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Abstract: Strontium (Sr) forms a significant component of dental 

restorative materials and although it is widely used in toothpastes, the 

biological effects of Sr on the dentine-pulp complex have not been 

investigated. In this first study, we characterise the Sr elicited 

effects on human dental pulp stem cells (hDPSC) in vitro using 

exogenously Sr added to culture medium, and bioavailable Sr derived from 

a novel bioactive glass (BG). The related mechanisms were also 

investigated. Our results indicate that low dose Sr (between 0.1 and 2.5 

mM) induces proliferation and alkaline phosphatase (ALP) activity of 

hDPSCs, but has no effect on colony formation or cell migration. Sr at 

specific concentrations (1 and 2.5 mM) stimulated collagen formation and 

mineralisation of the hDPSC generated matrix. In addition, qRT-PCR, 

Western blotting and immunocytochemistry revealed that Sr regulates gene 

expression and the protein secretion of the odontogenic markers: dentine 

sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP-1) and 

protein localisation (DSPP was localised to the Golgi, while no apparent 

changes occur in DMP-1 distribution which remains in both cytosol and the 

nucleus). Additionally, the calcium sensing receptor (CaSR) and 

downstream pathway MAPK/ERK signaling pathway in hDPSCs were activated by 

Sr.  Bioavailable Sr from the BG revealed novel biological insights of 

regulating metabolic and ALP activities in hDPSCs. Taken together, these 

results suggest that Sr at specific doses significantly influences 

proliferation, odontogenic differentiation and mineralisation of hDPSCs 

in vitro via the CaSR using a pathway with similarities to osteoblast 

differentiation. These are the first such studies and indicate that Sr 

treatment of hDPSCs could be a promising therapeutic agent in dental 

applications. In conclusion, we propose that Sr from a substituted BG 

could be used more effectively in biomaterials designed for dental 

applications. 
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Despite the fact that strontium (Sr) is used widely in dental practice, its potential effects on 

odontoblasts have been ignored. Our study provides the first evidence that Sr (exogenous 

and that derived from a bioglass (BG)) can stimulate dentinogenesis in dental pulp stem 

cells (DPSCs) by promoting their proliferation, differentiation and mineralisation in vitro. 

Therefore, whilst previously unrecognised, Sr BG is likely to be beneficial in atraumatic 

dentistry practise and maintenance of a competent tooth in conditions such as caries. Repair 

of defected dentine is still one of the main challenges in dental research and annually 

untreated caries results in the loss of productivity equivalent to US$ 27 billion. Advances in 

tissue engineering technology, alongside the use of dental pulp stem cells provide an 

approach to achieve dentine regeneration. Understanding the actions of Sr will permit a 

more controlled application of Sr in the clinic. These data are thus likely to be of great 

interest to the material scientists, biological researchers, clinicians and manufacturers of 

dental products. 
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Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem 

cells (hDPSCs): a therapeutic role for Sr in dentine repair? 

 

1. Introduction: 

Dentine is a major constituent of teeth and it protects the dental pulp – which, in turn, 

primarily provides nutrition and acts as a biosensor to detect potential pathogenic 

stimuli [1]. Carious defects in dentine and loss of enamel may affect the pulp viability 

with subsequent decreases in tooth strength and increased fragility. Preservation of 

the dentine mass is therefore crucial for maintaining the whole tooth. 

Annually, untreated caries results in the loss of productivity equivalent to US$ 25.14 

billion for permanent teeth, and US$2.09 billion for deciduous teeth [2]. Recent 

advancement in tissue engineering technology provides an approach to achieve 

dentine regeneration by replacement or repair of the impaired dentine-pulp tissues 

[3]. There are three key factors for optimal tooth tissue engineering: growth factors, 

suitable biomaterials and responsive stem/progenitor cells [4]. A unique population of 

postnatal human dental pulp stem cells (hDPSCs) from human adult dental pulp 

tissue have been characterised by Gronthos et al [5]. These cells demonstrate 

characteristic stem cell properties, and also show rapid proliferative rate, as well as 

the capacity to form mineralised dentine-like tissue both in vivo and in vitro [5, 6]. 

Due to their regenerative potential, the use of hDPSCs in dental regeneration is 

favoured [7-9]. A range of materials have been studied in the regeneration of hard 

dental tissues, including hydrogel scaffolds [10], degradable synthetic polymers [11], 

bioceramics [12], as well as mineral trioxide aggregate (MTA) [13]. However, whilst 

these materials have beneficial effects, none are perfect; therefore new biomaterials 

that possess more appropriate properties and bioactivity remain to be identified.  

Strontium (Sr), in trace amounts, is a normal constituent of tooth structure. However, 

following capping of dental pulp in dogs using strontium hydroxide (Sr(OH)2), Sr was 

identified in the dental pulp[14, 15]. As a result of its low systemic toxicity and high 

atomic number Sr-based materials are widely used in dental materials in the clinic to 

locate the restorations by X-ray. Additionally, Sr is added as an active agent of 

dentifrices for treating dentine hypersensitivity. Originally, strontium chloride (SrCl2) 

was used in dentifrices but more recently strontium acetate (Sr (C2H3O2)2) at a 

loading of 8% w/w has been used. Sr is also used as a component of many dental 

restoratives to repair decayed teeth, particularly in glass ionomer cements, such as 

Fuji IX® (GC, Japan) which has the composition: 12.9%Al - 22.5% Si- 1.7%P - 

0%Ca - 12.6%F - 5.6%Sr [16]. In these cases, Sr is in close association with 

exposed dentinal tubules. Occlusion of these tubules, and with high external Sr 

concentration, there is the potential for Sr to traverse internally and reach the pulp 

cavity. Given the widespread dental use of Sr, it is surprising that so little is known 

regarding its biological activity on odontoblasts. 
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It is well known that Sr can alter pre-osteoblast/osteoblast behaviour to induce 

mineralised bone-like nodules [17]. Recently, Strontium ranelate (C12H6N2O8SSr2, at 

1-2 g/day) has been approved for osteoporosis therapy. The related molecular 

mechanisms by which Sr regulates osteoblasts, include the calcium sensing receptor 

(CaSR) and CaSR-downstream pathway, such as mitogen-activated protein kinase 

(MAPK) signalling pathway [18] and Wnt/β-catenin signalling pathway [19]. 

