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Over-Determined Source Separation and
Localization Using Distributed Microphones

Lin Wang, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We propose an over-determined source separation
and localization method for a set of M microphones distributed
around an unknown number, N < M , of sources. We reformulate
the over-determined acoustic mixing procedure with a new
determined mixing model and apply a determined M × M
independent component analysis (ICA) in each frequency bin
directly. The reformulated ICA operates without knowing N
and also leads to better separation in reverberant scenarios.
To solve the challenging permutation ambiguity problem, we
first employ a time activity-based clustering approach to cluster
the separated frequency components into M channels. We then
propose a remixing procedure to detect and merge channels
from the same source. The detection is done by analyzing time
and frequency activities, spectral likeliness and spatial location.
To estimate the spatial location we propose a time-frequency
masking-based steered response power algorithm. Simulated and
real-data experiments in a very challenging reverberant scenario
confirm the effectiveness of the proposed method in obtaining
the number of sources, the separated signals, and the location
and spatial likelihood of each source.

Index Terms—Blind source separation; over-determined mix-
ture; source localization; permutation alignment

I. INTRODUCTION

Sound source localization and separation are fundamental
tasks for acoustic scene analysis [1]. Source localization
enables visualizing sound directions, while source separa-
tion assists auditory information processing, such as speech
communication and recognition, by extracting the constituent
sources from the mixture signals received by the microphones.
Blind source separation (BSS) is a well-known technique that
can implement these two tasks simultaneously. A widely used
approach to blind source separation is independent component
analysis (ICA) which estimates a demixing network that
recovers the unknown sources from the observed mixture [2].
The demixing network can be interpreted as an inverse of the
acoustic mixing network and thus can be used to estimate the
source locations if the microphone locations are known [3].
With the increasing flexibility in sensor placement, blind
source separation has been investigated intensively in recent
decades [4]. Although significant progress has been achieved,
several challenges related to blind source separation still
remain, including the uncertainty about the number of sound
sources, performance degradation in reverberant environments,
and acoustical changes due to sound source movement [5].
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The BSS problem can be classified as determined (DBSS),
under-determined (UBSS) and over-determined (OBSS), cor-
responding to the number of microphones being equal to,
larger than and smaller than the number of sources, re-
spectively [2]. In the most commonly encountered DBSS
problem, ICA requires an equal number of sources and
microphones to make the mixing network invertible [6].
When the microphones outnumber the sources, subspace-
based dimensionality reduction pre-processing is usually
applied to get a determined mixture [6]. When the sources
outnumber the microphones, the mixing network becomes
non-invertible, and nonlinear filtering techniques, such as time-
frequency masking, are used instead of ICA [7], [8]. Thus,
a prior knowledge of the number of sources is crucial for
choosing appropriate BSS algorithms. The performance of
BSS degrades significantly in highly reverberant environments,
where the acoustic filters are typically very long, thus making
the mixing system difficult to invert [9]. Moreover, ICA
usually requires the mixing network to remain static for a
relatively long period to provide a reasonable estimate of a
long demixing filter. This assumption is difficult to fulfil in
realistic scenarios where human speakers may turn their heads
or move around [10].

Among the various approaches, OBSS has been relatively
overlooked compared to DBSS and UBSS, which have
attracted the majority of research attention [2], [4]. DBSS
and UBSS find wider applicabilities in portable recording
devices, where only a limited number of microphones are
available. However, due to the small array sizes, most
DBSS and UBSS algorithms have limited performance in
complex acoustic environments, e.g., with many speakers
distributed over a large area. In recent years, distributed
microphone networks have become popular [11], [12] as
many portable devices, such as smartphones, cameras and
laptops, are equipped with wireless communication modules
and audio interfaces (e.g., in the case of many people
recording the same event with hand-held devices). Utilizing the
information from all microphones may lead to better source
separation and localization performance. OBSS becomes a
common problem in such a network, where the microphones
usually outnumber the sources. How to efficiently exploit the
redundant information from distributed microphones to tackle
the source separation problem, especially in complex acoustic
environments, is an important topic.

In this paper we propose an over-determined source
separation and localization system for a set of M microphones
distributed around an unknown number, N < M , of
sources. When using distributed arrays, several research
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questions arise, such as microphone self-localization [13],
[14], asynchronous recording alignment [15], and sampling
rate mismatch compensation [16]. The focus in this work
is the computation of the spatial filter to separate and
localize the sources, hence we assume all the microphones
are synchronized and their locations are known. The proposed
method employs a frequency-domain BSS framework, where
the sources are separated with ICA in each frequency bin and
then permutation aligned. By exploiting a sufficient number of
microphones, the proposed method can address the challenges
of source number uncertainty and reverberation. The novelties
are summarized as below.

(a) We formulate the original M × N mixture as a new
M ×M mixing model, which allows us to apply an M ×M
ICA directly in each frequency bin without knowing N . The
new model considers environmental reverberation and leads to
better separation performance in reverberant scenarios.

(b) A fundamental problem with frequency-domain BSS is
the unknown and random order of the ICA outputs at each
frequency bin, which collapses signal reconstruction in the
time domain. Traditional permutation alignment approaches
only consider the case with a determined ICA where each
source occupies only one output channel. For our case with
M > N and N unknown, the employed M × M ICA
results in more ambiguities: each source may randomly occupy
an unknown number of output channels. This is a new
permutation problem, consisting of both inter-source and intra-
source ambiguities. We first solve inter-source ambiguities by
clustering separated components with similar time activities
into the same channel. We then address the residual intra-
source ambiguities with a remixing procedure, which detects
and merges channels from the same source. The detection
is done by defining and analyzing four measures: time and
frequency activities, spectral likeliness and spatial location.
The remixing procedure can also estimate the number and
locations of the sources.

(c) To estimate the spatial location of each clustered chan-
nel, which will be used in the remixing procedure, we propose
a time-frequency (T-F) masking-based steered response power
(SRP) approach. With the T-F masks that enhance target
sources, SRP outperforms traditional approaches based on ICA
demixing matrices.

Fig. 1 depicts the block diagram of the proposed method,
which consists of three main blocks: blind source separation,
source localization and remixing, which are presented in
Sections IV, V and VI, respectively.

II. BACKGROUND

A. Steered Response Power for Source Localization

SRP is a steered-beamforming based algorithm which
is suitable for source localization with distributed micro-
phones [17], [18]. This approach steers the beamformer over
a predefined set of spatial points and searches for peaks in
the steered response power (the output signal). The simplest
(delay-and-sum) beamformer computes the propagation delays
from the source position to each microphone and compensates
for these delays in order to coherently sum the signals arising
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Fig. 1. Block diagram of the proposed over-determined source separation and
localization method.

from the source position. More sophisticated beamformers
filter the microphone signals in addition to delaying them [19].
The steered response power can be interpreted as a spatial
likelihood map [20] whose peaks correspond to the locations
of the sources. SRP is robust to noise and can localize the
source reliably in a single-source scenario. However, when
multiple sources are present, the peaks may not provide
reliable information for all sources, especially when they
overlap in time [21], [22]. Multi-path propagation due to
reverberation causes additional peaks, which also degrade
the localization performance. Another drawback is the high
computational cost, which increases with the number of
microphones and also with the size of the search area. Some
fast searching schemes have been proposed [23], [24].

SRP-PHAT, a phase transformed version of SRP, is an-
other popular approach for multi-microphone source localiza-
tion [17], [25], [26]. Instead of using steered beamformers,
SRP-PHAT calculates the spatial likelihood map by summing
the phase-transformed generalized cross-correlations for all
possible pairs of the set of microphones. The phase-transform
may increase the robustness to reverberation [27]; however,
the pair-wise evaluation of the steered response power makes
the computational cost increase exponentially with the number
of microphones. This could be a bottleneck when using SRP-
PHAT with a large number of microphones. Both SRP and
SRP-PHAT can be seen as phase-based approaches since
they rely on delaying the microphone signals appropriately,
a procedure which is equivalent to modifying signal phase in
the frequency domain.

