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Bandwidth-efficient Packet Scheduling for Live
Streaming with Network Coding

Shenglan Huang, Student Member, IEEE, Ebroul Izquierdo, Senior Member, IEEE, Pengwei Hao, Member, IEEE

Abstract—Network coding (NC) brings substantial improve-
ments in terms of throughput and delay in collaborative media
streaming applications. A key aspect of NC-driven live peer-
to-peer streaming is the packet scheduling policy. Indeed, lack
of synchronization among peers usually results in significantly
redundant packet transmission, which in turn leads to severe
bandwidth inefficiencies. In this paper we address the problem
of finding a suitable asynchronous packet scheduling policy that
greatly helps to overcome this critical redundant transmission
problem. We propose a bandwidth cost minimization technique
under a full video packet recovery constraint. In order to add
a scalability and improved performance, we also further derive
a distributed packet scheduling algorithm. Both implementation
and analytical considerations of the proposed approaches are
described in this paper. Experimental results confirm that the
proposed algorithms deliver higher bandwidth efficiency with
reduced redundancy and communication overhead rate, and
consequently, better quality-of-service in terms of improved video
quality and delivery ratio.

Index Terms—Live broadcasting, Peer-to-Peer TV systems,
Network coding, Distributed scheduling

I. INTRODUCTION

Over the last decade, live video streaming has been con-
sidered as an Internet killer. This prevalent view is due to
network users spending significant time in online commu-
nication sharing media and watching videos streamed over
the Internet. Indeed, multimedia communications are pervasive
and a substantial part of modern life. Many studies have been
conducted in the field of media transmission for a multitude
of applications including: remote immersive and interpersonal
communication, e-Learning, video conferences, and interactive
entertainment. In the field of media transmission, many pre-
vious studies have been conducted in multi-source streaming
trees construction and scalable video streaming [?], [?]. Com-
paratively little attention has been given to improving band-
width efficiencies through suitable packet scheduling schemes.
However, improving bandwidth efficiency is necessary as more
effective bandwidth usage may lead to a better quality of
service in media streaming applications. This paper therefore
focuses on improving bandwidth efficiency in cooperative live
streaming networks.

Network coding was first introduced in Information Theory
by Ahlswede et al. [?], who proved that the maximum capacity
of a network can be achieved by transmitting mixed data at
intermediate nodes. Based on the theoretical model, Chou et
al.[?] proposed a practical network coding scheme for media
streaming. In their work, the network topology and the coding
function at each node are unknown by other nodes. Each
node performs a linear combination of its incoming packets

using random coefficients over the Galois field to generate
the outgoing packet. These random coefficients are stored
in the header of the outgoing packet. When a client node
receives enough linear independent packets, it can recover
the original packet by solving a conventional system of linear
equations. Their work proves that practical network coding can
provide significant gains in throughput and delay. Many large-
scale applications of utilizing network coding in the field of
multimedia streaming [?], [?], [?] have also demonstrated the
associated in reducing communications delays and facilitating
the cooperation among nodes.

Peer-to-peer (P2P) networks have been used extensively
in multimedia live streaming as an effective transmission
platform. In P2P live streaming, peers collaboratively organize
themselves into an overlay and contribute their upload capac-
ities to others. P2P networks are classified into two types:
(i) the tree-based, and (ii) the mesh-based P2P network [?],
[?]. The tree-based network [?], [?], [?], [?], [?] organizes
peers into one or more multicast trees. Nodes in the upper
layer are the parents of nodes in the lower layer. The original
media content is decomposed into sub-streams and pushed
from parent nodes to their child nodes without explicit requests
from child nodes. Tree-based networks minimize the delay of
distributing media content, however, they are too complex to
maintain in the face of peer churns and bandwidth variations.
In contrast, mesh-based networks use gossip-like protocols
to discover content availability among peers. In mesh-based
networks, nodes form a mesh by holding a list of neighbouring
peers. The original streaming content is treated as a series of
segments. A buffer-map which represents the data availability
of each segment is exchanged among peers to pull or push
segments among neighbouring nodes. The mesh-based P2P
network with the pull model is also called the mesh-pull
network [?], [?]. The advantage of the mesh-based network
is its resistance to peer churn, which enables fast recovery
from delivery failures.

Although most commercial P2P systems are based on the
mesh-pull model like[?] and [?], they still suffer from the
problem of long playback delay caused by the complex
communication mechanism. Therefore many studies have been
conducted in applying network coding to the mesh-based P2P
streaming system to solve this problem. By taking advantage
of network coding, mesh-push schemes are proposed. The
mesh-push network provides low playback delay, and high
resistance to peer churn and network loss[?], [?]. For instance,
in R2 [?], random encoded segments are pushed to random
receivers until the arrival of a stop message. In that paper,
the authors show that mesh-push with network coding brings
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a superior performance when compared to traditional mesh-
pull schemes. More specifically, better delivery ratio and lower
transmission delay are reported when the available upload
bandwidth exceeds the bandwidth demand. This is shown to
hold true even when the available upload bandwidth excess
is large. These advantages of mesh-push schemes make it
very competitive in the field of media streaming. Moreover,
to take further advantage of the mesh-push schemes, many
optimizations have also been made to meet practical needs.
For instance, many authors have combined scalable video
coding and network coding [?], [?], [?], [?], others have
focused on reducing the transmission and decoding delay
for live streaming applications[?], and others have improved
performance in error correction and throughput in the lossy
network [?], [?].

