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ABSTRACT

Video analysis often begins with background subtraction, which
consists of creation of a background model that allows distinguish-
ing foreground pixels. Recent evaluation of background subtraction
techniques demonstrated that there are still considerable challenges
facing these methods. Processing per-pixel basis from the back-
ground is not only time-consuming but also can dramatically affect
foreground region detection, if region cohesion and contiguity is not
considered in the model. We present a new method in which we
regard the image sequence to be made up of the sum of a low-rank
background matrix and a dynamic tree-structured sparse matrix, and
solve the decomposition using our approximated Robust Principal
Component Analysis method extended to handle camera motion.
Furthermore, to reduce the curse of dimensionality and scale, we
introduce a low-rank background modeling via Column Subset Se-
lection that reduces the order of complexity, decreases computation
time, and eliminates the huge storage need for large videos.

Index Terms— Approximated RPCA, structured-sparse, col-
umn subset selection, foreground detection, moving camera.

1. INTRODUCTION

Background subtraction can be defined as segmentation of a video
stream into foreground, which appears at unique moments in time,
and the background which is always present. It is a basic video pro-
cessing task with manifold applications. The research in this paper
addresses this fundamental task using an approximated Robust Prin-
cipal Component Analysis (RPCA) based method for background
modeling. Given a data matrix containing the frames of a video se-
quence stacked as its columns, A ∈ Rm×n, RPCA [1] solves the
matrix decomposition problem

min
L,S
‖L‖∗ + ‖S‖1 s.t. A = L+ S, (1)

as a surrogate for the actual problem
min
L,S

rank(L) + ‖S‖0 s.t. A = L+ S, (2)

where L is the low-rank component corresponding to the back-
ground and S is the sparse component containing the foreground
outliers. We are interested in a case where we can decompose the
matrix A into three components, namely a low-rank part L that can
describe the background of the sequence, along with adaptivity to
changes introduced to it, a sparse component S containing only the
genuine rigid foreground regions, and a noise component E that
collectively contains Gaussian noise and ambiguous pixels. We
formulate the problem in equation (1) as

min
L,S,τ

‖L‖F + λ‖S‖1 s.t. A ◦ τ = L+ S + E, (3)

meaning that the model does not seek the exact solution of decom-
posing a scene into background and foreground, but rather the ap-
proximate solution A ≈ L+S [2], [3] whereby the residual error E
will have the desired properties described above. λ is a regularizing

parameter ensuring no genuine foreground regions will be missed.
We have assumed that the images in matrix A ◦ τ are well aligned,
where τ stands for some transformation in the image domain (e.g.,
2D affine transformation for correcting misalignment, or 2D projec-
tive transformation for handling some perspective change).

Background modeling by the low-rank approximation has a
number of benefits: firstly, that a robust estimation of the mostly
static regions of the image is guaranteed; secondly, that this ap-
proximation can in part handle the variations in illumination in the
background, such as a tree swaying backwards and forward, or water
rippling in a lake, or traffic light changes that can be modeled by a
few modes. Thirdly, a low-rank approximation of the background
can help distinguish between general motion in the scene – which
can be due to camera movement – and local varying motions caused
by moving objects; since the background regions obey a single
highly correlated motion pattern.

Despite the promising effects of using a low-rank approxima-
tion for obtaining the background model, a sparse constraint for
foreground objects, is far too limited, if not useful in practice. The
foreground regions are usually spatially coherent clusters. Thus, we
prefer to detect contiguous regions of various sizes, and then lots of
zero entries (regions) in the sparse matrix. With this objective in
mind, we propose structured-sparsity inducing norms in the context
of a novel dynamic group structure, by which the natural structure
of foreground objects in the sparse matrix is preserved. The dy-
namicity of group structures is controlled via a patch-based group
selection algorithm that preserves the natural shape of objects in the
scene. The size and structure of these patches (or clusters) are dy-
namically refined in an iterative process. The matrix A can become
humongous when processing large or long videos. To alleviate the
curse of dimensionality and scale with an RPCA-based problem, we
must leverage on the fact that such data have in fact low intrinsic
dimensionality. We approach this problem as a Column Subset Se-
lection Problem (CSSP) [4], [5] by which means it is possible to
select a handful of the most representative and important columns of
a matrix. Assuming that we have a long video of a scene at our dis-
posal with hundreds or even thousands of frames, only a handful of
these frames determine a model of the background; the rest will ei-
ther contaminate the background or will be redundant to process. To
this end, we propose to model the background of the sequence using
a low-rank approximation by the output of the CSSP algorithm.

