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A Local Join Counts Methodology for Spatial Clustering in Disease from Rela-
tive Risk Models

Peter Congdon, School of Geography, Queen Mary University of London, Mile End Rd,
London E1 4NS, UK
Email: p.congdon@qmul.ac.uk

Abstract.
This paper considers adaptation of hierarchical models for small area disease counts to detect
disease clustering. A high risk area may be an outlier (in local terms) if surrounded by low
risk areas, whereas a high risk cluster requires that both the focus area and surrounding areas
demonstrate common elevated risk. A local join count method is suggested to detect local
clustering of high disease risk in a single health outcome, and extends to assessing bivariate
spatial clustering in relative risk. Applications include assessing spatial heterogeneity in
e¤ects of area predictors according to local clustering con�guration, and gauging sensitivity
of bivariate clustering to random e¤ect assumptions.

Keywords: Relative Risk. Cluster Centre. Exceedance. Local join-count. Spatial.

1. Introduction
Spatial analyses of health outcomes at a small-area scale are important for assessing geo-
graphic heterogeneity in disease risk and detecting areas with elevated risk. However, the
small area administrative subdivisions used in such analyses are generally arbitrary and spa-
tial variations in health risk are likely to straddle small area boundaries. Hence evidence
of local clustering across sets of neighbouring areas (i.e. a between area perspective) is
of relevance to resource allocation and identi�cation of possible causal in�uences, whether
socio-economic or environmental (Han et al, 2005; Bell et al, 2008). Elevated risk identi�ed
in a particular area may not necessarily coincide with common elevated risk both in that area
and its surrounding locality of nearby areas (close in distance terms to a particular area, or
adjacent to that area). Similar issues occur in development of indices measuring area social
structure (Rae, 2009). For example Dietz (2002) mentions that "the neighborhood e¤ect
may be within or among neighborhoods. In almost all cases, the existing research examines
within neighborhood e¤ects.[...]Thus, neighborhoods with identical characteristics but dis-
similar neighboring neighborhoods are considered equivalent".

There are several possible global indices for measuring spatial correlation and clustering
across a region, but for identifying clustering in subregions, local indices of spatial asso-
ciation are more appropriate. Local spatial correlation analysis has most commonly been
applied to known area outcomes such as house prices (Anselin et al, 2006a). By contrast, in
spatial analysis of small area health outcomes under a Bayesian perspective, the outcomes,
namely relative disease risks, are taken to be unknowns, and inferences about them are
based on stochastic modelling. Typically the data on which the modelling is based consist of
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actual and expected disease counts fyi; eig. Especially when ei is small, maps of maximum
likelihood estimates of risk yi=ei will be distorted by variance instability (Lawson et al, 2000;
Anselin et al, 2006b).

In contrast to maximum likelihood estimation, hierarchical modelling of disease count data
using random e¤ects is oriented to borrowing strength between prior and likelihood, and also
takes account of the spatial correlation in latent area risks ri. Hierarchical models generally
focus on the posterior probabilities of elevated risks (often called exceedance probabilities)
in each area separately, namely the probability that ri > � r; where � r is some threshold.
The focus on exceedance does not usually pay regard to the broader local clustering pat-
tern around each area. For example, a high risk area may be an outlier (in local terms)
if it is surrounded by low risk areas, whereas a high risk cluster centre would occur when
both the area and its surrounding locality of nearby areas demonstrate common elevated risk.

The present analysis discusses the detection and measurement of di¤erent forms of local
clustering in hierarchical models for small area disease counts. It focusses especially on local
join-count statistics as these enable discrimination between di¤erent types of clustering. As
discussed in section 2, the method proposed here permits decomposition of the exceedance
probabilities into a cluster member probability and an outlier probability, and allows in-
tegrated inferences on both high and low risk clustering. For exploratory analysis with a
small number of areas, a visual assessment of clustering in exceedance probabilities may be
su¢ cient, but this does not provide the additional insights possible using the decomposition
of exceedance probabilities using local join-counts (see section 2.3 for additional discussion).

The methodology is here applied to the case where risks, and hence risk status, are un-
knowns. A Bayesian estimation strategy is adopted with prior densities speci�ed on un-
known parameters, and posterior inferences based on an MCMC estimation. Boots (2003,
2006) considers local indices of spatial association for binary mapped data with particular
focus on raster data, and with known binary values for each spatial unit. Here the focus is
on detecting risk clustering in irregular area lattice data, with latent binary status, varying
between iterations in terms of an MCMC estimation.

Applications of the methodology include assessing spatial heterogeneity in e¤ects of area
predictors (e.g. deprivation) according to local risk con�guration, and gauging sensitivity of
bivariate clustering to random e¤ect assumptions. Two case studies are carried out. The �rst
considers spatial heterogeneity in e¤ects of area deprivation on emergency hospitalisations
for chronic obstructive pulmonary disease (COPD). The spatial framework is 113 small areas
(Middle Super Output Areas or MSOAs) in four London boroughs. The second application
uses the same areas but considers bivariate clustering in rates of child obesity at di¤erent
ages (pre-primary and end-primary ages).
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2. Measures for Local Clustering in Relative Disease Risks
2.1 Join Counts for Global Disease Risk Clustering
Indices to summarise spatial association patterns in geographically close areas depend on
the form of indicator for each area (e.g. whether continuous or binary) and how spatial
interaction between areas is measured (Stevens and Jenkins, 2000). In small area health
applications, a cluster is generally de�ned as a set of neighboring high-risk areas (i.e. a high
risk cluster) or of neighboring low-risk areas (i.e. a low risk cluster), but other association
patterns may occur.

Consider binary measures of health risk status bi for areas i = 1; :::; n, namely bi = 1
for elevated risk, bi = 0 otherwise. For example, if area relative risks ri average 1 over all
areas in a region, then one could de�ne bi = 1 for ri > � r; where � r is a high risk thresh-
old, most commonly a default value � r = 1 (Wake�eld and Kim, 2013), and bi = 0 otherwise.