Despite substantial progress in the field, little attention
has been given to the bandwidth efficiency in the mesh-push
schemes. Improving bandwidth efficiency is critical for video
streaming because efficient bandwidth usage means that more
useful packets arrive at receivers. This in turn results in a better
quality of service in any multimedia streaming. A problem
with current mesh-push schemes is that some transmitted
packets are redundant in improving received media quality.
Let us consider a transmission process in conventional mesh-
push P2P networks. Senders actively push encoded packets
until the arrival of a stop message from the receiver. The
choice of packets may be unintelligent in some cases, due
to the delayed stop message or actual network conditions.
For instance, some transmitted packets are received after
the current content generation has already been decoded.
We call such packets uninformative. Furthermore in some
cases, available packets are insufficient to decode the original
content within the given time window. Let us term these
packets unrecoverable. These two types of packets lead to
bandwidth inefficiencies. In conventional push-based schemes,
it is impossible to avoid the transmission of uninformative
and unrecoverable packets because fully intelligent scheduling
requires enormous amounts of overheads for communication
which cannot be compensated by the gains achieved. Thus
it is critical to find a trade-off between the improved trans-
mission efficiency and the information overheads needed to
achieve it. With the goal in mind, we therefore propose a
scheduling compensation model (SCM), an adaptive push
algorithm (APA), a centralized packet scheduler (CPS), and
a distributed packet scheduler (DPS). Firstly, the SCM and
APA calculate the number of packets that each receiver could
receive from its neighbouring nodes after taking the dynamic
network conditions into account. The two algorithms work
together to reduce unrecoverable transmissions. Secondly, the
CPS and the DPS construct the centralized and the distributed
multi-sender cooperation models separately. They accurately
determine the number of packets that should be sent from
each sender to each receiver. The objective of the multi-sender
cooperation model is to reduce uninformative transmissions
caused by the redundant packet transmission. In this way,
these redundant transmissions can be reduced, and network
bandwidth resources can be better utilized.

The remainder of this paper is organized as follows. In

a)Random push b)Scheduled push
with random network coding with random network coding

Fig. 1. Comparison of the transmission mechanism between the RND scheme
and the proposed scheme

Section II related works on the packet scheduling problem are
introduced. The overall system model is presented in Section
III. In Section IV, the centralized and the distributed packet
scheduling algorithm are presented. In Section V selected
results of extensive simulation experiments are presented. The
paper is concluded in Section VI.

II. RELATED WORK

Many studies have been carried out combining scalable
video coding (SVC) with network coding (NC) to provide a
better quality of experience for people using manifold end-user
devices. For instance, the authors in [?] propose a prioritized
video streaming system that solves the bandwidth allocation
problem among different classes of media priority. The authors
in [?] combine SVC with NC to adapt to peer heterogeneity.
In [?] the authors calculate the average upload bandwidth of
senders to choose a suitable media layer to stream. In [?] inter-
layer network coding is performed on different layers of SVC
to gain greater flexibility in optimizing the data flow.

In recent years, research has also been conducted using NC
to achieve faster content delivery. For instance, the authors
in [?] combine network coding with tree-based P2P network.
Like traditional tree-based models, their work treats the whole
stream as a sequence of sub-streams. The idea behind their
scheduling model is to consider the sub-stream scheduling
problem among parent nodes as a max-weighted bipartite
matching problem (MWBM), by using the delay cost as
the weight, to find the suitable match between the sender i
and the substream j. Consequently, the overall transmission
delay can be minimized. However, maintaining such multicast
trees is difficult in a real-world network. In [?], the authors
construct a random multicast tree (RMT) to provide a short
start-up delay and faster data distribution. Nevertheless, the
precondition of RMT is rather restricted and unrealistic. Each
jointed peer is required to upload a same amount of data as it
received. In [?], the authors construct a cost function for each
possible transmitting policy, and the sender then chooses the
transmission policy based on the calculated cost. Nevertheless,
this still cannot avoid the bandwidth inefficiencies caused by
these unrecoverable packets.
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The main difference between the traditional push mecha-
nisms and our scheduled push mechanism is outlined in Fig.1.
This illustration shows an extremely simplified transmission
process in which a sender node sends encoded media packets
to a receiver node. Fig. 1 (a) shows a random push with
random network coding algorithm (RND) [?], which is used
to represent the existing push mechanisms. Fig. 1 (b) is the
proposed packet scheduler. The transmissions of these two
algorithms are compared to understand their difference. In the
illustration, G0 and G1 are different generations of a video
stream. To decode the original content, the receiver needs to
receive two packets of G0 and three packets of G1 within the
given time window. In the RND algorithm shown in Fig. 1
(a), the sender keeps pushing network-encoded packets of G0

until the arrival of a stop message from the receiver. However,
due to the message updating interval, the stop message from
the receiver is delayed. Two uninformative packets are sent
to the receiver. The sender then starts transmitting network-
encoded packets of G1. At this time, the sender does not
have enough upload bandwidth to transmit 3 packets of G1

within the given time window. For this reason, the received
packets are not enough to be decoded. Therefore, the received
packets are discarded, wasting network resources. In contrast,
in our packet scheduling algorithm shown in Fig. 1 (b),
the sender transmits packets according to the results of pre-
scheduling. Firstly, the SCM calculates the number of actually
needed packets for each generation, and the APA accurately
finds the generations that need to be skipped. Next, the CPS
and the DPS construct linear programming functions to get
scheduling results before the actual media transmission. The
scheduling results specify how multiple senders cooperatively
transmit packets to receivers. Finally, each sender follows
the scheduling results to deliver packets. These uninformative
transmissions caused by the asynchronous communication can
be minimized in this way. Furthermore if some transmitted
packets are lost or some senders churn during transmission,
the transmission system can achieve fast recovery by pulling
packets from other neighbouring senders, since all transmitted
packets are network-encoded.

The key to the transmission model is the accuracy of
the underpinning pre-calculation. To achieve an accurate pre-
calculation of generation skips and scheduling compensations,
the actual network conditions such as loss rate, peer churn rate,
inherent uninformative packet rate, and the actual upload band-
width are taken into consideration. Subsequently, to achieve
an accurately cooperative packet scheduling among multiple
senders, two approaches are proposed: a centralized schedul-
ing algorithm (CPS) and a distributed scheduling algorithm
(DPS). In general, both scheduling algorithms achieve accurate
calculations by estimating a decoding status and allocating the
suitable upload bandwidth to receivers. The difference between
them is the amount of required information. CPS calculates the
packet scheduling strategy based on the global information
while DPS calculates the scheduling strategy based on the
local information of neighbouring peers. Furthermore, the CPS
algorithm formulates the allocation problem as a global integer
linear programming (ILP) problem. In contrast, the DPS
transforms the global ILP problem into a local ILP problem.

Fig. 2. Illustration of the overall network model of a mesh-based P2P network

It in turn adds a critical scalability property to the packet
scheduling model. The experimental results confirm that both
algorithms generate less communication traffic, uninformative
and unrecoverable packets compared to conventional random-
push schemes.

III. SYSTEM MODEL

The overall system includes a network model, a network-
encoded media streaming model, and a packet scheduling
model. This section gives the definitions of the network model
and the media streaming model.

