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ABSTRACT

Decomposition of a video scene into background and foreground is
an old problem, for which novel approaches in the last years have
been proposed. The robust subspace approach based on a low-rank
plus sparse matrix decomposition has shown a great ability to iden-
tify static parts from moving objects in video sequences. However,
those models are still insufficient in realistic environments. In this
paper, we propose a modified approximated robust PCA algorithm
that can handle moving cameras and takes advantage of the block
sparse structure of the pixels corresponding to the moving objects.
Additionally, we propose a novel SVD-free algorithm for the case of
rank-1 background that outperforms current state-of-the-art methods
in computation cost/time as well as performance. Finally, exper-
iments and numerical results evaluating the proposed methods are
demonstrated.

Index Terms— Background subtraction, robust principal com-
ponent analysis, matrix decomposition, low-rank, sparse.

1. INTRODUCTION

The separation of locally moving or deforming image areas from
a static or globally moving background is a basic video processing
task with manifold applications. The research in this paper addresses
this fundamental task by leveraging and building on recent develop-
ments in the field of Robust Principal Component Analysis (RPCA).
Specifically, the work reported here has been inspired by the critical
breakthrough accomplished by Candès et al. [1], where the authors
provided a practical solution for the long-standing problem of re-
covering the low-rank and sparse parts of a large matrix made up
of the sum of these two components. In particular context of video
processing, the 2-dimensional matrix A of size m × n stores pixel
information of a video sequence Ij , j = 1, . . . , n, or a set of im-
ages by concatenating each frame Ij as a columnAj inA. Then, the
background part of the video sequence is modeled by the low-rank
matrix, while the locally deforming parts constitute the sparse matrix
component. More specifically they minimize a surrogate model us-
ing the `1 and nuclear norms with the convex optimization problem
named Principal Component Pursuit (PCP) that with a high proba-
bility the solution of (1) can recover the low-rank (background) and
the sparse (foreground) parts of the original matrix.

argmin ‖L‖∗ + λ‖S‖1 subject to A = L+ S (1)
where L and S are matrices of the same size as A, and ‖ · ‖∗ and
‖ · ‖1 are the nuclear norm (which is the `1-norm of the singular
values) and the `1-norm respectively, and λ is a balanced parameter
(which according to [1] is assigned as 1√

max(m,n)
). PCP has led

to impressive results in background modeling, foreground detection,
removal of shadows and specularities in images, and face alignment
for recognition. Although this formulation leads to a computation-

ally feasible solution, the complexity is still high involving the cal-
culation of many Singular Value Decompositions (SVD) for a very
large matrix.

In this paper for practical reasons, we assume that the matrix A
is decomposable; i.e., the matrix A is close to a matrix that can be
written as the sum of a low-rank matrix L with singular vectors that
are not spiky, and a sparse matrix S with a uniform and random pat-
tern of sparsity. This paper addresses a number of critical issues and
limitations of RPCA which are: embedding global motion parame-
ters in the model, i.e., estimation of global motion parameters simul-
taneously with the foreground/background separation task; consider-
ing matrix block-sparsity rather than generic matrix sparsity as natu-
ral feature in video processing applications; and more critically pro-
viding an extremely efficient algorithm to solve the low-rank/sparse
decomposition task. The first model aims video sequences cap-
tured by a moving camera, by estimating the global motion param-
eters while performing the targeted background/foreground separa-
tion task. The second model exploits the fact that in video processing
applications the sparsity of the sparse matrix has a very special struc-
ture. In other words, the non-zero matrix entries are not randomly
distributed but they build small blocks within the sparse matrix. Fi-
nally, the last solution targets the fact that RPCA approaches are
computationally expensive. The proposed model introduces an ex-
tremely efficient “SVD-free” technique that can be applied in most
background/foreground separation tasks.

2. RELATED WORK

Many algorithms have been developed to address and solve the prob-
lems in background modeling and foreground detection. Zhou et
al. [2] proposed a method called DECOLOR in which they seg-
mented moving objects from an image sequence by incorporating
a Markov Random Fields (MRF) framework, and solving a non-
convex penalty. Since DECOLOR minimizes a non-convex energy
via alternating optimization, it converges to a local optimum with
results depending on initialization of the foreground support, while
PCP always minimizes its energy globally.