Let symmetric weights wij = wji measure spatial interaction (with wii = 0). One approach
to detecting global spatial clustering for binary mapped data uses join-count statistics, based
on concordance in status between pairs of areas. Thus the total of area joins where both bi
and bj are 1 (elevated risk in both areas i and j) is

J11 =
nP
i=1

nP
j=1

wijbibj; (1)

with the most commonly used binary joint count statistic being 0:5J11, also known as the
BB statistic (e.g. Bell et al, 2008). The total of joins where bi and bj are discrepant (di¤ering
health risk status in area i as compared to area j) can be written

J10 =
nP
i=1

nP
j=1

wij(bi � bj)2; (2)

while total joins where both bi and bj are 0 (low risk in both areas) can be written

J00 =
nP
i=1

nP
j=1

wij(1� bi)(1� bj): (3)

Letting S0 =
nP
i=1

nP
j=1

wij; it may be noted that the observed join-counts are interdependent,

with S0 = J11 + J10 + J00; so if two are known the other is obtained by subtraction from S0
(McKenzie et al, 2008). For binary wij based on adjacency, the join-counts (J11; J10; J00) are
integers and can be regarded as multinomial with unknown probabilities (�11; �10; �00) and
total sample size S0.

2.2 Local Join Counts for Local Clustering
One can obtain a local version of the join-count statistics in (1)-(3), namely join-counts re-
garding area i as the focus. Such local join counts are relevant to assessing whether area i
and the areas surrounding it form a high risk cluster, or demonstrate some other localized
risk pattern. For measuring common high risk, when both area i and its neighbouring areas
tend to be high risk, one obtains
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J11i = bi
nP
j=1

wijbj:

For measuring common low risk (when both area i and the areas close to it tend to be low
risk) one obtains

J00i = (1� bi)
nP
j=1

wij(1� bj):

In the case of discrepant risk status between area pairs when the focus is on area i, it
is potentially important for describing locality risk patterns to distinguish high-low risk
pairings (bi = 1, bj = 0) from low-high risk pairings (bi = 0, bj = 1). The two local join
count statistics in these cases are respectively

J10i = bi
nP
j=1

wij(1� bj);

J01i = (1� bi)
nP
j=1

wijbj.

Commonly spatial interactions wij are taken to binary, and based on whether areas i and j
are adjacent (wij = 1) or not (wij = 0). In this case, let Ni denote the neighbourhood of
area i; namely the set of areas adjacent to area i (those with wij = 1), and assume that this
neighbourhood contains Li areas (the total number of areas around i). Then the above local
join-count statistics become
J11i = bi

P
j2Ni

bj;

J10i = bi
P
j2Ni

(1� bj);

J01i = (1� bi)
P
j2Ni

bj;

J00i = (1� bi)
P
j2Ni

(1� bj):

The total number of joins with area i as the focus when wij is binary is Li = S0i, so that
Li = J11i + J00i + J10i + J01i:

2.3 Probabilities of Exceedance and their Relationship to Local Clustering Indicators
Let Ei = E(bi) be the marginal probability of elevated risk in area i. The advantage of the
local join count method is that this probability may be disaggregated to re�ect risk clustering
in the vicinity of area i. Continuing the assumption of binary adjacency, the proportion of
joins �11i focussed on area i that are joint high risk, de�ned by
E(J11i) = Li�11i;

provides a summary probability index that area i is a member of a high risk cluster. By
contrast, the proportion of joins �10i focussed on area i that are (1; 0) pairs, de�ned by
E(J10i) = Li�10i;

provides an index that area i is a high risk local outlier, though this probability may also be
relatively high for areas on cluster edges, which may be adjacent to low risk areas as well as
areas in the high risk cluster. The join count J11i = bi

P
j2Ni

bj can be written as I(bi = 1)
P
j2Ni

bj,

and it follows that
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I(bi = 1)Li = J11i + J10i (4)
and so that
Ei = �11i + �10i:

So the marginal high risk probability is the sum of the high risk cluster member probability
and the high risk local outlier probability. If all neighbours of area i are classi�ed as high
risk, then �11i ' Ei, and area i can be considered as a high risk cluster centre (i.e. an area
embedded in a high risk cluster, with all surrounding areas being high risk). If area i is high
risk, but not all neighbours of area i are high risk (e.g. for cluster edge areas), then �10i will
tend to become relatively larger as a share of Ei (this situation is considered in the simulated
data example of section 3.3). For high risk outliers �10i will generally predominate over �11i.

As to low risk clustering, the proportion of joins focussed on area i that are joint low risk, �00i,
as de�ned by E(J00i) = Li�00i; provides a summary index that area i is the member of a low
risk cluster. The proportion of joins focussed on area i that are (0,1) pairs; �01i, as de�ned
by E(J01i) = Li�01i; provides an index that area i is a low risk area, but surrounded by high
or medium risk areas (i.e. a low risk outlier). Since the join count J00i = (1� bi)

P
j2Ni

(1� bj)

can be written as I(bi = 0)
P
j2Ni

(1� bj), one has

I(bi = 0)Li = J00i + J01i;
and so that
1� Ei = �01i + �00i:

Table 1 contains a glossary of the above parameters.

The parameters (�11i; �10i; �01i; �00i) are subject to �11i+�10i+�01i+�00i = 1; and represent
probabilities that joins focused on area i show common high risk, discordant risk status be-
tween the focus area and its locality (high-low, or low-high), or common low risk. If spatial
interaction is based on adjacency, these represent multinomial probabilities of generating the
join pattern (J11i; J10i; J01i; J00i) among the Li joins focused on area i.

