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ABSTRACT  

 

A phenotypically distinct subgroup of familial isolated pituitary adenoma (FIPA) families has 

mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene leading to young-

onset acromegaly in most patients. These patients typically develop invasive pituitary 

adenomas, but the mechanisms by which AIP inactivation promotes pituitary tumorigenesis and 

an aggressive behaviour remain unknown. To date, more than 70 different AIP variants have 

been reported and determining the pathogenicity of missense variants is a challenging problem. 

The Drosophila AIP orthologue (CG1847) is located on the X chromosome and encodes a protein 

of similar size and structure to human protein (hAIP). I have generated CG1847 deficient flies via 

two methods: in vivo RNAi knockdown and imprecise excision of a transposable P-element, 

which generated a putative null allele of CG1847. Our data show that knockdown and knockout 

of CG1847 results in lethality confirming that AIP is an essential gene. 

To reveal the potential underlying molecular mechanisms of loss of AIP, a whole transcriptome 

analysis was performed in mutant versus control male larvae. This allowed us to determine gene 

expression profiles and to identify key pathways that are significantly altered in the mutant, and 

that are related to embryonic development or survival. 

To functionally test the homology between hAIP and CG1847, I used the Gal4/UAS system to 

perform rescue experiments. I subsequently tested whether wild-type hAIP, a truncated hAIP 

and four missense mutations identified in FIPA families could rescue the lethality of 

CG1847exon1_3 mutants by expressing hAIP during fly development. 

In this thesis were identified novel AIP features. CG1847 is a Drosophila melanogaster AIP 

orthologue and is essential for normal development. RNA sequencing revealed possible new 

underlying CG1847 molecular mechanisms as the tumour suppressor function of AIP might 

involve the regulation of cytoskeletal organisation. Drosophila is a useful in vivo system to study 

human AIP missense variants to establish pathogenicity. 
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CHAPTER 1: INTRODUCTION 

1.1 Pituitary gland  

The pituitary gland, or hypophysis, is one of the most important glands of the human endocrine 

system as it is involved in controlling the normal function of other endocrine glands, such as the 

thyroid gland, adrenals, and gonads. Its role is very complex as the different hormones secreted 

at this level can directly or indirectly regulate numerous processes concerning normal growth 

and development, sexual development and reproduction, metabolism, thermoregulation, stress 

response, sleep, and adaptation to changes in the external environment.  

Anatomy of pituitary gland  

The hypophysis is a small endocrine gland, weighing around 600 mg. The size of a normal adult 

pituitary gland was found to vary between 2.7 and 6.7 mm in a series of 14 women without 

known sellar or parasellar lesions1, but even sizes of around 9.7 mm were reported as normal 

by a study of direct coronal scans in 50 normal female volunteers2. The pituitary gland has two 

main parts: adenohypophysis (the anterior pituitary) and neurohypophysis (the posterior 

pituitary). The hypophysis is connected to the hypothalamus by the pituitary stalk, which 

consists of blood vessels and axons of the hypothalamic neuronal cell bodies. The hypophysis 

and the hypothalamus, compose the “hypothalamo-pituitary axis”3.  

This gland is located at the base of the skull, above the sphenoid sinus, inside a bony cavity called 

the “sella turcica”. This area is adjacent to many vascular and neurologic structures, hence 

processes which cause enlargement of the gland, may lead to significant mass effects. On the 

lateral sides of pituitary gland are the cavernous sinuses, which contain important structures as 

the internal carotid artery, and the cranial nerves III, IV, 2 of the 3 branches of cranial nerve V 

and VI. A pituitary tumour that extends laterally and invades the cavernous sinus may cause 

oculomotor paralysis and can sometimes even result in cerebral ischemia if the internal carotid 

artery is compressed4. A major neurologic structure located immediately above the hypophysis 

is the optic chiasm5. The optic chiasm is separated from the pituitary only by the diaphragma 

sella, a recess of the dura mater. This neurologic structure can be easily compromised through 

a mass effect from a pituitary adenoma. The most frequent manifestation of chiasmal 

disfunction is bitemporal hemianopia. As the pituitary gland is localised very close to the optic 

nerve chiasma, a tumorous process might result in partial blindness in the outer half of both 

visual fields. Headache is another complaint frequently reported in cases of pituitary adenomas; 

however, the mechanism of its appearance is the same as in case of any other space-occupying 
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brain lesion6, as traction on the pain-sensitive structures7 and dural stretch8,9. For example large 

tumors with cavernous sinus invasion might lead to headache as the sinus does contain pain-

producing structures, as the internal carotid artery and trigeminal nerve and ganglion. However, 

other factors apart from tumor size, such as family history of headache or the type of hormonal 

secretion might be important factors for the etiology of pituitary adenoma related headache10. 

The anterior pituitary gland secretes six major hormones: growth hormone (GH), prolactin (PRL), 

adrenocorticotropin hormone (ACTH), luteinizing hormone (LH), follicle-stimulating hormone 

(FSH), and thyroid-stimulating hormone (TSH). Around 50% of anterior lobe cells are GH 

secreting cells11. The main role of GH is in controlling body growth. This hormone acts either 

directly on multiple tissues or indirectly, by stimulating the tissue production of insulin-like 

growth factors (IGFs, mainly IGF-I). In men and nulliparous women, PRL secreting cells or 

lactotrophs may account for approximately 10% of the anterior pituitary cells. PRL stimulates 

breast enlargement and milk production during and after pregnancy and, as a result, in 

multiparous women the number of lactotrophs can be increased. ACTH is secreted together with 

pro-opiomelanocortin (POMC) derivatives by corticotroph cells (approximately 10-20% of 

anterior lobe). ACTH has a crucial role in the secretion of glucocorticoid hormone (cortisol) from 

the adrenal gland cortex. FSH and LH secreting cells, or gonadotroph cells, account also for 

around 10% of the anterior pituitary cells and are involved in the sex steroid hormone 

production and regulation of germ cell maturation. Thyrotroph cells (only 5% of the 

adenohypophyseal cells) secrete TSH, which stimulates thyroid hormone (T3/T4) production in 

the thyroid follicles. Thyroid hormone mainly controls metabolism and thermogenesis12.  

The posterior lobe consists mainly of the axons of neurons that are localised in the hypothalamus 

- neurons that secrete the antidiuretic hormone (ADH), involved in regulation of water retention, 

and oxytocin, a hormone with a role in social interactions and uterine contractions during 

delivery. As the posterior pituitary lobe is not the subject of this thesis, it will not be presented 

in more detail. 

Pituitary development 

The embryonic pituitary development was subject of numerous studies, and the maturation 

process of anterior pituitary cells is very well understood. From a developmental perspective, 

the anterior pituitary cells are embryologically derived from Rathke’s pouch13, a process that 

involves the complex interplay of lineage-specific transcription factors and locally-produced 

growth factors14 (Figure 1). 
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Figure 1: Molecular regulation of anterior pituitary gland development. Multiple transcription factors 

contribute to the establishment of the first structure of the developing pituitary gland, Rathke's pouch, 

and the subsequent differentiation of the five specialized, hormone-secreting cell types characteristic of 

the mature anterior pituitary gland: corticotrophs (ACTH), gonadotrophs (FSH and LH), thyrotrophs (TSH), 

somatotrophs (GH) and lactotrophs (PRL). Homeodomain-containing transcription factors critical to this 

process are highlighted in red, but the diagram includes other relevant transcription factors to give a 

broad picture of the cascade. Arrows indicate upstream relationships in molecular signalling pathways but 

do not necessarily imply direct activation. Flat arrowheads denote repressive relationships. The 

placement of specific cell types in the diagram does not reflect their actual location within the anterior 

pituitary gland. Adapted from Prince, K. L. et al. (2011)15 

Rathke's pouch is an ectodermal invagination that is formed anterior to the roof of the oral cavity 

at a very early stage of development, between the fourth and fifth week of gestation. Later in 

development, the pouch becomes distinct from the oral cavity and nasopharynx but maintains 

the connections with the stalk and hypothalamic infundibulum16. In the initial stages, Rathke's 

pouch cells express several transcription factors as LHX3, LHX4, and ISL-1, which belong to the 

LIM homeodomain family. These factors have an essential role in the very early determination 

towards pituitary development17. Recent studies have shown that SOX2 and SOX3 play key roles 

in regulating early pituitary morphogenesis both in rodent and man18. PITX1 and PITX2 are other 

essential transcription factors which are initially expressed in the oral ectoderm, and 

subsequently these factors will have a major role in the normal development of all pituitary cell 

types19,20. 

In the anterior lobe, the development of different hormonal cell lineages is under the influence 

of other transcription factors. Maybe the most important transcription factor is PROP1 which 

directly or indirectly controls the development of all anterior pituitary cell lineages. 

Somatotrophs, lactotrophs and thyrotrophs originate from a common lineage, under the control 

of PROP1 and Pit-1 expression. Both factors are essential for GH, PRL, and TSH secretion21. 

PROP1 in conjunction with other transcription factors is important for corticotrophs, and 

gonadotrophs lineages. Gonadotroph cell development is influenced by the expression of two 
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nuclear receptors, SF-1 (steroidogenic factor) and DAX-1 (dosage-sensitive sex reversal, adrenal 

hypoplasia critical region, on chromosome X, gene 1)22. PROP1 also have an indirect influence 

on development of LF and FSH secreting cells. Among these numerous transcription factors 

involved in the terminal differentiation of pituitary cell types, the T-Pit transcription factor is 

important for the development of corticotrophs, which express the pro-opiomelanocortin23. 

Mutations in the genes encoding the transcription factors involved in the linear development of 

anterior pituitary gland, such as Pit-1, PROP1, SF-1, DAX-1, and T-Pit, result in different 

pathologies that involve selective or combined pituitary hormone deficits. Fortunately, these 

are rare abnormalities. 

Regulation 

All the pituitary hormones are secreted in a pulsatile manner, reflecting the fact that the 

pituitary gland is under the control of the nervous system through the hypothalamus. Various 

external stimuli, such as ambient temperature, level of physical exercise, physical or 

psychological stress, or supplied nutrients, lead to secretion of specific hypothalamic releasing 

or inhibitory factors. The hypothalamic factors act on the surface receptors of specific pituitary 

cells, and as a response, pituitary hormones will be synthesised, secreted or inhibited. The 

pituitary hormones elicit specific responses in peripheral target tissues12.  

The stimulated peripheral glands will be consequently followed by specific hormone production 

that, in turn, will act via a feedback loop to control anterior pituitary function. There are mainly 

two mechanisms by which the hormonal products of peripheral glands, in turn, control at the 

level of the hypothalamus and pituitary: positive and negative feedback (Figure 2). 

The hypothalamus controls expression and secretion of anterior pituitary hormones through 

positive or negative regulation by releasing or inhibiting hypothalamic factors that act on their 

corresponding receptors on the adenohypophyseal cells. Through this mechanism, GH secretion 

is stimulated by GH-releasing hormone (GHRH); GH acts in the liver and other target tissues by 

mediating IGF-I production. Corticotrophin-releasing hormone (CRH) is secreted by 

hypothalamic neurons and induces positive regulation of ACTH secretion; the final result is 

glucocorticoid secretion from the adrenal glands’ cortex. Pituitary TSH is stimulated by a 

hypothalamic hormone, thyrotropin-releasing hormone (TRH). TSH acts through the same 

positive regulation on thyroid cells to promote thyroid hormone secretion (T3/T4). Gonadotroph 

cells have specific receptors for gonadotropin-releasing hormone (GnRH) and, when stimulated, 

will produce variable amounts of LH and FSH, depending on the frequency and amplitude of 

GnRH pulses24. In turn, LH and FSH control the production of sex steroid hormones (oestradiol, 
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progesterone, and testosterone) secreted from the ovaries and testes. PRL is the only pituitary 

hormone that is not stimulated by hypothalamic releasing factors. 

 

Figure 2: Hormonal axis, positive and negatives feedback loops. Schematic representation of the 

mechanisms regulating the anterior pituitary hormone secretion at the pituitary and at the hypothalamic 

level. Positive regulation is indicated by arrows, whereas negative regulation is shown by flat arrowheads. 

The negative feedback mechanisms are exerted both by hypothalamic inhibitory factors and by 

hormones released from the target glands25,26. Pituitary GH secretion is inhibited both by 

hypothalamic somatostatin and by IGF-I. In the case of PRL, the negative influence is exerted by 

dopamine. The glucocorticoid hormones secreted by adrenal glands have an inhibitory effect on 

the secretion of both ACTH and CRH. TSH and TRH are under the negative control of thyroid 

hormones produced in the thyroid gland. FSH and LH (and the hypothalamic factor GnRH) are 

inhibited by a negative feedback of the sex steroid hormones24. 

1.2 Pituitary tumorigenesis  

Definition 

Pituitary adenomas can arise from each of the cell types of the anterior pituitary (except of 

folliculo stellate cells). These tumours are usually benign monoclonal tumours27, presenting 

either due to hypersecretion of pituitary hormones, and/or due to local space occupying effects 
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and hyposecretion of some or all pituitary hormones. The main pituitary tumour types are 

prolactinomas, clinically non-functioning pituitary adenomas (NFPAs), GH-secreting adenomas 

and ACTH-secreting adenomas. TSH­secreting adenomas and gonadotroph adenomas with 

clinically relevant LH/FSH secretion are less frequent. A recently identified subgroup of pituitary 

adenomas detected as incidental findings during brain imaging are often referred as pituitary 

incidentalomas. The vast majority of pituitary tumours are benign, with very slow growing rates 

of the intrasellar masses, although dural invasion is present in almost 45% of the cases28. In these 

cases, the pituitary tumours present obvious extrasellar extension and invasion. Pituitary 

carcinomas are extremely rare cases, representing less than 0.2% of pituitary tumours; they are 

defined as pituitary tumours with a distant metastasis29. Pituitary adenomas are classified as 

microadenomas when they are less than 1 cm in diameter. They are usually restricted to the 

sella turcica, and usually do not have significant compressive effects on the surrounding tissue. 

Macroadenomas account for around 40% of all pituitary adenomas, can put pressure on the 

optic chiasm and the pituitary stalk, and can invade areas around the pituitary gland such as the 

cavernous sinus, the suprasellar area or the sphenoid sinus.  

Epidemiology of pituitary adenomas 

While previously pituitary adenomas were considered rare, recent studies have shown that the 

prevalence of pituitary tumours is higher than expected, probably due to better imaging 

techniques and improved diagnostic modalities. Pituitary adenomas account for 15% of all 

intracranial neoplasms, being the third most frequent tumour type after meningiomas and 

gliomas30. 

Data from national cancer registries, autopsy studies, imaging data, referrals to specialized 

centers, or population-based studies are the usual source for pituitary adenoma epidemiological 

statistics. Unfortunately, some of these sources are not entirely reliable. Cancer registries are 

extremely useful databases to monitor new disease cases every year at a national level. 

However, due to lack of mandatory reporting, the data available is actually an underestimation 

of the real prevalence. One of the first studies on the prevalence of pituitary adenomas based 

on autopsy samples was published by Costello et al. 193631. In 22.5% of unselected autopsy cases 

a pituitary adenoma was identified. More recent studies have found similar detection 

frequencies depending on the thickness of sections made through the pituitary gland. Therefore, 

it is becoming increasingly clear that pituitary adenomas are frequently found during autopsy of 

individuals from the general population. Still, when assessing autopsy data it is necessary to take 

into account that these studies usually represent a relatively older population. 
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In 2004, Ezzat et al.32 performed a meta-analysis of the prevalence of pituitary adenomas based 

on the English-language articles available at the time and identified 33 articles based on autopsy 

and radiological data. The results of the final statistical analysis suggest a wide interval in the 

prevalence of pituitary adenomas. The imaging studies were ranging from 1% to almost 40% 

(with an estimated mean prevalence rate of 22.5%). With regards to the postmortem studies, 

the prevalence of pituitary adenomas had a similar interval: 1% to 35% with an estimated mean 

of 14.4%. The overall estimated prevalence of pituitary adenomas in the general population was 

calculated by Ezzat et al. as 16.7%32. Community-based cross-sectional studies usually report 

either pituitary adenoma prevalence33-35, or their incidence36, although a recent article from 

Malta evaluated both of these parameters37. 

The first study that aimed to evaluate the prevalence of pituitary adenomas in a well-defined 

population was published by Daly et al. in 200633. They evaluated only clinically relevant pituitary 

adenomas and demonstrated a prevalence of one case per 1,064. These results were replicated 

by Fernandez et al.35 in the UK showing a prevalence of one case per 1,289. The results from 

both studies show significantly higher prevalence compared to previous studies based on data 

from tertiary referral centres (between 1:5,263 and 1:3,57138). This significant difference is 

probably due to different patient identification methods, and better imaging and diagnostic 

practices. These data were subsequently confirmed by other population-based studies (Table 1). 

The most recent epidemiologic study regarding the prevalence and incidence of pituitary 

adenomas took place in Iceland. It was a retrospective observational study and included all 

pituitary adenomas diagnosed on this area over more than 40 years. An extensive clinical 

database was generated and used for calculating the rates of prevalence and incidence. The 

authors confirmed the increased overall prevalence and incidence rates. In this study it is 

claimed that these findings cannot be totally justified by a facilitated access to imaging 

investigations in recent years as most of patients were already symptomatic at diagnosis39. 

However, the use of performing imaging investigations in recent years has had a significant 

impact on the diagnosis of pituitary lesions with or, more often without, clinical relevance. As a 

result, a clinical guideline on the management of pituitary incidentalomas was necessary and 

has been recently published40. The Endocrine Society recommendations for patients with a 

pituitary incidentaloma is to have a complete evaluation which should include detailed personal 

and familial past medical history, physical examination, laboratory investigations for both 

hormone hypersecretion and hypopituitarism. The visual field examination should not be 

missed. The frequency of the investigations should be adjusted accordingly to the changes in 

size of adenomas40.
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Table 1: Population based studies. A review of the literature regarding the prevalence of different types of pituitary adenomas (updated from Aflorei et al 201441) 

 

  

Study/ 

reference 

Size of 

population  

Size Gender 

Mean age 

 at diagnosis 

Incidence Prevalence 

Types % 

(Female/Male ratio) 

% 

Micro 

% 

Macro 

% 

Males 

% 

Females 

PRL NFPA GH ACTH TSH 

Daly et al.33 71972 57.4 42.6 32.4 67.6 
40.3 

 (range 12–86yr) 
- 1/1064 

66.2 
(2.88) 

14.7 
(0.42) 

13.2 
(0.5) 

5.9 
(4) 

0 

Fontana et al.34 54607 N/A N/A 27 73 -  -  1/1241 56 30 9 5 0 

Fernandez et al.35 81498 58.7 41.3 33.3 66.7 
37  

(range 16–79yr) 
-  1/1289 

57.1 
(8) 

28 
(0.5) 

11.1 
(0.75) 

1.58 
(0.1) 

0 

Raapana et al.36 
722,000 to 
733,000 

54 46 19.04 80.99 
40 

 (range 27.3–55yr) 
4.00/100,000/  

year 
1/1470 

51 
(4.3) 

37 
(1.2) 

8.5 
(0.6) 

3 
(2.8) 

1.2 
(2) 

Grupetta et al.37 
394,640 to 
417,608 

56.6 43.4 30.4 69.6 
40.6 

 (SD ±15.0yr) 
 

4.27/100,000/  
year 

1/1321 
46.2 
(1.4) 

34.2 
(4.4) 

16.5 
(1.36) 

2.2 
(6) 

0.94 
(2) 

Agustsson et al.39 
210.912 to 
321.857 

41.2 54.8 40.3 (59.7 
44  

(range 4–94yr) 

0.6/100,000/ year 
1955–1972 

5.8/100,000/ year 
2003–2012 

1/865 
39.9 
(3.0) 

43.1 
(0.95) 

11.3 
(0.65) 

5.7 
(2.85) 

0 



 

 

26 

 

Etiopathogenesis of pituitary adenomas 

Tumorigenesis requires two overlapping steps: initiation and promotion42. Most of the data 

suggest that human pituitary adenomas are the result of an intrinsic pituitary defect due to 

inherited or acquired genetic or epigenetic changes that probably confer growth advantage43, 

which represents the initiation step. In the promotion step, additional genetic changes, growth 

factors and environmental factors are involved, for example circulating hormones such as 

oestrogens or the microenvironment, with additional permissive effect on the behaviour of the 

altered cells. These defects lead to monoclonal expansion of a single modified cell, although 

heterogeneity in recurrences after treatment has been described44. 

Hormonal factors involved in pituitary tumour pathogenesis 

Despite several animal models suggesting that hormonal effects, such as hypothalamic trophic 

or inhibitory hormones, or abnormal feedback regulation from peripheral hormones could lead 

to pituitary adenomas45,46, there is little evidence for this in humans. Ectopic GHRH or CRH 

secretion result in pituitary hyperplasia, but an association with adenoma development has not 

been shown47,48. The lack of cortisol feedback in untreated Addison disease or congenital adrenal 

hyperplasia has not been consistently associated with corticotrophinomas, although individual 

case reports have been described49. The preponderance of microprolactinomas in females 

maybe linked to estradiol influence on the pituitary gland; however, there is no data suggesting 

a link between the use of the contraceptive pill and pituitary adenomas50. Factors involved in 

the physiological regulation of the pituitary gland, such as somatostatin analogues and 

dopamine agonists, are utilised therapeutically as analogues of inhibitory hypothalamic factors 

and have been used successfully in the treatment of acromegaly and prolactinomas. 

Environmental factors involved in pituitary tumour pathogenesis 

Most of the available evidence regarding the role of environmental factors as potentially causal 

factors in pituitary adenomas tumorigenesis comes from animal experiments. In mice and cats, 

environmental causal factors for pituitary adenomas have been found to include chemical and 

radiation exposure. 

Some of the earliest experiments were performed by Gorbman51, and demonstrated that mice 

exposed to radioactive iodine (I131) developed tumours of the pituitary gland. More recent 

experiments52 confirmed that when mice are exposed to radiation they will develop pituitary 

adenomas. Regarding the role of environmental carcinogens on the development of pituitary 

adenomas, it has been shown that Fischer 344 rats receiving acrylamide in drinking water for 2 

years developed pituitary tumours53. Acrylamide is known as an industry-related carcinogenic 
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substance, but recent discoveries have found that acrylamide is also formed in significant 

concentrations during high-temperature cooking of many common foods54. Recently published 

data reported that naturally occurring hypersomatotropic cats have increased plasma 

concentrations of organohalogenated contaminants as polyclorobyphenils and other substances 

with oestrogen-like activity compared to diabetic cats and controls. The mechanism of tumour 

formation seems to involve a link between AIP-induced xenobiotic metabolism, toxicity and cell 

cycle regulation55. 

However, very little evidence is available regarding the role of environmental factors in the 

aetiology of pituitary adenomas in humans. In 2010, Canavo et al.56 investigated the 

epidemiological characteristics of patients with acromegaly in Sicily. The study focused on the 

relationship between the prevalence of acromegaly and environmental pollution. Area of Sicily 

were divided into 4 zones with different pollution levels. In the most polluted zone, there were 

high concentrations of toxic substances such as benzene, toluene, cyclohexene, and ethane. 

There was increased prevalence of the disease in the highly polluted area compared to less 

polluted areas. The risk ratio (RR), calculated for the most polluted area, assuming the least 

polluted area as a reference, showed that the population of the most polluted region had an 

8.3-fold increased risk of developing acromegaly (P<0.0014). 

Given the fact that AIP is a molecular chaperone to the receptor of the environmental toxin 

dioxin, the prevalence of pituitary adenomas was investigated in Seveso, Northern Italy, 

following an industrial accident where considerable dioxin pollution affected well circumscribed 

areas57. Although no significant increase was identified, this is an issue that warrants further 

study. 

Genetic factors involved in pituitary tumour pathogenesis 

Data on genetic predisposition and on acquired somatic changes (mutations or epigenetic 

alterations) associated with pituitary adenomas is steadily accumulating58. The differentiation 

of the pituitary gland is under the coordination of a series of very specific and temporally 

events59, which are highly regulated by a various transcription factors. The succession of 

sequential activation of these factors has been shown to be also involved in every step of the 

tumorigenesis process. Figure 3 depicts an overview of pituitary development and intracellular 

tumour cell signalling associated with cell proliferation and tumour development. 
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Figure 3: Cascade of factors involved in anterior pituitary development and tumorigenesis. Sequential 

activation of series of factors that are involved in tumorigenesis process, from progressive differentiation 

of mature pituitary gland cell types to pituitary adenomas and carcinomas. Oncogene activation, tumour 

suppression gene (TSG) inactivation and different factors probably contribute to transformation from 

normal pituitary to adenoma. The role of hypothalamic factors in humans has not been convincingly 

shown in the development of human pituitary adenomas (dashed line). Additional mutations may 

facilitate aggressive behaviour or malignant transformation (adapted from Aflorei et al 201441). 

Numerous genes have been suggested to be involved as oncogenes or tumour suppressor genes 

(TSG) in the pathogenesis of sporadic pituitary adenomas. Table 2 presents a brief summary of 

some of the most frequent genetic disruptions observed in pituitary adenomas). 

Gene Mechanism of normal function Result of altered function 
Oncogene

/TSG 

Somatotroph adenoma 

CCND1 
Involved in progression through the 

G1-S phase of the cell cycle 

Increased expression, can 

stimulate both cell proliferation 

and apoptosis in GH3 cells 

Oncogene 

CREB 

Phosphorylation-dependent 

transcriptional activator of cAMP 

response elements (CREs) 

Constitutive activation by 

phosphorylation 
Oncogene 

GHR 
Transmembrane receptor that 

mediates GH action 

Loss-of-function somatic 

mutation 
-  

GHRH Stimulates GH secretion Increased expression -  

GHRH-R 
Transmembrane receptor that 

mediates GHRH action 

Truncated alternatively spliced 

nonfunctioning receptor 
-  

GNAS1 

Alpha subunit of the stimulatory G 

protein that activates adenylate 

cyclase 

Predominant maternal origin of 

GNAS1 transcripts; 40% of GH-

secreting pituitary adenomas 

have somatic mutations 

Oncogene 

Tpit

Neuro

D1

H-ras

Prop-1

Rpx/HesX-1

Pax-6

Six-1,3

Isl-1
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Ptx1,2

Lhx-3, 4

GATA-2
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GPR10160 G protein-coupled receptor 101 gene 
increased by a factor as high as 

1000 in the pituitary tumours 
Oncogene 

SSTR2 
Specific high-affinity G-coupled 

receptor for somatostatin 
Decreased expression -  

Lactotroph adenoma 

BMP4 

Involved in the control of the 

differentiation and proliferation of 

the different cell types in the 

anterior pituitary 

Overexpressed in prolactinomas TSG 

DRD2 
G protein-coupled receptor for 

dopamine 
Decreased expression -  

FGFR4 
Membrane-anchored receptor for 

fibroblast growth factor 

Increased expression of a N-

terminally truncated cytoplasmic 

isoform (ptd-FGFR4) by 

alternative transcription 

initiation 

Oncogene 

TGF-α61 

Competes with EGF for binding to 

the EGF receptor and stimulates its 

phosphorylation in order to produce 

a mitogenic response 

Overexpressed under the 

prolactin promoter influence 
Oncogene 

Corticotroph adenoma 

CCNE1 
Promotes progression through the 

G1-S phase of the cell cycle 
Increased expression Oncogene 

HDAC2 

Enzyme that deacetylates lysine 

residues on the N-terminal region of 

the core histones 

Decreased expression Oncogene 

NR3C1 Nuclear receptor for glucocorticoids 
Loss-of-function somatic 

mutation 
-  

SmarcA4 

Member of the SWI/SNF protein 

family with helicase and ATPase 

activities. Regulates gene 

transcription by altering chromatin 

structure 

Decreased expression, altered 

subcellular localization 
TSG 

USP862,63 

 Involved in regulation of the 

endosome morphology via protein 

ubiquitination 

Gain-of-function somatic 

mutations in corticotropinomas 
Oncogene 

Nonfunctioning adenoma 

DKC1 

Pseudouridine synthase that 

modifies rRNA and regulates 

telomerase activity 

Loss-of-function somatic 

mutation 
TSG 

MEG3 
Induces apoptosis and inhibits 

proliferation of tumour cells 
Decreased expression TSG 

PITX2 

Member of the bicoid-like homeobox 

transcription factor family, which is 

involved in the Wnt/Dvl/β-catenin 

pathway 

Increased expression -  
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PLAGL1 

Zinc finger transcription factor that 

plays a role in pituitary development, 

differentiation, maturation and 

tumorigenesis 

Decreased expression TSG 

PRKCA 

Kinase that participates in growth 

factor- and hormone-mediated 

transmembrane signalling and cell 

proliferation 

Increased expression, 

gain-of-function mutation 
Oncogene 

Most or all pituitary tumour types 

AKT1 

Regulates many processes including 

metabolism, proliferation, cell 

survival, growth and angiogenesis 

Increased expression, especially 

in NFPAs 
Oncogene  

AKT2 

Regulates many processes including 

metabolism, proliferation, cell 

survival, growth and angiogenesis 

Increased expression, especially 

in NFPAs 
Oncogene 

BAG1 

Inhibits the chaperone activity of 

HSP70/HSC70 and the pro-apoptotic 

function of PPP1R15A 

Increased expression -  

CCNA1, B1, 

B2 

Involved in the control of the G2/M 

phases of the cell cycle 
Increased expression Oncogene 

CDKN1A – 

p21 

Regulator of cell cycle progression at 

G1 

Decreased expression in NFPAs, 

Increased expression in hormone 

producing adenomas 

TSG 

CDKN2A 
Induces cell cycle arrest in G1 and G2 

phases 
Decreased expression TSG 

PIT164 

Member of the POU transcription 

factor family; plays a key role in the 

specification, expansion and survival 

of somatotrophs, lactotrophs and 

thyrotrophs during development 

Overexpressed in GH, PRL and 

TSH pituitary adenomas 
Oncogene 

PTTG 
Cell cycle regulation and cell 

senescence 

Increased expression, especially 

in corticotrophinomas 
Oncogene 

Invasive adenoma 

DAPK1 

Positive mediator of programmed 

cell death induced by gamma-

interferon 

Decreased expression either by 

promoter methylation or by 

homozygous deletion of the 

promoter CpG island 

TSG 

EGFR 

Transmembrane glycoprotein 

required for normal cellular 

proliferation, adhesion, migration 

and differentiation 

Increased expression Oncogene 

Galectin-365 

Extracellular Gal-3 mediates cell 

migration, cell adhesion, and cell-to-

cell interactions; intracellular Gal-3 

inhibits apoptosis  

Up-regulated during neoplastic 

progression  
Oncogene 

MYO5A66 

Actin-dependent molecular motor, 

with roles in tumour cell migration, 

invasion, and metastasis 

Increased expression -  
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NM2367 

N-terminal kinase domain could 

phosphorylate and downregulate 

cyclin B and could prevent the 

progression of cell from G2 to M 

phase of the cell cycle 

Allelic loss results in reduced 

NM23 expression 
TSG 

RB1 
Key regulator of entry into cell 

division 

Decreased expression partly by 

promoter methylation 
TSG 

Pituitary carcinoma 

COPS5 

Probable protease subunit of the 

COP9 signalosome complex, which is 

involved in various cellular and 

developmental processes 

Increased expression -  

HRAS 

GDP/GTP binding protein that 

regulates cell division in response to 

growth factor stimulation 

Gain-of-function somatic 

mutations 
Oncogene 

Table 2: Selected genes that may be involved in molecular pathogenesis of pituitary adenomas.This list 

is not exhaustive and exemplifies some of the complex genetic disruptions observed in pituitary 

adenomas. Updated from Gadelha et al., for references see original review article68. 

The key mechanisms that seem to be involved in the pituitary tumorigenic process are oncogene 

activation and TSG inactivation. These can occur either independently or in combination. 

Gain-of-function mutations occur most often in genes affecting signal transduction pathways 

and lead to prolonged activation of the downstream pathway. These are most commonly 

dominant mutations so a single mutated allele is sufficient to induce a phenotype. The most 

frequently observed genetic change in pituitary adenomas is the somatic heterozygous 

activating mutation of the GNAS gene coding for the G protein α-subunit. This is called the gsp 

mutation, which can be present in up to 40% of GH-secreting pituitary adenomas69,70. The 

mutation abolishes the GTP-ase activity of the  subunit, which leads to a constitutively 

activated adenylate cyclase, increased cyclic adenosine monophosphate (cAMP) levels and 

protein kinase A (PKA) activation. In turn, the cAMP response element-binding protein (CREB) is 

phosphorylated and leads to sustained GH hypersecretion and cell proliferation. H-ras 

mutations have been described in a few cases of invasive prolactinomas or distant metastatic 

pituitary carcinomas71-73. As most of these mutations were found in rare carcinoma samples, it 

was suggested that they may be important in malignant transformation and metastasis rather 

than pituitary adenoma initiation. 

Loss of TSGs on both alleles may initiate tumour cell growth (Knudson’s two-hit theory74). In 

inherited conditions the first genetic alteration event can be an inherited germ-line mutation of 

one allele, followed by a second somatic alteration event affecting the TSG, leading to the gene 
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being completely turned off. The second event can either be a large deletion (which can usually 

be detected by testing for loss of heterozygosity (LOH) at the mutation locus or microsatellites 

around it), a somatic point mutation, a reduction in gene expression due to promoter 

methylation, or the presence of inhibitory microRNAs75. The retinoblastoma gene (Rb) was one 

of the first described TSGs in pituitary adenoma. Although Rb knockout mice develop 

intermediate lobe ACTH-secreting pituitary adenomas, and germline mutations cause 

retinoblastoma in humans, no Rb mutations were identified in human pituitary adenomas43. 

Methylation of the Rb promoter76 has been described in human pituitary tumorigenesis. Areas 

of the genome typically lost in pituitary adenomas include the p and q arms of chromosome 11, 

locus 11q13, 13q12-14, 10q, and 1p, 9p, 13, 3, and 12 and X77. Many of these include TSGs, but 

no particular chromosomal loci in pituitary adenomas are free of allelic deletions. 

Other tumour-initiating and promoting factors have been studied using animal models and 

human tissue samples. Molecules that have been characterized to be involved in the 

proliferative potential of pituitary cells and tumour growth include cell cycle regulators, 

disrupted growth factors, transcriptional regulators or pituitary miRNAs. 

Cell cycle disruption: Proteins regulating the cell cycle can also be considered as oncogenes and 

TSGs in a tumorigenic process. Several transgenic mouse models have demonstrated that both 

inactivated78,79 and overexpressed cell cycle regulators are sufficient to initiate pituitary 

tumorigenesis. Cyclins and stimulated cyclin-dependent kinases (CDKs) promote initiation of the 

cell cycle by phosphorylation and therefore inactivation of Rb. This confers to the cyclins the 

capacity to lead to tumorigenesis and several have been shown to be overexpressed in different 

types of pituitary adenomas80.  

Growth factors: Various growth factors and their cognate receptors are essential for regulating 

pituitary cell growth and for regulating normal hormone production81. Transforming growth 

factor (TGFα)61 is a mitogenic protein which in pituitary tissue is expressed mainly in lactotrophs, 

where might be overexpressed under the influence of the PRL promoter. TGFα does not induce 

tumours of other pituitary cell subtypes, indicating a specific role in tumorigenesis of 

prolactinomas. Fibroblast growth factors (FGFs) are a very complex family of ligands that are 

involved in pituitary development and growth. In an article published in 2001, Ezzat et al.82 

demonstrated that the N-terminally truncated isoform of FGF receptor-4 (ptd-FGFR4), an altered 

growth factor receptor isoform, can be implicated in the neoplastic process of pituitary 

adenomas. Disruption of other growth factors involved in pituitary tumorigenesis include 

epidermal growth factor83, nerve growth factor84 and bone morphogenetic protein 4 (BMP4)85. 
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BMP4 is required for early embryonic and pituitary development and has been shown to be 

highly expressed in pituitary adenomas in mouse models. 

Transcriptional regulators: Anterior pituitary cell differentiation is a very complex process during 

which a series of transcription factors play key roles in each stage. PITX1 and PITX2 are some of 

the first transcription factors expressed in the Rathke's pouch and subsequently will have a key 

role in the normal development of all pituitary cell types20,19. PITX1 has been demonstrated in 

all normal anterior pituitary cell types and in the majority of pituitary adenoma subtypes86. One 

recent study reported reduced PITX1 mRNA expression in corticotroph tumours compared with 

other pituitary tumours. PITX2 (pituitary homeobox 2) is another pan-pituitary transcriptional 

activator involved in very early stages of pituitary cell differentiation. Pellegrini-Bouiller et al87 

described absent PITX2 mRNA expression in corticotroph adenomas, with high PITX2 expression 

in gonadotroph tumours. Interestingly, although Ptx2 expression was observed in PRL secreting 

tumours, no expression was observed in somatotroph adenomas. This might suggest that PITX2 

has an involvement in the terminal differentiation of these types of pituitary cells. A third factor 

implicated in early pituitary development is the Prop-1, which is required for Pit1 gene 

expression. Inactivating Prop-1 mutations occur in subjects with combined pituitary hormone 

deficiency. Regarding this very important transcription factor, RT–PCR analyses have 

demonstrated appropriate Prop1 expression in normal pituitary tissue and in all pituitary 

adenomas examined et al88. On the other hand Pit1 mRNA was increased up to fivefold in 

somatotropinomas and prolactinomas compared to normal pituitary tissue64. 

Therefore, the available data regarding the role of transcription factors in pituitary tumour 

pathogenesis are limited and quite old, and there are necessary more investigations to 

understand their involvement. 

The overwhelming majority (~95%) of pituitary adenomas arise sporadically89,90. However, 

genetic factors may also play a role. It is well described that certain animal strains are more 

prone to pituitary adenoma development, primarily prolactinomas91,92. Racial differences have 

also been identified in humans, with black people having increased prevalence of pituitary 

adenomas. Racial differences in pituitary adenoma incidence were first reported in 197693 and 

showed the incidence in black women to be tripled when compared to white women, while 

incidence rates for black men were 4 times as high as for white men. A more recent article94 

published in 2011 also found that, in the USA, blacks had significantly higher incidence rates of 

pituitary tumours than Asian/Pacific islanders, American Indians/Alaska natives, and whites. 

There were no significant differences between the latter 3 groups. One of the few possible 

explanations for this high incidence is the fact that the racial differences in incident rates are 
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naturally occurring. Another possible reason is that black people may have a different clinical 

presentation of pituitary adenomas that draws attention to this condition. A third possibility is 

that the higher incidence rates are an incidental finding. However, the real cause for these higher 

incidence rates is still unclear. Despite the fact that in 1991 Goldstone et al95. raised the question 

that there might be a genetic basis for the differences in cancer incidence between Afro-

Americans and Euro-Americans, no further experiments, involving ether whole genome 

sequencing or next generation sequencing, were performed. This might be due to the fact that 

the costing involved in order to reveal the genes/ transcripts significantly changed in Afro-

Americans versus Euro-Americans or other populations can be significant. 

Pituitary adenomas due to germline mutations  

The detection of germline mutations in a patient has major implications for family members 

because the relatives are at risk of developing the disease. Familial genetic screening is an 

important step in these pathologies as the mutations often can be identified. 

The main genetic causes of pituitary adenomas are summarised in Figure 4: 

 

Figure 4: The pathogenesis of pituitary tumours due to germline mutations. A germline mutation in the 

MEN1 gene, or rarely in the CDKN1B (coding for cell cycle regulator protein p27) gene causes MEN1 or 

MEN4; in a small proportion of affected cases, no gene abnormality can be found. A mutation in the 

protein kinase A regulatory subunit gene (PRKAR1A) is found in the majority (60%) of patients with the 

Carney complex; in the remainder, data suggest a causative gene in the 2q16 area. Patients have been 

described with an SDH mutation-related familial paraganglioma/phaeochromocytoma and familial 

pituitary adenomas96-100. Rare case reports of patients with neurofibromatosis type 1 and pituitary 

adenoma have been described. A mutation in the DICER1 gene, a gene which regulates microRNAs, may 

cause an ACTH-secreting pituitary blastoma of childhood onset 101. A fifth of families with familial isolated 

pituitary adenoma cases show a mutation in the AIP gene; in the majority of FIPA families, the causative 

gene has not yet been identified. Adapted from Korbonits et al 102. 

Germline 

mutations

Multiple endocrine 

neoplasia

menin CDNK1B

FIPA

AIP

Carney

complex

PRKAR1A 2q16

Pheochromocytoma, 

paraganglioma and 

pituitary adenoma

SDHB SDHC SDHD

Pituitary 

blastoma

DICER1

Familial cases

Other

genes
MEN1 MEN4 Other

genes
X-LAG

PRKACA

duplication

SDHA



 

 

35 

 

Classical familial pituitary tumour syndromes have been described in around 5% of pituitary 

patients. The classical familial syndromes that predispose to pituitary adenomas are multiple 

endocrine neoplasia type 1 (MEN1) and type 4 (MEN4), Carney complex, and familial isolated 

pituitary adenomas (FIPA). More recent data raised the possibility that pituitary tumours can be 

caused by mutations in the DICER1101 and succinate dehydrogenase (SDH) genes98-100,97 among 

others. Isolated case reports have described pituitary adenomas in patients with 

neurofibromatosis type 1103-108. A very new syndrome of pituitary gigantism is called X-linked 

acrogigantism (X-LAG) and was published for the first time in 2014 by Trivellin et al.60. This 

pathogenesis is caused by microduplications on chromosome Xq26.3, affecting a gene named 

GPR101. GPR101 expression was found highly upregulated (up to 1000 times) in pituitary 

tumours of patients with Xq26.3 microduplications, compared with normal pituitary and 

tumours from patients who tested negative for microduplications60. 

MEN1 is an autosomal dominant syndrome that is caused by an inactivating mutation in the 

MEN1 gene. The main manifestation involves pancreatic, pituitary, and parathyroid gland 

tumours, and there is typically a high penetrance, with over 95% of the patients manifesting the 

disease by the age of 50. The incidence of MEN1 is estimated to be around 0.25% from post-

mortem studies and the prevalence estimated to be 1 in 20,000 to 40,000 individuals109,110. 

MEN1 affects both sexes equally but the pituitary manifestation, most commonly 

prolactinomas, has a female preponderance and sometimes paediatric onset. Pituitary 

adenomas can be the first presentation of MEN1 syndrome in 14% of cases. 

MEN4 is a novel and rare familial syndrome seen in patients with MEN1-like features, but no 

MEN1 gene mutations. Germline mutation in the CDKN1B has been described in a few cases, 

and single patients have been described with mutations in the genes coding for the CDKIs p15, 

p18, and p21cip1 111,112. p27Kip1 is known to interact with the menin protein which may explain the 

similar phenotype to MEN1. 

Carney complex (CNC) is an autosomal dominant disorder with numerous manifestations 

including myxomas (benign tumours of the skin, breast, and other sites), testis and adrenal 

tumours as well as somatotroph hyperplasia or adenomas. The majority of the cases are caused 

by an inactivating mutation in the regulatory subunit of protein kinase A PRKAR1A113. 

X-LAG syndrome is a very recently described paediatric disorder characterised by a 

microduplication on chromosome Xq26.3, and increased growth hormone secretion. At this 

locus 4 genes were identified. Of these 4 genes, GPR101 was found upregulated in pituitary 

lesions from patients with X-LAG. A variant was identified at position 924 (substitution of a 
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guanine with a cytosine (c.924G→C; p.E308D); however, the role of this change is currently 

under investigation. GPR101 encodes a G-protein–coupled receptor, and pituitary-specific 

GPR101 overexpression may be due to a gene-dose effect. Genetic analyses revealed that the 

phenotype associated with the identified GPR101 mutation is associated with an extremely 

early-childhood onset form of gigantism. In contrast, the patients with gigantism of other cause 

develop the disease during adolescence60. 

FIPA: Case reports about families with pituitary adenomas but no other syndromic features have 

been described previously, but the first comprehensive report establishing this new diagnosis 

was only published in 2006114. In about 20% of these families, a mutation in the Aryl Hydrocarbon 

Receptor-Interacting Protein (AIP) gene was described115, while in others the disease causing 

gene or genes have not been identified. More details on the section 1.3. 

1.3 Familial isolated pituitary adenomas 

Despite numerous studies that aim to understand the aetiology and pathogenesis of pituitary 

adenomas, many questions remain unanswered. One new puzzle has been the finding that 

heterozygous germline mutations of the AIP gene may lead to FIPA116. 

FIPA (OMIM #102200) is defined as the occurrence of a pituitary adenoma in two or more 

members of the same family in the absence of other syndromic clinical features, such as those 

characteristic of MEN1 and MEN4, CNC. This pathology is inherited in an autosomal dominant 

manner. However, the penetrance of the disease in FIPA families is highly variable within a range 

of 15-33%. Up to 48.6% of the families with AIP mutations had three or more pituitary adenoma 

patients per family. The maximum number of affected individuals within the same family was 

eight (six of them prospectively diagnosed) in a family carrying the p.R304*117. Owing to this 

incomplete penetrance, some of the carriers fail to express the phenotype. As the trait may not 

be expressed in one or more generations, it poses a challenge in detecting the inheritance in 

subsequent generations of the same kindred118. 

AIP mutations have been described as the cause of pituitary adenomas in about 15-20% of FIPA 

families, with a higher prevalence, up to 36-50%, in cases of families with only 

somatotropinomas89,115,116,119,120. Despite the fact that AIP germline mutations were not 

identified in patients with sporadic pituitary adenomas in some of the initial studies121, recent 

publications have shown that about 4% of the cases of apparently sporadic pituitary adenomas 

have AIP mutations115,122,123. 
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To date, more than 70 different AIP variants have been reported120. Various changes have been 

described throughout the entire region of the gene: missense, nonsense, deletions and 

insertions (in-frame or causing frame-shift), splice-site and promoter mutations as well as large 

genomic deletions. All these are germline mutations, and no AIP somatic mutations have been 

identified. The observed loss of heterozygosity (LOH) of the wild-type AIP allele in the tumour 

tissue of affected individuals supports the role of AIP as a TSG124-126. 

FIPA history 

Until 2006 the literature on families with two or more members diagnosed with different types 

of pituitary adenomas, without any other manifestations of MEN1 or CNC was scarce. In modern 

literature, the first prolactinoma family was described in 1967127 and was followed by a 

description of two acromegaly families128,129. A few years later, this was followed by the 

description of a corticotroph adenoma family130. Another familial prolactinoma case was again 

reported by Berezin et al. in 1995131. In the same year, a family with 3 patients affected by 

gigantism or acromegaly was described. It was the first time that association with the MEN1 

gene locus had been ruled out132. The first article that reported loss of heterozygosity (LOH) on 

chromosome 11q13 in pituitary adenomas of 2 siblings with familial acromegaly was published 

in 1997133. The MEN1 gene is localized at this locus. Two hypotheses were suggested: the first 

one stated that familial acromegaly was an alternative form of the MEN1 syndrome; the second 

hypothesis was that an independent gene located in the immediate vicinity is the one involved 

the pathogenesis of familial acromegaly133. The second hypothesis was convincingly confirmed 

8 years later by Soares et al. in an article published in 2005 on 8 novel families126. 

With every article that was published it became more obvious to the scientific world that 

pituitary adenomas could occur in a familial setting. In order to characterize these families with 

isolated pituitary adenomas as a distinct clinical entity different than MEN1 and CNC, in 2005 

Daly et al. proposed a new syndrome: familial isolated pituitary adenomas (FIPA) (OMIM 

102200)134. Since then, international collaborative efforts resulted in a collection of hundreds of 

families that exhibited different patterns of pituitary adenomas. Families with up to five affected 

cases were reported; these kindreds were characterized either as “homogeneous” (same 

adenoma phenotype among affected cases) or “heterogeneous” (different adenoma 

phenotypes among affected members)135,136. When these cases were investigated in more 

detail, a first-degree relationship between affected members was observed in the majority of 

the FIPA kindreds and an autosomal dominant inheritance pattern with incomplete penetrance 

was suggested for FIPA, based on pedigree analysis90. 
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However, the exact genetic cause remained elusive until 2006 when Vierimaa et al116 performed 

a study on two families with pituitary adenomas from Northern Finland. The Finnish group used 

high-stringency criteria and performed a genome-wide single-nucleotide polymorphism study 

on 16 patients in order to identify the gene locus. A linkage was identified at chromosome 

11q12–11q13, but the MEN1 gene locus was included. As none of the patients included in this 

cohort carried MEN1 mutations, a further screen was performed in both families included in the 

study. Further investigations on the AIP status in FIPA families showed that this pathology is an 

autosomal dominant disease with variable penetrance. The fact that AIP might be a TSG was 

suggested by the discovery that the majority of known affected individuals have LOH at the AIP 

locus, losing this way the wild-type allele, in concordance with the Knudson’s two-hit 

hypothesis137. In one particular case described in 2007 by Iwata et al. a missense mutation 

(V49M) was identified in a patient with gigantism. However, the wt allele of the AIP gene was 

retained in the GH-secreting adenoma, but the LOH cannot be completely ruled out possibly due 

to contamination with normal pituitary tissue138. 

One important problem that remains to be solved is that mutations in the AIP gene were 

identified only in about 20% of the families. It remains unknown which genes are involved in the 

pituitary tumorigenesis of the remaining FIPA families. 

AIP gene  

AIP gene has 6 exons, 8,075 bp, and is localized on chromosome 11: 67,250,505-67,258,579 on 

the forward strand (UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly). All 

6 exons are part of the coding region (total size for the coding region: 7,835). 

Cloning 

Kuzhandaivelu et al.139 were the first to clone the AHR-interacting protein (AIP) gene in 1996. At 

the time, they designated it as XAP2 due to the fact that they used a yeast 2-hybrid system to 

identify proteins that interact with the hepatitis B virus (HBV) X protein. One year later, Carver 

and Bradfield140 showed that AIP (named ARA9 in this paper) interacts with AHR in a ligand-

dependent manner, also by using a yeast 2-hybrid assay.  

Mapping 

The mapping of AIP gene was a long process which started in 1993 when Thakker et al.141 

published the cases of 4 non-MEN1 patients with acromegaly and LOH for chromosome 11q13. 

In 1999, Gadelha et al. narrowed the region of LOH to 11q13, as they found LOH in all pituitary 

adenoma tissues from affected members of 2 unrelated families with acromegaly. As none of 

the patients had germline mutations in the MEN1 gene, they concluded that the pituitary lesions 
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might be due to another mutated gene located in the 11q13 region124. One year later, the same 

group125 managed to further narrow the LOH region to 8.6 cM: 11q13.1-11q13.3. The 8.6 cM 

region was reduced in 2005 to an only 2.21 Mb region as Soares et al.126 used haplotyping and 

allelotyping techniques to evaluate 8 familial isolated somatotropinoma cases which were 

compared to 15 sporadic somatotropinomas. Only three genes from this region were considered 

potential candidates and were further submitted to sequencing, but no mutations were actually 

identified. Only in 2006 Vierimaa et al. found linkage to chromosome 11q12-q13 by genotyping 

of a large Finnish family with pituitary adenoma predisposition116. 

AIP protein 

AIP belongs to the group of proteins harbouring conserved C-terminal tetratricopeptide-repeat 

(TPR) domains of 34 amino acids residues forming two palindrome alpha helices. The AIP protein 

has 3 TPR domains and a final 7th helix142. The N-terminal of AIP has a peptidyl-prolyl cis-trans 

isomerases (PPIase)-like domain and due to this structure AIP protein has a high degree of 

homology with proteins that belong to immunophilin family, such as FKBP52 (52 kDa FK506-

binding protein). 

The human AIP gene has four alternative mRNA transcripts (Figure 5) reported by the Ensembl 

database. Three of the four transcripts encode for a protein as they have the PPIase-FKBP 

domain and some of the TPR domains. Two of the isoforms are predicted to encode for shorter 

proteins that are also reported in GenBank, but their biological relevance is still unknown143. 

However, only the longest isoform has all three TPR domains, encoding for a 330-amino acid 

protein with a molecular mass of approximately 37 kDa (UniProt: O00170)144. 

 

Figure 5: A schematic illustration of the alternative splicing of human AIP into four isoforms. 

(http://www.ensembl.org/Homo_sapiens/Gene/Splice?db=core;g=ENSG00000110711;r=11:67250512-

67258574) 

http://www.ensembl.org/Homo_sapiens/Gene/Splice?db=core;g=ENSG00000110711;r=11:67250512-67258574
http://www.ensembl.org/Homo_sapiens/Gene/Splice?db=core;g=ENSG00000110711;r=11:67250512-67258574


 

 

40 

 

The crystal structure of human AIP protein was solved by two groups. In 2012, Linnert et al. 

published the N-terminal part of the protein145 while the C-terminal part was crystalized in 2013 

by Morgan et al142 (Figure 6). The main motifs of the protein are, according to UniProt (accessed 

on 22.07.2015): PPIase domain: amino acids 31-121; TPR1 domain: amino acids 179-212; TPR2 

domain: amino acids 231-264; TPR3 domain: amino acids 265-298 and the C-terminal α-7 helix: 

amino acids 300-330144. 

 

Figure 6: The AIP crystal 

structure. The most highly 

conserved residues are in the 

TPR domains, three antiparallel 

double helices and in the final 

alpha helix. 

In 1998, Das et al.146 published the crystal structure of the TPR domains of protein phosphatase, 

PP5. They showed that pairs of antiparallel α-helices, consisting of 34 amino acids, are packed 

together in an arrangement so that the protein folds into a right-handed super-helical structure 

necessary for the recognition of target proteins. Based on this three dimensional protein 

structure, Russell et al.147 predicted that some of the amino acid residues in TPR regions are 

conserved (Figure 7), and are likely to mediate protein-protein interaction. Their focus was 

mainly on the residues that may be important for interactions with Hsp90. Only a few years 

later, different groups introduced point mutations in AIP (Bell & Poland 2000148, Meyer et al. 

2000149, Laenger et al. 2009150), confirming the importance of the specific conserved amino acids 

for AIP–AhR or AIP–Hsp90 interactions. These changes were also identified in patients with 

pituitary adenomas. The first patient with a mutation in one of these crucial amino acids was 

published by Daly et al. in 2007151. The detected change was in lysine (K) at position 11: p.K241E. 

Later, Leontiou et al. 200889 identified a change in the cysteine (C) at position 8 (p.C238Y)), while 

the isoleucine (I) at position 27 (p.I257V) was the last one reported and it was detected in a 

patient with a TSH-secreting pituitary adenoma (Montanana et al. 2009152). 

PPIase domain
(purple, amino acids 31-121)

C-terminal α-7 helix
(red, 300-330)

TPR1

(green, 179-212)

TPR2
(yellow, 231-264)

TPR3
(orange, 265-298)
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Figure 7: Representation of the TPR motifs of AIP. Top panel: A TPR motifs are composed of a pair of 

antiparallel helices, A and B. Consensus amino acids are located at positions 4, 7, 8 and 11 in helix A and 

at positions 20, 24, 27 and 32 in helix B). Residues 8 and 20 are located at the position of closest contact 

between the A and the B helices of a TPR, whereas residue 27 on helix B is located at the interface of three 

helices (A, B and the A helix of the next TPR motif) within a three-helix bundle. Patients with familial 

isolated pituitary adenoma have been identified with mutations affecting these crucial amino acids, such 

as the cysteine (C) at position 8 (p.C238Y), the lysine (K) at position 11 (p.K241E) and the isoleucine (I) at 

position 27 (p.I257V). Adapted from Trivellin et al. 2011153. 

AIP protein is ubiquitously expressed in both developmental and adult stages. AIP expression is 

substantial and has been confirmed in human and murine multiple tissues including heart, brain, 

skeletal, liver, muscle, kidney, testis, ovary and pituitary etc. At the cellular level AIP is 

predominantly cytoplasmic139,154 but nuclear expression was also reported149. High expression of 

AIP is apparent in two types of adult pituitary cells: growth hormone (somatotrophs) and 

prolactin (lactotrophs)89. 

AIP interacts with a very wide repertoire of molecular partners155 (Table 3). The TPR domains 

mediate AIP’s interactions with most of its known partners, such as AHR, Hsp-70/90, survivin, 

phosphodiesterase-2A&4A5, TOMM20 and Gα12/13
153.  
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Partner Full name AC-MS co-IP Y2H RC Other 
Confirmed 

interaction 
Function Organism and/or cell type(s) 

ACTB156 Actin, cytoplasmic 1  ✓     N Cytoskeletal component COS-7 cells 

AGO1157 
Argonaute RISC catalytic  

component 1 
✓ ✓    N RNA interference 

 HEK 293, HeLa, and A549 

cells  

AhR154,158-160 Aryl hydrocarbon receptor   ✓ ✓ ✓  Y 
Adaptive and toxic responses, 

development 

HeLa, Hepa1c1c7, COS-1, B-

cells 

ARNT140,161 
Aryl hydrocarbon receptor nuclear 

translocator 
 ✓ ✓ ✓  Y 

Transcription factor activity, 

sequence-specific DNA binding 

HeLa cells, HepG2, HeLa, 

COS7 cells  

BIRC5162 
Baculoviral IAP repeat containing 5 

(Survivin) 
✓ ✓   ✓ Y Suppression of apoptosis 

HeLa, MCF-7, 

Raji cells 

CDC37163 
Hsp90 co-chaperone cell division 

cycle 37  
✓    AC-L N cell division, regulation of cell cycle 

Stable polyclonal 293T cell 

lines 

CDK9164,165 Cyclin-dependent kinase 9  ✓     Y regulation of transcription HEK293T cells  

EGFR166 Epidermal growth factor receptor     PCA N 
Cellular proliferation, survival, 

adhesion, migration, differentiation 
Human fetal brain 

EIF2S3167 
Eukaryotic translation initiation 

factor 2 subunit 3 
    Co-F N GTPase activity, GTP binding 3 populations of cells 

Gα13 
Guanine nucleotide binding protein 

(G protein), alpha 13 
  ✓ ✓  N 

Mediates receptor-stimulated 

signalling pathways 

HEK293T, epa1c1c7, COS-7 

cells 

GNAQ168 
Guanine nucleotide binding protein 

(G protein), q polypeptide 
   ✓  N 

modulators or transducers in 

transmembrane signalling systems 

 HEK293T, COS-7 and 

Hepa1c1c7 cells 

HSP90AA1161,163,16

9,170 

Heat shock protein 90kDa alpha 

(cytosolic), class A member 1 
✓ ✓  ✓ AC-L Y protein folding; response to stress 

293T, HeLa, COS7 and SK-N-

MC, HEK-293 cells; Mouse 

embryonic fibroblasts,  

HSP90AB1163 
Heat shock protein 90kDa alpha 

(cytosolic), class B member 1 
 ✓   AC-L N 

DNA binding, double-stranded RNA 

binding,  
293T cell lines 

HSPA8171 Heat shock cognate 71 kDa protein   ✓    N 
Repressor of transcriptional 

activation 

COS-7 cells 

HeLa cells 

HSPA9167 
Heat shock 70kDa protein 9 

(mortalin) 
    Co-F N ATP binding; poly(A) RNA binding 3 populations of cells 
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HSC70 Heat shock cognate 70 ✓     N 
Protein folding,  

Mitochondrial protein import,  
HeLa cells 

IRF7157 Interferon regulatory factor 7 ✓   ✓  N 
transcription factor activity, 

sequence-specific DNA binding 

 HEK 293, HeLa, and A549 

cells  

NADSYN1163 
Glutamine-dependent NAD(+) 

synthetase  
✓    AC-L N 

glutaminase activity; 

NAD+ synthase activity 
293T cell lines 

NR3C2169 
Nuclear receptor subfamily 3, group 

C, member 2 
 ✓    N Mineralocorticoid receptor  

 Mouse embryonic 

fibroblasts,  

SK-N-MC, HEK-293  

PDE2A3172 
cGMP-dependent 3',5'-cyclic 

phosphodiesterase 2A  
 ✓ ✓  Co-loc Y cAMP and cGMP degradation 

Human brain, 

COS-1, HeLa cells 

PDE4A589,173 
cAMP-specific 3',5'-cyclic 

phosphodiesterase 4A  
 ✓ ✓   Y cAMP degradation 

Rat brain 

COS-7 cells 

PPARα174 
Peroxisome proliferator-activated 

receptor alpha 
 ✓  ✓  N Regulation of energy homeostasis Mouse liver 

PTGES3163,169 Prostaglandin E synthase 3  ✓ ✓   AC-L Y 
prostaglandin-E synthase activity; 

telomerase activity 

293T cell lines, Mouse 

embryonic fibroblasts, SK-N-

MC, HEK-293  

RET162 
Rearranged during transfection 

tyrosine-kinase receptor  
 ✓ ✓  PCA N Development, maturation, survival 

Human fetal brain, rat 

pituitary, neuroblastoma and 

HEK293 cells 

TNNI3K175 TNNI3 interacting kinase   ✓   N 
Promotes cardiomyogenesis, 

enhances cardiac performance 
Human heart 

TOMM20142,171 
Mitochondrial import receptor 

subunit TOM20 homolog  
   ✓  N Mitochondrial import receptor 

Human fetal liver, COS-7, 

HeLa cells 

USP19163 Ubiquitin specific peptidase 19  ✓   AC-L N ubiquitin-specific protease activity 293T cell lines, 

YES1165 
YES proto-oncogene 1, Src family 

tyrosine kinase 
✓     N 

non-membrane spanning protein 

tyrosine kinase activity 
HEK293T cells 

Table 3: Interacting partners of aryl hydrocarbon receptor-interacting protein (AIP). The techniques used to identify the various interactions, the functions of the different AIP 

partners, cell types where the interactions have been examined are reported. Adapted from Trivellin et al.153 and updated from UNIPROT database144 
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Previous data suggested that the ubiquitously expressed AIP protein acts as a co-chaperone to 

heat-shock protein-90 (Hsp90) and regulates nuclear-cytoplasmic shuttling of the nuclear 

receptor AhR, whose ligands include the environmental toxin dioxin140. 

AHR 

Over the last few years there was an increased interest in understanding the function of AIP in 

the AHR signalling pathway. However, the vast majority of studies have focused on toxicology 

rather than mechanistic aspects of AHR function149,176,177. As a consequence, little is known with 

regards to the role of AHR in the regulation of tumorigenesis. AHR is chronically activated in 

tumour cells and facilitates all the major stages of tumorigenesis, from initiation and progression 

to metastasis178. In vitro studies have shown that AIP stabilizes AHR in the cytoplasm by forming 

an AIP/AHR/Hsp90/p23 complex. AHR is mainly a ligand-activated transcription factor, which 

binds to the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Upon TCDD 

binding, the AHR/AIP/Hsp90/p23 complex translocates into the nucleus, where AHR undergoes 

conformational changes that enable it to detach from the complex. AHR then binds to DNA at 

xenobiotic response element sequences, inducing the transcription of xenobiotic-metabolizing 

enzymes179. Although TCDD is a known carcinogen that induces toxicity in the liver, endocrine 

glands or skin, it is still unclear whether this is involved in pituitary tumorigenesis. Epidemiology 

studies on the relationship between TCDD exposure and pituitary tumorigenesis in humans have 

not been conclusive56,57. 

Although no significant increase was identified, this is an issue that warrants further study. A 

mouse model of AHR deficiency is available. However, AHR mutant mice do not develop pituitary 

adenomas180,181 and consequently the role of AHR on pituitary tumorigenesis remains elusive. 

Site-directed mutagenesis experiments were used for finding the putative phosphorylation sites 

involved in AIP-AhR interaction. These were determined by a two-dimensional phosphopeptide 

mapping analysis. The findings revealed that changes in any or all of serine residues 43, 53, 131, 

132, and 329, did not interfere with AIP ability to bind AHR. However, serine residue S53 could 

be essential for the nuclear translocation of AIP182. Mass spectrometry studies revealed possible 

other putative phosphorylation sites183. 

cAMP pathway 

While the vast majority of studies involving AIP partners have focused on the AhR pathway, 

other AIP partners have been identified that could mediate disease pathogenesis153. Recently, 

two studies have highlighted a potential role of G proteins (Gαs and Gαi) in this process. 
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According to these reports, AIP inactivation is associated with low cAMP-Gαi signalling184,185 

enabling the development of somatotropinomas in AIP positive patients185  

It was previously shown that cAMP/PKA signalling is involved on the synthesis and secretion of 

GH and PRL186,187. Moreover, as cAMP production is regulated by G proteins, the cAMP pathway 

plays a crucial role in multiple endocrine tissues, and many hormone receptors are 

transmembrane G protein coupled receptors (GPCRs). G proteins have three different subunits, 

α, β and γ. Up to 40% of sporadic GH-producing tumours are caused by mutations in the 

GNAS1188 gene, which encodes the Gsα subunit. Pathogenic changes in this gene are also 

responsible for somatotropinomas and prolactinomas in McCune-Albright syndrome189. 

Deregulated cAMP signalling may also arise due to mutations in the gene which encodes for the 

protein kinase A type 1A regulatory subunit (PRKAR1A). Mutations in PRKAR1A have been 

identified in patients with GH/ PRL-producing tumours in the context of Carney complex190-192. 

Therefore, a potential role of AIP in cAMP signalling remains an attractive hypothesis to explain 

the effect of AIP loss in pituitary tumours. However, it is still unclear whether G proteins directly 

interact with AIP or if there are other specific molecular interactions necessary for the described 

functional changes to occur. Nevertheless, the AIP-cAMP link is a promising candidate pathway 

in the development of AIP positive tumours.  

Cytoskeletal proteins 

In sharp contrast to AHR and cAMP signalling, some of the proposed AIP partners have not been 

confirmed by independent studies. These include the cytoskeletal proteins actin and dynein, the 

epidermal growth factor receptor (EGFR), and the cardiac-specific kinase TNNI3K166,175. 

The putative interactions of AIP with cytoskeletal proteins are still controversial. One study 

reported no or very weak binding of the AIP PPIase-like domain to cytoplasmic dynein193. A 

different group156 reported that AIP-mediated cytoplasmic retention of AHR149,194,195 requires 

anchoring of the complex to actin filaments and proposed the existence of a direct AIP-actin 

interaction. However, in subsequent studies by Petrulis et al.177, this direct interaction was not 

validated. This discrepancy may be due to the fact that different cell types were used in the two 

studies. These results highlight the need for further studies regarding the role of the actin 

cytoskeleton in the regulation of AIP function. 

Based on the function of the actin cytoskeleton, it remains an interesting candidate for both the 

pituitary tumorigenesis process and the aggressive behaviour of pituitary adenomas. Actin is 

ubiquitously and highly expressed and has key roles in cell motility. Cell migration is a central 

process essential for normal development196, as well as a major player in pathologic processes, 
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especially tumorigenesis and metastasis197,198. The core molecular mechanism of cell migration 

involves a combination of actin polymerisation, integrin receptor ligand binding and actomyosin 

contraction. The actin cytoskeleton dictates how adhesions are assembled at the leading edge 

of a cell, by serving as a dynamic scaffolding network. This is a two-way process, as actin 

polymerisation and organisation is mediated by migration-related signals via integrin 

receptors199. It was shown that actin polymerisation is more intense at the leading edge of cells, 

where integrin receptors bind to their extracellular ligands and promote cell motility and 

migration200. 

Bearing in mind that AIP is a co-chaperone protein, with a wide range of interacting partners 

and with ubiquitous expression, it is likely that the effect of AIP mutation is due to poorly 

understood molecular interactions or disturbed signalling pathways, and not due to AIP 

expression levels or pattern. 

The adenohypophysis is a tissue with epithelial structure and most of this gland is formed of 

sinuous strings of epithelial cells in close contact with abundant vascular tissue. Consequently, 

to better understand the involvement of AIP in tumorigenesis and invasion of pituitary 

adenomas, it is essential to investigate how loss of this protein affects its interacting partners, 

the structure of the epithelial tissue and the connection with surrounding tissues. The 

developing Drosophila wing is a very simple in vivo model to investigate the molecular 

mechanisms involved in cell shape changes associated with rearrangement of epithelial sheets 

during tumorigenesis. 

Clinical features 

There is considerable phenotypic difference between families that exhibit or not AIP mutations, 

with childhood- and young-onset somatotroph adenomas often leading to gigantism, 

predominating in the families with AIP mutations. Numerous studies have revealed that both 

AIPmut positive tumours and AIPmut negative sporadic somatotrophinomas with low AIP 

protein expression show an invasive phenotype89,119,201,202. It was also published that up to 70% 

of AIP mutations are associated with somatotroph or somatolactotroph adenomas102,120,153. 