Osteoblasts and odontoblasts both produce an extracellular matrix protein scaffold 

which subsequently mineralises [20]. As Sr can influence pre-osteoblast/osteoblast 

behaviour [21] and mesenchymal stem cells (MSC) differentiation [22, 23], the 

hypothesis is that Sr would influence hDPSCs behaviour. Additionally, identifying 

molecular mechanisms involved in Sr mediated odontogenic differentiation of 

hDPSCs will substantiate the use of Sr in dentine pulp tissue engineering. Previously 

it has been demonstrated that Sr substituted for calcium (Ca) in bioactive glass (BG), 

increased osteoblast proliferation, differentiation as well as inhibiting osteoclast-

mediated bone resorption [24-27]. Hence we sought to investigate the effects of Sr 

alone and Sr substituted BG conditioned medium (BGCM) on the odontogenic 

differentiation of hDPSCs, mineralising potential and related molecular mechanisms.  

 

2. Materials and Methods: 

2.1. Cell culture 

Human dental pulp stem cells (hDPSCs, Lonza, Switzerland) were cultured in the 

Dulbecco’s Modified Eagle’s medium (DMEM, Lonza, Switzerland) supplemented 

with 10% fetal bovine serum (FBS) and antibiotics (10U/L penicillin and 100mg/L 

streptomycin) in a humidified atmosphere containing 10% CO2 at 37°C with medium 

change every two days.  

Passages 3-5 were used for all experiments. Cells were seeded in 96-well plates 

(1000 cells/well) for proliferation assay and ALP activity assay, or in 12-wells plates 

(1×105 cells/well) for the scratch assay. 1×105 cells/dish or 1×103 cells/dish in 10cm 

dishes for Western blot and colony formation respectively. 5×103 cells were also 

seeded on to sterilised cover slips and placed in 12-wells plates for 

immunocytochemistry. For Alizarin Red S and Sirus red staining, 24-wells plates 

were used with 5×103 cells/well cultured for 2, 3, and 4 weeks. Cells treated with 

odontogenic medium (OM, containing 10% FBS, 50μg/ml L-ascorbic acid, 5mM β-

glycerophosphate and 10nM dexamethasone) was used as positive control for 

odontogenic differentiation and mineralisation study.  

Sr was added to the medium of the confluent cultures at various concentrations as 

the chloride compound SrCl2.6H2O. The medium was then subjected to inductively 

coupled plasma-optical emission spectrometry (ICP-OES), to confirm the available 

concentrations of Sr in the medium (Fig. S1). 



2.2. Cell proliferation assay 

Total DNA content was measured to quantify the cellular proliferation as previously 

described [28]. Briefly, the plates were collected on 1, 4, 7, and 10 days after Sr (0, 

0.5, 2.5, 5, 10mM) treatment, the cells washed twice with PBS and stored at -20oC. 

With all time points collected, cells were thawed at room temperature and 100μl 

distilled water was added to each well, incubated for 1 hr and then refrozen. After 24 

hrs they were thawed again and 100μl of the fluorochrome Hoechst 33258 at the 

concentration 20μg/ml in high salt TNE buffer (2M NaCl) was added to each well. 

The plates were read with excitation at λ 350nm and emission at λ 460nm. Cell 

number was calculated according to the cell number standard curve (Fig. S2A). The 

results were collected from three independent experiments. 

2.3. Quantitative assay of ALP activity 

To determine the early Sr induced differentiation of hDPSCs, ALP activity was 

assessed following exposure to Sr as in the cell proliferation assay. Plates were 

collected and washed in PBS and stored at -20oC. Once all plates were collected, 

cells were thawed and 100μl ALP reaction solution (20mg 4-Nitropheyl-phosphate 

disodium salt hexahydrate tablet was dissolved in 8ml Tris buffer solution (pH=9.5) 

containing 15μl of 2M MgCl2) was added to cell lysate, incubated in 37oC for 1 hr. 

The resultant coloured reaction product, pNP, was measured at 405nm with a 

spectrophotometer. ALP activity was calculated according to the standard curve (Fig. 

S2B) and normalised t cell number. Experiments were performed three times. 

2.4. Colony formation assay 

After incubation for 14 days, cells were washed with PBS twice, fixed with formalin 

for 15 min, and stained with 0.5% crystal violet for 15 min at room temperature. The 

colony is defined to consist of at least 50 cells. Visible colonies were counted. 

Colony formation rate = (number of colonies/number of seeded cells) × 100%. Each 

experiment was repeated three times.  

2.5. Scratch assay 

Stem/progenitor cell migration is particularly important in tissue engineering. 

Therefore to study the effects of Sr on hDPSCs migration, scratch assays were 

performed. A confluent cell monolayer was scratched with a 200 μl pipette tip to 

obtain a ‘wound line’. Wounds were photographed at 0, 12, 24 and 36 hrs using an 

inverted microscope (Nikon, TE 2000-S, Tokyo, Japan). The images were uploaded 

to the WIMASIS image analysis application (https://mywim.wimasis.com/)and the 

wound repair (%) calculated using the following formula: wound repair (%)=100*(A-

B)/A, where A is the width of cell wounds at 0 hr, and B is the width of cell wounds 

after incubated 12, 24 and 36 hrs. For each experiment a total four wounds were 

measured per treatment group, and each experiment was repeated three times. 