The information provided by the above decompositions of Ei and 1 � Ei allows direct in-
ferences on clustering patterns (both on high risk and low risk clustering). It extends to
allowing identi�cation of spatial outliers. This strategy can be adapted to allow for model
uncertainty during MCMC estimation, as in methods which allow retention (or not) of sets
of random e¤ects or covariates (e.g. Scheipl et al, 2012). One might instead consider analysis
of posterior mean estimates of the exceedance rates Ei themselves, for example by cluster
analysis of the Ei subject to contiguity constraints (e.g. Recchia, 2010). Such a strategy does
not, however, allow for model uncertainty, and raises questions about sensitivity of inferences
to the choice of clustering algorithm. One could possibly include a contiguity constrained
clustering algorithm within the MCMC sampling, so that at each iteration t the risks r(t)i ; or
status indicators b(t)i ; are subject to clustering, but this may be computationally intensive.
Another possible strategy involves simply visual assessment of clustering in exceedances at
a set threshold (for example, Ei > 0.8, in the case of high risk clustering), and this might
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be feasible for a relatively small number of areas. The latter strategy may be sensitive to
cutpoints on the Ei, and becomes infeasible for a large number of areas, such as the 3144
US counties, or MSOAs across England.

3. Discrimination between Local Clustering Patterns under Relative Risk Mod-
els
3.1 Modelling and Assessing Relative Risk
In disease mapping applications the classi�cation of an area as high or low risk typically
depends on unknown parameters. Consider disease counts (yi; i = 1; ::; n); with expected
values ei obtained by multiplying area populations by the region-wide disease rate, and withP
i

yi =
P
i

ei. Then subject to the necessity to take account of overdispersion, the yi may be

taken as Poisson,
yi � Poi(eiri); (5)

where ri denotes relative disease risk in area i. A number of studies support the utility of the
convolution prior of Besag et al (1991) (or BYM prior after the authors) in analyzing spatial
health variations and identifying areas with excess risk (Lawson et al, 2000; Richardson et
al, 2004). This model involves two sets of random e¤ects for each area, namely si represent-
ing a relatively smooth underlying spatial e¤ect, and an iid random e¤ect ui to represent
overdispersion. Assuming spatial interaction is represented by binary adjacency, one has the
intercept only regression
log(ri) = �0 + ui + si; (6)

where the ui are iid Normal errors, ui � N(0; �2u), while the si follow a conditional spatially

autoregressive scheme, sijs[i] v N
 P
j2Ni

sj=Li; �
2
s=Li

!
; where s[i] represents the collection of

s e¤ects excluding si, and Li is the number of areas adjacent to area i.

Disease mapping models often have particular focus on assessing the probability of elevated
risk in a particular area. Assuming a Bayesian estimation approach with sampling over
MCMC iterations t = 1; ::; T , let r(t)i = exp(�

(t)
0 +u

(t)
i + s

(t)
i ) denote the relative risk in area i

at iteration t under the BYM prior. Then one may de�ne binary indicators b(t)i = I(r
(t)
i > � r),

where � r is a high risk threshold (most commonly � r = 1), with posterior probabilities of

locally elevated risk Pr(ri > � rjy) = Pr(bi = 1jy) then estimated as bEi = 1
T

TX
t=1

b
(t)
i :

Areas with probabilities bEi > �E exceeding some threshold probability (e.g. �E=0.8 or
0.9) can be classi�ed as high risk. Decision rules for suitable (� r; �E) providing optimal
trade o¤ between false positive and false negative classi�cations have been proposed; for ex-
ample, Richardson et al (2004) propose (� r = 1; 0:7 < �E < 0:8) based on a simulation study.

Detection of low risk can be based on binary indicators d(t)i = 1 � b(t)i = I(r
(t)
i < � r).

Posterior probabilities of locally depressed risk Pr(ri < � rjy) = Pr(bi = 0jy) are estimated
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as bDi = 1 � bEi = 1
T

TX
t=1

d
(t)
i ; and classi�cation of areas as low risk can be made for bDi su¢ -

ciently high.

3.2 Cluster Detection Rules based on Disease Risk Models
However, signi�cance assessments or detection rules for each area separately detect only "hot
spot" exceedance (i.e. single areas with elevated risk) (Lawson, 2013, p. 123), and do not
provide evidence on clustered patterns of risk in the neighbourhood encompassing each area
and surrounding areas. Building on the decision rules used for detecting single area elevated
risk, may be proposed cluster detection rules. From the indicators b(t)i = I(r

(t)
i > � r) at each

MCMC iteration, local join counts; namely J (t)11i; J
(t)
10i; J

(t)
01i and J

(t)
00i; can be obtained. In turn

estimates of �11i and �10i are obtained as b�11i = TP
t=1

J
(t)
11i=(TLi); and b�10i = TP

t=1

J
(t)
10i=(TLi): It

follows from relation (4) thatbEi = b�11i + b�10i;
namely the estimated marginal probability of elevated risk (a frequent focus in relative risk
models) can be obtained as the sum of the estimated high risk cluster member probability
and the estimated high risk local outlier probability. Similarly from the relation I(bi =
0)Li = J00i + J01i one hasbDi = b�00i + b�01i;
namely that the estimated marginal probability of depressed risk can be obtained as the sum
of the low risk cluster probability estimate and the local low risk outlier probability estimate.

Based on these relations, one may categorise areas according to their local cluster con�gu-
ration, and such con�gurations may have relevance in analysing heterogeneity in outcomes
and predictor e¤ects (see section 4). Clusters of areas according to risk could be obtained
by conventional cluster analysis methods but the approach here re�ects both varying risk
levels and spatial clustering patterns. For example, supposing n1 areas are classi�ed as high
risk (e.g. if bEi > 0:95), one may subdivide such areas into n11 high risk cluster centres
(e.g. when both bEi > 0:95 and bEi > b�11i > 0:9), and n10 other high risk areas (whenbEi > 0:95 but b�11i < 0:9). This other high risk group encompasses (a) high risk "cluster
edge" areas, where b�11i is lowered (as compared to cluster centre areas) because the area
has both high risk and low risk neighbours, and (b) high risk local outliers with mainly low
risk neighbours. Similarly, supposing there are n0 low risk areas (e.g. areas with bDi > 0:95),
one may subdivide this total into n00 low risk cluster centres (e.g. if both bDi > 0:95 andbDi > b�00i > 0:9); and n01 other low risk areas (if bDi > 0:95 but b�00i < 0:9): There are likely
to remain nI = n�n1�n0 residual (intermediate risk) areas with neither high bEi nor high bDi.

