Super-resolution orbital angular momentum based radar targets detection

 Lin, M; Gao, Y; Liu, P; Liu, J"The final publication is available at http://digitallibrary.theiet.org/content/journals/10.1049/el.2016.0237"

For additional information about this publication click this link.
http://qmro.qmul.ac.uk/xmlui/handle/123456789/13041

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Momentum based Radar Targets Detection

Mingtuan Lin, Yue Gao, Peiguo Liu and Jibin Liu

Abstract

Radiating twisted beams, Orbital Angular Momentum (OAM) based radar provides a new perspective for present radar techniques. However, estimation methods now used has a demerit of resolution. Thus, we raised Multiple Signal Classification (MUSIC) algorithm to improve resolution ability based on this innovative concept. The echo model based on uniform circular array (UCA) for MUSIC was first built. In contrast to uncorrelated signals in classical MUSIC algorithm, echo signals from targets are fully coherent with each other. Spatial smoothing technique was subsequently utilized in OAM regime to tackle it. Simulation results showed the super-resolution capacity of MUSIC to detect objectives compared to the traditional Fast Fourier Transform (FFT) method.

Introduction: Orbital Angular Momentum (OAM) has been widely studied in optic regime regarding imaging, microscopic particle and communication [1,2]. While radio OAM had not been explored until Bo. Thide et al. first proved the effectiveness of OAM generating in a low-frequency band in [3]. The numerous orthogonal helical beams entitle OAM a larger freedom degree, benefiting high capacity of communication and enriching radar targets more information. Recent work on radio OAM consists of two parts, i.e. antennas design to produce twisted beams and OAM multiplexing in communication system. Several approaches including circular array [4-6], spiral phase plate [7-8], higher resonate mode [9] are employed to engender electromagnetic vortex. Meanwhile, OAM multiplexing from simulations to outdoor experiments [10-12] were conducted to attain a high-capacity communication.

Radar based on this concept had not attracted much attention until Guo et al. [13] first proposed OAM based target detection model, opening a new perspective for existing radar techniques. Such system generates various twisted beams to illuminate targets as shown in Fig. 1 and receive echo signals in a reverse way. By making a Fast Fourier Transform (FFT) or back projection of received signals, this scheme manifests azimuthal resolution ability without relative moves or beams scanning. Additionally, no complex waveform is needed for this scenario. Later, [14] further extended the detection model to Multiple-in-multiple-out (MIMO) and Multiple-in-single-out (MISO) modes. Besides, two-dimension imaging method by exploiting OAM and frequency diversity was studied as well. Both papers utilized traditional methods like FFT and black projection to make estimations of azimuth angle. To gain a high resolution, numerous samples in OAM domain are required, thus increasing complexity of the system. Therefore, super-resolution techniques based on OAM radar detection are in demand. This paper built the model and derived spatial smoothing multiple signal classification (MUSIC) [15] algorithm to gain super-resolution estimations of targets.

Fig. 1 Illuminate target with twisted beams.

Detection model:

For MISO mode, the normalized real-time echo signals from M objectives in the received terminal can be extended from [14] and written as:

$$
\begin{equation*}
E(\alpha, t) \approx \sum_{m=1}^{M} \sigma_{m} \frac{e^{j 2 k r_{m}}}{r_{m}^{2}} e^{i \alpha \varphi_{m}} J_{\alpha}\left(k a \sin \theta_{m}\right) s(t)+n(\alpha, t) \tag{1}
\end{equation*}
$$

regime, a corresponds to the radius of uniform circular array (UCA), α denotes the OAM topological order, k is wave number, $\sigma_{m}, r_{m}, \theta_{m}$ and φ_{m} link to radar cross section (RCS), distance and direction information of m th target, J_{α} refers to α th first kind Bessel function. Similar FFT transform relation between α and φ domain can be observed from (1). Based on this, existing means to estimate azimuthal information just make a FFT transform or back projection [13,14]. According to [13], such OAM based radar technique has no capacity to identify elevation angles of targets.