2.6. Quantitative real-time polymerase chain reaction-qPCR  



Cells were treated with Sr (0, 0.1, 1 and 2.5mM) or OM for 7 and 14 days, and total 

RNA was isolated using the RNeasy Mini Kit (Qiagen Biotechnology, Venlo, 

Netherlands). 200ng of total RNA was reverse-transcribed into cDNA using Roche 

Transcriptor cDNA Synthesis Kit (Roche, Basel, Switzerland). For the qPCR running, 

2μl of cDNA was used for amplification of the target genes in triplicate. As well as 

odontogenic markers, markers more often associated with osteogenic differentiation 

were also measured in the treated cells. Relative expression levels of dentine 

sialophosphoprotein (DSPP), dentine matrix protein 1 (DMP-1), runt-related 

transcription factor 2 (RUNX2), osteonectin (ON), bone sialoprotein (BSP), matrix 

extracellular phosphoglycoprotein (MEPE), osteocalcin (OCN), bone morphogenetic 

protein 2 (BMP-2), and calcium sensing receptor (CaSR) were determined with 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the reference gene. The 

thermal cycling conditions were as follows: 95°C for 5 min and 55 cycles of 95°C for 

10s, 60°C for 6s, 72°C for 6s, 76°C for 1s. LightCycler 480 SW1.5 software was 

used to analyse the results, utilising the fit point method. The forward and reverse 

primers used for PCR were designed by Roche universal probe library according to 

the complementary DNA sequences available in GenBank (Table 1). 

Table 1: Primers for qPCR 

Gene GeneBank No. Sequences(5'-3') 
Product 

size 

DSPP NM_014208.3 F: ATATTGAGGGCTGGAATGGGGA 136bp 

    R:TTTGTGGCTCCAGCATTGTCA   

DMP-1  NM_004407.3 F:TTTTAGGAAGTCTCGCATCT 100bp 

    R: TGGGACCATCTACGTTTT   

RUNX2 NM_004348.3 F:ACTCTACCACCCCGCTGTC 96bp 

    R:CAGAGGTGGCAGTGTCATCA   

ON NM_003118.2 F:TTCCCTGTACACTGGCAGTTC 109bp 

    R:AATGCTCCATGGGGATGA   

BSP NM_004967.3 F:CAATCTGTGCCACTCACTGC 80bp 

    R:CAGTCTTCATTTTGGTGATTGC   

MEPE NM_020203.3 F:CTAAGCAAAGCTGTGTGGAAGA 77bp 

    R:CTTGCCCAAATGGTGAAAA   

CaSR NM_001178065.1 F:CGAGGAGAAAATCCTGTGGA 83bp 

    R:AGTTGGAGAAGGGCACCTG   

OCN M_34013.1 F:CTCACACTCCTCGCCCTATT 107bp 

    R: TTGGACACAAAGGCTGCAC   

BMP-2 AF_040249.1 F:CACTGTGCGCAGCTTCC 107bp 

    R:CCTCCGTGGGGATAGAACTT   

GAPDH NM_002046.3 F:AGCCACATCGCTCAGACAC 66bp 

    R:GCCCAATACGACCAAATCC   

 



2.7. Western blot analysis  

For each time point (7 and 14 days), after removal of the supernatant wished with 

PBS the cell pellets were re-suspended in RIPA lysis buffer (containing 1% Triton X-

100 and 1% cocktail proteinase inhibitors) and incubated for 15 min on ice. The 

protein concentration for each sample was measured using the DC™ Protein Assay 

(Bio-Rad, California, USA). Cell culture supernatants were collected and analysed by 

Western blot to determine levels of secreted DSPP and DMP-1. Coomassie blue 

staining was used as a loading control. Protein samples were separated by 10% 

sodium dodecyl sulphate polyacrylamide gel electrophoresis (130 V, 1.5 hours) and 

transferred onto polyvinylidene difluoride (PVDF) membranes (35 V, 1.5 hours). The 

membranes were blocked with 5% non-fat dry milk mixed in TBST for 1 hr, at room 

temperature, and then further incubated with primary antibodies overnight (Table 2). 

Membranes were next washed and incubated with the appropriate secondary 

antibody. Immunoreactive bands were visualized using the ECL kit (Roche, Basel, 

Switzerland). Densitometry of the observed bands and quantification was performed 

using ImageJ software.  

Table 2: Details of Primary antibodies used in Western Blot 

Antibody Origin Working concentration Company 

Anti-DSPP Mouse 1:500 dilution Santa Cruz 

Anti-DMP-1 Rabbit 1:200 dilution Abcam 

Anti-p44/42 MAPK Rabbit 1:1000 dilution Cell Signaling Technology 

Anti-Phospho-

p44/42 MAPK 
Mouse 1:1000 dilution Cell Signaling Technology 

Anti-β-Catenin Mouse 1:4000 dilution Sigma-Aldrich 

GAPDH Rabbit 1:5000 dilution Abcam 

 

2.8. Immunocytochemistry 

Cells were fixed with ice-cold 4% paraformaldehyde for 10 min and permeablised 

with 0.1% Triton X-100 for 10 min. Nonspecific binding was blocked in 10% goat 

serum for 30 min. Primary antibodies: DSPP (1:50 dilution), DMP-1 (1:100 dilution), 

and rabbit anti-human dentin sialoprotein (DSP, 1:50 dilution. Santa Cruz, California, 

USA), rabbit anti-human cis-Golgi marker (GM130, 1:200 dilution, Abcam, 

Cambridge, UK), rabbit anti-human cytochrome c oxidase subunit 4 (COX4, 1:200 

dilution, Abcam, Cambridge, UK), mouse anti-human mitochondrial cytochrome c 

oxidase subunit 2 (MTCO2, 1:200 dilution, Abcam, Cambridge, UK) and rabbit anti-

human calnexin (1:200 dilution, Abcam, Cambridge, UK) were then added for 1 hr at 



room temperature. Subsequently, the cells were incubated with specific secondary 

antibody (Alexa Fluor 568 or Alexa Fluor 488) for 1 hr at 37°C and then counter 

stained for nuclei using DAPI. Finally, the cells were washed and mounted on slides 

and viewed under Confocal (LSM710, Zeiss). The images were then analysed with 

ImageJ software or Zeiss microscope software ZEN. 

