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Abstract

We consider a generalized version of Motzkin paths, where horizontal steps
have length `, with ` being a fixed positive integer. We first give the general
functional equation for the area-length generating function of this model.
Using a heuristic ansatz, we derive the area-length scaling behaviour in terms
of a scaling function in one variable for the special cases of Dyck, (standard)
Motzkin and Schröder paths, before generalizing our approach to arbitrary `.
We then derive an expression for the generating function of Schröder paths
and analyse the scaling behaviour of this function rigorously in the vicinity of
the tri-critical point of the model by applying the method of steepest descents
for the case of two coalescing saddles. Our results show that for Dyck and
Schröder paths, the heuristic scaling ansatz reproduces the rigorous results.

1 Introduction

In this paper, we consider a generalized version of Motzkin paths, called `-
Motzkin paths, with steps (1, 1), (1,−1) and (0, `), where ` is a fixed positive
integer. This model has been studied previously in the combinatorics litera-
ture with a focus on bijections [1]. The special cases ` = 1 and 2 correspond
to (standard) Motzkin paths and Schröder paths, respectively, whereas Dyck
paths can be identified with the limiting case ` = ∞ [2, 3]. Motzkin paths
are closely related to RSOS configurations [4].

The area-length generating functions for Dyck and (standard) Motzkin
paths have been given in [5] and [4], and for Dyck paths, the scaling form
of the generating function has been derived rigorously in [6]. Due to the
nature of the exact solution of the generating function of Motzkin paths, no
corresponding scaling form has been derived yet. The area-length generating
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function for general ` satisfies a functional equation, from which a continued
fraction expression can be obtained by iteration.

We derive the scaling behaviour for Dyck, Motzkin and Schröder paths
by heuristically inserting a single-variable scaling ansatz into the functional
equation for the generating function and generalize this approach to arbitrary
`.

We then show that the generating function for Schröder paths, weighted
with respect to their length and their area, can be expressed in terms of a
quotient of basic hypergeometric series, similar to the well-known expression
for Dyck paths. From this we derive the associated scaling form by rigorous
saddle point analysis.

Our results show that the heuristic scaling ansatz reproduces the rigorous
results for Dyck and Schröder paths. Moreover, we obtain the same scaling
form for all values of `, and therefore in particular for Motzkin paths.

2 The model

Given ` ∈ N, we define an `-Motzkin path of length m to be a lattice walk
(xi, yi)

m
i=0 on N2

0 such that (x0, y0) = (0, 0) and from any point (x, y) on
the path, the walker can either step towards (x+ 1, y + 1), (x+ 1, y − 1) or
towards (x+`, y), which we call an up-, down- or horizontal step, respectively.
Moreover, the path needs to end on the horizontal line y = 0. Fig. 1 shows an
example trajectory for the case ` = 2. Since we will only consider `-Motzkin
paths in this paper, we will shortly refer to them as `-paths from now on.

Figure 1: A Schröder path of length 12 with two horizontal steps of
length 2, four pairs of up/down steps, and total area 18.

For given `, we define the generating function

G(s, t, p, q) =
∞∑
k=0

∞∑
l=0

∞∑
m=0

∞∑
n=0

ck,l,m,n s
k tl pm qn, (1)

where ck,l,m,n is the number of paths with k horizontal steps, l pairs of up- and
down-steps, m (` × 1)-rectangles under all the horizontal steps, and n unit
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squares under all the up- and down-steps (including the half unit squares
directly underneath these steps). Note that by introducing separate area
generating variables p and q, there is no explicit `-dependence in G.

= + +

Figure 2: Graphical interpretation of Eq.(2).

A functional equation for G(s, t, p, q) can be obtained by noting that a
path either consists of zero steps, or it starts with a horizontal step followed
by a path, or it starts with an up-step followed by a path, followed by a
down-step, followed by another path – see Fig. 2 for an illustration. From
this we get

G(s, t, p, q) = 1 + sG(s, t, p, q) + qt2G(ps, qt, p, q)G(s, t, p, q). (2)

By iteration of Eq.(2), we obtain the continued fraction representation

G(s, t, p, q) =
1

1− s− qt2

1− ps− q3t2

1− p2s− q5t2

1− p3s− . . .

