be-
haviours. Error rates in feature sets (a, b) increase rapidly
in a similar fashion, while scattering-based feature sets

with more than one layer (c-f) show more robustness to
the effects of these filters. Table 4 summarises the over-
all changes. These results suggest that features generated
by deeper layers of the scattering transform are capturing
characteristics other than the short-term spectrum of the
audio signal.
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Figure 3. Error rate over 30 steps of filtering-based oracle
deflation for feature sets (a - f).

Set Features Orig. ER Final ER
a �-MFCC, 740 ms 0.220 0.784
b Time Scattering, l = 1 0.208 0.684
c Time Scattering, l = 2 0.120 0.416
d Time & Freq Scattering, l = 2 0.128 0.368
e Time & Freq Scattering, l = 2, Adap. Q1 0.144 0.440
f Time Scattering, l = 3 0.164 0.360

Table 4. Overall changes in computed error rate (ER) in
30 steps of filtering-based oracle deflation for feature sets
(a - f) (see Fig. 3).

We also check how the performance of these systems is
affected by the attenuation of the transformation T for two
particular GTZAN classes: disco and metal. We first
define a mean attenuation level for each filter with steps
of 0.5 dB, from 0.5 dB to 9 dB within ±0.01 dB. Then,
for each feature set and mean attenuation level, we per-
form 10 iterations of a deflation process (30 steps each). In
this way, we attempt to minimise the effect of potentially
destructive filters (e.g., completely removing low frequen-
cies) in the average performance for each feature set and
attenuation level. Figure 4 shows the results we obtain for
feature sets (a - f) considering both disco and metal
classes. We observe that systems using feature sets (a, b)
behave similarly, increasing their error rates rapidly when
we augment the attenuation levels. This suggests that SVM
music classification systems with a single layer of scatter-
ing transform features (l = 1) are highly reliant on spec-
tra to reproduce the ground truth of GTZAN. Behaviour of
deeper layers (l > 1), on the other hand, is more robust to
filtering transformations.

Figure 1. Schematic representation of a music content
analysis (MCA) system [16].

lar task [12–15]. In this paper, we analyse scattering-based
MCA systems to determine why they reproduce so much
GTZAN ground truth. Our approach involves system anal-
ysis and experimental interventions. System analysis in-
volves decomposing an MCA system into its components
to understand how each contributes to its overall behaviour.
Our system analysis of scattering-based MCA systems in
Sec. 2 shows that they use some information from inaudi-
ble frequencies, i.e., below 20 Hz [4]. Experimental in-
terventions, on the other hand, involve testing hypotheses
about what a system is actually doing by altering some fac-
tor to see how system behaviour changes. In Sec. 3, we per-
form intervention experiments to confirm that scattering-
based MCA systems exploit information below 20 Hz to
reproduce GTZAN ground truth. When we attenuate that
information, ground truth reproduction decreases.

We conceive our work here as a case study within the
development of an improved systematic methodology for
evaluating MCA systems. This is one challenge posed in
the Music Information Retrieval (MIR) Roadmap [10], and
exemplifies the pipeline in [15]. In Sec. 4 we discuss the
implications of our results, and suggest how they might be
integrated in a general evaluation framework.

2. SYSTEM ANALYSIS

Using the formalism of [16], an MCA system S maps
a recording universe RΩ — a particular realisation of an
intangible music universe Ω — to a description universe
SV,A. As shown in Fig. 1, this mapping is decomposed
into two stages. First, a feature extractor E maps RΩ to a
feature universe SF,A′ ; then, a classifier C maps SF,A′ to
SV,A.