2.9. Sirius Red staining  

Sirius Red staining is presented as a method for demonstrating collagen formation. 

Cells were fixed with 4% glutaraldehyde at 2, 3 and 4 week time points and 

subsequently stained with 0.1% Sirius red dissolved in 1.3% picric acid for 1 hr at 

room temperature. Stained samples were washed with distilled water three times to 

remove unbound stain and kept at 4oC. To quantify the amount of stain, and thus 

collagen present, collagen-bound stain was removed by incubating with 0.1M NaOH 

solution for 1 hr and the absorbance of the supernatant determined at 560 nm. The 

data were collected from three wells for each time point. 

2.10. Alizarin Red S staining 

After 2, 3, and 4 weeks, cells were washed with PBS and fixed in 4% glutaraldehyde 

for 30 min, then stained with 2% Alizarin Red S (Sigma-Aldrich, St Louis, MO, USA) 

for 1 hr at room temperature. Following three washings with distilled water to remove 

unbound stain, the cells were air-dried before being photographed. For quantification, 

stain was extracted with 10% cetylpyridinum chloride in deionized water incubated 

for 1 hr at room temperature, and the absorbance of the supernatant was measured 

at 560 nm. The data were collected from three same conditioned wells. 

2.11. Preliminary study of novel Sr substituted BG 

2.11.1. Bioactive glass design and synthesis 

BGs containing SiO2-P2O5-CaO-Na2O-ZnO where calcium (Ca) was substituted with 

Sr were produced by a melt-quench route as previously described [26]. Briefly, the 

mixtures of analytical grade SiO2, P2O5, CaCO3, SrCO3 Na2CO3 and ZnO (Sigma-

Aldrich, Gillingham, UK) were melted in a platinum-rhodium crucible for 1 hr at 

1420°C in an electric furnace (EHF 17/3, Lenton, Hope Valley, UK), then were 

rapidly quenched into deionised water to prevent crystallisation. After overnight 

drying, the glass frits were ground and sieved to yield powders<38 µm in diameter. 

The amorphous structure of the glasses was assessed by powder X-ray diffraction 

(XRD). The compositions of BGs are shown in Table 3.  

Table 3. Glass compositions in mol%, NC fixed at 2.11.  

Glass SiO2(mol%) Na2O(mol%) CaO(mol%) SrO(mol%) P2O5(mol%) ZnO(mol%) 

Sr0 35.68945 26.70108 29.40607 0 6.2034 2 

Sr25 35.68945 26.70108 22.05455 7.351518 6.2034 2 

Sr50 35.68945 26.70108 14.70304 14.70304 6.2034 2 



Sr75 35.68945 26.70108 7.351518 22.05455 6.2034 2 

 

2.11.2. Biological effects of Sr-bioglass on hDPSCs 

1.5g/L of BG powder was added to DMEM, incubated on a roller at 37oC for 24 hrs 

and then passed through a 0.2µm filter. The medium was supplemented as 

described in section 2.1 and equilibrated in a 37 oC/10% C2O incubator overnight 

before being placed on cells. The cell metabolic activity was performed as described 

previously [29]. The effect of BGCM on cell proliferation and ALP activity was also 

determined with the same methods as described in 2.2 and 2.3.  

2. 12. Statistical analysis 

All data are expressed as mean ± standard deviation (SD) unless otherwise noted. 

Differences were considered significant at p<0.05, determined using one-way 

ANOVA with Bonferroni’s post hoc multiple comparison test. Statistical analysis was 

performed using GraphPad Prism 5.  

 

3. Results: 

3.1. Sr induces proliferation and differentiation of hDPSCs 

The effect of Sr on hDPSC proliferation was measured by a DNA fluorometric assay. 

As demonstrated in Fig. 1A, 2.5mM Sr treatment significantly increased cell number 

at 24 hrs, while 10mM Sr treatment inhibited proliferation of hDPSCs. 2.5 and 5mM 

Sr enhanced cell proliferation by day 4 and only 5mM Sr showed an increase in cell 

number by day 7. Meanwhile, the cell number in all groups further increased on day 

10. The general trend is accelerated growth capability of hDPSCs when exposed to 

Sr (0.5, 2.5, and 5mM) by the 10-day period (Fig. 1A). However, in Sr 10mM culture, 

cell growth is observed until day 4 and thereafter there is no significant growth. 

These results suggest that Sr at low concentration can induce cell proliferation, 

whilst high doses will inhibit proliferation. This finding was also confirmed by doing 

MTT assay (Fig. S3). 

By performing ALP activity assay we measured the differentiation potential of 

hDPSCs with Sr treatment. As shown in Fig. 1B, 2.5 and 5mM Sr enhanced ALP 

activity (normalised to cell number) on day 1. On day 4 and 7, the ALP activity in 0.5, 

2.5 and 5mM Sr treated groups exhibit a significant (*p<0.05) increases when 

compared with the Sr 0mM group. However by day 10, the 0.5 and 2.5mM Sr 

treatment groups showed obvious increases in ALP activity, whereas 5 and 10mM Sr 

treatment reduced ALP activity in DPSCs. It is obvious that ALP activity increased 

over time with Sr 0, 0.5 and 2.5mM during the 10 day period. In contrast, this ALP 

activity trend first increased then decreased in the Sr 5 and 10mM treated group. For 



this reason the concentration of Sr at 0.1, 1 and 2.5Mm were used for the 

subsequent differentiation and mineralisation experiments.  