. (3)

We now choose the parametrization

G(`)(a, t, q) ≡ G(t`,
√
at, q`, q) =

∞∑
k=0

∞∑
l=0

∞∑
m=0

pk,m,na
ktmqn, (4)

which we refer to as the area-length generating function of `-paths, since
pk,m,n is the number of paths with 2k diagonal steps, total length m and an
area n enclosed between the trajectory and the bottom line, counted in units
of lattice cells. Substituting Eq.(4) into Eq.(2), we obtain the functional
equation

G(`)(a, t, q) = 1 + t`G(`)(a, t, q) + aqt2G(`)(a, qt, q)G(`)(a, t, q). (5)

For q = 1, Eq.(5) is solved by

G(`)(a, t, 1) =
1− t` −

√
(1− t`)2 − 4at2

2at2
. (6)

Setting a = 1 in Eq.(6), we obtain the generating functions of the Motzkin
numbers for ` = 1 and the large Schröder numbers for ` = 2 (A001006 and
A006318 in [7]).
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For given ` and a, we denote the smallest positive value for which the
discriminant (1 − t`)2 − 4at2 vanishes by tc and define Gc = G(`)(a, tc, 1).
From Eq.(6) it follows that

Gc =
1− t`c
2at2c

=
1√
atc

. (7)

For |t| < 1, the function G(∞)(a, t, q) = lim
`→∞

G(`)(a, t, q) satisfies the equation

G(∞)(a, t, q) = 1 + aqt2G(∞)(a, qt, q)G(∞)(a, t, q). (8)

The parameter a becomes redundant in this case and can be set to one for
convenience. We consequently write G(∞)(t, q) ≡ G(∞)(1, t, q). Eq.(8) is then
readily identified as the functional equation for the area-length generating
function of Dyck paths. If q = 1, it is solved by the generating function of
the Catalan numbers (A000108 in [7]).

3 Heuristic scaling ansatz

In analogy to similar models [6,8–10], one expects that in vicinity of the point
(a, t, q) = (a, tc, 1), the area-length generating function of `-paths satisfies the
scaling relation

G(`)
(
a, tc − z εφ, 1− ε

)
= G(`)

sc (a, z, ε) +O(ε) (9)

as ε→ 0+, where φ = 2/3 and

G(`)
sc (a, z, ε) = Gc + εθF (z) (10)

with θ = 1/3. Moreover,

F (z) = µ
Ai′(λz)

Ai(λz)
, (11)

where the Airy function is defined as

Ai(z) =
1

2πi

∫ c+∞

c−∞
exp

(
u3

3
− zu

)
du (12)

with c± = exp(±iπ/3) and the factors µ and λ depend on a and `.
Note that for a > 0 it follows from the positivity of the coefficients of the

generating function G(`)(a, t, z) that

lim
z→∞

F (z) = −∞. (13)
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Following [10], we now set

t(z, ε) = tc − zεφ (14)

and assume that G(`)(a, t(z, ε), 1−ε) satisfies Eq.(9) for ε→ 0+. The function
F (z) and the critical exponents φ and θ are then determined by inserting
this ansatz into the functional equation (5). We begin by treating the special
cases of Dyck, Motzkin and Schröder paths, before giving the results for the
general case.

3.1 Dyck paths (` =∞)

The area-length generating function of Dyck paths satisfies Eq.(8) for a = 1.
From the solution for q = 1 given in Eq.(6) we obtain the critical values

tc =
1

2
and Gc = 2. (15)

We now define

Φ∞(z, ε) =1−G(∞)
sc (z, ε) + (1− ε) t(z, ε)2G(∞)

sc (z + tcε
1−φ, ε)G(∞)

sc (z, ε).

Under the assumption that Eq.(9) holds, it follows from Eq.(8) that

Φ∞(z, ε) = O(ε) (16)

as ε→ 0+. Expanding Φ∞(z, ε) into a series in the variable ε, we see that for
Eq.(16) to hold we necessarily have

2θ − φ = 0 and θ − 2φ = 1,

and therefore θ = 1/3 and φ = 2/3. Inserting these exponents into the
expansion, we obtain

Φ∞(z, ε) =

[
1

8
F ′(z) +

1

8
F 2(z)− 2z

]
ε2/3 +O(ε),

which gives the Riccati type ODE

F ′(z) = Az −BF (z)2, (17)

where
A = 16 and B = 1. (18)
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Eq.(17) can be linearized by using the ansatz

F (z) = µ
f ′(λz)

f(λz)

and the general solution is then obtained as

F (z) =

(
A

B2

)1/3 (C − 1) Ai′
(
(AB)1/3z

)
+ (C + 1) Bi′

(
(AB)1/3z

)
(C − 1) Ai ((AB)1/3z) + (C + 1) Bi ((AB)1/3z)

, (19)

where C ∈ R, and the functions Ai(z) (Eq.(12)) and

Bi(z) = e−iπ/6 Ai(ze−2iπ/3) + eiπ/6 Ai(ze2iπ/3) (20)

are two independent solutions of the Airy differential equation

f ′′(z)− zf(z) = 0. (21)

From the asymptotic behaviour of the Airy functions [11] and boundary
condition (13) it follows that necessarily C = −1. Inserting the coefficients
from Eq.(18), we obtain Eq.(11) with µ = λ = 24/3.