The environment and definition of the MCA systems
in [2] are as follows. RΩ consists of time-domain sig-



ID F Feature Description
a R252 Mel-frequency spectrogram (84 coefficients, 740-

ms frames, 50% overlap), concatenated with first-
and second-order time derivatives over the se-
quence of feature vectors 2

b R85 First-order (l = 1) time-scattering features (effec-
tive sampling rate 2.7 Hz)

c R747 Second-order (l = 2) time scattering features (ef-
fective sampling rate 2.7 Hz)

d R1574 First-order time-frequency scattering features
e R1907 First-order time-frequency-adaptive scattering

features
f R2769 Third-order (l = 3) time scattering features (ef-

fective sampling rate 2.7 Hz)

Table 1. Description of SF,A′ (feature universes) used
in [2]. A′ permits only vector sequences of length 80.

nals of duration about 30 seconds uniformly sampled at
Fs = 22050 Hz (the sampling rate of GTZAN). SV,A is the
set of the 10 GTZAN labels. SF,A′ is a space consisting
of sequences of 80 elements of a vector vocabulary F. All
MCA systems trained in [2] use the same SV,A, the same
learning method to build the classifiers, but different SF,A′ .
More specifically, the semantic rulesA′ are the same for all
systems (sequences of length 80), with only a difference in
the feature vocabulary, F. Table 1 describes the six differ-
ent SF,A′ appearing in [2].

We now analyse the two components of the systems
built using first- (“b vectors”) and second-layer (“c vec-
tors”) time scattering features (see Table 1). Systems built
using f vectors can be understood as a further iteration
of the process described here. In addition to that, the in-
clusion of frequency-scattering features (d and e vectors),
does not affect our conclusions.

2.1 Feature extractors of b and c (Eb and Ec)

The feature extraction procedure begins by first extending
a recording to be of length 221 = 2097152 samples us-
ing what is referred to in the code as “padding” by “sym-
metric boundary condition with half-sample symmetry”:
the N ≈ 5 · 217 samples of r ∈ RΩ are concatenated
with the same but time-reversed, then concatenated with
its first ∼ 50000 samples, and its last ∼ 50000 samples,
and finally the time-reversed samples again. This “padded”
signal is then transformed into the frequency domain by
the FFT. The complex spectrum is then multiplied by the
magnitude response of each of 85 filters of a filterbank
designed using a scaling function and dilations of a one-
dimensional Gabor mother wavelet with 8 wavelets per oc-
tave up to a maximum dilation of 273/8. (The bandwidth
of the lowest 11 bands are made constant.) Figure 2(a)
shows the magnitude responses of the bands of this fil-
terbank (FB1). Each spectrum product is then reshaped
— equivalent to decimation in the time-domain —, trans-
formed to the time domain by the inverse FFT, and then
windowed to the portion corresponding to r in the padded
sequences.

Next, the time-series output of each band of FB1 is rec-
tified, padded using the same padding method as above,

2 [2] does not actually compute ∆- and ∆-∆-MFCCs, but instead
cyclically time-shifts the sequence of MFCCs ahead and behind by one
frame so that the classifier has flexibility in learning a transformation.
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(a) Filterbank 1 (FB1)
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(b) Filterbank 2 (FB2)

Figure 2. Magnitude responses of the bands in the filter-
banks for scattering feature IDs b and c.

transformed into the frequency domain by the FFT, and
then multiplied by the magnitude response of each of 25
filters of a filterbank designed with a scaling function
and dilations of a one-dimensional Morlet mother wavelet,
with 2 wavelets per octave up to a maximum dilation of
223/2. Figure 2(b) shows the magnitude responses of the
bands of this filterbank (FB2). Each FB2 spectrum prod-
uct is then reshaped — again, equivalent to decimation in
the time-domain —, transformed to the time domain by
the inverse FFT, and then windowed corresponding to the
original forward-going sequence in the padded sequences
(length 80). Finally, Eb retains only those values related to
the DC filter of FB2, and computes the natural log of all
values (added with a small positive value). This results in
80 b vectors. For creating 80 c vectors, Ec takes those FB2
time-series outputs with non-negligible energy, 3 “renor-
malises” each non-zero frequency band (to account for en-
ergy captured in the first layer of scattering coefficients),
and takes the natural log of all values (added with a small
positive value).