To corroborate similarities between osteoblastic and odontogeneic differentiation the 

gene expression of known osteogenic markers and ECM molecules (Runx-2, ON, 

OCN, BSP, MEPE, and BMP-2) were determined to indicate the differentiation of 

hDPSCs upon Sr treatment. After 7 days of culture, higher expression of RUNX2, 

OCN, MEPE and BMP-2 genes was detected in Sr 2.5mM group compared to Sr 

0mM treatment (Fig. 2A, D, E, and F). Moreover, at 14 days the mRNA levels of 

RUNX2, OCN, MEPE, BMP-2, and ON (Fig. 2B) were up-regulated in Sr 1 and 2.5 

mM group, as well as in the positive control OM treatment group. The mRNA level of 

BSP was not significantly affected by either Sr or OM at day 14, and the expression 

levels actually decreased by Sr treatment at day 7(Fig. 2C).  

In addition we also determined that Sr has no effect on hDPSC colony formation and 

migration, whereas odontogenic medium (OM) significantly inhibited the colony 

formation and slowed cell migration compared with the Sr 0mM group (Fig. S4).  

In combination, these results indicate that Sr treatment at 1 and 2.5mM results in the 

odontogenic differentiation of hDPSCs via genes indicated in the differentiation of 

osteoblasts. 

3.2. Effects of Sr on collagen formation and mineralisation of hDPSCs 

Since collagen is the most abundant protein in the dentine matrix, the demonstration 

of collagen can be used to indicate possible dentiongenesis in vitro. Therefore, Sirius 

red staining was performed to detect collagen generated by the hDPSCs exposed to 

Sr (0.1, 1 and 2.5mM). There was an increase in collagen level from 2 to 4 weeks in 

the Sr free group (Fig. 3A). 1 and 2.5 mM Sr promotes collagen synthesis after 2, 

and 3 weeks when compared to the Sr 0mM group (Fig 3B). However collagen 

generation was not significantly increased in hDPSCs treated with 0.1mM Sr over 

the 4-week period (Fig. 3B). 

The mineralisation potential of hDPSCs in response to Sr treatment was assessed 

by Alizarin Red S staining as it binds Ca2+ deposits formed in extracellular matrix 

nodules (Fig. 3C). Consistent with collagen formation assay, Sr at 1mM and 2.5mM 

concentration induced a significant (*p<0.05) increase in the staining compared with 

exposure to Sr free medium by week 2, 3 and 4 in hDPSCs (Fig. 3D). It should be 

noted that the difference in the staining was greater by 4 weeks culture when 

compared to 2 and 3 weeks. At very low concentrations Sr (0.1mM) also induced 

mineralisation by week 4.  

These results collectively indicate that Sr at the specific concentrations of 1 and 

2.5mM promote both collagen formation and mineralisation of hDPSCs in vitro. 

3.3. Sr regulates the expression and secretion of DSPP and DMP1  



Immune blotting analysis revealed DSPP protein as three separate bands, having 

apparent molecular weights between 150 and 100kDa (Fig.4A). For DMP-1, four 

separate bands were observed, the smallest one at the expected protein size 37kDa, 

while the largest one being at above 225kDa (Fig. 4A). The other two bands were 

observed to be in between 225kDa-102kDa. Densitometry analysis of these bands 

was performed to determine the total intracellular expression and processing of both 

DSPP and DMP-1 proteins. The bar chart (Fig. 4C) clearly shows that DSPP 

expression was significantly enhanced upon all the Sr doses and OM exposure after 

7 days when compared to Sr free treatment. By day 14, the expression inhibited in 

Sr 0.1 and 2.5mM groups, however the Sr 1mM and OM groups still promote the 

expression (Fig. 4C). Unlike DSPP, OM treatment increased the DMP-1 on both 7 

and 14 days of culture, while all the Sr groups have no significant effects at day 7, 

and inhibited intracellular DMP-1 expression by day 14. 

Immune blotting of hDPSCs culture supernatant revealed that both DSPP and DMP-

1 were secreted by the cells into culture medium (Fig. 4B). Two separate bands were 

observed, one at the molecular weight of 150kDa, and another between 50 and 

75kDa. However for DMP-1, only one single band was observed at molecular weight 

between 50 and 75kDa. Densitometry analysis of these bands revealed that at day 7 

both DSPP and DMP-1 secretion was induced upon exposure to Sr at 0.1 and 1mM 

concentration (Fig. 4C and 4D). Sr at 1mM concentration increased secretion of both 

DSPP and DMP-1 by day 14.  

Quantifying the mRNA level of DSPP and DMP-1 by qPCR revealed that some 

doses of Sr and OM treatment significantly increased DSPP and DMP1 gene 

expression when compared with control (Sr 0 mM) in hDPSCs (Fig.4E and 4F).  

The intracellular localisation of these two proteins was characterised following 

treatment conditions using the immunocytochemistry technique. Confocal 

microscopy analysis demonstrated that DSPP localises to the Golgi in hDPSCs, 

whereas DMP-1 localises to both the cytosol and the nucleus (Fig. 5A and 5B). Golgi 

localisation of DSPP is validated by using anti-GM130, and DSPP localisation 

stained negative for anti-COX 4 that stains mitochondria and nucleus, as well as 

anti-Calnexin that stains endoplasmic reticulum (Fig. S5). Moreover the proteolytic 

cleaved fragment DSP also did not show any colocalisation with anti-MTCO2, a 

marker for mitochondria (Fig. S5A). This data implicates that Golgi localisation is 

necessary for DSPP processing as described previously in studies related to 

mutations affecting human DSPP localisation to Golgi [17]. Further 0.1mM Sr and 

OM treatment induces DSPP localisation to Golgi, while no apparent changes in 

DMP-1 localisation was observed upon Sr and OM treatment. 

Taken together these immune studies imply that Sr treatment regulates DSPP and 

DMP-1 gene expression and secretion to induce odontogenic differentiation and 

mineralisation of hDSPCs.  



3.4. Sr activated CaSR and downstream MAPK pathway 

To explore the potential mechanism of Sr induced odontogenic differentiation, we 

investigated the CaSR expression in hDPSCs following Sr treatment. After 7 days in 

culture, 1mM Sr enhanced CaSR mRNA expression more than threefold compared 

with the control group (Fig. 6A). However, the expression was increased in both Sr 1 

and 2.5mM groups after 14 days of culture (Fig. 6A). But no such enhancement was 

observed in OM group or Sr 0.1Mm group.   