A very recent study conducted by Hernandez-Ramirez et al. in 2015117 revealed a number of 

novel FIPA aspects. The majority (71.7%) of FIPA AIPmut positive patients are young at the onset 

of disease as they had the first signs of pituitary adenoma during the second and third decades 

of life. Contrary, only 39.2% the AIPmut negative FIPA patients, developed the pituitary 

adenomas around the same stage of life. Most commonly, in both AIPmut positive and negative 

families, the patients were diagnosed with GH excess; however, a significantly higher number of 
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cases were diagnosed in the AIPmut positive. Regarding the size and extension of pituitary 

adenomas between these two types of families AIPmut positive FIPA patients were found to 

have significantly larger tumours, as revealed by evaluating the maximum diameter. Although 

the group published that they found a higher prevalence of macroadenomas in AIPmut positive 

FIPA, overall, not all the AIPmut patients had tumours with an aggressive behaviour. 

Interestingly, a phenotype-genotype correlation was also found as patients with truncating AIP 

mutations usually have a younger age at the onset of the disease. Consequently, a higher 

percentage of gigantism was found among patients with truncating AIPmuts compared to those 

with nontruncating AIP variants117. 

Previous studies have published that there an increase ratio of males to females in AIPmut 

positive familial cases; however, this finding was not confirmed by this study. Even more, it was 

found an equal number of male and female among unaffected carriers. 

Animal models for pituitary tumorigenesis due to loss of AIP 

The AIP protein sequence is evolutionarily conserved among species. The percentage of 

homology between species varies from 100% of protein identity in primates (P. troglodytes), to 

around 94% in rodents (R. norvegicus: 93%, M. musculus: 94%). The homology levels are much 

lower in more inferior organisms such as D. rerio (66%), or D. melanogaster (40%); however, in 

all the species the protein has the same PPIase-like domain and TPR repeats153. The fact that AIP 

is highly conserved among the species might be related to the fact that this is a disease-

associated protein203. 

For many years, animals have been used as models for understanding the mechanisms behind a 

wide variety of neoplasms that occur in humans. The initial studies used rodents that 

spontaneously develop cancers, which are also prevalent in humans, such as lymphoma, bladder 

cancer, and melanoma. The increased performance in the field of genetic engineering 

technologies led to a boost in recent years in the use of genetically-modified rodents that 

manifest a wide variety of neoplastic conditions. These changes have served to radically change 

the landscape of the studies that are focused on the mechanisms of pituitary adenomas 

tumorigenesis.  

Mouse models 

A first Aip KO mouse model was generated by Lin et al. in 2007 and demonstrated an essential 

role for AIP during embryonic development as Aip-/- mice die at E10.5-14.5204. Most of the 

abnormalities were present in the cardiovascular system: double-outlet right ventricle, 
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ventricular septal defects and pericardial oedema. In the same time, the heterozygous Aip+/- 

mice were apparently normal, with no obvious phenotype. 

A second attempt to generate the mouse model came from the same group and resulted in a 

hypomorphic model of Aip deficiency. The penetrance of the phenotype (a patent ductus 

venosus), was variable depending on the genotype; up to 83% of the Ara9(fxneo/fxneo) mice181. The 

same phenotype was described in a model of Ahr KO mouse205, and the fact that the levels of 

ARA9 expression were perfectly correlated with the frequency of the phenocopy of the Ahr-null 

allele led the authors to the conclusion that ARA9 is an essential protein for AHR signalling during 

development. 

As there was still necessary a mouse model for pituitary tumorigenesis, in 2010 Raitila et al. 

published a heterozygous partial deletion of Aip. In contrast to previous models, the 

heterozygous mice developed normally. However, as expected, this model developed pituitary 

adenoma, in particular somatotropinomas, more frequently of the pars distalis of the anterior 

pituitary. Only a small percentage of these mice developed prolactinomas and 

corticotrophinomas. LOH was also detected in the tumour tissue. The adenomas were first 

detected at six months, and reached full penetrance by 15 months. Ki-67 analysis of the tumour 

suggested a more aggressive disease, as the Aip-deficient tumours have a higher proliferation 

index206. Additionally, IGF-1 concentrations were significantly elevated, similar to the clinical 

presentation in the human pathology, thereby providing increased evidence for AIP involvement 

in pituitary tumorigenesis. Although this mouse model strongly resembles the human disease, 

it has two important limitations. In human pathology, almost 25% of AIP mutation-positive 

somatotropinomas developed during childhood and adolescent stages207-209; however, the 

mouse model developed the tumour at adulthood with full penetrance at 15 months. Secondly, 

low penetrance is a characteristic of AIP-associated which is also different than the described 

model. 

Zebrafish models 

The interest of using zebrafish (Danio rerio) in genetic studies comes from its ease of use, relying 

on the rapid development cycle, transparent embryos, fully sequenced genome and availability 

of mutant strains210. The zebrafish (Zf) model offers high anatomical and functional similarities 

to human neuroendocrine system. Zebrafish is an excellent model for the study of the human 

endocrine system211, displaying high anatomical and functional similarities with humans: the 

hypothalamus regulates pituitary function, producing oxytocin and vasopressin that are 

released from the posterior pituitary, and also produces releasing factors (at least six), which in 
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turn control the synthesis and secretion of the anterior pituitary hormones. Our laboratory has 

pioneered the use of Danio rerio and we have developed research tools for studying the effect 

of loss of AIP212. We generated Aip knockdown Zf embryos with antisense morpholino 

oligonucleotides injected to randomly-selected embryos at one-cell stage, using injected 5-base 

mispaired oligonucleotide as control morpholino. Aip Morpholino KD Zf embryos demonstrate 

brain, pericardium, eye, and swim bladder anomalies along with general developmental delay, 

pointing to wide developmental role of the AIP gene. Aip morphant embryos exhibit stronger 

PRL immunostaining in the pituitary compared to controls suggesting a possible increase in 

proliferative activity (hyperplasia or tumour) at the pituitary level in the absence of AIP gene 

function213. This attractive model can be proposed as an intermediary stage between cell 

culture/Drosophila and mammalian experimentation ultimately refining analysis and reducing 

costs. Nevertheless, despite all the efforts in understanding the physiological function of AIP 

regarding cell proliferation, the actual mechanism and the identity of its interacting partners 

relevant to pituitary tumorigenesis are still unknown. 

1.4 Drosophila melanogaster: a model system 

Drosophila as a model for cancer studies 

One main question that is always asked is: how relevant is Drosophila melanogaster for the study 

of human cancer mechanisms? The signalling pathways involved in tissue and organ 

development, cell proliferation, cell survival, and cell migration are highly conserved in 

Drosophila214,215. Different studies in flies have been extremely informative: Drosophila tumours 

successfully model many of the features of mammalian cancers including an unlimited 

proliferative potential. Also, in malignant neoplasia, Drosophila tumours mimic the disruption of 

tissue architecture and the proprieties to invade and to metastasize causing host lethality. The 

results of fruit fly studies were shown to be transferable to humans: more than half of the known 

human disease genes, have homologues in Drosophila melanogaster216. 

As most of the signalling pathways214,217 and most of molecular mechanisms involved in the 

control of growth and the cell cycle are well-conserved218-220, in this project I propose to utilise 

the experimental advantages of the fruit fly to discover the conserved functions of AIP. 

The first studies using Drosophila as an animal model were conducted by William Castle at 

Harvard University in 1901. This research was considerably improved by Thomas Hunt Morgan 

who first isolated a naturally occurring Drosophila mutation – white. This mutation causes a 

change in the eye colour, from red to white. Morgan and three of his students (Sturtevant, 

Bridges and Muller) demonstrated that genes are carried on chromosomes221,222. Their work on 
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multiple mutations allowed them to discover the notions of “crossing over” and genetic linkage. 

Another major step was introduced by Muller, who used balancer chromosomes in order to be 

able to maintain homozygous lethal mutations. 

But the moment that established the fruit fly as a valuable model system in research was the 

Nobel Prize awarded to Lewis, Nüsslein-Volhard and Wieschaus in 1995 due to their work in 

genes controlling development. More recent studies focused on tumorigenesis in Drosophila 

and understanding of some of the essential characteristics of human neoplasia. 

Today, it is consider that around 50% of the proteins that are involved in human diseases, 

including cancer, have a conserved orthologue in fruit fly223,224 . In some cases, it was already 

shown that the degree of conservation is so high that the human genes can rescue the loss of 

corresponding Drosophila orthologues225. As a result, it should not be a surprise anymore that 

very important findings derived from fly research are extremely relevant to human medicine. 

There are Drosophila studies that led to the identification of a protein and its molecular function 

long before its implication in cancer of the corresponding human homologue was discovered. 

An important example is Notch, which was first identified in fruit fly, and later genetic and 

molecular fly studies have unveiled some of the Notch targets and partners. Many years later 

aberrant expression of human NOTCH1 was identified as being involved in T cell acute 

lymphoblastic leukaemia226. Another important cancer gene that was first identified in fruit fly 

is hedgehog (hh) – a segment polarity gene. The Hedgehog signalling pathways were first 

understood with the help of Drosophila studies and a few years later human mutations affecting 

hh signalling were identified as a causing factor in basal cell carcinoma and medulloblastoma227. 

There are numerous studies on D. melanogaster that helped to understand the molecular basis 

of human cancer, I will mention a few below. 

Drosophila as a model for BRCA2 mutations 

Heterozygous mutations in BRCA2 confer a high risk of breast cancers in humans, but the BRCA2 

gene is the first example on how studies involving Drosophila melanogaster led to the discovery 

of the cancer-relevant proteins in humans. Studies involving genetic analysis of BRCA2 in fruit 

flies have shown that this gene plays a major role in homologous recombination by having a 

protective role against large deletions228. This gene is also an important example on how a 

protein that is involved in a human cancer involving a tissue that has no equivalent in flies (the 

mammary gland in this case) may be better understood due to basic research carried out in 

Drosophila. 
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Drosophila as a model for glioblastoma  

Another example includes fruit fly models of glioblastoma, one of the most malignant human 

brain tumours. This type of cancer is due to mutations that activate the epidermal growth factor 

receptor (EGFR) and phosphatidylinositol-3 kinase (PI3K) signalling pathways. The authors 

showed that loss of Rbf1, one of the two retinoblastoma (RB) genes in flies, led to constitutive 

co-activation of EGFR-Ras and PI3K pathways in Drosophila glia and to the development of 

invasive glial cells that create transplantable tumour-like growths, mimicking human gliomas229. 

Drosophila as a model for Neurofibromatosis 1 

Neurofibromatosis 1 (NF1) is typically a childhood onset multisystem genetic disorder 

characterized by café-au-lait spots, skeletal dysplasias, and by the benign and malignant brain 

tumours of the peripheral nervous system. Although most cases do not develop metastasis, the 

health burden is still significant as the majority of affected children/adolescents suffer from 

debilitating skeletal defects and learning disabilities. The genetic cause is mutation of the NF1 

gene230. An important step forward in understanding this disease pathology was the use of 

Drosophila. The first significant results were published in 2001 by Williams et al. and they 

successful provided evidence that NF1 regulates Ras signalling231. The end point of these studies 

was the development of Ras pathway inhibitors used in the treatment of neurofibromatosis 

patients232. 

Overall, the record of Drosophila use as a model for tumorigenesis is impressive. The tools 

developed in this field offer the advantage of detailed in vivo exploration of interactions 

between cells, tissues, and genes. There is a constant increase in the number of laboratories 

that choose to take advantage of this valuable animal model to explore cancer mechanisms and 

even therapeutics233. 

Advantages of Drosophila melanogaster as a model system 

As an animal model, Drosophila has important advantages that make it extremely valuable in 

research. Males are easily distinguishable from females. These insects are very small and as such 

require a limited space in the lab, are cheap, clean, harmless (some people might present 

occasional allergies), and easy to maintain in stable stocks. They have very short generation 

time, about 10 days at 25°C, and this allows multiple and parallel independent experiments to 

be performed and repeated within a relatively short time period. Even more, as the length of 

the life cycle is temperature-dependent, this enables researchers to increase the fruit fly life 

span by raising them at 18°C, or to shorten it at 29°C, based on the experimental requirements  
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The life cycle includes different phases that are easily identified (Figure 8). 

 

Figure 8: Life cycle of Drosophila melanogaster. The larva hatches 1 day after the egg is fertilised. First, 

second, and third instar are larval stages, each ending with a molt. During pupation most of the larval 

tissues are destroyed and replaced by adult tissues derived from the imaginal discs that were growing in 

the larva. Times are given for the life cycle at 25°C234. Source: 

http://www.nap.edu/openbook.php?record_id=9871&page=162 

 

One of the most important steps in Drosophila research was the sequencing of the entire 

genome223, a crucially important source of information that allowed the development of new 

bioinformatics studies. The entire genome sequencing revealed that more than 90% of the fruit 

fly genes are similar to the human and mouse genes. However, the Drosophila annotated 

genome, with its very small number of chromosomes, 180 million bases and ~13,600 estimated 

genes, offers a much simpler system than mammalian models223. 

Drosophila has only four pairs of chromosomes designated as 2, 3, 4 and X/Y (Figure 9). The Y 

chromosome has only a few genes that are important for spermatogenesis, but this 

chromosome is not essential for fly viability. 
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Figure 9: Mitotic chromosomes of D. melanogaster. The euchromatic regions, heterochromatic regions, 

and centromeres are displayed. Arms of the autosomes are designated 2L, 2R, 3L, 3R, and 4. The 

euchromatic length in megabases was derived from the sequence analysis. The Y chromosome is nearly 

entirely heterochromatic. Adapted from Adams et al. 2000223 

 

Apart from the fast development, another advantage of Drosophila is the fact that for each 

chromosome there were created balancer chromosomes. The first records of balancer 

chromosome use in Drosophila studies date back to 1975235. These are special modified 

chromosomes, which were designed via multiple, nested chromosomal inversions. The balancer 

chromosomes are able to suppress crossing over between homologous chromosomes during 

meiosis. If, by chance, the crossing over involving a balancer chromosomes occurs, the resulting 

chromatids either lacking some genes or have duplicated genes. As a consequence, the progeny 

is not viable. 

Typically, a balancer chromosome contains one or more dominant mutations that are visible 

phenotypic markers that enable researchers to follow the balancer through crosses. 

Furthermore, the main advantage of using balancer chromosomes is the ability to maintain 

lethal mutations in heterozygous stable stocks. Without balancer chromosomes lethal 

mutations would otherwise impair the survival of homozygotes216. The names of the balancer 

chromosomes are standardized based on the chromosome they serve to stabilize. The first letter 

of the chromosome's name represents the number of the chromosome it stabilizes. F stands for 

the first chromosome, S stands for second, and T stands for third. The second letter is an M, 

which stands for "multiply inverted". The M is followed by a number to distinguish balancers of 

the same chromosome: FM6, FM7s, and TM3. They also carry the name of the phenotypic 

marker the balancer carries. Additionally, the genetic marker or markers of the balancer are 

listed after the name and separated by a comma236. Below are a few examples of some markers 

used in this study, at least one for each chromosome (Figure 10). 
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Figure 10: Common phenotypic markers used in this study. Due to phenotypic markers the genetic 

crosses are totally predictable and verifiable, as the markers aids on tracing the inheritance of alleles (are 

clearly very distinct from wild-type)237. 

In the fly research community there is a free exchange of reagents and information (via 

databases such as Flybase, Virtual fly, etc.). Also part of the advantages is the wide spectrum of 

methods that can be used. The adaptation of the Gal4/UAS system238 from yeast (detailed in 

section 3.2.1), together with immunostaining and in situ hybridisation, mutants and rescue 

experiments, made it possible to achieve an increasingly more detailed analysis of tumorigenesis 

mechanisms.  

In addition to the advantages mentioned above, Drosophila provides the ability to perform 

forward genetic screens to generate mutant stocks that allow investigation of fundamental 

questions regarding tumour development during embryogenesis and in the adults. 

Disadvantages of Drosophila as model system 

All animal models have limitations, and Drosophila is no exception. This animal model organism 

has as a main disadvantage the issue of care and intensive handling as fly stocks have to be 

maintained alive and cannot be frozen. Another negative aspect of is that its small size precludes 

detailed study of pathology and cause of death. Together with some lacking information 
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regarding detailed anatomy during development, this poses a problem for developmental 

studies. 

There are also a few limitations of the fruit fly as an animal model for tumorigenesis. Flies do 

not have an adaptive immune system. Although flies possess a rudimentary heart with internal 

organs, they also do not have a closed circulatory system of endothelial cell-derived blood 

vessels. Flies also lack telomerase and use a different mechanism in order to maintain the length 

of the telomere. As a result of these differences, Drosophila is not a perfect cancer model to 

model mammalian carcinogenesis, but the fruit fly might be extremely informative about the 

essential factors that initiate tumour formation. 

Drosophila’s AIP orthologue 

The Drosophila melanogaster gene CG1847 (NM_132530.4)239 is the fruit fly’s single orthologue 

of human AIP (40% amino-acid identity). The gene is located on chromosome X at position 10F2, 

from base pair 11,869,170 to base pair 11,871,168 on the positive strand. It has 3 exons. As it is 

located on X chromosome, males will have only one copy of this gene. 

 

Figure 11: A schematic illustration of the alternative splicing of CG1847 into two isoforms. 

(http://www.ensembl.org/Drosophila_melanogaster/Gene/Splice?db=core;g=FBgn0030345;r=X:117622

33-11766188;t=FBtr0073567) 

Structurally, CG1847 is a 320 aa protein and shares a significant degree of identity and homology 

with its human orthologue as it has one peptidyl-prolyl cistrans isomerases (PPIase)-like domain 

and three TPR repeats (Figure 11). However, currently there is no published data focusing on 

the function of this Drosophila gene.  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Search&db=Nucleotide&term=NM_132530&doptcmdl=GenBank&tool=genome.ucsc.edu
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AIMS OF THE STUDY 

Overview on the subject 

The main aim of this study was to understand the role of AIP orthologue during Drosophila 

development and to reveal the signalling pathways and the AIP orthologue partners that enable 

cells to proliferate, migrate, and invade into surrounding tissues when AIP protein structure is 

changed.  

The structure of this thesis 

The aims of the work presented in this thesis are to understand the results of loss of CG1847 in 

an in vivo model. More specifically;  

 First (Chapter 3):  

- To establish Drosophila melanogaster as a model to study AIP/CG1847 silencing. 

- To characterise CG1847 function during fly development by silencing CG1847 

(by knockdown and knockout). 

- To reveal the potential underlying molecular mechanisms of loss of AIP by 

performing a whole transcriptome analysis using Illumina Next Generation 

Sequencing. RNA-seq was performed in 48 h old mutant (CG1847exon1_3) versus 

control male larvae isolated using fluorescent markers. This allowed us to 

determine gene expression profiles using an established analysis pipeline and 

to identify key pathways that are significantly altered in the mutant and are 

related to embryonic development or survival. 

 Second (Chapter 4):  

- To reveal the molecular partners of Drosophila AIP involved in cell-cell adhesion 

and to gain further insights on how CG1847 silencing leads to cell detachment, 

with a possible impact on tumorigenesis. 

 Third (Chapter 5):  

- To test the functional conservation between human and fly protein by rescuing 

the lethality of CG1847exon1_3 mutants via expressing human AIP cDNA under the 

control of a ubiquitous promoter during fly development.  

- To discriminate between pathogenic and non-pathogenic AIP mutations as this 

is a challenging problem in the management of patients carrying a missense AIP 

variant.  
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Drosophila stocks  

The Drosophila melanogaster strains used in this study and their purpose and references are 

listed below, in Table 4. 

Control stocks 

wiso Gift from Nic Tapon 

Df(1) yw Lindsley and Zimm (1992)240 

yw,CG18472.39A/FM6 Precise excision generated in this project 

yw,CG18472.39A/FM7c,Dfd-YFP Precise excision generated in this project 

Stocks containing balancer chromosomes 

yw ; Bl/CyO ; Lindsley and Zimm (1992)240 

yw ; ; Dr/TM3 Lindsley and Zimm (1992) 

TrxR-1 D2/FM6 Gift from Fanis Missirlis241 

w+ Baz/FM7c,Dfd-YFP 
Bloomington Drosophila Stock Center:  
Stock ID: 23229 

Stocks containing GAL4 driver transgenes 

yw; Act-Gal4/CyO  Luo et al. (1994)242 

elav-Gal4 Luo et al. (1994) 

Hs-hid;hh-Gal4, UAS-DIAB/TM6B  Gift from Nic Tapon 

nub-Gal4/CyO Gift from Nic Tapon 

Cg-Gal4 
Bloomington Drosophila Stock Center 
Stock ID 7011 

Crq-Gal4 Gift from P. Ribeiro 

Dilp-Gal4/CyO Ikeya et all 2002243 

Mef2-Gal4 
Bloomington Drosophila Stock Center 
Stock ID 25756 

repo-Gal4 Glial cells specific driver 

drm-GAL4 
Bloomington Drosophila Stock Center 
Stock ID 7098 

HE-GAL4 
Bloomington Drosophila Stock Center 
Stock ID 8699 

c42-GAL4 Gift from P. Ribeiro244 

tinC-GAL4 Gift from M. Frasch (2001)245 

Stocks containing UAS-RNAi transgenes 

UAS-CG1847R-1 
National Institute of Genetics - Fly Stock 
Center: Stock ID: 1847R-1 

UAS-CG1847R-2 
National Institute of Genetics - Fly Stock 
Center: Stock ID 1847R-2 
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UAS-CG1847-T1: w1118; P{GD9582}v43701 
Vienna Drosophila RNAi Center: Stock ID: 
v43701 

UAS-CG1847 T2: w1118; 
P{GD9582}v43702/TM3 

Vienna Drosophila RNAi Center: Stock ID: 
v43702 

UAS-Dcr-2; ; UAS-CG1847T1 RNAi  

UAS-Dcr-2; ; UAS-CG1847T2 RNAi  

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.GL00168}attP2/TM3, Sb[1] 

Bloomington Drosophila Stock Centre 
Stock ID: 35270 

y[1] sc[*] v[1]; P{y[+t7.7] 
v[+t1.8]=TRiP.HMS00277}attP2 

Bloomington Drosophila Stock Centre 
Stock ID: 33399 

Mutant Drosophila AIP stocks 

w* P{EP}CG1847G1839 
Bloomington Drosophila Stock Center:  
Stock ID: 32600 

yw,CG1847exon1_3/FM6  

yw,CG1847exon1_3/FM7c,Dfd-YFP  

Stocks used for generation of mitotic recombination clones (Flp-FRT lines) 

w,Dm,FRT19ANeoR Gift from Nick Brown 

P{w[+mC]=Ubi-mRFP.nls}1, w[*], 
P{ry[+t7.2]= hsFLP}122 
P{ry[+t7.2]=neoFRT}19A 

Bloomington Drosophila Stock Center 
Stock ID: 31418 

w*ovo[D1]v24 P{FRT(whs)}101/C(1)DX, y1 
f1/Y; P{hsFLP}38 

Bloomington Drosophila Stock Center 
Stock ID: 1813 

Stocks containing GFP-tagged proteins 

mys5.4(βPS-GFP) Gift from Nick Brown246 

Recombinant lines 

CG1847exon1_3 FRT19ANeoR / FM7c, Dfd::YFP  

CG1847exon1_3/FM6; Actin-Gal4/CyO Ubiquitously driver 

CG1847exon1_3/FM6; Cg-Gal4/CyO Fat body specific driver  

CG1847exon1_3/FM6; Crq-Gal4/CyO Haemocytes specific driver 

CG1847exon1_3/FM6; Dilp-Gal4-Gal4/CyO Insulin secreting cells - specific driver 

CG1847exon1_3/FM6; Mef2-Gal4/TM3 Muscle specific driver 

CG1847exon1_3/FM6; elav-Gal4/TM3 Neurons specific driver 

CG1847exon1_3/FM6; repo-Gal4/TM3 Glial cells specific driver 

CG1847exon1_3/FM6; drm-GAL4/TM3 Gut specific driver 

CG1847exon1_3/FM6; HE-GAL4/TM3 Haemolymph specific driver 

CG1847exon1_3/FM6; c42-GAL4/TM3 Malpighian tubules specific driver 

CG1847exon1_3/FM6; tinc-GAL4/TM3 Heart specific driver 

Other lines 

y w ; ; Ki, pp, Δ2-3  

Table 4: Drosophila melanogaster lines used in this study.  Lines in white boxes were obtained from the 

Vienna Drosophila RNAi Center and the National Institute of Genetics - Fly Stock Center (Japan, 

http://www.shigen.nig.ac.jp/fly/nigfly/), as indicated in the text. Those in light grey boxes were existing 

lab stocks or gifts from other labs. The lines in dark grey boxes were generated during this study.  
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Transgenic lines carrying either wt CG1847 under the expression of its own promoter or human 

AIP cDNA variants generated by BestGene and used in this study are listed in Table 5:  

Transgenic lines 

CG1847/CyO 1M BestGene Stock ID: 12135-1-1M-Ch2 

CG1847/CyO 3M BestGene Stock ID: 12135-1-3M-Ch2 

UAS_hAIPwt/CyO 1M BestGene Stock ID: 14089-1-1M-Ch2 

UAS_hAIPwt/CyO 2M BestGene Stock ID: 14089-1-2M-Ch2 

UAS_hAIPtrunc/CyO 1M BestGene Stock ID: 12855-1-1M-Ch2 

UAS_hAIPtrunc/CyO 2M BestGene Stock ID: 12855-1-2M-Ch2 

UAS_hAIP-R16H/CyO 1M BestGene Stock ID: 14335-1-1M-Ch2 

UAS_hAIP-R16H/CyO 2M BestGene Stock ID: 14335-1-2M-Ch2 

UAS_hAIP-C238Y/CyO 1M  BestGene Stock ID: 14335-2-1M-Ch2 

UAS_hAIP-C238Y/CyO 2M BestGene Stock ID: 14335-2-2M-Ch2 

UAS_hAIP-A299V/CyO 1M BestGene Stock ID: 14335-3-1M-Ch2 

UAS_hAIP-A299V/CyO 2M BestGene Stock ID: 14335-3-2M-Ch2 

UAS_hAIP-R304Q/CyO 1M BestGene Stock ID: 14335-4-1M-Ch2 

UAS_hAIP-R304Q/CyO 2M BestGene Stock ID: 14335-4-2M-Ch2 

Table 5: Drosophila melanogaster transgenic stocks generated and used in this study  

2.1.2 Drosophila husbandry 

Fly strains were kept and raised in vials containing standard food medium (recipe in Appendix 3) 

and dry yeast. Two copies of each stock were kept in plastic vials (82x25 mm, B.T.P DREWITT) 

containing fly food and stored at 18˚C 65% humidity under 12 h: 12 h light: dark cycles. The 

stocks were flipped into fresh food vials every 4 weeks. For the working stocks or crosses, the 

ambient conditions were set to a 12 h: 12 h light: dark cycle, constant 25˚C, and 65% humidity. 

If required, crosses were flipped every 8-10 days to prevent the mix of individual flies from 

different generations. 

2.1.3 Collection of Adult Flies 

Unless otherwise indicated, fly crosses were maintained at 25°C. Recently eclosed males and 

females of the desired strains were collected using CO2 anaesthetisation. Male and female flies 

were separated during the first 4 hours after eclosion in order to select virgin females. Each food 

vial contained a maximum of 25-30 flies (depending on the purpose) and was kept at 18°C until 

the flies were crossed with the desired genotype. 
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2.2 Standard fly techniques 

2.2.1 RNAi-mediated silencing of CG1847  

CG1847 was silenced in Drosophila melanogaster using RNA-interference (a detailed description 

of the UAS-GAL4 system is described in section 3.2.1). Four UAS-CG1847-RNAi lines were tested 

(Table 4). UAS-CG1847-RNAi R1 and R2 lines were purchased from NIG-Fly Stocks (the RNAi 

constructs were inserted on chromosome 2 and 3, respectively). To confirm that the results were 

not due to an RNAi off-target effect, two additional RNAi lines, UAS-CG1847-RNAi T1 and T2 

were purchased from the Vienna Stock Center. These lines carry a different RNAi construct 

inserted on the 3rd chromosome. (Table 4). For more details regarding how these stocks were 

generated, the sequence of the inverted repeats, and the cloning strategies (Appendix 4 and 

Supporting Table 1). Figure 12 (below) depicts a schematic representation of the inverted 

repeats (IR) alignment to CG1847 showing non-overlapping of the IR constructs used by the two 

providers. 

 

Figure 12: Shematic representation of UCSC Browser Blat alignment of IR mapping to CG1847. The 2 IR 

constructs (in black) are targeting different areas of the gene. 

The Vienna stocks were combined with flies carrying the UAS-Dicer-2 transgene (Dcr-2) on the 

first chromosome in order to enhance RNAi potency247. This system facilitates the cleaving of 

the double-stranded RNA and the formation of the RNA-induced silencing complex (RISC), 

leading to a greater silencing of CG1847 (Table 4). 

NIG - Fly Stock Center:
Stock  ID  1847R-2

Vienna Drosophila RNAi Center:
Stock  ID v 43702

11,764,055

11,764,020
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Using 3 different drivers, I ectopically expressed specific CG1847 RNAi in all Drosophila cells, or 

specific subsets. The drivers used were elav-Gal4 (inserted in the X chromosome), Act-Gal4, nub-

Gal4 and hh-Gal4, inserted in 2nd and 3rd chromosomes, respectively (Table 4). Six to eight 

females carrying the universal or tissue-specific Gal4 driver were crossed with 3-5 males of the 

UAS-CG1847 RNAi line and maintained at 25°C. 

As stronger phenotypes resulted with UAS-CG1847-RNAi-R1, UAS-CG1847-RNAi-R2 and UAS-

CG1847-RNAi-T2 compared with UAS-CG1847-RNAi-T1, I will further present and discuss only 

these data. 

For UAS-CG1847-RNAi R1, the expected genotypes were: 

 Act-Gal4 / UAS-CG1847RNAi-R1  

 elav-Gal4 /+; UAS-CG1847RNAi-R1 / +  

 UAS-CG1847 R1 / +; + / hh-Gal4 

For UAS-CG1847-RNAi R2, the expected genotypes were: 

 Act-Gal4 / CyO; UAS-CG1847 R2 / + 

 elav-Gal4 / +;; UAS-CG1847 R2 / + 

 UAS-CG1847 R2 / hh-Gal4. 

 nub-Gal4 / CyO; UAS-CG1847 R2 / + 

For the third RNAi line, the combinations had the following genotypes: 

 Dcr-2 / +; Act-Gal4 / CyO ; UAS-CG1847 T2 / + 

 Dcr-2 / elav-Gal4; UAS-CG1847 T2 / +  

 Dcr-2 / +;; UAS-CG1847 T2 / hh-Gal4. 

 Dcr-2 / +; nub-Gal4 / CyO ; UAS-CG1847 T2 / + 

The RNAi efficiency was further tested by measuring the specific mRNA levels through semi-

quantitative RT-PCR (details in Chapter 3.2). Primer sequences are listed in Supporting Table 2. 

2.2.2 Generation of mutant CG1847 flies - Imprecise Excision screen 

To investigate the possible roles of the CG1847 gene, located on the X chromosome, a CG1847 

mutant line was created. The CG1847 gene was mutated by P-element transposase-mediated 

deletion of genomic DNA. For this, a fly line was obtained, in which a P-element is inserted within 

the 5’UTR of CG1847: w*P{EP}CG1847G1839 (Bloomington Drosophila Stock Center). This is a 

transgenic insertion stock generated through mobilization of a P-element construct P{EP} which 

carries a w[+mC] mini-white visible marker and UAS binding sites for GAL4 transcriptional 

http://flybase.org/search/simple/symbol/P%7BEP%7D
http://flybase.org/search/simple/symbol/w%5B%2BmC%5D
http://flybase.org/search/simple/symbol/Scer%5CUAS
http://flybase.org/search/simple/symbol/Scer%5CGAL4
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regulation248. The P-element was mobilised by crossing females homozygous for the P element 

with transposase carrying males of the strain: yw;+;Ki,pp,Δ2-3 (Mating scheme 1). 

F0: ♀ w P[w+]  
w P[w+]    

 X    ♂  y w; ; Ki, pp, Δ2-3  
 Y      Ki, pp, Δ2-3 

Set up about 200 individual crosses with females that have a lethal mutation on the X 
chromosome (allows easier selection in the next generation) 
 
F1: ♀ w P[w+]  ; ; Ki, pp, Δ 2-3    

    Y                      +                    
 X    ♂  TrxR-1 D2 

   FM6 

In the 3rd generation, screen for virgins that have w eyes, i.e. those who lost the P-element 

F2: ♀ w [E{P}]  
   FM6   

 X    ♂  FM6 
   Y 

In the next generation, the stable stock is obtained. Putative excision alleles were identified 
based on the lethality of male flies 

F3: ♀ w [E{P}] 
       FM6 

♀ FM6 
    FM6 
Infertile 

♂ FM6 
       Y 

♂ w [E{P}] 
         Y 
    LETHAL 

Mating scheme 1: Crossing scheme for generating CG1847 mutant fly 

Individual F1 males (which carry both the P element and the transposase) were crossed with 3 

first chromosome balancer w, FM6 females. These females also carried a lethal mutation on the 

other X chromosome TrxR-1D2 (Thioredoxin reductase1)241 which allowed selection of the 

desired alleles in the next generation as both TrxR-1D2/Y males and TrxR-1D2/ w [E{P}] (possible 

mutated) were lethal. In F2 the recently eclosed adults were selected for the presence of the 

dominant Bar marker and possibly one copy of the mutated CG1847 identifiable by Bar+ eye. 

Using the eye shape phenotype as a marker, the offspring with the desired genotype was 

selected. Single white-eyed female progeny from the F2 generation were back-crossed to FM6 

males to create a stable stock. Putative excision alleles were identified based on lethality of male 

flies. Females homozygous for the CG1847 mutation are not viable, while the hemizygous males 

do not emerge as adult flies. 

Mapping: Genomic DNA was isolated from heterozygous mutant females. The resulting stable 

stocks were screened by PCR to identify the shorter amplicons using the primers described in 

Appendix 5. The putative mutants were then sequenced to confirm the imprecise excision. In 

stock Δ25A a deletion of exons 1 and 2, and 3rd exon of CG1847 was identified, generating the 

desired CG1847 mutant (henceforth designated as CG1847exon1_3). 

For collection of male larvae carrying the CG1847 mutation, the FM6 balancer chromosome was 

replaced with the FM7c balancer, which also carries a fluorescent marker Dfd-YFP249. 
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F0: ♀ CG1847exon1_3  
   FM6   

 X    ♂  FM7c, Dfd-YFP 
           Y 

F1: ♀ CG1847exon1_3  
FM7c, Dfd-YFP 

 X    ♂  FM7c, Dfd-YFP 
            Y 

Mating scheme 2: Replacement of balancer chromosome in the CG1847 mutant stock 

2.2.3 Generation of control stock for mutant CG1847 (revertant) - Precise Excision 

screen 

The type of mutagenesis screen described above (section 2.2.2) has the advantage that it could 

generate both the desired mutant stock via imprecise excision of the P element, and, at the 

same time, a control stock (revertant) through precise excision250. The revertant can therefore 

be used as a control as it has the same genetic background as the mutant line. The P-element 

was mobilised in the same screening experiment as in section 2.2.2 (see below). 

F0: ♀ w P[w+]  
w P[w+]    

 X    ♂  y w; ; Ki, pp, Δ2-3  
 Y      Ki, pp, Δ2-3 

Set up about 200 individual crosses 

F1: ♀ w P[w+]  ; ; Ki, pp, Δ 2-3    
    Y                      +                    

 X    ♂  w FM6 
   l(1) 

In the 3rd generation screen for virgins that have w eyes, i.e. those who lost the P-element 

F2: ♀ w [E{P}]  
   FM6   

 X    ♂  FM6 
   Y 

In the next generation I obtained the stable stock. Putative excision alleles were identified 
based upon male’s lethality 

F3: ♀ w [E{P}] 
       FM6 

♀ FM6 
    FM6 
Infertile 

♂ FM6 
       Y 

♂ w [E{P}] 
         Y 
    VIABLE 

Mating scheme 3: Crossing scheme for generating revertant stock 

The stocks with viable males were screened by PCR, and in stock 2.39A, I confirmed by 

sequencing that the excision deleted almost the entire P element, with the exception of a 12bp 

region (footprint of the P element) generating the CG1847 control line. For further reference, 

this stock will be named CG18472.39A.  

As above, the FM6 balancer chromosome was also replaced with the FM7c,Dfd-YFP. 

F0: ♀ CG18472.39A  
   FM6   

 X    ♂  FM7c, Dfd-YFP 
           Y 

F1: ♀ CG18472.39A   
FM7c, Dfd-YFP 

 X    ♂  FM7c, Dfd-YFP 
            Y 

Mating scheme 4: Replacement of balancer chromosome in the control stock 
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2.2.4 Recombination crosses 

Recombination of CG1847exon1_3 mutant allele with FRT19ANeoR site 

The gene CG1847 is located at position 10F2 on the X chromosome. To generate mitotic clones 

mutant for CG1847, we recombined our CG1847 mutant allele with a transgenic stock carrying 

FRT recombination sites in the X chromosome. The FRT site is inserted on the X chromosome at 

19A2. For recombination, flies harbouring CG1847exon1_2 were crossed with those carrying the 

FRT19ANeoR site [w, Dm, FRT19ANeoR / w, Dm, FRT19ANeoR], a gift from Nick Brown (Table 4). 

F0: ♀ CG1847exon1_3  
       FM6 

X ♂  w,Dm,FRT19ANeoR 
              Y 

F1: ♀   CG1847exon1_3     
w,Dm,FRT19ANeoR          

X ♂  FM6  
   Y 

Set up 30 individual crosses 

F2: 
♀ CG1847exon1_3 FRT19ANeoR                  

FM6 
X ♂  FM6 

   Y 

Mating scheme 5: Recombination of the CG1847exon1_3 mutant allele and the FRT19A site.  

From the F1 generation females with both CG1847exon1_3 and the FRT19ANeoR on different X 

chromosomes were selected among the progeny. These females were selected on neomycin 

food, and were mated with first chromosome balancer males (FM6). In the last generation, 

individual recombined females were crossed back to three FM6 males. 

The identified recombinants were screened by PCR for the CG1847exon1_3 allele and for the 

presence of the neomycin the resistance gene, in order to confirm these combination event (for 

primers sequences see Appendix 5). 

Recombination of CG1847exon1_3 with mys5.4 

The mys gene is located at 7D5. For recombination, flies harbouring CG1847exon1_3 were 

crossed with those carrying mys5.4 (a βPS-GFP). In the next generation, females with both 

CG1847exon1_3 and mys5.4 on different X chromosomes were selected from the progeny. These 

females were selected based on the lack of a FM6 chromosome (females without Bar+) and 

were mated with first chromosome balancer males (FM6). In the last generation individual 

recombined females were crossed back to three FM6 males (Mating scheme 6).  
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The identified recombinants were screened for the presence of GFP at the site of muscle 

attachment. 

F0: ♀ CG1847exon1_3  
      FM6 

X  ♂  mys5.4 
  Y 

F1: ♀ CG1847exon1_3  
     mys5.4       

X  ♂  FM6 
  Y 

Set up 30 individual crosses  

F2: ♀ CG1847exon1_3mys5.4         
FM6 

X  ♂  FM6 
Y 

Mating scheme 6: Recombination of the CG1847exon1_3 mutant and mys5.4 

2.2.5 Generation of homozygous mutant clones  

Mitotic recombination was induced using the FLP/FRT system251. Virgin females of the genotype: 

CG1847exon1_3, FRT19A / FM6 were mated with Ubi-mRFPnls, hsFLP, FRT19AneoR males. Eggs were 

collected for 4 hours and left at 25°C for 48 hours, at which stage they were subjected to a heat 

shock of one and a half hours at 37°C in a water bath on 2 subsequent days. The larvae were 

allowed to develop at 25°C until the 3rd instar stage and the desired genotype CG1847exon1_3, 

FRT19A / Ubi-mRFPnls, hsFLP, FRT19AneoR was selected based on fluorescence. The larval 

imaginal wing discs were prepared at late 3rd instar. CG1847exon1_3 homozygous mutant clones 

were identified based on the absence of RFP expression. 

To assess the role of the CG1847exon1_3 mutant in the wing homozygous clones of adult flies, 

larvae from a cross between CG1847exon1_3, FRT19A / FM6 females and Ubi-mRFPnls, hsFLP, 

FRT19AneoR males were subjected to heat shock as described above and then allowed to reach 

maturity. As control, I used the progeny from the cross between w, Dm, FRT19ANeoR females and 

Ubi-mRFPnls, hsFLP, FRT19AneoR males. Larvae from control crosses were subjected to the same 

heat-shock treatment described above. 

The generation of somatic clones was investigated in wing imaginal discs dissected from 3rd 

instar larvae and the size of the clones was compared between heterozygous mutant progeny 

with somatic wing clones (females CG1847exon1_3, FRT19AneoR / Ubi-mRFPnls, hsFLP, FRT19AneoR) 

and control progeny (females w, Dm, FRT19ANeoR / Ubi-mRFPnls, hsFLP, FRT19AneoR). 

Adult wing phenotype was compared between adult progeny. 
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2.2.6 Rescue of CG1847 function  

To determine whether deletion of CG1847 was responsible for male lethality, I tested whether 

it could be rescued by the introduction of a genomic rescue-construct containing wt CG1847. To 

this end, a wt CG1847 genomic rescue construct was prepared by subcloning a genomic DNA 

fragment that contained a 2227 bp region located upstream of the start codon of the CG1847 

DNA, along with a 412 bp fragment located downstream of the start codon, into the P-element 

transformation vector pWhiteRabbit containing an attB site252. This construct was sent to Best 

Gene Inc. (USA) where it was microinjected into 200 embryos which harbour an attP40 landing 

site (attP40-y1 w67c23; P{CaryP}attP40), following a standard protocol to create transgenics253. 

The advantage of the PhiC31 integrase system is the integration of the plasmid DNA at precise 

landing sites as opposed to random integration. The PhiC31 integrase (also known as ΦC31 

integrase) encodes a serine-type recombinase that mediates the sequence-specific 

recombination between two different attachment sites, attB and attP. However, these sites 

share a small 3 bp central region, where the crossover occurs254. 

Five lines were produced and balanced over CyO. Two of the five transgenic lines survived during 

transportation. Males from these two lines were individually crossed with heterozygous females 

carrying the mutant CG1847exon1_3 allele. In the F1 generation the ability to rescue developing 

mutant hemizygous males was evaluated. 

2.2.7 Rescue of mutant lethality by expressing wt human AIP (hAIPwt) under the 

control of a ubiquitous promoter (actin)  

In order to test in vivo the degree of functional conservation between fly and human AIP (hAIP), 

I generated an UAS::hAIPwt construct by inserting the hAIP coding sequence, downstream of 

the GAL4-dependent UAS promoter into the pUASK10attB vector derived from pUAST238. This 

construct was sent to BestGene Inc. where it was then microinjected into 200 embryos (section 

2.2.6). Five lines were produced and balanced over CyO. All five transgenic lines survived during 

transportation, but only 2 lines were used in rescue experiments. 

The Gal4-UAS system was used for rescue experiments at 25°C, as the UAS-hAIPwt was 

overexpressed ubiquitously in the respective genetic mutant background. 

To rescue CG1847 mutant lethality, heterozygous females carrying both the mutant 

CG1847exon1_3 allele and a ubiquitous driver (Act-Gal4, located on the 2nd chromosome) were 

required. These flies were generated as detailed below (Mating scheme 7).  
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F0: ♀ CG1847exon1_3 
          FM6 

X ♂  Bl 
 CyO 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀ CG1847exon1_3 
FM6                 

X ♂ FM6; +  
Y      CyO 

F1b: ♀    x    ;   +  .    
FM6     Bl 

X ♂ x ; Act-Gal4 
Y          CyO 

F2: ♀ CG1847exon1_3; +  
      FM6          CyO 

X ♂ FM6; Act-Gal4 
   Y   Bl 

F3: ♀ CG1847exon1_3; Act-Gal4 
       FM6    CyO  

X ♂ FM6; Act-Gal4 
   Y CyO 

Mating scheme 7: Combination of the CG1847exon1_3 mutant and actin-Gal4 driver 

To ubiquitously express the hAIP cDNA, males from two transgenic lines were individually 

crossed with females CG1847exon1_3 / FM6; Act-Gal4 / CyO. In F1 generation, I evaluated their 

ability to rescue developing mutant males (CG1847exon1_3 / Y; UAS::hAIPwt / Act-Gal4). 

2.2.8 Rescue of mutant lethality by expressing hAIP under the control of specific 

tissues promoters  

The UAS-hAIP construct allowed us to express the hAIP not only ubiquitously during fly 

development, but also in specific fly somatic cells or tissues, under the control of tissue-specific 

GAL4 drivers. To this end, I combined our heterozygous CG1847exon1_3 mutant females with 10 

different tissue-specific promoters: fat body, haemocytes, insulin-secreting cells, muscle, 

neurons, glial cells, gut, haemolymph, malpighian tubules, and heart (all the crosses below). 

For fat body targeted rescue of lethality, UAS-hAIPwt was overexpressed under Cg-GAL4 driver 

in our genetic mutant background. For this purpose I generated heterozygous females carrying 

both the mutant CG1847exon1_3 allele and a fat body driver (Cg-GAL4) (Mating scheme 8).  

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂    X ; Bl 
  Y   CyO 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀   FM6 ;  + . 
  Y       CyO 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Bl 

F1b: ♀   X   ;  + . 
FM6  CyO 

X ♂   X ; Cg-GAL4 
  Y    Cg-GAL4 

F2:   ♀  CG1847exon1_3 ;  Bl . 
    FM6                CyO 

X   ♂  FM6 ;  Cg-GAL4 
  Y           CyO 

F3: ♀  CG1847exon1_3 ;  Cg-GAL4 
    FM6                    CyO 

X   ♂  FM6 ;  Cg-GAL4 
  Y            CyO 

Mating scheme 8: Combination of the CG1847exon1_3 mutant and fat body driver Cg-Gal4 
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For haemocyte-targeted rescue of lethality, UAS-hAIPwt was overexpressed under Crq-GAL4 

driver in our genetic mutant background. For this purpose I generated heterozygous females 

carrying both the mutant CG1847exon1_3 allele and a haemocyte driver (Crq-GAL4), which was 

introduced into the second chromosome of mutant stock (Mating scheme 9). 

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂    X ; Bl 
  Y   CyO 

In the next generation, I simultaneously performed 2 different crosses: 
F1a: ♀   FM6 ;  + . 

  Y       CyO 
X   ♂  CG1847exon1_3 ;  + . 

    FM6                Bl 

F1b: ♀   X   ;  + . 
FM6  CyO 

X ♂   X ; Crq-GAL4 
  Y    Crq-GAL4 

F2:   ♀  CG1847exon1_3 ;  Bl . 
    FM6                CyO 

X   ♂  FM6 ;  Crq-GAL4 
  Y           CyO 

F3: ♀  CG1847exon1_3 ;  Crq-GAL4 
    FM6                    CyO 

X   ♂  FM6 ;  Crq-GAL4 
  Y            CyO 

Mating scheme 9: Combination of the CG1847exon1_3 mutant and haemocytes driver Crq-Gal4 

For the insulin-secreting cell targeted rescue of lethality, UAS-hAIPwt was overexpressed under 

dilp-GAL4 driver in our genetic mutant background. For this purpose I generated heterozygous 

females carrying both the mutant CG1847exon1_3 allele and an insulin secreting cells driver (dilp-

GAL4), which was introduced into the second chromosome of mutant stock (Mating scheme 10).  

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂    X ; Bl 
  Y   CyO 

In the next generation I performed 2 different crosses at the same time: 

F1a: ♀   FM6 ;  + . 
  Y       CyO 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Bl 

F1b: ♀   X   ;  + . 
FM6  CyO 

X ♂   X ; dilp-GAL4 
  Y   dilp-GAL4 

F2:   ♀  CG1847exon1_3 ;  Bl . 
    FM6                CyO 

X   ♂  FM6 ;  dilp-GAL4 
  Y           CyO 

F3: ♀  CG1847exon1_3 ;  dilp-GAL4 
    FM6                    CyO 

X   ♂  FM6 ;  dilp-GAL4 
  Y            CyO 

Mating scheme 10: Combination of the CG1847exon1_3 mutant and insulin secreting cells driver dilp-Gal4  

For muscle cell targeted rescue of lethality, UAS-hAIPwt was overexpressed under MEF2-GAL4 

driver in our genetic mutant background. For this purpose I generated heterozygous females 

carrying both the mutant CG1847exon1_3 allele and a muscle cells driver (MEF2-GAL4), which was 

introduced into the third chromosome of mutant stock (Mating scheme 11). 
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F0: ♀  CG1847exon1_3  
      FM6 

X   ♂     X ; Dr 
  Y   TM3 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀   FM6 ;  + . 
  Y      TM3 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Dr 

F1b: ♀   X   ;  + . 
FM6   Dr 

X ♂    X ; Mef2-GAL4 
  Y     Mef2-GAL4 

F2:   ♀  CG1847exon1_3 ;  Dr . 
    FM6                TM3 

X   ♂  FM6 ;  Mef2-GAL4 
  Y             TM3 

F3: ♀  CG1847exon1_3 ;  Mef2-GAL4 
    FM6                TM3 

X   ♂  FM6 ;  Mef2-GAL4. 
  Y             TM3 

Mating scheme 11: Combination of the CG1847exon1_3 mutant and muscle cells driver Mef2-Gal4 

 

For nervous system targeted rescue of lethality, UAS-hAIPwt was overexpressed under elav-

GAL4 driver in our genetic mutant background. For this purpose I generated heterozygous 

females carrying both the mutant CG1847exon1_3 allele and a pan-neural driver (elav-GAL4), which 

was introduced into the third chromosome of mutant stock (Mating scheme 12). 

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂     X ; Dr 
  Y   TM3 

In the next generation I performed 2 different crosses at the same time: 

F1a: ♀   FM6 ;  + . 
  Y      TM3 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Dr 

F1b: ♀   X   ;  + . 
FM6   Dr 

X ♂    X ; elav-GAL4 
  Y    elav-GAL4 

F2:   ♀  CG1847exon1_3 ;  Dr . 
    FM6                TM3 

X   ♂  FM6 ;  elav-GAL4 
  Y             TM3 

F3: ♀  CG1847exon1_3 ;  elav-GAL4 
    FM6                    TM3 

X   ♂  FM6 ;  elav-GAL4. 
  Y             TM3 

Mating scheme 12: Combination of the CG1847exon1_3 mutant and nervous system driver elav-Gal4 

For glial cell targeted rescue of lethality, UAS-hAIPwt was overexpressed under repo-GAL4 driver 

in our genetic mutant background. For this purpose I generated heterozygous females carrying 

both the mutant CG1847exon1_3 allele and a glial cell driver (repo-GAL4), which was introduced 

into the third chromosome of mutant stock (Mating scheme 13). 
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F0: ♀  CG1847exon1_3  
      FM6 

X   ♂     X ; Dr 
  Y   TM3 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀   FM6 ;  + . 
  Y      TM3 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Dr 

F1b: ♀   X   ;  + . 
FM6   Dr 

X ♂    X ; repo-GAL4 
  Y     repo-GAL4 

F2:   ♀  CG1847exon1_3 ;  Dr . 
    FM6                TM3 

X   ♂  FM6 ;  repo-GAL4 
  Y             TM3 

F3: ♀  CG1847exon1_3 ; repo-GAL4 
    FM6                TM3 

X   ♂  FM6 ; repo-GAL4 
  Y             TM3 

Mating scheme 13: Combination of the CG1847exon1_3 mutant and glial cells driver repo-Gal4 

For haemolymph targeted rescue of lethality, UAS-hAIPwt was overexpressed under HE-GAL4 

driver in our genetic mutant background. Heterozygous females carrying both the mutant 

CG1847exon1_3 allele and hemocytes driver (HE-GAL4), introduced into the third chromosome of 

mutant stock, were generated (Mating scheme 14).  

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂     X ; Dr 
  Y   TM3 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀   FM6 ;  + . 
  Y      TM3 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Dr 

F1b: ♀   X   ;  + . 
FM6   Dr 

X ♂    X ; HE-GAL4 
  Y     HE-GAL4 

F2:   ♀  CG1847exon1_3 ;  Dr . 
    FM6                TM3 

X   ♂  FM6 ;  HE-GAL4 
  Y             TM3 

F3: ♀  CG1847exon1_3 ; HE-GAL4 
    FM6                TM3 

X   ♂  FM6 ; HE-GAL4 
  Y             TM3 

Mating scheme 14: Combination of the CG1847exon1_3 mutant and haemolymph driver HE-Gal4 

For gut targeted rescue of lethality, UAS-hAIPwt was overexpressed under drm-GAL4 driver in 

our genetic mutant background. Heterozygous females carrying both the mutant CG1847exon1_3 

allele the gut driver (drm-GAL4) were generated (Mating scheme 15).  

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂     X ; Dr 
  Y   TM3 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀   FM6 ;  + . 
  Y      TM3 

X   ♂  CG1847exon1_3 ;  + . 
    FM6                Dr 

F1b: ♀   X   ;  + . 
FM6   Dr 

X ♂    X ; drm-GAL4 
  Y     drm-GAL4 

F2:   ♀  CG1847exon1_3 ;  Dr . 
    FM6                TM3 

X   ♂  FM6 ;  drm-GAL4 
  Y             TM3 

F3: ♀  CG1847exon1_3 ; drm-GAL4 
    FM6                TM3 

X   ♂  FM6 ; drm-GAL4 
  Y             TM3 

Mating scheme 15: Combination of the CG1847exon1_3 mutant and gut driver drm-Gal4 
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For Malpighian tubule targeted rescue of lethality, UAS-hAIPwt was overexpressed under c42-

GAL4 driver in our genetic mutant background. For this purpose I generated heterozygous 

females carrying both the mutant CG1847exon1_3 allele and a Malpighian tubule driver (c42-GAL4), 

which was introduced into the third chromosome of mutant stock (Mating scheme 16). 

F0: ♀  
CG1847exon1_3  
      FM6 

X   ♂  
   X ; Dr 
  Y   TM3 

In the next generation I performed 2 different crosses at the same time: 

F1a: ♀  
 CG1847exon1_3  
      FM6 

X   ♂  
FM6 ;  + . 
  Y        Dr 

F1b: ♀ 
  X   ;  + . 
FM6  TM3 

X ♂ 
   X ; c42-GAL4 
  Y     c42-GAL4 

F2:   ♀  
CG1847exon1_3 ;   + . 
    FM6                Dr 

X   ♂  
FM6 ;  c42-GAL4 
  Y            TM3 

F3: ♀  
CG1847exon1_3 ;   Dr  . 
    FM6               TM3 

X   ♂  
FM6 ; c42-GAL4 
  Y             TM3 

F4: ♀  
CG1847exon1_3 ; c42-GAL4. 
    FM6                    TM3 

X   ♂  
FM6 ; c42-GAL4 
  Y             TM3 

Mating scheme 16: Combination of the CG1847exon1_3 mutant and malpighian tubules driver c42-Gal4 

For heart targeted rescue of lethality, UAS-hAIPwt was overexpressed under tinC-GAL4 driver in 

our genetic mutant background. For this purpose I generated heterozygous females carrying 

both the mutant CG1847exon1_3 allele and a heart driver (tinC-GAL4), which was introduced into 

the third chromosome of mutant stock (Mating scheme 17) 

F0: ♀  CG1847exon1_3  
      FM6 

X   ♂    X ; Bl 
  Y   CyO 

In the next generation, I simultaneously performed 2 different crosses: 

F1a: ♀  CG1847exon1_3  
      FM6 

X   ♂  FM6 ;  + . 
  Y       CyO 

F1b: ♀   X   ;  + . 
FM6  Bl 

X ♂    X ; tinC-GAL4 
  Y     tinC-GAL4 

F2:   ♀  CG1847exon1_3;   +  
      FM6       CyO 

X   ♂  FM6 ;  tinC-GAL4 
  Y           Bl 

F3: ♀  CG1847exon1_3 ;  tinC-GAL4 
    FM6                    CyO 

X   ♂  FM6 ;  tinC-GAL4 
  Y            CyO 

Mating scheme 17: Combination of the CG1847exon1_3 mutant and fat heart driver tinC-Gal4 

Virgin females from each of these stocks were then mated with transgenic males carrying the 

hAIPwt and in the next generation their ability to rescue the hemizygous mutant males was 

evaluated. 
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2.2.9 Rescue of mutant lethality by expressing truncated or missense hAIP variants 

under the control of a ubiquitous promoter (actin) 

For rescuing the CG1847exon1_3 mutant with different hAIP variants I generated five UAS::hAIP 

constructs by inserting either a truncated version of hAIP or four different missense variants that 

were identified in FIPA families (sections 2.4.5 and 2.4.6). These constructs were sent to 

BestGene Inc. where they were microinjected into embryos harbouring attP40 landing sites, 

according to the standard protocol. Five lines were produced for each missense variant, and 

then each line was balanced over CyO. Not all the transgenic lines survived during 

transportation. However, for each of the rescue experiment I used 2 of the generated stocks 

(Table 5). 

I tested whether these UAS::hAIP transgenes (truncated or missense variants) were able to 

rescue CG1847exon1_3 mutants by expressing them with a ubiquitous driver (actin) during fly 

development. 

2.2.10 Larvae collection 

Egg laying plates 

To obtain developmentally staged egg/larvae collections precisely, I prepared embryo collection 

cages covering a 60 mm agar plate containing medium comprised of apple juice hardened with 

agar. Egg laying plates were produced according to the following protocol: For 1L of medium I 

used 750 ml of water, 21.5 gr agar, 250 ml of apple juice concentrate, 25 gr of sucrose, and 5 ml 

9:1 (propionic acid : phosphoric acid). The water and agar mix was autoclaved. Separately was 

prepared the second mix from sugar, apple juice and 5 ml of 9:1 propionic acid: phosphoric acid. 

When the water-agar mix cool down till around 60°C it was added the second mix, and carefully 

pour into 60 mm plates, without generating bubbles. 

Stocks  

In stocks CG1847exon1_3 / FM6 and CG18472.39A / FM6 stocks obtained during the P-element 

excision screen, the FM6 balancer chromosome was substituted with a FM7c, Dfd::YFP 

chromosome. As a result, I was able to differentiate mutant and control males (respectively, 

CG1847exon1_3 / Y and CG18472.39A / Y) based on lack of fluorescence. 

Staging to determine the lethality stage  

Stocks were grown at low density at 25°C. 50 mated females were allowed to lay eggs for 2 hours 

in food bottles, in order to minimize the variations associated with parental rearing conditions. 
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In the F1 generation, an additional 50 females from the mutant stock (CG1847exon1_3 / 

FM7::DfdYFP) and 50 females from the revertant stock (CG18472.39A / FM7::DfdYFP) were 

collected. They were allowed to mate with FM7::DfdYFP/Y males for 3 days. These parental flies 

were 4-10 days post-emergence before the start of the egg collections. Adults were set for 4 h 

of egg laying on apple juice plates. Mutant (CG1847exon1_3 / FM7::DfdYFP) and the revertant 

(CG18472.39A / FM7::DfdYFP) larvae were reared at 25°C. Embryos were allowed to age until the 

desired developmental stage as described in Figure 13. 

 

Figure 13: Design for larval staging. For determining the lethality stage for CG1847exon1_3 mutant males, 

larvae were selected for the presence or absence of the fluorescent marker 

Staging to collect larvae for RNA extraction  

For RNA extraction, mutant and control eggs were collected as described above and allowed to 

age for an additional 48 h, resulting in larvae from 46 to 50 h in age. The wandering non-

fluorescent larvae (CG1847exon1_3 / Y or CG18472.39A / Y) were collected using the fluorescent 

microscope. RNA was extracted using the technique described in section 2.3.2 B. The quality of 

the RNA was assessed using the 2100 Bioanalyzer (Barts Genome Centre). 
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2.2.11 Collection of pupae 

Food bottles 

To obtain large pupae collections, flies were raised in bottles containing 15 ml of standard 

culture medium (Appendix 3), in an incubator with constant temperature of 25°C. 

Stocks  

The homozygous stock UAS-Dcr2; + ; UAS-CG1847-T2 was used both as control and to 

knockdown (KD) CG1847 expression in wing tissues, using the nubbin-GAL4 driver (UAS-Dcr-2; 

UAS-CG1847-T2>nub-Gal4). In F0 generation, I collected 100 virgin females from the control 

stock (UAS-Dcr2; UAS-CG1847-T2). Fifty virgins were mated with UAS-Dcr2 / Y; UAS-CG1847-T2 

males for control stock, while the other 50 females were crossed with nub-Gal4 males for KD 

purposes. They were allowed to mate for 3 days at 25°C. These parental flies were 4-10 days old 

when I started the egg collections. Adults were set for 4 h egg collection which were further 

reared at 25°C until they reached the pupal stage.  

Staging for pupae dissection 

For staging purposes, pupae were picked with a wet brush at the white pupa stage. White pupae 

are very easy to recognize and consistency was crucial to pick white pupae at the same stage. 

They were transferred to an empty Petri dish containing double-sided tape. The genotype and 

the time of collection were carefully marked. Pupae were dissected at the desired stage: 24 h 

and 28 h after puparium formation (APF). 

2.2.12 Dissection of Drosophila tissues 

Imaginal wing disc dissection 

To obtain imaginal wing discs for subsequent immunostaining studies, the head section of the 

3rd instar larvae was inverted. After removing the gut and fat, imaginal discs were fixed in 4% 

PFA in PBS at room temperature for 30 minutes, followed by the steps detailed in Appendix 6. 

Pupal wing dissection 

24 or 28 h AFP pupae were dissected in double-sided tape at the bottom of a Petri dish. Using a 

pair of forceps, the operculum was removed and a small incision was made in the head of the 

pupa to release the pressure and prevent damage to the wings by excess fat. I used a syringe 

needle to gently make an incision in the cuticle along the back of the pupa and separate it in two 

halves, which were stuck on their side on the double-sided tape. Dissected pupae were 
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immediately placed in 0.5 ml 1X PBS in the wells of a 96 well plate, which was the kept at 4°C 

until all pupae were dissected. Pupae were fixed in 4% formaldehyde in PBT at 4°C overnight. 

After fixing, pupal wings were dissected. Pupae were transferred one by one to a watchmaker’s 

glass dish with PBS. The wing epithelium is visible inside a translucent cuticle sac. While the pupa 

was held in position with one of the forceps, the cuticle was removed, starting near the wing 

hinge region. Wings were removed, with some excess hinge tissue and placed into 60 Well HLA 

Terasaki Microplates. For complete immunostaining protocol, see Appendix 6. 

Dissection of adult wings 

For adult wing imaging, flies were collected in 70% ethanol and kept at 4°C for at least 24h. For 

wing dissection, flies were placed in isopropanol and the wings were removed with a pair of 

Dumostar #5 forceps. For mounting, see section 2.2.15. 

Dissection of adult fly heads 

Total RNA or protein were extracted from adult fly heads of flies stored at -80°C before use. To 

separate the fly heads (around 25-30 heads), flies were kept on dry ice, vortexed vigorously, and 

placed on a piece of glace kept on top of dry-ice. Using a pair of forceps, heads were removed 

and placed in cooled 1.5 ml Eppendorf tubes, which were stored at -80°C prior to RNA/protein 

extraction. 

2.2.13 Immunostaining  

Dissected fly tissues were fixed in 4% PFA solution (4 % (w/v) paraformaldehyde in PBS for 20 

min. Three washes in PBT 0.3%, each for 5 min, were perform. In the next step the tissues were 

permeabilised in PBT 0.3% for 1 h at RT on the rotor, blocked with PBT 0.3% +3%BSA 1h, and 

incubated overnight with primary antibodies at 4°C on the rotor. On the second day, the primary 

antibodies were removed and tissues were washed 3 times in 0.3% PBT. The samples were 

incubated with fluorescent secondary antibodies diluted in PBT 0.3% for 1h, washed again 3 

times, each wash for 20 min in 0.3% PBT. In the final step the tissues were counterstained with 

4',6-diamidino-2-phenylindole (DAPI) and mounted for confocal microscopy analysis. For 

detailed protocols for immunostaining see Appendix 6. 

2.2.14 Antibodies 

The complete list of the antibodies used during the course of this study, the dilutions, the use 

and the provider can be found in Appendix 7. 
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2.2.15 Mounting 

Imaginal wing discs or pupal wings were mounted in 24 µl Vectashield (Vector Laboratories) 

using 22X22mm cover slips. Adult Drosophila wings were mounted on the slide with a drop of 

isopropanol. After waiting a few seconds for the isopropanol to dry, Euparal mounting medium 

(DS31 - Anglian Lepidopterist Supplies (ALS)) was added in small drops between the wings. A 22 

X 40 mm coverslip was added and the slides were dried at 65C for 4 hours. 

2.2.16 Image Acquisition and Processing 

Confocal images of imaginal wing discs or pupal wings were taken using an LSM 510 laser 

scanning microscope (Zeiss; release version 5.0 SP1.1. using the License Basic Software ZEN 2008 

version 500267 configuration 4.02.00). Stacks of confocal images were collected at different 

focal plane spacing, depending on experimental needs. Images were then processed using Image 

J freeware255 (http://rsbweb.nih.gov/ij/). Images were readjusted for each colour independently 

but always on the whole picture.  

Adult wing imaging was performed with Panoramic 250 High Throughput Scanner (Barts Cancer 

Institute, QMUL). 

2.3 General molecular biology techniques 

2.3.1 Oligonucleotide design 

For primer design, the publicly available software Primer3 (http://bioinfo.ut.ee/primer3-

0.4.0/primer3/) was used. A list of primers used, their sequence, and their applications can be 

found in Appendix 6. Genomic sequences were retrieved from the University of California (UCSC) 

Genome Browser http://genome-euro.ucsc.edu/cgi-

bin/hgGateway?redirect=auto&source=genome.ucsc.edu, version February 2009 (GRCh37). 

Primers were ordered from Sigma-Aldrich (http://www.sigmaaldrich.com/united-

kingdom.html) and they were delivered as a lyophilised pellet. To generate a 100 μM stock 

solution, the primers were re-suspended in distilled H2O and then stored at -20˚C. Further 

dilution with distilled water was performed to obtain a 10 μM working solution. 

2.3.2 Deoxyribonucleic acid extraction 

Adult fly DNA isolation 

For extracting Drosophila melanogaster DNA, I used the following buffers: 

http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://bioinfo.ut.ee/primer3-0.4.0/primer3/
http://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=auto&source=genome.ucsc.edu
http://genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=auto&source=genome.ucsc.edu
http://www.sigmaaldrich.com/united-kingdom.html
http://www.sigmaaldrich.com/united-kingdom.html
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Buffer A (for 10 samples): 100 µl of 1 M Tris-HCl (pH7.5), 200 µl of 0.5 M EDTA (pH8), 20 µl of 5 

M NaCl, 50 µl of 10% SDS, 630 µl of ddH2O. 

Buffer B (for 10 samples) was prepared from 1 ml of 5 M KAc, and 2.5 ml of 6 M LiCl (no water). 

One adult fly was placed in a 1.5 ml reaction tube, which was then frozen at -20 °C for ten 

minutes. Then, frozen flies were physically disrupted in 200 µl of buffer A with a plastic pestle 

and incubated at 65°C for 30 minutes. 100 µl of buffer B was added and mixed by inverting the 

tube, this was then incubated for ten minutes at room temperature and centrifuged at 14000 

rpm for 15 minutes at room temperature. In the next step, 250 µl of the supernatant was 

transferred into a new 1.5 ml reaction tube and 200 µl of ice-cold isopropanol was added. The 

solution was inverted for mixing and then centrifuged again at 14000 rpm for 15 minutes. The 

genomic DNA pellet was re-suspended in 200 µl ice-cold 75% ethanol, air dried and dissolved in 

30 µl ddH2O. The samples were stored at -20°C until further use. 

RNA isolation from adult flies 

mRNA from adult flies was extracted from 15 fly heads. Vials containing previously collected flies 

that were stored at -80°C were placed into liquid nitrogen and left to cool. The samples were 

then vortexed in order to isolate the heads (section 2.2.12). The heads were placed in new 1.5 

ml Eppendorf tubes and the RNA extraction was performed using 500 µl of TRI reagent. Tissues 

were homogenised with a pestle, followed by brief vortexing and incubation at room 

temperature for 10 minutes. The tubes were then centrifuged at 4˚C at 15000 x g for 15 minutes; 

the resulting aqueous phase was transferred to a new 1.5 ml Eppendorf. 250 µl of isopropanol 

was added and this mixture was vortexed to ensure mixing had occurred. This was then 

incubated at room temperature for a further 10 minutes. The mix was centrifuged at 12000 x g 

for 8 minutes at 4˚C. The resulting supernatant was discarded. 500 µl of 75% ethanol (prepared 

with nuclease free water) was added and a new centrifugation step was performed at 7500 x g 

for 6 min at 4˚C. The ethanol was removed by air drying the RNA pellet. RNA was eluted in 30 µl 

of nuclease free water and it was incubated at -20˚C for the same day analysis. The samples 

were stored at -80˚C. 