A. Network Model

The overall network model is depicted in Fig.2. Three types
of peers are defined in this model: the tracker node, the
streaming server, and the client node. In the system, the tracker
node does not transmit any coded video packet, but only serves
the purpose of enabling peers to find each other and exchange
control messages. Each peer contacts the tracker node to join
the network. Some control information is exchanged during
the procedure, i.e. the upload bandwidth of neighbor nodes
and size of video packets. The peer churn rate in the network
consists of both the peer arrival and the departure rate. To
simplify the model, the peer churn rate ι is set to be constant.
When a sender node leaves the network, another available
sender is designated to receivers by the tracker node. The
streaming server transmits network-encoded video packets to
client nodes. The overlay of network nodes is represented as a
graph (N , ε) composed for nodes N = {N0, ...,NN} and the
edge ε. In these nodes, N0 represents the tracker node and N1

represents the streaming server. The rest nodes fromN2 toNN

are client nodes. For any nodes in the actual video streaming
network, U = {U1, ...UN} is indicated as the vector of upload
bandwidth of streaming nodes. Ū =

∑N
i=1 Ui/N is defined

as the average upload bandwidth of the streaming network.
To simplify the discussion, we also define the κ-quantized
upload bandwidth as Ũi = Ui ∗ κ/V , where κ is defined as
the playback duration of a generation, V is the video packet
size. The unit of Ũi is the number of packets /κseconds. The
average value of the κ-quantized upload bandwidth is also
defined for simplicity as Û =

∑N
i=1 Ũi/N . A client node

becomes a sender node when it holds α linear independent
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segments (0 ≤ α ≤ 1). It can ensure the content availability
at the senders. For any node Nj , Aj ⊂ N is defined as
the neighborhood of Nj . It is the set of sender nodes that
are connected to Nj . The child node Nj reports the network
change to the tracker node when it experiences bandwidth
variations, such as the departure of a parent, or the bandwidth
change.

B. Network-encoded Media Streaming

The media stream that distributed to the network nodes
is modeled as a single dimensional array of generations. A
generation is usually made of one or several group of pictures
(GOP) in the media. Each generation is identified within the
media stream by a temporal index g ∈ [1, G]. Each generation
g is subdivided into Pg blocks of symbols, and the size
of each video packet is V bytes. Generations with identical
temporal index g have the same playback duration κ. The
average streaming rate is termed as S. Instead of transmitting
raw video packets, nodes transmit linear combinations of its
received packets to other nodes. A new outgoing packet is
generated by performing random network coding in a single
generation [?].

A new transmission region is proposed to achieve a sched-
uled and guaranteed transmission. The transmission region can
be divided into an urgent region and a priority region as shown
in Fig.3. The priority region is the scheduled transmission
region. In the priority region, the transmissions of generations
are scheduled firstly according to the CPS and the DPS.
Senders then follow the scheduling results to transmit packets.
In the urgent region, unrecoverable generations are requested
by receiver nodes from its all neighbouring senders ∀Ni ∈ Aj

according to a request model. A priority region Γ is defined as
a moving time window next to the urgent region. The size of
the priority region is Γl. The start point and the end point of the
priority region are Γs and Γe respectively. An urgent region is
defined as a moving time window next to the playback point.
The start point and the end point of the urgent region are ωs

and ωe. The urgent region and the priority region move as
the playback point moves. The example in Fig.3 illustrates
that node Nj is playing the video in generation 3. Its urgent
region is from generation 4 to 5 (ωs = 4 and ωe = 5). Its
priority region is from generation 6 to 11 (Γs = 6, Γl = 6,
and Γe = 11). To successfully decode the original media, the
client node needs to receive [P4, P5, P6, P7, P8, P9, P10, P11]
informative packets in g ∈ (4, 11) respectively. For the sake of
more clarity, all notations used in the model are summarized
in Table I.

C. Scheduling Compensation Model (SCM)

To reduce the unrecoverable generations caused by the
unsuccessful packet delivery, we develop a scheduling com-
pensation model. Its main function is to calculate the number
of packets P̃g that need to be sent from Ni ∈ Aj to Nj such
that Pg independent packets can successfully arrive at Nj . In
a dynamic network, the number of sent packets P̃g needs to be
larger than Pg so that Nj can successfully receive Pg packets
to decode the original generation. P̃g − Pg packets are used

Fig. 3. Sample buffer status of a client node Nj . The current playback point
is g=5, the priority region Γ = [Γ6,Γ7, ...,Γ11].

TABLE I
NOTATION USED IN THE SYSTEM MODEL

Ni Network node i, i ∈ [0, N ]

Aj Neighborhood of the receiver node Nj

g Temporal index (generation) in the media, g ∈ [1, G]

κ Playback duration of each generation

V Size of video packets

Ui Upload bandwidth of streaming node Ni, i ∈ [1, N ] [kByte/s]

Ũi κ-quantized upload bandwidth of Ni, i ∈ [1, N ] [ packets/κsec]

Ũij κ-quantized upload bandwidth allocated from Ni to Nj [packets/κsec]

Ū Average upload bandwidth of the streaming network [Kbyte/s]

Û Average κ-quantized upload bandwidth [packets/κsec]

S Average streaming rate

α Independent threshold for a receiver node to become a sender node

Γ Priority region, Γ = [Γs, ....,Γe]

ω Urgent region, ω = [ωs, ...ωe]

µ Independent transmission rate

θ Loss rate

ι Peer churn rate

ρ Inherent linear independent probability

Pg Number of real video packets in each generation g

P̃g Expected number of packets that Ni ∈ Aj must send to Nj to recover g

P̂g Number of actually scheduled packets in generation g

P̄ Average value of P̂g

Hijg Number of scheduled packets from Ni to Nj in generation g

Sijg Number of sent packets from Ni to Nj in generation g

to compensate the unsuccessful packet delivery caused by the
dependent transmission, packet loss, and peer churn.