Figure 3 shows the relationship between the dimensions
of b and c vectors and the centre frequencies of FB1 and
FB2 bands. For display purposes, the bottom-most row is
from the scaling function of FB2. The 85 dimensions of a
b vector are at bottom, with dimensions [1, 75:85] coming
from FB1 bands with centre frequencies below 20 Hz. Di-
mensions [1, 75:85, 737:747] of a c vector come from such
bands. Dimensions [2:12] of a b vector, and [2:12, 86:268]
of a c vector, are from FB1 bands with centre frequencies
above 4186 Hz (pitch C8).

3 In fact, not every rectified FB1 band output is filtered by all FB2
bands because filtering by FB1 will remove all frequencies outside its
band.
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Figure 3. Relationship of b and c vector dimensions to FB1 and FB2 band centre frequencies. Dimensions [1, 75:85] of b
vectors, and [1, 75:85, 737:747] of c vectors, are from bands with centre frequencies below 20 Hz.

2.2 Classifier C

Define the number of support vectors of a trained SVM as
|SV |. Classifiers C of the MCA systems in [2] are charac-
terised by a set of support vectors V ∈ F|SV |, a Gaussian
kernel parameter γ, a weight matrix W ∈ R|SV |×45, and
a bias vector ρ ∈ R45. (45 is the number of pair-wise
combinations of the 10 elements in SV,A, i.e., label 1 vs.
label 2, label 1 vs. label 3, etc.) C maps SF,A′ to SV,A
by majority vote from the individual mappings of all ele-
ments fj ∈ F of a sequence from r ∈ RΩ by an SVM
classifier C ′. C ′, thus, maps F to SV,A by computing 45
pair-wise decisions by means of sign(WT e−γK(f) − ρ),
where K(f) is a vector of squared Euclidean norm of dif-
ferences between f and all vj ∈ V. C ′ then maps f to
SV,A by majority vote from the 45 pair-wise decisions.

The authors of [2] use LibSVM 4 to build C ′ using a
Gaussian kernel with a subset of the feature vectors (down-
sampled by 2). They optimise the SVM parameters by grid
search and 5-fold cross-validation on a training set. Lib-
SVM uses a 1 vs. 1 strategy to deal with multiclass classi-
fication problems, so each support vector receives a weight
for each of the nine possible pair-wise decisions involving
the class associated with the support vector. The matrix W
contains weights associated with all possible 45 pair-wise
decisions. The training of the SVM also generates the vec-
tor ρ containing a bias term for each pair-wise decision.

3. SEARCHING FOR THE MUSIC

We now report three intervention experiments we design
to answer our question: how are scattering-based MCA
systems reproducing so much GTZAN ground truth? We
adapt the code used for the experiments in [2] (available
online 5 ). The experiments performed in [2] do not con-
sider the known faults of GTZAN [14], so in Sec. 3.1 we
reproduce them using two different train-test partitioning
conditions. We observe a decrease in performance, but
not as dramatic as seen in past re-evaluations [14]. In
Sec. 3.2, we replace the classifier C with a binary deci-
sion tree (BDT) trained with different subsets of scattering

4 https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
5 http://www.di.ens.fr/data/software

features. This leads us to identify the impact of specific
feature dimensions. The analysis of the feature extractor in
Sec. 2.1 allows us to relate such dimensions with spectral
bands of the audio signal. In Sec. 3.3, we alter the spec-
tral content of the test recordings and observe how GTZAN
ground truth reproduction changes. This reveals that these
scattering-based MCA systems exploit acoustic informa-
tion below 20 Hz.

3.1 Partitioning intervention

The benchmark music dataset GTZAN contains faults (e.g.,
repetitions) that can affect the amount of ground truth that
an MCA system reproduces [14]. This amount often de-
creases when we train and test it using a “fault-filtered”
partition of GTZAN, as done in [6, 14]. This suggests that
the faults in the dataset are related to the amount of ground
truth reproduced by a system.