In a nutshell contributions of this paper are: inducing structured-
sparsity in a novel group structure, namely a dynamic block struc-
ture; insensitivity to foreground object size, as a result of using
within-patch normalized regularization; assumption of a Gaussian
i.i.d. noise for discarding false positive pixels (false alarms); vari-
able rank to accommodate illumination and small scene changes; a
dimensionality reduction for RPCA problem via the column subset
selection that reduces computational complexity and cost; and an
exhaustive evaluation using four datasets that demonstrates top per-
formance in comparison with the state-of-the-art alternatives.



2. RELATED WORK

Recent variants of low-dimensional models such as principal com-
ponent analysis (PCA) have resolved part of the issues arising with
this methodology, namely a non-SVD based fast solution [6]. How-
ever, still no considerations of the spatial distribution of outliers was
considered. In an effort to incorporate such prior an MRF-based
solution [7] has been proposed. But the result of imposing such
smoothness constraint (even with the discontinuity preserving prior
such as those based on Potts model) is that the foreground regions
tend to be over-smoothed; as an example, the details in the silhouette
of hands and legs of a moving person is sacrificed in favor of a more
compact blob. Our idea is established in the so-called structured-
sparsity or group-sparsity measures to incorporate the spatial prior.
Structural information about nonzero patterns of variables have been
developed and used in sparse signal recovery, and many approaches
have been applied to these problems successfully, such as Lattice
Matching Pursuit (LaMP) [8], Dynamic Group Sparsity (DGS) re-
covery [9], Bayesian Robust Matrix Factorization (BRMF) [10],and
the Proximal Operator using Network Flow (ProxFlow) [11]. How-
ever, the majority of related methods [12], [13] typically assume that
the block structure and its location is known or will suffer in regular-
ization or bootstrapping. In contrast, our method does not assume a
prior size or location or structure for sparsity, and dynamically up-
dates these to best fit the natural object shape in the scene, without
a separate training phase. The curse of dimensionality and scale re-
mains an open problem with RPCA-based solutions with large input
size. Different strategies for the dimensionality reduction for RPCA-
based methods are the bilateral random projections [6] and [14]. In
the next sections we present a number of solutions for the aforemen-
tioned critical issues with RPCA based solutions.

3. ROBUST FOREGROUND DETECTION VIA
STRUCTURED SPARSITY

We propose sparsity-inducing norms that can incorporate prior struc-
tures on the support of the errors such as spatial continuity. We es-
sentially consider a special case to the following problem

min
L,S,τ

‖L‖F + λψ(S) s.t. A ◦ τ ≈ L+ S, (4)

with the regularizer ψ(·) on S chosen to be ‖S‖2,1. Clearly, the
`1-norm regularization of (3) does not take into account any specific
structures or possible relations among subsets of the entries, while
in background subtraction, outliers (objects in the scene) normally
have structural properties of spatial contiguity and locality. There-
fore the `2,1 (a group sparsity inducing norm) is used to induce more
diverse and sophisticated sparse error patterns, that involves overlap-
ping groups of variables. ψ(·) involves a hierarchical partition of the
m variables in S into groups, called trees. A tree is defined in a
way that leaf nodes are singleton groups corresponding to individ-
ual pixels, and internal nodes/groups correspond to local patches of
varying size. Thus each parent node contains a hierarchy of child
nodes that are spatially adjacent to each other and constitute a local
part in the sparse image S. When a parent node goes to zero all its
descendants in the tree must go to zero. Consequently, the nonzero
or support patterns are formed by removing those nodes forced to
zero. This is exactly the desired effect of structured error patterns of
spatial locality and contiguity.