The above scheme implies clustering into 5 groups based both on varying risk and on the
associated spatial clustering patterns. This provides an alternative to conventional cluster
analysis in speci�cally taking account of spatial clustering. More disaggregated clustering
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schemes (with more than 5 groups) could be devised. For example, one could distinguish
within the "other high risk" group a further sub-group of local high risk outliers (e.g. wherebEi > 0:95 and b�10i > b�11i); and within the "other low risk" group a further sub-group of
local low risk outliers (where bDi > 0:95 and b�01i > b�00i):
3.3 Simulations for Known Clustering Scenarios
Varying frequencies of events, and location of areas within clusters, may both a¤ect clas-
si�cation of areas as high risk and their cluster status, for example as cluster centres or
edges. To demonstrate such e¤ects for known clustering patterns, we use the same spatial
framework as in the case studies in sections 4 and 5, namely 113 MSOAs (Middle Level Su-
per Output Areas) in four London boroughs (Barking & Dagenham, Havering, Redbridge,
Waltham Forest).

Under the �rst scenario (scenario A), three clusters of MSOAs with elevated risk are de-
�ned, with the relative risk set at 1:75 in the 15 areas in the three clusters, and with relative
risk (background risk) in remaining 98 areas set at RRB = 0:89. Figure 1 shows the location
of the three high risk clusters. It is apparent that cluster centres (high risk areas completely
surrounded by other high risk areas) are area 21 in cluster 1 (areas 16,17,18,21), areas 23
and 25 in cluster 2 (areas 22,23,25,27,28), and area 66 in cluster 3 (areas 61, 63, 66, 68, 72,
74).

Three di¤erent average event frequencies are considered: average ei of 20, 60 and 100, with
corresponding total expected events of 2260, 6780 and 11300. In practice, because yi are
necessarily integers, there will be minor calibration around the products eiRRB to ensureP
i

yi =
P
i

ei. Thus when
X
i

ei = 6780, one has yi = 1:75 � 60 = 105 in the 15 high risk

areas, and yi = 53 (the integer part of 0:89� 60 + 0:5) in all remaining areas, except for 11
areas with yi = 54, to ensure that

X
i

yi = 6780:

We adopt the likelihood and model as in equations (5)-(6). The risk threshold to decide
risk status bi is set at � r = 1. Appendix 1 contains a listing of the Winbugs code for this
analysis. Inferences are based on the second halves of two chain runs of 50,000, with con-
vergence assessed according to BGR statistics (Brooks & Gelman, 1998). For each of the
15 high risk areas, Table 2 reports the hot spot probabilities bEi = Pr(bi = 1jy); high risk
cluster member probabilities b�11i and high risk outlier probabilities b�10i: Also shown are the
average of these two probabilities in the 98 areas not in the high risk clusters. Table 2 further
shows the number of areas adjacent to each of the 15 high risk areas, and the number of such
neighbours which are high risk under the particular clustering scenario shown in Figure 1.
For example, area 61 is a "cluster edge" area, adjacent to two high risk areas, but also to
three areas with background risk.

It can be seen from Table 2 that for a relatively low frequency event (average ei = 20),
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the four cluster centre areas (21, 23, 25 and 66) have posterior mean �11i of 0.96, 0.98, 0.98
and 0.96 respectively, only slightly below the estimated Ei. The 11 remaining areas which
are in the high risk clusters, but are also adjacent to some background risk areas, have lowerb�11i values (between 0.69 and 0.82), and b�10i values which are a higher proportion of the total
exceedance probability estimate. The lowest estimated b�11i = 0.69 is for the "cluster edge"
area 61. The remaining 98 non-cluster areas have b�11i averaging 0.18, and with a maximum
of 0.47. The pair of clustering probabilities {b�11i;, b�10i } thus together distinguish the high
risk clusters from remaining background risk areas, and cluster centres from cluster edges.

For more frequent events (with average ei of 60 or 100), the classi�cation error for the
cluster centres is eliminated, with estimated Ei and �11i both equal to 1 for areas 21, 23,
25 and 66. The cluster edge status of the remaining 11 high risk areas also becomes more
apparent: for the highest frequency (average ei=100), �ve such areas (17,18, 28, 61 and 72)
have b�11i under 0.6, while bEi = 1:
Another scenario (scenario B) is developed to compare the cluster status probability es-
timates between two situations: (i) when high risk characterises all neighbours surrounding
area i (so area i is a true cluster centre), and risk is evenly distributed among such neighbors,
and (ii) when high risk is not common to all neighbours, but unevenly concentrated among a
few neighbors, so area i is a potential cluster edge. Consider the most westerly cluster (cluster
3) in Figure 1. Situation (i) is already considered under scenario A, which has a relative risk
of 1.75 across areas (61,63,66,68,72,74), and 66 represents a true cluster centre. To represent
the uneven risk situation (ii), instead of assuming area 68 is high risk, we assume r68 = 0:34,
with area 66 remaining with risk 1.75, while areas 61, 63, 72 and 74 have risks set at 2.15 (see
Figure 2). The average risk across the six areas remains similar to scenario A, namely 1.78,
but the risk pattern is more uneven, with area 66 now no longer a cluster centre (and even
a potential cluster edge), and area 68 now potentially a low risk outlier. The risk con�gura-
tion across the remaining 107 areas remains as in scenario (A), and the average ei is set at 60.