The Sr treated cell lysates were subjected to the detection of MAPK/ERK and Wnt/β-

catenin signalling molecules, namely phosphorylated ERK (p-ERK), ERK and β-

catenin by Western blot (Fig. 6B). Increased ERK phosphorylation was detected in 

Sr 1mM group when compared with the Sr 0 mM group after 14 days of culture (Fig. 

6C). But neither Sr treatment groups nor OM had significant effects on ERK and β-

catenin expression in hDPSCs (Fig. 6 D and E). 

Therefore, these data suggest that CaSR and the downstream MAPK/ERK signalling 

pathway might play a role in Sr mediated odontogenic differentiation of hDPSCs. 

3.5. Biological effects of Sr substituted BG on hDPSCs 

The XRD patterns (Fig. 7A) confirm that all the glasses were amorphous, with an 

amorphous halo centred on 32° 2θ. It is also evident that the traces of the glasses 

with higher Sr content have higher intensities and are shifted more to lower 2θ 

values.  

Total MTT activity per well data (Fig. 7B) indicates that these novel BGs increased 

cell metabolic activity at late time points (7 and 10 days) but not at early time points 

(1 and 4 days). On day 7, compared with negative control group MTT activity was 

increased in Sr 50 and 75 groups. By day 10, the MTT activity in all groups had 

increased, meanwhile Sr 0, 50 and 75 groups showed a pronounced increase. 

Conversely, cell growth of hDPSCs was inhibited by BGCM after 4, 7 and 10 days of 

culture when compared with the control group. However, ALP activity of hDPSCs 

was enhanced by BGCM after 7 and 10 days treatment, but no effect on ALP activity 

was evident at early time points (1 and 4 days) as shown in Fig. 7D. 

 

4. Discussion: 

Biomaterials with potential clinical applications in regenerative dentinogenesis should 

provide optimal conditions for cell adhesion, migration, proliferation and 

differentiation of dental pulp cells into functional odontoblasts. Recently, Sr has 

attracted attention owing to its beneficial effects on bone repair [30-32]. Sr can 

induce the differentiation of MSCs into osteoblasts [21], but could Sr also induce the 

differentiation of dental pulp stem cells into odontoblasts? This would open a new 

avenue for regulating dentine mass and maintaining tooth viability. The present 



investigation demonstrates for the first time, the potential use of Sr for stimulating 

hDPSCs in dentine regeneration. Here we show that Sr induces proliferation and 

differentiation of hDPSCs (Fig. 1). The observed ALP activity with Sr treatment over 

time indicates the differentiation potential of hDPSCs. To further examine the 

influences of Sr on odontogenesis of hDPSCs, mRNA expression levels of RUNX2, 

ON, BSP, MEPE, OCN and BMP-2 were chosen as markers for the odontogenic 

phenotype. Among these, RUNX2 is a transcriptional factor and known master 

regulator in controlling odontoblasts differentiation via regulating the expression of 

genes that are required for odontoblastic differentiation [48]. The others are non-

collagenous proteins in dentine matrix and play fundamental roles in actively 

promoting, controlling, and regulating odontogenic differentiation, mineralisation, and 

crystal growth during dentinogenesis [49]. These genes are also considered as 

osteogenic markers. qPCR data showed that hDPSCs cultured with Sr had 

increased mRNA levels of RUNX2, OCN, MEPE and BMP-2 at 7 days and 14 days, 

and ON at 14 days only, when compared to those cultured without Sr (Fig. 2). BSP 

levels were not affected by Sr treatment. These findings suggested that Sr enhanced 

the differentiation of the hDPSCs in a fashion with similarities to osteoblast 

differentiation, and might also impact on mineralisation potential for tertiary dentine 

formation. Therefore, collagen formation and mineralisation were studied 

subsequently. Collagen is the most abundant protein in dentine, and it plays a 

fundamental role in biomineralisation [33]. Thus formation of collagen is critical to 

assess odontogenic differentiation of hDPSCs. Increase in collagen formation and 

mineralisation was shown to be promoted by administration of Sr in hDPSCs culture 

(Fig. 3). These findings lend support to the idea that even low doses Sr can promote 

the collagen and mineralised nodule formation through increase in proliferation and 

differentiation potential of hDPSCs.  

Molecular characterisation of Sr-elicited effects revealed its role in regulation of 

DSPP and DMP-1 expression and secretion (Fig. 4). DSPP and DMP-1 are highly 

phosphorylated proteins that belong to the family of small integrin-binding ligand N-

linked glycoproteins (SIBLINGs) [34]. During dentinogenesis, DSPP is proteolytically 

cleaved into small subunits-dentine sialoprotein (DSP), dentine phosphoprotein 

(DPP) [35, 36], and also dentine glycoprotein (DGP) which is a third, and recently 

identified, fragment [37]. Consistent with a previous study [38], three separate bands 

were observed for DSPP in our study. The molecular weight of these three bands 

indicates that the highest one (150kDa) as full-length DSPP with the other two being 

the cleavage products-DSP and DPP (Fig. 4A). Densitometry analysis revealed that 

at day 7, both Sr and OM induced DSPP expression and processing (Fig. 4C). It has 

been suggested that the proteolytic processing of DSPP into DPP and DSP is the 

activating stage in the mechanism of DSPP function [39, 40]. Various studies have 

shown that DPP is important in the formation and growth of apatite during 

biomineralisation [41, 42]. On the other hand, DSP has been shown to be involved in 

the initiation of mineralisation, but has no functional role in the maturation of the 

mineralised crystals [36, 43]. In our case, both intracellular and extracellular DSPP 



was increased upon Sr administration (0.1 and 1mM) treatment (Fig. 4). Furthermore, 

DSPP localisation to Golgi was identified by immunocytochemistry. 0.1mM Sr 

induces the localisation to the Golgi. This implies Sr promotes hDPSCs 

mineralisation via increasing DSPP protein expression and processing via Golgi prior 

to secretion (Fig. 5C).  