RNA isolation from Drosophila melanogaster larvae 

mRNA from Drosophila larvae was extracted using the RNeasy Micro kit from Qiagen, according 

to manufacturer’s specifications. The collected larvae (section 2.2.10) were homogenized in 350 

μl Buffer RLT using a pestle. The lysate was centrifuged 3 min at 12000 x g. The supernatant was 

carefully transferred to a new Eppendorf. In the next step, 1 volume of 70% ethanol was added 

to the lysate, and mixed well. The sample was transferred to an RNeasy MinElute spin column 
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in a 2 ml collection tube, which was centrifuged for 15 s at ≥8000 x g. The flow-through was 

discarded and 350 μl Buffer RW1 was added to the RNeasy MinElute spin column. A new 

centrifugation step took place for 15 s at ≥8000 x g. The flow-through was again discarded and 

a 10 μl DNase I stock solution mixed with 70 μl Buffer RDD was added to the column. The sample 

was incubated at room temperature for 15 min. Additional 350 μl Buffer RW1 were added to 

the RNeasy MinElute spin column and centrifuged for 15 s at ≥8000 x g. The RNeasy MinElute 

spin column was placed in a new 2 ml collection tube. The RNA sample was washed with 500 μl 

Buffer RPE followed by centrifugation for 15 s at ≥8000 x g. The flow-through was discarded and 

added 500 μl of 80% ethanol. The next centrifugation step was for 2 min at ≥8000 x g. The RNeasy 

MinElute spin column was placed in a new 2 ml collection tube and centrifuged at full speed for 

5 min to dry the membrane. RNA was eluted by adding 14 μl RNase-free water. The last 

centrifugation step was for 1 min at full speed to elute and recover the RNA. 

2.3.3 Nucleic acids quantification 

DNA and RNA sample purity and concentration was assessed using a ThermoScientific Nanodrop 

1000 Spectrophotometer. Purity was measured based on the ratio of OD260:OD280. Readings 

of >1.8 for DNA and >2.0 for RNA indicated acceptable levels of purity. 

2.3.4 First strand cDNA synthesis 

Complementary DNA (cDNA) was produced from RNA using a M-MLV Reverse Transcriptase Kit 

(Invitrogen). Before performing the reverse transcription, RNA samples were diluted in RNA free 

water and standardized to the same concentration (500ng RNA in 16.95 μl of H2O). In the next 

step the cDNA dilutions were incubated in the thermocycler (G-Storm GT-12061) for 10 min at 

65oC and added to each individual reaction. For each reaction the master mix consisted of 0.5 μl 

M-MLV (100U), 5 μl M-MLV RT 5x buffer M531A, 1.25 μl dNTPs (20mM), 0.25 μl Random 

Hexamers (250 ng/µl), 0.05 μl RnaseOUT 40 U/μl, 1μl DTT 100 mM, and 1 μg RNA. A volume of 

8.05 µl of the mix was added to each RNA sample (to make a final volume of 25 µl). The 

incubation was performed in the thermocycler under the following conditions: 10 min at 26oC, 

60 min at 37oC and 10 min at 92oC. 

The cDNA was then frozen at -20˚C if not used immediately. 

RT-PCR was performed according to the standard PCR protocol using the cDNA as the template 

and primers that spanned intron/exon boundaries to act as a control against contamination with 

genomic DNA. The integrity of the cDNA was usually verified by PCR of the housekeeping gene 
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Ribosomal protein L32 (RpL32). For PCR conditions refer to section 2.3.5. PCR products were 

analysed on 2% agarose gels. 

2.3.5 Polymerase Chain Reaction (PCR) 

PCRs were performed at optimized conditions, according to standard procedures. 

The basic protocol was modified depending on the DNA/RNA sample and the primer annealing 

temperatures. The annealing temperature was set to the calculated temperatures seen in 

Supporting Table 2. Temperature gradients were used to identify the optimal annealing 

temperature for the various primer pairs. 

To test the efficiency of RNAi-mediated gene silencing, the specific mRNA levels were measured 

via semi-quantitative RT-PCR (for the primer sequences and annealing temperatures are 

described in Appendix 6) using the following protocol: 

Component 12.5 µl Reaction Final concentration 

5X Green GoTaq reaction buffer 2.5 µl 1X 

MgCl2 0.75 µl 1 mM 

10 mM dNTPs 0.25 µl 0.2 mM 

10 µM Forward Primer 0.5 µl 5 µM 

10 µM Reverse Primer 0.5 µl 5 µM 

Template DNA variable <1.000 ng 

Go-Taq DNA Polymerase 0.06 µl 5 u/µl 

Nuclease-Free Water to 12.5 µl  

Table 6: The reaction mix used for semi-quantitative RT-PCR 

Cycling was performed in 0.2 ml thin wall PCR tubes using a G-Storm GT-12061 thermocycler. 

Cycling procedures were typically:  

 95˚C 5 min 

 94˚C 30 s 

 Primer specific ˚C 30sec 31 cycles  

 72˚C 30 sec 

 72˚C 10 min 

 Samples were then cooled to 4˚C 
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PCR techniques were used to identify Drosophila mutants generated during the imprecise 

excision screen. The GoTaq polymerase (Promega) was used to identify large genomic deletions, 

according to the supplier’s recommendations. 

Component 12.5 µl Reaction Final concentration 

5X Green GoTaq reaction buffer 2.5 µl 1X 

MgCl2 0.75 µl 1 mM 

10 mM dNTPs 0.25 µl 0.2 mM 

10 µM Forward Primer 0.5 µl 5 µM 

10 µM Reverse Primer 0.5 µl 5 µM 

Template DNA variable <1.000 ng 

Go-Taq DNA Polymerase 0.06 µl 5 u/µl 

Nuclease-Free Water to 12.5 µl  

Table 7: The reaction mix used to identify large genomic deletions 

Cycling was performed in thin wall 0.2 ml PCR tubes using a G-Storm GT-12061 thermocycler. 

Cycling procedures were typically:  

 95˚C 5 min 

 Touch-down 71-62˚C 10 cycles 

 94˚C 45 sec 

 60.9˚C 45 sec 28 cycles  

 72˚C 2 min and 30 sec 

 72˚C 10 min 

 Samples were then cooled to 4˚C 

The small genomic deletions from the screen were identified using Taq polymerase (NEB) 

according to the supplier’s recommendations.  

Component 25 µl Reaction Final concentration 

5XQ5 reaction buffer 5 µl 1X 

10mM dNTPs 0.5 µl 100 µM 

10µM Forward Primer 1.25 µl 0.5 µM 

10µM Reverse Primer 1.25 µl 0.5 µM 

Template DNA variable <1.000 ng 

Q5 DNA Polymerase 0.25 µl 2,000 u/ml 

Nuclease-Free Water to 25 µl  

Table 8: The reaction mix used to identify small genomic deletions 
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Cycling was performed in 0.2 ml thin wall PCR tubes using a G-Storm GT-12061 thermocycler. 

Cycling procedures were typically:  

 94˚C 5 min 

 94˚C 30 sec 

 54.2˚C 30 sec 30 cycles  

 72˚C 45 sec 

 72˚C 10 min 

 Samples were then cooled to 4˚C 

2.3.6 Agarose gel electrophoresis of DNA 

PCR reaction products were loaded on agarose gels to verify their size. The bands were 

separated by electrophoresis for 60 minutes at 120 V on 2% agarose gels. The 2% agarose gels 

were prepared by mixing 2.4g of agarose (Sigma-Aldrich, UK) with 120 ml of 1x TAE buffer 

(Tris/Acetat/ethylenediaminetetraacetic acid (EDTA)) (National Diagnostics, UK). Gels were 

stained with 12 μl of 1000X Red Nucleic dye (Life Technologies). A DNA marker (GeneRulerTM 

DNA Ladder Mix, 0.5 mg DNA/ml, Fermentas, UK) was run alongside the samples to determine 

PCR product sizes. 6x loading dye was added to DNA samples prior to gel loading. 

2.3.7 DNA gel extraction 

When necessary, DNA bands were visualised on UV lamp and excised from the agarose gel using 

a sterile scalpel. The extraction and purification of DNA from the agarose gel was performed 

using a QIAquick Gel Extraction Kit (Qiagen).The extracted DNA was finally eluted with 30 μl 

ddH20. Following this, the PCR buffer components were removed and the purified fragments 

were then used for sequencing or ligation reactions. 

2.3.8 Site-directed mutagenesis 

In vitro site-directed mutagenesis allows the introduction of site-specific mutations in double 

stranded plasmids. Mutagenic primers were designed using the Stratagene’s QuickChange 

primer design program at www.stratagene.com/qcprimerdesign. Two oligonucleotides flanking 

the nucleotide to be changed were designed. The primers utilised are listed in the Appendix 5. 

The QuickChange XL Site-Directed Mutagenesis kit is performed in three steps: synthesis of the 

mutant strand, digestion of the parental strand with DpnI and transformation of competent cells 

with plasmid DNA.  
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Mutant strand synthesis: a PCR was performed for denaturation of the DNA template, annealing 

of the mutagenic primers containing the desired mutation. The primer extension was performed 

with PfuUltra HF DNA polymerase (2.5 U/μl). Sample reactions were prepared as indicated: 

Component 50 µl Reaction 

10x reaction buffer 5 µl 

10mM dNTPs 1 µl 

125ng sense primer 1.25 µl 

125ng reverse primer 1.25 µl 

10ng/µl Template dsDNA 1 µl 

PfuUltra DNA Polymerase 1 µl 

Nuclease-Free Water 38.20 µl 

Table 9: The reaction mix for direct site mutagenesis 

The thermal cycling conditions were the following: 

 95°C 1 min 

 95°C 50 sec 18 cycles 

 60°C 50 sec 

 68°C 5 min (1 min/kb of plasmid length) 

 68°C 7 min 

Following PCR samples were placed on ice for 2 min followed by digestion with DpnI. 

DpnI digestion of template: methylated parental and hemimethylated DNA were digested with 

DpnI. To each PCR reaction, 1 μl of DpnI restriction enzyme (10 U/μl) was added and the reaction 

was gently mixed several times by pipetting up and down. The reaction was centrifuged for 1 

min and then incubated at 37°C for 1 h. 

Transformation: mutated plasmids were transformed into XL10-Gold Ultracompetent cells for 

nick repair following the protocol recommended by the producer. 

2.3.9 Automated DNA sequencing 

Sequencing was carried out at the Genome Centre (Barts and The London, Queen Mary, 

University of London). The Genome Centre uses BigDye 3.1 chemistry with visualization on the 

ABI 3730 capillary sequencer. This is an automated capillary gel electrophoresis that generates 

read lengths of up to 850 base pairs with a quality (Phred) score of over 20. Each PCR product 

was sequenced using both forward and reverse primers. Sequence chromatograms were 
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visualised and analysed using the BioEdit Sequence Alignment Editor software 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html) (Ibis Biosciences, Carlsbad, CA).  

2.3.10 Protein extraction  

For western blot analysis, 25 fly heads were collected as described in section 2.2.12. Proteins 

were extracted in 35 µl of protein extraction buffer. For 1000 µl were used 857 µl protein 

extraction buffer, 1 µl DTT 1M, and 142 µl of protease inhibitor 7X. Fly heads were homogenised 

with a pestle. Following this, the tissues were subjected centrifugation at 4˚C at 15000 x g for 15 

minutes; the resulting aqueous phase was transferred to a new 1.5 ml Eppendorf prior to 

quantification. 

2.3.11 Protein quantification according to the Bradford method 

To prepare concentration standards, 12 µl of 10 mg/ml BSA (Bovine Serum Albumin Promega 

R3961) and 18 µl of ddH2O were mixed in a PCR tube to obtain the Standard 6 (4000 µg/ml). In 

the next step, 15 µl of Standard 5 were mixed with 15 µl of ddH2O to obtain the Standard 2 

solution (2000 µg/ml). Each dilution step resulted in a further 2-fold change in the concentration 

from the previous one until I obtain the Standard 1 solution (125 µg/ml). For the standard 0 was 

used ddH2O only. For triplicate readings, 4 µl of each standard or sample were mixed with 196 

µl of 1X Bradford reagent and added to three contiguous wells of a 96-well plate. The absorbance 

was read with the Wallac VICTOR plate reader at 595nm. The results were exported to an Excel 

file for further analysis.  

2.3.12 Western Blotting 

Buffers: 

6X SDS loading buffer: 0.3M Tris-Cl pH 6.8, 0.6M DTT, 12% SDS, 0.6% Bromophenol blue, 60% 

glycerol and ddH2O till 50 ml. 

Running buffer: NuPAGE MES SDS Running Buffer (20X), Invitrogen (Product code: NP0002). 

Adjust with 1X running buffer to a final volume of 1 l. 

Transfer buffer: 25mM Tris base, 190 mM Glycine, 20% (v/v) Methanol. Adjust with ddH2O to a 

final volume of 1 l. 

Phosphate buffered saline (PBS): Oxoid Products (Code BR0014). Dissolve 10 tablets in 1 l ddH2O 

and autoclave.  

Washing buffer (PBS-T): 0.1% Tween 20. Adjust with 1X sterile PBS to a volume of 1 l. 

http://www.mbio.ncsu.edu/bioedit/bioedit.html
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Blocking buffer: 5% (w/v) Semi-skimmed milk in PBT (2.5g of non-fat milk powder in 50 ml of 1 

X 0.1% PBS-Tween). 

Protocol: 

After quantification, protein samples were normalised to the same concentration, 20 µg/ml 

protein, and the dilutions were kept on ice in 0.6 ml tubes. Equal volumes of 6X SDS loading 

buffer were added to the samples. Samples were boiled for 5 min at 95°C on a thermal cycler to 

denature proteins’ quaternary and tertiary structure, allowing them to run through the gel. 

The protein separation was carried out using pre-cast 12 wells NuPAGE Novex 4-12% Tris-

Acetate Protein Gels (Life Technologies) at 120 V, for 1.5 hours in 1x Running Buffer or until the 

samples reached the bottom of the gel chamber. The separated proteins were transferred into 

a Protran BA85 nitrocellulose membrane (GE Healthcare) by a “semi-dry blotter" for 30 min at 

15 V/500 mA. The membranes were then blocked for 1.5 h at room temperature in 5% milk in 

PBS-T. The membranes were incubated with the primary antibodies (Appendix 7) diluted in 

blocking buffer, overnight at 4°C. On the second day, after removal of primary antibodies, the 

membranes were washed with PBT 3X for 10 minutes at RT and incubated with secondary 

antibodies, diluted in blocking buffer, for 1.5 h at room temperature. Odyssey Infrared Imaging 

System (LI-COR) was used for image acquisition. 

2.4 Cloning 

2.4.1 Plasmids 

Table 10 lists the plasmids used in the course of this study, and their purpose. 

Plasmids used  Purpose Reference 

pGEM-T easy  vector used for sub-cloning Promega 

pW@RpA Transformation vector Kind gift from Nick Brown256 

pW@RpA CG1847 Transformation vector  

pUAS-k10_attP Transformation vector Kind gift from Nick Brown 

pcDNA3-Myc-AIP   

pUAS-k10_attP_AIPwt Transformation vector  

pUAS-k10_attP_Myc-AIPtrunc Transformation vector  

pUAS-k10_attP_AIP-R16H Transformation vector  

pUAS-k10_attP_AIP-C238Y Transformation vector  

pUAS-k10_attP_AIP-A299V Transformation vector  

pUAS-k10_attP_AIPR-304Q Transformation vector  

Table 10: List of plasmids used in this study. Lines in the white boxes were obtained from specific supplier 

or were gifts from other labs. The lines in the light grey boxes were existing lab stocks generated during 

previous studies. The lines in the dark grey boxes are genomic rescue constructs cloned during this study 

for generating the transgenic fly stocks. 
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2.4.2 Subcloning 

PCR amplification  

PCR was used to generate the gene specific constructs, which were used to generate transgenic 

flies. Q5 (NEB) High-Fidelity DNA Polymerase is a high-fidelity, thermostable DNA polymerase 

with 3´→ 5´ exonuclease activity, fused to a processivity-enhancing Sso7d domain to support 

robust DNA amplification. This enzyme was used to ensure high fidelity DNA amplification. The 

reaction mix was set up as described in the manufacturer’s protocol as follows: 

Component 25 µl Reaction Final concentration 

5X Q5 reaction buffer 5 µl 1X 

10mM dNTPs 0.5 µl 100 µM 

10µM Forward Primer 1.25 µl 0.5 µM 

10µM Reverse Primer 1.25 µl 0.5 µM 

Template DNA variable <1.000 ng 

Q5 DNA Polymerase 0.25 µl 2,000 u/ml 

Nuclease-Free Water to 25 µl  

Table 11: The reaction mix used to generate gene specific constructs 

Cycling was performed in 0.2 ml thin wall PCR tubes using a G-Storm GT-12061 thermocycler. 

Cycling procedures were typically:  

92°C 30 sec 

92°C 30 sec 

50-72°C 30 sec 25-30 cycles  

72°C 30 sec/kb 

72°C 2 min 

Hold 4°C 

Samples were then cooled to 4˚C 

Each PCR reaction consisted of 35 cycles and the annealing temperatures were set using 

temperature gradients to identify the optimal annealing temperature for each primer pair. 

After the PCR reaction, the products were loaded on an agarose gel to verify the size of the 

products. Afterwards the PCR buffer components were removed from the fragments according 

to the protocol described in section 2.3.7). The purified fragments were then used for ligation 

reactions. 
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Addition of 3' A overhangs to PCR products 

Because the PCR amplification was performed using a proofreading DNA polymerase, such as 

Q5, the resulted products have blunt ends. As a consequence, to make the DNA amplicons 

purified and extracted from the gel suitable for TA cloning onto pGEM-T easy backbone (below) 

the Taq DNA polymerase (NEB) was used in the next step to add an adenine residue to the 3´-

end of both strands of the amplicons. 

For the next step is critical to remove all the Proofreading DNA Polymerase by purifying the PCR 

product carefully (with QIAquick Gel Extraction Kit from Qiagen –section 2.3.7). It might be 

possible that the proofreading activity of any DNA Polymerase remains will degrade the freshly 

added A’ overhangs. 

The typical Taq DNA polymerase reaction mix for a typical 25 μl reaction: 

 Final Concentration Volume(μl) 

Purified PCR product 0.15 to 1.5 pmol Variable* 

dATP (10 mM) 0.2 mM 0.5 

10X Taq Buffer with Mg 1x (1.5 mM MgCl2) 2.5 

Taq DNA Polymerase (5 U/μl) 1U 0.1 

ddH2O - up to 25 μl 

Table 12: The typical Taq DNA polymerase reaction mix for adding A' overhangs: 

The specific amount of purified PCR products was calculated based of the size of the amplicons. 

The recommended amount is 10–100 ng PCR product for each 100 bp length of the PCR product.  

The mix was incubated at 72 °C for 1 hour, immediately followed by the TA cloning protocol, as 

for increased efficiency, it is recommended to use fresh PCR products. 

pGEM-T Easy Vector 

Both the human gene (hAIP) and fly orthologue gene (CG1847) were amplified by PCR 

(previously described in section 2.4.2 in order to be subcloned into the pGEM-T easy vector. The 

pGEM-T easy vector system (Promega, UK) (Figure 14) is a useful system that was developed for 

the cloning of PCR products. The vector is linearized and has T overhangs at both ends (a 3’ 

terminal thymidine). These T overhangs at the ends of the insertion site improve the efficiency 

of the PCR product ligation into the plasmids, as well as prevent vector re-circularisation. 
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Figure 14: Schematic structure of the pGEM-T Easy Vector. The vector contains a multiple cloning site 

(MCS) flanked by T7 and SP6 RNA polymerase promoters. The ampicillin (Ampr) resistance gene is useful 

for selection of colonies positive for the presence of the desired insert (source Promega protocols) 

DNA restriction digest 

The PCR products inserted into the pGEM-T vector were retrieved with either NEB or Promega 

restriction endonucleases, according to the producer’s recommended protocol. The destination 

plasmids were also digested with the same enzymes to allow for the sub-cloning of the insert. 

The restriction digestion reactions were performed at 37°C in a water bath. 

For directional cloning of the insert into the plasmid, inserts were cloned using two different 

restriction sites at the 5’ and 3’ ends, where possible. If this was not possible, only one restriction 

site was used and plasmids obtained from different colonies were screened for the right 

orientation of the insert. Where double digests were performed, digests were performed in a 

single reaction using the appropriate buffer. To confirm the presence of the insert and vector 

backbone I used restriction digestions of mini-preps.  

Dephosphorylation of DNA fragments: 

In order to avoid self-ligation of the plasmid backbones in cloning strategies, I used Antarctic 

Phosphatase (NEB), which removes the 5´ phosphates from DNA and RNA required by ligases.  

1/10 volume of 10X Antarctic Phosphatase Reaction Buffer was added to 1 µg of DNA (plasmid 

was cut with restriction endonucleases and cleaned by gel extraction). I then added 1 µl of 
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Antarctic Phosphatase (5 units) and the mix was incubated for 60 minutes at 37°C. The Antarctic 

Phosphatase was heat inactivated for 15 minutes at 70°C. 

DNA ligation 

Ligations were performed using the DNA ligation kit (Promega). Before proceeding with the 

ligation of the PCR/digested fragments into the pGEM-T easy vector, the amount of the insert 

to be ligated was calculated. The amount of vector used was 100 ng. The following formula was 

applied: 

 

[ng of vector × size of insert (kb)] ÷ size of vector (kb) × molar amount of (insert ÷ vector) = ng of insert 

 

The ratio between the vector and the insert was calculated as followed: 

a) If the insert was smaller than vector, then a 3:1 ratio (insert:vector) was used; 

b) If the insert was almost equal to vector, then a 1:1 ratio (insert:vector) was used 

As a control for self-ligation of the plasmid backbone I used the same calculations, but nuclease-

free water was added to the reaction instead of the PCR product.  

Reactions were incubated overnight at 4°C and subsequently used for transformation of E.coli 

competent bacteria as described in 2.4.7. 

2.4.3 Cloning of genomic rescue construct pWhiteRabbitpolyA (pW@RpA)+CG1847 

To obtain the genomic rescue construct pW@RpA+CG1847 (Figure 15), 2672 bp CG1847 insert 

(CG1847 with upstream and downstream sequences) was retrieved from pGEM-T easy using the 

restriction enzyme Not1 (NEB) and subsequently cloned into the pWhiteRabbitpolyA 

transformation vector. After the independent digestion reactions were carried out for the 

CG1847 inserts and the pW@RpA backbone, the samples were separated on 2% agarose gels. 

The fragments corresponding to the desired products sizes were cut from the gel and purified 

according to the purification protocol in section 2.3.7. The purified backbone was treated with 

Antarctic Phosphatase (section 2.4.2). 

As described above, 100 ng of vector was used for DNA ligations, with an insert: vector ratio of 

3:1. The reaction was incubated overnight at 4°C.  
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Figure 15: Schematic structure of genomic rescue construct pW@RpA+CG184 

Afterwards I proceeded to transform the vector into competent E.coli as described in section 

2.4.7. 

2.4.4 Cloning of genomic rescue construct pUASK10attB+ full-length hAIPwt  

To obtain the genomic rescue construct pUASk10attB-AIPwt (Figure 16) hAIP insert (1001 bp) 

was amplified from a pcDNA3-Myc-AIPwt vector existing in our lab (primers sequence in the 

Appendix 5).  

 

Figure 16: Schematic structure of genomic rescue construct pUASk10attB-hAIPwt 
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The PCR amplified product was subcloned into a pGEM-T easy vector. This construct was 

sequenced, and revealed that the last 7 bases of AIP together with the enzyme restriction site 

were not amplified. The QuickChange XL site-directed mutagenesis kit (Stratagene, La Jolla, CA) 

was used to introduce the missing 7bp to repair the pGEM-T easy+hAIPwt construct. The site-

directed mutagenesis protocol is detailed in section 2.3.8. 

The repaired hAIPwt insert was released from pGEM-T easy vector using the restriction enzyme 

Not1 (as one of the desired enzyme restriction sites was lost). The pUASK10attB backbone was 

also digested with Not1. The digestion products were separated on 2% agarose gels. The 

fragments corresponding to the desired products sizes were cut from the gel and purified 

according to the purification protocol in section 2.3.7. 

The purified backbone was treated with Antarctic Phosphatase (section 2.4.2). As described 

above, 100 ng of vector was used in DNA ligations, with an insert: vector ratio of 3:1. The reaction 

was incubated overnight at 4°C. Afterwards I proceeded to transform competent E.coli as 

described in section 2.4.7. In further experiments, I generated a set of 4 constructs carrying AIP 

missense variants downstream of the attB site (for detailed description of the phiC31 system 

see section 3.2.3).  

2.4.5 Cloning of genomic rescue constructs pUASK10attB+ truncated hAIP 

(hAIPtrunc) 

To obtain the genomic rescue construct pUASk10attB-AIPtrunc (Figure 17) 907 bp of hAIP 

together with the upstream Myc tag were amplified from a pcDNA3-Myc-AIPwt vector. The last 

86 bp of AIP, the ones encoding for the 7th alpha helix were deleted, generating a truncated hAIP 

variant (hAIPtrunc). This fragment was cloned into a pGEM-T easy vector after adding A’ 

overhangs (detailed protocol in section 2.4.2), from which was released using the restriction 

enzyme Not1 (NEB). The pUASk10attB backbone was also digested with Not1. 

After the independent digestion reactions were carried out at 37°C, the samples were separated 

on 2% agarose gels. The fragments corresponding to the desired products sizes were cut from 

the gel and purified according to the purification protocol in section 2.3.7. 

The purified backbone was treated with Antarctic Phosphatase (section 2.4.2) to avoid re-

circularization. As described above, 100 ng of vector was used for DNA ligations, with an insert: 

vector ratio of 3:1. The reaction was incubated overnight at 4°C.  
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Figure 17: Schematic structure of genomic rescue construct pUASk10attB-hAIPwt 

Afterwards I proceeded to transform competent E.coli as described in section 2.4.7. 

2.4.6 Cloning of genomic rescue constructs pUASK10attB+ hAIP missense variants 

The genomic rescue construct pUASK10attB+hAIP was used to introduce missense variants via 

site-directed mutagenesis (section 2.3.9). The primers for mutagenesis were designed using the 

QuikChange Primer Design tool:  

Variant Location  Pathogenic Primers (Sequence 5' to 3') 

c.47G>A (p.R16H) N-terminus No 
ggacgggatccaaaaacatgtgatacaggaaggcc 

ggccttcctgtatcacatgtttttggatcccgtcc 

c.713G>A (p.C238Y) TPR2 domain Yes 
tgctgctcaactactgaccagtgcaagctggt 

accagcttgcactggtcagtagttgagcagca 

c.896C>T (p.A299V) TPR3 domain Unlikely 
acccagccctggtgcctgtggtgag 

ctcaccacaggcaccagggctgggt 

c.911G>A (p.R304Q) TPR3 domain Yes 
ctgtggtgagccaagagctgcgggc 

ggcccgcagctctcagctcaccacaggc 

Table 13: Missense variants generated in the study 

Site-directed mutagenesis was carried out using the QuikChange II XL Site-Directed Mutagenesis 

Kit according to the protocol suggested by the manufacturer (detailed protocol 2.4.4). 

Afterwards I proceeded to transform competent E.coli as described in section 2.4.7. Isolated 

pUASK10attB+MycAIPtrunc

10531 bp

MycAIP

Amp

Gal4-UAS

lox-P

attB siteGAGA site

K10 3' UTR

MCS

exon white

Not I (1)

Not I (9538)
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colonies were selected and grown overnight at 225 rpm/37°C in 5 ml LB broth supplied with 100 

µg/ml ampicillin.  

2.4.7 Transformation of competent cells with plasmid DNA  

E. coli strains 

The bacterial hosts used in this study are seen in Table 14 

Strain  Genotype 

JM109 (Promega) 
endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), relA1, supE44, Δ( lac-proAB), 

[F´ traD36, proAB, laqIqZΔM15] 

JM109 Home-made –protocol at Appendix 8 

XL10-Gold 

Ultracompetent cells 

TetrΔ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 relA1 

gyrA96 relA1 lac Hte [F´ proAB lacIqZDM15 Tn10 (Tetr) Amy Camr]. 

Table 14: E. coli strains used in this study 

To prepare competent cells for plasmid DNA transformation, I used the method detailed in 

Appendix 9. 

Antibiotic usage 

Selection for ampicillin resistance on L-Agar or in L-Broth was performed using 10 µg/ml 

ampicillin, from a 100 mg/ml stock solution (w/v) which was stored at – 20°C. 

Preparation of LB/ampicillin plates  

15g of LB (Luria Bertani) (Sigma-Aldrich, UK) media was mixed with 6g Agar (Sigma-Aldrich, UK) 

and 500 ml of ddH2O was added. The medium was the autoclaved. After sterilized, the medium 

was melted and allowed to cool before adding 100 μg/ml of ampicillin. Then, 25 ml of medium 

were poured into petri dishes. 

Transformation of competent cells with plasmid DNA  

Cells were thawed on ice, and aliquoted into pre-chilled 1.5 ml falcon tubes to a volume of 50 

μl. 25-50 ng of DNA of interest or up to 10 μl of ligation reaction were added under sterile 

conditions, and gently mixed. A control for ligation tube with 10 μl of control for ligation reaction 

was also prepared as well. The cells were incubated on ice for 30 min, and heat shocked for 45 

sec in a 42°C water bath. The tube was immediately transferred to ice, and following a 2 min 

recovery step, 900 μl of pre-warmed SOC broth (Invitrogen) was added. The tube was shaken at 

250 rpm at 37°C for one hour, and spread on a LB-agar plate containing the appropriate 

antibiotic. The plates were incubated overnight, inverted, at 37°C. 
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2.4.8 Plasmid DNA purification- Miniprep 

In order to purify plasmid DNA QIAprep Miniprep kit (Qiagen, UK) was used according to the 

producer’s specifications. A single isolated white colony from a plate was inoculated in 5 ml of 

LB medium containing 5 μl of 100mg/ml ampicillin and incubated overnight at 37°C at 250 rpm. 

After incubation, bacterial cells were harvested by centrifugation for 3 minutes at 8000 rpm at 

room temperature. The supernatant was then removed and the pellet re-suspended in 250 μl 

of buffer P1, followed by 250 μl of buffer P2 and mixed thoroughly by inverting the tube 4-6 

times. 350 μl of buffer N3 were also added and mixed immediately by inverting the tube 4-6 

times. The solution was centrifuged for 10 min at 13000 rpm. Supernatants were applied to a 

column and centrifuged for 30-60 seconds. The column was further washed with 0.75 ml of 

buffer PE and centrifuged for 30-60 seconds. To remove any residual buffer, the column was 

centrifuged for an additional 1 min. The plasmid DNA was eluted in 50 μl of H2O. The 

concentration of each sample was determined using the Nanodrop. To confirm the integrity of 

the isolated plasmids a digestion with appropriate restriction enzymes was performed, 

separated on an agarose gel and sequenced. 

2.4.9 Preparation Maxi prep for plasmidic DNA extraction  

In order to purify higher volumes of plasmid DNA GenElute™ HP Plasmid Maxiprep Kit was used 

according to the producer’s specifications. 

The plasmid DNA was isolated from a 150 ml culture by centrifugation at 5000 X g for 10 minutes 

to pellet the cells. The cells were resuspended by adding 12 ml of Resuspension/RNaseA Solution 

and completely mixed by pipetting up and down, or vortexing. In the next step, 12 ml of Lysis 

Solution was added and the tube was immediately gently inverted 6 to 8 times. The mixture was 

allowed to sit and clear for 3 to 5 minutes. 12 ml of chilled Neutralization Solution were added 

to the mixture and gently invert 4 to 6 times. The tubes were allowed to sit until a white 

aggregate (cell debris, proteins, lipids, SDS, and chromosomal DNA) separated. In the next step 

were added 9 ml of Binding Solution and invert 1 to 2 times. Samples were immediately poured 

into the barrel of a filter syringe. The cell lysate was allow to sit for 5 minutes until the white 

aggregate should float to the top. GenElute HP Maxiprep Binding Columns were placed into 50 

ml collection tube and prepared by adding 12 ml of the Column Preparation Solution. The 

columns were then spin at 3000 X g for 2 minutes. The eluate was discarded and the lysate was 

filtered in order for plasmid DNA to bind to the column. The columns were centrifuged at 3000 

X g for 2 minutes and the step was repeated until the rest of the cleared lysate was filtered. 12 

ml of Wash Solution 1 were added to the column, which was spun at 3000 X g for 2 minutes. 
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After discarding the eluate, 12 ml of Wash Solution 2 were added to the column and centrifuged 

at 3000 X g for 5 minutes. The plasmid DNA was eluted by adding 3 ml of ultrapure water and, 

for maximum recovery of plasmid, collection tubes were centrifuged at 3000 X g for 5 minutes. 

Sample concentration was determined using the Nanodrop. 

2.5 Illumina TruSeq stranded mRNA sample preparation - Low sample 

protocol  

Total RNA was isolated from eight larval collection (above, section 2.3.2) using Qiagen RNeasy 

MicroKits. RNA samples were purified using the DNase I as suggested in the Qiagen protocol and 

resuspended in 14 μl of RNAse free water. RNA samples were measured using Nanodrop and 

subjected to Agilent 2100 bioanalyzer for checking the integrity of the extracted RNA. The 

samples were normalized to 500 ng/μl. Equal volumes of RNA from four control and four mutant 

samples were used for generating the cDNA libraries according to the Illumina protocol (detailed 

protocol in Appendix 10). Samples were prepared using four replicates for controls and four 

replicates for mutants. 

All libraries were sequenced in one lane, 30 million reads per sample on an Illumina HiSeq 1500 

instrument. 

Acknowledgement: The library preparation and the RNA sequencing were performed at the 

Barts and the London School of Medicine genomics core facility (Genome Centre). 

 

2.6 Sequence alignment to reference transcriptome 

Analysis pipeline short workflow 

To identify the genes whose expression is affected in CG1847 mutants a high-throughput RNA 

sequencing method was employed, which was performed with the help of colleagues at our 

Genome Centre (Dr. Charles Mein, and Dr Anna Terry Systems Administrator Bioinformatician). 

The raw results from the Illumina Hi-Seq were cleaned for removing the adaptors, then the 

FASTQ files were exported for analysis in Bowtie257 and TopHat258 to generate the database of 

transcripts.  

For the next step, assemble of the possible transcripts and their annotation, was used Cufflinks. 

Cufflinks (version 2.2.0) was run for each sample separately and the final results were assembled 

into a single merged.gtf file. 
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1. Pre-alignment  

The results from the sequencer platform were submitted to a primary analysis. After a pre-

alignment quality control, the unaligned reads were cleaned by trimming the bases from both 

3’ and 5’ ends. The reads that were too short were removed after trimming. 

The sequence alignment is a key step on this type of experiment. As a consequence, the read 

alignment program should be carefully chosen. One of the most efficient programs developed 

in the last few years – Bowtie257 (http://bowtie-bio.sourceforge.net/index.shtml) – was the best 

option to align our data to the reference transcriptome for Drosophila melanogaster. Both the 

forward and reverse strands were considered for alignment. The unaligned reads were split and 

realigned by TopHat (http://ccb.jhu.edu/software/tophat/index.shtml), a junction aware 

pipeline258. 

2. Checking quality of data using FastQC 

FastQC is a key control step that offers a simple quality control checks which provides a quality 

control report which is necessary to reveal the possible problems. This analysis presents the 

results in Per Base Sequence Quality mode using a Box Whisker type of plot. The quality scores, 

are also known as Phred quality scores, as they were developed initially for the Phred program 

for automation of DNA sequencing during the Human Genome Project259,260. 

All the samples were submitted for quality control (Figure 18). 

 

Figure 18: FastQC quality control of cDNA libraries. The background of the graph is divided along the y 

axis into three fields: green, which represents very good quality calls; orange, denoting calls of acceptable 

quality; and red, indicating poor quality calls. Control and mutant samples are shown in the top and 

bottom row, respectively. The yellow boxes represent the 25-75% quartile range, while the upper and 

lower whiskers represent the 10% and 90% points. The y-axis on the graph shows the quality scores also 

called the Phred quality scores. 

 

Mut_7_R1_fastqcMut_6_R1_fastqcMut_5_R1_fastqcMut_4_R1_fastqc

Ctr_4_R1_fastqc Ctr_5_R1_fastqc Ctr_7_R1_fastqc Ctr_8_R1_fastqc

http://bowtie-bio.sourceforge.net/index.shtml
http://ccb.jhu.edu/software/tophat/index.shtml
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All the samples passed the Phred quality control, reaching high scores as the maximum Phred 

quality for Illumina technology is 40. 

3. Transcriptome assembly using Cufflinks 

Cufflinks version 2.2.0 (http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.0/) was used 

for transcriptome assembly and differential expression analysis of RNA-Seq raw data. 

All the alignment files were merged together by Cuffmerge, and the merged files were compared 

with the reference annotation to find novel unannotated features. Raw sequencing data was 

aligned to the most recent genome release: dmel_r6.03_FB2014_06 

(ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.03_FB2014_06/). 

The new released version 2.2.0 includes two new programs, Cuffquant and Cuffnorm. Our 

samples were passed through Cuffquant, which quantifies the levels of expression for a single 

BAM file. The results were visualized using CummeRbund. 

A schematic overview of the workflow is described in  

Figure 19. Cufflinks version 2.2.0 (CummeRbund branch) was used in this analysis. 

4.  Read count normalisation and quantification  

The actual RNA-seq quantification process takes in account both the molar concentration and 

the transcript length. The Mortazavi’s261 formula for a unit of measure of read density reflects 

the molar concentration of a transcript in the starting sample by normalizing for RNA length and 

for the total read number in the measurement. The normalization method allows comparison 

of transcript levels not only between the samples, but also within the same sample (Mortazavi 

et al., 2008)261.  

As a specific measure of reads density we used RPKM, as this is the most commonly used 

formula. RPKM indicates the Reads Per Kilobase of exon model per Million mapped reads: 

RPKM = C/ N x L (C = number of mappable reads that belongs to exons, N = total resulted number 

of mappable reads, L = the sum of the exons (bp)) 

For example, a 1kb transcript with 2000 alignments in a sample of 10 million reads (out of which 

8 million reads can be mapped) will have a RPKM=2000/ (1 x 8) = 250. A pair of reads constitutes 

one fragment261.  

The final results were assembled into a single merged.gtf file. 

 

http://cole-trapnell-lab.github.io/cufflinks/releases/v2.2.0/
ftp://ftp.flybase.net/genomes/Drosophila_melanogaster/dmel_r6.03_FB2014_06/
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Figure 19: Overview of the bioinformatic workflow. The most recent version and the previously published 

workflow, described in Trapnell et al262 are presented  
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2.7 STRING analysis 

STRING (Search Tool for the Retrieval of Interacting Genes)263 (http://string.embl.de/) was used 

to analyse the interactions and relationships among the significantly up- or down-regulated 

genes. STRING pipeline assembles the input data based on neighbourhood information, high-

throughput experiments, co-occurrence, co-expression and data mining. 

This database reveals the functions of proteins at the molecular level by generating the protein-

protein interactions (PPI) network. Confidence scores is calculated for each interaction pair and 

default cutoff scores of above 0.4 were selected. 

 

2.8 Validation by multiplex- qPCR of selected transcripts 

A custom designed GeXP multiplex qPCR for gene targets was performed using 100ng of total 

RNA. The GeXP multiplex assay consisted of 16 pairs of chimeric primers: CG1847 transcript, two 

different reference genes (alpha-Tubulin at 84B, and Ribosomal protein 39) and 13 transcripts 

of interest. Target-specific reverse transcription and PCR amplification was performed in 

accordance with manufacturer’s instructions (Beckman Coulter, Wycombe, UK). In brief, a 

master mix was prepared for reverse transcription reactions as detailed in the GeXP Start Kit 

(Beckman Coulter, Wycombe, UK) and performed using a G-Storm thermal cycler, using the 

program protocol: 48°C, 1 min, 42°C, 60 min, and 95°C, 5mins. From this, an aliquot of each 

reverse transcription reaction was added to PCR master mix containing GenomeLab kit PCR 

master mix, Thermo Scientific Thermo-Start Taq DNA polymerase.  

The qPCR reaction was performed using a G-Storm thermal cycler with a 95°C activation step 

10mins, followed by 35 cycles of 94°C, 30 secs, 55°C, 30 secs and 70°C, 60 secs. Products were 

separated by capillary gel electrophoresis using CEQTM 8000 Genetic Analysis system. Following 

fragment separation, peaks were analysed and matched to corresponding genes using 

GenomeLab Fragment Analysis software (Beckman Coulter). 

ANOVA (post hoc test Fishers LSD) was applied for comparisons revealing at least a twofold 

change in expression levels. P values of less than 0.05 were considered significant. 

Information on all primers can be found in Appendix 5. 

 

http://string.embl.de/
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2.9 Statistical analysis  

Experimental data sets were analysed in JMP® (SAS institute). The Shapiro-Wilk and the 

Kolmogorov-Smirnov tests were used to check the normal distribution of the quantitative 

variables. Two way ANOVA or Kruskal-Wallis non-parametric if the distribution was non-normal 

tests were used to evaluate the significant differences. Means and standard deviations were 

used to report parametric data. The chi-square (I) test was used to determine whether there is 

a significant difference between the expected genotypes frequencies and the observed 

frequencies in the rescue experiments. A P<0.05 was considered to be statistically significant. 
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CHAPTER 3: ESTABLISHING A DROSOPHILA MELANOGASTER 

MODEL TO STUDY AIP FUNCTION 

3.1 INTRODUCTION  

At the start of my project the majority of investigations of AIP roles had focused on the 

developmental aspects, particularly on its involvement in limiting the normal morphogenesis 

processes during the embryological period. 

Previous studies had examined mainly the AhR-mediated xenobiotic signalling possibly by 

influencing AhR nuclear translocation. However, in addition to xenobiotic metabolic processes 

the AIP protein is also a chaperone involved in a variety of essential molecular functions as: 

domain binding142,145,172,264, signal transducer activity140, transcription coactivator activity and 

transcription factor binding265. AIP function in adult organisms has been relatively less explored 

as the loss of AIP is associated with lethality during early embryological stages. It was previously 

reported that loss of the Aip gene in mice leads to lethality at e14.5 accompanied by cardiac 

malformations such as double outlet right ventricle, ventricular-septal defects, and pericardial 

edema204. 

Taken together, these data indicate an extended AIP involvement in normal mammalian biology, 

apart from its role as an AhR co-chaperone. Therefore, it was reasonable to hypothesise that AIP 

might play a role as a key regulator of developmental growth. The initial aim of my project was 

to formally examine the actual role of AIP in development and the mechanism behind the 

lethality associated with the loss of this protein. Furthermore, it is well known that AIP functions 

as a tumour suppressor gene in pituitary tumorigenesis and understanding what role this protein 

plays in abnormal growth could therefore be of significance to cancer initiation and progression. 

Over the years, Drosophila melanogaster has evolved from being a useful animal model for 

investigating genetics and the mechanisms of inheritance to being one of the most valuable tools 

for understanding gene function. This insect proved to be a powerful model for the study of 

normal development and the mechanisms underlying disease pathogenesis, as well as an aid for 

the development of new drugs. New advanced tools and techniques are constantly being 

developed keeping Drosophila at the forefront of research. 

Some of these approaches and methods were employed in the present study for a better 

understanding of AIP function. 
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3.2 BACKGROUND 

We used some of the valuable tools that were developed in Drosophila model to gain further 

knowledge on the impact of CG1847 loss of function. 

3.2.1 The Gal4/UAS system 

With its powerful genetic tools, Drosophila is an important animal model for functionally 

characterising genes involved in specific biological processes. A breakthrough for Drosophila 

genetics came with the ingenious combination of budding yeast (Saccharomyces cerevisiae) and 

Drosophila genetics which resulted in the GAL4-UAS system238. This technique allows selective 

induction of gene expression in a temporally and spatially controlled manner. This system 

involves the creation of two fly lines carrying either a Gal4 or a UAS transgene, which are then 

crossed to achieve a desired genotype. 

The Gal4-UAS system has two essential components. The first is the Gal4 gene, which encodes 

a transcription activator protein originally found in S. cerevisiae, where it controls the expression 

of galactose metabolism genes. Gal4 can directly bind to the second element of the system, a 

DNA consensus sequence called "Upstream Activating Sequence" or UAS, which acts as an 

enhancer sequence for neighbouring genes. The versatility of the system arises from the fact 

that the Gal4 and UAS elements can be combined with specific promoter sequences (a driver). 

In other words, one of the flies (the female or the male) is a transgenic for the Gal4CDS coupled 

with either a ubiquitous promoter (e.g. Act-Gal4) or a tissue-specific promoter (e.g. Elav-Gal4). 

The other fly is a transgenic for a P-element containing the UAS site fused with a sequence of 

interest, as the CDS of a specific gene or a particular RNAi (e.g., UAS-CG1847-RNAi Figure 20). 

 

Figure 20: UAS-Gal4 system in Drosophila. The system consists of two parts: flies expressing the yeast 

GAL4 transcription factor under the control of specific promoters/enhancer named driver (red oval) and 

flies carrying a CG1847-RNAi sequence downstream of an UAS promoter region (yellow ovals). GAL4 is 

only expressed in cells where the driver is active. Gal4 specifically binds to UAS (green triangles) to activate 

transcription. Adapted from www.hoxfulmonsters.com/wp-content/uploads/2008/05/uas-gal4.jpg 

GAL4 cDNA
Actin promoter

First line (UAS)

GAL4 protein

CG1847-RNAi
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The offspring of the cross between these two lines will include individuals that carry both genetic 

elements and, therefore, will express the desired CDS/RNAi ubiquitously (e.g., UAS-CG1847-

RNAi expression in actin+ cells by Act-Gal4/UAS-CG1847RNAi) 266. 

The Gal4/UAS system presents a few very important advantages. Maybe the most important is 

the separation of the driver (Gal4) and the effector (UAS) between in two parental lines. This 

prohibits the activation of the transcription in the parents, which means that it is possible to 

generate transgenic lines for proteins that are toxic, or lethal, which is the case for AIP. 

3.2.2 Transposable elements for mutagenesis use  

Another revolution in the Drosophila field was introduced by Rubin and Spradling in 1982253 with 

the use of the P-element for transgenesis267. A P-element is an 8-10 kb transposon that has the 

ability to insert and excise itself within the genome. In order for transposition to take place a 

transposase enzyme is necessary. Transposase recognises inverted repeat sequences that are 

localised at the ends of P-elements and promotes transposon excision and reinsertion at a 

different genomic locus. Naturally occurring P-elements encode an internal transposase gene, 

whereas P-element lines developed for laboratory use have been specifically designed to lack 

this transposase to avoid deleterious effects of having a mobile DNA element in the genome. 

This allows researchers to induce transposition in a controlled manner by crossing lines that 

carry a P-element with a line that carries the transposase (e.g. enzyme Δ2.3). 

One important molecular biological aim a Drosophila researcher needs to achieve is to silence a 

gene of interest and P-elements are valuable tools for this268,269. If the function of a gene cannot 

be disrupted by inserting a P-element, it is possible to use the P-element system to induce a 

deletion of the target gene. This is possible because P-elements preferably insert into the 5’ UTR 

of genes and their excision from a genomic locus may be imprecise. Indeed, when P-elements 

are mobilised they often carry flanking genomic sequences. If this occurs in the vicinity of a gene, 

it can generate a deletion mutant for that gene. When a P-element is excised from a 

chromosome a double-stranded break (DSB) is created, which can be repaired either by 

homology-directed repair or by non-homologous repair270. In some cases, the DSB ends may be 

degraded before the repair occurs and, as a result, a deletion of the genetic material may occur, 

an event known as imprecise excision271. This event may excise also the flanking genomic DNA, 

which is removed with the P-element and generates deletions around the original P-element 

insertion point. In so-called precise excisions the size of the deleted genomic DNA occurring 

during such an event may vary from a few base pairs to several kilobases. The size of the 

remaining fragments of the P-element inverted terminal repeats ranges between 5 and 18 bp, 
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and are called “footprints”272,273. The resultant stocks are called “revertant”, and might be used 

as a control, if the remaining insertion is not in a coding region or if it does not introduce a 

frameshift mutation. 

Public and commercial fly stock repositories contain transgenic fly lines with P-elements inserted 

in different areas of the genome. One advantage of this tool is the fact that P-elements were 

engineered to carry the white gene as a marker. Therefore, excision of the P-element and the 

surrounding DNA (“imprecise excision”) will also excise the white gene, therefore providing a 

means of screening those flies in which the excision has taken place. 

3.2.3 PhiC31 system 

In 1998 a genome integration system was developed that allows a very precise insertion of DNA 

elements into the genome274. This system is based on the site-specific phiC31 integrase. PhiC31 

is a bacteriophage that encodes a serine integrase enzyme, which has the ability to mediate 

sequence-directed recombination between a bacterial attachment site (attB) and a phage 

attachment site (attP)254 (Figure 21). 

 

Figure 21: Schematic diagram of the phiC31 integration system into the Drosophila genome. A plasmid 

carrying a gene of interest and an attB attachment will be integrated into the Drosophila genome at an 

attP landing site 

 

One of the main advantages of this system is the fact that the phiC31 integrase does not require 

any cofactors to mediate site-specific recombination. In 2004, this system was adapted for use 
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in Drosophila275 and stable recombinants (transgenic flies) were generated to aid in vivo studies 

and the understanding of gene function and regulation. 

Since the system’s introduction, an entire library of well characterized, highly efficient landing 

sites that span the four chromosomes of the Drosophila genome have been generated. The 

landing sites were designed and selected to prevent them from interfering with other Drosophila 

transposon systems and to minimize: 1) effects of the insertions (e.g. interfering with the gene 

function at the insertion site); 2) effects on gene expression of genes on the P-element (e.g. 

enhancer-trap). 

3.2.4 High-throughput sequencing (RNA-seq) for identifying differentially expressed 

genes 

The transcriptome is the full range of total or messenger RNA (mRNA) and their level of 

expression during normal or pathologic conditions expressed by an organism. The main purpose 

of transcriptomic analysis is to evaluate all the transcripts in a specific sample, to quantify 

changes in expression levels of transcripts during development or under different physiological 

conditions. 

These approaches were first developed at the beginning of 1990s with Sanger sequencing cDNA 

libraries276. In recent years, deep sequencing technologies based on RNA (total or fractionated, 

such as poly (A+)) were highly improved. The recent development of high-throughput DNA 

sequencing methods has provided a new tool, termed RNA sequencing or RNA-seq, which allows 

both transcriptome mapping and quantification. Briefly, total RNA is fragmented and converted 

to a double-stranded cDNA library. Adaptors are attached to the ends of the cDNA strands and, 

after library validation, samples are normalized and mixed in a pool that is subjected to 

sequencing (Figure 22). Illumina Next-Generation Sequencing allows whole-transcriptome 

analysis via total RNA sequencing. The TruSeq Stranded Total RNA results in a complete 

transcriptome, including coding and noncoding RNA, and a very accurate gene expression 

quantification. 

The resulting raw sequencing data is used to generate de novo transcriptome assembly as RNA-

seq has an important advantage over previous techniques: previous knowledge of the genome 

sequence is not required277. RNA-seq allows genome sequencing to a single base resolution. The 

quantification of transcript expression levels is based on counting the number of reads 

corresponding to the RNA from each known exon261. 
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Figure 22: RNA-Seq workflow. Briefly, long RNAs are first converted into a library of cDNA fragments 

through either RNA fragmentation or DNA fragmentation (see main text). Sequencing adaptors (blue) are 

subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-

throughput sequencing technology. The resulting sequence reads are aligned with the reference genome 

or transcriptome, and classified as three types: exonic reads, junction reads and poly(A) end-reads. These 

three types are used to generate a base-resolution expression profile for each gene, as illustrated at the 

bottom; a yeast ORF with one intron is shown (adapted from Wang et al.277). 

 

In this chapter, I used RNA-seq technology to discover changes in transcript expression elicited 

by loss of expression of Drosophila AIP (CG1847). This approach allowed me to identify several 

transcripts whose expression was significantly altered in Drosophila AIP mutants. The results 

from the RNA-seq approach were subsequently confirmed via multiplex qPCR. 
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3.3 OBJECTIVES 

AIP is involved in organism development and survival, and its deregulation leads to lethality. 

Genes that are essential for development are more likely to contribute to disease than non-

essential genes278, so it is important to fully understand their function. To analyse the molecular 

mechanisms of loss of AIP in vivo, I used Drosophila as a model system to:  

a. Characterise the effect of Drosophila AIP (CG1847) knockdown, using RNAi-mediated 

gene expression silencing under the control of the GAL4/UAS-system.  

b. Generate a CG1847 knockout mutant by imprecise excision of a P-element (P-

CG1847G1839) located in the 5’UTR of CG1847. 

c. Rescue the AIP mutant via re-expression of wt CG1847 under the control of its 

endogenous promoter, to unambiguously verify that mutant phenotypes are a result of 

CG1847 disruption. 

d. Reveal the underlying molecular mechanisms of AIP loss by performing whole 

transcriptome analysis. 

e. Validate via multiplex-qPCR the significantly differentially expressed genes detected by 

RNA-seq in mutant larvae compared to controls. 

 

3.4 RESULTS  

3.4.1 CG1847 is a Drosophila melanogaster AIP orthologue 

Bioinformatic analysis identified CG1847 as a putative Drosophila orthologue of the human AIP 

gene (identified via GenBank BLAST search). Very little is known about the role of CG1847 as it 

has never been studied in the fruit fly. CG1847 is a protein coding gene with 2 annotated 

transcripts (CG1847-RA and CG1847-RC), encoding 2 polypeptides. The molecular function 

mentioned for CG1847 in FlyBase is as aryl hydrocarbon receptor binding protein, and it is 

described as being involved in protein folding. No phenotypic data ara available in public 

databases. 

Alignment of the amino acid sequences of CG1847 (FBtr0073567) and human AIP 

(ENST00000279146) using the Clustal Omega suite revealed that CG1847 has 37.74% overall 

identity with human AIP proteins (Figure 23). Clustal Omega is a multiple sequence alignment 

http://flybase.org/cgi-bin/uniq.html?FBgn0030345%3Efbtr
http://flybase.org/cgi-bin/uniq.html?FBgn0030345%3Efbtr
http://flybase.org/cgi-bin/uniq.html?FBgn0030345%3Efbpp
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program for proteins producing biologically meaningful multiple sequence alignments of 

divergent sequences (http://www.clustal.org/omega/)279. 

 

 

Figure 23: Sequence alignment of Drosophila CG1847 protein and human AIP. Stars indicates identity; 

high similarity amino acids are indicated by colons ( : ) while low similarity amino acids by dots ( . ). Source 

of protein sequences: Ensembl release 81 - July 2015 © WTSI / EBI http://www.ensembl.org 

 

According to the ClustalW algorithm the human and Drosophila proteins share 120 identical 

amino acids, 80 are strongly conserved, while 34 of the amino acids are weakly conserved. The 

other 96 amino acids are unique between the 2 species. 

Large-scale gene expression studies have been performed in Drosophila and they have proved 

to be extremely useful in providing data regarding transcription of specific genes during different 

developmental stages280,281. Overall, during the majority of development stages the CG1847 

levels of expression are very low, or just moderate. The highest expression of CG1847 was found 

in the first 2 hours, maybe due to maternal contribution (due to the mothers supplying the eggs 

with their own mRNA or proteins, to support the development during the very initial stages). 

Gene profiling from the earliest stages of embryonic development to adulthood revealed that 

CG1847 expression varies in different tissues. The available data from the FlyAtlas282 and 

modENCODE283 platforms provide an extensive overview of CG1847 expression during 

development in multiple larval and adult tissues (Figure 24). 

FBtr0073567          ---MQSRSKSDMKPIRKEILNPG-NAYIELTPGTRVKFHFQTRRAG-DSRIIDDSRKMEK   55

ENST00000279146       MADIIARL—REDGIQKRVIQEGRGELPDFQDGTKATFHYRTLHSDDEGTVLDDSRARGK   58

: :*     . *:*.::: *     ::  **:..**::* ::  :. ::****   *

FBtr0073567          PMELVLGKKFKLEVWELIVQQMSLNEVAKFTVHKSLCAQYPFISKTLRDIGK--K-PEER   112

ENST00000279146      PMELIIGKKFKLPVWETIVCTMREGEIAQFLCDIKHVVLYPLVAKSLRNIAVGKDPLEGQ   118

****::****** *** **  *   *:*:*  . .  . **:::*:**:*.   .  * :

FBtr0073567          RHCCGMTLQ--NEGIGYTDLDELLQNPSDLEFIIELFSIELPEQYEKERWQMSDDEKMLA   169

ENST00000279146      RHCCGVAQMREHSSLGHADLDALQQNPQPLIFHMEMLKVESPGTYQQDPWAMTDEEKAKA   178

*****::    ...:*::*** * ***. * * :*::.:* *  *::: * *:*:**  *

FBtr0073567          TSTLRERGNNFYKASRFTEAETCYREAVGIVEQLMLKEKPHDEEWQELAAIKTPLLLNYA   229 

ENST00000279146      VPLIHQEGNRLYREGHVKEAAAKYYDAIACLKNLQMKEQPGSPEWIQLDQQITPLLLNYC   238 

.  :::.**.:*: .:..** : * :*:. :::* :**:* . ** :*    *******.

FBtr0073567          QCRLIAGDFYAVIEHCNEVLTLDPRNVKALFRRAKAHAGAWNPAQARRDFLDALALDASL   289 

ENST00000279146      QCKLVVEEYYEVLDHCSSILNKYDDNVKAYFKRGKAHAAVWNAQEAQADFAKVLELDPAL   298 

**:*:. ::* *::**..:*.    **** *:*.****..**  :*: ** ..* ** :*

FBtr0073567          KSTVSKELKSIEDQQQARNVQDRIHMQKLF-- 320

ENST00000279146      APVVSRELRALEARIRQKDEEDKARFRGIFSH                               330

.**:**:::* : : :: :*: ::: :*  

http://www.clustal.org/omega/
http://www.ensembl.org/
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Figure 24: Expression of CG1847 during development in different tissues and organs. Data was extracted 

from FlyAtlas, which reveals expression data during 30 stages of development (top panel) for 8 and 17 

distinct larval and adult tissues respectively (bootom panel). The dataset comprises Affymetrix Dros2 

expression arrays (representing 18770 transcripts282), with 4 replicates per tissue. 

(http://flybase.org/reports/FBgn0030345.html) 

 

CG1847 protein has the same features as human AIP: an N-terminal FKBP-type domain and C-

terminal tetratricopeptide repeats. Indeed, a three dimensional theoretical model of CG1847 

generated by my collaborator Chris Prodromou revealed a protein structure that closely 

resembles the published AIP protein structures (Figure 25). 

http://flybase.org/reports/FBgn0030345.html
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Figure 25: Three dimensional theoretical model of CG1847. The Drosophila protein has a similar 

predicted structure to its human orthologue: it has all three pairs of conserved anti-parallel alpha-helices 

(tetratricopeptide domains, TPR) and the final extended alpha-helix, alpha-7. This model was based on 

the crystal structure of human AIP142,145,234 and was prepared by Chris Prodromou (Sussex University). 

 

3.4.2 CG1847 is essential for Drosophila development  

Essential genes are defined as those necessary for growth and survival under a given condition. 

To investigate the function of CG1847 in Drosophila, I examined the consequences of disrupting 

CG1847 gene expression in developing flies using RNA interference via the GAL4/UAS-system238. 

To achieve this, I used 4 fly stocks that carry different UAS-RNAi constructs targeting CG1847, 

which were expressed during fly development under the control of a ubiquitous (Act-Gal4) or 

neuron-specific (elav-Gal4) promoter. Here, I present and discuss the results obtained with 3 of 

these stocks as they were the ones that yielded more promising phenotypes. 

When UAS-CG1847-RNAi-R2 males were crossed with Act-GAL4 females, as actin is ubiquitously, 

and rather abundant, expressed, this cross resulted in strong knockdown of CG1847 expression 

in all tissues. No viable adult offspring were observed, suggesting that complete AIP-knockdown 

is not compatible with viability. In contrast, UAS-CG1847-RNAi-R1 produced a few viable 

offspring. However, RT-PCR analysis revealed that the knockdown of CG1847 expression with 

RNAi-R1 was only partial (Figure 26 A). As RNAi constructs can occasionally generate phenotypes 

due to off target effects, I used new RNAi stocks with a different non-overlapping sequence of 

PPIase domain
(purple, amino acids 31-151)

C-terminal α-7 helix
(red, 285-320)

TPR1

(green, 163-211)

TPR2
(yellow, 213-252)

TPR3
(orange, 254-283)
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CG1847 (section 2.2.1). Using the new RNAi stocks, I obtained similar results to those obtained 

with UAS-CG1847-RNAi-T2 line, that is, expression of CG1847 RNAi under the control of Act-Gal4 

resulted in 100% lethality. As previous ubiquitous knockdown resulted in lethality, I crossed UAS-

CG1847-RNAi-T2 males with females carrying a tissue specific driver. Elav-Gal4 was used to 

silence CG1847 expression only in nervous cells. We choose this driver for two different reasons. 

First, based on the microarray data CG1847 has a higher level of expression in the brain (Figure 

24). Second, most of the knockdowns in the fruit fly nervous tissue do not have a lethal 

outcome284. 

  

 

Figure 26: CG1847 RNAi knockdown. RT-PCR was performed using RNA extracted from adult fly heads. 

Upper panels CG1847 amplicons, 165 bp product; Ribosomal protein 32 (RpL32) expression was used as 

housekeeping gene control (lower panels). A) KD with UAS-CG1847-RNAi-R1. Lanes 1 and 2 – UAS-RNAi 

stocks R1 and R2 were used as a control and tested for leak expression of the IR constructs. Lane 3 CG1847-

R1>Act-Gal4 flies showing knockdown of CG1847 expression, see arrow. Stars indicate primer dimers B) 

KD with UAS-CG1847-RNAi-T2. Lane 1 CG1847-T2 flies were crossed with y w flies, in order to be used as 

a control and to prove that the RNAi construct is not expressed in absence of a Gal4 driver. In Lane 2 

CG1847-T2> elav-Gal4 flies show knockdown of CG1847 expression. 

RNAi-mediated depletion of CG1847 using UAS-CG1847-R1 did not cause lethality with either 

Act-Gal4 or elav-Gal4, with some flies reaching the adult stage. This enabled the quantification 

of the efficiency of CG1847 knockdown using RT-PCR (Figure 27). For UAS-CG1847-R1 and R2 the 

average amount of CG1847 transcript in the parental lines was compared to the average amount 

of CG1847 transcript in the Act-GAL4-driven UAS-RNAi lines, and an expression ratio was 

calculated. For UAS-CG1847-T2 the average amount of CG1847 transcript in the control crosses 

was compared to the average amount of CG1847 transcript in the elav-GAL4-driven UAS-RNAi 

lines. For quantification the above images were uploaded into the ImageJ software and the 

intensity of the bands was evaluated. The average of the target genes was normalized to the 

average of the control gene RpL32 and expressed in intensity units. 
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Figure 27: Quantification of CG1847 RNAi knockdown efficiency. Relative CG1847 expression was 

quantified by semiquantitative RT-PCR. RT-PCR was performed on total RNA isolated from adult fly heads. 

A) Quantification of CG1847 expression in parental lines and UAS-CG1847-R1 Act-Gal4-driven knockdown. 

B) Quantification of CG1847 expression in control flies and UAS-CG1847-T2 elav-Gal4 driven knockdown. 

Shown are the averages of the ratio of the expression of CG1847 and RpL32 from two independent 

experiments. Error bars represent SE. 

 

In summary, a very efficient RNAi-mediated depletion of CG1847 was obtained using all RNAi 

lines. The average levels of CG1847 was less than 13.3% of control for UAS-RNAi-R1 expressed 

with a strong driver as Act-Gal4. With elav-Gal4, even though the expression of UAS-RNAi-T2 is 

restricted to nervous tissue, resulted in reducing the CG1847 expression to less than 33.3% of 

controls. 

Next, taking advantage of the temperature sensitivity of the GAL4 system285, it was assessed 

whether increasing the potency of UAS-CG1847-RNAi-R1 might result in a lethal phenotype. 

Higher temperature increases Gal4 activity and when animals were grown continuously at 29°C 

no adult UAS-CG1847RNAi-R1>Act-Gal4 flies were recovered. 

3.4.3 CG1847exon 1_3, a null CG1847 allele, confirmed the essentiality of this gene 

To confirm the results obtained with RNAi-mediated depletion of CG1847, I performed an 

imprecise P-element excision screen267 to generate a “classical” mutation in CG1847. For this, I 

used an existing fly stock carrying a P-element insertion in the 5’ UTR of CG1847 (P-CG1847G1839). 

The P-element was mobilized using standard genetic techniques (detailed protocol in section 

2.2.2). In the second generation of the excision screen, 200 single crosses were set up, each with 

a single virgin female and 3 FM6 males. In the following generation, I screened for virgins with 

white eyes, that is, those who lost the P-element. I identified 49 virgin females with white eyes, 

which were used to generate independent putative mutant stocks, by backcrossing to FM6 

A) B)
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males. Out of these 49 lines, 18 stocks were lethal as no non-FM6 males were recovered in the 

offspring. Table 15 summarises the different steps of the excision screen. Based on the PCR 

screening described below, the majority of the stocks carrying putative mutant alleles were 

discarded as the deletions were too big, affecting either the upstream or the downstream genes 

in addition to CG1847. 

Stocks  Number 

Total crosses 200 

White eye virgin females identified 49 

Lethal alleles (putative mutants) 18 

Stocks discarded (very large deletions) 17 

 

Table 15: Summary of P-element excision screen. 

For a precise characterisation of these putative mutant alleles and to identify the extent of the 

deletion, genomic DNA from heterozygous females was analysed by PCR (primer sequences 

Appendix 5). Flanking primers (Dm_EP_EL_F and Dm_EP_EL_R) and PCR conditions were 

designed to amplify a fragment resulting from a deletion in the CG1847 locus, but not a P-

element-containing fragment (more than 8000bp in our case). These primers were also designed 

at the border with the upstream and downstream neighbouring genes in order to detect 

deletions that will be too large. Identification of the CG1847 control stock where the P-element 

has undergone precise excision (revertant) was based on the detection of a larger amplicon 

when using the second pair of primers (Dm_EP_F and Dm_EP_R). See Figure 28 for a schematic 

representation of primer annealing: 

 

Figure 28: Schematic representation for primer annealing. For detecting the genomic deletion were used 

2 pairs of primers. Pair P1 (Dm_EP_EL_F and Dm_EP_EL_R) was design to bind into the neighbouring genes 

and to amplify a 2487 bp amplicon. Pair P2 (Dm_EP_F and Dm_EP_R) amplifies a 298 bp fragment, inside 

CG1847 gene. 

 

As a control to verify that the PCR conditions were correct, I used y w flies and homozygous FM6 

females that eclosed in these stocks. After validating the efficiency of the PCR approach in the 
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controls, I screened the putative mutant stocks from the excision screen to identify a CG1847 

mutant stock (representative PCR images in Figure 29). 

 

 

 

Figure 29: Agarose gel for selected number of CG1847 mutant alleles. Identification of alleles containing 

a loss of genomic DNA. Each sample was amplified with 2 different pairs of primers. (a) and (c) The first 

pair (Dm_EP_EL_F and Dm_EP_EL_R) was designed to amplify a 2478 bp. Different alleles show different 

size amplicons from the control y w. (b) and (d). The second pair (Dm_EP_F and Dm_EP_R) was designed 

to amplify a 298 bp. 