To find the suitable P̃g , we use the loss rate θ, peer churn
rate ι and the inherent independent probability ρ to estimate
the successful transmission rate. We also define the successful
transmission rate µ (0 ≤ µ ≤ 1) as the probability that
a linear independent packet is successfully received by a
node. Therefore, accounting for the unsuccessful transmission
rate, the expected number of scheduled packets that Nj must
receive from Ni ∈ Aj to recover the generation g can be
written as:

P̃g = Pg/µ (1)

The successful transmission rate µ is related to the loss rate
θ, the peer churn rate ι and inherent linear dependent rate ρ of
random network coding. The inherent linear dependent rate ρ
is defined as the dependent transmission probability caused by
the inherent property of random network coding. Randomly
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chosen coefficients may be the same as the coefficients in
previously sent packets. According to [?], the lower bound
of the inherent linear independent probability is ρ ≥ (1 −
2−q). The lower bound of the successful transmission rate
can therefore be simply given as:

µ = (1− θ)(1− ι)ρ
≥ (1− θ)(1− ι)(1− 2−q)

(2)

According to Eq.2 and Eq.1, Ni ∈ Aj must send to Nj

at least P̃g packets to compensate the unsuccessful transmis-
sions so that receivers can successfully decode Pg packets in
generation g.

D. Adaptive Push Algorithm (APA)

The APA is proposed to reduce unrecoverable transmissions
caused by the insufficient upload bandwidth. Reducing unre-
coverable transmissions can lead to a better use of resources,
thereby resulting in better bandwidth efficiencies. The APA
reduces unrecoverable transmissions by determining the num-
ber of actually scheduled packets P̂g from Ni ∈ Aj to Nj

considering the actually available upload bandwidth. These
unrecoverable packets are generated because the receiver Nj

fails to receive Pg informative packets from senders Ni ∈ Aj

before the playback deadline, due to limited upload bandwidth
restricting the packets sent from the neighbouring nodes. To
avoid unrecoverable transmissions, the APA assesses if the
available κ-quantized upload bandwidth ÛCum

g can afford the
expected transmission P̃g . When ÛCum

g can afford the expect-
ed transmission P̃g , generation g is transmitted (P̂g = P̃g).
Otherwise, the generation is skipped (P̂g = 0). When a
generation g is skipped, the average upload bandwidth of g
can be used to deliver generations from g + 1 to Γe. The
APA can be described by the following pseudo-code in the
Algorithm 1:

Algorithm 1: Adaptive Push Algorithm

Input: P̃ ,Û
Output: P̂
for g from Γs to Γe do

ÛCum
g = ÛCum

g−1 + Û

if ÛCum
g >= P̃g then
P̂g = P̃g

else
P̂g = 0

end
ÛCum
g = ÛCum

g − P̂g

Store element P̂g into vector P̂
end
return P̂ ;

The APA is performed by the track server before the trans-
mission. For every generation, the tracker node compares the
expected number of packets P̃g with the available κ-quantized
upload bandwidth ÛCum

g . When ÛCum
g ≥ P̃g , P̂g = P̃g ,

otherwise, P̂g = 0. In this way only recoverable generations

are transmitted, and the bandwidth is better utilized. Ûg is
the average κ-quantized upload bandwidth of the streaming
network in generation g. It is equal to the Û in our system.
The unit of ÛCum

g , P̂g and P̂g are packets/κseconds. To
inform all client nodes of the number of actually scheduled
packets P̂g , the tracker node needs to send a message to each
client node Ni every generation. The size of a communication
message is 2 bytes. The communication overhead of APA is
2N bytes/κseconds, which is 2N/κ bytes/s. P̄ is the average
value of P̂g . If the streaming rate is considered as a relatively
stable rate, Pg packets can successfully arrive at each receiver
when Û ≥ P̄ .

IV. OPTIMIZED PACKET SCHEDULER

This section proposes two packet schedulers to determine
how multiple senders cooperatively contribute their upload
bandwidth to different receivers. The schedulers can reduce the
uninformative transmission caused by asynchronous commu-
nications, thereby leading to better transmission efficiencies.
The process of the packet scheduling can be summarized
as follows: the packet schedulers calculate the number of
packets that each sender needs to send to its receiver, and then
each sender follows the scheduling results to transmit packets
individually. The objective of a streaming network is that
senders cooperatively deliver all recoverable generations to all
receivers and avoid uninformative transmissions at the same
time. This requires each sender to accurately determine the
number of packets to send to each receiver at each generation.
For this purpose, two packet schedulers are proposed. Firstly,
a centralized packet scheduler (CPS) is proposed to improve
the global bandwidth efficiency. The CPS formulates the
global packet scheduling problem as a global integer linear
programming problem. A distributed packet scheduler is then
derived from the CPS by finding solutions to an approximative
optimization objective. Both CPS and DPS accurately schedule
packet transmissions, and senders can cooperatively contribute
their upload bandwidth to receivers to achieve recoverable and
informative transmissions.

A. Centralized Packet Scheduler (CPS)

The CPS is a global packet scheduler, designed to find the
global multi-sender cooperation model to organize the upload
bandwidth of all senders to their neighbouring receivers. Such
a multi-sender cooperation problem is modelled as a redundant
transmission minimization function among all senders under
a constraint of full recovery. Uninformative transmission is
caused by the superfluous transmission after the corresponding
generation is already successfully transmitted. The streaming
network can successfully transmit all recoverable generations
with the CPS, and simultaneously minimize uninformative
transmissions. Any receiver node Nj needs to receive P̂g

packets to recover generation g. and any other packets are
uninformative for the client nodes. The objective function of
the CPS is to therefore minimize the number of transmitted
packets, and the constraints of the CPS are to ensure the full
transmission of P̂g .
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The number of packets that should be sent from each sender
Ni to each receiver node Nj in generation g ∈ Γ is denoted as
a non-negative integer Hijg. A positive constant C is defined
as the transmission cost (the consumed bandwidth of a single
packet). For each generation g ∈ Γ, the scheduling problem is
formulated as a cost minimization problem with some given
restrictions in Eq.3, and the minimization function is solved as
an Integer Linear Programming (ILP) problem by the Simplex
method.

H = arg min
Hijg

C

Γe∑
g=Γs

N∑
j=2

N∑
i=1

Hijg

subject to
Γe∑

g=Γs

N∑
j=2

Hijg ≤
Γe∑

g=Γs

Ũig ∀i (a)

N∑
i=1

Hijg ≥ P̂g ∀j, g (b)

Hijg ≤ αP̂g ∀i ∈ (2, N), j, g (c)
Hijg = 0 ∀Ni /∈ Aj , j, g (d)

(3)

The optimization objective is to find the minimum band-
width cost to achieve the full delivery of P̂g . The constraint
(a) means that the number of sent packets of each sender
node Ni should be smaller than its available κ quantized
upload bandwidth Ũig in the priority period, where Ũig is
equal to Ũi. The constraint (b) means that senders need to
cooperatively send at least P̂g packets so that Pg packets can
arrive at the receiver node. The constraint (c) means that the
number of scheduled packets from Ni to Nj needs to be
smaller than the number of its linear independent packets αP̂g .
This constraint guarantees that enough contents are available
at each client node. The constraint (d) guarantees that only
nodes Ni ∈ Aj can send packets to its neighbouring nodes
Nj . The optimization function achieves its optimized solution

at
N∑
i=1

Hijg = Pg .