We can represent a scene using a tree structure by subdivi-
sion. In such a tree structure each child node is a subset of
its parent node and the nodes of the same depth level do not
overlap. Denote G as a set of groups from the power set of
the index set {1, . . . ,M}, with each group G ∈ G containing

a subset of these indices. The aforementioned tree-structured
groups used in this paper are formally defined as follows: A
set of groups G is said to be tree-structured in {1, . . . ,M} if
G = {. . . , Gi1, Gi2, . . . , Gibi , . . . } where i = 0, 1, 2, . . . , d, d is the
depth of the tree, b0 = 1 and G0

1 = {1, 2, . . . ,M}, bd = M and
correspondingly {Gdj}Mj=1 are singleton groups. Let Gij be the par-
ent node of a node Gi+1

j′ in the tree, we have Gi+1
j′ ⊆ Gij . We also

have Gij ∩ Gik = ∅,∀i = 1, . . . , d, j 6= k, 1 ≤ j, k ≤ bi. Similar
group structures are also considered in [15] with different sparsity-
inducing norms. With the above notation, a general tree-structured
sparsity-inducing norm can be written as

ψ(S) =

d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1, (5)

where SGi
j

is a vector with entries equal to those of S for the indices

in Gij and 0 otherwise. wij are positive weights for groups Gij . Here
it is chosen as wij = 1/max(AGi

j
) to overcome sensitivity of the

regularization scheme to illumination variance across patches. Thus
the objective function in the optimization program (3) is modified to

min
L,S,τ

‖L‖F + λ

d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1 s.t. A ◦ τ ≈ L+S, (6)

where λ is a parameter controlling the trade-off between sparsity of
S + E and structured sparsity of S. To solve this problem we use
an alternating minimization procedure. We proceed by minimizing
the function for two parameters L and S one at a time until the solu-
tion reaches convergence; that means solving two reduced problems,
each being minimized independently form one another

Lt = argmin
rank(L)≤r

‖A ◦ τ − L− St−1‖2F (7)

St = argmin
S

‖A ◦ τ − Lt − S‖2F + λ

d∑
i=0

bi∑
j=1

wij‖SGi
j
‖2,1 (8)

We find a good initialization for τ by pre-aligning all frames in
the sequences to the middle frame, before the main loops of mini-
mization. The linearization of τ and pre-alignment is done by the
robust multiresolution method proposed in [2], [16].

4. DIMENSIONALITY REDUCTION FOR
DECOMPOSITION WITH CSSP

We propose a novel dimensionality reduction technique that calcu-
lates the background model from a handful of the “best” or “most
representative” columns from a matrix. The theoretical computer
science community has come up with randomized [17] and deter-
ministic [14], [18] algorithms to solve this problem [5]. The CSSP
is defined as: LetA ∈ Rm×n and let c < n be a sampling parameter.
Find c columns of A – denoted as C ∈ Rm×c – that minimize

‖A− CC†A‖F or ‖A− CC†A‖2,
where C† denotes the Moore-Penrose pseudo-inverse. We can
equivalently write C = AA, where the sampling matrix is A ∈
Rn×c. A simple but extremely successful deterministic strategy is
proposed [19] which is based on sampling columns of A that cor-
respond to the largest leverage scores `κi , for some κ < rank(A).
As the number of columns to be selected is not known a priori, the
algorithm selects the c columns of A that correspond to the largest
c leverage scores `κi such that their sum

∑c
i=1 `

κ
i is more than an

“energy” parameter θ that essentially controls the quality of the
approximation, with c = θ × n. The rank-κ leverage score of the
i-th column of A is defined as

`κi = ‖Vκ(i, :)‖22, i = 1, 2, . . . , n



Here, Vκ(i, :) denotes the i-th row of Vκ, a matrix that con-
tains the right singular vectors. A more sophisticated method that
circumvents the lack of theoretical analysis of the above determin-
istic algorithm, uses randomization; the leverage scores are used to
find a probability vector ξi = `κi /κ, i = 1, . . . , n, where each
i-th component is interpreted as the probability of the i-th column
to be selected. Remarkably, the randomized algorithm above yields
a matrix estimate that is “near-optimal”, i.e., has error close to that
of the best rank-κ approximation. Our algorithm’s order of com-
plexity with CSSP is significantly reduced from min(mn2,m2n) to
min(mc2,m2, c)