B. ICA and Permutation Alignment

In the context of BSS, ICA is a well-known tool for
the separation of linear and instantaneous mixed signals
captured by multiple sensors [6]. ICA adaptively estimates a
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demixing matrix by maximizing the statistical independence
of the output signals. Based on the definition of indepen-
dence measure, various ICA algorithms have been proposed,
including joint approximate diagonalization of eigenmatrices
(JADE) [28], Infomax [29] and fixed-point FastICA [6]. ICA
usually relies on two prerequisites: the independence between
source signals and the invertibility of the mixing matrix. The
former condition is satisfied with most audio signals such
as speech and music. The latter condition typically requires
the mixing matrix to be square, i.e., a mixture with an equal
number of sources and observations.

For many real-world problems, the signals undergo a
convolutive mixing due to reverberation. Various attempts have
been made to solve the convolutive BSS problem [30], in-
cluding frequency-domain approaches [2]. By transforming the
mixture to the frequency domain with the short-time Fourier
transform (STFT), convolution in the time domain translates
to linear mixing in the frequency domain. Subsequently, ICA
can be performed on each frequency bin. However, since
ICA is indeterminate of source permutation, further post-
processing methods are necessary to align the permutations
in each frequency bin.

Most permutation alignment algorithms were proposed
under the framework of DBSS, where only inter-source
ambiguities occur. Three strategies exist to tackle the per-
mutation ambiguity problem. The inter-frequency dependency-
based strategy exploits the time structure of separated signal
amplitudes or speech activities [33]. This time structure
shows high correlation between neighboring bins for the
same source. Various approaches, including clustering-based
and region-wise permutation alignment schemes, exploit such
inter-frequency dependency [8], [31]–[33]. The location-based
strategy exploits the spatial information since contributions
from the same source are likely to come from the same
direction [34]–[37]. This approach typically works well only in
low-reverberant scenarios and may suffer from spatial aliasing
ambiguities if the microphones are far apart [38], [42]. The
joint optimization strategy, e.g., independent vector analysis,
directly incorporates the inter-frequency dependency measure
into ICA so that the permutation ambiguity can be minimized
by joint optimization across all the frequency bins [39], [40].
However, this approach may get easily stuck in local optima
by simultaneously optimizing many parameters across the
whole frequency band. Among the three strategies, the inter-
frequency dependency-based approach performs most robustly
in reverberant scenarios, especially for speech signals [33].
Relying only on signal amplitudes, this approach works
independently of the microphone placement and is robust to
spatial aliasing problems.

Since the demixing matrix obtained by ICA can be inter-
preted as an inverse of the mixing matrix, several ICA-based
source localization approaches have been proposed [3], [41]–
[43]. By blindly identifying the acoustic transfer functions
for each separated source, these approaches are suitable for
multi-source environments. However, since ICA is performed
individually in each frequency bin, ICA-based localization
relies on successfully addressing the permutation ambiguity
problem.

TABLE I
COMPARISON OF OVER-DETERMINED BLIND SOURCE SEPARATION

ALGORITHMS. (G: MICROPHONE LOCATION; R: SOURCE LOCATION; N :
NUMBER OF SOURCES)

Strategy Approach Prior Knowledge Reference
G R N

dimensionality
reduction

subspace no no yes [44]–[49]
fixed beamforming yes yes yes [9], [50]

subset
selection

geometry-based yes no yes [51]
separation-based no no yes [52], [53]

separation and remixing yes no no proposed

C. Over-determined BSS

Table I summarizes the state-of-the-art of OBSS algorithms,
which exploit the redundant information available when using
more sensors than sources. The dimensionality reduction
strategy applies dimensionality reduction before separation so
that the numbers of input observations and sources become
equal. Two approaches have been proposed for dimensionality
reduction. The first approach employs subspace-based pre-
processing, e.g., principle component analysis (PCA), to
extract an equal number of components, and subsequently
performs ICA [44]–[49]. After PCA, the signal-to-noise
ratio in the retained components is generally higher than
in any individual sensor and the mixing matrix is usually
better conditioned. Assuming the spatial location of each
source to be known, the second approach applies a set
of fixed beamformers, each pointing at one source, before
separation [9], [50]. The fixed beamformer can reduce noise
and reverberation for each source, making the subsequent
separation task easier. The subset selection strategy selects a
subset of microphones from the whole microphone set. The
selection can be done based on geometric information, e.g.,
using wide microphone spacing for doing separation at low
frequencies and narrow spacing at higher frequencies [51].
The selection can also be done by trying possible microphone
subsets and choosing the one with the best outputs [52], [53].

All the OBSS algorithms discussed above are based on
DBSS and require prior knowledge of the number of sources,
and some also require to know the locations of the sources. In
contrast, our proposed method does not need to know either
the number of sources or their locations.

III. PROBLEM FORMULATION

Consider M microphones and N sources, with M ≥
N , randomly distributed in a reverberant acoustic scenario.
Microphones and sources are physically static. The M
microphones are synchronously sampled and their locations
G = [g1, · · · , gM ]3×M are known. The number of sources
N and their locations R = [r1, · · · , rN ]3×N are both
unknown. The signals received at the microphones, x(n) =
[x1(n), · · · , xM (n)]T, are expressed as

x(n) = H(n) ∗ s(n) =

Lh−1∑
n′=0

H(n′)s(n− n′), (1)
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where n is the time index, s(n) = [s1(n), · · · , sN (n)]T is the
source signal vector, H(n) is a sequence of M ×N matrices
containing the impulse responses of mixing channels, Lh is
the length of the impulse response, the operator ‘∗’ denotes
the convolution between two sequences of matrices, and the
superscript (·)T denotes transpose.

The task is to estimate the number of sources N , the
source locations R, and individual sources s(n), given the
microphone recordings x(n) and microphone locations G.

IV. M ×M DETERMINED SOURCE SEPARATION

In this section we show that, by reformulating the M ×
N over-determined acoustic mixing with a new M × M
determined model, it is possible to apply an M × M
source separation directly, which leads to better separation in
reverberant scenarios than an N ×N separation.

A. M ×M ICA

Using STFT, the time-domain convolution (1) is converted
to instantaneous mixing in the frequency domain:

X(k, l) = H(k)S(k, l), (2)

where k and l are frequency and frame indices, respectively;
HM×N (k) is the Fourier transform of H(n); XM×1(k, l)
and SN×1(k, l) are the STFTs of x(n) and s(n), respectively.
Usually, a subspace-based dimensionality reduction proce-
dure [49] is performed in each frequency bin so that an N×N
ICA can be applied to separate the N sources.

In (1), the sound of the j-th source received by the i-th
microphone, xij(n), equals the convolution result between
the original source sj(n) and the impulse response hij(n).
Based on the image-source theory [59], xij(n) can also be
approximated as a sum of contributions from multiple image
sounds emitting from different spatial locations:

xij(n) = hij(n) ∗ sj(n) ≈
Rj∑
r=1

h̃ijr(n) ∗ s̃jr(n), (3)

where sj is decomposed into Rj image sounds: s̃j1, · · · , s̃jRj ,
and h̃ijr(n) denotes the impulse response between the image
sound s̃jr and the microphone i. Usually, h̃ijr(n) is shorter
than hij(n). The STFT counterpart of (3) can be written as

Xij(k, l) = Hij(k)Sj(k, l) ≈
Rj∑
r=1

H̃ijr(k)S̃jr(k, l), (4)

where Xij , Sj , S̃jr, Hij and H̃ijr are the STFTs of xij , sj
and s̃jr, hij and hijr, respectively.