This algorithm hypothesizes that a central coordinator which
knows all upload bandwidth Ũi of each node Ni exits in
the network. It could be the tracker node in our system
because it holds all information of client peers in the network.
In the global scheduling algorithm, the streaming server is
scheduled like other sender peers so that a precise multi-sender
cooperation model can be built for each receiver. After the
CPS calculates the number of packets that should be sent from
each sender Ni to each receiver Nj , the tracker node sends
a control message to each sender Ni The scheduling results
are then stored in the local record of each sender node. The
number of sent packets Sijg and Hijg are compared when
every transmission opportunity arises at the sender node Ni.
If Sijg is smaller than Hijg, a network encoded packet in
generation g is sent to nodeNj and the value of Sijg increases.
Generations close to Γs are those that are initially pushed.

B. Distributed Packet Scheduler (DPS)

The DPS is proposed to increase the scalability of the
system. The DPS is a distributed solution to the centralized

optimization function. It solves how multiple senders con-
tribute their bandwidth to each receiver based only on the local
bandwidth information. As mentioned in section IV-A, the
CPS algorithm globally reduces uninformative transmission,
thereby improving bandwidth efficiencies. However, in a large-
scale P2P network, the complexity of the global optimization
would be extremely high. Therefore a distributed bandwidth-
efficient packet scheduling algorithm is proposed in this
section. In the DPS, we find the symbolic solution to the
packet scheduling problem by providing some constraints to an
approximate optimization objective of the CPS. The main steps
of this algorithm include: 1) Each sender allocates its upload
bandwidth to each receiver by the handshake procedure; 2)
Each sender uses a local weighted quadratic equation to
find the most suitable allocation for each receiver in each
generation.

1) Handshake Procedure: In the handshake procedure, each
sender node Ni allocates its overall κ-quantized upload band-
width Ũi to its receiver node Nj , denoted as Ũij . The unit of
the allocated upload bandwidth Ũij is packets/κseconds. When
the receiver node Nj joins the network, it initially contacts the
tracker node to obtain a list of free sender peers Ni to form
its neighbouring nodes Aj . When the tracker picks the set of
sender nodes, it ensures that

∑
Ni∈Aj

Ũi ≥ P̄ . The tracker
node then calculates the amount of upload bandwidth Ũij that
each sender Ni should contribute to support the delivery to
this receiver node Nj according to the Eq.4.

Ũij = min(
Ũi∑

Ni∈Aj
Ũi

∗ P̄ , α ∗ P̄ ) (4)

If
∑
Ni∈Aj

Ũij < P̄ , more senders are allocated to this
receiver and the Eq.4 is recomputed until

∑
Ni∈Aj

Ũij ≥ P̄ .
Note Ũij = 0 for any Ni /∈ Aj . The scheduled upload
bandwidth Ũijs for any Ni ∈ Aj are stored into a vector
following its identification order and sent to each sender node
Ni ∈ Aj . At the same time, the tracker node calculates the
new available upload bandwidth for each sender Ni ∈ Aj by
Ũ

′

i = Ũi − Ũij . At the end of the handshake procedure, each
sender Ni will get a list of cooperative senders Ni ∈ Aj , and
their corresponding allocated bandwidth Ũij for this receiver
Nj .

2) Real-time Distributed Scheduler: The real-time dis-
tributed scheduler pre-calculates the number of scheduled
packets Hijg from node Ni to Nj in any generation g.
The cooperative transmission model in the local scheduling
algorithm can be summarized as a multi-sender and single
receiver relationship. A receiver node Nj has a set of sender
nodes Ni, where Ni ∈ Aj . The optimization problem is
formed as a bandwidth cost optimization function under the
full recovery constraint in Eq. 5. This optimization function
calculates the number of packets Hijg that should be sent from
Ni to Nj so that P̂g packets can be successfully decoded at
the receiver node.
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H = arg min
Hijg

Γe∑
g=Γs

N∑
j=2

N∑
i=1

(Ũij −Hijg)2

Ũij

subject to
N∑
i=1

Hijg ≥ P̂g ∀j, g

(5)

The above optimization function finds the suitable allocation
Hijg subject to a constraint that the number of scheduled
packets must be larger than P̂g . This constraint ensures that
this receiver node receives enough packets to recover the
original content in generation g. As the transmission allocation
to each node Nj in each generation is independent, Eq.5 can
be transformed to Eq.6.

H = arg min
Hijg

N∑
i=1

(Ũij −Hijg)2

Ũij

subject to
N∑
i=1

Hijg ≥ P̂g ∀j, g

(6)

The above optimization problem can be solved by finding
the solution H that minimizes the expected Lagrangian in Eq.
7 since

∑N
i=0Hijg approaches to P̂g .

J(D) =

N∑
i=1

(Ũij −Hijg)2

Ũij

+ λ(P̂g −
N∑
i=1

Hijg)∀j, g (7)

By solving the above Lagrangian function, the symbolic
solution Hijg from sender Ni to any receiver node for any
generation g can be expressed as followed in Eq. 8:

Hijg = round(
Ũij

I∑
k=i

Ũkj

Pr) (a)

Pr = P̂g −
i−1∑
k=1

Hkjg (b)

(8)

In Eq. 8 (a), Hijg is calculated by the product of the
bandwidth ratio and the remaining number of packets Pr. The
ratio can be expressed as the ith allocated upload bandwidth
over all allocated upload bandwidth from sender node Ũij to
the last sender node ŨIj . Eq.8 (b) means that the remaining
number of packets Pr can be represented by the difference
between the scheduled result P̂g and the number of scheduled
results for sender node Ũ0 to Ũi−1.

The optimization objective in the DPS is the approximation
of the optimization objective in the CPS algorithm. According
to the optimization function, it is clear to see that the proposed
optimization objective in DPS is the square of the Hijg .
Moreover, the solution to Eq.5 also satisfies all constraints
in Eq.3. The details of proof can be found in Appendix A.