While [2] evaluates the performance of the scattering-
based MCA systems using 10-fold stratified cross-
validation, we employ two different hold-out train-test par-
titioning conditions. The first is RANDOM, which mimics
the train-test procedure in [2]: we randomly select 75%
of the recordings of each label for the training set, leav-
ing the remaining 25% for the testing set. The second
is FAULT, which is the “fault-filtered” partitioning proce-
dure in [6], with the training and validation sets merged.
This partitioning condition considers various problems of
the dataset: we remove 70 replicated or distorted record-
ings [14]; we then assign by hand 640 recordings to the
training set and the remaining 290 to the testing set, avoid-
ing repetition of artists across partitions [9]. Due to mem-
ory constraints, we decrease by a factor of 4 the number of
scattering features in the pre-computation of the Gaussian
kernel of the SVM. This reduces the computational cost
without sacrificing much performance. 6

Table 2 shows the normalised accuracies (mean recalls)
of our systems along with those reported in [2] for the six
features described in Table 1. We see the differences be-
tween the results in [2] and ours in RANDOM are small,
and most of them within reason considering the standard

6 We acknowledge Joakim Andén and Vincent Lostanlen for their valu-
able advice.



Original GTZAN recordings Attenuated [0, 20] Hz
ID Reported in [2] RANDOM FAULT RANDOM FAULT
a 82.0 ± 4.2 78.00 53.29 39.20 30.09
b 80.9 ± 4.5 79.20 54.96 31.60 22.42
c 89.3 ± 3.1 88.00 66.46 50.80 44.47
d 90.7 ± 2.4 87.20 68.49 62.40 55.11
e 91.4 ± 2.2 85.60 68.61 64.80 44.52
f 89.4 ± 2.5 83.60 68.32 64.80 53.16

Table 2. Normalised accuracies (mean recall) in GTZAN
dataset obtained by scattering-based MCA systems in [2]
and our systems using RANDOM and FAULT partition-
ing conditions, trained and tested with the original GTZAN
recordings (left) and versions ones with information below
20 Hz (right) attenuated (see Sec. 3.3).

N RANDOM FAULT
1 52.99 51.82
2 65.05 65.27
3 71.42 71.62
4 75.53 75.80
5 79.48 79.74

Table 3. Cumulative percentage of variance captured by
the N highest principal components of b vectors in the
training sets of RANDOM and FAULT partitioning condi-
tions.

deviations reported in [2]. In RANDOM, we see an in-
crease of accuracy when we include second-order scatter-
ing features, i.e., b to c. We find that adding depth to the
features, however, does not increase further the amount of
ground truth reproduced, and even decreases it when we
include third-order features (c to f), contrary to what is
reported in [2]. Most importantly, we observe a consider-
able decrease in the amount of ground truth reproduced by
all systems between RANDOM and FAULT. Figures 4(a)
and 4(b) show the figure-of-merit (FoM) of the systems
trained and tested in RANDOM and FAULT with b vec-
tors, respectively. We see recalls and F-measures of every
label decrease except for “classical”, which increase.

Figure 5 shows the eigenvectors of the first five prin-
cipal components of first-layer scattering features (b vec-
tors) in the training sets of RANDOM and FAULT. (Table 3
shows the percentage of variance captured by the first N
principal components.) We see large changes in the low-
est and highest dimensions of the fourth component. This
suggests that these dimensions of the scattering features
capture information that differs in both training sets, which
may play a role in the performance differences we observe.
The characteristics of C and C ′, however, make it difficult
to determine the influence that each individual feature di-
mension (or subset of dimensions) has in the overall per-
formance of a system. For this reason, in Section 3.2 we
replace the SVM by a binary decision tree (BDT) classi-
fier, which allows an easier interpretation of SF,A′ and its
relationship with SV,A.

