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LEARNING VISUAL SALIENCY USING TOPOGRAPHIC INDEPENDENT COMPONENT
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ABSTRACT

Understanding the underlying mechanisms that drive human

visual attention is a topic of immense interest. Most of the

work is focused on extracting manually selected features that

might resemble the human visual processing pathway and

using a combination of those features to train a classifier that

learns to predict where humans look. In contrast, we will

learn the features in an unsupervised way using a generaliza-

tion of Independent Component Analysis (ICA), namely the

topographic Independent Component Analysis (tICA). We

will show that those learned features in combination with

linear SVM outperform the hand-crafted ones. In addition,

we propose a novel optimization scheme, which jointly op-

timizes for linear SVM and tICA pooling weights and show

that it further improves the results.

Index Terms— bottom-up saliency, independent compo-

nent analysis, topography, supervised pooling

1. INTRODUCTION

Understanding the mechanism of human visual attention has

attracted the interest of several research areas and several

computational models for predicting saliency have been pro-

posed and then validated on fixation maps obtained by record-

ing human gaze[1, 2]. More recent approach in learning vi-

sual saliency uses that data in order to train classifiers that pre-

dict human fixations from image features [3, 4, 5, 6, 7, 8, 5].

A detailed review on recent advances in learning saliency

from human data is given in [9].

A central issue in methods that learn to predict visual

saliency is the choice of the appropriate features. The main

idea behind early learning-based approaches [3, 4, 5] is to ex-

tract raw image patches and train an RBF SVM classifier to

discriminate fixations and non-fixations. Other works [6, 8, 7,

10] are focused on designing features that are extracted from

the patches in question in order to construct training samples.

[6] uses feature vectors that consist of low (orientation filters),

mid (horizon detection) and high level features (face detec-

tion). The latter is an important feature as it has been found

that when faces are present in an image, our earliest fixations

are usually on them and that inter-subject scanpath consis-

tency on images with faces is higher than in images without

them [11]. To boost the performance, [10] introduces more

feature channels and combines them to learn different types

of classifiers (whereas in [6] a simple linear SVM is used).

Also, those models [6, 8, 7, 10] introduce central bias as it

plays an important role in saliency prediction [8]. In [7, 8] the

output of a face detector is used together with three low level

features (color, intensity, orientation) and optimal weights for

feature integration are found using linear, least square regres-

sion. Both central bias and the learned weights are used to

construct the saliency maps. In a more recent work by the

same authors, optimal weights (for same feature channels)

were learned using nonlinear AdaBoost [7].

Some works support the idea that applying Independent

Component Analysis leads to the emergence of oriented lin-

ear filters that resemble V1 simple-cell receptive fields [12,

13]. In order to explain the emergence of the V1 topogra-

phy, in [12] a more generalized model, namely topographic

ICA, is introduced (a detailed comparison between ICA and

tICA is given in [13]). The main idea in this transform is to

introduce nonlinearity in order to represent invariant features

while considering the topographic ordering of basis vector so

that vectors with stronger higher order correlations are close

to each other in the topology. The motivation for such model-

ing comes from the fact that in the higher levels of the visual

system, there are cells which respond to complex object parts

irrespectively of their spatial location. This can not be well

represented by linear feature detectors, but this topological or-

dering might lead to the emergence of complex cell properties

where each neighborhood cell acts like a complex cell [12].

In contrast to other works that either use combina-

tions of handcrafted features with linear[8, 6] or Adaboost

classifiers[7], or raw image patches with RBF SVM [5, 3, 4]

in this work we propose to learn the features and use them

to feed the linear SVM. Inspired by the works of [12, 14]

we do so by using a model that is argued to resemble the

complex cells of the V1 human visual pathway, namely to-

pographic Independent Component Analysis. In the second

phase we will use a linear binary SVM criterion (as in [6])

and propose a novel scheme that jointly learns both the SVM

weights and the weights of the pooling matrix in tICA. This



Fig. 1. tICA model[14]

is in contrast to other works [12, 13, 14] in which the weights

of the pooling matrix are kept fixed. To summarize, our con-

tribution is two fold. First we show that our unsupervised

feature learning method outperforms sophisticated state of

the art methods that learn saliency using the combination of

manually selected salient features, and second, we show that

our novel scheme that jointly optimizes the classifier weights

and the pooling layer weights further improves the results.

2. METHODOLOGY

2.1. Topographic independent component analysis

tICA can be described as a two-layered network with squared

nonlinearity in the first, and square-root nonlinearity in the

second layer of the network (Fig. 1). As proposed in [12],

only the weights of the first layer vj are learned and the sec-

ond layer pooling matrix π(i, j) is fixed. This matrix ex-

presses the proximity of the features with indices i and j in a

predefined underlying topography. For example, π(i, j) is 1
if the feature j is in a 3x3 square neighbourhood of feature i;

otherwise π(i, j) is zero. This type of arrangement restricts

features in the same clusters to have adaptive size and weights

that depend on the nature of their features. With our joint op-

timization procedure described in 2.2 we are going to make

the weights adaptive and dependent on the nature of the su-

pervision criterion, i.e. we will change the non-zero elements

of the pooling matrix, while keeping the size of the neigh-

bourhood fixed, i.e. the zero elements stay zeros.