Unlike DSPP, four separated bands were observed in DMP-1 blotting. Previous 

studies have demonstrated that DMP-1 is processed into two fragments: N-terminal 

fragment with the molecular weight 37 kDa and C-terminal fragment which is 57 kDa 

[44-46]. This is consistent with our results (Fig. 4), which showed one band at 37kDa 

intracellularly and one band between 50 and 75kDa extracellularly. However, it is 

reported that the molecular weight of full length DMP-1 is around 106-kDa [47], while 

in our study one band with the molecular weight above 225kDa was detected, this 

suggests the formation of possibly a DMP-1 protein dimer, though it has also been 

associated with protein glycosylation [48]. Only an increase in DMP-1 secretion of 

with Sr treatment was determined, with no change in the intercellular DMP-1 signal. 

However, when we performed qPCR, we found that at day 7 both Sr and OM 

treatment promoted DMP-1 expression at the mRNA level. These results implicate 

that DMP-1 levels are tightly controlled intracellularly by maintaining its turnover and 

the secretory potential is induced upon cleavage. As reported the native full length 

form of DMP-1 inhibits mineralisation, whilst when cleaved and dephosphorylated, it 

initiates mineralisation [49]. Based on these results it is quite tempting to speculate 

that low Sr concentrations can regulate the tight expression of intracellular DMP-1, 

with no impact on its intracellular localisation (Fig. 5) and also promotes its secretion 

to induce mineralisation.  

The activation of the CaSR by Sr in osteoblasts that leads to activation of the 

downstream signalling pathways including mitogen-activated protein kinases 

(MAPKs), and Wnt/β-catenin is well established [18, 19]. However, no such studies 

have investigated the mechanisms related to Sr effects on hDPSCs or odontoblasts. 

Here we first report that CaSR is also expressed in hDPSCs and expression levels 

increase with Sr treatment, especially Sr at 1mM dose. Moreover, by determining the 

protein levels of p-ERK, ERK and β-catenin we found the p-ERK was up regulated 

by Sr 1mM treatment, while there was no distinguishable difference in ERK and β-

catenin levels between Sr treated group and control group (Fig. 6). This indicated 

that Sr is an agonist of the CaSR and that this receptor could be involved in 

mediating the biological effects of Sr in hDPSCs. In addition, MAPK/ERK might act 

as the downstream signalling pathway of CaSR in Sr induced odontogenic 

differentiation rather than Wnt/beta catenin pathway. However, further studies are 

required to fully understand the mechanisms involved in the Sr effects on hDPSCs. 

Ca has been reported to act as a network modifier in silicate bioactive glass system. 

As Sr has a similar charge and ionic radius to Ca, when it is substituted into the 

glass network, it may play a similar role. In this study we successfully created a 

group of Sr containing BGs without changing the network connectivity. At early time 



points (1 and 4 days), the metabolic activity of hDPSCs treated with BGCM was not 

significantly different from that observed in cells treated with standard culture 

medium. This suggests that the dissolution products of these novel glasses are at 

least non-cytotoxic. However, after 7 and 10 days in culture, BGCM from some 

glasses enhanced the metabolic activity compared with the control group. We also 

noted that the MTT activity in cells treated with BGCM from high Sr containing 

glasses (Sr 50 and 75%) was higher than CM from the Sr free glass. This finding 

suggests that the high Sr containing BGCM enhance metabolic activity in hDPSCs 

than that caused by the presence of BGCM from Sr free glass. This might be 

explained by the presence of Sr ions in the medium. Similarly, our data also showed 

that BGCM from Sr substituted BG dose-dependently enhanced the ALP activity 

when compared with the control group. This result is in agreement with the data 

showed in 3.1. However, the cell growth was inhibited upon BGCM treatment, the 

mechanism by which in the present study is not clear.  

 

5. Conclusion:  

DSPP and DMP-1 are the main molecular drivers of odontogenic differentiation in 

hDPSCs. Our results suggest that Sr modulates the expression and secretion of 

these proteins in vitro via the CaSR using a pathway with similarities to osteoblast 

differentiation. Sr also increased matrix production and mineralisation. Additionally, 

Sr substituted bioglass increased hDPSCs metabolic and ALP activities. Sr added to 

dental applications could have the potential to differentiate dental pulp stem cells to 

induce dentine-like matrix formation. Therefore, given these effects on hDPSCs, the 

consequence of added Sr to dental materials needs to be reconsidered, and whether 

Sr has therapeutic potential warrants further investigation. 
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Figure Legends: 

 

Figure 1. Sr induces proliferation and ALP activity of hDPSCs 

(A): Cell proliferation study of hDPSCs treated with/without Sr. The total DNA contents were 

measured on day 1, 4, 7, and 10. Values shown are mean±SD for triplicate cultures. *p<0.05 

= significant difference compared with Sr 0mM group. 

(B): The ALP activity per cell of hDPSCs under Sr treatments was determined by colorimetric 

assay on day 1, 4, 7, and 10. Values shown are mean±SD for triplicate cultures. *p<0.05 = 

significant difference compared with Sr 0mM group. 

 

Figure 2. Effects of Sr on gene expression of odontogenic/osteogenic differentiation 

markers in hDPSCs. 

(A)-(F): qPCR analysis of RUNX2, ON, BSP, OCN, MEPE and BMP-2 mRNA expression in 

DPSCs following culture for 7 and 14 days exposure to series Sr dose (0, 0.1, 1, 2.5mM) and 

OM. Levels were normalized to the reference gene - GAPDH. Data are expressed as a 

relative change compared with Sr 0mM group. Values shown are mean±SD for triplicate 

cultures *p<0.05 or **p<0.01 = significant difference compared with Sr 0mM group. 