 

The first pair of primers (Dm_EP_EL_F and Dm_EP_EL_R) was designed to amplify a 2478 bp 

amplicon in wt flies (y w) or flies carrying the FM6 balancer (Figure 29 a) and c)). In the revertant 

the PCR analysis also resulted in a 2478 bp amplicon, as the P-element footprint does not 

produce a significant amplicon size difference. In flies carrying deletions, the PCR analysis 

revealed a band smaller than 2478bp or no amplicon. Failure to detect an amplicon was likely 

due to a large deletion that prevented primer annealing and DNA amplification. In this case, the 

stock was discarded as the deletion may affect not only CG1847 but also surrounding genes 

(Figure 28). The second primer of pair Dm_EP_F and Dm_EP_R was design to amplify a 298 bp 

amplicon in y w flies or flies carrying the balancer chromosome FM6 (Figure 29 b and d). 

Therefore, I expected that “non mutant” alleles would produce a similar 298 bp DNA amplicon 

(or slightly larger in case -the footprint of the P-element was still present). 

One excision Δ125A (named CG1847exon1_3 thereafter) exhibited promising results that led to its 

selection as a loss-of-function allele. This allele carries a deletion of 1512bp in the CG1847 locus 

that encompasses exon 1, 2 and part of exon 3 (Figure 30). 

La
d

d
er

y
w

FM
6

Δ
2

.2
A

Δ
2

.1
1

A

Δ
 2

.5

Δ
2

.1
1

B

Δ
2

.1
4

A

Δ
2

.1
4

B

3000 bp

500 bp

w
at

er

Δ
 2

.8
F

Δ
2

.1
4

C

Δ
2

.1
5

A

Δ
2

.1
6

A

Δ
2

.1
6

B

Δ
2

.1
6

C

Δ
2

.1
9

Δ
2

.2
0

La
d

d
er

yw Δ
2

.2
A

Δ
2

.1
1

A

Δ
 2

.5

Δ
2

.1
1

B
Δ

2
.1

4
A

Δ
2

.1
4

B

w
at

er

Δ
 2

.8
F

Δ
2

.1
4

C
Δ

2
.1

5
A

Δ
2

.1
6

A

Δ
2

.1
6

B

Δ
2

.1
6

C

Δ
2

.1
9

Δ
2

.2
0

500 bp

300 bp

Δ
2

.2
A

1000 bp

La
d

d
e

r

y
w

FM
6

Δ
2

.3
9

A

Δ
 2

.3
9

B

w
at

e
r

Δ
 2

.3
9

C

3000 bp

1000 bp

500 bp

Δ
 2

.3
9

D

Δ
2

.4
0

A

Δ
 2

.4
0

B

Δ
 2

.4
0

C

Δ
 2

.4
4

A

Δ
2

.4
4

B
Δ

 2
.4

4
C

Δ
 2

.4
5

Δ
 2

.4
9

Δ
2

.5
0

A

Δ
 2

.5
0

B

y
w

FM
6

Δ
2

.3
9

A

Δ
 2

.3
9

B

w
at

e
r

Δ
 2

.3
9

C

Δ
 2

.3
9

D

Δ
2

.4
0

A

Δ
 2

.4
0

B

Δ
 2

.4
0

C

Δ
 2

.4
4

A

Δ
2

.4
4

B

Δ
 2

.4
4

C

Δ
 2

.4
5

Δ
 2

.4
9

Δ
2

.5
0

A

Δ
 2

.5
0

B

300bp



 

 

114 

 

 

 

Figure 30: Creation of CG1847 knockout fly line. 

CG1847exon1_3 is a loss-of-function allele, having deleted 

1512bp containing exon 1, 2 and part of exon 3. PCR from 

adult fruitfly DNA using primers designed for a 2478bp 

product. Lane 1: sample 125A extracted only from 

females (heterozygous) as there were no viable males. In 

this PCR the normal size CG1847 was less amplified 

probably due to the polymerase primarily amplifying the 

smaller mutant fragment (approx. 1000p) rather than the 

larger (2478bp) wild-type fragment. Lane 2: yellow white 

fly was used as controls; Lane 3: empty lane, Lane 4: water 

control, Lane 5: size marker. 

To confirm the deletion, we sequenced the DNA amplicon obtained in CG1847exon1_3 flies using 

the diagnostic primers (Figure 28). The Sanger sequencing identified the excision of 1512bp 

(exon 1, 2 and exon 3) creating the CG1847exon1_3 mutant. A schematic representation of the 

mutant is shown in Figure 31. 

 

Figure 31: Schematic diagram of the CG1847 locus in wt and CG1847exon1_3 mutants. Intron and exon 

boundaries are based on the sequencing results of CG1847exon1_3 mutants. 

 

This mutant allele is homozygous and hemizygous lethal, confirming the results obtained with 

CG1847 RNAi and reinforcing the notion that CG1847 is an essential gene. The CG1847exon1_3 

mutant was used in subsequent experiments to analyse CG1847 function. 

In the same mutagenesis experiment, I also generated a control stock via precise excision of the 

P-element. As this revertant originates from the same genetic background as the mutant, it can 

therefore be used as a control (see below for details). For initial characterisation of stocks from 

the P-element excision screen, genomic DNA from heterozygous flies was analysed by PCR 

technique (primer sequences Appendix 5). For detecting the control stock the flanking primers 

were designed in such a way that they will amplify a 298 bp amplicon around the area of P-

element insertion. Identification of CG1847 revertant stocks was based on detection of a higher 
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amplicon than the 2 controls (y w stock and FM6/FM6 females resulting from the same cross). 

Figure 32 is a representative agarose image gel for detecting the revertant stock. 

 

Figure 32: Agarose gel of PCR results - selected 

stocks resulted from the P-element excison 

screen. Identification of alleles which have lost 

the P-element via precise excision. The pair of 

primers (Dm_EP_F and Dm_EP_R) was designed 

to amplify a 298 bp. Some of the stocks show 

different size amplicons from the 2 different 

controls (y w and homozygous FM6 females). 

Samples 2.39A-2.39D shows an amplicon only 

slightly longer than the controls. 

 

The primer pair Dm_EP_F and Dm_EP_R was designed to amplify a 298 bp amplicon in wt flies 

(y w) or flies carrying the FM6 balancer chromosome. In the PCR screening, a “revertant control” 

was expected to display a slightly larger amplicon than the controls, due to the fact that a few 

bp of the P-element are usually not excised when the transposon is mobilised and is excised 

correctly (the transposon footprint). As the transposon footprint indicates that the P-element 

was correctly excised, it also indicated that these alleles did not contain a genomic deletion of 

the CG1847 gene. 

Based on the PCR screening, four excision stocks 2.39A-2.39D were selected as precise excision 

controls for RNA-seq. As all 4 stocks showed similar footprint sizes, I confirmed the sequence of 

one of them (stock 2.39A) by Sanger sequencing. DNA was extracted from males which are 

hemizygous for P-element excision (Figure 33). 

 

Figure 33. Comparation between the CG1847wt sequence and the chromatograms of CG18472.39A. The 

CG18472.39A stock presents a 15 bp expected insertion (footprint). 
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The females lacking FM6 balancer chromosome (homozygous for P-element precise excision) 

are also viable. Although the precise excision control lacks the transposon, it is possible that the 

P-element footprint sequence may disrupt CG1847 expression, if it is located in a conserved 

genomic area that has regulatory functions. To determine whether this was a likely possibility, I 

performed a BLAST alignment of the CG1847 region in the vicinity of the P-element footprint, 

using as a reference the Drosophila melanogaster UCSC Genome Browser (Figure 34). 

 

Figure 34: BLAST alignment. The DNA sequences of the region immediately surrounding the foot print of 

the P-element was blasted using UCSC Genome Browser to determine if the area has a high degree of 

conservation. 

Despite the fact that the original P-element was inserted in the 5’UTR of CG1847, the BLAST 

analysis revealed that the remaining P-element footprint is not in a conserved region and, 

therefore, it is unlikely that it affects CG1847 expression levels. However, for Drosophila 

melanogaster it was not possible to evaluate if in the proximity of this area are any consensus 

binding sites for transcription factors (the online databases are not as complete as human 

databases). Consequently I was not able to determine if the footprint of the P-element might 

disrupt such a binding site for a transcription factor, with further consequences on the 

expression of CG1847. 

3.4.4 CG1847exon1_3 mutant display total loss of CG1847 expression 

To confirm that CG1847exon1_3 is a CG1847 null allele, CG1847 gene expression was analysed by 

RT-PCR performed using RNA extracted from 48 h hemizygous mutant male larvae. As controls 

RNA samples extracted from either 48 h y w larvae or from y w male adults were used (Figure 

35). However, none of the controls were the appropriate ones as the RNA extracted from 48 h 

larvae started from a mix of males and females collection, while the adults are known to have 

different levels of CG1847 expression. 
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Figure 35: CG1847 expression in mutant male larvae. A) RT-PCR amplification products from CG1847 48h 

mutant male larvae and controls (48 h y w larvae and y w adult). Upper panel: CG1847 RT-PCR (165 bp 

product); Lower panel RpL32 RT-PCR (housekeeping gene, 120 bp product). B) CG1847 gene expression in 

mutant larvae was quantified by semiquantitative RT-PCR. RT-PCR was performed using specific primers 

on total RNA isolated from mutant male larvae and controls. Data shown as average of mean target gene 

normalized to the control gene RpL32 of three independent experiments. Error bars represent SE. 

Asterisks indicate statistical significance as determined by Student’s t-test (*P<0.05, **P<0.01).  

CG1847 expression was not detected in male larvae hemizygous mutants indicating that this is 

a null allele. This was associated with 100% lethality. Interestingly, the levels of expression of 

the housekeeping gene were increased in mutant larvae revealing possible increased 

proliferation in the mutant male larvae. For more details see Discussion section. 

3.4.5 Lethality occurs in late larval stage of development 

To determine at which developmental stage lethality occurs in CG1847 mutants, I balanced the 

CG1847 mutant allele over a balancer chromosome containing a fluorescent marker (FM7c, 

Dfd::YFP (Table 4)). 

Embryos were collected for 4 h (details in section 2.2.10). I counted the larvae produced at 

various time points during development. Two separate collections were performed for each 

stage of development. In this stock four different genotypes are possible in each generation, due 

to allele segregation and combinations of X and Y chromosomes. Consequently, each genotype 

should count for 25%. However, homozygous FM7c females are not viable, so each genotype 

should count for around 33.3% at any time point during development. However, the 

homozygous FM7c dfd::YFP females cannot be differentiated from the heterozygous FM7c 

dfd::YFP larvae and, consequently, the moment of their lethality was not able to be precisely 

established. 
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24 h 194 (66.9%) 96 (33.1%) 

48 h 65 (72.3%) 25 (27.7%) 

72 h 471 (89.1%) 58 (10.9%) 

96 h 218 (100%) 0 (0%) 

Table 16: Determination of lethality stage during development. Larvae were counted at 24, 48, 72 and 

96 h AEL, and selected based on the presence or absence of fluorescence (dfd-YFP). Numbers represent 

total number of larvae counted in 2 separate experiments. Red represents significantly reduced numbers 

than expected.  

From a total of 290 larvae counted at 24 h AEL, there were 194 controls (FM7c, Dfd::YFP) and 96 

hemizygous mutant males (CG1847exon1_3/Y). This was in accordance with Mendelian inheritance 

as the mutant genotype should count for around 33% out of the total number of larvae (Figure 

36). On the other hand, from a total of 529 larvae counted at 72 h AEL there were 471 controls 

and just 58 hemizygous mutant male larvae (just 10% of the total viable larvae –Table 16). A chi-

square analysis indicated that significant mortality of CG1847exon1_3/Y males was associated as 

the ratio of the genotypes obtained (8:1) was significantly different from the expected (2:1) ratio 

based on Mendelian segregation. The total number of larvae counted was 1127. The observation 

that our genotyping at 48 h AEL indicated a control /hemizygous mutant frequency of 2.6:1, 

indicates that the lethality of mutant Drosophila males occurs after this developmental point 

and before reaching 72 h AEL. 

Together, these data indicate that CG1847 is an essential gene in fruit flies, as total deletion of 

CG1847 leads to lethality during the 2nd instar stage of larval development. This stage begins 

immediately after the first larval molt and takes approximately 24 hours at 25°C. Larvae are very 

small, but they are active and very mobile in the food. The salivary glands extend to the first 

abdominal segment and the larvae are actively feeding with the food medium. Unfortunately 

the available information regarding the development of Drosophila during the second instar 

stage (L2) is very scarce. Detailed description of fruitfly normal development was presented by 

Hartenstein in 1993, but his investigations were focused mainly on embryonal, 3rd instar (L3) and 
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pupal stages286. Consequently it is very difficult to speculate which might be the tissues and 

organs affected by loss of CG1847. 

 

Figure 36: Survival rate between 24 and 96 h AEL. The numbers represent averages of percentages of 2 

separate countings for mutant (grey) versus control fluorescent (green) larvae. At 24 h AEL the percentage 

of mutant larvae reaches the expected value of 33%, but is dramatically decreased by 72 h AEL. No 

CG1847exon1_3/Y larvae could be found by 96 h AEL in 2 separate countings of a total of 218 larvae 

 

3.4.6 Abnormal larval development in CG1847exon1_3 mutants 

To further analyse the impact of CG1847 loss of function, we focused on the early larval stages, 

before lethality occurs. I compared the phenotype of mutant male larvae with the offspring that 

expressed the YFP fluorescent marker present in the same 4 h AEL eggs collections (Figure 37). 

Apart from the obvious stop in larval growth, I was unable to detect any obvious phenotype that 

could predict the cause of lethality, or might be indicative of the organs and tissues affected by 

loss of function of CG1847 (Figure 37A). 

I first investigated these larvae ability to eat. However, evaluation of food consumption in the 

fruit fly is quite challenging as, in contrast to mammals, food ingestion cannot be properly 

quantified. To overcome this problem, I evaluated the food intake of mutant larvae by feeding 

them on gelled media marked with a visible dye287,288. Surprisingly, I was able to notice the 

presence of food even in the gut of the 72 h mutant larvae.  

I also attempted larvae dissection and Trypan blue staining which did not reveal any necrotic 

tissues. 
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Figure 37: Delayed larval development in CG1847exon1_3 mutants. The mutant male larvae show retarded 

growth. (A) Third instar larvae (72 h AEL) orientated with the anterior end to the top. Hemizygous 72 h 

CG1847exon1_3 mutant larvae are shorter and slimmer than the control dfdYFP larvae. (B) Larval length 

analysis at different developmental stages. Error bars represent SE. Asterisks indicate statistical 

significance as determined by Student’s t-test (**P<0.01, ns=not significant). 

 

Apart from being shorter and slimmer than the control dfdYFP larvae, the 72 h CG1847exon1_3 

mutant larvae did not displayed any other significant phenotypic differences. However, the 72 

h mutant males appeared to be less mobile than the controls. The length difference between 

hemizygous CG1847exon1_3 mutant larvae and control dfd::YFP is detectable at the beginning of 

the second instar larva (L2), although without reaching a statistical significance. The halt in 

development is significantly more obvious by 72 h AEL.  

Further more detailed investigations are required to determine more specific phenotypes which 

could be indicative of the cause of death. 

3.4.7 The lethality of CG1847 mutants can be rescued by expression of CG1847wt under 

the control of its own promoter 

To confirm that the lethality of CG1847exon1_3 is due to the absence of CG1847 and not due to 

the P-element imprecise excision affecting additional genes, I tested whether the CG1847exon1_3 

mutant could be rescued by reintroducing the normal allele on the mutant background. A 

genomic rescue construct containing the entire CG1847 gene with its own promoter and 

regulatory elements was generated (section 2.4.3) and injected into Drosophila embryos to 

obtain transgenic lines. Transgenic flies were subsequently crossed to the CG1847exon1_3 mutant 

and examined for their capability to rescue the lethality. The degree of rescue was analysed by 

counting all the males and comparing the percentages of each viable male genotype in the 

second generation (Figure 38). 
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Figure 38: Results of rescue experiments. Images of male genotypes resulted from rescued cross with 

full-lenght wild-type CG847 gene. The segregation of the alleles and the possible combinations are shown 

in the lateral panels. a) Rescued males. They inherited only the mutant allele on the X chromosome (from 

their mothers), but are rescued by CG1847 normal allele on the second chromosome. Males c) are not 

viable because they inherited the other second chromosome from father (CyO), which can not 

compensate for the deletion inherited from mother. This genotype (C) also acts as an internal negative 

control. 

Males CG1847
exon1_3

/Y; GC1847/+ (Figure 38A) are the rescued genotype. On the X chromosome 

they have the mutant allele, inherited from the mother. They are rescued by the wt CG1847 

gene reintroduced on the second chromosome and inherited from the father. The genotype 

CG1847
exon1_3

/Y; +/CyO is not viable as the balancer chromosome (CyO) is inherited from the 

father. Consequently, they have no wt copy of CG1847. 

NOTE: the genotype CG1847exon1_3/Y; +/CyO (c) should not be viable and should act as an internal 

negative control. However, I did find a reduced number of males that were phenotypically 

similar. In reality these males were the result of a non-disjunction phenomenon and they carried 

a normal CG1847 allele on the X chromosome, inherited from paternal line. For more details on 

the non-disjunction phenomenon see Discussion in Chapter 5. As among the rescued genotype 

there were also a few males which were the result of non-disjunction, in all the crosses we 

checked if the differences between the rescued males and the internal negative control 

(CG1847exon1_3/Y; +/CyO) reached a significant statistical difference. 

The CG1847 rescue construct allowed rescue of the lethal phenotype. Mutant males expressing 

this construct developed normally and exhibited normal behaviour. To evaluate the rescue 
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capacity of the CG1847 construct we used males from 2 transgenic stocks (CG1847-1M and 

CG1847-3M) and for each of these stocks the rescue crosses were performed in triplicate. The 

percentages of each of the above genotypes are plotted below (Figure 39). 

 

Figure 39: Rescue experiment of the CG1847 lethal phenotype with a wt CG1847 construct. The 

associated letters (a-d) correspond to the phenotypes depicted in Figure 38. Analysis of the statistical data 

reveals that the CG1847 rescue construct is capable of rescuing significantly the lethality of the CG1847 

mutant, based upon the relative normal percentage of rescued males. CG1847-1M and CG1847-3M – 2 of 

the transgenic stocks carring the rescue construct. N=4 experiments. Error bars represent the standard 

error of the mean. Asterisks indicate statistical significance as determined by Student’s t-test (**P<0.01). 

Interestingly, the CG1847wt construct rescued the lethality of the mutant males very efficiently 

as, in both experiments, this genotype is the most represented genotype amongst all offspring. 

Based on the expected Mendelian distribution, the percentage of each male genotype should 

be around 33% of the total number of viable adult males (only 3 genotypes are viable). The 

percentage of rescued males varied between 33.5% and 65.9% in all 4 experiments (an average 

of 52.2%). When males from transgenic line CG1847-1M were used, I detected a small 

percentage of flies that appeared to have the phenotype of the lethal combination 

(CG1847exon1_3/Y; +/CyO). These were in fact the result of chromosomal non-disjunction and 

were found in a significantly lower percentage than the percentage of rescued genotype. 

To further validate these experiments, I also counted the eclosed females from each experiment. 

Four female genotypes were expected according to Mendelian inheritance (combination of 2 X 

(X and FM6) chromosomes and 2 second (wt CG1847 gene and CyO) chromosomes). The 

**
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percentage of each genotype was used to evaluate if the female genotypes are in normal 

distribution, as this would validate the results obtained with the males (Figure 40). 

 

Figure 40: Chi squared contingency test for the 

distribution of female’s genotypes. In the rescue 

experiment with the CG1847wt construct 4 

different female genotypes are possible (as result 

of combinations of X and second chromosomes). 

For plotting purposes each female genotype 

received a code (a - d) and a colour: a 

(CG1847exon1_3/X; CG1847/+) – red; b 

(FM6/X;CG1847/ +)– green; c (CG1847exon1_3/X; 

CyO/+) – blue; d (FM6/X; CyO/ +)– brown. There 

is no significant difference in the distribution of 

female genotypes between the F1 generation of 

CG1847wt rescued experiment with the 2 

transgenic stocks (P = 0.07).  

Figure 40 depicts a chi square analysis of the 4 possible female genotypes in the F1 generation 

of the rescue cross. For biological replicates were used males from two different transgenic 

stocks, carrying the same CG1847 construct (CG1847-1M and CG1847-3M) generated by 

BestGene. This analysis reveals that the 4 female genotypes do not differ significantly between 

the 2 experiments with the 2 transgenic stocks, as expected. These results validate the rescue 

and the previous data regarding the rescue of male lethality providing extra proof that this 

experiment was successful. 

3.4.8 Tissue specific hAIPwt expression cannot compensate for CG1847 deletion 

The Gal4-UAS system has evolved into a widely used and valuable tool for the temporal and 

spatial control of gene expression in Drosophila285. As mentioned above, I was unable to detect 

any overt phenotype that might account for the lethality of CG1847 mutants, or which might 

indicate the organs and tissues affected by CG1847 loss (section 3.3.5). Therefore, I decided to 

use the Gal4-UAS system to perform rescue experiments in a tissue-specific manner that is, 

expressing CG1847 under the control of tissue-specific promoters. 

Among the GAL4 drivers available in public databases, I chose 10 drivers that allowed me to 

overexpress human AIP cDNA in various tissues and organs. The panel of 10 GAL4 drivers 

selected for overexpression of hAIP in the CG1847 mutant background (Table 4 and Figure 41) 

has an expression pattern that ranges from ubiquitous to restricted to a specific tissue or cell 

type such as fat body, haemocytes, insulin secreting cells, muscle, nervous cells, glial cells, gut, 

malpighian tubules cells, and heart specific drivers. 
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The rescue experiments were performed using virgin heterozygous CG1847 mutant females 

expressing Gal4 under the control of tissue-specific drivers, which were crossed with males 

carrying a UAS-hAIPwt transgene on the second chromosome (hAIPwt/CyO; two different stocks 

were used: UAS-hAIPwt-1M and UAS-hAIPwt-2M). The tissue-specific promoters were introduced 

in the heterozygous mutant background either on the second chromosome (CG1847exon1_3/FM6; 

Gal4/CyO) or third chromosome (CG1847exon1_3/FM6; Gal4/TM3). All progeny (males and 

females) were counted and the numbers of rescued males, non-FM6 non-CyO/non-TM3, were 

determined. 

NOTE: more details regarding the validation of the rescue experiments with hAIPwt constructs 

can be found in Chapter 5. 

 

Figure 41: Rescue of the CG1847 lethal phenotype by ubiquitous or tissue-targeted overexpression of 

wt hAIP. Analysis of the statistical data reveals that the pUAS-hAIPwt construct rescues the lethality of 

the CG1847 mutant only when expressed under the actin promoter. None of the tissue-specific promoters 

was able to prevent lethality. Asterisks indicate statistical significance as determined by Student’s t-test 

(****P<0.0001). 

Expression of hAIP under the control of the ubiquitously expressed Act-Gal4 driver rescued the 

decreased viability of the CG1847exon1_3 hemizygous males. I obtained CG1847exon1_3/Y; 

hAIPwt/Act-Gal4) progeny at very high percentages (33% of total viable males). These results 

indicate that hAIP is able to compensate for loss of CG1847 during development, which strongly 

suggests that, indeed, CG1847 is the fruit fly orthologue of AIP. 

ns

****



 

 

125 

 

However, when tissue-specific drivers were used, the lethality associated with CG1847 deletion 

was not rescued. A very small number of flies with the apparent phenotype of the lethal 

genotype combination were recovered during these experiments but, as discussed above and in 

Chapter 5, these were in fact the result of the non-disjunction phenomenon).  

As seen in Figure 24 during larval stages the CG1847 is already expressed in some of these cells/ 

tissues (fat body, muscle, nervous cells gut, and malpighian tubules cells); however, the levels 

of expression are very low. While it seems that at this stage of development CG1847 is not 

expressed in heart cells, there are no available information regarding the expression levels on 

glial cells, haemocytes, and insulin secreting cells. 

3.4.9 Identification of differentially expressed genes by high-throughput RNA 

sequencing  

The main aim of the RNA-seq analysis was to identify the genes whose expression is affected in 

CG1847 mutants, as this might allow a deeper understanding of the AIP involvement during 

development and the pathogenic mechanism resulting from AIP mutations in humans. To 

investigate the changes in the Drosophila transcriptome elicited by loss of CG1847, I used the 

CG1847 null mutant stock and the control stock, both generated in the same imprecise/precise 

excision screen. Both stocks were balanced over a balancer chromosome carrying a fluorescent 

marker (FM7c, dfd:YFP) and male larvae were selected based on the lack of fluorescence (section 

2.2.10). 

Total RNA was extracted from pooled collections of male larvae (either mutant or control) at 48 

h AEL. The RNA quality of the RNA samples was assessed using an Agilent 2100 bioanalyzer, 

which performs a reliable RNA integrity test based on the RIN values (RNA Integrity Number) 

(Figure 42). 

The Agilent RNA bioanalyzer software relies on the human rRNA Ratio [28S / 18S] to generate 

RIN values. However, since Drosophila possesses different rRNA values, I was unable to calculate 

the RIN values for the RNA samples used in the RNA-seq approach. Consequently, I evaluated 

the quality of the RNA samples based on their gel migration pattern. Four biological replicates 

of control larvae and four biological replicates of CG1847 mutants with highest quality were 

submitted for comprehensive RNA-seq in order to achieve a better understanding of the 

mechanism(s) by which loss of AIP promotes organism lethality. 
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Figure 42: RNA Quality Control. A) Gel Image (from the Agilent 2100 Bioanalyzer) for Drosophila larvae 

total RNA. Lane 1: size ladder. Lanes 2-8 show very high quality RNA for 4 control and 3 mutant samples 

(high-quality sample appear as two distinct bands corresponding to the 18S and 28S ribosomal RNAs). B) 

and C) Electropherograms (from the Agilent 2100 Bioanalyzer) for Drosophila larvae total RNA for a control 

and a mutant sample (two well-defined peaks corresponding to the 18S and 28S ribosomal RNAs can be 

observed, similar to a denaturing agarose gel).  

 

The raw results from the Illumina Hi-Seq were cleaned for removing the adaptors, then the 

FASTQ files were exported for analysis in Bowtie257 and TopHat258 to generate the database of 

transcripts. FastQC, a key quality control step, was applied to reveal possible problems regarding 

the quality of RNA-seq raw data (FastQC results in Material and Methods section). For the next 

steps Cufflinks was run for each sample separately to obtain the fold-change of differentially 

expressed genes. The final results were assembled into a single merged.gtf file. 

An example of merged.gtf file for the top significantly changed transcripts is shown in Table 17. 

This file contains, for each transcript: test id (XLOC_...), gene name, genomic locus, sample 

values, logarithmic fold change, p value, q value, and the corresponding FlyBase number. This is 

only a small part from the original merge.gtf file, with some of the most significantly changed 

transcripts. The original file is too big to be included in the thesis, as in total 15011 transcripts 

where detected by the RNA-seq, of which 448 were significantly changed compared to controls 

(p value <0.05). The table with all these 448 transcripts can be found at Appendix 11. 

From the initial list, the top 400 transcripts (cut off fold change ±1; p value <0.05) were chosen 

for further analysis. As expected, CG1847 was one of the most significantly downregulated 

transcripts in CG1847 KO mutants (fold change –2.6, p value = 0.00005). 

 

A)

B) Mut 6

C) Ctr 8
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Table 17: Example of an excerpt from merged.gtf file The top down (<-2.0) and up-regulated (>2.0) 

transcripts are represented (separated by a thick line) 

 

The first step in RNAseq data analysis was to search for the significant changes of AIP known 

partners, such as AhR, a major AIP partner. The Drosophila orthologue for human AhR is called 

spineless (ss) and its levels of expression were surprisingly not significantly changed in the 

test_id gene locus Ctr Mut log2(fold_change) p_value q_value oID_genes

XLOC_009430 Hsp70Bbb 3R:8328231-8330822 6.44653 0.0622877 -6.69343 0.0001 0.00842937 FBgn0051354

XLOC_000064 Lsp1beta 2L:898643-901316 21.4665 0.259455 -6.37046 5.00E-05 0.00482773 FBgn0002563

XLOC_011176  αγ-element:CR32865 3R:8295701-8304065 170.163 7.67604 -4.47041 5.00E-05 0.00482773 FBgn0052865

XLOC_005304 IM23 2R:14270208-14270737 15.65 0.990021 -3.98256 5.00E-05 0.00482773 FBgn0034328

XLOC_011881 Hsp68 3R:19880139-19883029 186.155 14.6101 -3.67146 5.00E-05 0.00482773 FBgn0001230

XLOC_003924 CG10073 2R:15268047-15272470 81.7048 6.95278 -3.55476 5.00E-05 0.00482773 FBgn0034440

XLOC_002448 TepI 2L:15888638-15893811 0.736172 0.0691253 -3.41276 5.00E-05 0.00482773 FBgn0041183

XLOC_003925 CG10081 2R:15273427-15276823 50.3374 4.9139 -3.35669 5.00E-05 0.00482773 FBgn0034441

XLOC_005673 CG3264 2R:18096411-18098247 106.57 12.7437 -3.06395 5.00E-05 0.00482773 FBgn0034712

XLOC_014779 CG34330 X:18962305-18962925 153.186 20.898 -2.87385 5.00E-05 0.00482773 FBgn0085359

XLOC_013279 CG1847 X:11763220-11765201 7.15024 1.00986 -2.82384 5.00E-05 0.00482773 FBgn0030345

XLOC_008002 Hsp26 3L:9369517-9370475 506.525 77.7273 -2.70414 5.00E-05 0.00482773 FBgn0001225

XLOC_009431 Hsp70Bb 3R:8331514-8334105 51.4734 8.05832 -2.67528 5.00E-05 0.00482773 FBgn0013278

XLOC_009432 Hsp70Bc 3R:8334797-8337183 14.8785 2.36561 -2.65295 5.00E-05 0.00482773 FBgn0013279

XLOC_003992 CG13422 2R:16413831-16414331 8.78264 1.50562 -2.54429 0.00015 0.0112194 FBgn0034511

XLOC_001134 ninaD 2L:18081629-18083608 2.54273 0.43689 -2.54104 5.00E-05 0.00482773 FBgn0002939

XLOC_011175 Hsp70Ba 3R:8291025-8293500 9.46209 1.6779 -2.4955 5.00E-05 0.00482773 FBgn0013277

XLOC_004016 IM14 2R:16757896-16758183 28.9807 5.21566 -2.47417 0.0012 0.04902 FBgn0067905

XLOC_006565 Hsp23 3L:9374981-9375865 380.894 70.5371 -2.43294 5.00E-05 0.00482773 FBgn0001224

XLOC_006566 Hsp27 3L:9377162-9378382 191.486 35.5828 -2.42798 5.00E-05 0.00482773 FBgn0001226

XLOC_014469 mamo X:13744880-13884528 0.754739 0.140359 -2.42686 5.00E-05 0.00482773 FBgn0030532

XLOC_001238 CG16772 2L:19962678-19963844 3.01629 0.563837 -2.41943 0.0001 0.00842937 FBgn0032835

XLOC_001566 CG15353 2L:2006762-2007193 296.896 57.2366 -2.37495 5.00E-05 0.00482773 FBgn0040718

XLOC_003841 IM2 2R:14274101-14274535 41.7845 8.13862 -2.36011 0.0001 0.00842937 FBgn0025583

XLOC_013810 CG13360 X:678823-684312 123.1 24.1893 -2.34739 5.00E-05 0.00482773 FBgn0025620

XLOC_003839 IM1 2R:14271456-14271883 58.4099 12.4957 -2.22478 0.0001 0.00842937 FBgn0034329

XLOC_007314 CG32444 3L:21630046-21632160 59.4285 12.8388 -2.21065 5.00E-05 0.00482773 FBgn0043783

XLOC_005615 CG30289 2R:17406747-17409482 2.97581 0.667241 -2.157 0.00045 0.0246363 FBgn0050289

XLOC_006292 CG11350 3L:4482808-4484370 1205.94 271.73 -2.14991 5.00E-05 0.00482773 FBgn0035552

XLOC_006562 Hsp22 3L:9365821-9368064 184.278 42.7333 -2.10845 0.0005 0.0268207 FBgn0001223

XLOC_006562 Hsp67Bb 3L:9372722-9374964 184.278 42.7333 -2.10845 0.0005 0.0268207 FBgn0001228

XLOC_007387 CG13239 3L:22853886-22854590 2.45051 10.5349 2.10403 0.00025 0.0161905 FBgn0037197

XLOC_003096 PGRP-SC1b 2R:4600948-4601587 19.1541 82.845 2.11276 5.00E-05 0.00482773 FBgn0033327

XLOC_011912 CG17780 3R:20199175-20210770 5.05373 22.4148 2.14903 5.00E-05 0.00482773 FBgn0039197

XLOC_010154 CG13616 3R:20218631-20219502 5.15558 24.2132 2.23159 5.00E-05 0.00482773 FBgn0039200

XLOC_010088 CG31148 3R:19526359-19528324 7.66618 36.3397 2.24497 5.00E-05 0.00482773 FBgn0051148

XLOC_009691 CG31268 3R:12857538-12859237 11.4359 55.3391 2.27473 5.00E-05 0.00482773 FBgn0051268

XLOC_000087 CG42329 2L:1219317-1229802 0.947499 4.65085 2.2953 5.00E-05 0.00482773 FBgn0259229

XLOC_004842 Damm 2R:7751665-7753908 4.32486 21.288 2.29932 5.00E-05 0.00482773 FBgn0033659

XLOC_009915 TotC 3R:16698709-16699310 1.90684 9.76976 2.35714 5.00E-05 0.00482773 FBgn0044812

XLOC_000287 CG33003 2L:4400952-4403142 3.33855 17.4334 2.38456 5.00E-05 0.00482773 FBgn0053003

XLOC_005578 Cht4 2R:16952884-16954592 26.7254 146.95 2.45904 5.00E-05 0.00482773 FBgn0022700

XLOC_009223 CG8147 3R:5320033-5322675 0.801251 5.04261 2.65384 5.00E-05 0.00482773 FBgn0043791

XLOC_003686 CG15919 2R:12680161-12680585 5.52152 37.6471 2.7694 5.00E-05 0.00482773 FBgn0040743

XLOC_006653 CG12522 3L:11101334-11101832 69.8909 477.68 2.77287 5.00E-05 0.00482773 FBgn0036131

XLOC_008168 CG42397 3L:11966184-11966890 3.11117 22.0361 2.82434 5.00E-05 0.00482773 FBgn0259748

XLOC_001815 CG9021 2L:5903358-5904674 0.258776 1.97669 2.93331 0.0002 0.0137935 FBgn0031747

XLOC_009842 CG17751 3R:15432975-15435044 5.39754 42.5566 2.97901 5.00E-05 0.00482773 FBgn0038717

XLOC_008095 CG32071 3L:11096520-11096973 18.3088 161.103 3.13738 5.00E-05 0.00482773 FBgn0052071

XLOC_008037 CG6749 3L:9724337-9726907 0.629835 5.62862 3.15974 0.00025 0.0161905 FBgn0036040

XLOC_010837 snRNA:7SK 3R:3300274-3300718 1.6693 37.6917 4.49693 5.00E-05 0.00482773 FBgn0065099
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mutant larvae. On the other hand, among the top downregulated genes, members of the heat 

shock family of proteins emerged as candidates from the RNA-seq analysis. Interestingly, almost 

all affected heat shock gene transcripts were downregulated in the CG1847 mutant compared 

to the control samples (Figure 43). 

 

Figure 43: RNA levels for heat shock protein genes are downregulated in CG1847 mutants. With the 

exception of Hsp70-2 (detected significantly upregulated), all transcripts beloging to the heat shock 

protein family were detected in RNA-seq as significantly dowregulated (P<0.05). Data is shown as the 

logaritmic fold change of expression levels in the mutant samples. 

 

To find out the functional relationship among relevant genes, the top 400 differential expressed 

genes were mapped using STRING database, by selecting Drosophila melanogaster as a model 

organism. 393 transcripts were recognized by the database and displayed as a network of nodes 

(proteins) connected by coloured edges representing functional relationships of known and 

predicted protein interactions. The map was filtered for non-connected proteins. A medium 

combined score of protein pairs (confidence score) > 0.4 was considered as the cutoff value. The 

STRING confidence score is calculated based on the number and types of evidences that support 

each association (low confidence scores: <0.4; medium: 0.4 to 0.7; high: >0.7). 

As shown in the Figure 44, only one interaction was found for CG1847, with one of the heat 

shock proteins (Hsp83). In humans AIP–Hsp90 is one of the most investigated AIP interactions. 

A number of different groups (Bell & Poland 2000148, Meyer et al. 2000149, Laenger et al. 2009150) 

have shown that specific conserved amino acids of the AIP TPR domains are important for this 
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interaction. Consequently, in CG1847 deficient Drosophila model the members belonging to 

heat shock proteins might be downregulated due to losing these interactions. 

 

Figure 44: STRING analysis: the heat shock protein cluster. Nodes represent proteins whose transcripts 

were identified in the RNA-seq analysis as being differentially expressed in the absence of CG1847. Lines 

connecting individual nodes indicate predicted functional associations. Among these significant genes, 

different members of Hsp family were identified. 

 

The STRING analysis also highlighted a cluster of a very interesting group of proteins called Osiris 

proteins. The Osiris genes belong to a large conserved family which was for the first time 

described in 2003 by Dorer et al. in Drosophila melanogaster289. These proteins have a secretion 

signal peptide and four domains that identify them as Osiris family members; however, there 

are limited publications and their function is still unknown. 12 out of 24 members of this protein 

family were found significantly upregulated in the RNA-seq data. Strikingly, among this cluster 

(Figure 45), were found a few Twdl proteins (TwdlG, TwdlS, and TwdlF). Additionally, different 

members of cuticular proteins (Cpr100A, Cpr47Eg, Cpr49Af, Cpr65Eb, Cpr66Cb, Cpr66D, and 

Cpr97Eb) were also hub nodes in this network. So far no interactions between CG1847 and these 

proteins have been suggested. Twdl and cuticular proteins were previously shown to be involved 

in body size regulation and normal development, as the exoskeleton of insects (cuticle) is mainly 
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formed of chitin and cuticle proteins. The Tweedle proteins are secreted by the ectodermal 

tissues and members of these proteins were shown to also contribute to formation of the 

cuticle290. 

 

Figure 45: STRING analysis: the Osiris, Tweedl and cuticule proteins cluster 

Surprisingly, all transcripts belonging to the Osiris and Tweedl group were upregulated in 

CG1847 mutants (Figure 46). 

 

Figure 46: RNA levels for Osiris and Tweedl transcripts are significantly changed in CG1847 mutants. 

With the exception of some of the cuticular proteins, all transcripts beloging to one of these 3 clusters 

were detected in the RNA-seq as significantly upregulated (P<0.05). Data is shown as the log fold change 

in the CG1847 deficient larvae. 
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To identify the human orthologues for Osiris protein candidates found in the RNA-seq approach, 

I used the BioMart free software (http://www.ensembl.org/) (Table 18).  

Ensembl 
Transcript ID 

Associated 
Gene Name 

Homology Type Transcript ID 
Human Ensembl 

Gene ID 

FBtr0085710 Cpr100A ortholog_none    

FBtr0088183 Cpr47Eg ortholog_none    

FBtr0087921 Cpr49Af ortholog_none    

FBtr0070815 Cpr5C ortholog_none    

FBtr0333582 Cpr65Ax2  ortholog_none    

FBtr0077022 Cpr65Ax2  ortholog_none    

FBtr0076928 Cpr65Eb ortholog_none    

FBtr0076601 Cpr66Cb ortholog_none    

FBtr0076567 Cpr66D ortholog_none    

FBtr0074933 Cpr76Bb ortholog_none    

FBtr0085135 Cpr97Eb ortholog_none    

FBtr0082707 Hsc70-2 ortholog_none    

FBtr0100558 Hsp22 ortholog_many2many FBpp0100010 ENSG00000109846 

FBtr0309504 Hsp23 ortholog_many2many FBpp0301282 ENSG00000109846 

FBtr0076496 Hsp26 ortholog_many2many FBpp0076224 ENSG00000109846 

FBtr0076454 Hsp27 ortholog_many2many FBpp0076182 ENSG00000109846 

FBtr0076495 Hsp67Ba ortholog_many2many FBpp0076223 ENSG00000109846 

FBtr0303473 Hsp67Bb ortholog_one2many FBpp0292525 ENSG00000215845 

FBtr0084589 Hsp68 ortholog_none    

FBtr0082679 Hsp70Ba ortholog_none    

FBtr0082636 Hsp70Bbb ortholog_none    

FBtr0082638 Hsp70Bc ortholog_none    

FBtr0332873 Hsp83 ortholog_none    

FBtr0073040 Hsp83 ortholog_none    

FBtr0078600 Osi10 ortholog_none    

FBtr0078601 Osi10 ortholog_none    

FBtr0078602 Osi12 ortholog_none    

FBtr0078607 Osi15 ortholog_none    

FBtr0078608 Osi16 ortholog_none    

FBtr0078610 Osi17 ortholog_none    

FBtr0078611 Osi18 ortholog_none    

FBtr0081707 Osi19 ortholog_none    

FBtr0301493 Osi19 ortholog_none    

FBtr0081708 Osi20 ortholog_none    

FBtr0078591 Osi24 ortholog_none    

FBtr0078596 Osi6 ortholog_none    

FBtr0078597 Osi7 ortholog_none    

FBtr0078599 Osi9 ortholog_none    

FBtr0078975 TwdlF ortholog_none    

FBtr0078982 TwdlG  ortholog_none    

FBtr0085054 TwdlO  ortholog_none    

FBtr0085049 TwdlQ  ortholog_none    

FBtr0085034 TwdlS ortholog_none    

FBtr0113190 TwdlU  ortholog_none    

Table 18: Human orthologues for Drosophila transcripts 

http://www.ensembl.org/
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0085710
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0039805
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0088183
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0086519
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0087921
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0033729
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0070815
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0029811
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0333582
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0042118
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0077022
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0042118
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076928
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0035736
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076601
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0035875
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076567
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0052029
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0074933
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0036879
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0085135
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0039481
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0082707
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001217
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0100558
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001223
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109846
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0309504
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001224
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109846
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076496
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001225
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109846
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076454
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001226
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109846
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0076495
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001227
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109846
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0303473
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001228
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000215845
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0084589
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001230
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0082679
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0013277
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0082636
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0051354
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0082638
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0013279
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0332873
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001233
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0073040
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0001233
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078600
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037417
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078601
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037417
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078602
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037419
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078607
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037424
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078608
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0051561
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078610
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037427
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078611
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037428
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0081707
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037429
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0301493
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037429
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0081708
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037430
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078591
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037409
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078596
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0027527
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078597
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037414
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078599
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037416
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078975
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037224
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0078982
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037225
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0085054
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0039438
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0085049
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0039448
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0085034
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0039443
http://www.ensembl.org/Drosophila_melanogaster/Transcript/Summary?db=core;t=FBtr0113190
http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0037223
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No human orthologues were found in the human genome for any of members of the Osiris 

family. This is in agreement with the fact that the Osiris gene cluster is a family of genes that is 

present in all insects, but not present in mammals289. Conversely, for a few Drosophila heat shock 

proteins there are more than one single human orthologue. However, some of these proteins 

are Drosophila specific. Interestingly, no orthologue could be found for Hsp83, which is the only 

interacting protein with CG1847 revealed by STRING analysis. 

 

3.4.10 Multiplex qPCR validation of RNA-seq results 

RNA-seq is an extremely useful tool for whole transcriptome quantification, but the results need 

further validation via an alternative molecular technique. Toward this purpose, I employed a 

multiplex qPCR method, performed with the help of collaborators from Royal Veterinary College 

(Dr. Rob Fowkes and Dr Samantha M. Mirczuk). The GenomeLab™ GeXP Genetic Analysis system 

provides accurate simultaneous quantifications for hundreds of samples using very small 

amounts of total RNA. The system uses chimeric primers which are a combination of gene-

specific and universal tags. 

The main goal was to validate the changes in the expression levels of the transcripts possibly 

involved in lethality of CG1847 deficient fruit flies. For this purpose the same larval collections 

as for RNA-seq were used and the RNA was extracted from a pool of male larvae. As the STRING 

analysis of RNA-seq data revealed clusters of interacting proteins of several families (section 

3.3.7), I chose a few transcripts of each cluster/protein family for validation (Figure 49). 

A key feature is the fact that the gene ratio between mutant and control in RNA samples is 

maintained during the PCR process. In the initial stage the reverse transcription of RNA was 

performed with the reverse chimeric primers (containing the gene-specific sequences and 

universal primer sequence). At the end of this step the cDNA library had universal tag sequences 

incorporated into the amplicons. The chimeric primers were designed for 2 housekeeping genes, 

CG1847 and 8 various transcripts with a possible involvement in the lethality mechanism 

(Appendix 5 for primer sequences). In a second step transcripts amplification with a forward pair 

of chimeric primers was performed. In the last step fluorescent dye-labelled forward and 

unlabelled reverse universal primers resulted in a relative and equivalent amplification of all the 

gene targets (Figure 47). 
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Figure 47: Schematic representation of the 3 main stepts of GeXP Genetic amplification. In the first step 

(top panel) chimeric primers were used containing the gene-specific sequences (blue, green and brown 

arrows) tagged with a universal primer sequence (red). In the second step (middle panel), the generated 

cDNA library, having incorporated the universal tag are further amplified via PCR using the forward 

chimeric primers, with a different universal tag (beige). In the third step a fluorescent (purple star) dye-

labelled forward primer and a unlabelled reverse universal primer are used for amplification of all the 

gene targets 

The amplicon mixture was then analysed with fluorescence capillary electrophoresis to identify 

the peak area and then converted to gene-expression values (Figure 48). 

 

Figure 48: Representative electropherograms corresponding to gene expression profiles.  

Representative data generated from mutant (A) and control (B) mRNA samples are shown. The intensity 

versus the size is depicted within a window of 100 to 350 bp. The red peaks are the size ladder, which 

ranges from 140nt to 425nt. The blue peaks are the amplicons corresponding to the genes of interest, 

which were detected by the multiplex qPCR system 

A B
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The gene-expression values were normalized to the RpL32 housekeeping gene, included in the 

multiplex. The final normalized values were used to compare levels of gene expression between 

control and mutant samples (Figure 49). 

 

Figure 49: Multiplex qPCR results. The mRNA levels of 9 specific transcripts that were significantly 

changed detected by the RNA-seq and that were represented in different STRING clusters. Relative 

expression levels are shown as a bar graph. Expression values were normalized to control in order to 

present expression ratios. RpL32 was used as housekeeping gene for normalization of genes of interest. 

Data is shown as mean ± SE. ANOVA was used to assess for statistical differences (*P<0.05).  

In this study I sought to determine if data obtained from the RNA-seq is accurate by testing if 

different techniques reproduce the same results. Data analysis confirmed that the expression 

levels of some of the specific genes were substantially different in mutant larvae, similar to the 

previous RNA-seq data. 

Figure 49 shows the gene expression profile obtained from comparing the level of expression 

between control and CG1847 deficient Drosophila larvae. The results show a marked 

downregulation of CG1847, validating the statistically significant changes detected by RNA-seq 

in the mRNA expression levels. There was also a significant increase in the mutant larvae of the 

expression of both Osiris transcripts selected for validation. This recapitulates the increase in 

Osiris gene expression previously observed in the RNA-seq analysis. TwdlG and both cuticular 

mRNA transcripts found to be involved in the same biological processes as shown by STRING 

analysis, were also validated. Mhc was also tested; this is a protein found to be involved in the 

same biological process as the Osiris, Twedl and cuticular proteins. This transcript was 

significantly downregulated in the mutant samples; however, without reaching a fold change of 

at least -1 and this change in the expression level was not confirmed by the multiplex qPCR.  
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Some of the most drastically differentially expressed genes detected by the RNA-seq were 

clustered with CG1847 and belong to the heat shock family of proteins. The available data 

confirmed that AIP acts as co-chaperone to form a complex with HSP90 and AhR, in order to 

allow nuclear translocation. The majority of heat shock proteins were strongly downregulated 

in the RNA-seq results and this was confirmed by the multiplex qPCR. Of the 2 chosen transcripts 

I was only able to validate the downregulation of Hsp83 in CG1847 mutants. Hsp83 was the only 

direct CG1847 interacting partner found in the STRING analysis (Figure 44). However, despite 

the fact that it was one of the genes with the highest fold change in expression levels in the RNA-

seq analysis (-5.7 Table 17), Hsp70bb transcript surprisingly was not confirmed in the multiplex 

qPCR analysis.  

This technique is simple, very efficient, and cost effective, providing an excellent solution for 

overcoming challenges, such as validation of a high number of transcripts, limited amount of 

sample and costly analysis. Further experiments are required for validation of other transcripts 

detected as significantly changed by the RNA-seq data in order to investigate other possible 

affected pathways by the loss of CG1847. 

 

3.5 DISCUSSION 

In an effort to elucidate the involvement of AIP during development and the pathogenicity of 

human pituitary adenomas associated with loss of function of AIP, I used an in vivo approach to 

assess the function of the fruit fly orthologue of AIP, CG1847. In this chapter, I focused on the 

generation of an in vivo genetic mutant of CG1847 and the initial characterisation of its function. 

Firstly, I used a bioinformatic approach to identify CG1847 as the fruit fly orthologue for human 

AIP. CG1847 is located on the X chromosome. The structure and function of AIP is conserved in 

Drosophila melanogaster. Amino acid alignment of Drosophila CG1847 and human AIP showed 

a high degree of sequence similarity between the 2 proteins, with one third of the amino acids 

being highly conserved. According to the ClustalW algorithm there is a 37.74% overall identity 

between human and Drosophila proteins. The amino acid sequence of CG1847 is highly 

conserved and shares all the proteins domains, both in the N-terminal and C-terminal parts, with 

members of other species. This suggests that the protein retains the same molecular functions 

as the other orthologues. The high degree of conservation of AIP is also an indication that its 

physiological function would also be conserved. To determine whether CG1847 plays a role in 

development, I used in this study three UAS-CG1847-RNAi stocks, carrying 2 different constructs 

targeting different parts of the CG1847 gene. As previously AIP was described as an essential 
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gene in mammals, studies were performed to determine the effect of CG1847 knockdown on fly 

survival. Lethality was classified if no GAL4-driven UAS-RNAi progeny emerged from a cross. 

When crossed to the Act-GAL4 driver, 2 out of 3 UAS-RNAi stocks (UAS-CG1847-R2 and UAS-

CG1847-T2) showed no surviving adult flies. The third stock (UAS-CG1847-R1) resulted in greatly 

reduced numbers of the expected genotype (at 25°) and no RNAi-driven progeny being observed 

(at 29°C). Complete AIP-knockdown lethality is suggestive for CG1847 being an essential gene 

and all these results correlate with the lethality of AIP deficient mice204,291. The result that flies 

with only around 30% residual expression of CG1847 are viable is also a confirmation of previous 

studies which reported that hypomorphic AIP mice have almost normal development181. The 

available human data support the theory that homozygous AIP mutations are not compatible 

with life, while one normal copy is enough for normal development. 

The Gal4/UAS system presents a few very important advantages. Maybe the most important is 

the separation of the driver (Gal4) and the effector (UAS) between two parental lines, which in 

our project allowed us to avoid the parental lethality. Temperature dependence285 of GAL4 is 

another important feature of this system. By simply exposing the flies to lower (around 16°C) or 

higher (29°C) temperatures during development the potency of the system can be decreased 

and increased, respectively. By increasing the ambient temperature, a higher level of expression 

can be achieved266, and this temperature sensitivity feature was used to enhance the expression 

of a weaker RNAi construct, and confirmed the lethality noticed with the other UAS-RNAi stocks 

at lower temperature. 

However, the Gal4/UAS system also has some disadvantages that I had to be aware of. In gene 

expression knockdown experiments based on RNA interference (RNAi) technology, some results 

might be due to off-target effects. These are the result of the cross-hybridization phenomenon 

between the siRNAs molecules and non-target areas in endogenous RNA sequences and outside 

the gene of interest292-294. The occurrence of off-targets effects in RNAi experiments can be 

extensive and significant295. Randomly selected siRNAs can induce toxic changes by reducing cell 

viability in a target-independent fashion292. As a consequence, the resulting phenotypes might 

mislead the functional interpretation of gene silencing294. Whenever possible, good 

interpretation of results should be based on using more than one siRNA, or should be validated 

through an alternative method. The fact that using different RNAi constructs targeting different 

regions of CG1847 RNA resulted in partial or full lethality indicates that it is unlikely that this 

result was caused by an off target silencing. 
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Furthermore, I applied an alternative method. To investigate the mechanisms of CG1847 driven 

lethality and to help understand its role during Drosophila development, a proper loss of 

function mutant was generated via P-element mobilization. Following the imprecise excision 

resulted a CG1847exon1_3 allele that carries a deletion of the entire CG1847 ORF. The total loss of 

expression (Figure 35) together with the fact that homozygous CG1847exon1_3 females and 

hemizygous males are not viable indicates that CG1847exon1_3 is a null allele and that CG1847 is 

an essential gene.  

Unfortunately, this technique also has some potential problems and pitfalls. First, the frequency 

of such imprecise excisions may vary between loci (from 1 in 5 to 1 in 100 events)296,297 and the 

frequency of imprecise excision cannot be predicted from the outset of the experiment. In some 

cases hundreds of crosses need to be generate to achieve an imprecise excision. However, the 

P-element inserted into the 5’ of CG1847 was quite mobile (9%). Another problem that can occur 

is that the mobilized P-element can reinsert. The precise site in the genome where this event 

occurs is unpredictable. If it still carries the white gene, than these re-insertions are easy to 

detect. If the white gene is lost, the second hits are difficult to detect and might lead to mis-

interpretation of the observed phenotypes. The transposase activity can be controlled by adding 

or removing the transposase source. To prevent further mobilisations of the P-element, the 

source of transposase is separated in the subsequent generation by appropriate crossing.  

The third problem regards the issue that the size of the P-excisions are random268, therefore 

there is no guarantee that the desired mutation would not extend to other genes. The size of 

the deletion from the imprecise excision needs to be confirmed by molecular methods, including 

PCR on genomic DNA from heterozygous flies. Care should be taken with designing the necessary 

primers, as it could be extremely challenging to properly map the deletion. As the Drosophila 

genome is very small, upstream and downstream genes might be very close to the gene of 

interest and the design of the primers should be done in such a way to detect those excisions 

that are too large and affect the surrounding genes. One of the generated mutant alleles in my 

screen, CG1847 exon1_3, was confirmed via PCR not to affect the neighbouring genes.  

Consequently, the next obvious step was to validate the fact that the lethality is solely due to 

deletion of CG1847, and that no other genes were affected during P-element excision. 

Transgenic lines carrying wt CG1847 on the second chromosome were able to produce rescued 

males in the second generation (Figure 39). Surprisingly, the percentage of the rescue males 

from the total number of counted viable males was much higher than expected. The percentage 

of the rescued males (from the total number of viable F1 males) suggest that these are very fit 
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for survival during larval stages and they are strong competitors for nutrients. Another possible 

reason might be also the influence of the genetic background. The rescued males 

(CG1847exon1_3/Y; CG1847/+) have no balancer chromosomes. All the other male genotypes in 

the cross have one or even 2 balancer chromosomes (FM6 or/and CyO) and this might reduce 

their fitness. Balancer chromosome carry multiple inverted repeats which can weaken the fly. 

The last but not the least important issue regarding this technique is that some of these P-

element excisions events may only be partially successful – as they may leave some very small 

sequences behind (“footprints”). Around 75% of the footprints are usually very short, 4 or 7 

nucleotides, while the remaining 25% of the footprints might vary between 14–18 nucleotides 

of both inverted terminal repeats298. However, this issue was turned into an advantage as it 

helped generate the control stock, with the same genetic background. 

RT-PCR was used to assess CG1847 RNA expression in mutant male larvae in comparison to the 

same stage control larvae and control y w adult flies (Figure 35). Quantification after 

normalisation to the housekeeping gene RpL32 showed that knocking-out the CG1847 gene 

resulted in total loss of expression. This kind of data normalisation is a standard step in the 

quantification RT-PCR analysis299,300.  

The reliability of any quantitative RT-PCR data is based on including a stable endogenous control 

(reference gene) which allows for proper correction of sample variations. However, the levels of 

expression of any gene, including that of 'typical' housekeeping genes, might vary between 

tissues or between stages of development301. It is very important to choose the appropriate one. 

RpL32 was traditionally considered a very good internal control gene as it has equal transcript 

levels in all cells and in all stages of development302. This is due to the fact that ribosomal 

proteins are involved in protein biosynthetic pathways 303 and play critical roles in the 

development and growth of organisms303. Its levels are also stable in different experimental 

conditions.  

Surprisingly, the levels of expression of the chosen housekeeping gene for our mutant (RpL32) 

were increased in mutant larvae. I was surprised by this observation since, usually, reduced 

growth rates and survival rates are associated with reducing or even abrogating the efficiency 

of protein synthesis304,305. Generally, an increase in ribosome biogenesis is a characteristic of an 

increased cellular proliferation during tissue and organ growth306 and this might be related to 

the increase in proliferation associated with loss of AIP in human pituitary tumorigenesis. 

However, another factor to consider for quantification of gene expression levels is the genetic 

background. As the 2 controls (48 h y w larvae and y w adults) have similar levels of expression 
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for RpL32 suggests that the difference I noticed in mutant male larvae might be due to the fact 

that it has a different genetic background. As a consequence, in RNA-seq experiments I took 

great care in finding the perfect control to compensate for any possible differences in the genetic 

background, by generating both the mutant and the control Drosophila stock during the same 

experiment of P-element excision. 

The lethality of the CG1847 mutants was further investigated and I established that the flies are 

dying in the larval stage, suggesting that CG1847 is critical for survival beyond this point in 

development. These hemizygous mutant male larvae were much smaller in size after 48 h of 

development. No other obvious phenotype was noticed, therefore this did not help in 

understanding of the actual cause of lethality. Regarding the reduced size of the mutant larvae, 

it is necessary to take into consideration a few factors that might influence the larval 

development, in addition to the impact of the loss of CG1847.  

In Drosophila the body size is under the influence of the genetic background, the available food 

(the amount and the quality of food), and/or the environmental temperature during 

development307. It is well-established that temperature influences body size as fruit flies 

exposed to lower temperatures during development are larger than those exposed to higher 

temperature308. It was also found that male larvae have a significantly smaller size (35.6% 

reduction) than females (P = 0.008)309. As a consequence, we have to be cautious before claiming 

that the smaller body size of the mutant male larvae is due solely to the CG1847 deletion. As the 

length of male larvae was compared to the length of all the other fluorescent larvae in that 

collection (including females) this might introduce a bias in the analysis. On the other hand, if 

the loss of CG1847 has an influence in these mutant larvae fitness, then they had a more 

restricted access to nutrients comparing to the other genotypes, and as a result, their size is 

smaller due to undernutrition (which might be the case as they are not only shorter, but also 

thinner – Figure 37). 

Another important advantage of the UAS-Gal4 system is the possibility to target the expression 

of any gene or RNAi construct in a variety of spatial and temporal ways by using distinct Gal4 

drivers238, which can be ordered from public Drosophila libraries. For example, a high number of 

GAL4 drivers are publicly available at the Bloomington Drosophila Stock Centre: 

http://flystocks.bio.indiana.edu/gal4.htm. 

Overexpression of hAIPwt cDNA using the UAS/GAL4 system was employed to investigate if 

CG1847 is the functional orthologue of human AIP and to understand the role of this product in 

different cells/tissues. Numerous previous studies have reported a ubiquitous expression of AIP 
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in human and murine tissues, both at the mRNA and at a protein level139,149,154,159,171. As a 

consequence, it is difficult to determine solely on the literature data in which tissues AIP is more 

important for a normal function in a developing organism.  

As the UAS-GAL4 system can be spatially defined by choosing GAL4-drivers with tissue specific 

promoters, I utilised it to gain a better understanding of where CG1847 expression is more 

important. Surprisingly, overexpression of CG1847 throughout the fly during development using 

the actin-GAL4 driver was capable of rescuing lethal effect of loss of CG1847. However, none of 

the tissue specific Gal4 drivers was able to rescue this phenotype, suggesting that this gene is 

involved in many different processes and it has important function overall in the body. Thus, in 

analogy with other species, CG1847 deficiency is developmentally lethal. To confirm and to 

understand these results I investigated the public available data from modENCODE (Table 19). 

modENCODE (the model organism ENCyclopedia Of DNA Elements) is a key research project of 

the National Human Genome Research Institute (NHGRI)283. 

My data were confirmed by the results of the RNAi screen available on modENCODE, as none of 

the tissue targeted knock down of CG1847 expression resulted in lethality. 

Screen  Gene Phenotype Score PubMed ID 

Heat nociception (1) CG1847 

Increase heat 

avoidance 2.46 21074052 

Lipid storage CG1847 none -0.71 19067489 

Notch pathway regulation (4) CG1847 none 0 19363474 

Adiposity regulation (1) CG1847 none 0.48 20074523 

Heart development and function (1) CG1847 none 0.8 20371351 

Dendrite pattern formation CG1847 none np 16547170 

Muscle morphogenesis and function (1) CG1847 none np 20220848 

Cell size and cell-cycle regulation (1) CG1847 none sp 16496002 

Glycosylation regulation (1) CG1847 none sp 21203496 

 

Table 19: modENCODE RNAi screen for CG1847 (http://intermine.modencode.org/release-

33/results.do?noSelect=true&table=coll854&trail=%7Cresults.coll854) 

Studies involving mouse models revealed that AIP is essential for development, as lack of this 

product led to lethality during embryonic development. Further investigations described AIP 

involvement in cardiac development as the embryos displayed a range of heart deformations, 

including double outlet right ventricle, ventricular-septal defects, and pericardial oedema204. 

Unfortunately the exact molecular mechanisms and the exact partner via which AIP total 

deficiency leads to loss of viability is still not fully understood, and further work is required to 

identify the key proteins and pathways involved. 
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In summary, ubiquitous CG1847 expression is essential for survival to adulthood and the 

generated null mutant can be used for further investigations necessary for understanding its 

involvement. 

RNA-seq is a revolutionary tool developed for deep sequencing and quantification of transcripts 

and their isoforms261. RNA-seq provides accurate identification of novel transcripts, of 

alternative splicing events, and allele-specific expression277,310. Consequently I decided to use 

this technology for investigating the CG1847 knockout model’s transcriptome. Comparing to 

previous hybridization-based approaches, RNA-seq has an extremely important advantage as it 

is not limited to detecting transcripts that correspond to existing genomic sequence and brings 

the advantage of de novo assembly of the genome and of the transcriptome311,312. It was already 

undoubtedly proven that RNA-seq can detect the exon-exon borders which enable this 

technique to accurately detect novel isoforms, and even to discover completely new genes310,313. 

This might lead to the identification of novel transcripts in GC1847 deficient model. Regarding 

the quantification of expression levels, RNA-seq has a very wide dynamic range with very limited 

background level and it is capable of detecting and quantifying even the transcripts with 

extremely low levels of expression314,315 which might happen is this case as the RNA is extracted 

from fruitfly larvae. It also allows the exploration of different cellular pathways at the same 

time316. RNA-seq requires less starting material (total RNA), a valuable practical aspect as this 

brings a significant advantage in cases of limited sample availability. 

However, this technology does have a number of limitations which we have to be aware of277. 

As this method is based on fragmentation and amplification of RNA samples to produce the 

cDNA libraries, this step carries the risk of introducing bias and artefacts into the system. 

Another downside of the library preparation method itself is that it requires careful removal of 

polyA or ribosome RNA in order to avoid producing different transcriptome profiles. An 

additional disadvantage is brought by the levels of deep sequencing and lack of complete 

coverage which, for more complex organisms might result in under representation of some of 

the genes/transcripts/isoforms. Some genes/transcripts may not be detected as they might have 

a restrictived pattern of expression (tissue specific or in specific stages of development). This 

implies careful design of the RNA-seq study317,318. RNA-sequencing, is an extremely powerful 

method which has the potential to rapidly reveal the changes in normal development or in 

pathological processes, but the costs involved by the whole transcriptome sequencing are 

prohibitive, and limit the use of this method in routine research. 
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In parallel with the fast developing of RNA-seq technologies, many mapping tools have also been 

developed. The actual mapping methodologies could have a negative influence on the RNA-seq 

results as they could fail in detection of splice junctions319. In 2011 Roberts et al. reanalysed 

previous data using a different mapping methodology and identified many more novel 

transcripts320. Other authors also confirmed that the choice of appropriate methodology is 

important321. 

TopHat is maybe the most popular splice junction mapper for RNA-Seq reads. It aligns the raw 

RNA-Seq reads to genomes using the ultra-high-throughput short read aligner Bowtie to actually 

identify the exon splice junctions and to reveal novel gene or novel alternative splicing. For 

reconstructing the whole transcriptome, the most commonly tool used program is Cufflinks322 

which, similar to TopHat, is a freely available public domain software. 

TopHat, Bowtie and Cufflinks pipeline is the only available pipeline so far that includes all the 

required software for full analysis for RNA-seq data. However, a downside is that it requires a 

good annotation of the genome. The software were designed to be used with the Illumina data 

format, and, requires significant data storage. The large amount of data produced might be up 

to 1000 times bigger than the amount of data produced by microarrays, as a FASTQ files alone 

might be estimated to be between 20 and 40 Gb. 

As RNA-seq allows quantification of the entire transcriptome. I decided to use this technique to 

reveal the changes in expression levels between wt CG1847 and knockout Drosophila larvae. I 

also wanted to have a better understanding of AIP orthologue role during normal development 

by revealing the interacting proteins affected by CG1847 loss of function. As expected, CG1847 

was one of the most significantly downregulated transcripts in mutant samples. The normal level 

of expression of CG1847 at this stage of development (48h AEL) was very low. To confirm, 

understand and compare the RNA-seq results with data regarding normal fruit fly development, 

publicly available data from modENCODE was used. modENCODE’s main purpose was to identify 

previously unannotated transcripts in Drosophila melanogaster in 27 distinct stages of 

development. It identified 1,938 new transcribed regions not linked to any previously annotated 

gene323. Given the fact that this project was studied on normal development, it can serve as a 

useful comparison of my data. On examining the CG1847 expression patterns during Drosophila 

developmental stages in KO larvae I found significant differences with our control larvae. Within 

each stage of development (from embryo to adult fly), CG1847 had very low expression. The 

highest intensity was in the first 2 hours possibly due to maternal contribution - Figure 24. The 

level of expression are slightly increased in the later embryonic stages, and then they are 
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reduced again during all larval stages. The same reduced gene expression levels are maintained 

during pupal stage and adulthood in males and is slightly increased in females, but not more 

than during the larval stage. Furthermore, in third instar larvae, when we collected our mutant 

and control males, the normal level of expression of CG1847 are some of the lowest of all stages. 

The fact that at this stage the fruit flies’ requirement of CG1847 is minimal might be a possible 

explanation for the fact that even though our mutant is a KO and has no CG1847 expression 

(Table 17) it is not the transcript with the highest fold change as we would have expected. 

One of the most investigated AIP functions is the involvement in the xenobiotic processes. 

Numerous articles published that AIP is part of the AIP-AhR-Hsp90 complex which facilitates AhR 

translocation into the nucleus where it binds to ARNT148,154,324. In the next step the AhR:ARNT 

complex is able to bind a dioxin-responsive element (also known as xenobiotic responsive 

element). As AhR is an important AIP partner, I investigated this in the RNA-seq results. The 

Drosophila orthologue for human AhR is called spineless (ss) and its levels of expression were 

surprisingly not significantly changed in the mutant larvae. I then noticed that the levels of 

expression even in the normal control larvae at this stage of development were extremely low 

(0.35). Further, I investigated the modENCODE database and I had the confirmation that at the 

stage when I performed the larvae collection the levels of expression for AhR are actually zero. 

These results are in accordance with previous published data which suggest that AIP has a very 

early developmental expression, before the appearance of AhR transcript. This idea is supported 

by AIP whole mount in situ hybridisation of mice embryos. It was revealed that at embryonic day 

9.5 (e9.5) AIP expression can be detected while AhR is first expressed only around e13.5159,325. 

Taken together the available data from humans, mice and fruit fly suggest that during normal 

development AIP is expressed previous to AhR, and, at least in the very early embryonic stages, 

AIP function is independent of its interaction to AhR and of xenobiotic processes. 

AIP plays important roles in mammalian development, apart from xenobiotic receptor signalling. 