3.2 Classifier intervention

SVM classifiers generate decision boundaries in multi-
dimensional spaces. While this can benefit prediction, it
hampers their interpretability. In our case, this implies that

(a) RANDOM

(b) FAULT

(c) RANDOM, information below 20 Hz attenuated

Figure 4. Figure-of-merit (FoM) obtained with b vec-
tors by SVM systems trained and tested in (a) RANDOM
and (b) FAULT (Sec. 3.1), as well as (c) SVM trained in
RANDOM and tested in recordings with content below 20
Hz attenuated (Sec. 3.3). Column is ground truth, row is
prediction. Far-right column is precision, diagonal is re-
call, bottom row is F-score, lower right-hand corner is nor-
malised accuracy. Off-diagonals are confusions.
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Figure 5. Eigenvectors of the first five principal compo-
nents (labelled) of b vectors in the training sets of (a) RAN-
DOM (79.74% of variance captured) and (b) FAULT
(79.48% of variance captured) partitioning conditions.

ID RANDOM FAULT
a 72.80 45.70
b 71.60 42.35
c 80.00 49.91
d 79.20 46.81
e 79.60 44.77
f 79.20 46.48

Table 4. Normalised accuracies (mean recall) in GTZAN
for MCA systems built using binary decision tree classi-
fiers using features described in Table 1, trained and tested
with RANDOM and FAULT partitioning conditions.

the relevance of each individual dimension of the scatter-
ing feature vectors gets blurred. We now replace the SVM
classifiers used in [2] by BDT, consisting of a set of rules
defined by linear splits of the feature space one dimension
at a time. BDT are considered to be among the easiest
learning methods to construct and understand [1], at the
cost of potentially less accuracy.

Table 4 shows the normalised accuracies we obtain with
MATLAB’s BDT classifier, 7 for the two partitioning con-
ditions defined in Sec. 3.1, using the different feature vec-
tors described in Table 1. Clearly, there exists a major
difference between the two training conditions, similar to
what Table 2 shows for SVM. We see a decrease of around
8 percentage points in the amount of ground truth repro-
duced by each of the BDT systems in RANDOM compared
to the SVM systems in Table 2. On the other hand, when
training the BDT systems in FAULT, we observe falls in
performance with respect to RANDOM at least as large as
those reported in Table 2. This suggests that the amount of

7 http://uk.mathworks.com/help/stats/classificationtree-class.
html
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Figure 6. Proportion of ground truth reproduced by BDT
classifiers trained with single dimensions of b vectors in
RANDOM and FAULT partitioning conditions.

ground truth reproduced by the systems in both conditions
differ due to distinct information being captured by the fea-
ture extractors, and not necessarily as an effect of the clas-
sification algorithm. The training of the SVM classifier,
if anything, appears to mitigate the potential performance
decrease in c-f vectors.

We now explore differences in reproduced GTZAN
ground truth between partitioning conditions by each di-
mension of the scattering features individually. We thus
train and test BDTs with each of the 85 dimensions of b
vectors in both RANDOM and FAULT. Figure 6 shows the
classification accuracies we obtain. We see clear differ-
ences between conditions, especially in dimensions iden-
tified in Sec. 2.1 as belonging to bands close to or outside
the limits of normal human hearing (namely [1, 70:85]).

We also explore how much ground truth BDT systems
can reproduce using solely information below 20 Hz. BDT
systems trained with dimensions 1 and 75:85 of b vec-
tors achieve a 60.40% of normalised accuracy in RAN-
DOM, which is close to the performance originally re-
ported in [18] for the GTZAN dataset. In FAULT, how-
ever, the normalised accuracy drops to 22.47%. Adding di-
mensions 737:747 from c vectors (modulations from FB2
of information below 20 Hz) only marginally increases
the performance in both conditions. These results suggest
that our scattering-based MCA systems could be exploiting
acoustic information from below 20 Hz. We next perform
interventions to test this hypothesis.