With the new model (4), the original M × N over-
determined mixing system can be approximated as an M×M

determined mixing system:

X(k, l) ≈ H̃(k)S̃(k, l)

=

 H̃111(k) · · · H̃1NRN
(k)

...
. . .

...
H̃M11(k) · · · H̃MNRN (k)


M×M



S̃11(k,l)

...
S̃1R1

(k,l)

...
S̃N1(k,l)

...
S̃NRN (k,l)


M×1

, (5)

where S̃ represents M image sounds from the N sources.
Depending on the acoustic scenario, Rj varies with the source
j, with Rj > 1 and

∑N
j=1Rj = M . The new mixing model

(5) allows us to apply an M ×M ICA directly to X(k, l).
Since the M image sounds usually originate from different
spatial locations, the square mixing matrix H̃ is invertible.

There are two benefits of using such an M ×M mixing
model. First, the mixing filter hijr(n) is usually shorter
than the original mixing filter hij(n), thus making the new
M×M system easier to invert than the original mixing system.
Second, the frequency-domain ICA can be interpreted as a
set of null-beamformers which extracts a target source by
suppressing the sources from other directions [55]. The M×M
ICA allows suppressing at most M − 1 interferences for each
target source. These M−1 interferences may include the N−1
sources and their associated reverberant image sounds, which
are difficult to suppress with a normal N ×N ICA. Thus, the
separation performance will improve when M is increased. A
possible drawback of using an M ×M ICA is that the size
of the mixing matrix also grows with M , thus requiring more
data to estimate the demixing matrix.

We choose a widely used ICA algorithm, Infomax, to
estimate the demixing matrix using the iteration [29], [33]{

Ỹ (k, l) = W̃ (k)X(k, l)

W̃ (k) = W̃ (k) + η
(
I − E{Φ(Ỹ (k, l))Ỹ

H
(k, l)}

)
W̃ (k)

(6)
where the superscript (·)H denotes the Hermitian transpose,
η is a step-size parameter, I is the identity matrix, Φ(·) is
a nonlinear function, E{·} is the expectation operator, and
Ỹ (k, l) = [Ỹ1(k, l), · · · , ỸM (k, l)]T is the separated signal
vector.

The demixing matrix can recover the source signals up to
scaling and permutation ambiguities [33]:

Ỹ (k, l) = Λ(k)D(k)S̃(k, l), (7)

where D(k) is a permutation matrix and Λ(k) a scaling
matrix at frequency index k. In our case with M > N , each
source may occupy one or more ICA outputs. This leads to a
more challenging permutation alignment problem, where the
permutation ambiguities come not only from different sources
(e.g., S̃11 and S̃21) but also from the same source (e.g., S̃11

and S̃12). This challenge is made even harder by the fact that
the number of sources and the number of constituent image
sounds of each source are all unknown.
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We propose to solve the permutation ambiguity problem
in two stages, with a clustering-based permutation alignment
approach (Sec. IV-B) addressing inter-source ambiguities
and a remixing procedure (Sec. VI) addressing intra-source
ambiguities.

B. Clustering-based Permutation Alignment

The time activity of speech signals typically shows strong
dependency among frequency components from the same
source, and an ability to discriminate among frequency
components from different sources. This discriminability
usually increases with the duration of the signal. This feature
can be exploited to align the permutation of the components
from different frequencies. Assuming the number of sources
N to be known, a clustering procedure has been proposed
to cluster the separated frequency components with similar
time-activities into the same group [8], [33], [54]. We use this
approach to align the permutation of the M×M ICA outputs,
directly assuming the number of sources to be M .

Given the demixing matrix W̃ (k), the mixing matrix can
be estimated as A(k) = W−1(k) = [a1(k), · · · ,aN (k)] with
ai(k) being an M×1 vector describing the path from the i-th
component Ỹi to M microphones. The time activity sequence
of Ỹi at frequency k is defined as [54]

vk
i (l) =

∥∥∥ai(k)Ỹi(k, l)
∥∥∥2

∑M
j=1

∥∥∥aj(k)Ỹj(k, l)
∥∥∥2 , (8)

where ‖ · ‖ denotes the norm-2 operation. The inter-frequency
dependency between two time activity sequences vk1

i
and vk2

j

(corresponding, respectively, to the i-th separated signal at
frequency k1 and the j-th separated signal at frequency k2)
is measured by their correlation coefficient

ρ(vk1

i
,vk2

j
) = γij(k1,k2)−µi(k1)µj(k2)

σi(k1)σj(k2)
, (9)

where γij(k1, k2) = E{vk1
i
vk2
j
}, µi(k) = E{vk

i
}, σi(k) =√

E{(vk
i
)2} − µ2

i (k) are the correlation, mean, and standard
deviation, respectively.

Let us represent the new permutation with respect to the
original outputs as Π = {1, · · · ,M} → {1, · · · ,M} with
Π(m) being the new order of the m-th output [33]. The
clustering is implemented as an expectation maximization
(EM) procedure, which maximizes the correlation coefficient
between the clustered time-activity sequences and the corre-
sponding centroids. The iterative EM procedure is expressed as

cm =
1

K

K∑
k=1

vk
m, m = 1, · · · ,M

Πk = arg max
Π

M∑
m=1

{
ρ(vk

i , cm)
∣∣
i=Π(m)

}
, ∀k

(10)

where K is the number of frequency bins; c1, · · · , cM denote
the estimated centroids; and Πk is the permutation at frequency
k. Accordingly, the demixing matrix is permutated as

Ŵ (k)
Πk←−− W̃ (k). (11)

We address the scaling ambiguity problem, i.e., the un-
known scale of the ICA outputs, by minimal distortion
principle-based back projection [56]:

W (k) = diag
(
Ŵ
−1

(k)
)
· Ŵ (k), (12)

where (·)−1 denotes the inversion of a matrix and diag(·)
retains only the diagonal components of a matrix.

Finally, we compute the separated signal as

Y (k, l) = W (k)X(k, l), (13)

with Y (k, l) = [Y1(k, l), · · · , YM (k, l)]T and y(n) =
[y1(n), · · · , yM (n)]T being the inverse STFT of Y (k, l). We
refer to y(n) as the DBSS output.

C. Discussion

Clustering based on time activity sequences has been
successfully applied to permutation alignment with M =
N [8], [33]. However, in cases with unknown N and M > N ,
a new challenge arises: the clustering algorithm produces more
(M ) clusters than (N ) sources. In addition, it is observed that
the time activity of a speech signal may vary slightly across
frequencies, e.g., between high and low frequencies [33]. This
leads to two types of clustering results. On the one hand,
the clustering algorithm tends to allocate components from
different sources to different clusters, thus solving the inter-
source ambiguity problem. On the other hand, with M > N ,
the clustering algorithm tends to allocate components (with
slightly different time activities) from the same source to
different clusters. Consequently, the obtained M clusters can
be virtually divided into N source sets. Each set may consist
of several clusters which all correspond to the same source.
The number of sets and the association between clusters and
source sets are unknown. Therefore, the intra-source ambiguity
problem still remains unsolved.