This was confirmed on the other members of the immunophilin family which appeared to have 

physiological importance outside of xenobiotic signalling326. The available data from human and 

mammalian systems point out that AIP protein is localised in the cytoplasm as part of 

multiprotein complexes with well-known partners such as HSP90 p23 and AhR. Many other 

cytoplasmic partners were also described, and these partners involve AIP in a number of 

different pathways. Known interacting proteins, as presented in detail in Table 3 are cyclic 

adenosine monophosphate (cAMP), chaperone proteins (HSP90 and HSP70), G proteins (Gα13 

and Gαq) and phosphodiesterases (PDE4A5, PDE2A3). Other interactions, not confirmed, have 

been described with a cytoskeletal protein (actin), a growth factor receptor (EGFR) and a cardiac-
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specific kinase (TNNI3K). Human data identified AIP as a tumour suppressor gene. Mutations of 

this gene lead to pituitary adenoma formation, which are, as discussed above, benign neoplasm 

of the anterior pituitary. 

Regarding the CG1847 interacting partners, the available information is very limited. There are 

only 3 described partners: Nurf-38 (Nucleosome remodeling factor - 38kD), CPB (capping protein 

beta) and CG9986. They were discovered in 2003 in a large project which generated a two-

hybrid-based protein-interaction map of the fly proteome327. However, none of these 3 

transcripts were found significantly changed in the RNA-seq data. Even more, their human 

orthologues PPA2 (pyrophosphatase 2), CAPZB (capping protein actin filament muscle Z-line 

beta) and C12orf4 (chromosome 12 open reading frame 4) respectively are not known 

interactors of hAIP.  

The performed RNA-seq experiments revealed a general up-regulation of genes closely 

associated with Osiris genes in mutant CG1847 deficient larvae. The Osiris genes are a large 

group of 24 orthologue genes that were first described in Drosophila melanogaster289. Out of 

the 24 Osiris genes, 20 are located on the third chromosome in the cytological region 83D4-5 to 

E1-2. This cluster is within a 168-kb region first described in 1972328 as being both triplo-lethal 

and haplo-lethal (Triplo-lethal (Tpl) locus). Previous studies have shown that flies with either one 

or three copies of Tpl die as late embryos or early first instar larvae. This group of proteins is a 

highly conserved insect-specific class. The structure of the proteins belonging to this family is 

characterized by five domains: (1) a hydrophobic region at the N-terminus that is likely a 

secretion signal peptide; (2) a two-Cys region; (3) a domain of unknown function, duf1676 (Pfam 

family: PF07898)329; (4) a hydrophobic putative transmembrane domain, and (5) a region 

including an AQXLAY motif. 

As lack of CG1847 resulted in significant overexpression of most of Osiris genes, it is possible 

that this might be the mechanism that leads to lethality, by mimicking the existence of 3 copies 

of Osiris genes. 

I further tested the hypothesis that the lethality of Drosophila model might be due to the 

upregulation of Osiris genes in mutant males. First I compared the phenotype of mutant CG1847 

deficient larvae with the one described in Triplo-lethal locus. The lethality induced by the 

presence of 3 copies of this cluster usually develops either in later stages of embryogenesis or 

in the early first instar larvae330, which is actually earlier than in our model. In these dying 

embryos/larvae at first the midgut turns brown due to intense apoptosis and cell death, a 

phenomenon that later extends to other tissues as the tracheae appear, which start to break 
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up330. None of these changes were present in CG1847 mutant. As I described in the Results 

section, CG1847 deficient larvae display a normal morphological phenotype, except the fact that 

their development is halted after the second instar larval stage. I could not detect any signs of 

cell death even after staining the larvae with Trypan Blue (a stain that is excluded by living 

cells331. 

A few studies have published that the lethality induced by the presence of three doses of Tpl 

might be prevented by inactivation, knockdown or mutations, of a locus called Suppression of 

Tpl (Su(Tpl))332,333. The mechanism behind suppressing the lethality of Tpl by the Su(Tpl) locus is 

not well understood. It is only known that this locus encodes for the transcriptional elongation 

factor dEll334. Drosophila ELL homologue (dELL) promotes RNA polymerase II (Pol II) elongation 

as it was shown that it has the ability to increase its the catalytic rate335,336. Eissenberg et al. 

showed that reduced dELL levels could further reduce the expression of each of the three-dose 

Tpl in larvae, resulting in Tpl gene product levels closer to wild-type levels (two Tpl doses). 

However, there are no proofs that dEll might act directly on Su(Tpl). The same group of authors 

proposed 3 possible models of dELL function: a) dELL may act on a specific subset of genes; b) 

dELL may act at a distinct kinetic phase of Pol II elongation; c) dELL may act additively or 

cooperatively with other elongation factors to achieve optimal Pol II elongation rates in vivo. 

Strong Su(Tpl) mutations are able to prevent all the described abnormalities associated with cell 

death, resulting in viable, fertile adults. Weak Su(Tpl) mutations induce only a delay in the 

development of the phenotypes, as the larvae are dying during the third instar stage, but still 

displaying the tracheal and midgut phenotypes described above. I did knockdown the Su(Tpl) 

expression in our mutant larvae, via adding an actin-Gal4 promoter in the CG1847exon1_3 

background, but this was not enough to prevent lethality. Still, this does not totally exclude a 

contribution of the Osiris genes in the lethality, as the levels of upregulation in our mutant were 

much higher than the presence of 3 copies. Some of the Osiris transcripts were up to 6 times 

more abundant in the mutant compared to control larvae. According to FlyBase 

(http://www.flybase.org) the Osiris genes are expressed during developmental stages in a wide 

variety of tissues, including epidermis, hindgut, foregut, and trachea.  

Altered dosage of Tpl also alters the response to hypoxia330. The triple-lethality is suppressed by 

hyperoxia and this might suggest that there is a slight degree of hypoxia in larvae with one or 3 

copies of Tpl. Interestingly, in CG1847 mutant most of the heat shock proteins are 

downregulated and these might have a further impact and enhance the lethality. It was already 

been published in 1993 that in response to stress factors, as a protective mechanism, all 
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organisms express heat-shock proteins (Hsps). By functioning as molecular chaperones the heat 

shock proteins confer stress tolerance and survival337.  

Six different members of Tweedle family genes (TwdlF, TwdlG, TwdlO, TwdlQ, TwdlS, TwdlU) 

were also significantly changed in CG1847 mutants. Apart from TwdlO which was 

downregulated, all the other members of this family were upregulated. Interestingly, based on 

the STRING analysis, TwdlO is actually the only member of this protein family that does not 

cluster with members of the Osiris family. The Tweedle family is another novel insect-specific 

protein family. The Twdl family consists of 26 genes that encode for homologous proteins. 12 of 

these 26 genes are located within the same 74kb region, confirming the initial observation of 

sequence similarity among protein products of candidate genes. All together these 26 proteins 

form a new protein family, named the Tweedle (Twdl) family290. The Twdl proteins are produced 

by ectodermal tissues as epidermis, foregut and trachea. Each Tweedle gene has a specific 

temporal and spatial expression and localization pattern and they might be crucial in 

determining body shape, as suggested by Guan et al. in 2006290. The expression of secreted Twdl 

family proteins in these locations, therefore, strongly suggests that these proteins might 

contribute to the chitin-based matrix system. Previous findings already established a connection 

between body shape regulation and matrix proteins that contribute to the cuticle formation. 

Recent studies have revealed a remarkable diversity of cuticular proteins. By far the largest, and 

taxonomically most widespread, cuticular protein family is the CPR family, which is characterized 

by a conserved domain first identified by Rebers and Riddiford in 1988338. Zygotic disruption of 

any one of cuticular genes was shown to result in embryonic lethality339. As a result is not 

surprising that members of fruit fly cuticular proteins as Cpr65Eb, Cpr66Cb, Cpr66D, Cpr97A and 

Cpr100A were found strongly affected in CG1847 mutant larvae and Cpr proteins 

downregulation might be the cause of lethality of CG1847 mutants. 

The animal model generated during this project will be further used in the next 2 chapters in 

order to evaluate the potential tumorigenic mechanisms initiated by loss of the AIP orthologue 

and to investigate the pathogenesis of human AIP missense variants. However, the RNA-seq data 

should be also further exploited to identify other possible candidates and validate new putative 

mechanisms involved in lethality. A special focus should be on those candidates that have 

human orthologues in order to find data relevant for humans. 
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3.6 CONCLUSION 

In order to analyse the role of AIP during development I generated a Drosophila melanogaster 

model of CG1847 deficiency. The bioinformatics data, protein structure and rescue experiments 

results prove without doubt that AIP and CG1847 are orthologue genes. 

The RNA-seq sets provided a useful insight into the types of gene which are highly changed in 

the CG1847 deficient larvae. In this study, I pooled RNA from mutant and control Drosophila 

larvae and performed RNA deep sequencing using the Illumina platform. A very interesting 

cluster of genes emerged from the analysis of the RNA-seq data: Osiris, Twedl and cuticular 

proteins were all significantly changed Drosophila mutants. To date, there are no information in 

the literature regarding possible interactions between CG1847 and proteins involved in body 

development, cuticle formation or body size. Clearly this cluster is in need of further 

investigation for the roles of these proteins during development as this association remains 

poorly understood for the moment. 

Based on my observations, I propose a model for the roles of CG1847 in Drosophila 

development. CG1847 is involved in body size and cuticular formation by interacting with 

different group of proteins as Osiris, Twedl and cuticular proteins, interaction that were never 

described before. Even more loss of CG1847 expression result in downregulation of heat shock 

proteins which might further enhance the mechanism of lethality.  

The data obtain in this discovery study support promising research directions that could lead to 

better understanding of these genes complex roles in development.  

The role of AIP in human development remains an open question as all presented results are 

limited to insect specific mechanisms.  

However, the availability of these new data will facilitate the isolation and characterization of 

other functional genes involved in the role of the AIP orthologue during development and 

different pathways, as well as to disclose possible new mechanisms involved in the development 

of tumorigenesis. 

Data resulted from this model will be further used in the next chapter, for a possible deeper 

understanding of involved pathways.  
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CHAPTER 4: THE DROSOPHILA AIP ORTHOLOG IS ESSENTIAL FOR 

ACTIN CYTOSKELETON STABILISATION AND CELL ADHESION  

4.1 INTRODUCTION 

The actual mechanism by which AIP silencing disrupts normal function in the pituitary is still 

unknown, despite the fact that causality between AIP mutations and pituitary adenomas has 

been established. Clinical, genetic and experimental data suggest that AIP functions as a tumour 

suppressor gene (TSG) in the pituitary gland89,115,116,153. Review of the published clinical data 

suggests that patients with AIP mutations have some special characteristics such as age of onset 

around 10-20 years, the pituitary adenomas are mostly sparsely granulated, and have a higher 

disease penetrance. FIPA families with AIP mutations have more affected individuals than 

families where no AIP mutations are found136. 

Tumours with AIP mutations are in the majority of cases macroadenomas, often invasive and 

disease onset occurs during adolescence or young adulthood119,340, suggesting a more aggressive 

behaviour when there is AIP loss of function. Some authors found that AIP expression is lower 

in more invasive somatotroph adenomas, even in case of patients in which no AIP germline 

mutations have been identified201,341. 80% of the cases of AIP positive pituitary adenomas have 

a certain degree of extrasellar extension, 56% of them invading local structures. These pituitary 

adenomas typically do not respond well to somatostatin analogue treatment, AIP mutation-

positive patients developing partial or total resistance to this therapy reflected in a significant 

reduction of GH and IGF-I levels and smaller, or no tumour shrinkage. Even the long-term disease 

control, with similarly cumulative numbers of therapies, is lower in these patients119. 

The fact that AIP is a tumour suppressor gene is also supported by the fact that loss-of-

heterozygosity was detected in pituitary adenomas from FIPA patients342,343. In accordance with 

the Knudson’s “two-hit” hypothesis137 this resulted in the loss of the wild type AIP allele in almost 

all cases116. No FIPA patients homozygous for AIP mutations have been identified so far. In 

addition, the AIP tumour suppressor role was firmly established by functional in vitro studies: it 

was previously shown that siRNA AIP knockdown results in increased cell proliferation of GH3 

cells344. 

Still, more functional investigations are required to elucidate the role of AIP mutations in 

pituitary tumorigenesis. To achieve this goal we need to know more about the identity and 

functions of AIP interacting partners. Molecules that can induce remodelling changes in the 

epithelial tissue of the normal pituitary gland are of a particular interest. 
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4.2 BACKGROUND 

4.2.1 The Drosophila wing development 

The developing Drosophila wing is a widely used model system for examining how cells respond 

to changes in cell shape associated with rearrangement of epithelial sheets during 

organogenesis345. 

Wing development is a relatively simple process described in detail by Fristrom et al. in 1993346. 

This involves the transition from a single layered columnar epithelium to a flattened bilayer. In 

the larval stages the wing imaginal disc is an epithelial sac. During pupal stages, this tissue 

undergoes a series of folding, unfolding and flattening processes345. 

The first step towards the final pattern of the wing takes place in the early phases of the prepupal 

period, when the monolayered epithelium is folded into two columnar layers346. This is 

Apposition 1 and it is immediately followed by Expansion 1, a stage where the two-layered 

epithelium suffers a series of alterations leading to an increase in wing surface area. The 

expansion process proceeds gradually from the wing margins towards the middle347. The 

epithelium flattens and the wing final pattern becomes more obvious. During the Adhesion 1 

stage, cuticulin is secreted and no major wing shape changes occur. Cuticulin is the first layer of 

the insect cuticle to be deposited and it is laid down as a sheet over the apical surface of cuticle-

secreting cells348. Between 16 and 18 hours after puparium formation, the reapposition of dorsal 

and ventral epithelia takes place (Apposition 2 stage). At the same time, the pattern of wing 

veins becomes obvious. The wing veins are not properly formed and remain as open spaces filled 

with hemocytes (circulating immune surveillance cells). As the reapposition is still not complete 

at this stage, the wing has a “spongy” texture, but with a general shape and vein pattern of the 

adult wing346. The Adhesion 2 stage follows this phase and lasts approximately 10h. The dorsal 

and ventral cell layers are completely adhered, as the cells of the 2 layers connect via basal 

junctions, but only in the areas between the wing veins. After approximately 45 hours of 

pupariation, the wings starts undergoing a final lateral expansion (Expansion 2). In order to fit 

into the pupa, the wings are folded in a characteristic manner349. 

The final step in wing formation takes place after eclosion from pupae. The wings unfold and 

expand. The intervein cells suffer an apoptotic process, as any viable intervein cell degenerate, 

while only the cells surrounding the wing veins persist forming the wing veins350. A summary of 

these processes is depicted in Figure 50. 
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Figure 50: Early wing development. Timeline depicts morphological landmarks of wing development, the associated Waddington’s stages, and the times at which they occur at 25°C 

temperatures. Development within the pupal case is divided into PP (pre-pupae) and P (pupae) stages that are separated by a molt. During evagination, in the first PP stage (PP1), 

the dorsal and ventral halves of the wing pouch begin to adhere along their basal surfaces and the wing epithelium folds along the future wing margin to assume an approximately 

semicircular shape. In PP2, the tissue elongates and narrows until it resembles a thick cylinder three times as long as it is wide (at about 5 h APF at 25°C). During PP3 (6–9 h APF at 

25°C), the wing cells flatten and the wing dramatically increases its surface area. Cuticle deposition begins at this time, and forms a chitinous sheath during PP4, when the wing 

becomes inflated and the dorsal and ventral surfaces move apart. This leaves the wing looking like a balloon. During inflation, a wave of cell divisions runs through the wing. Ecdysis 

of the cuticle—the shedding of the chitinous cuticle from the apical side of the wing epithelium—starts late in the first P stage (P1). Waddington351 subdivides the second P stage 

into substages A–D. In P2A, dorsal and ventral wing surfaces begin to reappose beginning at the wing margin, and the adhesion of the two basal surfaces spreads from the distal, 

anterior, and posterior ends of the wing during P2B and early P2C. P2D starts with the initiation of prehairs. Eventually hairs will cover the whole wing. Proliferation and migration 

of glial cells along vein 3 initiates in the beginning of P1 (by 15 h APF at 25°C). Migration, accompanied by proliferation of glial cells along vein 1 begins at approximately late P1 (by 

17 h APF at 25°C). Glial cells cover the sensory nerves in vein 1 and 3 by mid P2D (32 h APF at 25°C). Abbreviations: APF, after puparium formation;hrs APF 25°C, hours APF at 25°C. 

(Adapted from Classen et al.2008)352 
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In the adhesion process the basal surfaces of the dorsal and ventral epithelia come to close 

contact and form basal junctions (BJs), which are mediated by the integrin family of cell surface 

receptors353,354. The extracellular domain of integrins recognises and binds to ECM proteins, 

whereas the intracellular domain associates with cytoskeletal elements345 (Figure 51). 

 

Figure 51: A schematic summary of adhesion mechanism. The localization of βPS integrin, laminin A and 

F-actin is depicted during the four key stages in the differentiation of pupal wings. White areas represent 

nuclei. Black bars (black arrows) connecting cells in B, C and D represent basal junctions. Wing veins 

(green) are shown only in A and B but persist unchanged for the remainder of development. Extracellular 

spaces containing matrix (ECM) of unknown composition in (A), disappear (B) and reappear (C, D). 

Adapted from Fristrom et al. 1993346 

 

In the process of wing development integrins are essential for the cells to adhere to ECM 

components. Even more, these receptors are involved in the transmission of signals from the 

ECM to the actin cytoskeleton, hence influencing numerous cellular activities during wing 

development. One of the first molecular steps in the formation of the integrin–cytoskeleton link 

is the binding of Talin to integrins355. Talin is essential for further recruitment of other proteins 

such as ILK, PINCH and Paxillin. 

4.2.2 The FRT/FLP system 

As described in Chapter 3, I generated a heterozygous CG1847 deficient Drosophila 

melanogaster animal model. One of my aims was to investigate and identify proteins that are 

deregulated in the absence of CG1847 in vivo. 

A. Basal Apposition C. Expansion

B. Basal Adhesion D. Connections

PS β integrin

Laminin A

F-actin
ECM (secreted in the prepupal period) 

ECM (secreted in the pupal period) 
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A major restriction of the imprecise excision technique is the fact that, in the case of essential 

genes, animals can be maintained only as heterozygous stocks, which makes the study of 

homozygous gene deletions in adult tissue difficult. To overcome this problem, different 

techniques have been developed, one of which is the elegant FLP-out system which is based on 

site-specific DNA recombination356. The FLP recombinase is an enzyme native to a plasmid of 

Saccharomyces cerevisiae and rearranges DNA sequences in a very specific manner. The FLP 

recombinase acts on a particular 34 base pair DNA sequence, termed the FRT (FLP recombinase 

target) sequence. When two of these FRT sites are present on homologous strands, FLP creates 

double-stranded breaks in the DNA, exchanges the ends of the first FRT with those of the second 

target sequence, and then reattaches the exchanged strands. If this site-specific recombination 

occurs between the two chromosomes of the pair, in the G2 phase of the cell cycle in a 

proliferating mother cell, subsequent divisions will generate two clones of daughter cells that 

are homozygous for one or the other chromosomal arm (Figure 52). In my experiments, FLP 

recombinase was expressed under the control of a heat shock protein promoter357. 

Furthermore, the FLP/FRT system can also be used to produce genetic mosaics of marked loss 

of function, or gain of function clones in an otherwise heterozygous background358. 

 

Figure 52: Schematic representation of the FLP/FRT system used to generate mosaic clones. The FLP 

enzyme catalyzes mitotic recombination at the FRT sites between homologous chromosomes; in this 

example one X chromosome carries a mutant allele (*) distal to the FRT site (triangle), the other 

chromosome carries a visible marker, RFP. After recombination and cell division, one daughter cell is 

homozygous mutant and lacking red fluorescence, the other cell is homozygous wild-type and carries both 

copies of the fluorescent marker (bottom right). 
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Pairs of daughter cells generated following a mitotic recombination event are adjacent to each 

other and throughout development are exposed to the same cellular environment. Thus, in the 

same tissue, clones of cells that represent a mutant experimental and a wild-type control are 

generated, whose subsequent proliferation and growth can be compared. I used the FLP/FRT 

system to generate mitotic clones of cells that are totally lacking CG1847 expression in 

heterozygous females. 

 

4.3 OBJECTIVES 

To identify putative molecular partners of AIP with a role in tumorigenesis I investigated the 

molecular mechanisms of loss of AIP in vivo via:  

a) Generation of RNAi-mediated CG1847 knockdown under the control of the wing 

specific GAL4 drivers. 

b) Validation of RNAi-induced phenotypes using FRT/FLP clonal analysis. 

c) Live observation of βPS-GFP integrin in AIP mutants during development. 

d) Characterisation of the impact of the CG1847 deficiency by immunostaining (where 

the necessary antibodies are available), in 2 stages of development: 

1) In third instar larval imaginal wing discs with homozygous CG1847 deficient clones 

generated via FRT/FLP system. 

2) During pupal stages, by immunostaining CG1847 deficient wings generated by 

RNAi-mediated gene silencing. 

e) Validation of transcripts with possible involvement in blister formation identified in the 

RNA-seq screening. 

 

4.4 RESULTS 

4.4.1 CG1847 depletion in the developing wing results in a loss-of-adhesion 

phenotype 

To avoid the lethality associated with the use of ubiquitous drivers, I used tissue specific drivers 

to express RNAi constructs targeting CG1847. The Drosophila wing provides an excellent system 

for morphogenetic studies. The major advantage is the fact that the wing is not an essential 

organ and this allows important genetic manipulations without affecting viability. An additional 

benefit is the fact that almost any resulting phenotype is easily identifiable. I screened for 

possible pathways affected by CG1847 by eliminating CG1847 function in large areas of the wing 
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during development and examining adult wing phenotypes. I used two different Gal4 drivers to 

express the hairpin RNAi constructs in the wing imaginal disc: nubbin–Gal4 (nub-Gal4) and 

hedgehog–Gal4 (hh-Gal4)359. While nub-Gal4 leads to expression in the whole wing pouch, hh-

Gal4 promotes expression only in the posterior compartment of the wing. 

Remarkably, in both cases I observed a very specific phenotype with CG1847 RNAi flies displaying 

wing blisters (Figure 53). 

 

Figure 53: The CG1847 silencing in wing discs produces wing blisters. Expression of the UAS-CG1847-

RNAi-R2, under the hh-Gal4 driver (A) or nubbin-Gal4 (B) drivers produces wings with blisters. C) UAS-

CG1847-RNAi-R2 crossed with y w (control) do not develop wing blisters. Live images and mounted wings. 

Wing blistering induced by hh-Gal4 driver is much stronger. Scale bar 500μm. 

 

Although the knockdown wings look smaller, their real size cannot be properly evaluated. The 

blister itself may put traction on the surrounding wing tissue and this mechanism may leads the 

appearance of wing shrinkage (Figure 54). 

Interestingly, nub-Gal4 led to a more moderate phenotype, as the blisters affected only the wing 

hinge area, but with a very high percentage, as approximately 95% of the adults presented this 

phenotype. In contrast, hh-Gal4 resulted in a stronger phenotype, with blisters affecting the 

whole wing, but only in 77.5% of the cases (compare blister size, shape and localisation in Figure 

53 A and B and Figure 54). 

A A’ A’’

B B’ B’’

C C’ C’’

500 µm

500 µm

500 µm

500 µm

500 µm

500 µm
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Figure 54: Quantification of blister formation. Expression of CG1847-RNAi-R2 under the hh-Gal4 resulted 

in 77.5% of blisters in Drosophila wings. Expression of CG1847-RNAi-T2 with nub-Gal4 driver resulted in 

95% of blisters. CG1847-RNAi-T2 crossed with y w was used as control. Error bars represent SE 

 

To confirm that these results were not due to an off-target effect of the RNAi constructs, I 

repeated the experiment using a different RNAi line (UAS-CG1947-RNAi T2)247. Comparable 

results were obtained as flies expressing CG1847 T2 RNAi also displayed wing blisters with both 

hh-Gal4 and nub-Gal4 (Figure 55). Similar, hh-Gal4 resulted in a stronger phenotype and while 

nub-Gal4 led to a higher penetrance of blister formation (Figure 56). 

 

 

 

 

 

 



 

 

156 

 

 

Figure 55: The CG1847 silencing with UAS-CG1847-RNAi-T2 produces wing blisters. Expression of the 

UAS-CG1847-RNAi-T2, under the hh-Gal4 driver (A) or nubbin-Gal4 (B) drivers produces wings with 

blisters. C) UAS-CG1847-RNAi-R2 crossed with y w (control) do not develop wing blisters. Live images and 

mounted wings. Scale bar 500μm. 

 

 

 

Figure 56: Quantification of blister formation. Expression of CG1847-RNAi-T2 under the hh-Gal4 resulted 

in 81% of blisters in Drosophila wings. Expression of CG1847-RNAi-T2 with nub-Gal4 driver resulted in 91% 

of blisters. CG1847-RNAi-T2 crossed with y w was used as control. Error bars represent SE 
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These results suggest that the wing blister phenotype is due to CG1847 depletion and not to an 

RNAi off target effect. 

This phenotype was unexpected and it can be the result of a few possible causes. This phenotype 

strongly resembles that of loss of integrin function345, suggesting that depleting CG1847 in the 

wing may have a negative effect on the integrin-actin cytoskeleton network. Wing blistering may 

also result from a gain of integrin function360, which raises the possibility that CG1847 may in 

fact promote integrin function. However, the wing blistering phenotype is not unique to 

defective integrin-actin-cytoskeleton signalling and, thus, detecting the pathway that is affected 

by loss of CG1847 function may be challenging. 

4.4.2 CG1847 mutant clones cause wing blister formation  

As the RNAi constructs carry the possibility of an off target effect, to validate the defective 

adhesion phenotype seen in CG1847 RNAi flies were undertaken mitotic recombination 

experiments. This technique brings the significant advantage of being possible to compare 

mutant and control cells in the same tissue of a heterozygous animal.  

To generate CG1847 mutant clones, a recombination site was introduced in the CG1847 mutant 

background (FRT19AneoR (section 2.2.5 in Materials and methods)). Heterozygous CG1847exon1_3, 

FRT19A / FM7c,dfd::YFP recombinant females were mated with Ubi-mRFPnls, hsFLP, 

FRT19AneoR/Y males to generate CG1847exon1_3FRT19AneoR/ Ubi-mRFPnls, hsFLP, FRT19AneoR 

females (the short version of this genotype will be CG1847exon1_3, FRT19A /FRT19A). Four hour 

egg collections were performed and submitted to heat shock treatment during early larval 

stages as described in section 2.2.3.  

Mitotic recombination events were induced randomly, all over the body, via heat shock 

exposure in the very early larval stages. The resulting homozygous deficient mutant clones and 

twin wild type clones were examined in the wing imaginal discs of third instar larvae. 

Mutant clones in wing imaginal discs are shown in Figure 57. The CG1847exon1_3 mutant regions 

lack the RFP marker, which readily differentiates them from the wild-type twin clones expressing 

two copies of RFP (and 2 normal copies of CG1847) or the heterozygous areas expressing one 

copy of RFP (and one copy of CG1847). 
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Figure 57: Homozygous CG1847 mutant cell clones induced by the FLP/FRT system. Shown are wing 

imaginal discs from third instar larvae. A-A’’ Low magnification (10X) view of the entire wing imaginal disc. 

B-B’’: High magnification (63X) views of boxed area in A. Nuclei are stained with DAPI (blue). The tester 

stock expresses RFP (red fluorescence protein), which labels wild-type cells that have undergone mitotic 

recombination (bright red) and heterozygous cells (pale red). Homozygous mutant cells lack RFP 

expression and are therefore seen as a black area on A’ and B’.B and B’’: white area – the homozygous 

mutant clone, red area – wt clone. Scale bar 50μm 

 

As shown in Figure 57 A’, the mitotic clones are distributed throughout the wing disc, although 

their relative size is quite variable. As the objective was to validate the RNAi results (blister 

formation in adult wings), larvae were allowed to develop until adulthood. The wings of 

heterozygous CG1847exon1_3, FRT19A /FRT19A females were evaluated for blister formation. 

These females with homozygous mutant clones recapitulated the blister phenotype obtained in 

the RNAi experiments (Figure 58). 

As a control, I used flies carrying the FRT construct but lacking any genetic mutation. These flies 

where similarly exposed to the heat shock treatment to generate neutral clones. In sharp 

contrast to flies displaying CG1847 mutant clones, control flies did not exhibit wing blisters. 

(Figure 58 and Table 21). 
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Figure 58: Blister formation in adult females with mitotic clones. Blister (arrows) formation in adult 

heterozygous CG1847exon1_3, FRT19A /FRT19A females Top panel: heterozygous mutant females A) live 

image of animal with wing blisters; A’ and A’’- mounted wing with blister. Bottom panel: control in 

w,Dm,FRT19A /FRT19A B) live image; B’ and B’’- mounted wing. Scale bar 500μm. 

The heat shocked heterozygous CG1847exon1_3, FRT19A /FRT19A females survived to adulthood 

some of them developed wing blisters, exactly the same phenotype identified in the UAS-

CG1847-RNAi knockdown animals. I analysed all eclosed adults from 3 independent experiments 

and calculated the percentage of heterozygous CG1847exon1_3, FRT19A /FRT19A females with 

blisters (Table 20). 

 Males Females 

Offspring 
genotype 

CG1847exon1_3FRT19A 
Y 

FM7c dfd YFP 
Y 

CG1847exon1_3FRT19A 
FRT19A 

FRT19A 
FM7c dfd YFP 

Expected 
phenotype NOT VIABLE 

No 
Blisters 

Blister 
No 

Blisters 
Blister 

No 
Blisters 

Blisters 

TOTAL 0 162 0 358 34 (9.5%) 352 0 

 

Table 20: Quantification of blister formation in CG1847exon1_3, FRT19A /FRT19A females. The numbers 

represent the total members of counted offspring in 3 different experiments. In parantheses the 

percentages of heterozygous mutant females with blisters are shown.  

Only approximately 10% of the heterozygous females with mitotic clones developed blisters, 

while this phenotype was not identified in any of the other genotypes acting as internal negative 

controls. One noteworthy finding was the wide variability in the size, number and shape of the 

blisters in adult females. This is likely due to the fact that the clones were induced with heat 

shock and are therefore randomly localised within the whole animal. No blisters were detected 

in flies where neutral clones were induced (Table 21). 
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B B’ B’’
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 Males Females 

Offspring 
genotypes 

w+,Dm,FRT19AneoR 
y 

w+,Dm,FRT19A 
RFPnls HsFLP FRT19A 

Expected 
phenotype 

No Blisters Blister No Blisters Blister 

TOTAL 121 0 152 0 

 

Table 21: Quantification of blister formation in control w,Dm,FRT19A /FRT19A females 

The small percentage (10%) of heterozygous females with mitotic clones developing blisters may 

be due to the size variability of the clones induced by the FLP/FRT system as seen in Figure 57. 

The majority of clones may be too small to induce the detachment of the wing layers. Clone size 

in an adult wing is determined by the developmental stage at which the larva is heat-shocked. 

For example, clones induced earlier in imaginal disc development are larger, whereas those 

induced later are smaller and more numerous. The reason is that later in development a larger 

number of cells may undergo recombination; however, the number of mitotic divisions that 

occur after the heat shock is reduced356. I attempted to optimise the timing and duration of the 

heat shock treatment, but heat shock treatment before 48 h of development or for longer 

periods of times resulted in lethality of the larvae. 

As AIP is described as a tumour suppressor gene, I also analysed the effect of CG1847 loss on 

cell growth. This was evaluated by examining and comparing the size of clonally related groups 

of cells resulting from mitotic recombination (Figure 57). 

CG1847 mutant tissue was not overtly different from the neighbouring wild-type cells. Following 

a more detailed analysis using ImageJ to carefully assess the area of 25 mutant clones and their 

twin associated wt clones, the CG1847 deficient clones were on average larger. As shown in 

Figure 57A’ and Figure 59 this size difference was statistically significant. It is necessary to 

mention that there was a large variability in the size of clones, both wt and CG1847 depleted. 

 

Figure 59: Quantification of the area size 

of of mitotic recombined clones.The area 

of mutant cells is signficantly increased 

comparing to the their neighbouring twin 

wild-type cells (P=0.0293) Statistical 

analysis was carried out using 

Wilcoxon/Kruskal-Wallis test. The bars 

represent the mean of are of the clones. 

N=25 clones from 10 imaginal wing discs. 

Error bars represent SE (* = P<0.05). 
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The area of CG1847 mutant clones of was found to be significantly larger than the wild-type 

controls. This is in agreement with the fact that AIP has been described as a tumour suppressor 

gene. However, the underlying mechanism is still unknown, as AIP could be involved in cellular 

growth, cell survival and/or cellular proliferation. 

To investigate in more detail the role of CG1847 in cell growth, I evaluated the cell density in 

CG1847exon1_3 mutant clones (Figure 60). Discs containing CG1847exon1_3 mutant clones were 

stained with the DNA binding dye DAPI for nuclei visualisation, and phalloidin staining to mark 

the cell boundaries.  

 

Figure 60: Wing disc clones stained with DAPI and phalloidin. 120 h AEL wing imaginal discs containing 

CG1847exon1_3 mutant and wild-type clones stained with DAPI (blue – B) to mark nuclei and phalloidin 

(green – C) to mark the cell bounderies. RFP expression (A) was used to identify the different clones (40X 

magnification). D: Merged chanells phalloidin and RFP. Scale bar=50 µm. 
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The size of cells within CG1847exon1_3 mutant clones (Figure 60) was examined, and compared 

with the size of the twin wt clones (for more details regarding the protocol and the antibodies 

see Appendix 6). I evaluated the number of cells in CG1847 mutant clones and compared it with 

the number of cells in their wt twin spot counterparts by counting the number of nuclei per 

clone. I also determined the clone area using the RFP signal (or lack of it in case of homozygous 

mutant clones). Cell density was calculated by dividing the number of cells to the respective 

area. Homozygous mutant cells were slightly bigger than their wt neighbours, but without 

reaching a statistical significance (Figure 61). 

The statistical analysis revealed that mutant cells are not visibly different in size from their twin 

spot wild-type neighbours (Figure 61) and counts of nuclei present within mutant and wild-type 

clones showed no difference in cell density (CG1847exon1_3 clones = 4.41x10-2 cells/μm2; wild-type 

clones = 4.46x10-2 cells/μm2). 

Together, these results support the hypothesis that CG1847 exerts a tumour suppressor role, as 

CG1847 mutant clones are larger than controls. However, CG1847 does not seem to be involved 

in individual cell growth, and thus it may instead affect cell proliferation or cell survival. 

 

Figure 61: Quantification of cell density. 

Imaginal wing discs were stained with DAPI 

and phalloidin, and the area (µm2) and the 

number of cells within each homozygous 

CG1847exon1_3 mutant and twin wt clone 

were counted. The cell density was found 

decreased in mutant clones, however, 

without reaching a statistical significance. 

The bars represent the mean of ratio: 

number of cells/area). N=25. Error bars 

represent SE 

 

In summary, our results from RNAi and mitotic recombination support the involvement of 

CG1847 in adhesion, proliferation and cell survival processes. As a role in adhesion has never 

been described for human AIP, there is virtually no information regarding the possible 

mechanism of action. Based on the available literature regarding blister formation in Drosophila, 

the candidate AIP-interacting partners identified belong to various classes, such as: cell 

adhesion genes Mys (FBgn0004657), Mew (FBgn0004456), If (FBgn0001250)361 blistery 

(FBgn0000244)362; receptors and members of signal transduction pathways: Gsα363; 
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transmembrane transport: blot (FBgn0027660)361; cell migration: ADAM metallopeptidase with 

thrombospondin type 1 motif A (FBgn0038341)361; DNA and RNA binding proteins: held out 

wings (FBgn0264491)361; Additional sex combs (FBgn0261823)364; protein deubiquitination and 

regulation of proteasome assembly: Ubiquitin specific protease USP5 (FBgn0035402), POMP 

(FBgn0032884)361; metabolic processes: sugarless (FBgn0261445)364; chitin based attachment: 

piopio (FBgn0020521)364, and transcription factors: mastermind (FBgn0002643)364, blistered 

(FBgn0004101)365. These genes were identified in three different screening studies. The first one 

was conducted by Prout et al.364 and was trying to identify autosomal mutations which might 

result in blisters formation fruitfly wing. 76 independent mutations were identified in this study 

and the genetic interactions with mutations in the integrin gene myospheroid were investigated. 

Mutations in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal 

junctions or muscle function in embryos were isolated. One year later, in 1998, Brown et al.361 

published the results of the second screening. The aim of their project was to use FLP-FRT system 

to generate clones of randomly induced mutations and to screen for those mutations that cause 

wing blisters.  

A third study was recently published in 2014 and the authors also looked on Drosophila 

apposition of the dorsal and ventral wing sheets during metamorphosis. Using RNAi-silencing 

technique and the blister phenotype as readout, there were identify numerous novel proteins 

potentially involved in wing sheet adhesion: components of other cellular processes, e.g. cell 

cycle, RNA splicing, and vesicular trafficking366. 

Identifying the mechanisms via which loss of CG1847 leads to loss of adhesion may provide hints 

on the pathology of human pituitary adenomas due AIP mutations. 

4.4.3 CG1847 is not required for βPS integrin distribution at muscle attachment sites 

The most studied mechanism of blister formation in Drosophila involves the integrin–actin 

cytoskeleton network. Proteins belonging to this network, such as the integrins receptors, are 

not only localised in the wings, but they are involved in cell adhesion in many other tissues, 

including the connection between muscles and between muscle and tendon cells367,368. 

To study the possible interaction between integrin-associated proteins and CG1847, the 

expression of different proteins involved in the integrin adhesion pathway was evaluated during 

development by 2 methods: live imaging in embryos and larvae, and immunostaining during 

larval and pupal stages. 

http://www.ensembl.org/Drosophila_melanogaster/Gene/Summary?db=core;g=FBgn0035402;r=3L:3145405-3148358;t=FBtr0073114
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Previously published studies have shown that Drosophila mutants affecting cytoskeleton 

components are homozygous lethal due to the detachment of somatic muscles at late 

embryonic stages369. As the Drosophila AIP mutant is also lethal and it may be involved in 

adhesion processes, I assessed whether the lethality was associated with defects in integrin 

distribution at muscle attachment sites (Figure 62). 

 

Figure 62: CG1847 deficient mutants display normal muscle attachment sites pattern. Live imaging of 

GFP-βPS integrin (white arrow) in females CG1847exon1_3/FM7c,dfd::YFP (A and C) and males CG1847exon1_3 

(B and D) with confocal microscopy. A) and B): 24 hours old embryos. C) and D): around 50 (± 2) hours old 

larvae AEL. Scale bar=100 µm. 

For this, I used fly stocks where the CG1847 deletion was recombined with Mys-GFP 

(myospheroid (Mys) encodes for the βPS integrin subunit) and balanced over the same FM7c, 

Dfd::YFP chromosome (section 2.2.4). This allowed me to determine whether lack of CG1847 

impacts on the expression or localisation of GFP- βPS integrin246 in CG1847exon1_3/Y males 

embryos. Females CG1847exon1_3/ FM7c, Dfd::YFP were used as control for the normal Mys 

distribution. 

Live imaging of embryos lacking CG1847 failed to reveal any defects in adhesion or displacement 

of βPS integrin from muscle attachment sites. 
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4.4.4 CG1847 deficient mutants display normal expression of integrins and integrin-

associated proteins in the wing imaginal discs during larval stage 

As the CG1847 depleted adults display blister formation I examined the distribution of integrins 

and integrin associated-proteins in wing imaginal discs of CG1847exon1_3, FRT19A /FRT19 females 

(Figure 63). For this purpose I performed immunostaining with the relevant available antibodies 

(Appendix 6). 
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Figure 63: Normal distribution of PS integrin, integrin-associated proteins and actin at the basal 

surface. (A-E) Low magnification (10X) view of mitotic recombination clones in CG1847exon1_3, FRT19A 

/FRT19A female wing discs. A' A'' and A''' show disc in A at 63X magnifications. Similarly for the other 

panels. Note in A-E the wide variability in size, shape and location of the mitotic clones. A' - E''': wing discs 

stained for DAPI (blue; A' and E'), expressing mRFP (red; A'' and E''), and stained for integrin associated 

proteins (A''' and E'''). respectively. Note that DAPI and mRFP are images of the same slice in the Z-stack 

at the nucleai level, while A''' and E''' are images at the basal surface, where these proteins are normally 

expressed and invoved in cell adhesion. Scale bar 50 μm. 

 

In clones of cells lacking CG1847, βPS integrin, Talin, Parvin, PINCH and actin expression was 

compared with their expression in clones of homozygous wild-type cells. No obvious alterations 

were observed in the expression pattern of these proteins. 

4.4.5 CG1847 knockdown induces disruption in actin cytoskeleton networks 

During larval stages, the Drosophila wing imaginal discs are formed by a single layer of cells, and 

as the basal junctions (BJs) are not formed in this stage, it is not surprising that no changes were 

observed. As the folding and adhesion processes occur exclusively during the pupal stages, I 

performed subsequent experiments in pupal wings to investigate the mechanism behind the 

loss of adhesion in CG1847 mutants. 

To address whether the members of integrin-actin cytoskeleton network are deregulated later 

in development in the pupal stage, I silenced CG1847 expression in the developing wing using 

nub-Gal4. This driver was used as it generated blister formation in more than 90% of the 

offspring and with a more precise localisation, as all the blisters were in the hinge area of the 

wings (Figure 54 and Figure 56). Pupal wings were stained with the DNA binding dye DAPI for 

nuclei visualisation, and phalloidin to mark the actin cytoskeleton. I evaluated the pattern of 

actin distribution at two different developmental stages (Figure 64). To choose the time points 

for this evaluation, I took into consideration the normal wing development and morphogenesis. 

At 16 h APF, the wing already has two layers, but the dorsal and ventral layers are completely 

separated, and no wing veins can be distinguished. The actual apposition starts at approximately 

18h APF, when wing veins become more obvious. Between 20 h APF and 32 h APF (by the 

definitive stage), the adhesion process progresses from the tip of the wings towards the hinge 

and the wing veins are clearly formed and distinct from the surrounding tissue. Therefore, I 

chose to evaluate the effect of CG1847 silencing in pupal wing morphogenesis and adhesion at 

24 h and 28 h APF. These particular stages were chosen because at 24 h the adhesion process 

has already started and differences in the attachment of the cell layers can be evaluated in 

CG1847-depleted and control. At 28 h APF, the adhesion process should be reaching completion, 
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thereby allowing me to detect if there is a developmental delay resulting from CG1847 

knockdown. When considering the timing of the stages of development, different laboratories 

have reported significant variations: for example, Urbano et al. in 2009370 reported apposition 

and refinement at later time points (32-40h). Such differences may be influenced by genetic 

background, and differing laboratory conditions (e.g. if animals were raised at room 

temperature, rather than 25°C as in this work). 

For tissue specific knockdown I used the nubbin-Gal4 stock as this resulted in wing blister in 

more than 90% of the offspring (section 4.3.1). As a control pupal wings from UAS-CG1847-RNAi-

T2 stock were used, in order to have the same genetic background. Both knockdown and control 

stocks were submitted to the same food and temperature environment, and pupae collection 

and staging were performed as described in section 2.2.11. 

 

Figure 64: CG1847 silencing resulted in actin disorganisation  A-A’’ CG1847-RNAi-T2 overexpressed under 

nub-Gal4 driver induces blister formation (black arrow) in the hinge area of adult wings ; A) nub-Gal4 

CG1847 RNAi adult fly; A’-A’’ adult wings from nub-Gal4 CG1847 RNAi flies . B-E: low magnification (20X) 

visualisation of the entire wing blade in pupal stages. The genotype and developmental timing (h APF) are 

shown on the top. B and C: actin pattern in normal and CG1847 knockdown pupal wings at 24 h APF. D 

and E: actin pattern in normal and CG1847 knockdown pupal wings at 28 h APF.B’-E’ shows higher 

magnification of the hinge area. By 24 h APF the adhesion process is not completed (B’) as wing vein 

formation stops at the area marked by the yellow line At 24 h APF the adhesion process in knockdown 

wings (C’) is severely disrupted (white arrow) compared with normal development. At 28 h APF the 

adhesion of dorsal and ventral wing layers is completed in control wings (D’), while in CG1847 knockdown 

wings it is slightly halted (small gaps marked by white arrow). 
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Interestingly, loss of CG1847 resulted in a marked disorganisation of the actin cytoskeleton. Of 

note, the severity of the cytoskeleton disorganisation phenotype was variable. At 24 h APF the 

majority of pupal wings displayed very strong phenotypes as the ones depicted in Figure 64, 

while others had a more mild loss of adhesion. Surprisingly, this phenotype seems to be partially 

recovered by 28 h APF, as the actin cytoskeleton organisation is only mildly affected in CG1847 

knockdown wings. 

It has previously been demonstrated that AIP interacts directly with cellular cytoskeleton 

structures156, but these results have not been convincingly validated. The results represent the 

first time that AIP loss has been associated with a strong cytoskeleton-related phenotype in vivo. 

However, as aforementioned, not all wings exhibited the phenotype to the same extent, even 

at the earlier time point of 24 h APF. As the loss of adhesion phenotype seemed to be partially 

recovered by 28 h APF, I performed a more detailed analysis and specifically focused on the actin 

cytoskeleton at the basal surface of cell layers, where the apposition and adhesion take place. 

For this analysis, I assessed the hinge area of 24 h and 28 h APF pupal wings. I evaluated the 

pattern and intensity of actin staining visualized at higher magnification (63X). The samples were 

optically cross-sectioned by generating orthogonal sections from the Z stacks (Figure 65). 

 

Figure 65: Schematic representation of the orthogonal sections. The orthogonal sections from the Z 

stacks (A) were generated via 3D reconstruction. XY view is at the level of the red line/section (B). YZ view 

is at the level of the green line/section (C) The colours of the borders in the B and C panels correspond to 

the colours of the optical sections in the A) panel. 
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At high magnification (Figure 66), I observed that CG1847 depletion caused not only a failure of 

wing layer adhesion, but also a strong deregulation and lower intensity of actin staining. 

 

Figure 66: CG1847 silencing specifically in the wing resulted in loss of adhesion. Gaps between the basal 

surfaces of wing cell layers in the hinge area are revealed in the Z sections of 24 h APF pupal wings. The 

nub-Gal4>UAS-CG1847-RNAi-T2 were raised at 25°C, collected at WPP, staged and imaged at 24 h APF. A 

and B: high magnification (63X) single sections from Z-stacks of KD and control pupal wings.A’-A’’’ and B’-

B’’’ are orthogonal views generated with ImageJ, at the level of the yellow lines. A’ and B’ are merged 

DAPI (blue) and phalloidin (red) channels. A’’-A’’’ and B’’-B’’’ are individual XZ sections of DAPI and 

phalloidin staining. Arrow in A’’’ points toward the actin continous layer involved in the adhesion (control 

wing), while arrows in B’ shows the gaps resulting from loss of adhesion. The low intensity of phalloidin 

staining it is also obvious in KD wings, suggesting that reduced actin levels are involved in adhesion in KD 

wings at 24 h APF (arrow in B’’’). Scale bar 10 μm. 

 

As the loss-of-adhesion phenotype seems to be repaired overtime, at least macroscopically, by 

28 h APF, I used the same approach to investigate the phenotype in more detail. However, when 

analysed at a higher magnification, CG1847-silenced wings still displayed gaps between the cell 

layers at 28 h APF. Moreover, CG1847 RNAi wings exhibited a much lower intensity of phalloidin 

staining, indicative of problems in the actin cytoskeleton, and a dysregulation of the normal wing 

pattern, with nuclei not linearly arranged and at different levels (Figure 67). 
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Figure 67: Overexpression of CG1847-RNAi in the wing causes persistence of gaps in the actin layer at 

28h APF. Gaps between the basal surfaces of wing cell layers in the hinge area are revealed in the Z 

sections of pupal wings. The nub-Gal4>UAS-CG1847-RNAi-T2 flies were raised at 25°C, collected at WPP, 

staged and imaged at 28 h APF. A and B: high magnification (63X) single sections from Z-stacks of KD and 

control pupal wings. A’-A’’’ and B’-B’’’ represent orthogonal views of A and B, respectively, at the level of 

the yellow lines. A’ and B’ are merged DAPI (blue) and phalloidin (red) channels. A’’-A’’’ and B’’-B’’’ are 

individual XZ sections of DAPI and phalloidin staining, respectively. In A’ the arrow indicates the 

continuous actin layer involved in adhesion (control wing). In B’’ the arrows indicate the nuclei which are 

not linearly arranged. In B’’’, arrows depict gaps in the actin cytoskeleton structure resulting from loss of 

adhesion. Scale bar 10 μm. 

 

The loss-of-adhesion phenotype was partially rescued in the 28h APF wings as the gaps in the 

actin basal layer were more subtle than at 24 h APF. Still, at 28 h APF CG1847 RNAi pupal wings 

showed a very weak phalloidin staining compared to control pupal wings. The disorganisation 

of the normal wing pattern, with nuclei at the different levels, not linearly arranged in KD wings 

at 28 h APF (arrow in B’’) can also be noticed. This suggests two possible mechanisms. First, loss 

of CG1847 directly affects the actin cytoskeleton, which will result in the loss-of-adhesion 

phenotype. Second, CG1847 controls the adhesion itself, which would indirectly be responsible 

for the actin cytoskeleton phenotype. Further experiments looking at adhesion molecules and 

at more members of integrin actin cytoskeleton network are required to determine which one 

of these two hypothesis is true.  

A

A’

A’’

A’’’

B

B’

B’’

B’’’

10 µm

10 µm

10 µm

10 µm



 

 

171 

 

4.4.6 CG1847 silencing induces wing vein widening in early pupal development  

When analysing closely the CG1847 RNAi pupal wings at 28 h APF, I noticed a slight increase in 

the size of the wing veins in the nub-Gal4>UAS-CG1847-RNAi-T2 wings (Figure 67 A and B). To 

determine whether this was a significant phenotype, I measured the diameter of the wing veins 

in 10 pupal wings of control and 10 pupal wings of CG1847 RNAi animals. For each wing, the 

diameter of the L2, L3 and L4 longitudinal wing veins was measured at 3 different points (yellow 

marks in Figure 68). 

 

 

Figure 68: Overexpression of CG1847-RNAi in the wings resulted in wider veins. A-A’’ Wing vein sizes in 

control samples (UAS-CG1847-RNAi-T2). B-B’’Vein sizes are markly increased in animals of the genotype 

UAS-CG1847-RNAi-T2 nub-Gal4 (KD) raised at 25°C until the WPP stage, dissected at 28 h APF and imaged 

with confocal microscopy. The phalloidin staining was done following the protocol described in Appendix 

6. C: There was a significant statistical difference in wing vein diameter as there is a delay in the adhesion 

of the intervein spaces which usualy closes the wing veins channels. Asterisks indicate statistical 

significance as determined by Student’s t-test (n=20 wings analysed). Error bars represent SE, 

****P<0.0001). 

Quantification of wing vein size revealed that depleting CG1847 in the developing wing causes 

vein widening at 28 h APF. At this stage of development, the actin cytoskeleton disorganisation 

is not as obvious as at 24 h APF, but is reflected in the significantly larger wing veins. However, 

no “blister-like” phenotype can be observed at this developmental stage. 

4.4.7 CG1847 is required for normal expression levels of integrin associated protein 

PINCH 

To distinguish whether the blister phenotype in wings lacking CG1847 expression is due to the 

cytoskeletal defect itself or if it is the result of deregulation of integrin receptors or integrin 

associated proteins, I evaluated the expression levels of βPS integrin, Talin, Parvin and PINCH in 

pupal wings. 
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UAS-CG1847-RNAi-T2 was overexpressed to repress CG1847 in whole wing during development. 

Pupae were collected, staged and dissected at 28 h APF. The immunostaining was performed 

according to the protocol in Appendix 6. Half of the pupal wings were immunostained for Talin 

and PINCH, while for the others we used anti-βPS and anti-Parvin antibodies. All samples were 

also stained with phalloidin to visualise the actin cytoskeleton and DAPI to stain the nuclei. Post 

immunostaining all the samples were scanned using identical laser confocal microscope 

parameters. The imaging of KD (nub-Gal4> CG1847-RNAi-T2) sample and corresponding control 

were taken on the same day to avoid any possible confounding factors as technical issues 

regarding the confocal microscope itself. As expected, I observed a dysregulation of the actin 

cytoskeleton in CG1847 RNAi wings (Figure 64). Talin levels and localisation in 28 h APF pupal 

wings were not noticeably affected by CG1847 depletion. However, PINCH expression levels 

were dramatically reduced compared to control samples. In addition, the pattern of PINCH 

expression was also altered. While in control samples PINCH is strongly increased at the apical 

border, in CG1847 RNAi wings this pattern is not obvious (Figure 69). 

 

Figure 69: CG1847 controls actin and PINCH stability in pupal wings. The nub-Gal4>UAS-CG1847-RNAi-

T2 were raised at 25°C, collected at WPP, staged and imaged at 28 h APF. A and B: high magnification 

(63X) single sections from Z-stacks of control and KD pupal wings. Orthogonal XZ views of individual 

channels, (DAPI – blue; phalloidin – red; Talin – green; PINCH – magenta) were generated with ImageJ at 

the level marked with a yellow line in A and B, respectively.  
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Next, I assessed whether CG1847 depletion induces changes in expression or localisation of βPS 

integrin or parvin. βPS integrin strongly co-localised with actin, especially at the basal level of 

the wing layers, as both proteins are involved in the establishment of adhesion. Parvin was 

localised preferentially at the apical level. My analysis of 28 h APF pupal wings revealed that 

neither PS integrin nor Parvin were significantly affected by depletion of CG1847 (Figure 70). 

 

Figure 70: βPS and Parvin are normal in pupal wings lacking CG1847. A and B: high magnification (63X) 

single sections from Z-stacks of control and KD pupal wings. Orthogonal XZ views of individual chanels, 

(DAPI – blue; phalloidin – red; βPS – green; Parvin – magenta) and merged (phalloidin – red; βPS – green) 

were generated with ImageJ at the level of the yellow line in A and B, respectively. Actin, as identified by 

phalloidin staining, is severely disregulated in CG1847 KD tissue. The expression of βPS follows the same 

pattern as actin as these proteins strongly co-localise at the basal surface of cell layers. The expression of 

Parvin is unchanged in the KD wings. 

NOTE: As previously was described that Talin, PINCH and Parvin are localized at the site of 

integrin adhesion, further immunostainings are required to confirm that these results are not 

due to nonspecific background staining. 

To confirm these results, I quantified the staining intensity of the proteins of the integrin 

complex in the XZ projections. For each protein, expression levels were quantified in 5 control 
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or RNAi samples. Phalloidin intensity was quantified in all 10 control or RNAi samples. For the 

quantification of βPS integrin staining, I defined a standardised area that was used to quantify 

the intensity of the signal exclusively in the basal level of the wing layers. This approach was 

used to avoid a potential effect of the βPS integrin fluorescent signal in the areas involved in 

lateral cell-cell adhesion. Importantly, the quantification of signal intensities (Figure 71) reflects 

the results shown in Figure 69 and Figure 70. Actin and PINCH were strongly downregulated in 

CG1847-depleted pupal wings, while there was no significant difference in βPS integrin, Talin or 

Parvin. 

 

Figure 71: Significant difference in actin and PINCH staining intensity between CG1847 knockdown 

samples and control. Post immunostaining, samples were scanned using identical laser confocal 

microscope parameters. The corresponding fluorescence measurements of different proteins were 

evaluated using ImageJ. The staining intensity unit was in pixels. Assuming that fluorescent intensity levels 

accurately reflect the quantity of protein present, 28 h APF KD wings have approximately 50% less PINCH 

protein expressed and significanltly lower levels of actin. No statistical significant changes were detected 

for Talin, βPS and Parvin. Error bars represent SE. Asterisks indicate statistical significance as determined 

by Student’s t-test (*P<0.05, **P<0.01) 

My results reveal that CG1847 signalling is strongly required for the maintenance of a normal 

tissue actin cytoskeleton. Silencing CG1847 leads to marked loss of wing cell layer adhesion and 

widening of wing veins in pupal stages, which are further translated into blister formation in 

adult flies. Even more, in Drosophila pupal wings, lack of CG1847 leads to marked 

downregulation of integrin-associated protein PINCH. 

*

**



 

 

175 

 

4.4.8 Overexpressed hAIP has a cytoplasmic localisation in Drosophila tissues  

A lack of availability of antibodies that recognise Drosophila CG1847 means that there is 

currently no experimental evidence regarding exactly where in the wing is CG1847 expressed 

during pupal development. Human and mouse studies revealed that AIP protein is ubiquitously 

expressed in both developmental and adult stages. AIP expression is abundant and has been 

confirmed in multiple tissues including the human heart, brain, skeletal muscle, kidney, testis, 

ovary and pituitary, among others. At the cellular level, AIP expression is predominantly 

cytoplasmic139,154; however, nuclear expression was also reported149. As CG1847 remains a non-

characterised gene in flies, precise information regarding its levels or expression pattern in 

Drosophila is lacking. 

To overcome this, I used a different approach. As described in Chapter 3, human AIP protein is 

able to compensate for CG1847 deficiency and to rescue the lethality of mutant hemizygous 

males. Consequently, it is formally possible that hAIP is also expressed in the same cellular 

compartments in order to be able to substitute for CG1847 in fulfilling its normal functions. 

Several antibodies that recognise human AIP are available (both commercial and homemade) 

and their specificity has been tested by western blot analysis to determine if some of the 

antibodies could detect the exogenous hAIP expressed in rescued CG1847 mutant males 

(Chapter 5). To determine the in vivo subcellular localisation of hAIP (and, by proxy, the 

localisation of CG1847), I used the UAS-Gal4 system to overexpress hAIP ubiquitously. Act-Gal4, 

was introduced (as previously described) in the heterozygous mutant background on the second 

chromosome (CG1847exon1_3/FM6;Actin-Gal4/CyO). Heterozygous mutant females were mated 

with homozygous transgenic males carrying hAIPwt cDNA on the second chromosome under the 

UAS promoter (UAS-hAIPwt/ UAS-hAIPwt). 

In the next generation half of the males were CG1847exon1_3/Y;Actin-Gal4/UAS-hAIPwt and 

expressed hAIP protein in all tissues (Figure 72 A’’). The other half of the males were 

CG1847exon1_3/Y;CyO/UAS-hAIPwt and acted as an internal negative control for specificity of 

antibody raised against hAIP protein (Figure 72 H’’)). 

I performed 4 h egg collections and the larvae were allowed to develop at 25°C until they 

reached the third instar stage. In this larval stage it was possible to visually select under the 

microscope the male larvae with the genotype of interest, which were then allowed to further 

develop. WPP were collected, staged and dissected at approximately 26 h APF. The images were 

taken with the confocal microscope; for each wing we took images with low (10X) and high (63X) 

magnification. 
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Figure 72: Overexpressed human AIP is localised in the cytoplasm of Drosophila wing cells. A-A’’ - low 

magnification (10X) visualisation of the entire wing blade at 26 h APF of wings overexpressing human AIP 

protein. B-D: high magnification (63X) single sections from Z-stacks of pupal wings: DAPI – blue; phalloidin 

– red; hAIP – green. C’-D’: Orthogonal XZ views of individual chanels. E-G: merged images 2 of the 

individual channels. E’-G’: orthogonal XZ views of merged chanels. H - H’’: low magnification (10X) 

visualisation of the entire wing blade from males CG1847exon1_3/Y;CyO/UAS-hAIPwt used as internal 

negative control for specificity of antibody. All the optical sections were generated with ImageJ at the 

same level in all images (see yellow lines in E, F and G). 
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Human AIP protein overexpressed under actin-Gal4 is ubiquitously localised in the cytoplasm 

compartment of the cell. There is no co-localisation of hAIP with actin or DAPI. The results shown 

in Figure 72 confirm previous data, which showed that AIP is expressed throughout the 

cytoplasm without a particular pattern or a precise localisation. 

Note: as based on the Western Blot results presented in Section 5.4.6 we are now aware that 

this antibody against human AIP protein cannot detect the endogenous CG1847, a further 

control could be performed in the future: staining of a wt wing, to check for specificity of the 

staining and to exclude any possible leaky effects of the pUAS-hAIP construct. 

4.4.9 cAMP/PKA pathway is not significantly changed in Drosophila AIP mutants 

As described in Chapter 3, I performed an RNA-seq study for whole transcriptome quantification 

of the CG1847 mutant. The main purpose of using RNA-seq analysis was to identify the affected 

transcripts in Drosophila CG1847 deficient males, as this could allow a deeper understanding of 

the affected pathogenic processes. As the in vivo data supported an involvement of CG1847 in 

the adhesion process, I examined the RNA-seq data for possible candidates. 

The available literature regarding blister formation in Drosophila involves a wide range of 

possible candidates, apart from integrins and integrin associated proteins. Some of the 

alternative candidates are: Gsα, via cAMP/PKA pathway, proteins involved in the chitin based 

attachment and other classes as presented above. A very interesting candidate is Gsα, via 

cAMP/PKA pathway as the most frequently observed genetic change in pituitary adenomas is 

the somatic heterozygous activating mutation of the GNAS, the gene coding for the G protein α-

subunit. This can be present in up to 40% of GH-secreting pituitary adenomas69,70. Even more 

interesting, in Drosophila, expression by multiple Gal4 drivers of a constitutively active form of 

Gsα resulted in wing blistering363. The mechanism behind this phenotype is that expression of 

the constitutively activated form of Gsα in Drosophila wing induces premature cell death which 

interferes with the normal adhesion process during wing development371. Consequently the 

Gsα/cAMP/PKA pathway appeared to be a strong candidate to be examined for possible 

understanding of the mechanism of blister formation due to loss of CG1847, and I investigated 

the RNAseq data to see if these candidates were significantly changed in this mutant. 

I analysed the RNA-seq data and searched for changes in expression of transcripts known to be 

involved in cell-cell adhesion. Surprisingly, the majority of the genes previously described as 

being involved in blister formation were not significantly changed at the RNA level. The only 

putative candidate that was detected as significantly changed by the RNA-seq study was Act57B. 
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Gene Full name Log fold change p_value significant oID_genes 

Act42A Actin 42A 0.406432 0.2532 no FBgn0000043 

Act57B Actin 57B -0.633148 0.0001 yes FBgn0000044 

Act5C Actin 5C 0.276335 0.1869 no FBgn0000042 

Act79B Actin 79B -0.460301 0.3667 no FBgn0000045 

Act87E Actin 87E -0.493142 0.0848 no FBgn0000046 

Act88F Actin 88F -0.916564 1 no FBgn0000047 

Actbeta Actin beta 0.515229 0.0679 no FBgn0024913 

Actn3 α actinin 3 -1.54302 1 no FBgn0015008 

Asx Additional sex combs -0.0169036 0.9874 no FBgn0261823 

Bj1 Highwire -0.539097 0.2875 no FBgn0002638 

blot bloated tubules  -0.0593775 0.8388 no FBgn0027660 

CG1136 CG1136 (insect-specific) -0.151218 0.5831 no FBgn0035490 

Pka-C2 
Protein kinase, cAMP-
dependent, catalytic subunit 2 

-0.138539 1 no FBgn0000274 

CG14967 CG14967 0.0663947 0.8943 no FBgn0035420 

Clc Chloride channel-c  0.153304 0.6614 no FBgn0024814 

dl Delta -0.0269314 0.9375 no FBgn0260632 

Gs alpha Gs alpha -0.195469 0.4815 no FBgn0001123 

how held out wings  -0.045544 0.881 no FBgn0264491 

if 
inflated (αPS2 - ventral region 
of the wing) 

-0.391494 0.2154 no FBgn0001250 

mam mastermind  0.174134 0.5295 no FBgn0002643 

mew 
multiple edematous wings 
(αPS1) 

-0.0201201 0.9415 no FBgn0004456 

mys myospheroid βPS -0.0154065 0.9626 no FBgn0004657 

Pax Paxillin -0.453091 0.1577 no FBgn0041789 

pio piopio -0.350258 0.2197 no FBgn0020521 

Pomp pomp -0.155682 0.7813 no FBgn0032884 

rhea talin 0.0650331 0.8494 no FBgn0260442 

Sac1 Sac1 -0.167354 0.5496 no FBgn0035195 

sfl sulfateless -0.029291 0.9199 no FBgn0020251 

sgl sugarless 0.0745148 0.8112 no FBgn0261445 

shot short stop  -0.398396 0.1734 no FBgn0013733 

stck 
(PINCH) 

steamer duck -0.286582 0.3821 no FBgn0020249 

Tsf2 gigas -0.00332658 0.9898 no FBgn0036299 

Vinc Vinculin 0.024666 0.9356 no FBgn0004397 

Table 22: List of genes with a putative involvement in blister formation 

RNA-seq is a very powerful tool, but the results need further validation via an alternative 

molecular technique. For this, I used a multiplex qPCR method. Apart from Act57B, I chose to 

validate other putative candidates, which were selected on the basis of literature searches (both 

from human and Drosophila studies). Gsα and PKA (all 3 subunits: PKA-C1, -C2 and -C3 present 
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in fruit fly) were similarly expressed in the mutant and control samples via RNA-seq (Figure 73). 

However, I chose to include these genes for further quantification as they have been shown to 

be highly involved in the pathogenesis of pituitary adenomas, and also in blister formation. 

 

 

Figure 73: Quantitative PCR analysis of 

transcripts with a possible 

involvement in blister formation in 

Drosophila adult wings. None of the 

quantified transcripts were significantly 

downregulated in mutant larvae when 

compared to controls Target gene 

expression was normalised to the 

reference gene Ribosomal protein 

Rpl32 (Chapter 3). N=4 biological 

replicates with 2 technical replicates 

for each. Error bars represent SE. 

 

The comparison of the expression profiles for the other possible candidates during Drosophila 

development revealed that these specific transcripts were not substantially perturbed in mutant 

larvae. The multiplex qPCR analysis failed to detect significant changes in the mRNA expression 

levels of Act57B, Gsα or Pka-C1. 

Members of other protein families, such as the heat shock proteins, or proteins involved in 

cuticle formation and secretion, or chitin attachment were also validated via this method 

(Chapter 3). These also might have an influence on wing blistering. 

A very recently published article366 used the Drosophila wing tissue to investigate the 

components regulating the adhesion process. By using a library of Drosophila RNAi lines 

targeting 1573 protein coding genes and screening for the blister phenotype the authors 

identified 190 novel genes involved in apposition and adhesion of the two wing epithelial layers. 

Remarkably, Bilousov et al. revealed components of cellular processes as cell cycle, RNA splicing, 

and vesicular trafficking. With bioinformatics tools, they assembled the resulted data into a 

blisterome network. 

However, not even the huge data resulted from this study did not identify CG1847 as being 

involved in blister formation. Further validation of RNA-seq data and more specific experiments 

are required to investigate in more detail the mechanism behind loss of adhesion in the CG1847 

deficient mutant. 
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4.5 DISCUSSION 

The human adenohypophysis is a glandular epithelial tissue of ectodermal origin, derived from 

Rathke's pouch. The majority of this gland is composed of sinuous cords of epithelial cells 

surrounded by vascular tissue. Epithelial cells form many different tissues, but their 

characteristics are the same regardless the type of tissue or the organism they belong to. 

Epithelia are layers of simple or stratified interconnected cells. They have an apical and a basal 

surface, the latter being in contact with a basement membrane372,373. Based on their shape, 

epithelial cells are further classified as squamous (flat, thin cells), cuboidal or columnar epithelia 

(mainly composed of tall, thin cells). Another important characteristic of epithelial tissues is the 

abundance of cell junctions, which are formed of protein complexes involved in either 

connecting neighbouring cells, or connecting the cells to the extracellular matrix (ECM) via 

different types of adhesion. Connections between neighbouring cells is established by apical 

adherent junctions (AJs). The main component of AJs is E-Cadherin (E-Cad). E-Cad is a 

transmembrane protein, which can homodimerise with E-Cad molecules from surrounding cells 

via its extracellular domain. The cytoplasmic domain of E-Cad interacts with the actin 

cytoskeleton via a complex network of proteins374. Thus, the AJs are a link between the lateral 

surfaces of the cells, and they are essential structures for apical-basal polarity, a main feature of 

epithelial cells375. Another type of cell junctions is involved in connecting the epithelial cells to 

the ECM: the basal junctions (BJs)375. The ECM is a very complex mix of tissue-specific proteins, 

involved in tissue integrity and binding of extracellular signalling molecules376,377. The ECM 

initiates crucial biochemical cues required for tissue morphogenesis and differentiation during 

development378. The BJs involved in cell-ECM connections are mediated by integrin receptors, 

which are adhesion receptors for extracellular matrix ligands, that can also serve as 

transmembrane mechanical links to the cytoskeleton inside cells379. These bidirectional linkages 

integrate cells with their microenvironment. All integrins are heterodimeric molecules 

containing an α and a β subunit. The extracellular domains of the α subunit bind to specific ECM 

components such as laminin and collagen. The intracellular domains of the β subunit mediate 

intracellular connections to the actin cytoskeleton380,381. Thus, while AJs have an important role 

in connecting neighbouring cells, BJs connect the cell cytoskeleton to the ECM. The ECM is a key 

player in cancer development382-384. In tumorigenesis processes, the ECM is commonly 

deregulated and becomes disorganised. Abnormal ECM has a strong influence in cancer 

progression by directly promoting cellular transformation and motility385. An abnormal ECM can 

have increased collagen deposition, which in turn up-regulates integrin signalling, thereby 

promoting cell survival and increasing proliferation386,383. 
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To understand the role of AIP in the pathogenic mechanisms of pituitary adenomas, it is essential 

to investigate which are the interacting partners affected by the loss of this protein and what is 

their influence on the structure of the epithelial tissue, or connections with the ECM. The 

developing Drosophila wing is a very simple system which enables scientists to investigate the 

molecular mechanisms involved in cell shape changes associated with rearrangement of 

epithelial sheets during normal development or tumorigenesis. As previously presented in the 

Introduction section, Drosophila wing development is a relatively simple process, which involves 

the transition from a single layered columnar epithelium to a flattened bilayer tissue. The basal 

surfaces of the dorsal and ventral epithelia are in close contact to the basal membrane as during 

pupal stages they adhere by forming the BJs mediated by integrin receptors353,354. 