In general, the distributed packet scheduling algorithm uses
the handshake procedure to do the bandwidth pre-allocation
for each sender. The multilevel linear programming can there-
fore be written as a single layer linear programming. By
solving the single layer linear programming, the symbolic

solution to the ILP problem can be found, thereby reducing
the computational complexity. Furthermore, the solution to the
quadratic equation is weighted, which means that sender nodes
with small Ũij have less variation. This helps to reduce the
scheduling error. After each sender gets the scheduling results
Hijg, it calculates the number of pending transmitting packets
by subtracting Sijg from Hijg . If Hijg is larger than Sijg, an
encoded packet is sent to the receiver. Generations closed to
Γs are pushed initially.

In all, the distributed scheduling algorithm gives a symbolic
solution to the local optimization function. More, the solution
of the distributed algorithm also satisfies the constraints of
CPS algorithm in the Eq. 3. Both CPS and DPS reduce the
redundant transmission by global or local packet scheduling.
The network resources can be better utilized, and the band-
width efficiencies can be improved.

C. Request model

A request model is proposed to deal with the unrecover-
able transmission caused by unpredictable network variations.
Although the scheduling compensation model considers the
peer churn and loss rate in the network, these may vary in
a real network. When the receiver node has an unrecovered
generation in its urgent region, it will periodically broadcast
its buffer map as a request signal to all neighbouring nodes.
One or more request signals from different receivers may
arrive at the sender nodes. Then, each sender with spare
upload bandwidth capacity calls the ”random push algorithm”
to push packets to the receivers. When a receiver successfully
decode the corresponding generation, it immediately sends
its buffer-map as a stop signal to all neighbouring nodes.
This mechanism aims at improving the recoverability of the
streaming in the system. To keep the efficiencies of the system,
a local information updating procedure is called, and the
packet scheduling algorithm is recomputed for this node if
more than 10% of packets in the urgent region are requested
from senders or more than 10% of packets in the priority
region are uninformative.

V. PERFORMANCE EVALUATION

In this section, we report experimental results with our
packet schedulers using streaming a network-encoded media
sequence over a mesh-push based P2P network. To evaluate
the performance of the proposed scheduling algorithms, we
compare our proposed packet schedulers with three existing
scheduling algorithms with four different sets of considera-
tions. Firstly, the quality-of-service (QoS) at the client nodes
is measured for video quality and delivery ratio, with different
upload bandwidths. Secondly, the bandwidth efficiencies in
the network are measured in terms of uninformative ratio,
communication overhead, and informative packet rate. Thirdly,
the performance in a lossy network is evaluated, and finally,
the system scalability is evaluated. We present the simulation
environment and metrics in Section V-A and the streaming
performance comparison in Section V-B.
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A. Experimental Settings and Metrics

We evaluate our packet schedulers over a mesh-push based
P2P network. The P2P network is implemented on an event-
based network simulator NS2. All end nodes independently
choose its neighbors and then form a randomly connected
network. The size of the default test network is set to be 100
nodes. The neighborhood size Aj is set to be 20 nodes. The
default upload bandwidth of the streaming server U1 is set
satisfy 15% end-users in the network. The setting of the server
upload bandwidth is similar to the settings in [?] to achieve
a fair comparison. In the presented three first experiments,
the upload bandwidth of each peer is set to be a constant
value ranging from 0.8S to 1.45S. Here we aim at evaluating
the QoS and bandwidth efficiencies of the system. S is the
encoded video rate. These initial experiments proved that when
the peer upload bandwidth is 1.2S, the delivery ratio can
reach 99.9%. Therefore, in the remaining experiments we set
the peer upload bandwidth to be 1.2S. This enabled us to
observe the impact of other parameters in the performance
of the proposed approach. The default loss rate and the peer
churn rate are set to be 0.05. The default value of α is set to
be 15%.

The test video stream is the Paris sequence encoded with
H.264/AVC. The average bit rate of stream S is 116 Kbyte/s.
The average video quality of the media is 40.12dB. The size
of a generation κ is 8 frames, which corresponds to a group of
pictures covering 0.26 seconds of video. On average, there are
32 packets in each generation. The size of the priority region
Γl is 8κ. The size of the urgent region is 4κ. This indicates that
the playback deadline at each peer is 3.12 seconds. All packets
must arrive at client nodes in 3.12 second to be successfully
played. The actual size of a video block is 1024 Bytes. Packets
in each generation are encoded using network coding over the
Galois Field GF(28). Coefficients of network-encoded packets
are stored in the packet header and transmitted with each video
packet as well, whose size depends on the number of encoding
packets in the generation. In the simulation, the packet header
(e.g. the address of destination peer, and the sequence number
of video) is 150 Bytes, and the average size of network coding
coefficients is about 32 Bytes per packet (1 Byte for the
coding coefficient in GF(28) per packet). Theoretically, in such
settings, the average streaming rate should be at least equal to
1.18S to achieve the full rate streaming.

We compare our proposed packet schedulers with the fol-
lowing approaches:

• Advanced random push with random network coding
with 50ms buffer-map updating interval (ARND-50ms):
The ARND is an improved version of RND similar to
[?]. In RND, each sender randomly pushes its encoded
packets to its neighbors according to the buffer-map of
its neighbors. In ARND, senders tend to choose those
generations that need more packets to be decoded before
the playback deadline. The buffer-map which represents
the data availability of its neighbor peers updates every
50ms.

• Advanced random push with random network coding
with 200ms buffer-map update interval (ARND-200ms):
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Fig. 4. Performance comparison of the average video quality with five
schemes

The ARND algorithm with 200ms buffer-map updating
interval.

• An asynchronous distributed scheduler (ADS) similar
to [?]: In ADS, each sender independently chooses the
optimal transmission policy from candidate transmission
policies. This choice is based on the cost of each can-
didate policy. This transmission policy determines which
generation and which receiver the packet is addressed
to. The cost is defined as the product of the number
of packets needed to recover the generation g and the
corresponding reminding time of this generation g before
the playback deadline. All candidate policies are sorted
in an increasing order according to the defined cost. The
optimal policy is selected from the top 30 policies with
uniform probability.