3.3 Filtering intervention

We now see how the amount of ground truth reproduced
by a scattering-based an MCA system changes when we
attenuate acoustic information below 20 Hz. We thus ap-
ply a fifth-order Butterworth high-pass filter to attenuate
all frequencies below 20 Hz by at least 30 dB to the test
recordings in both RANDOM and FAULT. We check that
we do not perceive differences between filtered and non-
filtered versions. We then use the SVM systems in Sec. 3.1
to predict labels in the filtered test recordings. The two
right-most columns of Table 2 show the normalised accu-
racies we obtain. We clearly see that the figures drop from
those reported in Sec. 3.1. In particular, the decrease of
accuracy using b vectors in RANDOM is close to 50 per-
centage points, while that using features generated from



deeper scattering layers is smaller but still notable. Sys-
tems trained in FAULT also suffer in the performance mea-
sured.

Figure 4(c) shows the FoM obtained by an SVM trained
in FAULT with b vectors and tested in high-pass filtered
recordings. We note that the changes in FoM between
Figs. 4(a) and 4(c) do not always match those reported in
Sec. 3.1 between Figs. 4(a) and 4(b). More precisely, re-
call and F-measure decrease instead of increase in “classi-
cal”, and increase instead of decrease in “country”. This
suggests that partitioning and information below 20 Hz are
distinct factors affecting the amount of ground truth sys-
tems reproduce, notwithstanding an interaction between
them as suggested by Figs. 5 and 6. Our results allow
us to conclude that the scattering-based MCA systems
trained and tested in [2] benefit from partitioning and ex-
ploit acoustic information below 20 Hz to reproduce a large
amount of GTZAN ground truth.

4. DISCUSSION

Our analysis in Sec. 2.1 shows how first- and second-layer
time-scattering features relate to acoustic information. We
see that several dimensions of such features capture infor-
mation at frequencies below 20 Hz, which is inaudible to
humans [4].

We find in the intervention experiments in Secs. 3.1
and 3.2 that partitioning affects the amount of GTZAN
ground truth scattering-based systems reproduce. Remov-
ing the known faults of the dataset and avoiding artist repli-
cation across folds leads to a decrease in the FoM we ob-
tain, but to a lesser extent than previous re-evaluations of
other MCA systems [6, 14]. We also note that differences
between the first principal components of first-layer time-
scattering features lay mainly within the dimensions corre-
sponding to frequency bands below 20 Hz.

When we replace the SVM classifier with a BDT
(Sec. 3.2), we see differences in the amount of reproduced
ground truth similar to those we find for SVM systems be-
tween partitioning conditions. This suggests that the dis-
tinct acoustic information the scattering features capture
causes differences in performance, regardless of the par-
ticular learning algorithm employed. Furthermore, we find
that BDT systems trained with individual dimensions of
first-layer time-scattering features reproduce an amount of
GTZAN ground truth larger than that expected when se-
lecting randomly. Again, we see differences between par-
titioning conditions, especially in the dimensions captur-
ing information below 20 Hz. Moreover, we reproduce
almost as much GTZAN ground truth as the one origi-
nally reported in [18] by using a BDT trained in RANDOM
with only information below 20 Hz. This result suggests
that acoustic information below 20 Hz present in GTZAN
recordings may inflate the performance of MCA systems
trained and tested in the benchmark music dataset.

Our system analysis in Sec. 2 and intervention experi-
ments in Sec. 3.1 and 3.2 point toward information present
in frequencies below 20 Hz playing an important role in
the apparent success of the scattering-based MCA systems

we examine. The results of our experiments in Sec. 3.3
clearly reveal that the amount of GTZAN ground truth
SVM scattering-based systems reproduce decreases when
we attenuate that information in test recordings. This im-
plies these systems are using inaudible information. We
conclude that the scattering-based MCA systems in [2]
exploit acoustic information not controlled by partition-
ing and below 20 Hz to reproduce a large amount of
GTZAN ground truth. Machine music listening is an ex-
citing prospect as it complements and even extends human
abilities, but we dispute the relevance of acoustic infor-
mation below 20 Hz to address the problem intended by
GTZAN [18].