I used the Drosophila wing to show via two independent methods that silencing or deletion of 

CG1847 during development causes wing blister formation in adults. This phenotype strongly 

resembles that of a decrease in integrin function; homozygous mutant clones for integrins 

induced in the wing disc result in blisters. This is due to the fact that the dorsal and ventral wing 

epithelia fail to adhere in and around the integrin mutant clone387-389. The adhesion process is 

mainly regulated by the different proteins belonging to the integrin-actin-cytoskeleton network, 

and eliminating almost any of the components of this complex network results in failure of 

adhesion between wing surfaces390. Previous studies have found that the same phenotype, a 

fluid-filled blister, might be the result of silencing βPS integrin signalling in the wings381,389,391,392, 

or of a loss of PINCH393. Mutations of blistery, the gene which encodes for tensin, also result in 

loss-of-adhesion in the adult wing362, as well as integrin-linked kinase (ILK) mutations394. As a 

result, it is likely that a failure in any of the members of this integrin-actin cytoskeleton complex 

may lead to a loss-of-adhesion phenotype. However, there are no descriptions of an actin 

subunit mutation resulting in blister phenotype. As actin is essential for cell viability395, null 

mutations of this gene will result in lethality396. 

Besides the blister phenotype which strongly suggests defects in wing cell adhesion, our results 

reveal that CG1847 signalling is required for the maintenance of a normal actin cytoskeleton as 

actin is significantly downregulated. In addition, we show that apart from actin, in Drosophila 

pupal wings, loss of CG1847 leads to marked downregulation of the integrin-associated protein 

PINCH. Finally, another surprising result was the observation that CG1847 mutants display 

widened wing veins during the pupal stages. As a consequence, my results strongly suggest that 

CG1847 may be an important factor of cell-to-ECM adhesion via an intricate relationship of 

mechanisms involving the integrin-actin-cytoskeleton and the wing vein formation. 
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Integrins are a family of heterodimer receptors formed by the association of an α- and a β-

integrin subunit. The Drosophila genome encodes 5 α (αPS1-5) - and 2 β-subunits (βPS and βν). 

While βPS forms tissue specific heterodimers with all 5 α subunits, for the second β-subunit, βν, 

only one α partner has been identified so far223,224,397. Integrins have an extracellular, a 

transmembrane and a cytoplasmic domain. These receptors are classified based on the ECM 

molecules they bind to via their extracellular domain: some recognise fibronectin, while others 

bind specifically to laminins398. An important part of the adhesive function of integrins is their 

ability to connect to the actin cytoskeleton, therefore integrating cells with their 

microenvironment379,399,400. The integrins do not possess intrinsic enzymatic activity; however, 

numerous proteins and kinases (such as FAK, Ras, Raf, Mek, PI3K and PKA) have been involved 

in mediating the integrin involvement in signalling pathways that control cell migration, 

proliferation, differentiation and survival398,401. After binding to ECM ligands, integrins undergo 

an activating conformational change. This leads to focal adhesion kinase (FAK) and tyrosine auto-

phosphorylation of their cytoplasmic associated proteins. Integrin-ECM interaction is followed 

by the recruitment of integrin-interacting proteins that form complexes known as focal 

adhesions402. Some of the most studied integrins functions regards their involvement with the 

ECM, especially the role in mediating the dynamics of cellular migration. Integrin null mutations 

are lethal at early stages of development, and the mechanism is most often due to failure of 

integrin-mediated adhesion369,390.  

Actin is an abundant, essential protein found in all eukaryotic cells. It exists in two major 

conformations: G-actin (globular) or F-actin (filamentous). Numerous direct or indirect 

interacting partners have been described for actin, which are involved in a tight regulation of 

actin dynamics. Different ECM stimuli activate integrins, which bind to their ligands, become 

activated and send signals to the actin cytoskeleton403,404. In response, additional cytoskeleton 

proteins are recruited and these will influence ATP-bound actin monomers to assemble into 

filaments. The final result is that the newly assembled actin filaments will determine, also via 

integrins, the necessary changes in cell motility. It is well known that actin is involved in 

pathogenic states, and it plays a particularly important role in tumour invasion and 

metastasis405,406. Malignant cells migrate by invading adjacent tissues and the vasculature. These 

are multi-step processes, usually initiated by polymerization of actin filaments which leads to 

formation of membrane protrusions. Actin cytoskeleton signals were shown to be upregulated 

in invasive cancer cells407. 

Talin is a major integrin-binding protein as it has an atypical FERM (band 4.1, ezrin, radixin, and 

moesin) domain. The four subdomains (F0-F3) do not adopt the classic clover conformation of 
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FERM domains; however, it was shown that talin directly interacts with the cytoplasmic domain 

of β-integrin subunits246. The integrin-talin FERM domain complex plays a critical role in actin 

polymerization408. In Drosophila, mutations in rhea, which encodes talin, are also lethal during 

early embryonic development, while loss of this protein specifically in the wings causes failure 

in adhesion and blister formation381. As shown in Table 22, the rhea levels of expression are not 

significantly changed in CG1847 mutants. 

The ILK-PINCH-Parvin (IPP) complex has been shown to be downstream of talin and to connect 

talin to the actin cytoskeleton. As such, the IPP complex has a central role in the integrin 

adhesome network409,410. ILK is the first protein of this complex that is activated upon integrin 

signalling and is recruited to focal adhesion sites411. ILK has two different domains involved in 

binding to the other members of the complex. While the ILK ANKRs (five tandem ankyrin) 

repeats connect to PINCH, the kinase-like domain binds to parvin. Upon binding, both PINCH 

and parvin connect to actin412. Disruption of any member of the IPP complex significantly impairs 

the other two, and leads to changes in cell shape and motility413. In Drosophila, the IPP complex 

has been thoroughly investigated in two well-established models of integrin-mediated adhesion: 

muscle attachment sites and the wing epithelium. Surprisingly, at muscle attachment sites, ILK 

and PINCH do not require parvin, suggesting that parvin functions to strengthen the integrin–

actin link in the muscles414. On the other hand, studies in the wing epithelium revealed that the 

stability and localization of ILK/PINCH/parvin are interdependent in wing epithelium. Staining in 

wing imaginal discs revealed that knockdown of either PINCH, ILK or parvin resulted in reduced 

expression of the other two, whereas talin levels remained unchanged414. 

In summary, there is interdependence of all three IPP-complex components for their stability 

and subcellular localization at the basal side of wing epithelia, unlike the central role of ILK in 

IPP-complex assembly at the embryonic muscle attachment sites (MASs), as depicted in Figure 

74. 

Interesting, these results were confirmed by the findings of another group who proposed that 

mutations PINCH function is required for the stable adhesion between epithelial layers in the 

wing as mutations which inactivate PINCH in Drosophila wings leads to wing blisters. However, 

investigating the distribution of this network in the muscles of Drosophila embryos, PINCH 

inactivation do not result in ILK mislocalization, as ILK appears normal in PINCH mutant 

embryos393. 
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Figure 74: Genetic hierarchy of integrin–actin linker complex assembly at muscle attachment sites and 

in wing epithelium.  (A) At muscle attacment sites, assembly of the integrin–actin linker complex follows 

a linear pathway of genetic interactions. IPP complex assembly depends on ILK and there is no 

interdependency between parvin and PINCH. (B) In the wing epithelium, the genetic hierarchy can be 

classified at two levels: Integrins and talin are mutually dependent and both are required for PIP-complex 

stability. All proteins of the IPP complex are mutually dependent. This network is highly conserved in 

humans, mice but also in organisms such as fruit fly (Drosophila melanogaster), nematode (Caenorhabditis 

elegans), slime mold (Dictyostelium discoideum), and yeast (Saccharomyces cerevisiae)415. 

Given the blister phenotype upon CG1847 loss of function, and the identical phenotype of βPS, 

mutants, I assessed whether CG1847 is required for the subcellular localization of integrin β-

subunit at muscle attachment sites. We performed this investigation in male mutants, when 

they were just a little older than 48 hours of development (the moment when they start dying). 

We found identical distribution of βPS integrin in CG1847 male mutants and control larvae. 

However, βPS distribution was found normal also in pupal wings lacking CG1847. Hence, my 

results suggest that CG1847 loss of function does not affect βPS distribution in muscle 

attachment sites or in the wing epithelium. It remains to be determined whether loss of CG1847 

affects the signalling activity of integrins. 

Whereas actin and PINCH were significantly downregulated in pupal wings, talin expression 

levels were unchanged, this being in accordance with previously published results414. Likewise, 

the intensity of parvin staining was similar between knockdown and control samples which 

although is in disagreement with the results of Vakaloglou et al.414, it confirms the data published 

by Clarks et al. in 2003393. 
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In summary, my results show a novel connection between CG1847 and the integrin-actin 

cytoskeleton in the Drosophila wing epithelium. As I could not detect a significant change of 

actin at the RNA level, neither in the RNA-seq data nor by Multiplex qPCR, I propose that the 

loss of CG1847 leads to lower actin levels via post-transcription mechanisms. However, the 

actual mechanism of this interaction remains unclear and the direct interaction between AIP 

and actin remains controversial. The ECM–integrin–actin is an intricate complex which signals 

bidirectional and, therefore, it is not entirely clear which factors initiate a process involving this 

network. 

Some early studies involving Drosophila and C. elegans suggested that integrins are the origin of 

the stimulus for the linkage between ECM and the cell cytoskeleton as integrin mutants are not 

viable416,417. However, subsequent studies focused in understanding ECM structure have 

proposed that changes in the ECM components dictate the intracellular assembly of actin 

filaments. This is achieved via integrins and integrin-associated proteins; however, integrins are 

obviously not essential to generate the ECM, as ECM components still accumulate in integrin 

null mutants418,419. To further complicate matters, other groups have shown that polarisation of 

the cytoskeleton precedes changes in either the ECM components or integrin activity. Their 

hypothesis suggests that actin polymerisation leads to accumulation of ECM ligands, which in 

turn determine integrin activation420. Other groups supported a very similar hypothesis, 

proposing that integrin activation comes from inside the cell, without involving ECM 

components. It was shown that, at the muscle attachment sites, the cytoskeleton would first 

undergo polarisation which will lead to integrin activation and connection to the ECM. This 

mechanism has been supported by the phenotypic analysis of Drosophila PS integrins368,421,422. 

In summary, increasing evidence supports the sequential model of an initial cytoskeleton 

polarisation, resulting in the tissue-specific accumulation of different ligands in the ECM. Only 

then the integrins are able to attach to their ligands. Following integrin attachment to the ECM 

components, these receptors are able to recruit additional proteins to focal adhesions, such as 

talin, parvin, vinculin, which further strengthen the interaction. Nevertheless, this model raises 

a critical question: what controls intracellular actin polarisation? Interestingly, in our in vivo 

Drosophila model of CG1847 deficiency actin is severely downregulated and disorganised and 

this might be the causative factor for the various CG1847 phenotypes. Furthermore, PINCH 

downregulation brings additional support to the hypothesis that the loss-of-adhesion 

phenotype generated by lack of the Drosophila AIP orthologue involves the actin-integrin 

network. 
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In addition to the blister phenotype, inhibiting CG1847 signalling resulted in wing vein widening 

in pupal stage. When induced ubiquitously, CG1847 RNAi led to a strong defect in wing vein 

formation. Broader wing veins have been commonly associated with wing blistering365,423-425. The 

cascade of morphogenetic events during normal wing development is crucial to understand the 

mechanism of this phenotype. Following eversion, dorsal and ventral surfaces of the wing reach 

complete apposition at their basal surfaces, forming a bilayer epithelial tissue. At approximately 

18 h APF, longitudinal bands of cells send extensions of basal processes to connect with their 

partners on the opposite layer346. At this stage, the presumptive veins are not visible. The 

‘intervein bands’ first appear around the periphery of the wing and increase progressively from 

anterior to posterior. At 20 h APF, the veins emerge as areas which do not form basal connective 

processes, do not adhere to the opposite layer and appear as a network of vein lumens, with a 

pattern similar to the adult wing. Between 21 and 30 h AFP, all the cells in the intervein areas 

form BJs with the cells from the other layer, progressively ‘zipping’ the intervein epithelia. As a 

consequence, vein development is based on the persistence of dorsal-ventral separation. While 

all intervein cells become apposed basally via BJs mediated by integrin receptors, the vein 

channels remain unopposed and the vein network is fully formed. The vein cells remain relatively 

unspecialized, do not express integrins, do not form BJs and do not connect with the cells on the 

opposite layer. At approximately 30 h APF, the veins lumens become lined with laminin346. 

In Drosophila integrin mutants (e.g. inflated, myospheroid) the mechanism of cell adhesion in 

intervein areas is defective and vein channels are wider resulting in wing blisters387,391,392. 

However, in integrin mutants no evidence of blisters in pupal wings could be found; the intervein 

regions were basally apposed and were not laminin-lined. Even mutations that in adults led to a 

completely ballooned wing had an appearance of normal apposition between the cell layers 

during pupal stage. Consequently, it seems that blisters form later in development, during the 

expansion stage, 50-60 h AFP or during eclosion414. 

Interestingly, the wing vein widening phenotype has also been described in Drosophila when 

there are alterations in cadherins426. Cadherins are adhesion molecules involved in mediating 

the cell-cell adhesion via AJs, and in the control of the cell shape and the cell polarity427. The 

Drosophila E-cadherin (DE-cad) is encoded by the shotgun (shg) gene. Vein cells lacking shg, and 

consequently the AJs, failed to form a lumen. The vein cell fate specification in the developing 

Drosophila wing is mediated by Egfr, as there is evidence that Egfr controls shg both at 

transcriptional and posttranslational levels428. In summary, Egfr signalling is essential for normal 

DE-cad localization426 and alterations in DE-cad-mediated adhesion result in vein broadening. 

This mechanism might be relevant for this study, as E-Cad associates with the actin cytoskeleton 
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and negatively regulates cell migration in Drosophila by actin cytoskeleton remodelling429. 

Furthermore, E-Cad involvement in tumorigenesis is well known and it is strongly involved in 

epithelial-mesenchymal transition. Beside this, EGFR was reported to interact with AIP166, and 

EGFR inhibition has a repressive effect on rat pituitary tumour growth430. However, a report 

published by D’Souza-Schorey et al. in 2005427 did not describe the blister phenotype in wings 

of adult fruit flies with E-cad mutations. Moreover, there are no data supporting the hypothesis 

that mutations in E-Cad result in wing blistering in Drosophila. 

Briefly, my data supports the hypothesis that the Drosophila AIP orthologue is required for cell 

adhesion. The mechanism of CG1847 involvement in cell adhesion is via actin deregulation and 

integrin signalling, supported also by the wing vein widening. This novel possible interaction with 

cytoskeletal proteins and a role in cell adhesion indicate a putative involvement of AIP in cell 

motility and tumour behaviour. Cytoskeletal disorganisation is an important feature of 

epithelial-mesenchymal transition (EMT), the process by which cells develop increased 

migratory capacity, invasiveness, and resistance to apoptosis, resulting in the development of a 

more malignant cellular phenotype431,432. During epithelial-mesenchymal transition, epithelial 

cells lose their polarity and their ability to adhere to surrounding cells and become mesenchymal 

cells. 

Unpublished mass spectrometry and affimetrix data from other members of the laboratory also 

suggest the possibility of a functional interaction between AIP and the actin cytoskeleton as well 

as an involvement of this AIP-actin partnership in the pathogenesis of pituitary adenomas. 

In mammals, the combination of 18 α- and 8 β-integrin-subunits regulate cellular migration, 

invasion, proliferation and survival. Some oncogenes may require integrin signalling in order to 

initiate tumour growth and invasion385. In several tumour types the expression of specific 

integrins correlates with increased disease progression and decreased survival433. For other 

tumours, drugs have been already designed to target this pathway as for examples the integrin 

αv inhibitor cilengitide, which is now in Phase-III clinical trials as combined therapy for newly 

diagnosed glioblastoma patients434. Regarding pituitary adenomas, the specific pattern of 

integrin expression is altered compared to the normal pituitary435. While normal pituitary cells 

express α3β1 and α6β4 and stromal cells express α1β1, adenomas express αvβ3 and lose α3β1 and 

α6β4. These alterations are similar to those that occur in malignant tumours but, since pituitary 

tumours very rarely metastasise, these changes are probably important for their invasive 

behaviour. 
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Recent studies have suggested that the AIP-partner AHR activates FAK, thereby promoting 

integrin activation and increased cell migration22. On the other hand, another AIP-partner, 

Hsp90, is known to interact with ILK in tumorigenic processes436. 

With regards to the possible involvement of AIP in tumour growth, our data support the 

hypothesis that CG1847 exerts a tumour suppressor role, as the area of CG1847 homozygous 

mutant clones was significantly larger than controls. Still, CG1847 doesn’t seem to be involved 

in cell growth, as we failed to identify any differences in cell density. Hence, CG1847 deficiency 

may have an important role in promoting cell proliferation or cell survival. Further investigation 

is needed to distinguish between the two alternatives as previous data exists to support both 

mechanisms. 

Cell proliferation is tightly controlled by cyclins and their respective cyclin dependent 

kinases437,438. Although there are numerous studies regarding the control mechanisms of the cell 

cycle, the actual link between cellular proliferation and AIP-driven adenoma development 

remains incompletely understood. Cyclin-dependent kinase 9 (cdk9) is a cdc2-related 

serine/threonine kinase that has been shown to interact with AIP164. The mechanisms required 

for regulation of CDK9 and its involvement in processes regulating cellular growth and 

proliferation are poorly understood. It has been shown that Cdk9, together with cyclin T1, forms 

a heterodimer called P-TEFb, which is involved in cell cycle progression by stimulating 

transcriptional elongation via RNA polymerase II phosphorylation439,440. The P-TEFb complex is 

recruited to chromosomes at mid- to late anaphase. Inhibition of this process was shown to 

reduce the binding of P-TEFb and expression of key G1 and growth-associated genes, leading to 

G1 cell cycle arrest and apoptosis441. Consequently, CDK9 is a promising target for an 

antiproliferative drug in oncologic pathologies442, CDK9 inhibitors being currently under clinical 

investigation443. 

AIP was also shown to suppress apoptosis as Kang et al. published in 2006444 that AIP directly 

interacts with survivin and is required for its stability. Survivin is a member of the Inhibitor of 

Apoptosis family, which include evolutionary conserved members with key properties in 

regulation of mitosis and apoptosis445. Survivin protects cells against apoptosis and can reduce 

the sensitivity of tumour cells to apoptosis stimulation by increasing the survival capability of 

tumour cells. It was also shown that survivin changes can affect individual susceptibility to 

tumour formation446,447. All these characteristics make this protein a novel target for cancer 

therapeutics448. 
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By using the fly model I also fulfil the strategic priority of replacement in research using animals. 

So far, most studies used rodent models in the fields of pituitary tumour, therefore this project 

is entirely novel. In UK alone there are around 10 different labs using mouse models for pituitary 

tumorigenesis. We are aware of at least 5 more labs worldwide using mouse models for studying 

the mechanisms of pituitary tumorigenesis. It is difficult to estimate the total number of animals 

used in pituitary tumorigenesis studies in these labs, because for a single ongoing project in our 

lab a large number of mice are sacrificed which do not have the desired genotypes. From an 

average of 8-9 pups born in every litter only 2-3 pups are kept. For financial constraints all the 

unused pups are killed before weaning (day 21 postnatal). For a single project a relatively stable 

colony size is 120 mice in a year. Colony size control, dictated by practical and financial reasons 

leads to some of the adult mice being sacrificed, with an estimate of around 10 adult mice killed 

per month. Obtaining embryos (average of 7-8 per pregnancy) for the developmental part of 

this study unfortunately also requires sacrificing the mother. For most studies at least 15 

pregnancies are being examined, meaning that on average an additional 15 adult females and 

around 100 embryos will be sacrificed. In summary, each year around 120-150 mice and 100 

embryos are being used for a single study, with around 200 adult and 300 young (before 

weaning) more mice being sacrificed in a single project on pituitary tumorigenesis. Regarding 

costs, the basic housing costs for this study are approximately 1100 GBP/month (around 1300 

GBP/ month). The colonies need to be maintained for long periods of time, as pituitary tumour 

penetrance is age-dependent (Raitila et al. demonstrated in 2010 that full penetrance of 

pituitary tumours in AIP-KO mice was reached at the age of 15 months). 

This Drosophila model will be further developed to study the pituitary tumorigenesis, with 

estimated savings of hundreds of mice/year. This number may increase even further with the 

adoption of this model by other laboratories and future projects in our laboratory.  

 

4.5 CONCLUSIONS 

In conclusion, the study of CG1847, the Drosophila orthologue of human AIP revealed an exciting 

novel role for this protein in cell adhesion. I have shown that CG1847 is required for actin 

cytoskeleton stabilisation, with a possible involvement in the regulation of integrins. The 

possible interactions with actin indicate a possible strong influence of AIP in cell motility and 

migration, cellular functions which are essential for tumour growth, invasion and metastasis. 

In addition, I have shown for the first time a possible unique contribution of CG1847/AIP to 

integrin–actin cytoskeleton signalling. 
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Finally, my data supports the role of AIP as a tumour suppressor gene. However, further studies 

are required to uncover the exact molecular mechanisms involved. 

Although my results still need thorough investigation for translation to human data, this study 

provides an important insight into how the loss of AIP may promote adenoma formation and 

local invasion. Furthermore, the in vivo model developed in this study supports the use of 

Drosophila melanogaster as a system to elucidate the molecular mechanisms of human 

tumorigenesis.  

Replacing mammalian animal models with Drosophila ones enables research projects that would 

otherwise not be practically feasible, except for considerably large animal and financial expense. 
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CHAPTER 5: AN IN VIVO SYSTEM TO TEST THE PATHOGENICITY OF 

AIP MISSENSE MUTATIONS  

 

5.1 INTRODUCTION  

Despite significant progress on the understanding of AIP-associated pituitary adenomas, the 

etiology and pathogenesis have remained elusive. Many questions remain unanswered, some 

of them involving the pathogenicity of AIP variants. AIP-related pituitary adenomas are 

autosomal dominant with incomplete penetrance116. While different groups have reported a low 

prevalence of AIP mutations in unselected patients with pituitary adenomas (<4%)122,138 this is 

significantly increased in patients with young onset GH-excess (24%) and FIPA (17.1%)117. In the 

subgroup of the patients diagnosed with gigantism, the prevalence of AIP mutations is close to 

50%208,209,449. 

A few hotspot mutations in AIP, as well as a few cases of founder mutations have been 

described, and these have been shown to mostly affect CpG islands. CpG sites are regions of 

DNA where a cytosine lies next to guanine. “CpG” stands for a cytosine that is separated by a 

phosphate from a guanine (—C—phosphate—G—) on the same allele. In CpG sites, cytosines 

can be methylated by DNA methyltransferases, which attach a methyl group to carbon 5 of 

cytosine, thereby altering the DNA structure. In normal conditions, a spontaneous deamination 

of cytosine forms uracil, which is subsequently recognised and removed by DNA repair systems. 

A methylated cytosine which deaminated will form thymine instead of uracil, and this might not 

be recognised by the repair enzymes. This conversion will ultimately result in a transition 

mutation450. 

Examples of AIP founder mutations were found in Finland, Italy451 and Ireland, which helped the 

identification of the AIP gene. In Ireland, a DNA sample from an 18th century patient matched 

the haplotype of numerous current families carrying the p.R304* nonsense mutation452. Using 

coalescent theory, it was estimated that the common ancestor lived about 57 to 66 generations 

earlier. Interestingly, the 304 residue is at a CpG site, which is a mutational hotspot. Numerous 

cases, in at least 20 kindreds, of truncating (c.910 C>T, p.R304*) and missense (c.911 G>A, 

p.R304Q) mutations have been identified across the globe117,120. 

While pathogenicity is beyond doubt for some mutations, such as truncated or stop variants that 

alter important AIP domains, for other mutations this is not immediately obvious. An interesting 

synonymous variant, c.249G>T, was shown to be pathogenic as it results in changes in AIP 
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splicing136. Conversely, some non-synonymous changes have been shown not to affect AIP 

function (e.g. p.Q228K)344. In the case of missense mutations, the change in amino acid sequence 

can affect protein 3D structure, with consequences for its folding and stability. A missense 

mutation can also alter the binding to interacting proteins. While some of these genetic variants 

have been classified as benign, with no functional consequence on protein function, for others 

there it is still a debate on their effect.  

One of the challenges in the management of patients carrying a missense AIP variant is to 

determine whether the variant is a disease-causing mutation or not102. Several groups have 

exploited in silico predictions to test the pathogenicity of mutations. Even though in silico 

prediction pipelines could correctly predict the pathogenicity of some splice-site mutations453, 

in cases where clear deleterious effects were not present, caution should be used before 

labelling them as deleterious mutations. Different in silico prediction platforms have been used 

(reviewed in Thusberg et al.453), but no single method can evaluate all parameters involved. 

Therefore, other methods should be employed for evaluating whether missense variants are 

indeed pathogenic or not. 

To date, more than 70 different AIP variants have been identified, the majority (75%) resulting 

in a truncated AIP protein120, missing the C-terminal tetratricopeptide-repeat (TPR) domains. As 

the frequently used term "a pathogenic variant" might be confusing a 5 categories classification 

was proposed: a) pathogenic, b) likely to be pathogenic, c) unlikely to be pathogenic, d) not 

pathogenic and e) variants of unknown significance. In an article published in 2012, Korbonits et 

al.454 analysed the available data and grouped AIP variants into these five categories. Out of the 

fifty-two AIP variants identified at the time, 12 were previously reported as SNP or rare variants 

with apparently no pathological significance. Some of the AIP changes were classified as “not 

available” because the data regarding their pathogenicity was missing. Since then, progress in 

this area has been limited due to the lack of a reliable assay capable of differentiating between 

disease causing mutations and benign ones. 

New AIP variants identified in FIPA patients keep on being identified. The most recent article 

was published by a Turkish group which detected 2 homozygous missense single-nucleotide 

polymorphisms (rs641081 [Q228K] and rs4930195 [Q307R]) and their frequencies were 

significantly higher in FIPA patients compared to controls455. rs641081 was previously 

published344,456,457 and it is not considered to be a disease causing mutation. However, for other 

AIP variants the available data is more contradictory and there is an increased need for an in 

vivo test. 
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5.2 BACKGROUND 

Up to 60% of fly genes are evolutionarily conserved in human. Numerous technologies have 

been developed in the last decades to manipulate the fly genome allowing significant insight 

into the role of genes, especially for those ones whose mutated human orthologues were shown 

to cause genetic disorders. Many genes that are essential and conserved during evolution were 

associated with human diseases. Multiple studies have attempted to bring a better 

understanding into the mechanism by which these specific mutations cause genetic diseases. In 

2014 Yamamoto et al.458 conducted a genetic screen of lethal mutations. They identified 165 

genes on the Drosophila X chromosome, with a possible involvement in the development and 

function of the nervous system. An investigation of rare variant alleles in 1,929 human exomes 

from families with unsolved Mendelian disease allowed this group to identify disease-associated 

mutations in six families and to provide insights into microcephaly associated with brain 

dysgenesis. 

The recent progress in sequencing technology and bioinformatics allows not only a direct 

identification of mutations, but also the impact of different types of mutations on the levels of 

expression of the genes. However, these technologies bring the real challenge in the 

interpretation of such genomic data and functional experiments are required. These data can 

be obtained using human cell cultures, however Drosophila is an extremely useful model 

organism to obtain in vivo data. This degree of identity between fly and human genomics helped 

the functional annotation of evolutionarily conserved genes. 

Once a putative Drosophila orthologue is identified, a null allele or a strong hypomorph mutation 

should be generated as this will generate a specific phenotype and will provide a reference. In 

the next step, the human cDNA orthologue of a fly gene can be tested for rescuing ability. 

A description of the strategy that was used in this thesis is shown in Figure 75. 

Imprecise excision of a P-element from a gene of interest generated a null allele. Upon 

identification of the phenotype in the fly (lethality), rescue experiments by the UAS-hAIP cDNA 

transgene ubiquitously overexpressed under the actin-Gal4 driver allowed the testing of the 

functional conservation of AIP gene function between fly and human. 

Using this principle, the function of variants found in human patients can be further assessed. In 

the next step, comparing the rescue efficiency of wt hAIP cDNAs versus mutant versions is a 

rapid method of assessing whether a particular variant found in a human patient might be 

affecting the normal function of this gene. 



 

 

194 

 

 

 

 

 

Figure 75: Schematic representation of the rescue experiments. First, the potential fly orthologue of 

human AIP was identified. A mutant fruit fly was generated via imprecise excision of a P-element. Only 

heterozygous females are viable, as hemizygous males are lethal. The Act-Gal4 driver was introduced in 

the mutant background and the stock was balanced over CyO. The hAIP cDNA was cloned into a transgenic 

UAS vector. This allows generation of transgenic stocks for hAIP, which were then balanced over CyO. By 

crossing males that carry the transgene of the hAIP cDNA under the control of UAS with heterozygous 

mutant females (with Act-Gal4) it can be determined if hAIP is able to rescue the fly lethality. 

Orthologue 
prediction

P-element 
excision

Isolated hAIP cDNA

attB

attP

phiC31
integrase

Docking site

Drosophila genome

Transgenic flies with hAIP cDNA 
(wt or mutant versions)

UAS hAIP

UAS hAIP

Transgenic vector

Balanced over CyO

Combined with
act-Gal4/CyO

CG1847exon1_3

CG1847exon1_3

FM6

CG1847exon1_3 Act-Gal4
FM6              CyO

X UAS-hAIP
Y       CyO

Rescued males

CG1847exon1_3 UAS-hAIP
Y               Act-Gal4

CG1847 wt

Null allele
MUTANT MALES
CG1847exon1_3 LETHAL

Y



 

 

195 

 

 

5.3 OBJECTIVES 

The fruit fly model could be utilised to identify which missense variants affect human AIP 

function and are likely to be a disease-causing mutation (or not) via: 

1. Testing the functional conservation between human and fly protein  

2. Determining the functional importance of the C-terminal domain  

3. Testing which hAIP variants do or do not have a significant impact on protein function 

4. Evaluating the expression of human wild-type and missense mutations in Drosophila 

melanogaster via immunoblotting  

This structure-function analysis will determine which variant impairs the conserved function of 

AIP required for viability. This approach will ultimately help to determine the pathogenicity of 

human AIP missense mutations, with a significant impact on the genetic counselling of FIPA 

patients. 

 

5.4 RESULTS 

As seen in Chapter 3, I have shown that CG1847exon1_3 is a null mutation for CG1847, the 

Drosophila orthologue of mammalian AIP. Since CG1847 is located in the X chromosome, males 

lacking CG1847 function are lethal, while heterozygous females are fully viable. Therefore, 

CG1847 mutant flies are a very useful model to test the functional conservation between human 

and Drosophila proteins. Expression of mammalian AIP can functionally complement CG1847 

and rescue the lethality of CG1847 mutant males (Figure 38). This functional complementation 

can be extended to AIP mutant variants, in order to determine whether they are likely to be 

pathogenic or not, in an in vivo setting. Therefore, if a specific AIP variant rescues the lethality 

phenotype of CG1847 mutant flies, it would strongly suggest that the variant does not cause a 

major functional disruption of AIP function. Conversely, a failure to rescue the lethality 

phenotype would indicate that the variant is likely to be non-functional and can possibly account 

for the disease. In summary, this in vivo approach has the potential to identify the functional 

relevance of the hAIP protein domains and the pathogenicity of human AIP missense variants.  

The AIP protein contains several identifiable domains, which are similar between human and 

Drosophila, (Chapter 1, Figure 6 and Figure 11). Structurally, in its N-terminal region AIP shares 

a significant degree of homology with immunophilins, as it has a peptidyl-prolyl cistrans 
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isomerases (PPIase)-like domain. However, this protein does not function as an immunophilin. 

The PPI-like domain has been described as a protein-protein binding domain264. It was observed 

that it is required for the stabilisation and nuclear translocation of the dioxin receptor-hsp90-

XAP2 complex194,459. The C-terminal part of AIP contains three antiparallel helices that constitute 

TRP domains and a final α-helix. The α-7 helix is essential for AIP function, and its role as a 

protein-protein interaction domain has been well established142. To investigate the functional 

conservation between the human and the fly protein, the importance of the α-7 helix and to test 

the pathogenicity of 4 human missense variants in our in vivo model, 6 different UAS-hAIP 

constructs were generated and injected into Drosophila embryos to obtain transgenic lines. 

 

5.4.1 Selection of AIP variants  

For this study constructs with wild-type AIP, truncated and missense AIP variants were 

generated. The 4 missense mutations were selected as detailed below. 

 

AIP p.R16H (rs145047094, c.47G>A, chr11:67483205)  

p.R16H is a very controversial missense AIP variant, which to date has not been conclusively 

classified as a true mutation or as a rare benign polymorphism. However, a considerable amount 

of data supports the idea that this is a benign variant. Based on the work of Guaraldi et al.460, 

the AIP p.R16H variant does not segregate with the disease. Moreover, the R16H mutation does 

not affect the AIP-RET interaction162. Consequently, this variant was selected as a positive 

control. 

 

AIP p.C238Y (rs267606569, c.713G>A, chr11:67490383) 

In contrast to p.R16H, the AIP p.C238Y missense variant was shown to affect both cell 

proliferation89 and the PDE4A5 binding assays136. Based on the crystal structure of AIP, this 

amino acid is predicted to be involved in protein folding. In 2012 Morgan et al. described that 

their attempts to purify C238Y resulted in protein aggregating suggesting that the protein was 

at least partly unfolded. The C238Y mutation causes destabilisation of the packaging of α and β 

helices of the second TPR motif142. All the available data indicate that C238Y is a true disease-

associated mutation, with a strong pathogenic role and, therefore, it is not expected to 

compensate for CG1847 loss of function. 
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AIP p.A299V (rs148986773, c.896C>T, chr11:67258367) 

Functional studies for the A299V AIP mutant variant have shown that the mutation does not 

affect the AIP-RET interaction162. In addition, this mutation causes only a slight reduction in 

PDE4A5 binding in vitro136. However, similar to C238Y, the attempts to purify A299V resulted in 

protein aggregation142. The A299V mutant variant was first described in a sporadic acromegaly 

patient461. This mutation was identified in 5 subjects of a family where the p.R304* mutation 

was also detected. Two unaffected patients carried both changes, one unaffected patient 

carried only A299V, while one young female carried only A299V and was diagnosed with a 

microprolactinoma at the age of 30 years. As the 2 subjects with the compound heterozygote 

genotype (double mutants for p.A299V and for the certainly pathogenic p.R304*) were 

unaffected, A299V variant is unlikely to have a functional impact as this will lead to possibly 

totally silencing of the second AIP alleles. Based on the available clinical data, the AIP A299V 

mutant variant is not considered pathogenic, but there further functional studies are required 

to support this conclusion. 

 

AIP p.R304Q (rs104894190, c.911G>A, chr11:67258382) 

One of the most frequently reported changes is p.R304Q. R304Q is categorised as pathogenic 

mainly based on clinical data. Multiple groups have identified this change in patients with 

pituitary adenomas89,122,136,162,208,209,456,461-463. However, none of the functional data support the 

pathogenic role of the R304Q mutation. Taking into account the increased discrepancy between 

the numerous clinical cases and functional studies, I decided to test the p.R304Q variant in the 

in vivo model. 

 

Assembly of hAIP protein constructs 

The pUAS-k10-hAIPwt plasmid was used for the assembly of hAIP truncation or missense 

constructs. Deletion of the last α helix and the missense mutations were performed via PCR-

mediated mutagenesis as described in section 2.3.8. in Material and methods and Figure 76 

below, with primer combinations corresponding to the specific change (Appendix 5). 
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Figure 76: Schematic diagram of the UAS-hAIP constructs. The full-length construct UAS-hAIPwt is shown 

at the top. The deletion of the 7th α helix is represented in the second image. The position of amino acid 

changes introduced to match the missense mutations into hAIPwt domains are indicated with a star. 

Protein domains are indicated by the colour code shown below the deletion construct assembly.  

 

The positive clones for the mutations were identified via sequencing, as shown in Figure 77. 

Constructs were microinjected into fruit fly embryos harbouring attP40 landing sites, which 

enabled the generation of transgenic stocks with human AIP constructs on the second 

chromosome. Given that all transgenes are inserted in the same genomic locus, they are 

predicted to be expressed at similar levels and to not have differences due to positional effects. 

These transgenic fruit flies stocks were balanced over the balancer chromosome CyO. Once 

available, transgenic males were crossed into the CG1847 deficient mutant background and 

their ability to rescue the lethality of CG1847 mutants was examined. The ubiquitous actin-Gal4 

driver was used to drive the expression of the UAS-hAIP constructs during fly development. The 

degree of rescue was analysed based on the percentage of non-FM6, non-CyO males within the 

total number of viable adult males in the next generation. 
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Figure 77: hAIP chromatograms. Partial nucleotide sequences of pUASK10 hAIPwt compared to the 

sequences of UAS-hAIP missense mutant constructs. 

 

5.4.2 Human AIP in Drosophila is able to functionally compensate for CG1847 loss of 

function  

All rescue crosses were performed at 25°C using females heterozygous for the loss-of-function 

mutation CG1847exon1_3 and carrying the actin-Gal4 ubiquitous driver on the second 

chromosome (section 2.2.13). Heterozygous CG1847exon1_3 /FM6; actin-Gal4/CyO females were 

then crossed to transgenic males carrying different human AIP variants (X/Y; UAS-hAIP/ CyO). To 

analyse the data from two independent biological replicates, males from two transgenic lines of 

each hAIP genotype were individually crossed with CG1847 heterozygous mutant females and 

each cross was performed in triplicate. Overall, six different crosses were performed for each 

hAIP variant. Successful rescue of lethality was scored as the presence of non-FM6 F1 males 

(with the genotype CG1847exon1_3 /Y; actin-Gal4/UAS-hAIP), which lack endogenous CG1847 as 

they inherited the deleted allele from their mothers. Figure 78 depicts the result of the rescue 

c.896C>T
p.A299V

AIPwt

c.911G>A
p.R304Q

AIPwt

c.713G>A 
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experiment for the stock carrying hAIPwt on the second chromosome. Only the male genotypes 

are shown, as only mutant CG1847exon1_3 hemizygous males will suffer lethality in the absence of 

Actin-Gal4 driven transgene expression. 

 

Figure 78: Results of rescue experiment with wild-type AIP. Images of F1 viable males showing: a) 

Rescued males with full-length wild-type human AIP gene. These males inherited from their mothers the 

mutant CG1847 allele on the X chromosome, but are rescued by expression of the human AIP transgene 

on the second chromosome; c) and e) Males inheriting the mutant CG1847 allele on maternal 

chromosome X are not viable in the absence of hAIP expression due to either lack of driver – c) or rescue 

transgene – e) of the UAS-Gal4 system. These two genotypes also serve as internal negative controls; b) 

and d) Males expressing a wild-type CG1847 allele on the FM6 chromosome X balancer are viable. The 

parents genotypes and allele segregation are shown above and to the left of images 

 

Expression of wild-type hAIP resulted in a high percentage of rescued males, as this genotype 

accounted for almost 33% of the total number of viable F1 males. Therefore, ubiquitous 

expression of UAS-hAIPwt was able to rescue the lethality of Drosophila CG1847exon1_3 mutants, 

confirming that AIP gene is functionally conserved between flies and humans. 

Based on these results, I demonstrated that CG1847 is the functional Drosophila orthologue for 

human AIP. 

5.4.3. The AIP C terminal α-7 helix is essential for the conserved function of AIP 

To evaluate if the C-terminal portion of AIP, or more precisely, the last α helix is required for AIP 

function in vivo, I generated a rescue construct lacking this helix (section 2.4.5 and Figure 76). 

To obtain the genomic rescue construct pUASk10attB-AIPtrunc (Figure 79), 907 bp of hAIP 

together with the upstream Myc tag were amplified from a pcDNA3-Myc-AIPwt vector. The last 

86 bp of AIP, which encode for the 7th alpha helix, were deleted to generate a truncated hAIP 

variant (hAIPtrunc). 



 

 

201 

 

 

Figure 79: pUAS-hAIPtrunc DNA to protein sequence translation. Schematic representation of the 

protein encoded by the construct containing a truncated AIP version. Myc-Tag (blue) the Start (green) / 

Premature Stop (pink) positions are coloured in the protein sequences. Translator, online free software 

(http://www.fr33.net/translator.php) 

Transgenic males for hAIPtrunc were crossed with females heterozygous for CG1847 deficiency. 

A small number of non-FM6 non-CyO males were found in F1 generation. Between zero and 5 

adult males were recovered in most of the vials. DNA was extracted from individual males to 

determine whether these males inherited the normal or mutated CG1847exon1-2 allele via a 

diagnostic PCR approach (below Figure 85). No rescue males were found, and altogether, the 

rescue experiments with the hAIP truncation construct confirmed previous published data 

indicating that the last α helix is necessary and essential for AIP function. 

As a proof of principle, this construct was used as a negative control for subsequent in vivo 

rescue experiments. The ubiquitous expression of the truncated hAIP transgene is not sufficient 

to compensate for the mutant CG1847exon1_3 on the X chromosome and this validates our model. 

5.4.4. Human AIP missense variants differ in their ability to rescue CG1847 loss of 

function mutants 

Having demonstrated that human AIP expression in CG1847 mutant flies is able to rescue the 

male lethality phenotype, while a truncated construct does not, I next tested the rescue 

proprieties of hAIP variants found in FIPA families. 

To explore the pathogenicity of several hAIP missense mutations, four additional constructs 

were tested. Using a similar approach to the one described above, I used the UAS-GAL4 system 

to express human AIP transgenes of the c.47G>A (p.R16H), c.713G>A (p.C238Y), c.896C>T 

(p.A299V), and c.911G>A (p.R304Q) missense variants and assessed their capacity to rescue 

male lethality. 

To investigate if the p.R16H, p.C238Y, p.A299V and p.R304Q hAIP variants indeed compensate 

for loss of CG1847, I performed new crosses, similar to the one described above. Successful 

rescue was scored by the presence of non-FM6 F1 males (of the genotype CG1847exon1_3 /Y; actin-
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Gal4/UAS-hAIP variant). For statistical analysis, for each missense variant, the percentages of 

the rescued male genotype (from the total of viable males) were compared in with the 

percentages of non-FM6, non-CyO males resulting from the rescue crosses with wt and 

truncated hAIP constructs. 

When the percentages of rescued males within each of the hAIP constructs rescue crosses were 

evaluated and compared to the results obtained with the wt and truncated constructs, hAIP 

variants separated into 2 classes (Figure 80). 

 

Figure 80: Quantitative analysis of in vivo rescue experiments using hAIP missense variants. The rescue 

of the lethality phenotype by expression of UAS-hAIPwt, UAS-hAIPtrunc and the various missense mutant 

constructs is represented as the percentage of F1 males of the desired genotype relative to the entire F1 

male population. Bar graph shows the quantification of the rescue results, with 2 different stocks (s1 and 

s2) for each construct (each stock in triplicates). Error bars represent SE. Significant differences between 

samples are indicated by asterisks (****P<0.0001; Oneway Anova with post-hoc Tukey-Kramer analysis 

test). 

hAIP variants are separated into 2 classes by the proportion of rescued males. Ubiquitous 

expression of p.R16H, p.A299V and p.R304Q variants (at 25°C) rescued very efficiently the lethal 

CG1847exon1_3 mutation, at a similar rate to the ubiquitous expression of wild-type hAIP. There 

was no significant difference between these constructs regarding the percentage of rescued 

****
****

****
****

****
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males. In contrast, like the truncated version of hAIP, ubiquitous expression of the pathogenic 

variant p.C238Y was unable to rescue the male lethality of CG1847 mutants (p=0.0001). 

In fact, it should be noted that all the males scored as rescued males in the progeny of crosses 

with the truncated hAIP or p.C238Y mutant were actually flies with aberrant genotypes, as 

shown via PCR genotyping (Figure 84 and Figure 85). 

 

The p.R16H, p.A299V and p.R304Q missense variants have similar rescue capacities as the wt 

hAIP 

A statistical analysis comparing the distribution of all the male genotypes resulting from the 

rescue experiments show that there is no statistical difference between the capacities of the 3 

hAIP missense variants (p.R16H, p.A299V, and p.304Q) vs wt hAIP in rescuing the male’s 

lethality.  

 

Figure 81: Similar distribution of the males phenotypes To test the distribution of phenotypes in the male 

progeny of crosses with the four hAIP variants that rescued the lethality of CG1847exon1_3 mutants, a Chi 

square contingency test was performed. Each viable male phenotype received a colour code: a) rescued 

males (genotype CG1847exon1_3 /Y; actin-Gal4/UAS-hAIP variant) are indicated in red; b (FM6/Y; actin-

Gal4/UAS-hAIP) - green, d) (FM6/Y; UAS-hAIP/CyO) - blue, and f) (FM6/Y; actin-Gal4/CyO) - brown. There 

was no significant difference in the distribution of male genotypes between the F1 generation of 

ubiquitously expressed p.R16H, p.299V and p.304Q hAIP variant and the F1 generation of the wt hAIP 

(positive control) (p=0.9790). 

 

As seen in Figure 81, Chi square contingency test for the three hAIP missense variants and wt 

hAIP shows that there is no significant difference in the distribution of male genotypes between 
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the F1 generation of ubiquitously expressed p.R16H, p.299V and p.304Q hAIP variants and the 

F1 generation of the wt hAIP (positive control) (p=0.9790). 

I found that wt hAIP, p.R16H, p.299V and p.304Q hAIP constructs had the same rescue capacity 

as there was no significant difference in the distribution of the four possible male phenotypes 

(p=0.97, Chi-square statistical analysis). 

 

5.4.5 Validation of rescue experiments by PCR genotyping  

To confirm the genotypes of the F1 offspring, genomic DNA was extracted from a proportion of 

the rescued males from each of the rescue crosses. For each male, three different PCR reactions 

were performed to determine the genotype of the males: one for the detection of the mutant 

CG1847exon1_3 allele, a second for detection of the hAIP transgene, and a third one for the 

amplification of PPr-Y. PPr-Y is a gene located in the Y chromosome, which was used to detect 

the presence of the Y chromosome in the animals that were phenotypically males. This is 

necessary because a wild type male phenotype can also be produced by offspring with a X0 

genotype, which can occur by non-disjunction of the X chromosome pair in the mother (details 

in the Discussion section). 

Figure 82 shows the PCR products of genomic DNA separated by agarose gel electrophoresis for 

12 males from the rescue cross with hAIP wt. The expected PCR products in the rescued males 

are of a 1000bp for CG1847exon1_3 (instead of 2500bp the amplicon corresponding to the normal 

copy).  

Eight out of the 12 males carried the deleted CG1847 allele and were rescued by hAIP present 

on the second chromosome. Three males (m5, m6, and m12) were viable due to the presence 

of the wild-type copy of CG1847 (Figure 82 top panel) inherited from the male parents 

(Discussion section). The m6 and m12 males do not carry the Y chromosome as they result from 

a nondisjunction event in females. Occurrence of chromosome nondisjunction in females leads 

to the production of eggs containing either both maternal X chromosomes (XX) or none (0). The 

eggs with both X maternal chromosomes (XX) can combine with the Y chromosome from males 

resulting in individuals that are XXY and are phenotypically female. Eggs without maternal 

contribution (0) will inherit the X chromosome from males and the resulting X0 combination will 

have a normal CG1847 allele and will appear phenotypically male. 
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Figure 82: Genotyping of rescued males with hAIPwt. The resulting rescued males (Figure 78A) were 

genotyped by PCR. The CG1847 gene was amplified using a pair of primers that produce a 2500 bp 

amplicon for the wt allele and a 1000 bp for the mutant allele (top panel). The hAIP transgene was 

detected using primers against human AIP cDNA (middle panel). In addition, the presence of Y 

chromosome (bottom panel) was detected using a set of primers for the Ppr-Y gene. Abbreviation on the 

figure: hAIPwt s1 – the males used in the rescued cross were from first of the 5 individual lines generated 

by BestGene; m1-m12 – individual labelling of each of the 12 males collected for genotyping. Eight out of 

12 males had the expected rescue genotype as they carried the CG1847exon1_3 allele and hAIP cDNA on the 

second chromosome. Males m5, m6, and m12 do not carry the mutant CG1847 allele, and therefore are 

the result of maternal chromosome X non-disjunction. Although phenotypically male, males m6 and m12 

do not carry the Y chromosome. For sample m9 I could not amplify the CG1847 amplicon possibly due to 

a technical issue. 

 

Additionally, I observed 2 types of adult males in the F1 progeny that were phenotypically similar 

to genotypes CG1847exon1_3 /Y; UAS-hAIP/CyO (Figure 78C) and CG1847exon1_3 /Y; actin-Gal4/CyO 

(Figure 78E). These males are not expected to be viable, since they do not have the proper 

combination of both GAL4 driver and UAS-hAIP transgene on the second chromosome (Figure 

83). However, although these males are missing either the GAL4 driver or the UAS-hAIP they are 

viable as they are the result of the same nondisjunction phenomenon mentioned above. 

Consequently they have aberrant genotypes. 
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Figure 83: Two types of F1 males due to nondisjunction. These males are phenotypically similar to 

genotypes CG1847exon1_3 /Y; UAS-hAIP/CyO (genotype “c” in Figure 78) and CG1847exon1_3 /Y; actin-

Gal4/CyO (genotype “e” in Figure 78). These males are non-FM6 balancer chromosome (see the normal 

round shape of the eyes). As they have the CyO balancer chromosome inherited on the second 

chromosome; consequently they are missing one component of the UAS-GAL4 system: either UAS-hAIP 

(c) or the actin-GAL4 (e), therefore could not express hAIP. 

These phenotypes were found in extremely low numbers (in average 4% of viable male 

offspring). I genotyped the majority of the males with these 2 phenotypes in at least one cross 

for all the 6 constructs. Figure 84 depicts the result of the diagnostic PCRs for individuals with 

the aforementioned aberrant phenotypes from the progeny of crosses with hAIP wt. The same 

genotyping system described above was used for these experiments. 

 

Figure 84: Genotyping for the two aberrant 

male types. The two types of males 

described above were genotyped using PCR. 

All 5 males have the wt CG1847 copy (top 

panel, amplicons at 2500 bp). In the first two 

males (expected genotype CG1847exon1_3 /Y; 

UAS-hAIP/CyO) a copy of hAIP cDNA was 

detected (inherited from the father). As 

expected, the hAIP copy was not detected in 

the other three males for which the expected 

genotype, based on their phenotype, is 

CG1847exon1_3 /Y; actin-Gal4/CyO. In addition, 

in some of these phenotypical males the Y 

chromosome was not detected. 

 

All 5 males have the normal CG1847 allele, which is the reason for their viability in the absence 

of the FM7 balancer chromosome or without the proper combination of UAS-GAL4 system 

components. The hAIPwts1c) m1 and m2 males have the hAIP construct on the second 

chromosome, which demonstrates that they inherited this chromosome from transgenic male 

c) CG1847exon1_3 /Y; UAS-hAIP/CyO e) CG1847exon1_3 /Y; actin-Gal4/CyO
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parents (carrying the pUASk10-hAIPwt construct). On the other hand, in the 3 CG1847exon1_3 /Y; 

actin-Gal4/CyO males the hAIP cDNA could not be detected as they contain the actin-GAL4 

construct inherited from female parents. Some of these flies were also negative for the Y 

chromosome, which brings extra proof that they are result of nondisjunction. 

Together, these results suggest that the non-FM6 males are due to chromosome nondisjunction 

in F0 females (more details in the Discussion section). These particular phenotypes, observed in 

low numbers in subsequent experiments, were considered aberrant genotypes and, therefore, 

were excluded from statistical analysis. 

Regarding the individuals that are phenotypically identical to the rescued males found in the F1 

generation of the rescue crosses for hAIPtrunc construct: these males were also the result of the 

nondisjunction phenomenon. To confirm the genotypes of the F1 offspring, DNA was extracted 

from all the viable males from one of these crosses and diagnostic PCRs were performed to 

detect either the wt or the mutant CG1847exon1_3 allele. 

 

Figure 85: Genotyping of non-Fm6 non-CyO males resulting from crosses with the hAIPtrunc construct. 

The males were genotyped by using primers for CG1847. This gene was amplified using the same set of 

primers that produce a 2500 bp amplicon for the wt allele or a 1000 bp amplicon for the mutant allele. All 

8 males have the normal copy of CG1847. 

Figure 85 shows the results of the PCR genotyping. All non-Fm6 non-CyO males have the normal 

copy of CG1847 (2500 bp instead of expected 1000bp size of the amplicon in the CG1847exon1_3). 

All eight males actually inherited the normal CG1847 allele, and this is the explanation for their 

viability. These particular male phenotypes were found in very low numbers in subsequent 

experiments. The same result was seen in case of hAIP C238Y construct. 

The aberrant males in the rescue experiments with hAIPtrunc and hAIPC238Y constructs were 

used in the statistical analysis as “non-rescue” to evaluate the “rescued or not rescued result” 

based on a significant difference. 
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5.4.6. hAIP rescue constructs have equivalent expression levels  

To determine the in vivo expression levels of AIP in the fruit flies, I used the UAS-GAL4 system 

to transgenically express human AIPwt, AIPtrunc and AIP with missense mutations (R16H, 

C238Y, A299V, and R304Q). In the Results section of this chapter it has been shown that 

ubiquitous expression of AIPwt, R16H, A299V and R304Q during development resulted in rescue 

of lethality. Total proteins were extracted from the rescued males and Western blots were 

performed using an antibody against the hAIP. The human protein was detected as a 37 kDa 

band, similar to the band detected in human HEK293T cells used as positive control (Figure 86). 

Wild-type flies (wiso), without any of the UAS-GAL4 components, were used as a negative control 

for the specificity of the antibody to see if the endogenous CG1847 expression is also detected. 

In addition, transgenic males from the stock carrying the UAS-hAIP constructs (without Gal4 

driver) were tested for leaky potential expression of the construct. 

 

Figure 86: Overexpression of pUAS-hAIP constructs driven by actin-Gal4. The proteins were extracted 

from adult male heads. Expression level appears equivalent for the different hAIP constructs ubiquitously 

expressed using the actin-Gal4 driver. In addition, the hAIP expression was not detected neither in wild- 

type flies (wiso) nor in the transgenic F0 males (as these only carry the UAS-hAIP construct and not the 

actin-Gal4 driver). Loading control is anti β-tubulin. The primary antibodies were Novus monoclonal 

AIP/ARA9 Antibody (35-2) and DSHB monoclonal β tubulin (E7). 

These results were consistently observed in four independent Western blots, with independent 

biological samples representing different protein extractions. All hAIP missense constructs 

which rescued the lethality resulted in a robust expression, similar to the hAIPwt construct. The 

37 kDa band of hAIP missense mutations was detected as having equal intensity when compared 

to wild-type hAIP.  

Based on the Western Blot results it is possible to conclude that the R16H, A299V and R304Q 

missense variants encode for proteins which not only have the same capacity of rescuing the 

lethality as the wt hAIP, but they also have the same stability.  

58kDa
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Regarding the pathogenic hAIP variants (truncated and C238Y) further experiments are required 

in order to investigate their levels of expression and protein stability. 

 

5.5 DISCUSSION 

In this project, I developed and optimised a new in vivo system to test the pathogenicity of AIP 

mutations using Gal4/UAS transgenes generated with the phiC31 integrase system275. The 

Gal4/UAS system brings significant advantages as it offers the possibility of expressing an 

exogenous gene in a transgenic animal while controlling the pattern of expression. The site-

specific phiC31 phage allows the integration of different constructs into the same landing site 

and, as the genetic background remains unchanged, the results of the different constructs are 

directly comparable464. This system has been previously successfully used to generate 

Drosophila transgenics for human genes, in order to understand their functional role or the 

importance of specific protein domains. In 2011, to unravel the underlying genetics, Grossman 

et al. selectively overexpressed mammalian candidate genes in the fly heart. The selected genes 

were thought to be involved in cardiac heart defects associated with Down syndrome. They 

investigated the effects of over-expressing the candidate genes by evaluating the basal heart 

rate and the frequency of heart failure following exposure to stress465. The evolutionary 

conservation of specific genes can also be investigated using a similar approach. In 2014, Ikmi et 

al. examine the Yap/Yorkie (yes-associated protein), which controls the organ size in both 

Drosophila and mammals by generating Drosophila transgenic stocks for Yap/Yorkie orthologues 

from mammalian lineages, including human, and their unicellular relatives. The results brought 

significant insights into the evolutionary history of Yap protein structure and function466. In yet 

another example, a group studied the implication of different pathological L1CAM mutations in 

a broad spectrum of neurological and non-neurological phenotypes. By overexpressing different 

missense mutations of the human gene L1CAM in Drosophila it was possible to significantly 

rescue the neuron guidance defects, showing that some of those variants were not 

pathogenic467. 

I exploited the power of Drosophila genetics approaches to evaluate the degree of functional 

conservation between fly and human AIP, by testing whether CG1847exon1_3 mutant flies can be 

rescued by human AIP. The last AIP α helix had previously been described as essential for AIP 

function and, as proof-of-principle, I also tested a truncated mutant AIP lacking this domain. 

Additionally, I tested whether the expression of 4 different missense variants identified in FIPA 

patients can compensate for the loss of CG1847. My data showed that the lethality of 
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CG1847exon1_3 mutants could be rescued by expression of human AIP, demonstrating that 

CG1847 is a true functional homologue of AIP and that human AIP is functionally conserved 

throughout evolution. Conversely, a C-terminus truncated human AIP mutant transgene failed 

to rescue the defects that cause lethality in CG1847 mutant flies. These results are the first to 

provide insights into the functional importance of the AIP α-7 helix in an in vivo system. The 

lethality of CG1847 mutants was also rescued by 3 of the 4 tested missense variants: p.R16H, 

p.A299V, and p.304Q. The p.C238Y missense variant, which is considered pathogenic, was 

unable to rescue the lethality of the CG1847 knockout. When compared with the truncated or 

C238Y variant, all the other hAIP missense constructs showed a strong ability in rescuing the 

lethality, reaching the same statistical significance as the wt hAIP. 

Moreover, the Western Blot results showed that the R16H, A299V and R304Q missense variants 

encode for proteins which have the same stability as the wt hAIP. As the hAIP truncated C238Y 

variants did not result in rescued males I was not able to extract proteins for Western Blot to 

evaluate their level of expression. However, this could be achieved via overexpressing these 

pathogenic variants in the wt background, as now the results in Figure 86 showed that the 

antibody used against hAIP protein does not detect the endogenous CG1847 protein. 

Some of the genes that encode for proteins involved in different cellular processes were proved 

to be essential (fundamental for organism viability). Many recent studies were interested in 

determining the gene essentiality and several comparative genomic analyses already confirmed 

that essential genes are conserved during evolution468-471. Even more, most of these genes 

remain essential in different organisms, as the orthologues of one gene tend to be essential in 

other organisms. However, some genes have become non-essential maybe due to 

environmental conditions, or have been lost from the genomes of other organisms469,471,472. 

My data support the evolutionary conservation of the AIP gene. As evidence for evolutionary 

conservation of the AIP gene, I have found that deletion of the endogenous Drosophila gene 

resulted in lethality, similarly to previously data from mice181,204. Furthermore, the human gene 

was able to functionally compensate for the deletion of the Drosophila orthologue, CG1847. 

Regarding the experiments with the truncated protein, no viable rescued progeny resulted, 

supporting the previous findings that the last α helix is essential for protein-protein interactions. 

It has been previously reported by that the TPR domain of AIP is required for the interaction 

with HSP90459. In 2012 Morgan et al. reported that the highly conserved C-terminus of AIP and 

the 7th α helix in particular, are involved in AIP interactions with different partners as AhR and 

PDE4A5. Consequently, loss of these domains leads to loss of interactions with these partners142. 
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AhR is best known for being involved in the defence mechanisms against halogenated dioxins 

and carcinogenic environmental chemicals473. In the view of the fact that AIP interacts with the 

chaperones at the level of the TPR motifs, it is possible that the loss of the last α helix could 

interfere with the normal folding of the TPR motifs. Under our experimental conditions, the 

results obtained with truncated AIP also predict that this final structure is essential for the 

normal function of the protein and binding to its partners. Consequently, the loss of the last α 

helix impaired the binding of AIP to different partners and results in lethality. Although this 

interferes with the translocation of the AhR into the nucleus, resulting in loss of activation of 

dioxin response elements, this might not be the mechanism leading to lethality as Ahr-null mice 

are viable205. Further investigations are required to determine the actual cause of lethality.  

In accordance with presented results my literature review regarding the p.R16H AIP variant 

revealed that most arguments favour a non-pathogenic role. 

The R16H variant was first reported in 2007 by Daly et al. in two cousins with acromegaly151. The 

initial hypothesis was that this variant is a disease causing one, but it was refuted only one year 

later by Georgitsi et al.460,461. Other groups also support the fact that it represents only a rare 

SNP179. A recent article reported a 3 generation Italian FIPA family with the R16H AIP change 

identified in 8 different individuals. However, only 2 individuals were diagnosed with pituitary 

adenomas and their conclusion was that this variant should be regarded as a rare 

polymorphism474. This variant does not segregate with the pituitary adenomas; however, there 

are no sufficient data to exclude a possible involvement of the p.R16H variant in these families, 

as part of an oligogenic model. The LOH status was investigated in pituitary tumorous tissues 

only in two patients and the wild-type allele was present456,461. 

This amino acid residue is moderately evolutionarily conserved151. The basic R amino acid is 

substituted by another basic amino acid. Consequently, the overall change in the protein 

structure is expected to be with no or minor deleterious effects. Furthermore, this variant seems 

to be relatively stable, it degrades at similar speed as the wild-type protein as shown in Figure 

86 and in an independent project (Hernandez-Ramirez et al., unpublished data). 

The impact of this amino acid change on AIP splicing has never been tested systematically. Two 

studies which performed a series of in silico prediction tests (as Berkeley Drosophila Genome 

Project, ESEfinder 2.0, Splice Scan, Alternative Splice Site Predictor, and NetGene2 programs) 

concluded that p.R16H is likely pathogenic208,475. At the same time, PolyPhen2453 reports this 

variant as possibly damaging. However, our investigation using 2 prediction softwares, Alamut 

and Pathogenic-or-Not Pipeline (PONP) concluded that this AIP variant is not pathogenic. The 
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frequency of rs145047094 (p.R16H) is low. The dbSNP476,477 reports an uncertain clinical 

significance and a frequency of 0.1% positive individuals 

(http://www.ncbi.nlm.nih.gov/snp/?term=rs145047094), while the EVS478 (Exome Variant 

Server) estimates frequencies up to 0.7% for the White American sample (n= 4295 individuals) 

and up to 0.14% for the African American sample (n=2200 individuals) 

(http://evs.gs.washington.edu/EVS). In the ExAC database there is one case reported 

homozygous for this AIP variant. Therefore, there are no convincing data in favour of a 

pathogenic role for AIP p.R16H variant which is supported by our in vivo model. 

The p.C238Y variant was first described by Leontiou et al. in 200889. This change was identified 

in a Mexican family with 3 members being diagnosed with acromegaly. All the arguments are in 

favour of a pathogenic role for this variant. The functional investigations have revealed that it 

has a reduced ability to block cellular proliferation89 and no interaction with PDE4A5 was 

detected89. The LOH status was investigated in pituitary tumour of the three Mexican patients 

and the wild-type allele could not be detected in any of the samples124. This is in agreement with 

the second hit hypothesis. 

This amino acid residue is moderately evolutionarily conserved. The amino acid substitution is 

conservative as a polar amino acid, cysteine, is exchanged with tyrosine, which is also a polar 

amino acid. However, there is a possible loss of a disulphide bound. The functional impact is 

significant, with serious disruption on the folding of the TPR domains, the packing of the 

hydrophobic core and severe steric clashes of the 3D protein structure142. Unpublished data 

from our lab reports that this protein is very unstable, with a very short half-life comparing with 

the wild-type AIP, and is rapidly degraded479. 

PolyPhen2 reports this variant as damaging with a very high score of 0.994. Prediction based on 

the Alamut software came to the same conclusion. This variant is not reported in dbSNP or EVS. 

The ExAC database480 reports 1 allele out of 118770 was found. 

In summary, all the available data, including our in vivo model, support the pathogenic role of 

p.C238Y. 

The p.A299V variant (rs148986773) was first identified in 2007 by Georgitsi et al.461 in a Dutch 

patient with a GH secreting pituitary adenoma. All the clinical and in vitro data are in favour of 

a non-pathogenic role for this variant and that A299V change may be just a rare 

polymorphism136,481. In a very interesting FIPA family five family members were identified with 

the A299V variant, two of them harbouring a truncating AIP mutation, (p.R304*), on different 
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alleles and without pituitary adenoma. The A299V missense mutation does not segregate with 

the disease and the LOH status of these patients was never investigated. 

A299V variant is localised at the border between the second and the third TPR domains, in a 

pocket essential for the interaction of AIP with HSP90. This AIP region is among the most 

conserved ones142 and it is very important for proper folding of the protein. Misfolded structures 

could be unstable and result in rapid degradation of the protein482. The amino acid substitution 

is conservative as a nonpolar amino acid (alanine) is exchanged with valine, also a nonpolar 

amino acid. 

Although PolyPhen2 reports this variant as possible damaging, PONP and Alamut consider it as 

not pathogenic. The frequency of rs148986773 is low. The dbSNP reports an uncertain clinical 

significance and global MAF of 0.001. In the EVS the frequencies of this variant are 0.14% for the 

White American samples (n=4293 individuals) and 0.023% for the African American samples 

(n=2195 individuals). 

In accordance with our results, a literature review regarding the p.A299V AIP variant revealed 

that most arguments favour a non-pathogenic role. 

The most controversial missense variant is the relatively frequent exon 6 genomic change 

c.911G>A, p.R304Q. The mutation is located in the C-terminal α-7 helix of the AIP protein, which 

is a CpG island hotspot. 

It`s pathogenicity is based mainly on clinical data. Multiple groups identified this change in 

patients with pituitary adenomas. A recently published article performed a literature review of 

these cases and revealed that p.R304Q seems to be much more common than the previous 

discussed missense mutations. So far 23 patients have been reported. The majority of these, 20 

patients, are familial cases, while the other are just sporadic cases117. However, none of the 

functional available data do not support the pathogenicity: neither the disruption of PDE4A5136 

or RET interaction162. Moreover, no LOH was detected in a patient's tumour tissue (unpublished 

data). 

On the other hand, the predicted changes in the protein structure bring arguments in favour of 

a pathogenic involvement. This amino acid residue is moderately evolutionarily conserved, 

especially in mammals. The arginine, a long side chain positively charged amino acid, is 

exchanged with glutamine, a polar and slightly shorter, uncharged, hydrophilic amino acid463. 

This mutation does not affect the HSP90 binding site directly; however, an abnormal C-terminal 

tail may disrupt the folding of the third TPR domain, and this may result in disruption of the 
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normal binding to the HSP90 MEEVD motif142. The half-life of the mutated protein was found to 

be slightly shorter than that of the wt protein (Hernandez et al., unpublished data). 

