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Abstract

We characterize different cell states, related to cancer and ageing phenotypes, by a measure of entropy of network
ensembles, integrating gene expression values and protein interaction networks. The entropy measure estimates the
parameter space available to the network ensemble, that can be interpreted as the level of plasticity of the system
for high entropy values (the ability to change its internal parameters, e.g. in response to environmental stimuli), or
as a fine tuning of the parameters (that restricts the range of possible parameter values) in the opposite case. This
approach can be applied at different scales, from whole cell to single biological functions, by defining appropriate
subnetworks based on a priori biological knowledge.

Network entropy was able to characterize specific pathological (relapsing/metastatic samples) or extreme longevity
(successful ageing samples, including centenarians) conditions. For the cancer “case-control” situation (primary
tumour samples which developed metastasis/relapsed or not) we observed a global reduction of entropy for the most
aggressive tumor samples, both at a whole-genome level and for a statistically significant selection of genes, as if
a specific genetic profiling was necessary to obtain such specific conditions. The ageing dataset was characterized
globally by a smaller entropy for the extremely aged group, and by a non-monotonic trend for the genes significantly
changing over time, coherent with the previous whole-genome studies. Moreover, scaling the analysis from whole-
genome to specific biological pathways allowed a deeper understanding of the cell processes involved.
This measure was able to characterize different experimental designs (case-control and time series studies) with a high
accuracy and robustness. In our analysis we used specific network features (degree sequence, subnetwork structure and
distance between gene profiles) to obtain informations at different biological scales, providing a novel point of view for
the integration of experimental transcriptomic data and a priori biological knowledge, but the entropy measure can
also highlight other aspects of the biological systems studied depending on the constraints introduced in the model
(e.g. community structures).

Matlab and Python code for the calculation of Network Entropy SNE (given an adjacency matrix and a distance
matrix) are available upon request.

I. INTRODUCTION

Biological systems can be seen as complex units that translate genomic information into phenotypes, encoded in the
proteome/interactome [13, 18]. A useful approach applied in several contexts, from biological to social and artificial
systems, is to describe such systems as networks, with the system elements as nodes, and the relationships between
them as edges [1, 3, 21]. An outstanding class of biological networks comprises the protein-protein interaction networks
(PPI [6, 9, 24]): edges in these networks describe interactions between proteins that are part of the same physical
complex or post-translational modifications mediating signal transduction flows. Networks of interacting proteins can
be thought as the phenotypes of sets of functionally linked genes. Topological studies have shown that PPI networks
have peculiar features, characterized by most proteins having small degree and with a small yet significant number of
highly connected nodes, called hubs. Since these hubs have been shown to encode for essential genes [3], highlighting
the topological properties of these networks may carry important biological information.
In our study we are interested in the integration between the transcriptomic and the interactomic data, thus the
statistical properties of integrated PPI-mRNA expression networks seem to be good observables to investigate systemic
pathologies such as cancer and ageing [4, 22]. This approach can be more informative than analyzing gene expression
data on its own. Indeed, integrative PPI-mRNA expression studies have helped to tease out relevant patterns of
expression variation in the contextual framework of signaling pathways and protein complexes [18, 23, 26].
Following the recent developments in statistical mechanics of complex networks we have the chance to build up a
thorough biological network model. Thanks to some suitable constraints encoding the most relevant network features,
we can evaluate the information content of biological structures, and moreover, we can apply specific methods for
time-dependent and time-independent data [2, 5].
Our integrated PPI-mRNA network approach relies on the theory of network ensembles with given topology (degree
sequence) and metrics (distance between the nodes). The PPI structure is embedded in the network topology, while
mRNA expression data define the distance values between network elements. This amount of information is translated
into constraints on the number of interactions per each protein and on the number of interactions per each distance
bin (where the distance between two proteins depends on the associated gene expression values).
We studied two biological phenomena that encode different landscapes of cellular perturbation, namely cancer and
ageing in humans, and whose datasets were characterized by a different experimental design (a case-control study and
a time series analysis).
Our approach offers a new perspective to the study of such phenomena, highlighting a more systemic behavior of the
cell beyond single-element analysis. In particular, we study the effect of these perturbations at several scales, from a
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whole-cell point of view to the single biological pathways characterizing the main cell processes (like metabolism and
signaling).