5. RESULTS

Our algorithm is implemented and tested in MATLAB on a desk-
top machine, single core on an Intel Core i7-4770 CPU and 32 GB
of RAM. The average processing time on a sequence of 100 RGB
frames with resolution 600 × 800 with image alignment and back-
ground motion estimation is about 665 seconds, which is decreased
to 195 seconds with CSSP, meaning a time-saving of more than 3.4
times. We perform extensive tests using four datasets [20], [21],
[22], [23], comprised of 49 videos with various challenges. This
allows us to compare our method to a large number of alternative
methods. For all the tests these same set of parameters are used:
regularizing parameter λ = 3/

√
max(m,n), depth of each tree

d = 3, number of singleton groupsM = 64, and energy value for
CSSP θ = .25. We evaluate our method for foreground segmen-
tation. The accuracy of foreground segmentation is measured by
comparing calculated foreground support with the binary ground-
truth images. Figure 1 shows the unrefined segmentation results for
the i2R dataset without post-processing. Tables 1 and 2 show F-
measure results for top competing methods in i2R, WallFlower, and
CDnet datasets. The results guarantee superior performance for all
datasets in segmentation accuracy. Our algorithm is insensitive to
variability in object size as we have used a single λ for all the tests.
This is corroborated with empirical evidence in segmentation accu-
racy measures, and also the qualitative results shown in Figure 1.

We also perform qualitative tests to illustrate the efficacy of the
CSSP by comparing the calculated background via CSSP with low-
rank modeling. Figure 2 shows the PSNR values obtained by using
20 values of θ linearly distributed in range [.05, 1]. According to
this for all the our tests using 25% of the columns of A guarantees
a very accurate model of the background, while a larger θ will not
always result in significant increase in PSNR. An important observa-
tion here which demonstrates the advantage of using CSSP, is that,
as we introduce more frames to the background (i.e., we use higher
θ) we risk contaminating the background model by more foreground
information; this is seen the fluctuations in Figure 2-(b), (c), (e), (g),
and (h). That means an optimal θ is rather one that is smaller, that
will select the most representative frames for the background of a
sequence. Figure 3 demonstrates total time consumption for pro-
cessing a 100 frame video in each of the datasets with varying θ in
comparison with original low-rank modeling. Again our choice of θ
lies in the elbow of these plots and provides time-saving guarantees.

6. CONCLUSION

We have presented a new background subtraction method and val-
idated its efficacy and effectiveness with extensive testing. The
method is based on an existing model, namely RPCA, but with
new sparsity-inducing norms and group-structured sparsity con-
straints. Our simple model produces crisp and well-defined genuine
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Fig. 2: PSNR-θ plot of modeled background by CSSP vs. low-rank
modeling. With energy value θ = .25 the optimality of the quality
of the modeled background is ensured.

foreground segmentation surpassing the performance of state-of-
the-art methods. Moreover, our sparsity model dynamically evolves
to best describe genuine foreground objects in the scene, which
gives it a significant advantage when it comes to handling dynamic
backgrounds, or foreground aperture. To make the problem compu-
tationally scalable we proposed using deterministic and randomized
CSSP for low-rank matrix estimation. Our model proves itself to
have excellent performance in dealing with heavy noise, thanks to
the approximated RPCA model where the residual Gaussian noise
is discarded into a third matrix in the decomposition. In addition,
estimation of background motion induced by a jittering or moving
camera is performed simultaneously with low-rank approximation.
In future we would like to create a mechanism to handle shadows
and thermal videos and obtain real-time performance for our model.



(a) campus                 (b) fountain             (c) water surface         (d) curtain           (e) lobby            (f) shopping mall         (g) airport       (h) bootstrap            (i) escalator 

Fig. 1: i2R [22] and WallFlower [21] results: top row is the original image, second row is the ground truth, the third row is our unrefined
results with no post-processing. We used the same frames as [24], [13], [25], [26], [27], and [28], for qualitative comparison.