For $k a \sin \theta \gg 1$, approximation can be made as follows:

$$
\begin{align*}
& e^{i \alpha \varphi} J_{\alpha}(k a \sin \theta) \\
& \approx e^{i \alpha \varphi} \sqrt{\frac{2}{\pi k a \sin \theta}} \cos \left(k a \sin \theta-\frac{\alpha \pi}{2}-\frac{\pi}{4}\right) \tag{2}\\
& =\left[e^{j \alpha\left(\varphi-\frac{\pi}{2}\right)} e^{j \alpha\left(\varphi+\frac{\pi}{2}\right)}\right]\left[\sqrt { \frac { 1 } { 2 \pi k a \operatorname { s i n } \theta } e ^ { j (k a \operatorname { s i n } \theta - \frac { \pi } { 4 }) } } \left[\sqrt{\frac{1}{2 \pi k a \sin \theta}} e^{-j\left(k a \sin \theta-\frac{\pi}{4}\right)}\right.\right.
\end{align*}
$$

Therefore, N discrete samples vector of $E(\alpha, t)$ in α regime can be depicted as:

$$
\begin{align*}
& \mathbf{E}=\left[\begin{array}{c}
E\left(\alpha_{1}, t\right) \\
\vdots \\
E\left(\alpha_{N}, t\right)
\end{array}\right]=\mathbf{A S}+\mathbf{n} \\
& =\left[\begin{array}{ll}
\mathbf{a}\left(\varphi_{1}\right) & \mathbf{a}\left(\varphi_{2}\right), \cdots \mathbf{a}\left(\varphi_{M}\right)
\end{array}\right]\left[\begin{array}{c}
\mathbf{S}_{1}(t) \\
\mathbf{S}_{2}(t) \\
\vdots \\
\mathbf{S}_{M}(t)
\end{array}\right]+\left[\begin{array}{c}
n\left(\alpha_{1}, t\right) \\
n\left(\alpha_{2}, t\right) \\
\vdots \\
n\left(\alpha_{N}, t\right)
\end{array}\right] \\
& \text { where } \mathbf{a}\left(\varphi_{i}\right)=\left[\begin{array}{cc}
e^{j \alpha_{1}\left(\varphi_{i}-\frac{\pi}{2}\right)} & e^{j \alpha_{i}\left(\varphi_{1}+\frac{\pi}{2}\right)} \\
\vdots & \vdots \\
e^{j \alpha_{N}\left(\varphi_{i} \frac{\pi}{2}\right)} & e^{j \alpha_{N}\left(\varphi_{i}+\frac{\pi}{2}\right)}
\end{array}\right], \tag{3}\\
& \mathbf{S}_{i}(t)=\left[\begin{array}{c}
\sigma_{i} \frac{e^{j 2 k_{i}}}{r_{i}^{2}} \sqrt{\frac{1}{2 \pi k a \sin \theta_{i}}} e^{j\left(k a \sin \theta_{i}-\frac{\pi}{4}\right)} \mathbf{s}(t) \\
\sigma_{i} \frac{e^{j 2 k_{i}}}{r_{i}^{2}} \sqrt{\frac{1}{2 \pi k a \sin \theta_{i}}} e^{-j\left(k a \sin \theta_{i}-\frac{\pi}{4}\right)} \mathrm{s}(t)
\end{array}\right] i \in[1, M]
\end{align*}
$$

$\mathbf{A} \in C^{N \times 2 \mathrm{M}} \quad(N>2 M)$ is the steering matrix, $\mathbf{S} \in C^{2 \mathrm{M} \times \mathrm{L}} \quad$ indicates reformed echo signals vector, $\mathbf{a}\left(\varphi_{i}\right)$ and $\mathbf{S}_{i}(t)$ are modified steering vector and echo signal of i th target, L is the sample length of $s(\mathrm{t})$.The amended model in (3) indicates $2 M$ targets, implying appearance of ambiguities.

For presenting Gaussian noise, covariance matrix of received signals under different orders can be acquired by:

$$
\begin{equation*}
\mathbf{R}_{\mathbf{E E}}=\mathbf{A} \mathbf{R} \mathbf{A}^{H}+\rho_{n} \mathbf{I} \tag{4}
\end{equation*}
$$

where ρ_{n} is the noise power, \mathbf{R} involves covariance matrix of reformed echo signals, \mathbf{I} is the unitary matrix. Similar to DOA estimation, columns of \mathbf{A} are linear independently, however echo signals of multiple targets are fully coherent, in contrast to uncorrelated incident signals in classical MUSIC algorithm. For uniform samples in α field with sample rate f_{α}, front spatial smoothing technique [16] are capable of tackling this problem. According to smoothing theory, divide N samples in α field to p mixed subsample blocks as shown in Fig.2, each block has h samples, then $N=p+h-1$. To achieve full rank, the number of blocks should meet $p \geq 2 M$.