In another work, this time addressing the complexity issue, Zhou
and Tao [3] proposed the approximated RPCA (called GoDec).
GoDec aims at providing an approximate solution of the low-
rank/sparse decomposition in presence of noise, that converges
to a local minimum, when the exact and unique decomposition does
not exist in more realistic situations. They estimate the low-rank
part L and the sparse part S of a large matrix containing additive
noise part G as:
min
L,S
‖A−L−S‖2F such that rank(L) ≤ k, card(S) ≤ κ (2)

where ‖ · ‖F is the Frobenius norm. However in the optimization
process the rank of L and cardinality of S are fixed which imposes
limitations to the decomposition of unconstrained real-world video



sequences. Moreover the hard-thresholding towards S requires sort-
ing all its entries’ magnitudes and thus is computationally expensive.

Recently, some works have been developed in which block-
sparsity structure in the optimization process has been exploited [4],
[5]. In these models the matrix S contains mostly zero columns,
with several non-zero ones corresponding to foreground elements.
In image processing applications this assumption cannot be made,
since a whole column representing a frame cannot be zero in the
sparse component. Furthermore, assuming that most columns of S
are zero contradicts the definition of sparse matrix. When a whole
column in the sparse matrix is zero it means the information in
that column is assigned to the low-rank subspace. Moreover, if the
video sequence contains foreground objects in all the frames this
assumption does not help. In the next sections we present a number
of solutions for the aforementioned critical issues with RPCA based
solutions.

3. τ -DECOMPOSITION

The robust subspace learning models via matrix decomposition in
the literature can mostly handle video sequences captured by static
cameras. In this section building on [1], [6], and [3] an extension
of the approximated RPCA model is proposed with the introduction
of domain transformations into the optimization task, to compensate
for background motion which is caused by camera movement. Basi-
cally, it is assumed that the columns of L are linearly dependent up
to a certain parametric transformation. Given a data matrix A whose
columns are the frames of a video sequence, captured by a moving
camera, we write the decomposition of matrix A as:

A ◦ τ = L+ S +G (3)
where G is a matrix that contains the incomplete information and
corruption by outliers it the original video sequence, e.g., Gaussian
noise. Aj ◦ τj denotes the j-th frame after transformation parame-
terized by the vector τj ∈ Rρ where ρ is the number of parameters
fully describing the global motion model. Therefore, ρ = 4 cor-
responds to similarity, ρ = 6 to affine, and ρ = 8 to projective
transformation. The i-th geometric transformation is comprised of
a parameter vector τi, i = 1, . . . , n where different spatial trans-
formations can be considered. We use 2D parametric transforms
to model translation, rotation, and planar deformation of the back-
ground. Finally we use the multi-resolution incremental refinement
described in [7], to estimate these motion parameters. We propose
a computationally-cheaper (compared to [6]) algorithm based on an
approximated RPCA formulation.

Given the data matrix A and the Lagrange tuning parameter λ
the following optimization function recovers a low-rank matrix L, a
sparse matrix S, and the motion parameter vector τ such thatA◦τ ≈
L+ S:

argmin
L,S,τ

rank(L)≤k

‖A ◦ τ − L− S‖F + λ‖S‖1 (4)

The first summand guarantees the approximations of the decom-
position (minimizing the residual) and the second favors the sparse
matrix solution S with many zero elements (i.e. sparse enough).
The parameter λ controls the contribution of each summand to the
function to be minimized. λ needs to be manually set depending
on the problem to be solved and increases the model’s flexibility
and generalizability to different scenarios. The model is tested us-
ing variations of this parameter in our experiments with the Receiver
Operating Characteristic (ROC) performance evaluation. We follow
an alternating strategy minimizing the function for three parameters
L, S, and τ one at a time until the solution reaches convergence (in

an iterative process) to a local optima:
τ t = argmin

τ
‖A ◦ τ − Lt−1 − St−1‖2F (5)

Lt = argmin
rank(L)≤k

‖A ◦ τ t − L− St−1‖2F (6)

St = argmin
S

‖A ◦ τ t − Lt − S‖2F + λ‖S‖1 (7)

The problem (5) can be written as a weighted least squares mini-
mization where the solutions τi have a closed-form. To calculate the
rank-k matrix that is the nearest estimate of the matrixA◦τ t−St−1

in (6), SVD gives a closed-form solution as:

Lt =

k∑
i=1

σiUiV
T
i

with the coefficients σi and the vectors Ui and Vi are the singular
values, and the left and right singular vectors of the matrix A ◦ τ t −
St−1, respectively. Finally in (7) the matrix St is updated using the
parameter λ acting as a tuning parameter in the matrix A ◦ τ t − Lt;
i.e. the elements of the matrix A ◦ τ t−Lt ≤ λ are considered zero.