Assuming that we have observed a set of image patches

z
t, t = 1, ..., T after whitening, tICA learns vj , j = 1, ..., n1

by solving the following optimization problem:

min
{vj | j=1,...,n1}

n2
∑

i=1

T
∑

t=1

√

√

√

√

n1
∑

j=1

π(i, j)(vT
j z

t)2 (1)

Fig. 2. tICA basis vectors

where n1 is number of the neurons in the first layer and n2 is

the output dimensionality (i.e. number of neurons in the sec-

ond layer after the pooling). In addition, the vectors vj , j =
1, ..., n1 are constrained to be orthogonal. Minimization of

this function is done by batch gradient descent.

Once the vectors {vj} are estimated, given a whitened im-

age patch z, we can extract a feature x = [x1, ...xi, ...,xn2
] ∈

Rn2 .The i-th element of x is given by:

xi =

√

√

√

√

n1
∑

j=1

π(i, j)(vT
i z)

2. (2)

In Fig. 2 we show the basis vectors we obtained for tICA

in order to illustrate the emergence of topographic organiza-

tion. In contrast to Gabor-like linear features, in the case of

tICA the location and orientation change smoothly in the to-

pographic grid.

There were a couple of attempts to estimate both layers

in this two layer model (i.e. learning the matrix π) using an

energy-based approach in an unsupervised manner [15, 16].

However, in [16] there was no significant reduction in energy

dependencies of the proposed model, and in [15] a novel es-

timation method for two layer network similar to the one of

tICA was presented but no further analysis in terms of com-

parison to the original topographic ICA was given. In the

section 2.2 we propose to learn the pooling matrix in a super-

vised manner using the classification criterion.

2.2. Supervised pooling

Typically, learning saliency is posed as a binary classification

problem over some handcrafted features [3, 4, 5, 6, 8, 7]. In



Fig. 3. Illustration of our proposed architecture. Due to clar-

ity, weights are shown only for the marked neurons.

this framework, let {xt, yt}
T

t=1 denote a set of training vectors

x
t ∈ Rn2 representing the extracted features of image patches

(see (2)) and their corresponding labels yt ∈ {−1, 1}. yt = 1
if the position where x

t is extracted is a fixation point and

yt = −1 otherwise (fixation point is a point which users that

were presented with the image in question fixated their gaze;

for details see section 3 or [6, 18, 5]). Instead of solving the

standard SVM problem where only the weights of the SVM

are learned, we solve the following minimization problem:

min
w,b,π

f(x;w, b, π), (3)

where

f(x;w, b, π) =
1

2
w

T
w + C

T
∑

t=1

(max(0, 1− yt(wT
x
t + b)))2,

(4)

where π is the pooling matrix and x is a function of π (see

(2)). We solve this by following a coordinate descent itera-

tive optimization procedure which iterates between steps S2

and S3 (see Fig. 3). Each of those two steps is a convex sub-

problem, and solved with respect to a subset of the unknown

variable.

The full learning algorithm, which consist of three steps,

is given below:

S1. Pretrain the lowest layer of the architecture according

to the tICA criterion (see (1)), i.e. in an unsupervised manner.

S2. Minimize with respect to SVM parameters, that is:

min
w,b

f(x;w, b, π). (5)

This is a standard SVM problem that we solve using LIBLIN-

EAR library[19].

S3. Minimize with respect to the pooling matrix π, that

is:

min
π

f(x;w, b, π). (6)

Following the idea of training an SVM in the primal form

[20], this optimization is solved using batch gradient descent.

In our optimization procedure, one gradient step for updating

π consist of four substeps:

1. Take a step following the gradient of (6) with respect to

π, that is:

πk+1 ← πk − µ

{

0 if yt(wT
x
t + b) ≥ 1

∂f(x;w,b,π)
∂π

if yt(wT
x
t + b)<1

(7)

where µ is the learning rate.

2. Constrain π to have non-negative elements, that is:

πk+1
j ← πk+1

j +minl(π
k+1
j (l)), j = 1, ..., n2,

where l is an index to the elements of the vector πk+1
j .

3. Preserve the neigbourhood size, i.e. setting the ele-

ments outside of the neighbourhood to zero, that is:

πk+1
j ← πk+1

j ◦ π0, j = 1, ..., n2,

where π0 is the fixed pooling matrix as proposed in [14]

and ◦ denotes elementwise multiplication.

4. Normalize π:

πk+1
j ←

π
k+1

j

‖πk+1

j
‖
, j = 1, ..., n2.