Primary goals here are to assess whether the �11i distinguish between the two scenarios
regarding the west cluster, especially the status of area 66, and whether the �01i re�ect the
low risk in area 68. Table 3 shows that under situation (ii), area 68 now has bEi = 0; and also
has a low risk outlier probability of b�01i = 0:65; re�ecting its own low risk but its contiguity
to high risk areas. As to area 66, the even risk scenario (upper panel) has bEi = b�11i = 1;

while the uneven risk scenario (lower panel) has bEi = 1; but b�11i reduced to 0.75. Despite
the fact that three of its four neighbours have elevated risk (RR=2.15), this area is no longer
recognized as a cluster centre. Given that the relevant estimated bEi are either 1 or 0, the
value b�11i = 0:75 re�ects the fact that one of the four neighbours is now low risk.
4 Case Study 1: Impacts of Deprivation on COPD Emergency Admissions.
We now consider real data for the same set of areas as in the preceding simulations. Thus
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chronic obstructive pulmonary disease (COPD) is a major cause of emergency (unplanned)
hospital admission, and in the UK there is concern about the rise in such admissions (Jones,
2009). Emergency admissions for respiratory conditions such as COPD may be classed as
ambulatory sensitive, that is potentially avoidable with e¤ective preventive care in primary
and community settings (Tian et al, 2012). The geographical distribution of COPD emer-
gency admissions is therefore policy relevant.

The analysis uses admission totals yi over the period 2006/07 to 2010/11 in the 113 MSOAs.
Expected admissions ei are based on an England wide schedule of age speci�c rates, with
scaling to ensure

P
i

yi =
P
i

ei. The average admission count is 77.1. We consider models

with and without ecological predictors, and show how a cluster con�guration scheme (see
section 3.2) may show further light on heterogeneity in event risk and predictor e¤ects.

A baseline model (model 1) is provided by the Besag et al (1991) convolution or BYM
model with intercept only:
log(ri0) = �00 + ui0 + si0:

A �at prior on �00 is assumed, and a gamma prior on the precision 1=�
2
s with index 1 and

shape 0.001 (e.g. Besag et al, 1995; Higdon, 2007). Improved convergence is obtained by
linking random e¤ect precisions; thus 1=�2u = �=�

2
s, where � is assigned an exponential prior

with rate 1. Inferences from this and subsequent models are based on the second halves of
two chain runs of 50,000, with convergence assessed according to BGR statistics (Brooks &
Gelman, 1998). Fit is assessed using the Deviance Information Criterion or DIC (Spiegel-
halter et al, 2002).

Estimates of localized (i.e. hotspot) status bEi are obtained by monitoring over iterations
t the binary indicators b(t)i (when r(t)i > � r = 1); from which one obtains local join counts
J
(t)
11i; J

(t)
10i; J

(t)
01i and J

(t)
00i. Various thresholds on bEi for assigning elevated risk make little dif-

ference to totals of areas classed as having hotspot status. For example, taking bEi > 0:95
gives n1 = 38 high risk areas, while taking bEi > 0:75 gives n1 = 44 high risk areas:
Cluster con�guration categories (section 3.2) may be de�ned on the basis of this baseline
model. Thus areas are de�ned as high risk cluster centres if both bEi > 0:95 and b�11i > 0:9;
and other high risk if bEi > 0:95 but b�11i < 0:9; giving n11 = 10 and n10 = 28. Low risk
areas are de�ned for bDi > 0:95, as low risk cluster centres if both bDi > 0:95 and b�00i > 0:9;
and as other low risk if bDi > 0:95 but b�00i < 0:9; giving n00 = 21 and n01 = 23. There are
nI = n� (n1 + n0) = 113� (38 + 44) = 31 unclassi�ed (intermediate risk) areas.

Di¤erences in COPD risk levels according to these categories is apparent �rst if admis-
sions and expected events are cumulated over areas within the categories, providing what
are sometimes called standard hospitalisation ratios (SHR). The SHR for the high risk clus-
ter centres is 1.78, for other high risk areas is 1.57. By contrast, the SHR for low risk cluster
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centres is 0.56, and for other low risk areas is 0.65. The averages of the modelled relative
risks (ri) over areas within each of the cluster categories are very similar: 1.74 for high risk
cluster centres, 1.58 for other high risk areas, 0.57 for low risk cluster centres and 0.66 for
other low risk areas.

Figure 3 maps out these categories and provides a single graphical summary of varying
types of local clustering. It can be seen that there is a belt of nine contiguous areas in the
centre south of the region which are all classi�ed as high risk cluster members. So de�nitive
and spatially continuous high risk, spreading across administrative area boundaries, is most
evident here, and would provide a basis for a public health intervention to establish why
there are so many emergencies, or promote higher uptake of preventive strategies such as
COPD self-management education (Purdy, 2010). High risk also appears in the south west
of the region but is more fragmented, with intermediate risk areas also present. There are
two belts of areas containing low risk cluster centres, demonstrating de�nitive low risk that
spreads across administrative area boundaries.

Emergency hospital admissions are often positively related to area social deprivation (Simp-
son and Hippisley-Cox, 2010), and so a predictor xi is provided by the logarithm of the
percent of households in poverty (2007/2008) in each MSOA. In the model
log(ri1) = �01 + ui1 + si1 + xi�11;

a N(0,1000) prior is assigned to �11: This model provides a better �t, although the reduction
in DIC is not large (898.2 as against 901.1). The posterior mean (95% CrI) on �11 is 0.76
(0.48, 1.05). In order to assess spatial heterogeneity in predictor e¤ects (e.g. Sridharan et
al, 2011) a varying coe¢ cient model is applied with
log(ri2) = �02 + ui2 + si2 + xi(�12 + vi2);

where vi2 is a random e¤ect following a conditional autoregressive prior (see section 3.1) with
zero mean over all n areas: This model produces a further slight reduction in DIC to 897.1.