4. BLOCK-SPARSITY

The formulation of background modeling/foreground detection
problem using the optimization function (4) favors solutions where
the matrix S is sufficiently sparse. But this information does not
take into account the structure of sparsity in S, and therefore does
not yield good results when the sparse pattern involves for example
clutters of non-zero entries representing foreground objects. Indeed,
in real-world video sequences the foreground pixels do not appear
as in a sparse matrix at random and scattered; strictly speaking they
appear in regions of pixels corresponding to foreground objects in a
scene. It would make sense if the block-sparsity is imposed on the
pixels of each video frame rather than a whole column (whole frame)
in the matrix S. This mathematical solution would favor solutions
where the zero elements of the matrix S appear in blocks, where
each block can represent the natural shape of a foreground object.
We definemat(·) a mapping operator from them-dimensional space
into the w × h matrix as Rm → Rw×h. In other words mat(Aj) is
equal to video frame Ij . Hence we solve the minimization problem
for block-sparse matrices mat(Sj). Given a data matrix A whose
columns are the frames of a video sequence captured by a moving
camera and a Lagrange parameter λ, we minimize the following
optimization problem that recovers the background and foreground
of the sequence with the matrices L and S, respectively:

argmin
S,τ

rank(L)≤k

‖A ◦ τ − L− S‖2F + λ

n∑
j=1

‖mat(Sj)‖2,1 (8)

where `2,1-norm is defined as ‖A‖2,1 =
∑
j ‖Aj‖2 which is the

`1-norm of the vector formed by taking the `2-norms of the columns
of the underlying matrix. The optimization procedure is similar to
the alternating strategy between three sub-problems in the previous
section.

τ t = argmin
τ

‖A ◦ τ − Lt−1 − St−1‖2F (9)

Lt = argmin
rank(L)≤k

‖A ◦ τ t − L− St−1‖2F (10)

St = argmin
S

‖A ◦ τ t − Lt − S‖2F + λ

n∑
j=1

‖mat(Sj)‖2,1 (11)

We have found a closed form expression for the solution of the
minimization problem (11) that facilitates the algorithm.



5. SVD-FREE SOLUTION TO RPCA

Considering a particular case, where the background in a video se-
quence does not change, and it can be described by a rank-1 matrix,
the optimization problem of approximated RPCA algorithm is:

argmin
S,L,τ

rank(L)=1
card(S)≤κ

‖A ◦ τ − L− S‖F (12)

Note that the Lagrange parameter λ is left out, and instead the
number of non-zero elements card(S) is being fixed. The cardinal-
ity κ acts as a hard-thresholding parameter that controls the qual-
ity of the reconstruction of A using the matrices L and S. The
rank-1 restriction for L imposed in the optimization problem yields
to solutions where the columns of the matrix L can be written as
Lj ← αL1, j = 1, . . . , n, where L1 is the first column of L and
α is a scalar. This is based on the fact that not all the columns of a
rank-1 matrix are necessarily equal, and rather the columns are lin-
early dependent (by a scalar factor). Based on this fact, we assume
a particular rank-1 matrix L where all the column vectors are equal;
i.e. L = l1T where l is a vector of size m and 1T = (1, . . . , 1).
Note that any matrix in the form l1T is a rank-1 matrix but not all
rank-1 matrices can be written by repeating the same vector in all
the columns.

The main advantage of this special rank-1 matrix is that we
prove the vector l can be calculated without computing a SVD; there-
fore, this algorithm converges much faster as a result, since the most
expensive computation in the described algorithms is in SVD calcu-
lation step. The optimization model is as below:

argmin
S,l,τ

card(S)≤κ

‖A ◦ τ − l1T − S‖F (13)

Similar to previous sections the optimization process includes
an alternating strategy as below:

τ t = argmin
τ

‖A ◦ τ − lt−1
1
T − St−1‖2F (14)

Lt = argmin
l
‖A ◦ τ t − l1T − St−1‖2F (15)

St = argmin
card(S)≤κ

‖A ◦ τ t − lt1T − S‖2F (16)

The matrix St that solves the optimization problem (16) is the
matrix with zero elements in the positions corresponding to the fits
κ smallest elements of the matrix |A ◦ τ t − lt1T |.