Additional information based on studies which used web prediction tools were contradictory. 

Occhi et al483 published that according to PolyPhen R304Q is a deleterious mutation. On the 

other hand, using a newer version of the same prediction pipeline, PolyPhen2, Tichomirowa et 

al208 reported that R304Q is a benign polymorphism. Our own investigation using 2 other in silico 

web tools (Alamut and PONP) showed that this variant is not suggested to be pathogenic. This 

is a rare variant as EVS reports a MAF of 0.0693 (the frequency for European American 

population is 0.1048, while for African American is 0). Interestingly, the ExAC database reports 

the presence of this variant in homozygosity in two out of 37894 Europeans and none of 20413 

non-Europeans, further increasing the uncertainty about its pathogenic role. 

The results of our project also not favour a pathogenic role for the R304Q mutation, even though 

the clinical suspicion is very high. As this AIP variant is able to rescue the Drosophila lethality and 

2 individuals were reported homozygous in the ExAC database, our conclusion is that p.R304Q 

alone is not the cause of pituitary adenomas. One possible hypothesis is that p.R304Q may 

change the AIP activity in addition to a different gene (oligogenic model), which would explain 

the retention of the wild-type allele and no LOH in the pituitary adenoma tissue. One other 

possibility is that p.R304Q might be just a surrogate marker, in reality another mutation with 

which it is associated by linkage of disequilibrium, is the cause of these pituitary adenomas. One 

last hypothesis is that maybe the AIP function is very complex, different amino acids being more 

or less important in different processes. As a consequence, a residue which is important for 

tumorigenesis may not interfere with normal fly development. 

Nondisjunction 

phiC31 recombination brings a series of significant advantages to Drosophila genetics. Maybe 

the most important feature of this system is the non-random integration. As the catalysed 

phiC31 integrase recombination process is site-specific, it allows a precise pre-selection of the 

insertion location. By eliminating the randomness of transgenesis while keeping the same 

genetic background, this system allows the integration of different constructs into the same 

landing site and the advantage of a direct comparison between results464. In this project I 

designed a vector-based system to facilitate in vivo AIP missense mutation analysis using phiC31 

recombination. 

Our system offers a number of advantages as well as some limitations. First, by design, using the 

same backbone to insert the different constructs at the same attP specific site in the Drosophila 
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genome allows equivalent transgene expression. We proved this by evaluating the level of 

expression of different variants capable of rescuing the fly lethality by immunoblotting (Figure 

80 and Figure 86). Homogenous expression for different constructs is essential for the 

comparison of wild-type and mutant transgenes484. Another important advantage of our 

constructs, a key feature for transgenic animal identification, is the use the mini-white gene, a 

common and easy to use phenotypic marker. 

Second, the pUAS-K10 vector used for generating Drosophila transgenics for different AIP 

constructs was selected based on results of previous studies which had shown a low basal and 

highly inducible expression of integrated transgenes485. This backbone has the significant 

advantage of avoiding non-specific ‘leaky’ transgene expression, as shown in Figure 86.  

Third, the majority of constructs used in this project were generated via site directed 

mutagenesis starting from the same vector. This system allows multiple parallel cloning of 

different missense mutations into the same vector, and simplifies the generation of transgenes. 

This strategy overcomes the disadvantages of other techniques such as the Gateway technology 

which may also be more expensive. Therefore this system has several advantages and we hope 

that the research community interested in the pathogenicity of AIP mutations will take 

advantage of it. 

Regardless of the presented results and the numerous advantages, our in vivo model faces some 

limitations among which is the issue of non-disjunction phenomenon which lead to a degree of 

false positive results. The first data regarding the discovery of non-disjunction phenomenon and 

its effect upon sex-linked inheritance was published in 1913 by Bridges C.B.486, and was 

explained in detail a few years later487,488. This first study of spontaneous X chromosome 

nondisjunction in Drosophila, although completed more than 100 years ago provided the 

insights regarding the mechanisms of non-disjunction of the chromosomes during meiosis. Over 

the last few years, studies on Drosophila genetics have produced significant advances regarding 

the molecular mechanisms of how meiotic chromosome pairing, synapsis and segregation take 

place489-491. 

Despite several controversies regarding which is the critical stage of the cell cycle when the 

normal separation of homologous chromosomes is impaired resulting in non-disjunction, there 

are a few aspects on which there is agreement. First of all, spontaneous recombination in 

Drosophila melanogaster males is an extremely rare event and the nondisjunction phenomenon 

takes place mainly in females. Second, the X chromosome nondisjunction is much more frequent 

in XXY females than it is in normal XX females. These XX-Y segregation events were called 



 

 

216 

 

‘‘secondary nondisjunction”487. Third, it has been revealed that abnormalities in genetic 

recombination will consequently perturb normal meiotic chromosome segregation. The 

different types of mutations which lower the possibility of recombination, including the ones in 

balancer chromosomes, will certainly increase the frequency of nondisjunction. It has been 

shown that the association of the two X and a Y chromosomes occurs and is maintained at a 

much higher rate in cases where the crossing over is suppressed. A study published in 2006 has 

proved that frequency of secondary nondisjunction in FM7/X/Y females is much higher as the 

inter-chromosomal genetic material exchange (recombination) is absent. A twenty-fold higher 

frequencies of X nondisjunction in FM7/X/Y females (70.8%) was reported when compared with 

the frequencies of X nondisjunction in XXY females (around 3%)492. 

In this project, as the deletion of CG1847 in not compatible with life, the mutant stock was 

balanced over the FM6 balancer chromosomes. Consequently, the rate of nondisjunction was 

increased. 

During gamete formation, the alleles for each gene segregate during meiosis and will later 

recombine following the Mendelian laws of inheritance. 

CG1847exon1_3/ FM6 

 

 CG1847exon1_3 FM6 

X
/Y

 

Y CG1847exon1_3/Y FM6 

X CG1847exon1_3/X FM6 

Figure 87 Overview of normal meiosis in the CG1847exon1_3 mutant stock. In bold: The segregation of 

maternal and paternal alleles during normal meiosis results in four haploid gametes, each containing one 

set of chromosomes. Normal segregation of a nonrecombinant chromosome pair results in normal 

disjunction.  

Out of the four possible chromosome combinations depicted in Figure 87, the nondisjunction 

phenotype occurs at highest rate in FM6 /X females. 

In the primary type of nondisjunction normal CG1847exon1_3 and FM6 female chromosomes fail 

to segregate during meiosis and consequently both will be found in the egg. 

The combination of such CG1847exon1_3/ FM6 and zero eggs with the X and the Y male 

chromosomes will result in four new types of zygotes, as shown in Figure 88. 
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CG1847exon1_3/ FM6 

 
 

CG1847exon1_3/ 
FM6  

0 
X

/Y
 

Y 
CG1847exon1_3/ 
FM6/ 
Y 

0 /Y 
Not viable 

X 
CG1847exon1_3/ 
FM6/ 
X 

0 /X 
Male phenotype  

Figure 88: Primary nondisjunction in CG1847exon1_3 mutant stock. A Punnett square for segregation and 

recombination of CG1847exon1_3 and Fm6 chromosomes through primary non-disjunction, and the possible 

resulting progeny. 

The CG1847exon1_3/FM6 females are the result of the primary nondisjunction. These females 

remain in the stock as they are not phenotypically different than CG1847exon1_3/FM6. 

In addition, Bridges noticed that almost all cases of X nondisjunction in XXY females is due to XX-

Y segregation. This particular type of nondisjunction was very well described in Drosophila; the 

result of such non-disjunctional events might result in females who inherit both X chromosomes 

from their mothers, while no sex chromosome comes from their fathers. Bridges observed that 

X chromosome nondisjunction is much more frequent in these types of females, an event called 

‘‘secondary nondisjunction.’’ The frequency of secondary nondisjunction is significantly 

increased in females with reduced X chromosomal exchange due to the presence balancer 

chromosomes493. 

CG1847exon1_3 /FM6 

  CG1847exon1_3 / FM6  Y 

X
/Y

 

Y CG1847exon1_3 / FM6 / 
Y 

Y/Y 
Not viable 

X CG1847exon1_3 / FM6 / 
X 

X/Y 
Male rescued-look like phenotype 
(but the X chr inherited from male 

parents) 

Figure 89: Secondary non-disjunction in the female. A Punnett square for segregation and recombination 

of CG1847exon1_3 and Fm6 chromosomes through secondary non-disjunction, and the possible resulting 

progeny. 
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In our in vivo assay the problem of non-disjunction was demonstrated by developing a PCR-

based genotyping system and by using statistical analysis to determine the significance of the 

results. 

Consequently, this system can be used to test human AIP missense variants, where 

pathogenicity cannot be easily determined based on clinical data. This is crucial for genetic 

counselling and management of the proband’s family102,136. The benefit of cascade genetic 

screening for these families would be immediate481,494, as clinical screening can identify the 

disease early and at a more manageable stage as it was shown already481,494 (screening and 

treatment are already available via NHS). 

 

5.6 CONCLUSIONS 

This chapter supports the evolutionary conservation of the AIP gene and helps to understand 

the pathogenesis of AIP mutations. As evidence for conservational evolution of the AIP gene we 

report that deletions of the endogenous Drosophila gene resulted in lethality of the flies while 

the human gene is able to functionally compensate for the deletion of the Drosophila 

orthologue, CG1847. 

Transgenically expressed AIP proteins with p.R16H, p.A299V, and p.R304Q variants had similar 

rescue capacities as the wild-type human protein and this allows us to conclude that these 

genetic changes do not have a significant impact on the AIP function at least in our model. Our 

data bring further support towards the hypothesis that these are just non-pathogenic SNPs. 

In view of the presented data, which conclusively demonstrated a benign role of the AIP p.R16H 

and p.A299V missense variants, it is not justifiable to offer AIP genetic screening to family 

members. Contrarily, for p.C238Y carriers, after appropriate counselling, all family members 

should be genetically and clinically tested, in order to avoid missing cases which developed or 

might develop pituitary adenomas. 

Regarding the pathogenic role of p.R304Q, it was demonstrated to have a benign role during 

organismal development, but the involvement in tumour development cannot conclusively be 

discarded. Until more detailed investigation will be available, it would be justifiable to offer AIP 

genetic screening to all family members of p.R304Q probands. 

In conclusion, p.R304Q remains an AIP variant with significant clinical suspicion and due to its 

very high frequency in pituitary adenoma patients, clarification of its effect is mandatory. 
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CHAPTER 6: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS  

Three projects are presented in this thesis. They hopefully represent a step forward for a better 

understanding of AIP functions during development and tumorigenesis. The main results and 

conclusions identified during my studies are summarised in this chapter, specially highlighting 

the novel findings. Future directions for further studies are also presented here. 

Our main goals were: 

a.  To characterise the effect of Drosophila AIP orthologue CG1847 silencing via RNAi-

mediated gene knockdown and imprecise excision of a P-element.  

b. To test he possible mechanisms explaining the knockdown/knockout phenotype. 

c. To determine gene expression profiles using an established analysis pipeline and to 

identify key pathways that are significantly altered in the mutant, and that are related 

to embryonic development or survival. 

d. RNA sequencing and confirming its results.  

e. To functionally test the homology between hAIP and CG1847 and to test whether wild-

type hAIP, a truncated hAIP and four missense mutations can rescue the CG1847 

knockout phenotype.  

 

6.1 CG1847 is a Drosophila melanogaster AIP orthologue and is essential 

for normal development  

In order to analyse the role of AIP during development we generated Drosophila melanogaster 

model of CG1847 deficiency. The CG1847 loss of function results in lethality during larval stages, 

showing that in Drosophila, similar to human and murine data, this gene is an essential one. In 

addition, this is supported by the bioinformatics data, protein structure and rescue experiments 

with human protein. Furthermore, the lack of CG1847 is not compatible with normal 

development, as the larvae present an obvious delay in development by 72 h AEL. 

Nevertheless, the actual mechanism of lethality remains unknown. The answer to this question 

might be provided by future research involving GC1847 immunostaining during the very early 

stages of development. This might be possible by designing an antibody, since CG1847 is not a 

well investigated and no antibody is available at the moment. Designing an antibody for CG1847 
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will further help to identify the location of the protein in the cells during normal or abnormal 

development. 

 

6.2 RNA sequencing reveals possible new underlying CG1847 molecular 

mechanisms 

In order to gain further insight into the molecular mechanisms disturbed by loss of CG1847 

function a RNA sequencing was performed using the Illumina platform. The top differentially 

expressed genes were mapped to STRING database to construct the protein-protein interactions 

network and to reveal the underlying molecular mechanism of CG1847 deficiency. A very 

interesting cluster of proteins involved in body size, body regulation or cuticle formation was 

revealed by this study, implying that CG1847 may play an important role in body size and 

cuticular formation by interacting with different group of proteins such as Osiris, Twedl and 

cuticular proteins, interactions which were never described before. Meanwhile, heat shock 

proteins family was significantly downregulated transcripts in the mutant Drosophila larvae, and 

may be important for the underlying mechanisms of the lethality process. Results from this study 

might provide the groundwork for the understanding the role of AIP in organ development and 

tumorigenesis. 

Further experiments are needed in order to prove the role of the AIP in human or murine 

development, as the results from this thesis only describe the process in insects. The answer 

might be provided by a thorough search and validation of other expressed genes. The enormous 

advantage of our Drosophila model is that we can use the mutant CG1847-deficient flies to test 

whether transgenic flies that express different cDNAs of the validated downregulated transcripts 

(e.g. members of Hsp family) can rescue their lethality. In case of the upregulated transcripts an 

RNAi screen can be perform to identify components of affected signalling pathways. An in vivo 

validation of the RNAi screening will be possible by generating transgenic flies carrying mutated 

versions of the identified candidates and use them in our rescue experiments. 

The finding that numerous members of the heat shock protein family are significantly 

downregulated, suggest a possible further list of a new repertoire of interacting partners of AIP. 

Future studies could focus on determining the exact nature of Hsp-AIP interactions, bringing a 

possible new light in AIP roles. 
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6.3 The cytoskeletal disorganisation might be related to CG1847 loss of 

function, this being the mechanism for the tumour suppressor function 

of AIP  

Cytoskeletal network disorganisation and loss of normal cellular adhesion are signature for 

invasive tumours. The study of CG1847, the Drosophila orthologue for human AIP revealed an 

exciting novel involvement of this protein in the cell-to-ECM adhesion process. Furthermore, 

loss of CG1847 resulted in significant actin cytoskeleton deregulation and a possible involvement 

in regulation of integrins receptors. The interactions with actin indicates a possible strong 

influence of AIP in cell motility and migration, cellular functions which are essential for tumour 

growth, invasion and metastasis, hence providing encouraging insights into how the loss of AIP 

might promote adenoma formation and local invasion. This in vivo model supports the use of 

Drosophila melanogaster as a system to elucidate the molecular mechanisms of human 

tumorigenesis. 

The actual mechanisms by which AIP acts as a tumour suppressor gene remains still unknown. 

Cellular proliferation (pH3 staining, BrdU incorporation) or apoptosis (caspase staining, tunnel) 

assays are necessary to reveal if in Drosophila in vivo model AIP promotes tumorigenesis via 

increased proliferation or decreased cellular death. To further investigate the interactions 

between CG1847 and integrins-actin-cytoskeleton, if the design of a specific antibody is 

successful, the protein interactions could be tested by co-immunoprecipitation with or without 

cross-linking agents in Drosophila larvae. 

Does the human AIP interact with the same partners as CG1847 in vivo? To confirm that the 

human AIP does interacts with the same candidate genes as CG1847 in vivo (data obtained from 

the RNA sequencing) one possibility will be to use the human AIP rescued males and to perform 

Co-IP studies. The results could be further validated in the rat pituitary cell line (GH3) or human 

HEK293 cells. Other possible studies for data translation might involve investigation of integrin-

actin cytoskeleton expression in human pituitary adenomas from patients with AIP mutations 

and comparison to AIP-mutation negative adenomas. These tissues are available in the 

supervisor’s laboratory as part of her large cohort of FIPA families. RT-qPCR for actin and the 

most relevant integrin associated proteins might be performed in normal pituitary, sporadic 

adenomas and AIP-mutation positive adenomas (available as frozen tissues from 

transsphenoidal operations). 
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6.4 Human AIP variants have different capacities for compensating for 

CG1847 loss of function in an in vivo model 

To functionally test the homology between hAIP and CG1847, we used the Gal4/UAS system to 

perform rescue experiments using different UAS::hAIP constructs. We subsequently tested 

whether hAIP could rescue the lethality of CG1847exon1_3 mutants by expressing UAS::hAIP under 

the control of a ubiquitous promoter (i.e. actin) during fly development. Strikingly, hAIP 

expression is sufficient to rescue the lethality of CG1847 mutants, demonstrating that CG1847 

is the functional homologue of AIP. As a proof-of-principle, we have shown that, in contrast to 

wild-type hAIP, a truncated mutant AIP failed to rescue the lethality of the CG1847exon1_3 mutant. 

Additionally, CG1847 mutants failed to be rescued by a hAIP transgene carrying the p.C238Y 

variant, a pathogenic missense mutation identified in FIPA patients, known to disrupt a 

conserved, structurally important amino acid in the 2nd TPR domain. The rescue results for the 

other 3 missense variants (p.R16H, p.A299V, p.R304Q) support a rather non-pathogenic role 

than a disease-causing association. These results were in accordance with the literature data, 

except for p.R304Q missense variant for which the available information are highly 

contradictory. 

Given the fact that human AIP can functionally substitute for CG1847 in vivo, this Drosophila-

based in vivo assay might be used to discriminate between pathogenic and non-pathogenic AIP 

mutations on the basis of their ability to rescue phenotypes associated with loss-of-function of 

CG1847. The immediate benefit to patients and their families can be direct and immediate as to 

date 19 AIP missense variants have been described and the pathogenicity of 15 of these 

mutations remains questionable. Further rescue experiments could be performed in the future 

to test other hAIP missense variants. Whenever the lethality is rescued, it might be evaluated 

the development and lifespan of the flies for determining whether they acquire tumours. In 

addition, it can also be tested whether the rescued flies display changes in the RNA and/or 

protein level of known AIP interaction partners. For the pathogenic variants, which will not result 

in the rescue of mutant males, as the hAIP truncated of C238Y variants, their levels of expression 

could be further evaluated by overexpressing these pathogenic variants in the wt background 

(the antibody used against hAIP protein does not detect the endogenous CG1847 protein). 

Previous experiments in our lab showed that used antibody can detect both the truncated and 

C238Y proteins. 

These results demonstrate that Drosophila is a useful system in the study of human AIP missense 

variants pathogenicity. 
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APPENDICES 

Appendix 1 AIP sequence 

AIP cDNA sequence 

Transcript ID: ENST00000279146 

Length 1221 bp, 6 exons 

CCCTCAACCAAAATGGCGCTAGCTCGGAAGCTGCCGAGGTGCTAGGAGTTGCCGAAGCAAGTCCGGAAGC

TACCGAGCGAGTCCGGAAGTTGCCGAAAGGGAGCAGCGGGGAAGGAGGATGGCGGATATCATCGCAAGAC

TCCGGGAGGACGGGATCCAAAAACGTGTGATACAGGAAGGCCGAGGAGAGCTCCCGGACTTTCAAGATGG

GACCAAGGCCACGTTCCACTACCGGACGCTGCACAGTGACGACGAGGGCACCGTGCTGGACGACAGCCGG

GCTCGTGGCAAGCCCATGGAGCTCATCATTGGCAAGAAGTTCAAGCTGCCTGTGTGGGAGACCATCGTGT

GCACCATGCGAGAAGGGGAGATTGCCCAGTTCCTCTGTGACATCAAGCATGTGGTCCTGTACCCGCTGGT

GGCCAAGAGTCTCCGCAACATCGCGGTGGGCAAGGACCCCCTGGAGGGCCAGCGGCACTGCTGCGGTGTT

GCACAGATGCGTGAACACAGCTCCCTGGGCCATGCTGACCTGGACGCCCTGCAGCAGAACCCCCAGCCCC

TCATCTTCCACATGGAGATGCTGAAGGTGGAGAGCCCTGGCACGTACCAGCAGGACCCATGGGCCATGAC

AGACGAAGAGAAGGCAAAGGCAGTGCCACTTATCCACCAGGAGGGCAACCGGTTGTACCGCGAGGGGCAT

GTGAAGGAGGCTGCTGCCAAGTACTACGATGCCATTGCCTGCCTCAAGAACCTGCAGATGAAGGAACAGC

CTGGGTCCCCTGAATGGATCCAGCTGGACCAGCAGATCACGCCGCTGCTGCTCAACTACTGCCAGTGCAA

GCTGGTGGTCGAGGAGTACTACGAGGTGCTGGACCACTGCTCTTCCATCCTCAACAAGTACGACGACAAC

GTCAAGGCCTACTTCAAGCGGGGCAAGGCCCACGCGGCCGTGTGGAATGCCCAGGAGGCCCAGGCTGACT

TTGCCAAAGTGCTGGAGCTGGACCCAGCCCTGGCGCCTGTGGTGAGCCGAGAGCTGCAGGCCCTGGAGGC

ACGGATCCGGCAGAAGGACGAAGAGGACAAAGCCCGGTTCCGGGGGATCTTCTCCCATTGACAGGAGCAC

TTGGCCCTGCCTTACCTGCCAAGCCCACTGCTGCAGCTGCCAGCCCCCCTGCCCGTGCTGCGTCATGCTT

CTGTGTATATAAAGGCCTTTATTTATCTCTC 

AIP protein sequence 

Protein ID: ENSP00000279146 

Length: 330 aa 

MADIIARLREDGIQKRVIQEGRGELPDFQDGTKATFHYRTLHSDDEGTVLDDSRARGKPMELII

GKKFKLPVWETIVCTMREGEIAQFLCDIKHVVLYPLVAKSLRNIAVGKDPLEGQRHCCGVAQMR

EHSSLGHADLDALQQNPQPLIFHMEMLKVESPGTYQQDPWAMTDEEKAKAVPLIHQEGNRLYRE

GHVKEAAAKYYDAIACLKNLQMKEQPGSPEWIQLDQQITPLLLNYCQCKLVVEEYYEVLDHCSS

ILNKYDDNVKAYFKRGKAHAAVWNAQEAQADFAKVLELDPALAPVVSRELQALEARIRQKDEED

KARFRGIFSH 
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Appendix 2 CG1847 sequence 

CG1847 cDNA sequence 

Transcript ID: FBtr0073567 

Length: 1758 bp 

 

TAACGTCTGGTATCGAAAGGAAATTGTGTTGATTCCAAATAAATCCGATTCCAGCGGAGATGCAGTCGCG

CAGCAAGTCCGATATGAAGCCCATACGAAAGGAGATCCTCAATCCGGGAAACGCCTACATCGAGCTAACC

CCGGGCACCAGGGTGAAGTTCCACTTTCAAACGCGGAGGGCCGGCGACAGTCGCATCATCGATGATAGCC

GCAAGATGGAGAAGCCCATGGAGCTGGTCCTGGGGAAGAAGTTTAAGCTAGAGGTCTGGGAGCTGATTGT

GCAGCAGATGTCCCTTAACGAAGTGGCCAAGTTCACGGTACATAAGTCGCTCTGCGCTCAATATCCTTTT

ATATCCAAGACCCTGCGGGACATTGGCAAGAAACCGGAGGAGCGACGTCACTGCTGCGGAATGACATTGC

AGAACGAGGGCATTGGGTACACCGACCTGGATGAGCTGCTGCAAAATCCTTCCGATCTGGAGTTCATCAT

TGAACTGTTCTCCATTGAGCTGCCCGAGCAGTACGAAAAAGAGCGCTGGCAGATGTCCGACGACGAAAAG

ATGCTGGCCACCAGTACGCTGCGCGAACGGGGCAACAACTTCTATAAGGCCAGTCGGTTCACAGAGGCGG

AGACCTGCTACCGCGAGGCTGTCGGAATTGTGGAGCAGCTGATGCTAAAGGAGAAGCCGCACGACGAGGA

GTGGCAGGAGCTGGCGGCCATCAAGACACCGCTGTTGTTGAACTACGCGCAATGTCGGTTGATCGCCGGC

GACTTCTACGCTGTGATCGAGCACTGCAACGAGGTGCTCACCCTGGATCCGCGCAATGTCAAGGCACTTT

TTCGTCGGGCCAAGGCCCATGCGGGTGCCTGGAATCCAGCACAGGCACGTCGCGACTTCCTCGACGCCTT

GGCCTTGGACGCCAGCCTCAAGTCGACCGTGTCTAAGGAGCTCAAGTCCATCGAGGATCAGCAGCAGGCA

CGTAACGTCCAGGATCGCATTCACATGCAGAAGCTCTTCTAGAACATAAGTTGCGTCAACGTGCTGCTCA

TGCTGCTTGTCTATTGGAGCAGCTACCTGCAGCGCTAGCAGTACTTGTCACTACCTTCTTTTCTTTCGCT

GGCCGTCAGCTTCGCTCATGGTCTCGTGCTGCTCTGCTCGATGGCGAACCTATTCCTCTGCTGCTGGACC

CTCAAGAAGCTGCTGCGAGCAATGCAGGGGCTCAGCTGGTGATTTTGCGACAACATAACACAATCAACCA

ACTCGGTACCATACCACCTCATTTTGTGAGAGCTGCATTTTGGGGCACTATATGCCCATACTCATCCTCC

GCCTCGATTCACATTCAACGGTGTAGGCTAAAGGGTCTAAATATAATGTAAATGTACCATCCAGATGCTT

GTGTGGAATTGTAATCGTGTGTATATGGAATGAAAAATGTTGTTTGCGTAGCGTTACCAAAAATAGTAAT

CAAATGTTTCACATTTGTTGTCCATAGTCGTATATGTATGTTTGTATTGTATTGTATATCCCTATATGCG

ATATTTACTCGTAGCTAGAATCTACTCTAAATCTAGACAAATTGTGTAAGAAGTAATAAATGTGCTTTTG

ACCGCTGTCTAATTGTTAATTGTAGTTGAAGACTTTATTGTTTGTATACATATATGCGGCAAGCATACGT

AATAATATGCATTTGCATAAGAGAGAATACAGTGTATAAAATAAATATCCAAACCTTTAAATGGACAAAT

AAGGTCGT 

 

CG1847 protein sequence 

Protein ID: FBpp0073411 

Length: 320 

aaMQSRSKSDMKPIRKEILNPGNAYIELTPGTRVKFHFQTRRAGDSRIIDDSRKMEKPMELVLG

KKFKLEVWELIVQQMSLNEVAKFTVHKSLCAQYPFISKTLRDIGKKPEERRHCCGMTLQNEGIG

YTDLDELLQNPSDLEFIIELFSIELPEQYEKERWQMSDDEKMLATSTLRERGNNFYKASRFTEA
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ETCYREAVGIVEQLMLKEKPHDEEWQELAAIKTPLLLNYAQCRLIAGDFYAVIEHCNEVLTLDP

RNVKALFRRAKAHAGAWNPAQARRDFLDALALDASLKSTVSKELKSIEDQQQARNVQDRIHMQK

LF 

Appendix 3: Fly food recipe 

The fly food was prepared in Professor Ralf Stanewsky fly facility as follow: 

 Water 1 litre 

 Agar 10g 

 Sucrose 15g  

 Glucose 33g 

 Yeast 35g 

 Maize meal 15g 

 Wheat germ 10g 

 Treacle 30g 

 Soya our 1 table spoon 

 Nipagin 10 ml 

 Propionic Acid 5 ml 

 

 

Appendix 4: Structure of Inverted Repeats (IR) for RNAi constructs 

Using UAS-GAL4 system, the RNAi flies produce double stranded RNA in vivo, inducing post-

transcriptional gene silencing. This system is based on transcription of inverted repeats (IR), 

which are commonly used as they have high efficiency in making dsRNA. The IR are cloned in 

vectors backbones under a UAS sequence. Usually the final constructs are injected into 30-100 

eggs and the transformants adults are selected to establish IR fly lines. A phenotypical marker 

(usually white+) is used to select the transformants. Genotyping is usually performed by using 

traditional genetic methods (PCR).  

Although this technique is very efficient and IR sequences are choose to target very specific 

areas of gene of interest, there are possible some cross-reactions between IR fragments and off-

target genes. Consequently further investigation are necessary to proof that the effects are not 

due to an off-target effect.  

 



 

 

226 

 

SUPPORTING TABLE 1.The structure of IR constructs  

Stock ID IR fragment full Sequences 

1847R-1  TCCGATATGAAGCCCATACGAAAGGGAGATCCTCAATCCGGGAAACGCCTACATCGAGCTAACCCCGGGCACCAGGGTGAAGTTCCACTTTCAAACGCG

GAGGGCCGGCGACAGTCGCATCATCGATGATAGCCGCAAGATGGAGAAGCCCATGGAGCTGGTCCTGGGGAAGAAGTTTAAGCTAGAGGTCTGGGAGC

TGATTGTGCAGCAGATGTCCCTTAACGAAGTGGCCAAGTTCACGGTACATAAGTCGCTCTGCGCTCAATATCCTTTTATATCCANNGAccCTGCGGGACAT

TGGCAAGAAACCGGAGGAGCGACGTCACTGCTGCGGAATGACATTGCAGAACGAGGGCATTGGGTACACCGACCTGGATGAGCNGCTGCAAAATCCTTC

CGATCTGGAGTTCATCATTGAACTGTTCTCCATTGAGCtGCCCGAGCAGTACGAAAAAGAGCGCTGGCAGATGTCCGACGACGAAAAGATGCTGGCCACC

AGTAC 

1847R-2  TCCGATATGAAGCCCATACGAAAGGGAGATCCTCAATCCGGGAAACGCCTACATCGAGCTAACCCCGGGCACCAGGGTGAAGTTCCACTTTCAAACGCG

GAGGGCCGGCGACAGTCGCATCATCGATGATAGCCGCAAGATGGAGAAGCCCATGGAGCTGGTCCTGGGGAAGAAGTTTAAGCTAGAGGTCTGGGAGC

TGATTGTGCAGCAGATGTCCCTTAACGAAGTGGCCAAGTTCACGGTACATAAGTCGCTCTGCGCTCAATATCCTTTTATATCCANNGAccCTGCGGGACAT

TGGCAAGAAACCGGAGGAGCGACGTCACTGCTGCGGAATGACATTGCAGAACGAGGGCATTGGGTACACCGACCTGGATGAGCNGCTGCAAAATCCTTC

CGATCTGGAGTTCATCATTGAACTGTTCTCCATTGAGCtGCCCGAGCAGTACGAAAAAGAGCGCTGGCAGATGTCCGACGACGAAAAGATGCTGGCCACC

AGTAC 

43701 AGTCGGTTCACAGAGGCGGAGACCTGCTACCGCGAGGCTGTCGGAATTGTGGAGCAGCTGATGCTAAAGGAGAAGCCGCACGACGAGGAGTGGCAGGA

GCTGGCGGCCATCAAGACACCGCTGTTGTTGAACTACGCGCAATGTCGGTTGATCGCCGGCGACTTCTACGCTGTGATCGAGCACTGCAACGAGGTGCTC

ACCCTGGATCCGCGCAATGTCAAGGCACTTTTTCGTCGGGCCAAGGCCCATGCGGGTGCCTGGAATCCAGCACAGGCACGTCGCGACTTCCTCGACGCCT

TGGCCTT 

43702 AGTCGGTTCACAGAGGCGGAGACCTGCTACCGCGAGGCTGTCGGAATTGTGGAGCAGCTGATGCTAAAGGAGAAGCCGCACGACGAGGAGTGGCAGGA

GCTGGCGGCCATCAAGACACCGCTGTTGTTGAACTACGCGCAATGTCGGTTGATCGCCGGCGACTTCTACGCTGTGATCGAGCACTGCAACGAGGTGCTC

ACCCTGGATCCGCGCAATGTCAAGGCACTTTTTCGTCGGGCCAAGGCCCATGCGGGTGCCTGGAATCCAGCACAGGCACGTCGCGACTTCCTCGACGCCT

TGGCCTT 
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Appendix 5: Primers used in this study  

SUPPORTING TABLE 2: Primers used in this study.  

Primer name 5’-3’ Sequence - Forward 5’-3’ Sequence-Reverse Annealing °C 

Dm_CG1847_RT-PCR ataagtcgctctgcgctcaa tgaactccagatcggaagga 57.7 

Dm_RpL32_RT-PCR cgatatgctaagctgtcgcaca cgcttgttcgatccgtaacc 60 

Dm_EP ggacaaataacgtctggtatcg gaaaaggccaatatcatgagga 62.4 

Dm_EP_EL atccgtatcaactgggatcg tcagccaaccaaccacaata 60.9 

Ppr-Y ccaagctttgccttaattgc tcaattaaattatttccaaggctga 58 

Dm_NeoRgene atcaagagacaggatgaggatcgtttcg gcggcggtggaatcgaaatctcgtgatg 62 

FOR CLONING    

CG1847wt  ggatccgcaaacgcaaaggcaactat gcggccgcccaaagattttcctagctca 60 

hAIPwt acgagcggccgcatggcggatatcatcgcacgcctcc aatagcggccgctcaatgggagaagatcccccggaac 60 

MycAIP_trunc ggcaggtaccatggaacaaaagttga atattctagatcaccacaggcgccag 71.1 

FOR DIRECT SITE MUTAGENESIS    

ins_7nt_sense cagccctggcgcctgtggtgaaatcgaattcccgc gcgggaattcgatttcaccacaggcgccagggctg 60 

c.47G>A (p.R16H) ggacgggatccaaaaacatgtgatacaggaaggcc ggccttcctgtatcacatgtttttggatcccgtcc 60 

c.713G>A (p.C238Y) tgctgctcaactactgaccagtgcaagctggt accagcttgcactggtcagtagttgagcagca 60 

c.896C>T (p.A299V) acccagccctggtgcctgtggtgag ctcaccacaggcaccagggctgggt 60 

c.911G>A (p.R304Q) ctgtggtgagccaagagctgcgggc ggcccgcagctctcagctcaccacaggc 60 

FOR SEQUENCING CONSTRUNCTS    

M13 primers gttttcccagtcacgac caggaaacagctatgac  

AIP _Ex4B_F  gacccatgggccatgacagacgaaga   

AIP_Ex4A_R  gcatgtgaaggaggctgctgccaag  
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SUPPORTING TABLE 3. Genes included in validation set by the Multiplex-qPCR 

Gene symbol Full name RefSeq Function 

RpL32 Ribosomal protein L32 NM_170461. Housekeeping gene 

AlphaTub84b alpha-Tubulin at 84B NM_057424.4  Housekeeping gene 

CG1847 CG1847 NM_132530.4  Drosophila orthologue for human AIP 

Hsp70Bbb heat shock protein 70Bbb NM_176486.2  Mediating response to heat;response to hypoxia 

Hsp83 heat shock protein 83 NM_079175.4 ATP binding;ATPase activity, unfolded protein binding 

Osi18 Osiris 18 NM_141382.3 Protein of unknown function 

Osi19 Osiris 19 NM_001170058.2 Protein of unknown function 

TwdlG TweedleG NM_001275316.2 Chitin-based cuticle development; body morphogenesis 

cpr66Cb cuticular protein 66Cb NM_139952.3  Chitin-based cuticle development 

cpr97Eb cuticular protein 97Eb NM_143273.3 Chitin-based cuticle development; neurogenesis. 

Mhc myosin heavy chain NM_001259121.2 Epithelium migration; adult somatic muscle development; protein stabilization;  

Act57B actin 57B NM_079076.4 Cytoskeleton organization; heart development, skeletal muscle fiber. 

Pka-Cl 
Protein kinase cAMP-dependent, catalytic 

subunit 1 
NM_057629.4 Regulation of embryonic development; regulation of apoptotic process 

Gsalpha G protein alpha s subunit  NM_001299869.1 
regulation of cAMP biosynthetic process; tissue development; cell-cell signalling; 

regulation of cAMP metabolic process 

Octβ2R  octopamine beta2 receptor NM_001170125.3 
G-protein coupled receptor signalling pathway; positive regulation of adenylate 

cyclase activity involved in G-protein coupled receptor signalling pathway. 
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SUPPORTING TABLE 4. Primers used for Multiplex-qPCR  

Gene symbol Left Sequence w/o Universal Tags Right Sequence w/o Universal Tags 

RpL32 AGGTGACACTATAGAATAATGCTAAGCTGTCGCACAAA GTACGACTCACTATAGGGAGAACTTCTTGAATCCGGTGG 

AlphaTub84b AGGTGACACTATAGAATAAACCTGAACCGTCTGATTGG GTACGACTCACTATAGGGACGTAGGTCACCAGAGGGAAG 

CG1847 AGGTGACACTATAGAATAAGGTCTGGGAGCTGATTGTG GTACGACTCACTATAGGGACCGCAGGGTCTTGGATATAA 

Hsp70Bbb AGGTGACACTATAGAATACAAAATCGCAGAGGACATGA GTACGACTCACTATAGGGAATCTCCTCGGGAGCAAATCT 

Hsp83 AGGTGACACTATAGAATAGTCTACATGACCGAGCCCAT GTACGACTCACTATAGGGAGGACTTCATCAGCTTGCACA 

Osi18 AGGTGACACTATAGAATACAGTTCTGCCCTTCCTTCTG GTACGACTCACTATAGGGATGCACCACCTCGTAGTTGAC 

Osi19 AGGTGACACTATAGAATACACCTTTAGCTCCGTTCCTG GTACGACTCACTATAGGGAACTAGCTGGCTCCAAACTGC 

Twd1G AGGTGACACTATAGAATAGCAACAACGGAATTTCATCC GTACGACTCACTATAGGGAAATATGGCTGCAGAGTCGCT 

cpr66Cb AGGTGACACTATAGAATAGAGCTGCACGAACACCACTA GTACGACTCACTATAGGGAGTGGATATGCTTGTCCCTCC 

cpr97Eb AGGTGACACTATAGAATATCAACCTCTACACCGGTTCC GTACGACTCACTATAGGGAACTCTCTGGCCCAACTCAGA 

Mhc AGGTGACACTATAGAATAGAGGAGTCTCGCACTCTGCT GTACGACTCACTATAGGGATCTTGGCTTCGTTCAGGAGT 

Act57B AGGTGACACTATAGAATAAGGACCTGTACGCCAACATC GTACGACTCACTATAGGGACACCGATCCAGACGGAGTAT 

Pka-Cl AGGTGACACTATAGAATACGGCTATGCGGGTATTTTTA GTACGACTCACTATAGGGATTTGCTTTTCCATTTTCGCT 

Gsalpha AGGTGACACTATAGAATAGATATTCTTCGGTGCCGTGT GTACGACTCACTATAGGGACTTGAGCACGCAGTTACGAA 

Octβ2R  AGGTGACACTATAGAATAACACACGAACTGAATGCCAC GTACGACTCACTATAGGGAATGTTGTCCAGCCAATCCTC 

Kan(r) AGGTGACACTATAGAATAATCATCAGCATTGCATTCGATTCCTGTTTG GTACGACTCACTATAGGGAATTCCGACTCGTCCAACATC 
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Appendix 6: Immunostaining protocols  

Imaginal wing discs immunostaining 

Buffers and solutions 

1X PBS: Phosphate buffered saline (Oxoid - Product Code: 10209252). 1 tablet makes 100 ml of 

solution. Store at RT. 

Fixation buffer4%: 16% Formaldehyde vials (10 ml) and adjust with 1X PBS to a final volume of 

40 ml. Store at -20°C. 

Permeabilisation buffer (PBT 0.2%): 500 ml PBS+1000 µl Triton X-100. Store at RT. 

Blocking buffer (0.5%): 100 ml PBT+500mg BSA (Bovine Serum Albumin, SIGMA-ALDRICH, 

A2058). Store at 4°C. 

Method 

1. While in PBS, rip the larvae in half and turn the anterior half inside-out. Get rid of fat 

tissues and gut remaining. Keep for maximum 15-20min in PBS, in 1500 µl tubes. 

2. Remove the PBS with a Pasteur pipette, add 500 μl of fixation buffer and incubate for 

25 min at RT on rocker, protected from light (make sure that the samples are floating 

around). 

Can rinse out the fix with 2 PBS rinses and keep samples 2-3 days at 4˚C  

3. Remove the fixation solution with a Pasteur pipette carefully not to absorb the samples. 

Add 500 μl PBT 0.2%, 1 quick rinse to dilute the fix.  

4. Incubate the samples with 500 µl of permeabilisation buffer (PBT 0.2%), twice, for 15 

min each on the rocker. 

5. Remove the permeabilisation buffer with a Pasteur pipette and add 500 µl of blocking 

buffer for 1 h at RT. 

6. Remove the blocking buffer and add of the appropriate primary antibodies (adjust 

dilution in each case in 250 µl PAT). Rotate/rock overnight at 4˚C.  

7. Wash the samples twice with 500 µl of PAT for 15 min at RT, on the rocker. Remove PAT 

and do 2 more washes in 500 µl of PAT for 30 min each at RT, on the rocker. 

8. Add the appropriate secondary antibodies diluted in 250 μl of PAT and incubate for 2 h 

at RT or overnight at 4˚C, protected from light. 

9. Wash the samples with 400 µl of PBT for 5 min three times, at RT. 

10. Incubate in DAPI solution and wash the samples 3 times, for 15 min each, in PBT.  
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11. Dissect out the wing discs and add them on a glass slide in a drop mounting medium 

Vectashield (Vector Laboratories, ref H-1000). 

12. Add a few more drops of mounting medium, cover with a cover slip, ensuring no bubbles 

are left, seal the edges with nail polish and store overninght at 4°C, protected from light, 

until analysis. For longer term, keep at -20°C, protected from light. 

Pupal wing immunostaining 

Buffers and solutions 

1X PBS: Phosphate buffered saline (Oxoid - Product Code: 10209252). 1 tablet makes 100 ml of 

solution. Store at RT  

Fixation buffer4%: 16% Formaldehyde vials (10 ml) and adjust with 1X PBS to a final volume of 

40 ml. Store at -20°C 

Permeabilisation buffer (PBT 0.3%): For 500 ml use 498.5 ml PBS + 1.5 ml TritonX/Tween. Store 

at RT 

Blocking buffer (0.5%): For 500 ml use 483.5 ml PBS + 1.5 ml Triton X-100 + 15 ml BSA (Bovine 

Serum Albumin, SIGMA-ALDRICH, A2058). Store at 4°C 

Method  

1. Collect white pupae on double sticky tape. Keep them at 25°C for 24-28 h until they 

reach the appropriate stage. Dissect them while attached to the sticky tape. Grip tail 

and then remove operculum. In order to avoid fat going into the wings punch a hole in 

the pupae’ head while they are still in the pupae shield. Gently remove the hard cuticle. 

Put them very fast on PBS (no detergent). To protect the pupae each of them was put in 

one well of a 96wells plate. 

2. In each well add 300 μl of 4% formaldehyde in PBT and incubate overnight at 4°C 

protected from light (pre-fixation). 

3. NEXT DAY: Remove the fixing solution with a pipette, and wash the pupae in PBS. 

In this step pupae can be kept in PBS at 4°C for a few days, before moving to next step. 

4. Move the pupae into a dissecting dish. Grip the wing from the shoulder and remove the 

cuticle (starting from the shoulder – where the separation between wing and the cuticle 

is more obvious). Move each wing into a well of a Terasaki 60 Microwell Plate. 

5. Add 10 μl of fixation buffer and incubate for 10 min at RT, protected from light (fixation). 

From this step forward all the washes have to be done under the microscope. 
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6. Remove the fixation solution with a pipette and wash the cells thrice with 15 μl of PBS 

7. Wash in twice in PBT, for 10 min, at RT. 

8. Incubate the pupal wings in 15 µl of permeabilisation buffer for 20 min at RT. 

9. Remove the permeabilisation buffer and wash twice in PBT for 10min at RT. 

10. Add 15 µl of blocking buffer. Incubate 1 h at RT.  

If just phalloidin staining go to step 22. 

11. Remove the blocking buffer and add the appropriate primary antibodies (adjust dilution 

in each case) diluted in 15 µl of blocking buffer. Incubate overnight at 4°C, on a rocker. 

Pre - absorption of the primary antibody was done against third instar larvae to reduce 

the non - specific binding of the antibodies in the tissue of interest. 

Two mixes were prepared in order to perform double staining in the same time: 

MIX 1 primary antibodies MIX 2 primary antibodies 

anti talin – Mouse monoclonal  anti βPS2 – Mouse monoclonal  

anti-PINCH - Rabbit polyclonal anti-parvin - Rabbit polyclonal  

 

12. NEXT DAY: Remove the primary antibodies and rinse three times in 15 µl PAT. 

13. Wash twice for 20min in 15 µl PAT. 

14. Block as above, in 15 µl of blocking buffer for 1 h at RT. 

15. Add 15 µl the appropriate secondary antibodies dilutions in PAT and incubate for 1 h at 

RT protected from light. One mix was prepared for all the samples:  

MIX 

Fluorescein (FITC) Donkey Anti-Mouse  

Cy™5 Pure Donkey Anti-Rabbit  

phalloidin  

 

16. Rinse 3 times with 15 µl of PBT and then wash 10 min in PBT. 

17. Move the pupal wings with the tip of a syringe needle on a glass slide in drop of 24 µl 

mounting medium Vectashield (Vector Laboratories, ref H-1000). 

18. Cover with a cover slip, ensuring no bubbles are left, seal the edges with nail polish 

and store overnight at 4°C, protected from light, until analysis. For longer term keep at 

-20°C, protected from light.  
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Appendix 7: Antibodies used in this study 

SUPPORTING TABLE 5: Antibodies used in this study 

Primary antibodies Dilution Usage  Cat number Reference 

anti βPS2 – Mouse monoclonal (HB CF.6G11) 1: 15 Immunostaining Gift from N.Brown – Gurdon Institute  Brower et al., 1984 

anti talin – Mouse monoclonal 1:50 Immunostaining Gift from N.Brown – Gurdon Institute  Brown et al., 2002 

anti-parvin - Rabbit polyclonal 1:500 Immunostaining Gift from C.G. Zervas – Academy of Athens  Vakaloglou et al.,2012 

anti-PINCH - Rabbit polyclonal 1:500 Immunostaining Gift from M. Beckerle– University of Utah  Clark et al., 2003 

anti-AIP/ARA9 Mouse Monoclonal 1:20 Immunostaining Novus Biologicals  NB100-127 Kasuki et al 2011 

anti-AIP/ARA9 Mouse Monoclonal 1:1000 Western Blot Novus Biologicals  NB100-127 Kasuki et al 2011 

anti Tubulin, beta Mouse monoclonal 1:15000 Western Blot Developmental Studies Hybridoma Bank E7 Chu et al 1989 

Secondary antibodies  Dilution Usage  Cat number Reference 

Alexa Fluor® 488 Goat anti-Mouse 1:250 Immunostaining Invitrogen A11029  

Alexa Fluor® 488 Goat anti-Rabbit 1:250 Immunostaining Invitrogen A-11008  

Alexa Fluor 488® phalloidin 1:1000 Immunostaining Invitrogen A12379  

Fluorescein (FITC) Donkey anti-Mouse IgG H+L) 1:250 Immunostaining Jackson ImmunoResearch Laboratories  715-096-151  

Fluorescein (FITC) anti-Rabbit IgG (H+L) 1:250 Immunostaining Jackson ImmunoResearch Laboratories 711-096-152  

Cy™5 Pure Donkey anti-Rabbit IgG (H+L) 1:200 Immunostaining Jackson ImmunoResearch Laboratories 711-175-152  

Alexa Fluor® 647 Donkey anti-Mouse IgG (H+L), 1:200 Immunostaining Invitrogen A-31571  

IRDye® 680 RD Goat anti-Mouse IgM  1:1000 Western Blot LI-COR Biotechnology 926-68180  

Phalloidin-TRITC 1:250 Immunostaining Sigma-Aldrich P1951-1MG  
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Appendix 8: Preparing competent cells  

In order to prepare competent cells for plasmid DNA transformation we used the chemical 

method (Nicholas Renzette, Current Protocols in Molecular Biology, 2011) that has the 

advantages of being simple to complete, requires no special equipment and gives good 

transformation efficiencies. Disadvantages are that the efficiency is somewhat lower (vs. 

electroporation).  

Materials: 

 Single colony of JM109 or BL21 cells to be transformed 

 LB medium 

 LB amp plates (2 plates without any ampicillin + 4 with ampicillin)  

 M CaCl2, ice cold – autoclaved 

 M CaCl2+15% glycerol – autoclaved 

 42°C water bath for transformation 

Recipe:  

 For 1L of 0.1M CaCl2 solution, add 11.10g of CaCl2 

 For the CaCl2 +15% glycerol solution, make up 500 ml solution. 5.55 CaCl2 were added 

to 300 ml dH2O. Then 75 ml glycerol and the rest of the dH2O to a final volume of 500 

ml 

Procedure: 

Two ml LB medium were inoculated with one single colony from an LB agar plate (without 

antibiotics) of JM109 or BL21 bacteria and incubated overnight at 37°C and 225 RPM. 1-ml of 

the starter culture was used inoculate to a flask with 100 ml LB medium (in a 500 ml flask) and 

incubated with shaking at 37°C to OD600 ~ 0.25-0.3 (usually it took about 1.5-2 hours). The culture 

was then chilled on ice for 15 min. The 0.1M CaCl2 solution and 0.1M CaCl2 plus 15% glycerol 

were also placed on ice because all steps after harvesting the cell should be done on ice (or at 

4°C). The cells were harvested by centrifuging for 10 min at 4,000 rpm at 4°C. The medium was 

removed and the cells were resuspended in 40 ml of ice-cold 0.1M CaCl2 using the stripette. The 

cells were kept on ice for 30 min. After the centrifugation, the transformation medium was 

removed and the cell pellet was resuspended in 6 ml 0.1 M CaCl2 solution plus 15% glycerol. For 

storage 250 µl or 500 µl aliquots of competent cells were made in already labelled and chilled 

cryotubes. The aliquots were quickly frozen and kept at -80°C.  

In order to test the competent cells, the following tests were performed: 
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1) Viability of cells: 0.5 μl of untransformed cells were diluted in 30 μl water and were plated on 

LB plate without ampicillin.  

2) Antibiotic resistance of cells: 50 μl of untransformed culture were plated out onto an LB plate 

with ampicillin. 

3) Transformation efficiency of cells using vector of known concentration. In order to determine 

the transformation efficiency of the cells, 1 μg of vector DNA was used to transform the cells. 

During transformation, we used 500 LB media during the recovery period. From this, we plate 

out 5 μl, 10 μl, and 20 μl of the culture onto LB plates containing ampicillin. On the plates where 

the number of colonies could be determined, the transformation efficiency was calculated for 

the batch of competent cells using the formula:  
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Appendix 9: TruSeq Stranded mRNA Sample Preparation – Low Sample 

(LS) Protocol 

Introduction – Overview of the protocol (ILLUMINA PROPRIETARY, Catalog # RS-122-

9004DOC, Part # 15031047 Rev. E, October 2013). 

 

Figure 90: TruSeq Stranded mRNA Sample Preparation LS Workflow 
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Purify and Fragment mRNA 

This process purifies the polyA containing mRNA molecules using poly-T oligo attached magnetic 
beads using two rounds of purification. During the second elution of the polyA RNA, the RNA is 
also fragmented and primed for cDNA synthesis. It is important to follow this procedure exactly 
to be sure of reproducibility. 
NOTES: Allow the beads to fully pellet against the magnetic stand 5 minutes. Remove the 
supernatant from the beads immediately while the beads are still pelleted against the magnetic 
stand. 
Pre-program the thermal cycler with the following programs: Choose the pre-heat lid option and 
set to 100°C 

• 65°C for 5 minutes, 4°C hold—save as mRNA Denaturation 
• 80°C for 2 minutes, 25°C hold—save as mRNA Elution 1 
• 94°C for 8 minutes, 4°C hold—save as Elution 2 - Frag - Prime 

 

Make RBP 

1 Dilute the total RNA with nuclease-free ultrapure water to a final volume of 50 µl in the new 
96-well 0.3 ml PCR plate. 
2 Vortex the room temperature RNA Purification Beads tube vigorously to resuspend the oligo-
dT beads. 
3 Add 50 µl of RNA Purification Beads to each well of the RBP plate to bind the polyA RNA to the 
oligo dT magnetic beads. Gently pipette the entire volume up and down 6 times to mix 
thoroughly. 
4 Seal the RBP plate with a Microseal ‘B’ adhesive seal.  
 

Incubate 1 RBP 

1 Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select 
mRNA Denaturation (65°C for 5 minutes, 4°C hold) to denature the RNA and facilitate binding of 
the polyA RNA to the beads. 
2 Remove the RBP plate from the thermal cycler when it reaches 4°C. 
3 Place the RBP plate on the bench and incubate at room temperature for 5 minutes to allow 
the RNA to bind to the beads. 
 

Wash RBP 

1 Remove the adhesive seal from the RBP plate. 
2 Place the RBP plate on the magnetic stand at room temperature for 5 minutes to separate the 
polyA RNA bound beads from the solution. 
3 Remove and discard all of the supernatant from each well of the RBP plate. 
4 Remove the RBP plate from the magnetic stand. 
5 Wash the beads by adding 200 µl of Bead Washing Buffer in each well of the RBP plate to 
remove unbound RNA. Gently pipette the entire volume up and down 6 times to mix thoroughly. 
6 Place the RBP plate on the magnetic stand at room temperature for 5 minutes. 
7 Centrifuge the thawed Elution Buffer to 600 x g for 5 seconds. 
8 Remove and discard all of the supernatant from each well of the RBP plate. The supernatant 
contains most of the ribosomal and other non-messenger RNA. 
9 Remove the RBP plate from the magnetic stand. 
10 Add 50 µl of Elution Buffer in each well of the RBP plate. Gently pipette the entire volume up 
and down 6 times to mix thoroughly. 
11 Seal the RBP plate with a Microseal ‘B’ adhesive seal. 



 

 

238 

 

 

Incubate 2 RBP 

1 Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select 
mRNA Elution 1 (80°C for 2 minutes, 25°C hold) to elute the mRNA from the beads. 

2 Remove the RBP plate from the thermal cycler when it reaches 25°C. 
3 Place the RBP plate on the bench at room temperature. Remove the adhesive seal from the 
RBP plate. 
 

Make RFP 

1 Add 50 µl of Bead Binding Buffer to each well of the RBP plate. This allows mRNA to specifically 
rebind the beads, while reducing the amount of rRNA that non-specifically binds. Gently pipette 
the entire volume up and down 6 times to mix thoroughly. 
2 Incubate the RBP plate at room temperature for 5 minutes. 
3 Place the RBP plate on the magnetic stand at RT for 5 minutes. Discard all of the supernatant. 
4 Remove the RBP plate from the magnetic stand. 
5 Wash the beads by adding 200 µl of Bead Washing Buffer in each well of the RBP plate. Gently 
pipette the entire volume up and down 6 times to mix thoroughly. 
6 Place the RBP plate on the magnetic stand at room temperature for 5 minutes. 
7 Remove and discard all of the supernatant from each well of the RBP plate. The supernatant 
contains residual rRNA and other contaminants that were released in the first elution and did 
not rebind the beads. 
8 Remove the RBP plate from the magnetic stand. 
9 Add 19.5 µl of Fragment, Prime, Finish Mix to each well of the RBP plate. Gently pipette the 
entire volume up and down 6 times to mix thoroughly. Seal the RBP plate with a Microseal ‘B’ 
adhesive seal. 
 

Incubate RFP 

1 Place the sealed RBP plate on the pre-programmed thermal cycler. Close the lid and select 
Elution 2 - Frag - Prime (94°C for 8 minutes, 4°C hold) to elute, fragment, and prime the RNA. 
2 Remove the RBP plate from the thermal cycler when it reaches 4°C and centrifuge briefly. 
3 Proceed immediately to Synthesize First Strand cDNA on page 21. 

Synthesize First Strand cDNA 

This process reverse transcribes the cleaved RNA fragments that were primed with random 
hexamers into first strand cDNA using reverse transcriptase and random primers. The addition 
of Actinomycin D to the First Stand Synthesis Act D mix (FSA) prevents spurious DNA-dependent 
synthesis, while allowing RNA-dependent synthesis, improving strand specificity. 
Pre-program the thermal cycler with the following program and save as Synthesize 1st Strand: 
pre-heat lid option and set to 100°C, 25°C for 10 minutes, 42°C for 15 minutes, 70°C for 15 
minutes, Hold at 4°C 
 

Make CDP 

1 Place the RBP plate on the magnetic stand at RT for 5 minutes. 
2 Transfer 17 µl supernatant from each well of the RBP plate to the corresponding well of the 
new 0.3 ml PCR plate labelled with the CDP barcode. 
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3 Centrifuge the thawed First Strand Synthesis Act D Mix tube to 600g for 5 seconds. 
4 Add 50 µl SuperScript II to the First Strand Synthesis Act D Mix tube. 
5 Add 8 µl of First Strand Synthesis Act D Mix and SuperScript II mix to each well of the CDP plate. 
Gently pipette the entire volume up and down 6 times to mix thoroughly.  
6 Seal the CDP plate with a Microseal ‘B’ adhesive seal and centrifuge briefly. 
 

Incubate 1 CDP 

1 Place the sealed CDP plate on the pre-programmed thermal cycler. Close the lid, and then 
select and run the Synthesize 1st Strand program. a Choose the pre-heat lid option and set to 
100°C, 25°C for 10 minutes, 42°C for 15 minutes, 70°C for 15 minutes, Hold at 4°C 
2 When the thermal cycler reaches 4°C, remove the CDP plate from the thermal cycler and 
proceed immediately to Synthesize Second Strand cDNA. 

Synthesize Second Strand cDNA 

This process removes the RNA template and synthesizes a replacement strand, incorporating 
dUTP in place of dTTP to generate dscDNA. The incorporation of dUTP quenches the second 
strand during amplification, because the polymerase does not incorporate past this nucleotide. 
AMPure XP beads are used to separate the dscDNA from the second strand reaction mix. 
 

Add SMM 

1 Remove the adhesive seal from the CDP plate. 2 Do one of the following: 
2 Add 5 µl of Resuspension Buffer to each well of the CDP plate. 
3 Centrifuge the thawed Second Strand Marking Master Mix to 600g for 5 seconds. 
4 Add 20 µl of thawed Second Strand Marking Master Mix to each well of the CDP plate. Gently 
pipette the entire volume up and down 6 times to mix thoroughly. Seal the CDP plate. 
 

Incubate 2 CDP 

1 Place the sealed CDP plate on the pre-heated thermal cycler. Close the lid and incubate at 16°C 
for 1 hour. 
2 Remove the CDP plate from the thermal cycler, remove the adhesive seal and place it on the 
bench. 
3 Let the CDP plate stand to bring it to room temperature. 
 

Purify CDP 

1 Vortex the AMPure XP beads until they are well dispersed. 
2 Add 90 µl of well-mixed AMPure XP beads to each well of the CDP plate containing 50 µl of ds 
cDNA. Gently pipette the entire volume up and down 10 times to mix thoroughly. 
3 Incubate the CDP plate at room temperature for 15 minutes. 
4 Place the CDP plate on the magnetic stand at room temperature, for 5 minutes to make sure 
that all of the beads are bound to the side of the wells. 
5 Remove and discard 135 µl supernatant from each well of the CDP plate. Leave the CDP plate 
on the magnetic stand while performing the following 80% EtOH wash steps (6–8). 
6 With the CDP plate on the magnetic stand, add 200 µl freshly prepared 80%EtOH to each well 
without disturbing the beads. 
7 Incubate the CDP plate at room temperature for 30 seconds, and then remove and discard all 
of the supernatant from each well. 
8 Repeat steps 6 and 7 one time for a total of two 80% EtOH washes. 
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9 Let the CDP plate stand at room temperature for 15 minutes to dry, and then remove the plate 
from the magnetic stand. 
10 Centrifuge the thawed, room temperature Resuspension Buffer to 600g for 5 seconds. 
11 Add 17.5 µl Resuspension Buffer to each well of the CDP plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly. 
12 Incubate the CDP plate at room temperature for 2 minutes. 
13 Place the CDP plate on the magnetic stand at room temperature for 5 minutes. 
14 Transfer 15 µl supernatant (ds cDNA) from the CDP plate to the new 96-well 0.3 ml PCR plate. 

Adenylate 3' Ends 

A single ‘A’ nucleotide is added to the 3’ ends of the blunt fragments to prevent them from 
ligating to one another during the adapter ligation reaction. A corresponding single T’ nucleotide 
on the 3’ end of the adapter provides a complementary overhang for ligating the adapter to the 
fragment. This strategy ensures a low rate of chimera (concatenated template) formation. 
 

Add ATL 

1 Add 2.5 µl of Resuspension Buffer to each well of the ALP plate.  
2 Add 12.5 µl of thawed A-Tailing Mix to each well of the ALP plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly. Seal the ALP plate with a Microseal ‘B’ adhesive 
seal. 
 

Incubate 1 ALP 

1 Place the sealed ALP plate on the pre-programmed thermal cycler. Close the lid, then select 
and run the ATAIL70 program: pre-heat lid option and set to 100°C, 37°C for 30 minutes, 70°C 
for 5 minutes, Hold at 4°C 
2 When the thermal cycler temperature is 4°C, remove the ALP plate from the thermal cycler, 
then proceed immediately to Ligate Adapters. 

Ligate Adapters 

 

Add LIG 

1 Add 2.5 µl of Resuspension Buffer to each well of the ALP plate. 
2 Add 2.5 µl of Ligation Mix to each well of the ALP plate. 
3 Add 2.5 µl of the thawed RNA Adapter Index to each well of the ALP plate. Gently pipette the 
entire volume up and down 10 times to mix thoroughly. 
4 Use the bottom of a clean eight-tube strip, with caps attached, to pierce holes in the seals of 
the wells that will be used for ligation. Repeat with a new, clean eight-tube strip, with caps 
attached, for each row. 
5 Using an eight-tip multichannel pipette, transfer 2.5 µl of the thawed RNA Adapter to each 
well of the ALP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly. 
6 Seal the ALP plate with a Microseal ‘B’ adhesive seal. Centrifuge the ALP plate to 280g for 1 
minute. 
 

Incubate 2 ALP 

1 Place the sealed ALP plate on the pre-heated thermal cycler. Incubate at 30°C for 10 minutes. 
2 Remove the ALP plate from the thermal cycler. 
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Add STL 

1 Remove the adhesive seal from the ALP plate. 
2 Add 5 µl of Stop Ligation Buffer to each well of the ALP plate to inactivate the ligation. Gently 
pipette the entire volume up and down 10 times to mix thoroughly. 
 

Clean Up ALP 

1 Vortex the AMPure XP Beads for at least 1 minute or until they are well dispersed. 
2 Add 42 µl of mixed AMPure XP Beads to each well of the ALP plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly and incubate the ALP plate at room 
temperature for 15 minutes. 
3 Place the ALP plate on the magnetic stand at room temperature for 5 minutes or until the 
liquid is clear. 
4 Remove and discard 79.5 µl supernatant from each well of the ALP plate. Take care not to 
disturb the beads. Leave the ALP plate on the magnetic stand while performing the following 
80% EtOH wash steps. 
5 With the ALP plate on the magnetic stand, add 200 µl freshly prepared 80% EtOH to each well 
without disturbing the beads. Incubate the ALP plate at RT for 30 seconds, and then remove and 
discard all of the supernatant from each well. Take care not to disturb the beads. 
6 Repeat step5 one time for a total of two 80% EtOH washes. 
7 With the ALP plate on the magnetic stand, let the samples air-dry at room temperature for 15 
minutes. 
8 Remove the ALP plate from the magnetic stand and add 52.5 µl Resuspension Buffer to each 
well of the ALP plate. Gently pipette the entire volume up and down 10 times to mix thoroughly 
or until the beads are fully resuspended. 
9 Incubate the ALP plate at room temperature for 2 minutes. 
10 Place the ALP plate on the magnetic stand at RT for 5 minutes or until the liquid is clear. 
11 Transfer 50 µl supernatant from each well of the ALP plate to the corresponding well of the 
new 0.3 ml PCR plate labelled with the CAP barcode. Take care not to disturb the beads. 
12 Vortex the AMPure XP Beads until they are well dispersed. 
13 Add 50 µl of mixed AMPure XP Beads to each well of the CAP plate for a second cleanup. 
Gently pipette the entire volume up and down 10 times to mix thoroughly. 
14 Incubate the CAP plate at RT for 15 minutes and place the CAP plate on the magnetic stand 
at room temperature for 5 minutes or until the liquid is clear. 
15 Remove and discard 95 µl supernatant from each well of the CAP plate. With the CAP plate 
on the magnetic stand, add 200 µl freshly prepared 80% EtOH to each well. Take care not to 
disturb the beads. 
16 Incubate the CAP plate at RT for 30 seconds, and then discard all of the supernatant from 
each well. 
17 Repeat the 80% EtOH washes. With the CAP plate on the magnetic stand, let the samples air-
dry at room temperature for 15 minutes, and then remove the plate from the magnetic stand. 
18 Add 22.5 µl Resuspension Buffer to each well of the CAP plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly or until the beads are fully resuspended. 
19 Incubate the CAP plate at room temperature for 2 minutes, then place the CAP plate on the 
magnetic stand at room temperature for 5 minutes or until the liquid is clear. 
20 Transfer 20 µl supernatant from each well of the CAP plate to the corresponding well of the 
new 0.3 ml PCR plate labelled with the PCR barcode. Take care not to disturb the beads. 

Enrich DNA Fragments 

This process uses PCR to selectively enrich those DNA fragments that have adapter molecules 
on both ends and to amplify the amount of DNA in the library. The PCR is performed with a PCR 
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Primer Cocktail that anneals to the ends of the adapters. Minimize the number of PCR cycles to 
avoid skewing the representation of the library. PCR enriches for fragments that have adapters 
ligated on both ends. Fragments with only one or no adapters on their ends are by-products of 
inefficiencies in the ligation reaction. Neither species can be used to make clusters. Fragments 
without any adapters cannot hybridize to surface-bound primers in the flow cell. Fragments with 
an adapter on only one end can hybridize to surface bound primers, but cannot form clusters. 
 

Make PCR 

1 Add 5 µl of thawed PCR Primer Cocktail to each well of the PCR plate. 
2 Add 25 µl of thawed PCR Master Mix to each well of the PCR plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly. 
3 Seal the PCR plate with a Microseal ‘B’ adhesive seal. 
 

Amp PCR 

1 Place the sealed PCR plate on the pre-programmed thermal cycler. Close the lid, then select 
and run PCR to amplify the plate. Choose the pre-heat lid option and set to 100°C, 98°C for 30 
seconds, 15 cycles of: 98°C for 10 seconds/ 60°C for 30 seconds/ 72°C for 30 seconds. Final step 
72°C for 5 min. Hold at 4°C 
 

Clean Up PCR 

1 Remove the adhesive seal from the PCR plate. 
2 Vortex the AMPure XP Beads until they are well dispersed. 
3 Add 50 µl of the mixed AMPure XP Beads to each well of the PCR plate containing 50 µl of the 
PCR amplified library. Gently pipette the entire volume up and down 10times to mix thoroughly. 
4 Incubate the PCR plate at room temperature for 15 minutes. 
5 Place the PCR plate on the magnetic stand at room temperature for 5 minutes or until the 
liquid is clear. 
6 Remove and discard 95 µl supernatant from each well of the PCR plate. 
7 With the PCR plate on the magnetic stand, add 200 µl freshly prepared 80% EtOH to each well 
without disturbing the beads. 
8 Incubate the PCR plate at RT for 30 seconds, then discard all of the supernatant. Repeat 80% 
EtOH wash. 
9 With the PCR plate on the magnetic stand, let the samples air-dry at room temperature for 15 
minutes, and then remove the plate from the magnetic stand. 
10 Add 32.5 µl Resuspension Buffer to each well of the PCR plate. Gently pipette the entire 
volume up and down 10 times to mix thoroughly. 
11 Incubate the PCR plate at room temperature for 2 minutes. 
12 Place the PCR plate on the magnetic stand at RT for 5 minutes or until the liquid is clear. 
13 Transfer 30 µl supernatant from each well of the PCR plate to the corresponding well of the 
new 0.3 ml PCR plate labelled with the TSP1 barcode. 

Validate Library 

Illumina recommends performing the following procedures for quality control analysis on your 
sample library and quantification of the DNA library templates. 
 