However, despite the modest gain in global �t, other forms of heterogeneity may be present.
Of possible policy or epidemiological signi�cance is variability in predictor e¤ects across clus-
ter con�guration categories; for example, if the e¤ect of deprivation on COPD emergency
admissions is more marked in high risk cluster centres, this could re�ect less e¤ective com-
munity care in deprived areas. Accordingly the averages of the coe¢ cients �12i = �12 + vi2
over areas within each of the �ve con�guration categories are obtained at each iteration. Let
fB(t)k ; k = 1; ::; 5g denote these averages. Heterogeneity in predictor e¤ects between con�g-
uration categories can be assessed via the indicators C(t)jk = I(B

(t)
j > B

(t)
k ); with posterior

means providing estimates that Pr(Bj > Bkjy):

Table 4 shows posterior intervals for the Bk; and estimates for the probabilities Pr(Bj >
Bkjy): It is apparent that the deprivation e¤ect is stronger for high risk areas, whether such
areas are cluster centres (k = 5) or other high risk areas (k = 4). All but one of the ten
comparisons between-cluster category coe¢ cients Bk show signi�cant di¤erences.
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5 Case Study 2: Bivariate Clustering in Health Risk, Child Obesity Rates.
The clustering criteria developed above are designed for the case where area risk status is
uncertain a priori and is based on a statistical model. Since a Bayesian approach is adopted
one facet of such a model is the prior speci�cation. Thus assessment of bivariate (or more
generally multivariate) clustering patterns may be a¤ected by alternative assumptions re-
garding random e¤ects interdependence, for example, whether random e¤ects are correlated
between outcomes as well as over areas. Such an assessment can be made using indicators
of joint outcome high risk clustering.

This case study accordingly considers interdependence in clustering patterns between two
outcomes (denoted A;B) under di¤erent assumptions. The outcomes are again for the 113
MSOAs in Outer NE London, and are: yAi, totals of children assessed as obese (accumulated
over annual readings during a three year period 2008/9 to 2010/11) at pre-primary ages (4 to
5); yBi, totals of children assessed as obese at end-primary ages (10 to 11). The average obese
count in each MSOA at ages 4-5 is 34.1, and the average at ages 10-11 is 55.8. Expected
totals eAi and eBi are obtained by multiplying total child populations in each MSOA by the
regional obesity rates, 0.117 and 0.214. This ensures

P
i

yAi =
P
i

eAi; and
P
i

yBi =
P
i

eBi:

Rising child obesity is a major focus of public health concern in the UK and elsewhere
(National Audit O¢ ce, 2006), and elevated bivariate risk (high obesity at both pre-primary
and end-primary ages) in spatially contiguous areas provides a rationale for targeted interven-
tion (National Obesity Observatory, 2011). It would also be possible to focus on pre-primary
obesity and increased obesity between pre-primary and end-primary ages, since some areas
may show greater increases in child obesity during primary ages.

Consider the joint high risk indicators
bABi = I(rAi > 1; rBi > 1);

which can be obtained from monitoring r(t)iA and r
(t)
iB in the models

log(riA) = �0A + uiA + siA;
log(riB) = �0B + uiB + siB:

One may obtain exceedance probabilities EABi = E(bABi); as for the univariate case. To
assess high risk joint clustering, the corresponding local join-counts under binary adjacency,
and assuming bAi = I(rAi > 1); and bAi = I(rBi > 1); are
JAB11i = bABi

P
j2Ni

bABj = bAibBi
P
j2Ni

bAjbBj:

The proportion of joins �AB11i focussed on area i that are joint high risk over both outcomes,
de�ned by
E(JAB11i) = Li�AB11i;

provides a summary probability index of that area i is a member of a high risk cluster
on both outcomes. From sampled indicators b(t)ABi at MCMC iterations t = 1; ::; T , bivari-
ate local join counts; namely J (t)AB11i can be obtained, with estimates of �AB11i obtained as
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b�AB11i = TP
t=1

J
(t)
AB11i=(TLi). The remaining three local join counts and cluster status proba-

bilities (adapted to the bivariate case) can be obtained analogously.

The number and spatial pattern of areas with elevated bivariate clustering may be com-
pared according to di¤erent prior assumptions regarding random e¤ects. Two alternative
prior speci�cations regarding the random e¤ects are compared. Under the �rst (model 1),
the e¤ects uiA and uiB are a priori uncorrelated with each other. However, the spatial ef-
fects siA and siB are taken to follow a bivariate conditional autoregressive (CAR) prior (e.g.
Neelon et al, 2012). Then the conditional density of si = (siA; siB) is bivariate normal, with
means
E(siAjs[i]A) =

P
j2Ni

sjA=Li; E(siBjs[i]B) =
P
j2Ni

sjB=Li;

and within area 2� 2 precision matrix
Prec(sijs[i]) = Li�;

where � is assigned a Wishart prior with 2 degrees of freedom and an identity scale matrix.
This model has a DIC of 1534.6. Considering high risk exceedance probabilities, there are
respectively 14, 16 and 4 areas with bEAi > 0:9; bEBi > 0:9; and bEABi > 0:9: Numbers of
areas with univariate cluster member probabilities b�A11i > 0:85 and b�B11i > 0:85 (repre-
senting high risk clustering in each outcome separately) are respectively 5 and 5. There
are, however, no areas with probabilities of joint cluster member status (b�AB11i) exceeding
0.85. By contrast, considering low risk clustering, there are respectively 18 and 35 areas with
univariate cluster member probabilities b�A00i > 0:85 and b�B00i > 0:85, and 14 areas with
probabilities of joint cluster member status (b�AB00i) exceeding 0.85.
A second option (model 2) is a shared factor or shared component model, speci�ed as
log(riA) = �0A + uiA + �Asi;
log(riB) = �0B + uiB + �Bsi;