II. METHODS

Datasets

PPI network

We used the protein-protein interaction network extracted from the Pathway Commons database
(www.pathwaycommons.org) regarding Homo Sapiens proteins. The initial PPI network contained 11604 nodes
and 420601 links: after self-interaction and redundant annotation removal we obtained a giant component of 11394
nodes and 420516 links, that we considered for our analysis. For each gene expression dataset, we considered a subset
of this PPI network obtained by the intersection of the protein IDs with the gene annotations of the microarray
probes. Moreover, several induced subnetworks (described in the Subsection below and in the Supplementary Mate-
rial) were extracted by intersecting these networks with the pathway annotations obtained by the KEGG database
(Kyoto Encyclopaedia of Genes and Genomes, www.genome.jp/kegg).

Cancer dataset

The analysis has been performed onto three datasets considered in a previous work that used an entropy-like
measure [22], by downloading the normalized data from GEO Omnibus (www.ncbi.nlm.nih.gov/geo) or Arrayexpress
(www.ebi.ac.uk/arrayexpress). All data sets were profiled with the Affymetrix U133 Plus 2 platform, and referred to
primary invasive breast cancer samples that were followed for the evidence of relapse or metastasis. We refer to them
as “Wang” (GSE2034 [25]) , “Loi” (GSE2990 [17, 20]), “Frid” (E-TABM-158 [10]). “Wang” dataset consisted of 286
samples (primary tumor biopsies taken at the early stage), 107 classified as “relapsing” and 179 as “not relapsing” after
follow-up. “Loi” and “Frid” datasets were collections of primary tumors at early stage, classified as “metastatic” and
“non-metastatic” after follow-up. In “Loi” we considered a total of 125 samples, 28 metastatic and 97 non-metastatic.
In “Frid” we considered a total of 117 samples, 26 metastatic and 91 non-metastatic.
Since the microarray platform was the same for the three datasets, the intersection with the PPI network resulted in
the same network of about 5000 nodes, with a giant component of 4559 nodes considered for the analysis.
For each dataset, a restricted gene list was obtained by performing a Student’s T test for uncoupled samples over the
two different groups (relapsing vs. not relapsing, metastatic vs. non-metastatic) in order to look for genes significantly
changing expression value. With a P = 0.05 significance threshold, for the “Wang” dataset we obtained a sub-network
of 693 genes that, after the isolated node removal, was reduced to 455 genes. For the “Loi” dataset we obtained a
sub-network of 384 genes, reduced to 212 genes. For the “Frid” dataset we obtained a set of 195 genes, that were
reduced to 85 nodes with at least one interaction. No post-hoc correction for multiple test was applied, in order to
keep a sufficient number of significant genes (after Benjamini-Hochberg correction 0 probes would have left in “Loi”
and “Frid” datasets, and only 47 in “Wang” dataset).

Ageing dataset

We considered a cross-sectional study (time series) of 25 whole-genome expression profiles of T lymphocytes
extracted from healthy males of ages spanning typical adult human lifespan (from 25 to 97 years, see [19] for further
details).
This dataset could be divided into 5 age groups with about 10 y between each group: A) 25-34 y (mean = 29.6 y);
B) 43-46 y (mean = 44 y); C) 55-62 y (mean = 58.2 y); D) 70-79 y (mean = 74.2 y); E) 92-97 y (mean = 94.4 y).
The gene expression dataset (obtained through a custom array, see [19]) after processing is composed by 13103
probes x 25 age samples. The intersection with the giant component of Pathway Commons data gives a network of
6374 nodes, with a giant component of 6353 nodes considered for analysis.
A restricted gene list was obtained by performing a 1-way Anova over the age groups, in order to look for genes
significantly changing expression profile in time. A total of 1600 probes were found to be differentially expressed at
5% significance level after Benjamini-Hochberg post-hoc correction. In this case the resulting PPI network used in
our analysis consisted of 638 nodes.
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Entropy of network ensembles SNE and its application to biological networks