Quantify Libraries 
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To achieve the highest quality data on Illumina sequencing platforms, it is important to create 
optimum cluster densities across every lane of the flow cell. Optimizing cluster densities requires 
accurate quantitation of DNA library templates. Quantify your libraries using qPCR according to 
the Illumina Sequencing Library qPCR Quantification Guide (part # 11322363). 
 

Quality Control 

1 Load 1 µl of the resuspended construct on an Agilent Technologies 2100 Bioanalyzer using a 
DNA-specific chip such as the Agilent DNA 1000. 
2 Check the size and purity of the sample. The final product should be a band at approximately 
260 bp. 

Normalize and Pool Libraries 

This process describes how to prepare DNA templates for cluster generation. Indexed DNA 
libraries are normalized to 10 nM in the DCT plate and then pooled in equal volumes in the PDP 
plate. DNA libraries not intended for pooling are normalized to 10 nM in the DCT plate. 
 

Make DCT 

1 Transfer 10 µl of sample library from each well of the TSP1 plate to the corresponding well of 
the new MIDI plate labelled with the DCT barcode. 
2 Normalize the concentration of sample library in each well of the DCT plate to 10 nM using a 
mix of Tris-HCl 10 mM, pH 8.5 with 0.1% Tween 20. 
3 Gently pipette the entire normalized sample library volume up and down 10 times to mix 
thoroughly. 
 

Make PDP (for pooling only) 

1 Determine the number of samples to be combined together for each pool. 
2 Transfer 10 µl of each normalized sample library to be pooled from the DCT plate to one well 
of the new 0.3 ml PCR plate labelled with the PDP barcode. 
The total volume in each well of the PDP plate is 10 X the number of combined sample libraries 
and 20–240 µl (2–24 libraries). For example, in our case, the volume for 8 samples was 80 µl. 
3 Gently pipette the entire volume up and down 10 times to mix thoroughly. 
4 Proceed to cluster generation. 
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Appendix 10: RNA-seq – Table 

SUPPORTING TABLE 5: Differentially expressed genes (the most downregulated transcripts are on top of the table) 

  gene_id gene locus sample_1 sample_2 value_1 value_2 log2(fold_change) p_value q_value oID_genes 

1 XLOC_000064 Lsp1beta 2L:898643-901316 Ctr Mut 21.732 0.20409 -6.734 5.00E-05 0.00245 FBgn0002563 

2 XLOC_009430 Hsp70Bbb 3R:8328231-8330822 Ctr Mut 6.53143 0.121707 -5.746 5.00E-05 0.00245 FBgn0051354 

3 XLOC_011176 CR32865 3R:8295701-8304065 Ctr Mut 172.408 7.62157 -4.5 5.00E-05 0.00245 FBgn0052865 

4 XLOC_011881 Hsp68 3R:19880139-19883029 Ctr Mut 188.604 12.7823 -3.883 5.00E-05 0.00245 FBgn0001230 

5 XLOC_003924 CG10073 2R:15268047-15272470 Ctr Mut 82.6779 7.96064 -3.377 5.00E-05 0.00245 FBgn0034440 

6 XLOC_005673 CG3264 2R:18096411-18098247 Ctr Mut 107.861 12.5462 -3.104 5.00E-05 0.00245 FBgn0034712 

7 XLOC_014779 CG34330 X:18962305-18962925 Ctr Mut 155.109 18.4714 -3.07 5.00E-05 0.00245 FBgn0085359 

8 XLOC_005304 IM23 2R:14270208-14270737 Ctr Mut 15.8438 1.92163 -3.044 5.00E-05 0.00245 FBgn0034328 

9 XLOC_003925 CG10081 2R:15273427-15276823 Ctr Mut 50.9421 6.51389 -2.967 5.00E-05 0.00245 FBgn0034441 

10 XLOC_009432 Hsp70Bc 3R:8334797-8337183 Ctr Mut 15.074 1.95085 -2.95 5.00E-05 0.00245 FBgn0013279 

11 XLOC_009431 Hsp70Bb 3R:8331514-8334105 Ctr Mut 52.1496 6.92209 -2.913 5.00E-05 0.00245 FBgn0013278 

12 XLOC_011175 Hsp70Ba 3R:8291025-8293500 Ctr Mut 9.58651 1.40245 -2.773 5.00E-05 0.00245 FBgn0013277 

13 XLOC_001566 CG15353 2L:2006762-2007193 Ctr Mut 300.451 44.8723 -2.743 5.00E-05 0.00245 FBgn0040718 

14 XLOC_001134 ninaD 2L:18081629-18083608 Ctr Mut 2.57373 0.385647 -2.739 5.00E-05 0.00245 FBgn0002939 

15 XLOC_008002 Hsp26 3L:9369517-9370475 Ctr Mut 513.165 77.0631 -2.735 5.00E-05 0.00245 FBgn0001225 

16 XLOC_014469 CG11071 X:13744880-13884528 Ctr Mut 0.763823 0.118598 -2.687 5.00E-05 0.00245 FBgn0263115 

17 XLOC_014469 mamo X:13744880-13884528 Ctr Mut 0.763823 0.118598 -2.687 5.00E-05 0.00245 FBgn0030532 

18 XLOC_013279 CG1847 X:11763220-11765201 Ctr Mut 7.23844 1.18461 -2.611 5.00E-05 0.00245 FBgn0030345 

19 XLOC_001238 CG16772 2L:19962678-19963844 Ctr Mut 3.05377 0.511087 -2.579 5.00E-05 0.00245 FBgn0032835 

20 XLOC_006566 Hsp27 3L:9377162-9378382 Ctr Mut 193.978 35.6058 -2.446 5.00E-05 0.00245 FBgn0001226 

21 XLOC_007314 CG32444 3L:21630046-21632160 Ctr Mut 60.1528 11.0785 -2.441 5.00E-05 0.00245 FBgn0043783 

22 XLOC_003070 Lcp3 2R:4322814-4323600 Ctr Mut 54.0499 10.0496 -2.427 5.00E-05 0.00245 FBgn0002534 

23 XLOC_006292 CG11350 3L:4482808-4484370 Ctr Mut 1220.35 226.958 -2.427 5.00E-05 0.00245 FBgn0035552 

24 XLOC_013810 CG13360 X:678823-684312 Ctr Mut 124.579 23.3674 -2.414 5.00E-05 0.00245 FBgn0025620 

25 XLOC_002297 CG9928 2L:13142493-13142902 Ctr Mut 11.9928 2.46779 -2.281 5.00E-05 0.00245 FBgn0032472 

26 XLOC_006565 Hsp23 3L:9374981-9375865 Ctr Mut 385.882 80.4126 -2.263 5.00E-05 0.00245 FBgn0001224 
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  gene_id gene locus sample_1 sample_2 value_1 value_2 log2(fold_change) p_value q_value oID_genes 

27 XLOC_000883 CG5867 2L:13236492-13239296 Ctr Mut 5.45954 1.16017 -2.234 5.00E-05 0.00245 FBgn0027586 

28 XLOC_008415 CG42718 3L:16313929-16314372 Ctr Mut 112.352 25.0911 -2.163 5.00E-05 0.00245 FBgn0261635 

29 XLOC_007885 CG32376 3L:7534681-7535557 Ctr Mut 1.78108 0.401468 -2.149 0.0006 0.01944 FBgn0052376 

30 XLOC_005555 CG43710 2R:16664231-16665254 Ctr Mut 3.18182 0.737946 -2.108 0.0001 0.00448 FBgn0263849 

31 XLOC_000339 Cyp28d2 2L:5207266-5209345 Ctr Mut 58.9185 13.8134 -2.093 5.00E-05 0.00245 FBgn0031688 

32 XLOC_006562 Hsp22 3L:9365821-9368064 Ctr Mut 186.688 44.4412 -2.071 0.0001 0.00448 FBgn0001223 

33 XLOC_006562 Hsp67Bb 3L:9365821-9368064 Ctr Mut 186.688 44.4412 -2.071 0.0001 0.00448 FBgn0001228 

34 XLOC_002448 TepI 2L:15888638-15893811 Ctr Mut 0.745169 0.178166 -2.064 0.0011 0.03093 FBgn0041183 

35 XLOC_004016 IM14 2R:16757896-16758183 Ctr Mut 29.3402 7.11787 -2.043 0.0007 0.02195 FBgn0067905 

36 XLOC_001953 CG7214 2L:7743676-7744841 Ctr Mut 21.0819 5.15237 -2.033 5.00E-05 0.00245 FBgn0031940 

37 XLOC_003728 snoRNA:U3:54Ab 2R:13033134-13034026 Ctr Mut 5.7294 1.41325 -2.019 0.00125 0.03415 FBgn0065047 

38 XLOC_005615 CG30288 2R:17406747-17409482 Ctr Mut 3.01157 0.753787 -1.998 0.00025 0.00942 FBgn0050288 

39 XLOC_005615 CG30289 2R:17406747-17409482 Ctr Mut 3.01157 0.753787 -1.998 0.00025 0.00942 FBgn0050289 

40 XLOC_011090 CR43283 3R:7073349-7081916 Ctr Mut 43.613 10.9697 -1.991 5.00E-05 0.00245 FBgn0262972 

41 XLOC_008403 CG34248 3L:16263468-16264002 Ctr Mut 35.2717 8.87464 -1.991 5.00E-05 0.00245 FBgn0085277 

42 XLOC_008782 CG14565 3L:21736347-21737369 Ctr Mut 122.528 30.9103 -1.987 5.00E-05 0.00245 FBgn0037129 

43 XLOC_013276 CR43908 X:11731575-11732059 Ctr Mut 494.77 126.457 -1.968 5.00E-05 0.00245 FBgn0264509 

44 XLOC_001438 CG17018 2L:22311930-22368796 Ctr Mut 0.589344 0.152225 -1.953 0.0001 0.00448 FBgn0039972 

45 XLOC_000517 CG7224 2L:7998933-8004313 Ctr Mut 205.125 53.7754 -1.931 0.0002 0.00793 FBgn0031971 

46 XLOC_014033 CG34434 X:5508586-5510403 Ctr Mut 2.27512 0.607058 -1.906 0.0001 0.00448 FBgn0250904 

47 XLOC_007806 Cpr65Ax2 3L:6143157-6143957 Ctr Mut 69.2301 18.5246 -1.902 5.00E-05 0.00245 FBgn0042118 

48 XLOC_012090 Cpr97Eb 3R:22915425-22916964 Ctr Mut 13.7466 3.71012 -1.89 5.00E-05 0.00245 FBgn0039481 

49 XLOC_008781 CG14566 3L:21732578-21733409 Ctr Mut 208.541 58.0778 -1.844 5.00E-05 0.00245 FBgn0037127 

50 XLOC_007326 CG14572 3L:21734633-21735541 Ctr Mut 125.315 35.5982 -1.816 5.00E-05 0.00245 FBgn0037128 

51 XLOC_003741 CG10764 2R:13340923-13343234 Ctr Mut 0.589858 0.168019 -1.812 0.00165 0.04288 FBgn0034221 

52 XLOC_010668 CG14661 3R:779227-780975 Ctr Mut 7.74517 2.21541 -1.806 5.00E-05 0.00245 FBgn0037288 

53 XLOC_014489 CG13403 X:14085247-14086019 Ctr Mut 13.0043 3.78246 -1.782 5.00E-05 0.00245 FBgn0030544 

54 XLOC_013400 CG11585 X:14083548-14084788 Ctr Mut 77.8925 23.0131 -1.759 5.00E-05 0.00245 FBgn0030543 

55 XLOC_007752 blanks 3L:5490622-5492058 Ctr Mut 5.76446 1.7253 -1.74 5.00E-05 0.00245 FBgn0035608 
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56 XLOC_007797 l(3)mbn 3L:6117033-6121907 Ctr Mut 42.175 12.7285 -1.728 5.00E-05 0.00245 FBgn0002440 

57 XLOC_010531 CG15530 3R:26003598-26005903 Ctr Mut 1.22738 0.3786 -1.697 0.00015 0.00635 FBgn0039752 

58 XLOC_010488 Obp99d 3R:25540260-25540674 Ctr Mut 19.4452 6.02601 -1.69 0.0003 0.01084 FBgn0039684 

59 XLOC_008952 Hph 3R:1082762-1095297 Ctr Mut 85.8225 26.9312 -1.672 0.0002 0.00793 FBgn0264652 

60 XLOC_012147 CG43124 3R:24088456-24090504 Ctr Mut 10.8337 3.40539 -1.67 0.0004 0.01385 FBgn0262587 

61 XLOC_012147 CG43125 3R:24088456-24090504 Ctr Mut 10.8337 3.40539 -1.67 0.0004 0.01385 FBgn0262588 

62 XLOC_001224 CG13077 2L:19563903-19567359 Ctr Mut 40.0333 12.6016 -1.668 5.00E-05 0.00245 FBgn0032810 

63 XLOC_001224 CG13078 2L:19563903-19567359 Ctr Mut 40.0333 12.6016 -1.668 5.00E-05 0.00245 FBgn0032809 

64 XLOC_007393 CG11131 3L:22891843-22893362 Ctr Mut 471.945 149.262 -1.661 5.00E-05 0.00245 FBgn0037204 

65 XLOC_014285 CG15308 X:10112038-10113172 Ctr Mut 586.355 186.877 -1.65 5.00E-05 0.00245 FBgn0040941 

66 XLOC_007766 DnaJ-1 3L:5743128-5745289 Ctr Mut 182.369 59.2321 -1.622 5.00E-05 0.00245 FBgn0263106 

67 XLOC_012056 TwdlO 3R:22451729-22452419 Ctr Mut 334.705 110.297 -1.601 5.00E-05 0.00245 FBgn0039438 

68 XLOC_012952 Cpr5C X:5698709-5699377 Ctr Mut 11.4301 3.77434 -1.599 0.00025 0.00942 FBgn0029811 

69 XLOC_001490 CG11835 2L:560567-563347 Ctr Mut 3.37205 1.1194 -1.591 5.00E-05 0.00245 FBgn0031264 

70 XLOC_001954 CG7203 2L:7752167-7753156 Ctr Mut 324.836 107.943 -1.589 5.00E-05 0.00245 FBgn0031942 

71 XLOC_006368 Lcp65Aa 3L:6144403-6144903 Ctr Mut 261.484 87.5947 -1.578 5.00E-05 0.00245 FBgn0020645 

72 XLOC_007802 Lcp65Ae 3L:6130682-6131218 Ctr Mut 155.104 51.9618 -1.578 5.00E-05 0.00245 FBgn0020640 

73 XLOC_000968 Adh 2L:14599768-14689326 Ctr Mut 5266.79 1768.03 -1.575 5.00E-05 0.00245 FBgn0000055 

74 XLOC_000968 Adhr 2L:14599768-14689326 Ctr Mut 5266.79 1768.03 -1.575 5.00E-05 0.00245 FBgn0000056 

75 XLOC_006973 CG13067 3L:16264381-16265018 Ctr Mut 1927.84 654.105 -1.559 5.00E-05 0.00245 FBgn0036589 

76 XLOC_007072 CG7497 3L:17626548-17630975 Ctr Mut 8.54687 2.90929 -1.555 5.00E-05 0.00245 FBgn0036742 

77 XLOC_000123 Nplp4 2L:2008459-2008966 Ctr Mut 1339.23 456.409 -1.553 5.00E-05 0.00245 FBgn0040717 

78 XLOC_003116 CG13748 2R:4827919-4828641 Ctr Mut 126.142 42.9972 -1.553 0.00095 0.02805 FBgn0033355 

79 XLOC_009157 Atg13 3R:4175523-4178539 Ctr Mut 42.4394 14.5206 -1.547 0.0009 0.02717 FBgn0261108 

80 XLOC_009326 Ugt86Dc 3R:6980376-6982235 Ctr Mut 7.19726 2.48006 -1.537 5.00E-05 0.00245 FBgn0040257 

81 XLOC_005277 proPO-A1 2R:13761451-13814148 Ctr Mut 34.6074 12.0992 -1.516 5.00E-05 0.00245 FBgn0261362 

82 XLOC_008797 CG7130 3L:22068155-22068856 Ctr Mut 10.4691 3.68428 -1.507 0.0001 0.00448 FBgn0037151 

83 XLOC_000678 CG33301 2L:10049481-10050956 Ctr Mut 7.0418 2.48883 -1.5 5.00E-05 0.00245 FBgn0053301 

84 XLOC_011873 CG12268 3R:19769349-19774141 Ctr Mut 38.7036 13.9172 -1.476 5.00E-05 0.00245 FBgn0039131 
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85 XLOC_008658 CG7365 3L:20117397-20120481 Ctr Mut 19.9037 7.168 -1.473 5.00E-05 0.00245 FBgn0036939 

86 XLOC_008411 CG13044 3L:16295589-16296278 Ctr Mut 846.606 305.344 -1.471 5.00E-05 0.00245 FBgn0036599 

87 XLOC_010227 CG31103 3R:21045007-21047163 Ctr Mut 10.4994 3.80111 -1.466 5.00E-05 0.00245 FBgn0051103 

88 XLOC_005773 chrw 2R:19407361-19411096 Ctr Mut 31.4098 11.3926 -1.463 0.0008 0.02472 FBgn0015372 

89 XLOC_011984 CG10560 3R:21144271-21145801 Ctr Mut 37.3235 13.6398 -1.452 5.00E-05 0.00245 FBgn0039325 

90 XLOC_007003 CG4229 3L:16549922-16551058 Ctr Mut 289.674 105.89 -1.452 0.00015 0.00635 FBgn0036639 

91 XLOC_008003 Hsp67Ba 3L:9370901-9372634 Ctr Mut 4.58809 1.68227 -1.447 0.0002 0.00793 FBgn0001227 

92 XLOC_004604 Lcp2 2R:4321301-4322080 Ctr Mut 29.8738 11.0082 -1.44 0.0003 0.01084 FBgn0002533 

93 XLOC_008579 CG34256 3L:18981835-18982915 Ctr Mut 5.97674 2.21397 -1.433 0.00125 0.03415 FBgn0085285 

94 XLOC_006820 stv 3L:13470640-13476615 Ctr Mut 98.0141 36.408 -1.429 0.00055 0.0181 FBgn0086708 

95 XLOC_014566 CG15599 X:15578717-15582995 Ctr Mut 5.82233 2.16531 -1.427 5.00E-05 0.00245 FBgn0030667 

96 XLOC_013446 CG6324 X:15370021-15375755 Ctr Mut 3.28488 1.22934 -1.418 5.00E-05 0.00245 FBgn0030647 

97 XLOC_006983 CG13060 3L:16312955-16313554 Ctr Mut 176.651 66.1886 -1.416 0.00015 0.00635 FBgn0036606 

98 XLOC_004781 CG13218 2R:7120768-7121209 Ctr Mut 179.559 67.4227 -1.413 0.0001 0.00448 FBgn0033587 

99 XLOC_008412 CG13043 3L:16298324-16298970 Ctr Mut 597.248 224.922 -1.409 0.0002 0.00793 FBgn0036600 

100 XLOC_008778 CG14569 3L:21723824-21724650 Ctr Mut 358.927 135.194 -1.409 0.0002 0.00793 FBgn0037123 

101 XLOC_010766 CG15597 3R:2110180-2110922 Ctr Mut 154.353 58.4937 -1.4 5.00E-05 0.00245 FBgn0037420 

102 XLOC_012255 CG31029 3R:25955010-25958117 Ctr Mut 0.845408 0.326161 -1.374 0.00135 0.03642 FBgn0051029 

103 XLOC_005156 CR43730 2R:12176829-12178927 Ctr Mut 67.0347 26.0723 -1.362 5.00E-05 0.00245 FBgn0263981 

104 XLOC_008779 CG14568 3L:21725905-21726587 Ctr Mut 229.553 89.5976 -1.357 0.0003 0.01084 FBgn0037124 

105 XLOC_007831 ple 3L:6707137-6712625 Ctr Mut 109.25 42.9276 -1.348 5.00E-05 0.00245 FBgn0005626 

106 XLOC_006972 CG13068 3L:16262491-16263011 Ctr Mut 536.478 210.899 -1.347 0.00045 0.01528 FBgn0036588 

107 XLOC_004792 Cpr47Eg 2R:7165460-7165946 Ctr Mut 5681.34 2237.57 -1.344 5.00E-05 0.00245 FBgn0086519 

108 XLOC_005740 CG13545 2R:19041400-19049553 Ctr Mut 455.401 180.392 -1.336 0.0001 0.00448 FBgn0034828 

109 XLOC_010005 CG7069 3R:18198556-18201301 Ctr Mut 0.838872 0.334754 -1.325 0.00115 0.03208 FBgn0038952 

110 XLOC_003261 CG13228 2R:7121507-7121915 Ctr Mut 119.517 47.8564 -1.32 5.00E-05 0.00245 FBgn0033588 

111 XLOC_009280 CG31477 3R:5947494-5948042 Ctr Mut 12.8956 5.16838 -1.319 0.00105 0.02992 FBgn0051477 

112 XLOC_008563 CG12477 3L:18714992-18716372 Ctr Mut 8.68613 3.50669 -1.309 5.00E-05 0.00245 FBgn0036809 

113 XLOC_007664 CG12766 3L:3938623-3940125 Ctr Mut 6.95344 2.80943 -1.307 0.0006 0.01944 FBgn0035476 
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114 XLOC_010229 CG11852 3R:21063346-21064617 Ctr Mut 176.98 71.8569 -1.3 5.00E-05 0.00245 FBgn0039297 

115 XLOC_014288 CG12643 X:10158265-10159296 Ctr Mut 39.5161 16.2466 -1.282 5.00E-05 0.00245 FBgn0040942 

116 XLOC_011190 CG5999 3R:8567679-8569402 Ctr Mut 11.5723 4.76525 -1.28 5.00E-05 0.00245 FBgn0038083 

117 XLOC_013568 CG5162 X:17109334-17111409 Ctr Mut 10.0183 4.15535 -1.27 0.00025 0.00942 FBgn0030828 

118 XLOC_006289 CG32248 3L:4471748-4472438 Ctr Mut 192.03 79.92 -1.265 5.00E-05 0.00245 FBgn0052248 

119 XLOC_011481 Edg91 3R:13436577-13437233 Ctr Mut 95.3078 39.9 -1.256 0.0002 0.00793 FBgn0004554 

120 XLOC_008416 CG13039 3L:16318182-16319862 Ctr Mut 722.418 303.544 -1.251 0.00035 0.01228 FBgn0036609 

121 XLOC_008416 CG13040 3L:16318182-16319862 Ctr Mut 722.418 303.544 -1.251 0.00035 0.01228 FBgn0036608 

122 XLOC_004644 PO45 2R:4929765-4932213 Ctr Mut 60.5837 25.6193 -1.242 5.00E-05 0.00245 FBgn0033367 

123 XLOC_008414 CG13041 3L:16312053-16312626 Ctr Mut 333.969 141.834 -1.236 0.00025 0.00942 FBgn0036605 

124 XLOC_006984 CG13059 3L:16316771-16317408 Ctr Mut 696.059 296.916 -1.229 0.00035 0.01228 FBgn0036607 

125 XLOC_004251 CG13560 2R:19635095-19635741 Ctr Mut 876.361 374.119 -1.228 0.00015 0.00635 FBgn0034899 

126 XLOC_010128 CG13606 3R:19997934-20009752 Ctr Mut 71.9911 30.7475 -1.227 0.0011 0.03093 FBgn0039161 

127 XLOC_002677 CG17570 2L:20263379-20264703 Ctr Mut 10.007 4.27965 -1.225 0.0002 0.00793 FBgn0260000 

128 XLOC_002475 CG5953 2L:16508075-16532877 Ctr Mut 31.7608 13.6132 -1.222 0.0015 0.03966 FBgn0263555 

129 XLOC_005193 Ugt37c1 2R:12730800-12732543 Ctr Mut 23.5817 10.1546 -1.216 0.00015 0.00635 FBgn0026754 

130 XLOC_009674 CG17560 3R:12443671-12445600 Ctr Mut 10.9523 4.73 -1.211 0.0002 0.00793 FBgn0038450 

131 XLOC_003262 CG13227 2R:7122758-7123260 Ctr Mut 105.254 45.4569 -1.211 0.00025 0.00942 FBgn0033589 

132 XLOC_011983 CG10553 3R:21142182-21143833 Ctr Mut 3.58872 1.56124 -1.201 0.0017 0.04354 FBgn0039324 

133 XLOC_011483 CG14324 3R:13444002-13444513 Ctr Mut 138.158 60.753 -1.185 0.002 0.0492 FBgn0038527 

134 XLOC_007730 CG32237 3L:4847182-4852708 Ctr Mut 318.934 140.658 -1.181 0.0018 0.04544 FBgn0052237 

135 XLOC_004080 CG33225 2R:17477890-17479089 Ctr Mut 7.64226 3.38216 -1.176 0.00185 0.04626 FBgn0053225 

136 XLOC_007800 Lcp65Ag1 3L:6127796-6128374 Ctr Mut 2092.22 930.964 -1.168 5.00E-05 0.00245 FBgn0020638 

137 XLOC_002404 mol 2L:14975746-14997559 Ctr Mut 20.8796 9.30152 -1.167 0.00015 0.00635 FBgn0086711 

138 XLOC_009718 CG42821 3R:13238733-13239263 Ctr Mut 70.1204 31.4534 -1.157 0.00025 0.00942 FBgn0262003 

139 XLOC_008690 CG11796 3L:20429349-20432972 Ctr Mut 183.973 82.7544 -1.153 0.0003 0.01084 FBgn0036992 

140 XLOC_006860 shd 3L:14607557-14615305 Ctr Mut 16.1022 7.2448 -1.152 5.00E-05 0.00245 FBgn0003388 

141 XLOC_010568 CG15544 3R:26653498-26667756 Ctr Mut 3.87806 1.76018 -1.14 0.0007 0.02195 FBgn0039804 

142 XLOC_011430 Scp2 3R:12400264-12409382 Ctr Mut 33.28 15.138 -1.136 0.00015 0.00635 FBgn0020907 
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143 XLOC_003374 Cpr49Af 2R:8293509-8293948 Ctr Mut 106.149 48.4462 -1.132 0.0002 0.00793 FBgn0033729 

144 XLOC_011008 CG42857 3R:5646235-5646913 Ctr Mut 9.68486 4.42239 -1.131 0.00105 0.02992 FBgn0262104 

145 XLOC_007756 CG10625 3L:5531507-5544280 Ctr Mut 408.193 189.606 -1.106 0.0003 0.01084 FBgn0035612 

146 XLOC_005521 CG13868 2R:16196281-16204422 Ctr Mut 280.598 130.78 -1.101 0.00105 0.02992 FBgn0034501 

147 XLOC_006473 CG13678 3L:8215240-8216053 Ctr Mut 954.63 446.702 -1.096 0.00115 0.03208 FBgn0035859 

148 XLOC_006192 Hsp83 3L:3192968-3197631 Ctr Mut 749.786 387.733 -1.095 0.0002 0.00793 FBgn0001233 

149 XLOC_001646 CG17224 2L:3016590-3018308 Ctr Mut 12.7966 6.03424 -1.085 0.00095 0.02805 FBgn0031489 

150 XLOC_013564 CG5070 X:17097146-17097965 Ctr Mut 123.881 58.6552 -1.079 0.0002 0.00793 FBgn0030824 

151 XLOC_004271 Tal 2R:19827935-19829637 Ctr Mut 501.871 238.365 -1.074 0.00035 0.01228 FBgn0023477 

152 XLOC_007157 Cpr76Bb 3L:19512748-19513519 Ctr Mut 51.5536 24.5953 -1.068 0.0008 0.02472 FBgn0036879 

153 XLOC_011978 CG31097 3R:21119179-21128039 Ctr Mut 73.7198 35.2114 -1.066 0.00175 0.0445 FBgn0051288 

154 XLOC_011978 CG31102 3R:21119179-21128039 Ctr Mut 73.7198 35.2114 -1.066 0.00175 0.0445 FBgn0051097 

155 XLOC_011978 CG31288 3R:21119179-21128039 Ctr Mut 73.7198 35.2114 -1.066 0.00175 0.0445 FBgn0051102 

156 XLOC_011697 CG3301 3R:17099964-17101973 Ctr Mut 40.183 19.3845 -1.052 0.00025 0.00942 FBgn0038878 

157 XLOC_010570 Cpr100A 3R:26693244-26694908 Ctr Mut 194.102 93.7259 -1.05 0.00175 0.0445 FBgn0039805 

158 XLOC_011678 Mvl 3R:16877104-16886523 Ctr Mut 76.7857 37.1095 -1.049 0.0005 0.01666 FBgn0011672 

159 XLOC_003750 CG4847 2R:13399027-13401364 Ctr Mut 112.724 54.5119 -1.048 0.00095 0.02805 FBgn0034229 

160 XLOC_009412 GstD7 3R:8204115-8204977 Ctr Mut 149.782 72.5543 -1.046 0.00065 0.02068 FBgn0010043 

161 XLOC_013222 CG15201 X:11038152-11038842 Ctr Mut 24.7431 12.01 -1.043 0.00155 0.04068 FBgn0030272 

162 XLOC_000625 Aldh 2L:9370308-9415156 Ctr Mut 670.262 325.788 -1.041 0.0003 0.01084 FBgn0012036 

163 XLOC_007798 Lcp65Ag2 3L:6123485-6126693 Ctr Mut 5409.42 2637.64 -1.036 5.00E-05 0.00245 FBgn002063 

164 XLOC_007798 Lcp65Ag3 3L:6123485-6126693 Ctr Mut 5409.42 2637.64 -1.036 5.00E-05 0.00245 FBgn0086611 

165 XLOC_013750 CG34120 X:20994753-21012062 Ctr Mut 6.2822 3.08376 -1.027 0.0015 0.03966 FBgn0083956 

166 XLOC_007708 CG32241 3L:4465103-4466932 Ctr Mut 492.191 242.305 -1.022 0.00105 0.02992 FBgn0052241 

167 XLOC_002166 CG7296 2L:10686390-10686988 Ctr Mut 1079.97 534.024 -1.016 0.0017 0.04354 FBgn0032283 

168 XLOC_002581 CG42502 2L:18810035-18810986 Ctr Mut 106.086 52.5898 -1.012 0.00145 0.03872 FBgn0040992 

169 XLOC_004536 CG12826 2R:3557831-3558614 Ctr Mut 42.4752 21.2215 -1.001 0.00045 0.01528 FBgn0033207 

170 XLOC_009843 CG17752 3R:15435765-15438166 Ctr Mut 93.3581 187.682 1.0074 0.00065 0.02068 FBgn0038718 

171 XLOC_009803 CG14302 3R:14558422-14558756 Ctr Mut 1528.84 3103.22 1.0213 0.0006 0.01944 FBgn0038647 
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172 XLOC_011562 CG14291 3R:14736772-14738641 Ctr Mut 6.73496 13.6718 1.0215 0.00035 0.01228 FBgn0038660 

173 XLOC_000050 CG13947 2L:779172-779655 Ctr Mut 80.96 164.841 1.0258 0.00035 0.01228 FBgn0031277 

174 XLOC_006714 CG7252 3L:11940774-11942348 Ctr Mut 60.8624 123.922 1.0258 0.00025 0.00942 FBgn0036226 

175 XLOC_005078 CG8093 2R:11101785-11103191 Ctr Mut 7.84335 16.1261 1.0399 0.0012 0.03321 FBgn0033999 

176 XLOC_000098 CG33128 2L:1494089-1495456 Ctr Mut 343.173 707.19 1.0432 0.00015 0.00635 FBgn0053128 

177 XLOC_006553 PGRP-LA 3L:9327431-9331436 Ctr Mut 10.738 22.1476 1.0444 0.0018 0.04544 FBgn0035975 

178 XLOC_011976 CG10514 3R:21104145-21105541 Ctr Mut 54.4335 112.348 1.0454 0.0007 0.02195 FBgn0039312 

179 XLOC_010214 CG11836 3R:20896852-20898434 Ctr Mut 9.96505 20.6502 1.0512 0.00085 0.02603 FBgn0039272 

180 XLOC_007561 CG5687 3L:1933632-1938740 Ctr Mut 9.50584 19.7321 1.0537 0.0001 0.00448 FBgn0035293 

181 XLOC_004931 CG13323 2R:8934237-8937132 Ctr Mut 981.74 2042.16 1.0567 0.00115 0.03208 FBgn0033788 

182 XLOC_008666 CG7017 3L:20203391-20205262 Ctr Mut 290.07 604.283 1.0588 0.00035 0.01228 FBgn0036951 

183 XLOC_003180 CG1698 2R:5653866-5694370 Ctr Mut 14.1789 29.6999 1.0667 0.00055 0.0181 FBgn0033443 

184 XLOC_006353 Jon65Aii 3L:6045420-6046315 Ctr Mut 188.37 396.193 1.0726 0.0004 0.01385 FBgn0035666 

185 XLOC_006202 CG12009 3L:3291458-3299000 Ctr Mut 16.8805 35.5859 1.0759 0.00015 0.00635 FBgn0035430 

186 XLOC_004187 CG9826 2R:18728357-18729988 Ctr Mut 11.8752 25.0608 1.0775 0.0002 0.00793 FBgn0034784 

187 XLOC_013817 CG3706 X:824963-826704 Ctr Mut 2.0898 4.43946 1.087 0.00105 0.02992 FBgn0040342 

188 XLOC_014720 CG32557 X:17746990-17750156 Ctr Mut 8.90336 18.9303 1.0883 0.00025 0.00942 FBgn0052557 

189 XLOC_006330 Blimp-1 3L:5623959-5643812 Ctr Mut 3.10495 6.62457 1.0933 0.0003 0.01084 FBgn0035625 

190 XLOC_006816 CG10725 3L:13431053-13432109 Ctr Mut 520.684 1111.87 1.0945 0.0001 0.00448 FBgn0036362 

191 XLOC_008667 CG6933 3L:20211599-20213520 Ctr Mut 670.713 1436.17 1.0985 5.00E-05 0.00245 FBgn0036952 

192 XLOC_003427 CG13325 2R:9003809-9013517 Ctr Mut 4.007 8.58533 1.0994 0.0002 0.00793 FBgn0033792 

193 XLOC_005579 Cht9 2R:16955486-16956813 Ctr Mut 254.781 547.998 1.1049 5.00E-05 0.00245 FBgn0034582 

194 XLOC_000887 CG31728 2L:13251508-13257426 Ctr Mut 13.7833 29.7011 1.1076 0.00015 0.00635 FBgn0051728 

195 XLOC_009511 tal-AA 3R:9638830-9640370 Ctr Mut 40.0736 86.386 1.1081 0.0001 0.00448 FBgn0259731 

196 XLOC_002035 CG9289 2L:8681313-8684350 Ctr Mut 37.6492 81.2407 1.1096 0.00085 0.02603 FBgn0032058 

197 XLOC_003363 CG30043 2R:8246940-8250730 Ctr Mut 17.1834 37.2144 1.1149 0.00015 0.00635 FBgn0050043 

198 XLOC_012234 Jon99Ci 3R:25750947-25751911 Ctr Mut 250.699 543.716 1.1169 0.0001 0.00448 FBgn0003358 

199 XLOC_000654 CG4017 2L:9767058-9768727 Ctr Mut 2.65353 5.76484 1.1194 0.0012 0.03321 FBgn0032143 

200 XLOC_012290 PH4alphaSG1 3R:26329386-26331383 Ctr Mut 3.33517 7.29475 1.1291 0.0002 0.00793 FBgn0051014 
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  gene_id gene locus sample_1 sample_2 value_1 value_2 log2(fold_change) p_value q_value oID_genes 

201 XLOC_012203 CG11470 3R:25414757-25416761 Ctr Mut 131.788 291.218 1.1439 0.00065 0.02068 FBgn0039671 

202 XLOC_012203 CG31041 3R:25414757-25416761 Ctr Mut 131.788 291.218 1.1439 0.00065 0.02068 FBgn0051041 

203 XLOC_002557 CG10283 2L:18472963-18484573 Ctr Mut 3.92372 8.69094 1.1473 0.0003 0.01084 FBgn0032681 

204 XLOC_005213 Amy-p 2R:13006210-13013887 Ctr Mut 134.272 298.336 1.1518 0.00165 0.04288 FBgn0000079 

205 XLOC_012951 CG12239 X:5686179-5688576 Ctr Mut 7.9618 17.7984 1.1606 5.00E-05 0.00245 FBgn0029810 

206 XLOC_000504 CG7191 2L:7767623-7775040 Ctr Mut 7.66408 17.3393 1.1779 5.00E-05 0.00245 FBgn0031945 

207 XLOC_005287 CG10912 2R:13943567-13944564 Ctr Mut 420.073 950.946 1.1787 5.00E-05 0.00245 FBgn0034296 

208 XLOC_000049 CG12506 2L:773546-776918 Ctr Mut 13.5498 30.6975 1.1799 0.0015 0.03966 FBgn0031276 

209 XLOC_000049 CG13946 2L:773546-776918 Ctr Mut 13.5498 30.6975 1.1799 0.0015 0.03966 FBgn0040725 

210 XLOC_004724 CG12912 2R:6091595-6124853 Ctr Mut 6.83549 15.5198 1.183 0.00075 0.02331 FBgn0000448 

211 XLOC_004724 Hr46 2R:6091595-6124853 Ctr Mut 6.83549 15.5198 1.183 0.00075 0.02331 FBgn0033497 

212 XLOC_009442 CG14395 3R:8488552-8499686 Ctr Mut 2.64887 6.01455 1.1831 5.00E-05 0.00245 FBgn0038073 

213 XLOC_000973 CG34166 2L:14743252-14743859 Ctr Mut 790.567 1799.38 1.1865 0.00015 0.00635 FBgn0085195 

214 XLOC_006427 CG18417 3L:7393169-7394771 Ctr Mut 23.2746 53.1451 1.1912 0.0001 0.00448 FBgn0035780 

215 XLOC_008498 Jon74E 3L:17523180-17542227 Ctr Mut 158.571 365.792 1.2059 0.00075 0.02331 FBgn0023197 

216 XLOC_009183 CG8369 3R:4647729-4648560 Ctr Mut 74.2016 171.812 1.2113 5.00E-05 0.00245 FBgn0040532 

217 XLOC_002040 CG9463 2L:8765360-8772344 Ctr Mut 7.25103 16.8242 1.2143 5.00E-05 0.00245 FBgn0032066 

218 XLOC_002040 CG9465 2L:8765360-8772344 Ctr Mut 7.25103 16.8242 1.2143 5.00E-05 0.00245 FBgn0032067 

219 XLOC_009690 CG5225 3R:12854427-12856423 Ctr Mut 24.1347 56.0932 1.2167 5.00E-05 0.00245 FBgn0038468 

220 XLOC_003280 sha 2R:7211818-7223968 Ctr Mut 0.887007 2.07106 1.2234 5.00E-05 0.00245 FBgn0003382 

221 XLOC_011372 CG14872 3R:11333780-11335676 Ctr Mut 128.748 301.003 1.2252 5.00E-05 0.00245 FBgn0038346 

222 XLOC_000606 CG9568 2L:9010585-9011358 Ctr Mut 202.832 477.651 1.2357 0.0001 0.00448 FBgn0032087 

223 XLOC_011462 Mur89F 3R:12977587-13027935 Ctr Mut 12.793 30.1621 1.2374 0.0011 0.03093 FBgn0038492 

224 XLOC_007793 Jon65Ai 3L:6046683-6047543 Ctr Mut 775.503 1833.99 1.2418 5.00E-05 0.00245 FBgn0035667 

225 XLOC_012425 yellow-h 4:248549-251054 Ctr Mut 13.8626 33.1027 1.2558 5.00E-05 0.00245 FBgn0039896 

226 XLOC_004578 Obp44a 2R:4018937-4022588 Ctr Mut 263.126 630.886 1.2616 0.00025 0.00942 FBgn0033268 

227 XLOC_008527 CG5506 3L:17872195-17877476 Ctr Mut 179.893 432.693 1.2662 0.00015 0.00635 FBgn0036766 

228 XLOC_008253 CG10154 3L:13428779-13430236 Ctr Mut 81.5316 196.683 1.2704 5.00E-05 0.00245 FBgn0036361 

229 XLOC_010241 CG11892 3R:21107269-21108964 Ctr Mut 34.8713 84.6199 1.279 5.00E-05 0.00245 FBgn0039313 
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230 XLOC_000757 CG17134 2L:10804268-10842603 Ctr Mut 70.5108 171.507 1.2824 0.00125 0.03415 FBgn0032304 

231 XLOC_012748 CG11382 X:1104002-1105886 Ctr Mut 20.6205 50.7274 1.2987 5.00E-05 0.00245 FBgn0040367 

232 XLOC_011968 Cad96Cb 3R:21049877-21058043 Ctr Mut 0.623151 1.536 1.3015 0.00125 0.03415 FBgn0039294 

233 XLOC_000547 CG14275 2L:8327455-8332911 Ctr Mut 12.3333 30.5993 1.3109 5.00E-05 0.00245 FBgn0032022 

234 XLOC_001570 CG42296 2L:2032634-2035936 Ctr Mut 3.04095 7.54833 1.3116 0.00185 0.04626 FBgn0259192 

235 XLOC_011913 CG5768 3R:20211824-20216089 Ctr Mut 3.49094 8.66815 1.3121 0.0003 0.01084 FBgn0039198 

236 XLOC_006133 CG13806 3L:2266393-2267640 Ctr Mut 21.5374 53.6067 1.3156 5.00E-05 0.00245 FBgn0035325 

237 XLOC_010696 CG2663 3R:1226315-1229851 Ctr Mut 31.0395 77.9 1.3275 5.00E-05 0.00245 FBgn0037323 

238 XLOC_008164 obst-G 3L:11945400-11946417 Ctr Mut 15.2566 38.4208 1.3325 5.00E-05 0.00245 FBgn0036228 

239 XLOC_010597 mey 3R:27324960-27332716 Ctr Mut 6.69616 16.9632 1.341 5.00E-05 0.00245 FBgn0039851 

240 XLOC_002682 CG16798 2L:20376982-20382355 Ctr Mut 2.30975 5.87391 1.3466 5.00E-05 0.00245 FBgn0032856 

241 XLOC_007681 mas 3L:4161665-4167464 Ctr Mut 9.87177 25.175 1.3506 5.00E-05 0.00245 FBgn0011653 

242 XLOC_009023 CG31560 3R:2135717-2136612 Ctr Mut 9.67755 24.7251 1.3533 5.00E-05 0.00245 FBgn0051560 

243 XLOC_010182 CG13631 3R:20594690-20596687 Ctr Mut 10.1682 26.0224 1.3557 5.00E-05 0.00245 FBgn0040600 

244 XLOC_000833 CG17211 2L:12114359-12129896 Ctr Mut 1.59323 4.09729 1.3627 5.00E-05 0.00245 FBgn0032414 

245 XLOC_008599 CG14089 3L:19273219-19273900 Ctr Mut 74.8296 193.375 1.3697 5.00E-05 0.00245 FBgn0036861 

246 XLOC_010503 neo 3R:25644833-25651522 Ctr Mut 34.9169 90.2799 1.3705 5.00E-05 0.00245 FBgn0039704 

247 XLOC_006406 CG15829 3L:7122002-7122480 Ctr Mut 172.854 447.837 1.3734 5.00E-05 0.00245 FBgn0035743 

248 XLOC_010935 CG11966 3R:4775923-4788760 Ctr Mut 4.00914 10.4212 1.3782 5.00E-05 0.00245 FBgn0037645 

249 XLOC_011220 Lip3 3R:9195390-9197626 Ctr Mut 2.11262 5.50742 1.3823 0.0001 0.00448 FBgn0023495 

250 XLOC_014660 wus X:16832529-16834903 Ctr Mut 8.82736 23.1449 1.3906 5.00E-05 0.00245 FBgn0030805 

251 XLOC_010767 CG31556 3R:2132706-2135106 Ctr Mut 12.0779 32.1914 1.4143 0.0002 0.00793 FBgn0051556 

252 XLOC_004806 epsilonTry 2R:7232741-7233571 Ctr Mut 934.289 2495.49 1.4174 5.00E-05 0.00245 FBgn0010425 

253 XLOC_010550 Jon99Fi 3R:26314684-26315617 Ctr Mut 1462.32 3910.72 1.4192 5.00E-05 0.00245 FBgn0039778 

254 XLOC_008406 CG13048 3L:16275901-16277061 Ctr Mut 35.901 96.1071 1.4206 0.0018 0.04544 FBgn0036593 

255 XLOC_003886 CG15080 2R:14670805-14682105 Ctr Mut 10.0405 27.0252 1.4285 0.0017 0.04354 FBgn0034391 

256 XLOC_007712 NT1 3L:4501651-4508433 Ctr Mut 6.52158 17.6027 1.4325 5.00E-05 0.00245 FBgn0261526 

257 XLOC_014066 CG4666 X:5970105-5971587 Ctr Mut 17.3974 47.1084 1.4371 5.00E-05 0.00245 FBgn0029838 

258 XLOC_004605 Cyp4ad1 2R:4326899-4330311 Ctr Mut 18.4917 50.2592 1.4425 5.00E-05 0.00245 FBgn0033292 
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259 XLOC_004978 CG42807 2R:9459028-9460045 Ctr Mut 59.2631 162.158 1.4522 5.00E-05 0.00245 FBgn0261989 

260 XLOC_010325 TwdlS 3R:22462435-22463182 Ctr Mut 11.4598 31.454 1.4567 0.00195 0.04831 FBgn0039443 

261 XLOC_010825 Gld 3R:3075520-3091423 Ctr Mut 9.77219 26.8999 1.4609 5.00E-05 0.00245 FBgn0001112 

262 XLOC_010825 Pbprp4 3R:3075520-3091423 Ctr Mut 9.77219 26.8999 1.4609 5.00E-05 0.00245 FBgn0011282 

263 XLOC_009312 CG4089 3R:6641012-6643214 Ctr Mut 4.62652 12.8226 1.4707 5.00E-05 0.00245 FBgn0037838 

264 XLOC_006509 Cpr66D 3L:8633538-8636684 Ctr Mut 42.8269 119.543 1.4809 0.001 0.02928 FBgn0052029 

265 XLOC_014919 lcs X:21267753-21268326 Ctr Mut 94.4453 263.702 1.4814 5.00E-05 0.00245 FBgn0028583 

266 XLOC_010465 CG14515 3R:25023304-25024933 Ctr Mut 5.27957 14.8611 1.4931 0.00185 0.04626 FBgn0039648 

267 XLOC_002251 CG6785 2L:12041048-12045200 Ctr Mut 4.38303 12.3881 1.499 0.00055 0.0181 FBgn0032399 

268 XLOC_006189 CG32284 3L:3186663-3187245 Ctr Mut 180.857 516.018 1.5126 5.00E-05 0.00245 FBgn0052284 

269 XLOC_014737 upd2 X:18134688-18139206 Ctr Mut 0.733816 2.09396 1.5127 0.0012 0.03321 FBgn0030904 

270 XLOC_002367 CG43333 2L:14163504-14180681 Ctr Mut 12.7529 36.4789 1.5162 0.001 0.02928 FBgn0263038 

271 XLOC_005286 CG10911 2R:13940051-13941569 Ctr Mut 290.371 833.345 1.521 5.00E-05 0.00245 FBgn0034295 

272 XLOC_012686 tyn X:39387-97296 Ctr Mut 21.4836 61.6564 1.521 5.00E-05 0.00245 FBgn0029128 

273 XLOC_003343 CG43315 2R:8128722-8129264 Ctr Mut 7.8951 22.726 1.5253 0.00035 0.01228 FBgn0263020 

274 XLOC_007202 CG6996 3L:20200633-20202700 Ctr Mut 18.1567 52.392 1.5288 5.00E-05 0.00245 FBgn0036950 

275 XLOC_008902 TwdlU 3R:69327-71262 Ctr Mut 1.08298 3.15648 1.5433 0.00155 0.04068 FBgn0037223 

276 XLOC_011369 CG6118 3R:11246825-11259906 Ctr Mut 9.69039 28.4101 1.5518 0.00025 0.00942 FBgn0038339 

277 XLOC_005640 CG4386 2R:17686834-17688405 Ctr Mut 21.1043 62.2835 1.5613 5.00E-05 0.00245 FBgn0034661 

278 XLOC_014536 CG9095 X:15033961-15057255 Ctr Mut 15.0702 44.5009 1.5621 5.00E-05 0.00245 FBgn0030617 

279 XLOC_004639 CG34350 2R:4880448-4894092 Ctr Mut 8.70067 25.6983 1.5625 5.00E-05 0.00245 FBgn0085379 

280 XLOC_006200 CG14960 3L:3271035-3276255 Ctr Mut 11.8606 35.1304 1.5665 5.00E-05 0.00245 FBgn0035428 

281 XLOC_008755 CG5656 3L:21435326-21437919 Ctr Mut 2.55847 7.57973 1.5669 5.00E-05 0.00245 FBgn0037083 

282 XLOC_007938 CG7201 3L:8283385-8288427 Ctr Mut 3.81519 11.3153 1.5684 0.0005 0.01666 FBgn0035865 

283 XLOC_008903 TwdlF 3R:72743-74040 Ctr Mut 174.186 519.08 1.5753 0.00065 0.02068 FBgn0037224 

284 XLOC_010630 TwdlG 3R:74433-77467 Ctr Mut 55.912 168.186 1.5888 0.00105 0.02992 FBgn0037225 

285 XLOC_006812 ImpL1 3L:13375864-13377099 Ctr Mut 74.6957 225.777 1.5958 5.00E-05 0.00245 FBgn0001256 

286 XLOC_002908 CG43366 2R:1781323-1818996 Ctr Mut 5.53372 16.7677 1.5994 5.00E-05 0.00245 FBgn0263109 

287 XLOC_009203 CG8420 3R:5072370-5077153 Ctr Mut 33.3051 102.882 1.6272 5.00E-05 0.00245 FBgn0037664 
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288 XLOC_004358 spz6 2R:20644902-20647989 Ctr Mut 16.3428 50.6848 1.6329 5.00E-05 0.00245 FBgn0035056 

289 XLOC_009911 CG15695 3R:16667863-16670709 Ctr Mut 2.88911 8.98311 1.6366 5.00E-05 0.00245 FBgn0038832 

290 XLOC_003095 PGRP-SC1a 2R:4597267-4597825 Ctr Mut 30.8452 95.9132 1.6367 5.00E-05 0.00245 FBgn0043576 

291 XLOC_005557 CG43666 2R:16675821-16678640 Ctr Mut 81.5211 253.514 1.6368 5.00E-05 0.00245 FBgn0263741 

292 XLOC_005557 CG43667 2R:16675821-16678640 Ctr Mut 81.5211 253.514 1.6368 5.00E-05 0.00245 FBgn0263760 

293 XLOC_005557 CG43677 2R:16675821-16678640 Ctr Mut 81.5211 253.514 1.6368 5.00E-05 0.00245 FBgn0263742 

294 XLOC_010562 Spn100A 3R:26516365-26518490 Ctr Mut 30.611 95.2712 1.638 5.00E-05 0.00245 FBgn0039795 

295 XLOC_011426 Cad89D 3R:12310287-12321141 Ctr Mut 0.578649 1.80098 1.638 0.0006 0.01944 FBgn0038439 

296 XLOC_009817 CG6026 3R:14859255-14870350 Ctr Mut 8.28078 26.0506 1.6535 5.00E-05 0.00245 FBgn0038676 

297 XLOC_006201 CG12017 3L:3280238-3290896 Ctr Mut 8.21501 26.1564 1.6708 5.00E-05 0.00245 FBgn0035429 

298 XLOC_014753 CG15043 X:18337059-18399457 Ctr Mut 243.575 780.028 1.6792 0.0003 0.01084 FBgn0030929 

299 XLOC_014746 CG32548 X:18329747-18334614 Ctr Mut 27.994 90.2723 1.6892 0.00035 0.01228 FBgn0052548 

300 XLOC_009967 burs 3R:17584301-17596047 Ctr Mut 4.28532 13.8578 1.6932 5.00E-05 0.00245 FBgn0038901 

301 XLOC_009967 CG42335 3R:17584301-17596047 Ctr Mut 4.28532 13.8578 1.6932 5.00E-05 0.00245 FBgn0259237 

302 XLOC_007850 Cpr65Eb 3L:7080812-7081887 Ctr Mut 29.6654 96.0684 1.6953 0.0005 0.01666 FBgn0035736 

303 XLOC_006483 Cpr66Cb 3L:8329771-8331695 Ctr Mut 4.82177 15.6745 1.7008 0.0002 0.00793 FBgn0035875 

304 XLOC_005830 CG4324 2R:19902432-19904753 Ctr Mut 3.14831 10.2921 1.7089 5.00E-05 0.00245 FBgn0034956 

305 XLOC_009998 CG7080 3R:18155022-18156268 Ctr Mut 13.0949 42.8661 1.7108 0.0003 0.01084 FBgn0038941 

306 XLOC_007952 CG32354 3L:8404950-8415305 Ctr Mut 2.07254 6.79244 1.7125 0.0005 0.01666 FBgn0052354 

307 XLOC_006271 CG1273 3L:4263718-4277778 Ctr Mut 3.48678 11.5591 1.7291 5.00E-05 0.00245 FBgn0035522 

308 XLOC_010669 CG2016 3R:782720-787072 Ctr Mut 19.9646 66.5106 1.7361 5.00E-05 0.00245 FBgn0250839 

309 XLOC_013272 m X:11648305-11663541 Ctr Mut 2.85741 9.52379 1.7368 5.00E-05 0.00245 FBgn0002577 

310 XLOC_004242 St1 2R:19569146-19570475 Ctr Mut 6.45377 21.656 1.7466 0.0001 0.00448 FBgn0034887 

311 XLOC_005554 CG43709 2R:16663398-16663907 Ctr Mut 2.78933 9.38669 1.7507 0.0004 0.01385 FBgn0263848 

312 XLOC_004014 CG15225 2R:16680471-16681191 Ctr Mut 165.374 556.67 1.7511 5.00E-05 0.00245 FBgn0034551 

313 XLOC_002027 Bace 2L:8491867-8506845 Ctr Mut 28.6797 96.5775 1.7517 5.00E-05 0.00245 FBgn0032049 

314 XLOC_000301 CG3355 2L:4651402-4652892 Ctr Mut 135.625 456.924 1.7523 5.00E-05 0.00245 FBgn0031619 

315 XLOC_014367 dy X:11663801-11672800 Ctr Mut 2.12608 7.20186 1.7602 5.00E-05 0.00245 FBgn0004511 

316 XLOC_006481 CG34461 3L:8318958-8321407 Ctr Mut 4.80596 16.3028 1.7622 5.00E-05 0.00245 FBgn0250833 
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317 XLOC_007855 CG14829 3L:7229899-7231358 Ctr Mut 0.459196 1.56882 1.7725 0.00035 0.01228 FBgn0035751 

318 XLOC_012060 TwdlQ 3R:22518355-22519245 Ctr Mut 18.8223 64.5411 1.7778 0.0001 0.00448 FBgn0039448 

319 XLOC_003380 CG13157 2R:8303959-8305647 Ctr Mut 4.22345 14.7132 1.8006 5.00E-05 0.00245 FBgn0033732 

320 XLOC_009009 Osi24 3R:2022993-2033403 Ctr Mut 3.85093 13.5343 1.8133 5.00E-05 0.00245 FBgn0037409 

321 XLOC_004009 CG13438 2R:16580374-16581114 Ctr Mut 33.6896 118.484 1.8143 5.00E-05 0.00245 FBgn0034545 

322 XLOC_014327 C901 X:10858151-10861167 Ctr Mut 1.42079 5.00172 1.8157 5.00E-05 0.00245 FBgn0021742 

323 XLOC_002170 Lip1 2L:10699407-10701458 Ctr Mut 6.32754 22.2789 1.816 0.00025 0.00942 FBgn0023496 

324 XLOC_003282 betaTry 2R:7233839-7234641 Ctr Mut 1365.42 4828.03 1.8221 5.00E-05 0.00245 FBgn0010357 

325 XLOC_009024 Osi17 3R:2137491-2153129 Ctr Mut 3.12688 11.1302 1.8317 5.00E-05 0.00245 FBgn0037427 

326 XLOC_010598 nyo 3R:27368753-27391887 Ctr Mut 6.87153 24.5262 1.8356 5.00E-05 0.00245 FBgn0039852 

327 XLOC_004012 CG34202 2R:16640109-16641244 Ctr Mut 135.503 484.403 1.8379 5.00E-05 0.00245 FBgn0085231 

328 XLOC_007387 CG13239 3L:22853886-22854590 Ctr Mut 2.48204 8.95219 1.8507 0.0002 0.00793 FBgn0037197 

329 XLOC_003484 CG6347 2R:9723925-9726869 Ctr Mut 9.53212 34.4286 1.8527 5.00E-05 0.00245 FBgn0033874 

330 XLOC_009264 Spn85F 3R:5822884-5827137 Ctr Mut 0.889567 3.22888 1.8599 0.0011 0.03093 FBgn0037772 

331 XLOC_000505 Uro 2L:7780084-7781415 Ctr Mut 23.7836 86.5583 1.8637 5.00E-05 0.00245 FBgn0003961 

332 XLOC_008664 CG7298 3L:20195169-20196787 Ctr Mut 430.129 1565.75 1.864 5.00E-05 0.00245 FBgn0036948 

333 XLOC_011909 CG42811 3R:20192248-20192942 Ctr Mut 2.16645 7.88943 1.8646 5.00E-05 0.00245 FBgn0261993 

334 XLOC_008060 ect 3L:10183374-10194937 Ctr Mut 70.8772 261.366 1.8827 5.00E-05 0.00245 FBgn0000451 

335 XLOC_014922 CG10918 X:21293169-21328761 Ctr Mut 60.1141 221.707 1.8829 5.00E-05 0.00245 FBgn0031178 

336 XLOC_004638 CG8213 2R:4856714-4873429 Ctr Mut 8.39915 31.2643 1.8962 5.00E-05 0.00245 FBgn0033359 

337 XLOC_011911 CG17782 3R:20196471-20198484 Ctr Mut 1.92462 7.16462 1.8963 5.00E-05 0.00245 FBgn0039195 

338 XLOC_010753 CG10280 3R:1836280-1838934 Ctr Mut 3.03928 11.3184 1.8969 5.00E-05 0.00245 FBgn0037395 

339 XLOC_013414 CG12540 X:14390169-14391275 Ctr Mut 6.95944 26.0222 1.9027 0.0009 0.02717 FBgn0030570 

340 XLOC_011144 CG4702 3R:7947299-7953919 Ctr Mut 33.957 127.047 1.9036 5.00E-05 0.00245 FBgn0037992 

341 XLOC_003809 CG10910 2R:13907753-13909911 Ctr Mut 302.593 1137.01 1.9098 5.00E-05 0.00245 FBgn0034289 

342 XLOC_009013 Osi6 3R:2057257-2062816 Ctr Mut 406.454 1530.01 1.9124 5.00E-05 0.00245 FBgn0027527 

343 XLOC_008765 CG7173 3L:21548472-21551326 Ctr Mut 3.30272 12.4929 1.9194 5.00E-05 0.00245 FBgn0037099 

344 XLOC_009021 Osi15 3R:2127340-2130291 Ctr Mut 181.462 693.751 1.9348 5.00E-05 0.00245 FBgn0037424 

345 XLOC_011216 CG15887 3R:9113370-9114532 Ctr Mut 24.7212 94.5457 1.9353 5.00E-05 0.00245 FBgn0038132 
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346 XLOC_006853 CG43120 3L:14375012-14376399 Ctr Mut 0.847401 3.24286 1.9362 5.00E-05 0.00245 FBgn0262580 

347 XLOC_011653 CG17267 3R:16561341-16564567 Ctr Mut 16.2011 62.2299 1.9415 5.00E-05 0.00245 FBgn0038821 

348 XLOC_003687 CG5550 2R:12704095-12706745 Ctr Mut 44.0338 169.153 1.9416 5.00E-05 0.00245 FBgn0034160 

349 XLOC_001191 amd 2L:19110158-19114110 Ctr Mut 8.38565 32.2991 1.9455 5.00E-05 0.00245 FBgn0000075 

350 XLOC_014701 CG8568 X:17343017-17346576 Ctr Mut 2.46059 9.49891 1.9488 0.0001 0.00448 FBgn0030841 

351 XLOC_007808 CG13297 3L:6149691-6150477 Ctr Mut 16.8005 65.3755 1.9602 5.00E-05 0.00245 FBgn0035685 

352 XLOC_008529 CG16775 3L:17879047-17879745 Ctr Mut 17.4425 68.5032 1.9736 5.00E-05 0.00245 FBgn0036767 

353 XLOC_009463 Hsc70-2 3R:8870480-8873112 Ctr Mut 0.467092 1.83548 1.9744 5.00E-05 0.00245 FBgn0001217 

354 XLOC_003445 CG17047 2R:9187106-9189045 Ctr Mut 7.41122 29.2453 1.9804 5.00E-05 0.00245 FBgn0033827 

355 XLOC_009027 Osi20 3R:2165818-2167146 Ctr Mut 121.812 481.068 1.9816 5.00E-05 0.00245 FBgn0037430 

356 XLOC_012877 CG15239 X:3778204-3784520 Ctr Mut 24.8507 98.1453 1.9816 5.00E-05 0.00245 FBgn0029681 

357 XLOC_009018 Osi12 3R:2104252-2108217 Ctr Mut 1.18754 4.70062 1.9849 5.00E-05 0.00245 FBgn0037419 

358 XLOC_011628 CG4362 3R:16131937-16133258 Ctr Mut 198.709 789.311 1.9899 5.00E-05 0.00245 FBgn0038784 

359 XLOC_014437 CG12723 X:13083675-13085915 Ctr Mut 15.6144 62.1549 1.993 0.0001 0.00448 FBgn0030459 

360 XLOC_009017 Osi10 3R:2089437-2093262 Ctr Mut 0.639865 2.55673 1.9985 0.0007 0.02195 FBgn0037417 

361 XLOC_006784 CG17672 3L:13022061-13029604 Ctr Mut 19.9941 80.3402 2.0066 5.00E-05 0.00245 FBgn0083978 

362 XLOC_006205 dro2 3L:3314348-3314681 Ctr Mut 48.5817 196.783 2.0181 5.00E-05 0.00245 FBgn0052279 

363 XLOC_010208 CG11786 3R:20872046-20873131 Ctr Mut 25.1621 102.008 2.0194 5.00E-05 0.00245 FBgn0039264 

364 XLOC_009016 Osi9 3R:2085934-2087832 Ctr Mut 89.1747 365.955 2.037 5.00E-05 0.00245 FBgn0037416 

365 XLOC_004013 CG13443 2R:16661193-16662869 Ctr Mut 8.61873 35.3796 2.0374 5.00E-05 0.00245 FBgn0034548 

366 XLOC_009014 Osi7 3R:2074713-2077405 Ctr Mut 121.334 498.155 2.0376 5.00E-05 0.00245 FBgn0037414 

367 XLOC_003516 CG34444 2R:10256684-10258621 Ctr Mut 0.985987 4.07991 2.0489 0.0009 0.02717 FBgn0085473 

368 XLOC_004011 CG34201 2R:16638451-16639628 Ctr Mut 30.3836 126.565 2.0585 5.00E-05 0.00245 FBgn0085230 

369 XLOC_009026 Osi19 3R:2160998-2162919 Ctr Mut 90.6602 385.629 2.0887 5.00E-05 0.00245 FBgn0037429 

370 XLOC_006486 ImpE1 3L:8365504-8384271 Ctr Mut 7.67726 32.9869 2.1032 5.00E-05 0.00245 FBgn0001253 

371 XLOC_009025 Osi18 3R:2155971-2157536 Ctr Mut 63.4048 273.256 2.1076 5.00E-05 0.00245 FBgn0037428 

372 XLOC_013138 CG15370 X:9119488-9120601 Ctr Mut 3.2796 14.2283 2.1172 5.00E-05 0.00245 FBgn0030107 

373 XLOC_011840 CG33337 3R:19415666-19418502 Ctr Mut 1.21027 5.41907 2.1627 5.00E-05 0.00245 FBgn0053337 

374 XLOC_003096 PGRP-SC1b 2R:4600948-4601587 Ctr Mut 19.3875 86.8636 2.1636 5.00E-05 0.00245 FBgn0033327 
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  gene_id gene locus sample_1 sample_2 value_1 value_2 log2(fold_change) p_value q_value oID_genes 

375 XLOC_004842 Damm 2R:7751665-7753908 Ctr Mut 4.37792 20.3545 2.217 5.00E-05 0.00245 FBgn0033659 

376 XLOC_010088 CG31148 3R:19526359-19528324 Ctr Mut 7.76002 36.6681 2.2404 5.00E-05 0.00245 FBgn0051148 

377 XLOC_004988 CG6337 2R:9713879-9722593 Ctr Mut 23.6537 113.218 2.259 0.00025 0.00942 FBgn0033873 

378 XLOC_010280 MCO3 3R:21723197-21725466 Ctr Mut 1.44111 7.14989 2.3107 5.00E-05 0.00245 FBgn0039387 

379 XLOC_011912 CG17780 3R:20199175-20210770 Ctr Mut 5.11759 25.3919 2.3108 5.00E-05 0.00245 FBgn0039197 

380 XLOC_011912 CG17781 3R:20199175-20210770 Ctr Mut 5.11759 25.3919 2.3108 5.00E-05 0.00245 FBgn0039196 

381 XLOC_010154 CG13616 3R:20218631-20219502 Ctr Mut 5.22073 26.6516 2.3519 5.00E-05 0.00245 FBgn0039200 

382 XLOC_009373 CG14720 3R:7537500-7538076 Ctr Mut 1.24108 6.47883 2.3841 0.0017 0.04354 FBgn0037940 

383 XLOC_009022 Osi16 3R:2130867-2132036 Ctr Mut 1.09495 5.74398 2.3912 5.00E-05 0.00245 FBgn0051561 

384 XLOC_007762 CG10591 3L:5591656-5592792 Ctr Mut 0.232809 1.23748 2.4102 0.0007 0.02195 FBgn0035621 

385 XLOC_010183 CG42331 3R:20597902-20610284 Ctr Mut 3.8151 20.7072 2.4403 5.00E-05 0.00245 FBgn0259233 

386 XLOC_005578 Cht4 2R:16952884-16954592 Ctr Mut 27.0575 147.77 2.4493 5.00E-05 0.00245 FBgn0022700 

387 XLOC_009915 TotC 3R:16698709-16699310 Ctr Mut 1.93065 10.5465 2.4496 5.00E-05 0.00245 FBgn0044812 

388 XLOC_000087 CG42329 2L:1219317-1229802 Ctr Mut 0.959453 5.37126 2.485 5.00E-05 0.00245 FBgn0259229 

389 XLOC_009691 CG31268 3R:12857538-12859237 Ctr Mut 11.5768 67.3905 2.5413 5.00E-05 0.00245 FBgn0051268 

390 XLOC_011752 CG13857 3R:18215501-18219826 Ctr Mut 2.15513 13.4446 2.6412 0.0006 0.01944 FBgn0038958 

391 XLOC_008168 CG42397 3L:11966184-11966890 Ctr Mut 3.15012 19.9335 2.6617 5.00E-05 0.00245 FBgn0259748 

392 XLOC_000287 CG33003 2L:4400952-4403142 Ctr Mut 3.38111 21.4192 2.6633 5.00E-05 0.00245 FBgn0053003 

393 XLOC_009842 CG17751 3R:15432975-15435044 Ctr Mut 5.46427 36.7634 2.7502 5.00E-05 0.00245 FBgn0038717 

394 XLOC_006653 CG12522 3L:11101334-11101832 Ctr Mut 70.7546 477.189 2.7537 5.00E-05 0.00245 FBgn0036131 

395 XLOC_008037 CG6749 3L:9724337-9726907 Ctr Mut 0.637892 4.33214 2.7637 0.0001 0.00448 FBgn0263541 

396 XLOC_009223 CG8147 3R:5320033-5322675 Ctr Mut 0.810923 5.54246 2.7729 5.00E-05 0.00245 FBgn0043791 

397 XLOC_003686 CG15919 2R:12680161-12680585 Ctr Mut 5.59236 42.4773 2.9252 5.00E-05 0.00245 FBgn0040743 

398 XLOC_008095 CG32071 3L:11096520-11096973 Ctr Mut 18.5365 144.989 2.9675 5.00E-05 0.00245 FBgn0052071 

399 XLOC_001815 CG9021 2L:5903358-5904674 Ctr Mut 0.262034 2.14408 3.0325 5.00E-05 0.00245 FBgn0031747 

400 XLOC_010837 snRNA:7SK 3R:3300274-3300718 Ctr Mut 1.69003 28.9889 4.1004 5.00E-05 0.00245 FBgn0065099 
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