Table 1: i2R [22] and WallFlower [21] dataset F-measure results.

method cam ft ws mc lb sm ap br ss mean
SemiSoftGoDec [29] .0903 (10) .2574 (9) .4473 (10) .4344 (10) .3602 (10) .6554 (8) .5713 (7) .3561 (10) .2751 (9) .3830 (10)

Stauffer [30] .7570 (5) .6854 (6) .7948 (7) .7580 (8) .6519 (6) .5363 (10) .3335 (10) .3838 (9) .1388 (10) .4842 (9)
Culibrk [27] .5256 (7) .4636 (8) .7540 (8) .7368 (9) .6276 (9) .5696 (9) .3923 (9) .4779 (8) .4928 (8) .5600 (8)

DECOLOR [7] .3416 (9) .2075 (10) .9022 (5) .8700 (4) .646 (8) .6822 (5) .8169 (3) .6589 (4) .7480 (3) .6525 (7)
Maddalena [28] .6960 (6) .6554 (7) .8247 (6) .8178 (7) .6489 (7) .6677 (7) .5943 (5) .6019 (6) .5770 (6) .6760 (6)
DP-GMM [26] .7876 (3) .7424 (5) .9298 (3) .8411 (5) .6665 (5) .6733 (6) .5675 (8) .6496 (5) .5522 (7) .7122 (5)

PCP [31] .5226 (8) .8650 (3) .6082 (9) .9014 (3) .7245 (4) .7785 (3) .5879 (6) .8322 (3) .7374 (4) .7286 (4)
LSD-GSRPCA [13] .7613 (4) .8371 (4) .9050 (4) .8357 (6) .7313 (3) .7362 (4) .7222 (4) .5842 (7) .7214 (5) .7594 (2)

SPGFL [24] .8574 (2) .9322 (1) .9856 (1) .9744 (1) .8840 (1) .8265 (2) .7739 (2) .8394 (2) .8029 (2) .8751 (3)
Ours .9277 (1) .8808 (2) .9535 (2) .9093 (2) .7563 (2) .8950 (1) .8343 (1) .9196 (1) .9377 (1) .8904 (1)

Table 2: CDNet [23] dataset: F-measure results for all the categories for the most competitive methods. Table accurate as of January 2016,
with results from CDnet http://changedetection.net/. The online chart keeps updating.

method bl cj db im sh th mean
DECOLOR [7] .9215 (10) .7776 (8) .7084 (9) .5945 (9) .8317 (5) .7081 (10) .7570 (10)

SGMM-SOD [32] .9223 (9) .6988 (10) .6826 (10) .6957 (6) .8613 (4) .7081 (9) .7624 (9)
DP-GMM [26] .9286 (8) .7477 (9) .8137 (5) .5418 (10) .8127 (7) .8134 (5) .7763 (8)

2-pass RPCA [12] .9281 (7) .8152 (5) .7818 (8) .6826 (7) .8063 (10) .7597 (7) .7956 (7)
MBS V0 [33] .9287 (6) .8367 (4) .7904 (7) .7092 (5) .8063 (9) .8115 (6) .8092 (6)

MBS [34] .9287 (5) .8367 (3) .7915 (6) .7568 (4) .8262 (6) .8194 (3) .8217 (5)
SuBSENSE [35] .9500 (1) .8150 (6) .8180 (4) .6570 (8) .8990 (2) .8170 (4) .8260 (4)

PAWCS [36] .9397 (4) .8137 (7) .8938 (3) .7764 (3) .8710 (3) .8324 (2) .8545 (3)
CDet [37] .9458 (2) .8367 (2) .8991 (2) .8039 (1) .8122 (8) .8337 (1) .8552 (2)

Ours .9430 (3) .8804 (1) .9005 (1) .7837 (2) .9107 (1) .7195 (8) .8563 (1)
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Fig. 3: Average time consumption vs. θ for processing a 100 frame video from each dataset using CSSP vs. original low-rank modeling. For
our experiments we chose θ = .25 that guarantees time-saving as well as near-optimal background modeling.
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