The algorithm converged after few iterations between

steps S2 and S3 resulting in an energy decrease of 3-5%,

depending on the dataset.The number of iterations in substep

S3 was experimentally set to 100 for all datasets. The size

of the neighbourhood is proposed to be set to 3x3, however,

in our experiments we have found that 5x5 gives better re-

sults and also better improvement after the joint optimization

(since the capacity for learning the weights is larger in the

larger neighborhood). Other parameters were chosen either

as proposed in the literature [14] (n1 and n2 in tICA network)

either by cross validation (C value of SVM). Also, we have

found that using a single image patch size (41x41) was suf-

ficient, while in the other works that we compare our results

to, combination of features on multiple scales are used.

3. EXPERIMENTAL RESULTS

We validate our method on three datasets that contain hu-

man eye fixations that were recorded while the subjects

observed images of natural scenes: the dataset of Judd et

al. [6] (MIT dataset), the dataset from Bruce and Tsotsos [18]

(Toronto dataset) and the dataset used in [5, 3, 4] (Kienzle

dataset). Subjects observed images in a free-viewing manner,

i.e. without any given task, which suggest using the bottom

up saliency detection approach using, in our case, learned low

level features. In all of our experiments we follow the same



training and testing protocols as in the other literature that we

compare our results to, except that in our case sampling fixa-

tions in 1% of most salient areas and non-fixations in lowest

70% of salient areas worked best, as opposed to 20/70 used in

the other literature (the results we obtained with 20/70 were

also better when compared to the ones from the literature, but

we report our best ones obtained with 1/70 sampling).

Real valued saliency maps are obtained by computing per

pixel SVM responseswT
x+ b) where x are the features cal-

culated as described in previous section on a patch centered

around the point in question (see (2)). Then, as proposed in

[6], the maps are smoothed with a Gaussian filter. Following

the literature we report our results by means of the AUC (Area

Under the ROC Curve).

In Table 1 we compare our results to the state of the art

in the learning saliency paradigm without the central bias.

Wherever possible, i.e. for MIT and Toronto dataset, we com-

pare our results to the methods that use a linear classifier. For

the Kienzle dataset for which there are no such results, we

compare to all of the reported results. In [8, 7] the feature

vector consists of two color, one intensity, four orientation

and a face channel. Our results outperform the ones using

linear integration with optimal weights learned using linear,

least square regression, even though they use as feature the

output of a high level face detector. The latter has shown to

be an important feature for saliency prediction (in [7] it was

found that the face channel is the most informative for the

MIT dataset). On the Kienzle dataset the only reported results

are for the model of Itti et al. [21] which uses the same chan-

nels but without learning their weights using human ground

truth data, and for the model of [5] in which centre surround

patterns are learned with an RBF SVM on raw image patches.

Our model outperforms both and achieves state-of-the-art on

this dataset, which is the most challenging since it contains

scenes taken in the nature that are without any particular re-

gions of interest, as opposed to other two datasets. In the same

table we show that our proposed joint optimization procedure

(learned pooling) gives consistently better results than using

linear SVM on top of tICA features - the improvements are

0.9, 1.0 and 0.1% for MIT, Toronto and Kienzle dataset, re-

spectively. We also observe the increase in the classification

performance (both for training and testing sets), the results for

which we omit due to space restrictions.

In order to give some insight to the advantages and limita-

tions of the proposed method we illustrate some examples of

our saliency maps in comparison to the human ground truth in

Fig. 4. The maps were tresholded in a way that the 10% high-

est values in the map are considered salient. In the first two

rows we show some representative examples of our saliency

maps to illustrate how our method can usually predict human

fixations very well in scenes that obtain clear shapes and ob-

jects like cars, buildings and traffic signs. In rows 3 and 4 we

show maps that do not match to the human ground truth since

they contain some semantic content (letters or faces).

Table 1. Comparison to the state-of-the-art

MIT Toronto Kienzle

Linear integration [21, 11] 0.776 0.828 -

Linear integration with

optimal weights [8] 0.792 0.834 -

Itti et al.[21] - 0.828 0.620

Center-surround patterns [5] - - 0.640

Ours (tICA + linear SVM) 0.803 0.850 0.654

Ours (learned pooling) 0.812 0.860 0.655

(a) (b) (c)

Fig. 4. (a) stimuli image, (b) human ground truth saliency

map, (c) our saliency map

4. CONCLUSIONS

In this paper we propose a method that learns bottom-up vi-

sual saliency by learning features instead of using manually

selected ones. By doing so, we do not handcraft them, rather

we infer them from training images. We show that the perfor-

mance of our model using only these learned low level fea-

tures outperformed approaches where higher level features

such as face detectors were used in combination with linear

SVM or the one where an RBF SVM on raw patches was

used, and we achieve the state of the art results on the Kienzle

dataset. Finally, we show that our optimization scheme that

optimizes the tICA pooling matrix weights jointly with SVM

weights further improves the results.
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