3.2 Motzkin paths (` = 1)

Setting ` = 1 and q = 1 in Eq.(6), we get the critical values for standard
Motzkin paths as

Gc =
1 + 2

√
a√

a
and tc =

1

1 + 2
√
a
. (22)

As in the previous case, we define Φ1(z, ε) from Eq.(5) as

Φ1(a, z, ε) =1−G(1)
sc (a, z, ε) + t(z, ε)G(1)

sc (a, z, ε)+

+ a(1− ε) t(z, ε)2G(1)
sc (a, z + tcε

1−φ, ε)G(1)
sc (a, z, ε).

Again, assumption (9) requires θ = 1/3 and φ = 2/3. From the expansion

Φ1(a, z, ε) =
[
aGct

4
cF
′(z) + at3cF (z)2 − z(2aG2

ct
2
c +Gc)

]
ε2/3 +O(ε),

we are lead to the same ODE (17) as for Dyck paths, with the coefficients
now being

A =
2Gc

t2c
+

1

at3c
and B =

√
a. (23)

The final form of the scaling function is given by Eq.(11) with

µ =

(
2
√
a+ 1

a2t3c

)1/3

and λ =
√
a µ. (24)
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3.3 Schröder paths (` = 2)

For Schröder paths, the critical values are given by

tc =

√
1 + 2 a− 2

√
a(a+ 1) and Gc =

1√
atc

. (25)

As for Dyck and Motzkin paths, we define

Φ2(a, z, ε) =1−G(2)
sc (a, z, ε) + t(z, ε)2G(2)

sc (a, z, ε)+

+ a(1− ε) t(z, ε)2G(2)
sc (a, z + tc ε

1−φ, ε)G(2)
sc (a, z, ε).

and assumption (9) determines θ = 1/3 and φ = 2/3. Expanding Φ2(a, z, ε)
in ε gives

Φ2(a, z, ε) =
[
aGct

4
cF
′(z) + at3cF

2(z)− z
(
2aG2

ct
2
c + 2Gctc

)]
ε2/3 +O(ε),

which again leads to Eq.(17), where the coefficients are now

A =
2Gc

t2c
+

2

at2c
and B =

√
a. (26)

Thus, also for Schröder paths, the scaling function is given by Eq.(11), with

µ =

(
2
√
a+ 2 tc
a2t3c

)1/3

and λ =
√
a µ. (27)

3.4 The case of general `

Now we assume ` to be any positive integer. For general `, it is not possible
to give an expression for the critical value tc as a function of a.
As in the special cases, we define

Φ`(a, z, ε) =1−G(`)
sc (a, z, ε) + t(z, ε)`G(`)

sc (a, z, ε) +

+ a(1− ε)t(z, ε)2G(`)
sc

(
a, z + tcε

1−φ, ε
)
G(`)
sc (a, z, ε) , (28)

and from the assumption that Φ`(a, z, ε) = O(ε) one obtains θ = 1/3 and
φ = 2/3. Expanding the RHS of Eq.(28) in ε we obtain

Φ`(s, z, ε) =
[
aGct

4
cF
′(z) + at3cF (z)2 − (2aG2

ct
2
c + `Gct

`−1
c )z

]
ε2/3 +O(ε),

which leads to Eq.(17) with

A =
2Gc

t2c
+
` t`−4c

a
and B =

√
a. (29)

The solution of this equation is given in Eq.(11) with parameters

µ =

(
2
√
a+ ` t`−1c

a2t3c

)1/3

and λ =
√
a µ. (30)
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4 Solution for ` = 2

For ` = 2, the parameter t only appears squared in the functional Eq.(5),
which makes it possible to obtain a more compact solution as opposed to the
case ` = 1, which has been solved in [4].
Inserting the ansatz

G(2)(a, t, q) =
H(a, qt2, q)

H(a, t2, q)
(31)

into Eq.(5) for ` = 2, we get the linear functional equation

aqt2H(q2t2) + (t2 − 1)H(qt2) +H(t2) = 0, (32)

where we have abbreviated H(t2) ≡ H(a, t2, q) for convenience. Eq.(32) is
solved by the basic hypergeometric series defined as

H(t) =
∞∑
n=0

(−a; q)n
(q; q)n

q(
n
2)(−t)n = 1φ1

(
−aq

0
; q, t

)
, (33)

where (z; q)n = (1 − z) · (1 − q z) · · · (1 − qn−1 z). Note that G(2)(1, t, q)
generates a q-deformation of the large Schröder numbers as defined in [12].

In order to validate our results from Section 3.3, we will now analyse the
scaling behaviour of G(2)(a, t, z) by carrying out rigorous saddle point analy-
sis. The same technique has been applied before to area-perimeter weighted
staircase polygons and area-length-weighted Dyck paths [6, 8].