6. RESULTS

The proposed algorithms in sections 3, 4, and 5 were implemented
and tested in MATLAB 8.3.0.532 (R2014a) on a 64-bit PC with Intel
Core i7-4770 CPU @3.40GHz (single core) and 32GB of RAM. A
C++ implementation that performs similarly to that of MATLAB has
also been developed. For the evaluations, 7 challenging background
subtraction datasets ([8], [9], [10], [11], [12], [13], [14]) are tested
with our models. They vary in resolution, quality, frame number, and
general scene scenarios which guarantees an unbiased evaluation. A
complete description of challenges is available in [15].

Figure 1 shows the results for a sequence captured by a mov-
ing camera. The marked green region corresponds to the recovered
rank-1 background across the whole sequence with the motion pa-
rameters, which is visible in the selected frame.

To demonstrate the block-sparse model described in this paper,
figure 2 shows a comparison between our block-sparse model and
the RPCA-LBD model [4], [5] for a complex video sequence with

(a) (b) (c) (d) 

Fig. 1: Decomposition of a sequence with moving camera. (a) Orig-
inal video frames 1, 20, and 40. (b) Reconstruction A = L + S.
(c) Motion-compensated extracted L. (d) Motion-compensated ex-
tracted S.

Table 1: Time performance comparison (CPU sec.).

CDW BMC CM SAI i2R MuHAVi-MAS

# Frames 6049 591 500 600 15462 466
RPCA 1931.12 116.94 65.67 454.59 646.52 380.85
GoDec 1874.82 49.67 44.26 376.91 480.33 203.17
Our Model 358.91 20.82 17.38 117.69 209.84 70.27

dynamic background with water rippling. Columns (b) and (d) corre-
spond to the low-rank and sparse parts obtained by the RPCA-LBD
for λ = 0.6710 (as tuned by authors in their original paper). Our
results were obtained with model parameters rank(L) = 1, and
lambda = 0.03 in columns (c) and (e).

We also evaluate our method for the task of foreground segmen-
tation. The accuracy of foreground detection is measured by compar-
ing the calculated foreground support with the binary ground-truth
images. Figure 3 shows the unrefined segmentation results for a gen-
eral surveillance sequence. Notice the accuracy and coherence of
the segmentation in our results as compared to that of GoDec. The
proposed algorithm can handle objects that occupy large portions of
the frame as well as small objects (such as pedestrians in this scene)
equally well simultaneously. The Receiver Operating Characteristic
(ROC) curves obtained with Precision-Recall values for six datasets
in figure 4 show the performance of our method against GoDec for
varying thresholds. The results here guarantee superior performance
for all datasets in segmentation accuracy. The Precision and Recall
values are calculated with the number of pixels that are classified
with regard to ground-truth as True-Positive tp, True-Negative tn,
False-Positive fp, and False-Negative fn.

Precision =
tp

tp+ fp

Recall =
tp

tp+ fn
=

#correctly classified foreground pixels
#foreground pixels in GT

The CPU time consumption of our SVD-free model, for per-
forming the decomposition task is shown in table 1 against Original
RPCA [1], and approximated RPCA (GoDec) [3]. All the algorithms
were run with 5 iterations and the tuning parameters were chosen to
obtain maximal segmentation accuracy.



         (a)                   (b)                  (c)                   (d)                  (e) 

Fig. 2: RPCA-LBD algorithm vs. our block-sparse model. (a) Original video for frames 24 and 48. (b) L, RPCA-LBD. (c) L, our block-
sparse. (d) S, RPCA-LBD. (e) S, our block-sparse.

 

(a) (b) (c) (d) (e) 

Fig. 3: Segmentation results comparison. (a) Original frames, (b) L GoDec, (c) L ours, (d) S GoDec, (e) S ours.
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Fig. 4: Receiver Operating Characteristic (ROC) curves for the performance of our method vs. GoDec with varying thresholds.

7. CONCLUSION

In this article we proposed a number of improvements on the ap-
proximated RPCA algorithm as well as a novel SVD-free solution
to the optimization problem for fast computation. The solutions pre-
sented in this paper aim to solve issues that arise with RPCA-based
methods in foreground/background segmentation of general video
sequences. Our proposed method can handle camera movement, var-
ious foreground object sizes, and slow-moving foreground pixels as

well as sudden and gradual illumination changes in a scene. The
qualitative and quantitative segmentation results outperform current
state-of-the-art methods. Our SVD-free solution achieves more than
double the amount of speed-up in computation time for the same
performance target compared to its counterpart. In future we would
like to move towards unconstrained cases where the captured video
could have any motion, parametric transformation, quality, motion
blur, or deformation of scene elements.
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