We illustrate the intermediate processing results of the
determined M ×M source separation with a realistic acoustic
scenario shown in Fig. 2. This scenario is included in an
existing dataset [26]. In a room of size 8m×6m×3m and with
reverberation time T60 = 0.45 s, 10 speakers, dividing into 3
groups, are chatting simultaneously. The speeches of the 10
speakers are recorded by 171 distributed microphones and also
by 10 close-talk microphones attached to the speakers. The
database provides a 120 s long real recording as well as the
locations of all microphones and speakers. For convenience
of comparison, we generate the same scenario using the
closely recorded speech from each speaker and simulated
room impulse responses by the image-source method [59].
We randomly choose 20 microphones (Fig. 2, M = 20 and
N = 10) with signal length 25 s and sampling rate 8 kHz.
We use signal-to-interference ratio (SIR), as defined in (36),
to measure the source separation performance.

The considered acoustic scenario is very challenging since
the input SIRs of the sources at microphones can be as low as
-15 dB (Fig. 11). After DBSS, the SIR of each output is shown
in Fig. 3(a), where each column of the map represents the SIRs
of each source in all the outputs, while each row represents
the SIRs of all the sources in each output. The row-wise SIRs
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Fig. 2. Configuration of the acoustic scenario. Ten speakers are divided into
three groups. An arrow denotes the orientation of the face of each speaker.
An example of randomly selected M = 20 microphones is indicated with
red circles.

show that in each DBSS output only one source is dominant.
This indicates that ICA performs well for separation in each
frequency bin and the inter-source ambiguities are well solved
by the clustering-based permutation alignment. Exceptions are
y13 and y20 that are both identified as noise later. The column-
wise SIRs show that each source can be dominant in one or
several outputs. This indicates that the intra-source ambiguity
problem is still unsolved.

To better show the intra-source ambiguity problem, we
depict in Fig. 3(b) the speech activity of each DBSS output
in the form of a binary map, where the speech activity (8) is
set to 1 when it is larger than 0.5, and is set to 0 otherwise.
In Fig. 3(b) the title of each panel yi(sj) represents that the
output yi is associated with the source sj . This association
is inferred from Fig. 3(a), based on the highest SIR in each
row. As observed in Fig. 3(b), some sources appear only in
one channel, e.g., y3(s6) and y8(s1), whereas other sources
appear in several channels. These channels can be different
frequency bands of a source, e.g., y14(s2) and y17(s2). These
channels can also be different image sounds of a source, e.g.,
y6(s4) represents a reverberant version of s4, while y9(s4)
and y11(s4) constitute the full-band direct sound of s4. Some
channels contain noise only and present no speech activity,
e.g., y13 and y20.

The above observations provide valuable information to
design the remixing algorithm (Sec. VI), which aims to find
the association between the sources and DBSS outputs.

V. T-F MASKING BASED LOCALIZATION

In this section, we estimate the spatial locations of the
DBSS outputs, which will be used in the subsequent remixing
procedure. Existing approaches perform localization based on
the acoustic transfer functions of each separated component,
namely steering vectors, estimated from the ICA demixing
matrix [42], [43]. These approaches typically rely on a high
direct-to-reverberant ratio in the microphone signals so that
the phase of the steering vector varies approximately linearly
with frequency. Moreover, the intra-source ambiguity may
randomly distribute the frequency bin-wise steering vectors of
a single source to different channels, degrading the localization
performance significantly.
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Fig. 3. Source separation results by the DBSS algorithm. (a) SIR of each
source in each DBSS output. In each row only one source is dominant. In
each column one source may dominate several output channels. (b) Binary
map of speech activity of each DBSS output. The title of each panel, yi(sj),
represents the association between yi and sj .

SRP is a steered-beamforming based multi-microphone
localization algorithm, which is robust to noise but has de-
graded performance in reverberant and multi-source scenarios.
Combining source separation and SRP, we propose a new
time-frequency (T-F) masking-based SRP algorithm for source
localization.

For each DBSS output ym, a T-F mask is estimated
which indicates the dominance of ym in each T-F bin in
the microphone signal. After applying this T-F mask to all
microphone signals, an SRP algorithm is employed to estimate
the location of ym. There are three benefits when using
this T-F mask. First, the T-F mask can effectively improve
the SIR of the target source by suppressing interferences.
Second, applying a T-F mask will not change the phase
information embedded in the microphone signals. This allows
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us to apply the phase-based SRP algorithm for localization.
Finally, by directly working on the microphone signals, this
approach is robust to intra-source ambiguities. The algorithm
is summarized below, using ym as an example.

The (k, l)-th element of the T-F mask Bm is estimated as

Bm(k, l) =

{
1, λm(k, l) > 0.5
0, otherwise (14)

where λm(k, l) = |Ym(k,l)|∑M
i=1 |Yi(k,l)|

indicates the proportion
of Ym(k, l) among all the outputs Y1(k, l), · · · , YM (k, l).
Applying Bm to the M microphone signals, the masked signal
at the i-th microphone is

Umi(k, l) = Bm(k, l)Xi(k, l), i = 1, · · · ,M. (15)

Applying the inverse STFT to Umi(k, l), we obtain the time-
domain signal umi(n).

The location of ym is estimated by applying the SRP
algorithm to the M masked signals um1(n), · · · , umM (n) in
the time-domain. Here we use the simplest delay-and-sum
beamformer for the SRP algorithm. The algorithm calculates
an SRP map in a pre-defined spatial space R, where the SRP
for a candidate position r ∈ R is defined as

SRPm(r) =

Ls∑
n=1

ũ2
m(n), (16)

where Ls is the signal length in samples, ũm(n) =∑M
i=1 umi(n − τi(r)), with τi(r) being the delay of the i-th

channel with respect to the first channel for the location r.
The location of ym is estimated by detecting the highest peak
in the map, i.e.,

r̃m = arg max
r∈R

SRPm(r). (17)

We also calculate the spatial likelihood map, which indicates
the confidence that ym originates from a certain location. After
removing a floor value with S̃RPm(r) = SRPm(r)−SRPfloor,
the spatial likelihood (SL) is defined as

SLm(r) =

∑
r∈N S̃RPm(r)∑
r∈R S̃RPm(r)

, (18)

where the floor SRPfloor is the mean SRP value in the space
R, and N denotes a predefined neighbourhood surrounding r.
Accordingly, the spatial likelihood of r̃m is defined as

pm = SLm(r̃m). (19)

Spatial aliasing may occur at frequencies where the cor-
responding sound wavelength is shorter than twice the
inter-microphone distance. Spatial aliasing introduces phase
ambiguities, which lead to ghost locations when localizing
a sound source [57]. The aliasing is usually severe at
high frequencies and less pronounced at lower frequencies.
After clustering-based permutation alignment, each DBSS
output contains the broadband signal of a single source.
Source localization with a broadband signal increases the
robustness to spatial aliasing, i.e., a true location will present a
higher spatial likelihood than the spurious locations. In some
exceptional cases when the DBSS output only contains the

y
1
(s

10
), p=0.12

1 

0 

-1

y
2
(s

7
), p=0.29 y

3
(s

6
), p=0.2 y

4
(s

3
), p=0.05

y
5
(s

9
), p=0.08

1 

0 

-1

y
6
(s

4
), p=0.05 y

7
(s

3
), p=0.95 y

8
(s

1
), p=0.08

y
9
(s

4
), p=0.36

y 
[m

] 1 

0 

-1

y
10

(s
5
), p=0.24 y

11
(s

4
), p=0.08 y

12
(s

10
), p=0.05

y
13

(s
2
), p=0

1 

0 

-1

y
14

(s
2
), p=0.09 y

15
(s

9
), p=0.12 y

16
(s

8
), p=0.06

y
17

(s
2
), p=0.07

2 4

1 

0 

-1

y
18

(s
10

), p=0.1

x [m]
2 4

y
19

(s
7
), p=0.31

2 4

y
20

(s
9
), p=0

2 4

Fig. 4. Spatial likelihood map for each DBSS output. In the title of each panel
yi(sj) denotes the association between yi and sj , whereas p denotes the
spatial likelihood of the estimated location. The true and estimated locations
are indicated with white stars and white circles, respectively.

high-frequency band of the source signal, spatial aliasing can
still be observed with ghost locations, thus degrading the
localization performance. This problem will be addressed in
the remixing stage by merging different frequency bands of
the same source together.