 

Figure 3.  Effects of Sr on collagen formation and mineralisation of hDPSCs cultured 

for 2, 3, and 4 weeks. 

(A): Photographs of sirius red stained for collagen (in orange colour) of cultures in a 24-wells 

plate.  

(B): Quantification of sirius red staining of DPSCs cultures. Data are expressed as a relative 

change compared with Sr 0mM group. Values shown are mean±SD for triplicate cultures 

*p<0.05 = significant difference compared with Sr 0mM group. 

(C): Photographs of Alizarin Red S stained mineralization (in red colour) of cultures in a 24-

wells plate.  

(D): Quantification of Alizarin Red S staining of DPSCs cultures. Data are expressed as a 

relative change compared with Sr 0mM group. Values shown are mean±SD for triplicate 

cultures *p<0.05 = significant difference compared with Sr 0mM group. 



 

Figure 4. Strontium regulates DSPP and DMP-1 expression and secretion 

hDPSCs were cultured with/without Sr for 7 and 14 days, and DSPP and DMP-1 expression 

and secretion were assessed by western blot and qPCR.  

(A): Intracellular DSPP and DMP-1 was measured by western blot with specific antibodies, 

GAPDH was used here as loading control. Lane1: negative control, cells cultured in DMEM 

without Sr; lane 2: Cell cultured with OM; lane3-lane 5: Cells exposure in Sr 0.1mM, 1mM 

and 2.5mM conditioned medium. 

(B): Secretion DSPP and DMP-1 in culture supernatant was determined by Western blot. 

Coomassie blue staining of the supernatant was used to control the sample loading. The 

lanes setup is same as in (A). 

(C): Relative intensity of intracellular DSPP and DMP-1 to loading control GAPDH were 

obtained, and then compared to that of Sr 0mM group, fold changes are showing on the bar 

chart. Values shown are mean±SD for triplicate cultures *p<0.05 or **p<0.01 = significant 

difference compared with Sr 0mM group. 

(D): Relative intensity of secreted DSPP and DMP-1 to Coomassie blue staining were 

obtained, and then compared to that of Sr 0mM group, fold changes are showing on the bar 

chart. Values shown are mean±SD for triplicate cultures *p<0.05 or **p<0.01 = significant 

difference compared with Sr 0mM group. 

(E) and (F): qPCR analysis of DSPP (E) and DMP-1 (F) mRNA expression in DPSCs 

following culture for 7 and 14 days exposure to series Sr dose (0, 0.1, 1, 2.5mM) and OM. 

Levels were normalized to the reference gene-GAPDH. Data are expressed as a relative 

change compared with Sr 0mM group. Values shown are mean±SD for triplicate cultures 

*p<0.05 or **p<0.01 = significant difference compared with Sr 0mM group. 

 

Figure 5. Subcellular localisation of DSPP and DMP-1 in hDPSCs. 

(A): Representative images of DSPP and DMP-1 staining of hDPSCs upon Sr treatment for 

7 days. DSPP (red) and DMP-1 (green) and cell nuclei (blue). White arrow points to the 

distinct nuclear localization of DSPP, while yellow arrow points to the peri nuclear 

localisation of DSPP.  Scale bar = 50µm. Images presented are representative n=100 cells 

in different fields of view from three different experiments. 

(B): The co-localisation of DSPP (Green) and Golgi stained by GM130 (red) in hDPSCs. 

Images were captured under LSM710 Meta Confocal microscopy. Scale bar for 40x 

indicates 50µm and for 100x image indicates 8µm. Images presented are representative 

n=100 cells in different fields of view from three different experiments. 

(C): Bar chart represents the percentage of cells with the DSPP colocalisation with GM130 in 

Golgi. *p<0.05 = significant difference of colocalisation in experimental samples compared 

with Sr 0mM group. 

 



Figure 6. Involvement of CaSR and MAPK/ERK signalling pathway in hDPSCs upon Sr 

treatment.  

(A): qPCR analysis of CaSR mRNA expression in DPSCs following culture for 7 and 14 days 

exposure to series Sr dose (0, 0.1, 1, 2.5mM) and OM. Levels were normalized to the 

reference gene - GAPDH. Data are expressed as a relative change compared with Sr 0mM 

group. Values shown are mean±SD for triplicate cultures *p<0.05 or **p<0.01 = significant 

difference compared with Sr 0mM group. 

(B): p-ERK, ERK, and β-catenin was measured by Western blot with specific antibodies, 

GAPDH was used as loading control. Lane1: negative control, cells cultured in DMEM 

without Sr; lane 2: Cell cultured with OM; lane3-lane 5: Cells exposure in Sr 0.1mM, 1mM 

and 2.5mM conditioned medium. 

(C)-(E): Relative intensity of p-ERK, ERK, and β-catenin to loading control GAPDH were 

obtained, and then compared to that of Sr 0mM group, fold changes are showing on the bar 

chart. Values shown are mean±SD for triplicate cultures *p<0.05 or **p<0.01 = significant 

difference compared with Sr 0mM group. 

 

Figure 7. Biological effects of Sr substituted BG on hDPSCs. 

(A): XRD patterns of all unreacted BG confirming amorphous nature.  

(B): Normalised MTT activity of hDPSCs treated with BGCM. Data are expressed as a 

relative change compared with negative control group after 1 day in culture. Values shown 

are mean±SD for triplicate cultures. *p<0.05 = significant difference compared with negative 

control group.  

(C): Cell proliferation study of hDPSCs treated with/ without BGCM. The total DNA contents 

were measured on day 1, 4, 7 and 10. Values shown are mean±SD for triplicate cultures. 

*p<0.05= significant difference compared with negative control group. 

(D): ALP activity of hDPSCs under Sr substituted BGCM. The ALP activity was determined 

by colorimetric assay on day 1, 4, 7, and 10. Values shown are mean±SD for triplicate 

cultures. *p<0.05 = significant difference compared with negative control group. 
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