We use the following performance metrics to evaluate the
QoS and bandwidth efficiencies: (1) average video quality
comparison: the average received peak signal to noise ratio
(PSNR) at each client node; (2) delivery ratio: the average
fraction of recoverable packets that could arrive at the re-
ceiver node over the actual streaming packet rate before the
playback point at each client node; (3) the uninformative
packet ratio: the received uninformative video packet rate over
all received video packet rate; (4) communication overhead
ratio: the communication overhead rate over the streaming
rate. Communication overhead includes buffer-map exchange
messages, scheduling messages and packet request messages;
(5) informative packet rate: the number of received informative
packets per second.

B. Streaming Performance Comparison

To evaluate the QoS of the proposed streaming system,
the performance of the average video quality is studied first.
It is the most visual indicator to the quality of service.
Generally, the video quality increases when the peer upload
bandwidth increases from 0.8S to 1.45S. The results in Fig.
4 show that the CPS and the DPS perform better than the
other schemes over the whole range of the upload bandwidth,
especially when the upload bandwidth is too low for full-
rate video delivery. When the peer upload bandwidth is
1.2S, the CPS and the DPS can achieve 40.12dB, 40.05dB
respectively. By contrast, at the same bandwidth, the ADS,
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Fig. 5. Performance comparison of the average delivery ratio with five
schemes

the ARND-50ms, and the ARND-200ms can only achieve
39.75dB, 39.06dB, and 35.76dB respectively. This is because
the communication overhead and uninformative transmission
waste network bandwidth. When the peer upload bandwidth
is 0.8S, the DPS shows significant improvements over ADS,
ARND-50ms, and ARND-200ms algorithms; 5.14dB, 5.16dB,
8.43dB respectively. This is because the ADS and ARND can-
not avoid unrecoverable transmissions that waste bandwidth
resources and lead to poor transmission of other generations.
In contrast, the APA effectively skips some generations so
that all transmitted packets are recoverable. The DPS achieves
slightly lower video quality compared with the CPS algorithm
over the whole range of bandwidth values. That is because
the CPS is a global optimization algorithm while the DPS is
a local optimization algorithm.

In Fig. 5, the performance of packet delivery ratio among
these five methods is studied when the peer upload bandwidth
ranges from 0.8S to 1.45S. Better delivery ratio will bring
smoother playback of videos. In this experiment, when the
peer upload bandwidth is 0.8S, the delivery ratio of CPS, DPS,
ADS, ARND-50ms, and ARND-200ms is 61.03%, 60.31%,
47.05%, 47.01% and 38.9% respectively. This demonstrates
that our algorithms can improve 13%-22% in delivery ratio
compared with those three scheduling algorithms. This im-
provement is mainly because the proposed APA algorithm
can efficiently avoid uninformative transmission. Furthermore,
the CPS and DPS can achieve about 4% more delivery ratio
compared with the ADS algorithm when the upload bandwidth
of peers is 1.2S. This improvement is mainly due to the
CPS and the DPS generates less communication overhead
and uninformative packets. On the whole, this experiment
demonstrates that our algorithms can achieve better recover-
able packet delivery ratio when the upload bandwidth of peers
ranges from 0.8S to 1.45S.

To evaluate the bandwidth efficiencies of the streaming
network, we also observe the performance of the uninformative
packet ratio in Fig. 6. The uninformative ratio is an important
criteria to the evaluation of bandwidth efficiencies. The exper-
iment shows that the uninformative ratio of the CPS, DPS, and
ARND-50ms algorithms remains stable under different upload
bandwidth, and the uninformative ratio of the ARND-200ms
increases a lot as the upload bandwidth of peers increases.
It can be seen that the ARND-50ms only generates about
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Fig. 6. Performance comparison of the average uninformative packet ratio
with five schemes
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Fig. 7. Performance comparison of the communication overhead over the
streaming rate with 5 schemes

0.1% to 0.3% uninformative packets, and the CPS and the
DPS generate about 1% uninformative packets over the whole
range of peer upload bandwidth. The ADS generates about
2.2% to 4.1% uninformative packets, and the ARND-200ms
generates about 3.5% to 19.57% uninformative packets. Firstly,
it demonstrates that when the buffer-map updating interval
of ARND is 50ms, the amount of uninformative transmission
caused by the lack of synchronization is very small and almost
negligible. Secondly, the CPS and the DPS still may generate
a small amount of uninformative transmission. This is because
the request model may bring a small number of uninfor-
mative transmission. Compared with the ADS and ARND-
200ms, the amount of uninformative packets is acceptable.
Thirdly, the ADS algorithm and the ARND-200ms have a
higher uninformative ratio. This is because the ADS algorithm
has the sub-optimization problem and the long buffer-map
updating period of ARND-200ms brings a large number of
uninformative transmission.

To further evaluate the bandwidth efficiencies of the stream-
ing network, the average communication overhead over the
streaming rate is studied in Fig.7. The communication over-
head of the ARND and the ADS is the bandwidth resources
used for buffer-map updating. The communication overhead
of the CPS and the DPS is the bandwidth resources used
for packet scheduling and packet request. As depicted in
Fig. 7, the CPS and the DPS have a relatively low com-
munication overhead while the ARND-50ms and the ADS
have a higher overhead. This is because the ARND-50ms and
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Fig. 8. Performance comparison of the average informative video packet rate
with five schemes
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Fig. 9. The average delivery ratio versus different values of α

the ADS algorithm frequently exchange buffer-map among
neighbouring nodes. By contrast, the CPS only transmits the
scheduling results from the tracker node to each client node
and the DPS only exchanges the information among peers
during the handshake procedures and when peer nodes ex-
perience bandwidth variations. Therefore, compared with the
communication overhead of buffer-map updating, the amount
of communication overhead of CPS and DPS is relatively
small.

We also evaluate the actual average informative packet rate
in Fig.8 to observe the joint impact of the communication
overhead and the uninformative transmission when the upload
bandwidth of peers increases. It can be seen that the proposed
CPS and DPS have a better informative packet rate compared
with the other two methods over the whole range of peer
upload bandwidth values. Although the CPS and the DPS have
about 1% more uninformative packet ratio than the ARND-
50ms algorithm, the CPS and the DPS get more informative
packet rate. That is because that the communication overheads
of ARND-50ms use more upload bandwidth of peers.

The impact of the threshold α can be seen in Fig.9. This
figure shows that a sender node needs to have at least α
segments before it becomes a sender of other client nodes. We
can see that a lower threshold cannot guarantee that enough
linear independent packets are available at the sender nodes,
thereby leading to a poor video quality.