As an example, Fig. 4 depicts the spatial likelihood map,
the estimated and true locations of each DBSS output obtained
in Sec. IV-C. As observed in Fig. 4, the spatial likelihood
can provide information regarding estimation accuracy. A high
spatial likelihood (e.g. p ≥ 0.2) is usually associated with
an evident peak in the spatial likelihood map and correct
localization, e.g., y2(s7) and y7(s3). A low spatial likelihood
(e.g. p ≤ 0.05) is usually associated with multiple peaks
in the spatial likelihood map, leading to inaccurate or even
wrong localization, e.g., y4(s3) and y6(s4). However, it may
happen that a low spatial likelihood is associated with a correct
localization, e.g., y8(s1). In addition, y13 and y20 contain only
noise with p = 0. The two channels y12(s10) and y17(s2)
contain signals only in the high-frequency band. The wrong
localization at these two channels is possibly caused by the
ghost locations that are introduced by the spatial aliasing at
high frequencies.
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VI. REMIXING

The intra-source ambiguity problem is dealt with using
a remixing procedure, which merges any two DBSS output
channels if they are detected to be from the same source. As
shown in Fig. 3(b), the relationship between two channels can
be classified into three types as below.
• Inter: from different sources. Two channels have

different activities along time and frequency.
• Intra-B: from different frequency bands of the same

source. Two channels have similar activities along time
but different activities along frequency.

• Intra-I: from different sound images of the same
source. Two channels are both full-band signals but
represent different image sounds of a source, e.g., direct
and reverberant sounds. The two channels may have
different time activities, as measured by the dominance
in each time-frequency bin. However, the direct and
reverberant sounds have similar spectral contents.

In addition to spectral information, all channels from the
same source are supposed to come from the same spatial
location. However, as shown in Fig. 4, the estimated location
may deviate from the true value if the channel contains a
reverberant sound.

Based on the above analysis, we define time and frequency
activity measures to detect channels from different frequency
bands of the same source, and define a spectral likeliness
measure to detect channels containing direct and reverberant
image sounds of the same source. For channels from the same
source but not detected by the above spectral measures, we
further as complement define a spatial distance measure.

A. Remixing Measures

1) Speech Activity: The time- and frequency-activity se-
quences of ym are calculated from the T-F mask Bm as

am(l) =

K∑
k=1

Bm(k, l); bm(k) =

L∑
l=1

Bm(k, l), (20)

where K and L denote the numbers of frequency bins and time
frames, respectively. The time-activity correlation coefficient
between two channels ym1

and ym2
is defined as

Ra(m1,m2) =

∑L
l=1 am1(l)am2(l)√∑L

l=1(am1(l))2

√∑L
l=1(am2(l))2

. (21)

Similarly, the frequency-activity correlation coefficient be-
tween ym1 and ym2 is defined as

Rb(m1,m2) =

∑K
k=1 bm1

(k)bm2
(k)√∑K

k=1(bm1
(k))2

√∑K
k=1(bm2

(k))2

. (22)

A high value of Ra(m1,m2) indicates that ym1 and ym2 tend
to have similar time activities. A low value of Rb indicates
that the two signals tend to have different frequency activities
and thus occupy different frequency bands.

Combining both time and frequency activities, we define a
global speech activity correlation coefficient measure

Rab(m1,m2) = Ra(m1,m2)−Rb(m1,m2). (23)

Two channels ym1
and ym2

are detected to be from the same
source (Intra-B) if this measure satisfies

Rab(m1,m2) > Tab, (24)

where Tab is a predefined threshold.
2) Spectral Likeliness: For two channels Ym1(k, l) and

Ym2(k, l) in the time-frequency domain, the likeliness of their
spectral magnitudes is defined as

Rs(m1,m2) =

K∑
k=1

L∑
l=1

|Ym1
(k, l)Ym2

(k, l)|√
K∑

k=1

L∑
l=1

|Ym1
(k, l)|2

√
K∑

k=1

L∑
l=1

|Ym2
(k, l)|2

.

(25)
A high Rs(m1,m2) indicates that ym1

and ym2
tend to have

similar spectral contents. Thus, ym1
and ym2

are detected to
be from the same source (Intra-I) if their spectral likeliness
satisfies

Rs(m1,m2) > Ts, (26)

where Ts is a predefined threshold.
3) Spatial Location: The spatial distance between ym1 and

ym2
is defined as

D(m1,m2) = ||r̃m1
− r̃m2

||, (27)

where the locations r̃m1
and r̃m2

are estimated with (17). The
two channels are regarded as originated from the same source
if their spatial distance is sufficiently small, i.e.,

D(m1,m2) < Td, (28)

where Td is a predefined threshold.
4) Outlier Measure: A channel ym is detected to be

uncorrelated or diffuse noise if its spatial likelihood pm is
sufficiently small, i.e.,

pm < Tp, (29)

where Tp is a predefined threshold.
Because of the non-Gaussianity of speech signals, ym can

be detected as noise if its kurtosis [6] is sufficiently small, i.e.,

kurt(ym) < Tk, (30)

where Tk is a predefined threshold.

B. Remixing Procedure

Given the above measures, the remixing procedure consists
of five stages (Fig. 5). Each stage generates a new set of
channels by either removing or merging channels inherited
from its preceding stage. The first stage removes noise outliers
based on the kurtosis measure (30). The second, third and
fourth stages merge channels based on the speech activity
measure (24), the spectral likeliness measure (26), and the
distance measure (28), respectively. The fifth stage removes
the residual outliers, which satisfy either the spatial likelihood
measure (29) or the kurtosis measure (30).

To elaborate on the remixing procedure, we denote
each newly merged channel as a source set, i.e.,
Sm =

{(
Im, r̂m, qm, zm(n), B̄m(k, l)

)}
, which contains five
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Fig. 5. Block diagram of the remixing procedure. M1-M4 denote the resulting
number of source sets in Stages 1-4.

TABLE II
PARAMETERS USED IN THE REMIXING PROCEDURE.

Parameter Tab Ts Tp Tk Td

Value 0.4 0.5 0.03 5 0.25 m

elements denoting the constituent channels, spatial location,
spatial likelihood, sound signal and binary mask, respectively.

Before remixing, we initialize M source sets as Im = {m},
qm = pm, r̂m = r̃m, zm(n) = ym(n), and B̄m(k, l) =
Bm(k, l), for m = 1, · · · ,M . In each stage, if mG sets
{Sm1 , · · · ,SmG

} are detected to be from the same source,
we merge them into the first set Sm1

and then remove others.
The merging procedure is performed as below.

Im1 = Im1 ∪ Im2 ∪ · · · ∪ ImG
,

qm1 = qm̄, r̂m1 = r̂m̄,

zm1(n) = zm1(n) + zm2(n) + · · ·+ zmG
(n),

B̄m1(k, l) = B̄m1(k, l)|B̄m2(k, l)| · · · |B̄mG
(k, l),

(31)

where m̄ = arg maxm∈{m1,··· ,mG} qm represents the index of
the channel with the highest spatial likelihood, the operator ‘∪’
denotes union of two sets, and ‘|’ the binary ‘OR’ operator.