As an aside, we note that

G(2)

(
1

(h− 1) q
, t
√
q(h− 1), q

)
= G(∞)

p (h, t, q), (34)

where G(∞)
p (h, t, q) is the generating function of Dyck paths, with weights h, t

and q associated to the number of peaks, length and area, respectively.

5 Saddle point asymptotics

Using a contour integral expression for the function H(t2) and inserting an
asymptotic expression for the involved q-products, one can show that for
q → 1−,

H(t2) =
D

2πi

∫ ρ+i∞

ρ−i∞
exp

(
1

ε
f(z)

)
g(z)

(
1 +O(ε)

)
dz, (35)
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where ε = − ln(q) ; D = (q; q)∞/(−a; q)∞ and

f(z) = 2 ln(t) ln(z) + Li2(z) + Li2(−a/z), (36)

g(z) =

√
z

(1− z)(z + a)
. (37)

Since the derivation of Eq.(35) is exactly analogous to the one for other basic
hypergeometric series [6, 8], it will not be carried out here in more detail.

It is now possible to apply the method of steepest descents to the integral on
the RHS of Eq.(35). The function f(z) has the two saddle points

z1 =
1

2

(
1− t2 −

√
d
)

; z2 =
1

2

(
1− t2 +

√
d
)

(38)

where d = (1−t2)2−4 a t2. For d = 0, the saddles coalesce in zm = (1−t2)/2.

It follows from a theorem which was proven in [13] that there exists a trans-
formation u 7→ z(u) which is regular in a domain containing z1 and z2 if d is
sufficiently close to zero, such that

f(z) =
1

3
u3 − αu+ β = p(u). (39)

Since the transformation is regular, it maps the two saddle points u1,2 = ±
√
α

of the polynomial p(u) onto the saddle point of f(z). From this we can infer

α =

(
3

4

(
f(z1)− f(z2)

))2/3

and β =
1

2

(
f(z1) + f(z2)

)
. (40)

Applying the transformation defined by Eq.(39), we can rewrite Eq.(35) as

H(t2) =
D

2π i

∫ c+∞

c−∞
exp

(
1

ε
p(u)

)
S(u)

(
1 +O(ε)

)
du, (41)

with S(u) = g(z(u)) dz/du and c± = exp(± i π/3). Using the expansion

S(u) = p(0) + u q(0) + (u2 − α)S1(u), (42)

where S1(u) is a regular function of u, we arrive at

H(t2) = D exp

(
β

ε

)(
ε1/3p(0) Ai

( α

ε2/3

)
− ε2/3 q(0) Ai′

( α

ε2/3

)
+O(ε)

)
, (43)
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with the coefficients being given by

p(0) =

√√
α

2

(
g(z2)√
f ′′(z2)

+
g(z1)√
−f ′′(z1)

)
, (44)

q(0) =

√
1

2
√
α

(
g(z2)√
f ′′(z2)

− g(z1)√
−f ′′(z1)

)
. (45)

Replacing g(z) by h(z) = g(z)/z in the above analysis, we obtain the lead-
ing asymptotic behaviour of of H(qt2). We name the associated expansion
coefficients p(1) and q(1). With this we arrive at the following result.

G(2)(a, t, q) =
p(1) Ai(αε−2/3)− q(1) Ai′(αε−2/3)ε1/3

p(0) Ai(αε−2/3)− q(0) Ai′(αε−2/3)ε1/3
+O (ε) , (46)

as ε = − ln(q) → 0+. Note that this expression is uniform for a range of
values of t and a including the critical point d = 0. In particular, setting
t = t(z, ε) as in Eq.(14), Eq.(46) gives for ε→ 0+,

G(2)(a, t(z, ε), q) =
1

zm

(
1 +

(
q(0)

p(0)
− q(1)

p(1)

)
Ai′(αε−2/3)

Ai(αε−2/3)
ε1/3 +O (ε)

)
. (47)

Expanding the coefficients
(
q(0)/p(0) − q(1)/p(1)

)
and α up to linear order

around the critical point, we obtain the coefficients given in Eq.(27), thereby
confirming the validity of the heuristic scaling ansatz.

Figure 3 shows the remarkable agreement of scaling function and partition
function asymptotics for q close to one.

6 Summary

We analyzed the scaling behaviour of the generating function of area-weighted
Dyck, Motzkin and Schröder paths around the tri-critical point by using a
heuristic ansatz and generalized this approach to `-Motzkin paths with arbi-
trary `. We then derived an expression for the area-length generating function
of Schröder paths and analyzed the result by applying rigorous saddle point
analysis, thereby confirming the validity of the heuristic ansatz.
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F(z)

z

Figure 3: Plot of the scaling function F (z) given by Eq.(11) with co-
efficients (27) for a = 1 (black) against the approximation
of the scaling function obtained directly from the generating
function G(1, t, q) and fixed values ε = 10−3 and ε = 10−4

(gray).
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