In Fig. 10 the performance of the delivery ratio is analyzed
in a lossy network to evaluate its resistance to network loss.
In this experiment, we increase the loss rate and then observe
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Fig. 10. Performance comparison of the average delivery ratio as a function
of network loss rates when N = 100 and upload bandwidth Ū = 1.2S
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Fig. 11. Performance comparison of the average delivery ratio in networks
of different network sizes when the upload bandwidth Ū = 1.2S

the change in the delivery ratio. Generally, the delivery ratio
decreases when the loss rate increases for all schemes. That is
because the useful upload bandwidth decreases when the loss
rate increases. The results in Fig. 10 show that the decreasing
rate of both CPS and DPS is similar to the decreasing rate
of other scheduling algorithms. It proves that the scheduling
compensation model can accurately estimate the number of
needed packets for client nodes in a lossy network. The loss
in the network will not bring extra scheduling errors to CPS
and DPS.

In Fig. 11, we evaluate the scalability of our proposed
packet schedulers by varying the number of peers from 20
to 200 peers. Fig. 11 shows that CPS and DPS offer steady
delivery ratio, whereas the ADS, ARND-50ms, and ARND-
200ms have a slightly decreasing delivery ratio as the number
of peers increases. It demonstrates that all these algorithms
can be applied to a large-scale P2P network. The property
of network coding and push-based P2P network make these
packet scheduling algorithms very competitive in terms of the
scalability.

In the last experiment, the performance of the video quality
in PSNR versus the number of hops from the server is
evaluated. This experiment can demonstrate the scalability of
the scheduling algorithm and the fairness among client nodes.
The hop is defined as the hop distance from the client node
Nj to the streaming server. As depicted in Fig. 12, the average
video quality remains almost the same as the number of hops
increases. This shows that all algorithms are not very sensitive
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Fig. 12. The impact of distance from server to the average received video
quality in PSNR

to the distance from the server. That is because that the CPS,
DPS, ADS, and ARND algorithms are built in the mesh-push
network, where the neighbor nodes of each client node are
randomly chosen. Therefore, the distance from the streaming
server does not have an obvious influence on the delivery ratio.

VI. CONCLUSION
This paper proposes a centralized and a distributed

bandwidth-efficient packet scheduling algorithm for multi-
media live streaming applications. This packet scheduling
algorithm avoids the critical problem of superfluous packet
transmission and brings significant improvement in band-
width efficiencies. The centralized packet scheduling algo-
rithm finds the globally optimal packet scheduling policy
that minimizes the overall bandwidth cost. To add a critical
scalability property to the proposed approach, we propose
a distributed packet scheduling algorithm to find the local
optimal solution by constructing a pre-allocation procedure
and solving the single layer linear programming problem using
the Lagrangian algorithm. Our experiments show that our
packet schedulers achieve better video quality and delivery
ratio, a lower redundant packet ratio and more informative
packets when the peer upload bandwidth varies. Furthermore,
the robustness to lossy networks and the network scalability
is also proved by different experiments. Our future work will
focus on improving the accuracy of scheduling in a more
dynamic P2P network.

APPENDIX A
PROOF OF EQUIVALENCE OF OPTIMIZATION FUNCTION

proof : The equivalence of the proposed CPS and the DPS
algorithm is proved. This proof includes 2 parts. One is the
proof of the equivalence of the two optimization objectives.
The other is the proof of the equivalence of constraints.

Part 1: We will prove the optimization objective of the DPS
is the approximation of the objective of the CPS algorithm.

Q(H) =

Γe∑
g=Γs

N∑
j=2

N∑
i=1

(Ũij −Hijg)2

Ũij

=

Γe∑
g=Γs

N∑
j=2

N∑
i=1

(Ũij − 2Hijg +
H2

ijg

Ũij

)

(9)

As assumed in the constraint of the DPS optimization in
Eq.5, we have that

N∑
i=1

Hijg ≥ P̂g ∀j, g (10)

Then we have that

Q(H) ≤
Γe∑

g=Γs

N∑
j=2

N∑
i=1

Ũij +

Γe∑
g=Γs

N∑
j=2

N∑
i=1

H2
ij

Ũij

− 2

Γe∑
g=Γs

N∑
j=2

P̂g

(11)

In the expanded function, Ũij and P̂g are known positive
constant. The optimization objective of DPS is the p-Norm of
Hijg (p=2). The optimization objective of Eq.3 is the 1-norm
of Hijg . The property of norm is shown in Eq. 12,

‖x‖2 ≤ ‖x‖1 ≤
√

2‖x‖2 (12)

As the vector space is a real finite-dimensional one, all
norms are equivalent. So we can get the conclusion that the
objective of DPS is the approximation of the objective of CPS.
The two optimization function have an approximate solution.

Part 2: We will prove that the solution to the DPS optimiza-
tion in Eq.5 satisfies the constraint (a) of CPS alggortihm in
Eq.3. Consider

Hijg =
Ũij

|Aj |∑
k=1

Ũkj

P̂g ∀i, j, g
(13)

As the scheduling algorithm is independent to g, we have
that

Γe∑
g=Γs

Hijg =

Γe∑
g=Γs

Ũij

|Aj |∑
k=1

Ũkj

P̂g ∀i, j
(14)

As scheduled in the handshake procedure of the DPS
algorithm, we have that

|Aj |∑
k=1

Ũkj ≥ P̄ ∀j (15)

so that
Γe∑

g=Γs

Hijg ≤
Γe∑

g=Γs

Ũij

P̄
P̂g ∀i, j (16)

If we assume that the actual streaming rate p fluctuates in
a relatively narrow band around P̄ , then we have that

Γe∑
g=Γs

P̄ =

Γe∑
g=Γs

P̂g ∀i, j (17)

So that
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Γe∑
g=Γs

Hijg ≤
Γe∑

g=Γs

Ũij ∀i, j

Γe∑
g=Γs

N∑
j=2

Hijg ≤
Γe∑

g=Γs

N∑
j=2

Ũij ∀i

(18)

As supposed in the handshake procedure of DPS algorithm,
we have that

N∑
j=2

Uij ≤ Ũi ∀i (19)

Hence,
Γe∑

g=Γs

N∑
j=2

Hijg ≤
Γe∑

g=Γs

Ũi ∀i � (20)
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