where si is a univariate conditional autoregressive prior. To ensure identi�cation, it is
assumed that �A = 1; with the variance of the si an unknown. Speci�cally, a gamma
Ga(1,0.001) prior is assumed on the precision 1=�2s. The unknown loading �B is assigned an
exponential E(1) prior. This model reduces the DIC to 1522.6, while the number of areas
with probabilities b�A11i and b�B11i exceeding 0.85 are now respectively 14 and 17. There are
also now 6 areas with estimated probabilities b�AB11i of joint high risk cluster member status
exceeding 0.85. As to low risk clustering, there are 25 areas with probabilities of joint cluster
member status (b�AB00i) exceeding 0.85.
Figure 4 maps out the location of areas with high cluster member probabilities under this
model. The �high risk cluster� category shows areas with b�AB11i>0.85, and the �low risk
cluster�category shows areas with b�AB00i>0.85.
The proposed clustering indicators thus clearly demonstrate how spatial clustering in multi-
ple indicators of a health outcome can be detected. It is also apparent that inferences about
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the spatial patterning of bivariate risk may be in�uenced by alternative priors for borrowing
strength between outcomes.

7 Conclusions
Spatial analyses of health outcomes at a small-area scale are important for assessing ge-
ographic heterogeneity in disease risk and detecting areas with elevated risk. Exceedance
probabilities for each area separately (hotspot probabilities) are often used to summarise
variations in relative risk, but may not necessarily coincide with common elevated risk both
in an area and its surrounding locality of nearby areas.

The present study has suggested how local join count statistics can be used to detect risk
clustering in area lattice data, and distinguish between cluster centres with elevated risk,
cluster centres with depressed risk, cluster edge areas, and also outlier areas with dissimilar
risk from their neighbours. A Bayesian perspective is proposed, and has utility when bi-
nary indicators of relative risk status are latent and determined by a statistical model. The
methodology extends straightforwardly to multiple health outcomes, where routine spatial
scan statistics are not available.

Applications of the methodology include development of a typology of areas taking account
both of hotspot status and local clustering in high and low risk. This cluster typology de-
tected pronounced risk variation in the analysis of COPD emergency admissions, and also
showed heterogeneity in e¤ects of area predictors according to cluster. Another potential
application is in gauging sensitivity of joint clustering patterns implied by statistical mod-
elling to alternative borrowing strength assumptions.

Possible adaptations of the methods proposed here include bivariate exploratory spatial
analysis considering a health outcome (outcome A) and area risk factor (outcome B). The
focus would be on detecting clusters of areas where elevated health risk and elevated levels
of the risk factor coincide. Another possible variation would be trinary join counts (Zhang
and Zhang, 2008), allowing for an intermediate risk category between low and high risk. A
space-time perspective can also be developed using period-speci�c local join counts.
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Appendix 1 Winbugs Code

The following is the code for the model log(ri) = � + ui + si in the simulated data analysis.
Convergence is improved by linking the precision parameters; thus 1=�2u = �=�2s, where �
is assigned an exponential prior with rate 1. The vectors �map� in the code contains the
binary adjacency matrix. With N areas and NN joins, the vector C is of length NN+1 and
contains cumulated Li, with initial element C1 = 0, next element C2 = L1, next element the
total C3 = L1 + L2, following element C4 = L1 + L2 + L3, and so on.
model {for (i in 1:N) {# likelihood
y[i] ~dpois(mu[i]); mu[i] <- e[i]*r[i]
log(r[i]) <- beta0+u[i]+s[i]
u[i] ~dnorm(0,tau.u);
# risk status
b[i] <- step(r[i]-1);
# deriving join counts
for (j in C[i]+1:C[i+1]) { join11[i,j] <- b[i]*b.map[j]
join10[i,j] <- b[i]*(1-b.map[j])
join01[i,j] <- (1-b[i])*b.map[j]
join00[i,j] <- (1-b[i])*(1-b.map[j])}
J11[i] <- sum(join11[i,C[i]+1 : C[i+1]]); J10[i] <- sum(join10[i,C[i]+1 : C[i+1]])
J01[i] <- sum(join01[i,C[i]+1 : C[i+1]]); J00[i] <- sum(join00[i,C[i]+1 : C[i+1]])
# pi11, pi10, pi01, pi00
pi.L[1,i]<- J11[i]/L[i]; pi.L[2,i]<- J10[i]/L[i]; pi.L[3,i]<- J01[i]/L[i]; pi.L[4,i]<- J00[i]/L[i]}
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# neighbourhood vector of risk status indicators
for (i in 1:NN) {b.map[i] <- b[map[i]]}
# priors
beta0 ~d�at(); tau.s ~dgamma(1,0.001); rho ~dexp(1); tau.u <- rho*tau.s
s[1:N] ~car.normal(map[], wt[], L[], tau.s)
for (i in 1:NN) { wt[i] <- 1}}
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Table 1 Glossary of Symbols 

ri  Relative risk in area i 

bi  Binary risk status (=1 for elevated risk, =0 for depressed risk) 

r  Relative Risk threshold for defining risk status (e.g. r =1) 

wij  Elements of spatial interaction matrix W, continuous or binary (using adjacency) 

 
S0 

 


i
 
j
wij, namely total interactions across entire map 

 

S0i  
j
wij, namely total interactions with area i as focus  

Li  Total neighbours of area i (Li = S0i when W has binary elements) 

Ni  Neighbourhood of area i (containing Li areas adjacent to area i) when wij are binary 

J11  
i
 
j
wij bibj. Global black‐black join count, namely total joins across entire map where 

both bi and bj are 1 (elevated risk in areas i and j) 

J00  
i
 
j
wij (1‐bi)(1‐bj). Global white‐white join count, namely total joins across entire 

map where both bi and bj are 0 (depressed risk in areas i and j) 

J11i  bij
wijbj. Local black‐black join count, with focus on area i, namely total joins where 

bi=1 and neighbours also have bj=1. When wij binary, J11i=bi  
j∈Ni

bj 

J10i  bij
wij(1‐bj). Local black‐white join count, with focus on area i, namely total joins 

where bi=1 but neighbours have bj=0. When wij binary, J10i=bi  
j∈Ni

(1‐bj). 