Fig. 2 Front-spatial smoothing
Subsequently, calculate the modified covariance matrix as follows:

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
 model for MUSIC to make estimation of targets based on OAM radar. Intrinsic coherent problem induced by model was settled by front smoothing technique. Simulation results illustrated feasibility of MUSIC to realize super-resolution targets detection based on OAM vortex. Benefiting from high-resolution advantage, the same level performance can be achieved with fewer samples by proposed scheme and thus simplify the practical system. Ambiguity problems and estimation deviation issue for small $k a \sin \theta$ should be further investigated. This paper opens a new perspective of super-resolution technique for OAM based radar. Many other high-resolution techniques such as ESPRIT are applicable as well, where further work will focus on.

Mingtuan Lin, Peiguo Liu and Jibin Liu (College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China)
Email: linmingtuan08@163.com
Yue Gao (Department of Electronic Engineering, Queen Mary University of London, London E1 4NS, UK)
Mingtuan Lin is also with Department of Electronic Engineering, Queen Mary University of London, London E1 4NS, UK.

References

1. Torres, J.P. and Torner, L.: 'Twisted Photons: Applications of Light with Orbital Angular Momentum'. (John Wiley \& Sons, 2011)
2. Yao, A.M. and Padgett, M.J.: 'Orbital Angular Momentum: Origins, Behavior and Applications', Advances in Optics and Photonics, 2011, 3, (2), pp. 161-204.
3. Thidé, B., Then, H., Sjöholm, J., et.al.: 'Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain', Physical review letters, 2007, 99, (8), p. 087701.
4. Deng, C., Chen, W., Zhang, Z.,et.al..: 'Generation of Oam Radio Waves Using Circular Vivaldi Antenna Array', International Journal of Antennas and Propagation, 2013, 2013.
5.Mohammadi, S.M., Daldorff, L.K.,et.al..: 'Orbital Angular Momentum in Radio-a System Study', Antennas and Propagation, IEEE Transactions on, 2010, 58, (2), pp. 565-572.
5. Tennant, A. and Allen, B.: 'Generation of Oam Radio Waves Using Circular Time-Switched Array Antenna', Electronics letters, 2012, 48, (21), pp. 1365-1366.
6. Beniss, A., Niemiec, R., Brousseau, C., Mahdjoubi, K., et.al.: 'Flat Plate for Oam Generation in the Millimeter Band', in, EuCAP2013-European Conference on Antennas \& Propagation, (2013)
7. Cheng, L., Hong, W., et.al..: 'Generation of Electromagnetic Waves with Arbitrary Orbital Angular Momentum Modes', Scientific reports, 2014, 4.
8. Barbuto, M., Trotta, F., Bilotti, et.al.: 'Circular Polarized Patch Antenna Generating Orbital Angular Momentum', Progress In Electromagnetics Research, 2014, 148, pp. 23-30.
10.Edfors, O. and Johansson, A.J.: 'Is Orbital Angular Momentum (Oam) Based Radio Communication an Unexploited Area?', Antennas and Propagation, IEEE Transactions on, 2012, 60, (2), pp. 1126-1131.
11.Tamburini, F., Mari, E., Sponselli, A., et.al.: 'Encoding Many Channels on the Same Frequency through Radio Vorticity: First Experimental Test', New Journal of Physics, 2012, 14, (3), p. 033001.
9. Yan, Y., Xie, G., Lavery, M.P., et.al: 'High-Capacity Millimetre -Wave Communications with Orbital Angular Momentum Multiplexing', Nature communications, 2014, 5.
10. G. R. Guo, W. D. Hu, and X. Y. Du.: 'Electromagnetic vortex basedradar target imaging', (in Chinese) J. Nat. Univ. Defense Technol., vol.35, no. 6, pp. 71-76, Dec. 2013
14.Liu, K., Cheng, Y., Yang, Z., et.al.: 'Orbital-Angular-MomentumBased Electromagnetic Vortex Imaging', Antennas and Wireless Propagation Letters, IEEE, 2015, 14, pp. 711-714.
15.Schmidt, R.O.: 'Multiple Emitter Location and Signal Parameter Estimation', Antennas and Propagation, IEEE Transactions on, 1986, 34, (3), pp. 276-280.
16.Pillai, S.U. and Kwon, B.H.: 'Forward/Backward Spatial Smoothing Techniques for Coherent Signal Identification', Acoustics, Speech and Signal Processing, IEEE Transactions on, 1989, 37, (1), pp. 8-15.