Finally, we obtain N̂ source sets
(
S1, · · · ,SN̂

)
. We denote

the corresponding output as z(n) = [z1(n), · · · , zN̂ (n)]T, the
locations r̂1, · · · , r̂N̂ , and the spatial likelihoods q1, · · · , qN̂ .
The OBSS demixing matrix WO is

WO
m(k) =

∑
m′∈Im

Wm′(k), m = 1, · · · , N̂ ; (32)

where Wm′ denotes the m′-th row of W , and the same for
WO

m. We refer to z(n) as the OBSS output.

C. Parameter Selection

The remixing procedure uses 5 thresholds: Tab, Ts, Td, Tp
and Tk (Table II). Among them, Tk and Td can be easily
determined. Since the kurtosis of babble noise is around 5 [58],
we choose Tk = 5 to distinguish speech from noise. With
prior knowledge of the acoustic environment, we choose the
minimum distance between speakers as Td = 0.25 m.

The thresholds Tab and Ts play important roles in the
remixing procedure since they determine whether two chan-
nels should be merged. We examine the distribution of
the parameters Rab and Rs in different classes (Inter,
Intra-B and Intra-I) in order to choose optimal thresh-
old values. We generate 64 testing cases with the simu-
lated dataset in Sec. IV-C, including different numbers of
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Fig. 6. Distribution of the parameters in three classes: Inter, Intra-I,
Intra-B. (a) Speech activity measures Ra, Rb and Rab. (b) Spectral
likeliness measure Rs.

microphones M , signal lengths Lt, and realizations, where
M ∈ {10, 20, 30, 40}, Lt ∈ {10, 20, 30, 40} s, and each
(M,Lt) configuration has four realizations with the start time
of source signal set as the {5, 25, 45, 65}-th second in
the original speech. For each pair of DBSS output channels,
we hand-labelled its classification and calculated the speech
activity measures Ra, Rb and Rab, and the spectral measure
Rs. By repeating this procedure across all testing cases, we
obtain the distribution of these parameters in the three classes.

Fig. 6(a) depicts the normalized histogram of Ra, Rb and
Rab. In the first row, the time-activity measure Ra behaves
differently for Inter and Intra-B. For Inter, Ra is
distributed between 0 and 0.5 and tends to show small values,
being close to 0. For Intra-B, Ra is distributed between 0.2
and 1 and tends to show large values, centroiding around 0.7.
For Intra-I, Ra is distributed almost uniformly between
0 and 0.8. In the second row of Fig. 6(a), the frequency-
activity measure Rb behaves uniquely for Intra-B, where
it is distributed between 0 and 0.3 and tends to show small
values, being close to 0. For both Inter and Intra-I, Rb

is distributed almost uniformly between 0 and 1. The different
behaviours of Ra and Rb across three classes allow us to use
them jointly, i.e., Rab = Ra − Rb, to distinguish between
Inter and Intra-B. As shown in the third row of Fig. 6(a),
Rab has clear difference in these two classes. For Inter,
Rab is distributed between -1 and 0.5 and tends to show
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small values, centroiding around -0.5. For Intra-B, Rab is
distributed between 0 and 1 and tends to show large values,
centroiding around 0.5. For Intra-I, Rab is distributed
almost uniformly between -0.5 and 0.5.

Fig. 6(b) depicts the normalized histogram of Rs. In the
first row, Rs tends to show low values for both Inter
and Intra-B. A pair of channels from Intra-B occupy
different frequency bands of the same source and thus present
low spectral likeliness. To better show the discriminability of
Rs for intra- and inter-source channels, we merge all the pairs
in Intra-B into full-band signals. We then reclassify all the
channel pairs as Inter and Intra-(B+I) and recalculate
Rs. The second row of Fig. 6(b) depicts the distribution of
the new Rs. For Inter, Rs is distributed between 0 and
0.5 and tends to show small values, centroiding around 0.2.
For Intra-(B+I), Rs is distributed between 0 and 0.9,
centroiding around 0.7. Comparing with the first row, Rs in the
second row shows clearer difference between intra- and inter-
source channels. This also explains why we merge channels
based on the speech activity measure Rab at first (Stage-2)
and then the spectral likeliness measure Rs (Stage-3).

When performing channel merging in Stage-2 and Stage-
3, two types of errors may occur. The first error, namely
miss detection, denotes two channels which are supposed
to be merged but not detected. This error typically leads to
incompletely reconstructed source signals and also an overes-
timation of the number of sources. The second error, namely
false alarm, occurs when two channels from different sources
are erroneously merged. This error is usually irreversible as
two different sources are mixed. We therefore give higher
importance to the task of minimizing false alarms by choosing

Tab = 0.4, Ts = 0.5, (33)

as given in Table II. From Fig. 6(a), some channel pairs in
Intra-I, with Rab > Tab, may be detected as Intra-B
and merged in Stage-2. This will not affect the final remixing
result. However, miss detection occurs when some channel
pairs in Intra-B have Rab < Tab (Stage-2), or when some
channel pairs in Intra-(B+I) have Rs < Ts (Stage-3).
The influence of miss detections can be reduced by using an
additional location-based measure, Td, in Stage-4.

The threshold Tp is used to remove an outlier channel based
on the spatial likelihood. We thus examine the distribution
of the spatial likelihood for two classes of channels, with
correct and incorrect peak locations, respectively, in the spatial
likelihood maps. Fig. 7 depicts the normalized histograms
of the spatial likelihood in all testing cases. The spatial
likelihood shows evident difference between the two classes.
For correct localization, around half of the spatial likelihoods
are larger than 0.2, while the other half is distributed between
0.03 and 0.2. For incorrect localization, around 40% of the
spatial likelihoods are smaller than 0.01, while the others are
distributed mainly between 0.02 and 0.1. In order to maximize
localization accuracy while removing outliers we choose

Tp = 0.03, (34)

as given in Table II. Since Tp takes effect only in the last
stage, it does not have a large effect on the remixing.
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Fig. 7. Distribution of the spatial likelihood, p, in two classes: correct and
incorrect localization.

D. Validation

To demonstrate the effectiveness of the remixing procedure
(Fig. 5) as well as the chosen thresholds (Table II), we
calculate the detection error in each stage. Let us denote the
number of wrongly merged channels in each stage as Nw, and
the number of undetected channels as Nu = |M̃ −N |, where
M̃ is the resulting number of source sets in this stage, and N ,
as already defined, is the number of sources. We define the
miss detection ratio, the false alarm ratio, and the total error
ratio, respectively, as

Emiss =
Nu

M
, Efalse =

Nw

M
, Etotal = Emiss + Efalse. (35)

Fig. 8 depicts the average error ratios for all testing cases in
each stage. With more microphones than sources, we obtain
a large Emiss around 0.5 and Efalse = 0 at the input stage.
The noise outlier removal at Stage-1 reduces Emiss without
changing Efalse. The channel merging at Stages 2-4 reduces
Emiss significantly but also increases Efalse. Specifically,
spectrum-based Stage-2 and Stage-3 only introduce minor
false alarms, while location-based Stage-4 introduces evident
false alarms, mainly due to inaccurate localization in some
DBSS output channels. Removing the outliers generated
during channel merging, Stage-5 can reduce both Emiss and
Efalse. As a result, the total error Etotal decreases monotonically
across all processing stages, finally reaching a value below
0.1. Since the merging error mainly arises from Stage-4,
the remixing performance could be improved if a better
localization algorithm was employed. The observations made
in Fig. 8 confirm the effectiveness of the remixing procedure
and the chosen thresholds.