The results of our three intervention experiments sug-
gest a complex relationship between the accuracy mea-
sured of a system, the contribution of its feature extraction
and machine learning components, and the conditions of
the training and testing dataset. We already know that the
faults and partitioning of GTZAN can have significant ef-
fects on an outcome, and that there is an interaction with
the components of a system [14,17]. Our experiments here
show for the systems we examine that acoustic information
below 20 Hz can greatly affect an outcome, and that this
interacts with the components of a system and the dataset
partitioning. This thus calls into question the interpretation
of the results reported in [2] (column 2 of Table 2) as unbi-
ased estimates of system success. In future work, we will
specify more complex measurement models, e.g., [17].

Understanding how and why a system works is essential
to determine its suitability for a specific task, not to men-
tion its improvement. Our work here demonstrates the use
of system analysis and the intervention experiment to ad-
dress this problem. For instance, our conclusions suggest
modifying the FB1 filterbank in the scattering features ex-
tractor to avoid capturing information below 20 Hz. They
also suggest removing information below 20 Hz from any
element of RΩ as a pre-processing step before training an
MCA system, if relevant.

5. CONCLUSION

In this paper, we report several steps we followed to de-
termine what the scattering-based MCA systems reported
in [2] have actually learned to do in order to reproduce
the ground truth of GTZAN. We show how performing sys-
tem analysis guides our design of appropriate intervention
experiments. The results lead us to conclude that these
MCA systems benefit not only from the partitioning of the
dataset, but also from acoustic information below 20 Hz.

Our work here constitutes steps toward a holistic analy-
sis of MCA systems — an action point for MIR evaluation
identified in [10]. Our ultimate goal is to help develop a
general MIR research pipeline that integrates system anal-
ysis and interventions, and is grounded in formal princi-
ples of statistical design of experiments, e.g., [3]. Such
a pipeline will provide a solid empirical foundation upon
which to build machine music listening systems and tech-
nologies [15].



6. REFERENCES

[1] E. Alpaydin. Introduction to Machine Learning. The
MIT Press, Cambridge, MA, USA, 3rd edition, 2014.

[2] J. Andén and S. Mallat. Deep Scattering Spec-
trum. IEEE Transactions on Signal Processing,
62(16):4114–4128, 2014.

[3] R. A. Bailey. Design of Comparative Experiments.
Cambridge University Press, 2008.

[4] A. Chaudhuri. Fundamentals of Sensory Perception.
Oxford University Press, 2011.

[5] T. Chi, P. Ru, and S. A. Shamma. Multiresolution Spec-
trotemporal Analysis of Complex Sounds. Journal of
the Acoustical Society of America, 118(2):887–906,
2005.

[6] C. Kereliuk, B. L. Sturm, and J. Larsen. Deep Learning
and Music Adversaries. IEEE Transactions on Multi-
media, 17(11):2059–2071, 2015.

[7] C. Lee, J. Shih, K. Yu, and H. Lin. Automatic Mu-
sic Genre Classification Based on Modulation Spec-
tral Analysis of Spectral and Cepstral Features. IEEE
Transactions on Multimedia Multimedia, 11(4):670–
682, June 2009.

[8] S. Mallat. Group Invariant Scattering. Communications
on Pure and Applied Mathematics, LXV:1331–1398,
2012.

[9] E. Pampalk, A. Flexer, and G. Widmer. Improvements
of Audio-Based Similarity and Genre Classification.
In Proc. 6th International Society for Music Informa-
tion Retrieval Conference (ISMIR’05), pages 628–633,
London, UK, September 2005.

[10] X. Serra, M. Magas, E. Benetos, M. Chudy, S. Dixon,
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