J01i  (1‐bi)j
wijbj. Local white‐black join count, with focus on area i, namely total joins 

where bi=0 but neighbours have bj=1. When wij binary, J01i=(1‐bi)  
j∈Ni

bj. 

J00i  (1‐bi)j
wij(1‐bj). Local white‐white join count, with focus on area i, namely total joins 

where bi=0 and neighbours also have bj=0. When wij binary, J00i=(1‐bi)  
j∈Ni

(1‐bj). 

Ei	 Pr bi 1 .	High	risk	exceedance probability, probability that bi=1.

Di	 Pr bi 0 1‐Ei.	Low risk exceedance probability.

π11i  Probability of high risk cluster membership. For binary adjacency, E(J11i)=Li	π11i
π10i  Probability of high risk outlier. For binary adjacency, E(J10i)=Li π10i 

π01i  Probability of low risk outlier. For binary adjacency, E(J01i)=Li π01i 

π00i  Probability of low risk cluster membership. For binary adjacency, E(J00i)=Li	π00i 

 



 

Table 2 Detecting Elevated Risk (Hotspots and Clusters), Simulated Data 

Estimated Exceedance and Cluster Status Probabilities For Differing Event Frequencies 

   Average ei=100  Average ei=60  Average ei=20 

Area 
identifier 
(see Figure 

1) 

Total 
neigh‐
bours 

Total 
high risk 
neigh‐
bours 

E i  

11i  


10i  E i  


11i  


10i  E i  


11i  


10i 

16  5  3  1.00  0.68  0.32  1.00  0.71  0.29  0.98  0.79  0.19 

17  6  3  1.00  0.58  0.42  1.00  0.61  0.39  0.98  0.71  0.27 

18  7  3  1.00  0.54  0.46  1.00  0.58  0.42  0.98  0.72  0.26 

21  3  3  1.00  1.00  0.00  1.00  1.00  0.00  0.98  0.96  0.02 

22  4  3  1.00  0.82  0.18  1.00  0.84  0.16  0.99  0.89  0.10 

23  3  3  1.00  1.00  0.00  1.00  1.00  0.00  0.99  0.98  0.01 

25  4  4  1.00  1.00  0.00  1.00  1.00  0.00  1.00  0.98  0.01 

27  6  3  1.00  0.61  0.39  1.00  0.65  0.35  0.99  0.76  0.23 

28  7  3  1.00  0.54  0.46  1.00  0.58  0.42  0.98  0.71  0.27 

61  5  2  1.00  0.54  0.46  1.00  0.61  0.39  0.97  0.69  0.28 

63  6  4  1.00  0.76  0.24  1.00  0.80  0.20  0.97  0.82  0.15 

66  4  4  1.00  1.00  0.00  1.00  1.00  0.00  0.98  0.96  0.02 

68  7  4  1.00  0.65  0.35  1.00  0.69  0.31  0.97  0.75  0.22 

72  7  3  1.00  0.56  0.44  1.00  0.61  0.39  0.98  0.71  0.27 

74  6  3  1.00  0.62  0.38  1.00  0.65  0.35  0.98  0.76  0.22 

Average, 15 High Risk Areas  1.00  0.73  0.27  1.00  0.75  0.25  0.98  0.81  0.17 

Average, Other 98 Areas  0.13  0.03  0.10  0.18  0.05  0.13  0.37  0.18  0.19 

 



 

Table 3 Cluster Centres and Cluster Edges under Different Risk Patterns 

Known 
Cluster 
Pattern 

Area 
identifier (see 
Figures 1 and 

2) 

E i 



11i  

(High risk 
cluster 

member) 



10i  

(High risk 
outlier) 



01i  

(Low risk 
outlier) 



00i 

 (Low risk 
cluster 

member) 

Scenario i 
(even risk, 
area 66 as 
cluster 
entre) 

61  1  0.61  0.39  0  0 

63  1  0.80  0.20  0  0 

66  1  1  0  0  0 

68  1  0.69  0.31  0  0 

72  1  0.61  0.39  0  0 

74  1  0.65  0.35  0  0 

Scenario ii 
(uneven risk, 
area 66 no 
longer 
cluster 

centre, area 
68 low risk 
outlier) 

61  1  0.37  0.63  0  0 

63  1  0.61  0.39  0  0 

66  1  0.75  0.25  0  0 

68  0  0.00  0.00  0.65  0.35 

72  1  0.59  0.41  0  0 

74  1  0.46  0.54  0  0 

 



Deprivation 

Parameter
Mean 2.5% 97.5%

B1 0.779 0.574 1.010

B2 0.706 0.508 0.947

B3 0.677 0.445 0.935

B4 0.884 0.681 1.108

B5 0.903 0.708 1.127

Pr(B2>B1|y) 0 Pr(B4>B3|y) 1

Pr(B3>B1|y) 0 Pr(B5>B1|y) 1

Pr(B3>B2y) 0.034 Pr(B5>B2|y) 1

Pr(B4>B1|y) 1 Pr(B5>B3|y) 1

Pr(B4>B2|y) 1 Pr(B5>B4|y) 0.878

Table 4 Deprivation Effects on COPD Emergency Admissions

by Cluster Configuration Category*

Probabilities of differing deprivation effects

*Categories: 5 High risk cluster centre, 4 Other high risk, 

3 Low risk cluster centre, 2 Other low risk, 1 Intermediate risk



 

Figure 1 High Risk Clusters, Outer NE London MSOAs. Scenario for Simulations 

 

 

Figure 2 Uneven Risk Pattern, West Cluster. Scenario for Simulations 

   



 

Figure 3 Cluster Configurations, Emergency COPD Admissions 

   



 

Figure 4 High Risk and Low Risk Bivariate Clusters, Pre‐Primary Obesity and End‐Primary Obesity 