We investigate the robustness of the remixing procedure
in scenarios with a varying number of sources N and
reverberation time R60. In the first scenario, we use R60 =
450 ms but a varying number of sources N ∈ {5, 7, 8, 10}.
Referring to Fig. 2, we only consider the speakers from the
groups G1 and G2 for N = 5; the groups G1 and G3 for
N = 7; the groups G2 and G3 for N = 8; and all three
groups for N = 10. In the second scenario, we use N = 10
but varying R60 ∈ {200, 450, 700} ms. As in Sec. VI-C,
we generate 64 testing cases for each configuration. Fig. 9
depicts the total detection error Etotal in each remixing stage
for different scenarios. In Fig. 9(a), Etotal at the input stage
decreases with N , because the number of undetected channels
Nu drops as N is increased. It is also observed that, for each
N , Etotal decreases monotonically across all processing stages.
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denote, respectively, input, outlier removal (Tk), merge (Tab), merge (Ts),
merge (Td), and outlier removal (Tk , Tp).

The final Etotal are all close to 0.1 for different N . In Fig. 9(b),
Etotal also decreases in all processing stages for each R60. The
final Etotal increases with the reverberation time, being close
to 0, 0.1 and 0.15 for R60 = 200 ms, 450 ms and 700 ms,
respectively. The above observations made in Fig. 9 confirm
the robustness of the remixing procedure and thresholds in
various scenarios.

Finally, we apply the remixing procedure to the example
of Sec. IV-C. After channel merging and outlier removal, we
obtain 10 source sets, equalling the true number of sources.
The SIR of each source in each OBSS output and the locations
of sources are depicted in Fig. 10(a) and (b), respectively. As
observed in Fig. 10(a), in each row and column of the SIR
map only one source is dominant, showing that both the inter-
source and intra-source permutation ambiguities have been
solved. As shown in Fig. 10(b), the estimated locations are
consistent with the true locations. Finally, the SIR of each
source in the microphones and in the OBSS outputs is shown
in Fig. 11. It is possible to notice that the OBSS algorithm can
significantly improve the SIR (about 20 dB) of each source.

VII. COMPUTATIONAL COMPLEXITY

The proposed algorithm mainly consists of three blocks:
DBSS, source localization and remixing. The source lo-
calization block dominates the whole computation of the
algorithm and its importance grows with M . For each one
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Fig. 10. Source separation and localization results by the proposed algorithm.
(a) SIR of each source in each OBSS output. Each row and column is
dominated by only one source. (b) True and estimated source locations.
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OBSS algorithm can improve the SIR of each source by about 20 dB.
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Fig. 12. Computation time of the proposed OBSS algorithm (DBSS, source
localization and remixing) for a data-length of 20 s and a varying number of
microphones.

of the M DBSS outputs, an SRP algorithm is applied which
exhaustively search in the candidate space. The computational
complexity of the source localization is proportional to
M2Lt. The computational complexity of the DBSS block is
typically proportional to MLt. The computational complexity
of the remixing block is dominated by the spectral likeliness
calculation, which is applied to each pair of the DBSS outputs.
Thus the computational complexity of the remixing block is
proportional to M2Lt.

We run Matlab code of the proposed algorithm on an Intel
CPU i7@3.2 GHz with 16 GB RAM, using the same simulated
data (20 s) from Sec. IV-C. Fig. 12 depicts the computation
time of each block for a varying number of microphones.
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VIII. EXPERIMENTAL RESULTS

We evaluate the performance of the proposed algorithm in
terms of source separation and source localization.

A. Experiment Setup

We use the same simulated dataset as in Sec. IV-C to
evaluate the performance of the proposed OBSS algorithm
with a varying number of microphones M and length of signal
Lt, where M is increased from 10 to 40 with an interval of
5 and Lt is chosen from {6, 10, 15, 20, 30, 40} s. For each
(M,Lt) configuration, we implement four realizations where
the start time of the source signal is set as the {5, 25, 45,
65}-th second in the original recording.

For source separation, we compare the performance of the
proposed OBSS algorithm (Proposed) with four existing
algorithms: the subspace-based noise reduction algorithm
(SS) [46], the subspace-based dimensionality reduction fol-
lowed by determined BSS (SS+BSS) [46], the fixed delay-
and-sum beamforming which assumes the locations of all
sources are known (BF) [50], and the delay-and-sum beam-
forming followed by determined BSS (BF+BSS) [50].

For source localization, we first compare the accuracy of
the peak of the spatial likelihood map obtained by the steer-
ing vector-based [42] and the proposed T-F masking-based
approaches. We then compare the multi-source localization
performance of the proposed OBSS algorithm (Proposed)
with two existing algorithms including SRP and SRP-PHAT.
To adapt these two algorithms for multi-source localization, we
localize the most dominant source in each time segment (1 s
long) and merge the results across the whole signal duration.

The thresholds used in Proposed are listed in Table II.
The blind source separation and clustering-based permutation
alignment algorithms are implemented as in [33]. We choose
2048 as the STFT frame size at sampling rate 8 kHz. With
approximate knowledge of the acoustic environment, we define
the search space R in (17) to be a box of size 5m×3m×2m
enclosing all the sources, and define the neighbourhood N in
(18) to be a sphere with radius 0.2 m. The search step is set
as 0.1 m in all three dimensions.

B. Performance Measures

We evaluate the source separation performance with signal-
to-interference ratio (SIR). Denote the mixing system H(n) =
[H1(n), · · · ,HN (n)] and the demixing system W (n) =[
W T

1(n), · · · ,W T
N (n)

]T
, the SIR of the j-th source sj in the

i-th output yi is defined as

SIRij = 10 log10

∑Ls
n=1(yij(n))2∑

j′ 6=j

∑Ls
n=1(yij′(n))2

, (36)

where yij(n) = W i(n)∗Hj(n)∗sj(n). The SIR of sj among
all the outputs is defined as the maximum value:

SIRj = max
i
{SIRij}. (37)

Representing the input and output SIR of sj as SIRin
j and

SIRout
j , respectively, the global SIR improvement by W is

defined as

SIRimp =
1

N

N∑
j=1

(
SIRout

j − SIRin
j

)
. (38)

Given SIRij , the index of the source associated with the i-th
output yi is estimated as

Ji = arg max
j
{SIRij}. (39)

The SIR regarding the OBSS filter WO can be calculated in
a similar way.

To evaluate the accuracy of the spatial likelihood peaks
calculated by different approaches, we define an objective
measure of peak error rate. Suppose the location of the spatial
likelihood peak of the DBSS output yi is r̃i (17) while the
true location is rJi (39), the peak can be seen as a correct
estimation if ||r̃i − rJi || < Td. For the M peaks of the M
DBSS outputs the peak error rate is defined as

Rpe =
Me

M
, (40)

where Me denotes the number of incorrect peaks.
We evaluate the multi-source localization performance with

recall rate and precision rate. Let the location estimated for the
i-th OBSS output zi be r̂i (17) and the true location be rJi
(39). The localization is regarded as correct if ||r̂i−rJi || < Td.
Suppose that the true number of sources is N , the estimated
number of sources is N̂ , and the number of correct estimation
is N̂c. Then the recall rate and the precision rate are

Rrecall =
N̂c

N
, Rprec =

N̂c

N̂
. (41)

C. Validation on Simulated Data

We evaluate the source separation performance in terms of
SIR improvement by the considered algorithms (Proposed,
SS, SS+BSS, BF, BF+BSS) for various M and Lt. For
each (M , Lt) configuration the SIR improvement results are
averaged across four realizations. The SIR performance of
Proposed for various M and Lt is depicted in Fig. 13.
The performance increases with Lt, though the improvement
slows as Lt increases. ICA typically requires enough data to
estimate the demixing matrix, leading to improved separation
performance with increased signal length. In most cases, the
performance of Proposed improves significantly as M is
increased from 10 to 25. However, when M ≥ 25, the
performance improves slowly with M when Lt > 15 s, and
even decreases with M when Lt ≤ 15 s. This is because the
demixing matrix estimation task becomes more challenging.
The performance of ICA degrades if there are not enough data,
leading to decreased SIR in case of large M but small Lt.

Fig. 14 depicts the SIR performance of the five considered
algorithms for various M and Lt. Proposed performs best
when Lt > 10 s. Proposed performs similarly to BF+BSS
when Lt = 10 s, but performs worse than BF+BSS when
Lt = 6 s. The rank of the other four algorithms can be
BF+BSS>SS+BSS>BF>SS. The performance of SS and BF
is improved significantly when combined with BSS. For both
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Fig. 13. SIR improvement by Proposed for a varying number of
microphones (M ) and length of signal (Lt). In most cases, the performance
improves with M . For Lt ≤ 10 and M ≥ 20 the performance decreases
with increasing M due to lack of enough data.
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Fig. 14. SIR improvement by the considered algorithms for a varying number
of microphones (M ) and length of signal (Lt). In most cases, the performance
of the Proposed algorithm improves with M . For Lt ≤ 10 and M ≥ 20
the performance decreases with increasing M due to lack of enough data.

SS and SS+BSS the SIR performance remains almost constant
with respect to M and Lt. For BF and BF+BSS the SIR
performance improves with increasing M but independent of
Lt. Note that both BF and BF+BSS require the number and
locations of the sources to be known.

We compare the accuracy of the spatial likelihood peaks
obtained by the steering vector-based and the T-F masking-
based approaches. Fig. 15 depicts the peak error rate (Rpe)
of the two approaches for various M and Lt. The result
for each (M , Lt) configuration is obtained by averaging
the four realizations. It is observed that the masking-based
approach performs slightly worse than the steering vector-
based approach when M < 20, but outperforms it significantly
especially when M ≥ 30. The performance degradation of the
steering vector-based approach for large M is mainly due to
the intra-source ambiguity, which more sever with increasing
M . In contrast, the masking-based approach is not affected by
intra-source ambiguities, with peak error rate varying slightly
with M . Since the performance of the two approaches is
complimentary for large and small M , combining the two
could lead to better localization results.

We compare the multi-source localization performance of
the Proposed, SRP, SRP-PHAT algorithms. Fig. 16 depicts
the recall rate (Rrecall) and precision rate (Rprec) of the three
algorithms for various M and Lt. The result for each (M , Lt)
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Fig. 15. Peak error rate (Rpe) by the T-F masking-based and steering vector-
based localization approaches.
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Fig. 16. Multi-source localization performance in terms of recall rate and
precision rate for a varying number of microphones and length of signal.

configuration is obtained by averaging the four realizations.
In global, the performance improves when increasing Lt.
SRP performs worst in terms of both Rrecall and Rprec.
SRP-PHAT performs best in terms of Rprec, which remains
1 for all testing cases. However, SRP-PHAT achieves a
rather low Rprec, around 0.6, 0.7 and 0.8 for Lt = 10 s,
20 s and 30 s, respectively. SRP-PHAT detects multiple
sources by merging the localization results across multiple
time segments. Increasing signal length can increase the
possibility of detecting all the sources. Proposed performs
best in terms of Rrecall. Its performance depends on both
M and Lt. For Lt ≥ 20 s, Rrecall of Proposed improves
when increasing M . For Lt = 10 s, Rrecall improves when
increasing M for 10 ≤ M ≤ 25, and then decreases when
increasing M for M > 25. The decrease of Rrecall is due to
degraded ICA performance in case of large M but small Lt.
The remixing procedure of Proposed chooses the thresholds
that can minimize false alarms, and thus tends to overestimate
the number of sources. This is confirmed by the observation
that, when M ≥ 20 and Lt ≥ 20, Rrecall of Proposed is
close to 1 but Rprec lies between 0.9 and 1. This drawback
can be mitigated by considering the spatial likelihood: a high
spatial likelihood is usually associated with correct localization
while a low spatial likelihood leads to incorrect localization.
Combining spatial likelihoods with particle filtering [60] may
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improve the precision rate.

D. Experiment with Real-data

We use a database [26] with real recording of the scenario
in Fig. 2. The data contain environmental noise, the directivity
of the speakers and head movements. We use 30 microphones
with signal length 30 s and sampling rate 8 kHz. Since
the sound of individual speakers at the microphones is
not available, we use the BSS Evaluation Toolbox [61] to
calculate the SIR, using the close-recording of each speaker
as reference. We compare five algorithms: Proposed, SS,
SS+BSS, BF, BF+BSS.

Fig. 17 depicts the SIRs of each source in the microphone
inputs and OBSS outputs. Proposed performs best in most
cases, except when all the algorithms fail to extract the source
s5. This failure is possibly due to large head movement. The
observation that the SIR of BF is even lower than the input SIR
implies that s5 has already deviated from its original location.
As a result, s5 is even not extracted in the determined BSS
stage (which is not shown here) of Proposed.

Fig. 18 depicts the localization result by Proposed
including the true and estimated source locations and the
spatial likelihood of each estimate. It can be observed that
Proposed can accurately localize 7 out of 10 sources. s5 is
not extracted in the output, s4 is extracted as z4 and z8, and
s7 is extracted as z10 and z11. However, these falsely detected
sources usually show low spatial likelihoods, which could be
used to overcome this problem.

IX. CONCLUSION

We proposed an over-determined source separation and
localization method that can estimate the number and locations
of the sources, and separate individual sources in a reverberant
and multi-source environment. The proposed method exploits
the redundant information of a sufficient number of micro-
phones and performs well in highly reverberant scenarios.
Experiments in a very challenging acoustic scenario show the
effectiveness of the method, which improves when the number
of microphones or the duration of the signal increases.

The separation performance tends to saturate when the
number of microphones is large (cf. Fig. 13). Since the
computational cost of the proposed method grows quickly
with the number of microphones, it would be desirable to
decompose the microphone network into several subsets and
then perform ICA on each subset. The proposed method
requires the sources to be static for a sufficiently long time
interval so that the parameters of the demixing filter can
be estimated. Extending the proposed method to dynamic
acoustic scenarios will be an interesting future research
direction. Moreover, the employed parameter selection scheme
determines the threshold values based on a limited amount
of data and thus may not work optimally in all real-
world applications. An intelligent thresholding scheme that
determines the threshold values adaptively would be more
desirable. A weighted combination of the various threshold
parameters could also increase robustness. In addition, there
are some existing approaches which are able to estimate the
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Fig. 17. SIR performance for real data using 30 microphones and 30 s data.

X [m]
-2 -1 0 1 2 3 4 5

Y
 [m

]

-2

-1

0

1

True Estimated

s
2

s
3

z
4
(s

10
)

s
10 s

9
s

7

s
8

z
7
(s

8
)

s
6

z
6
(s

6
)

s
1

s
4

z
3
(s

4
)

z
5
(s

1
)

z
2
(s

2
)

z
8
(s

4
)s

5

p
1
=0.86

p
2
=0.69

p
3
=0.59

p
4
=0.56

p
5
=0.51

p
6
=0.44

z
1
(s

3
)

z
10

(s
7
)

z
9
(s

9
)

p
7
=0.42

p
8
=0.26

p
9
=0.16

p
10

=0.11

p
11

=0.08

z
11

(s
7
)

Fig. 18. True and estimated source locations by the proposed OBSS method
for real data, as well as the spatial likelihood of each estimated source. zi(sj)
denotes the association between output zi and source sj .

number of sources directly from the microphone signals [62],
[63]. Combining these approaches with our proposed remixing
procedure may help better address the intra-source ambiguity
problem.
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