The main idea of this approach [2, 5] is that every real network (the PPI network in our case) can be seen as a
specific instance of a general ensemble of networks that satisfy the following constraints:

• Fixed number of interactions per each node (given by PPI network degree sequence {ki} )

• Fixed number of interactions per each bin obtained from the empirical distribution of the distances {dij} between
the expression level of genes i and j, depending on the chosen metrics (e.g. Pearson’s Correlation coefficient R,
R2 or Euclidean distance)

We consider a canonical approach (in which the constraints are satisfied on average by the network ensemble)
but also a microcanonical approach could be possible (in which each network of the ensemble satisfies exactly the
constraints). The two approaches are related by the entropy for large deviations Ω [2].

We define the canonical entropy of a network ensemble as

SNE = −
∑
i<j

pij log pij −
∑
i<j

(1− pij) log(1− pij) (1)

The goal is the computation of pij (probability of having a link between every i-th and j-th node) given the appropriate
constraints stated as functions of the probability matrix {pij}.
We define the spatial ensemble imposing the constraints of given degree sequence {ki} and number of links at distance
d ∈ Il, Bl), described by the following equations:

ki =

N∑
j

pij ; i = 1, ..., N (2)

Bl =

N∑
i<j

χl(dij)pij ; l = 1, ..., Nb (3)

where N is the number of nodes in the network, Nb is the number of bins considered for the empirical distribution of
distances, and χl is the characteristic function of each bin of width (∆d)l: χl(x) = 1 if x ∈ [dl, dl + (∆d)l], χl(x) = 0
otherwise. The value of canonical entropy for a spatial ensemble is obtained by maximization of the following equation:

∂

∂pij

SNE +

N∑
i

λi

ki −∑
j

pij

 +

Nb∑
l

gl

Bl − N∑
i<j

χlpij

 = 0 (4)

where λi and gl are the the Lagrangian multipliers related to our constraints. For each (i, j) the resulting marginal
probability is

pij =

Nb∑
l

χl(dij)
e−(λi+λj+gl)

1 + e−(λi+λj+gl)
=

Nb∑
l

χl(dij)
zizjWl

1 + zizjWl
(5)

where zi = e−λi , Wl = e−gl , commonly known as hidden variables, are functions of the Lagrangian multipliers λi and
gl. The Wl vector distinguishes the spatial ensemble from the configuration ensemble approach, in which only the
degree sequence constraints are given (same equation as before but only with the constraints as in Eq. 2). The vector
Wl contains the information about gene expression profiles, modulating the probability pij of having a link between
the node i and the node j with a given expression difference dij . A significant difference between the canonical entropy
calculated in the spatial and configuration ensembles reflects the relevance of the information encoded in the distance
matrix, and thus in the integration of gene expression data onto the PPI network (see the Supplementary Material
for an explicative example).
The network entropy SNE is related to the number of possible networks that satisfy the chosen constraints, that in
our case are the PPI degree sequence and the distribution of distances between nodes (number of links per bin). Since
in our case for each dataset the degree sequence is fixed, the entropy value for each sample is characterized by its
gene expression profile. A high value of SNE means that a large number of networks satisfy the given constraints,
thus the set of features associated to the observed network (given by the gene expression values) is not very particular
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(i.e. informative from an information theory point of view [12]). We can say that there is a high degree of plasticity
for the system in this case, since a wide range of parameter values (gene expression profiles) are allowed to the cell.
On the contrary, if the network has lower entropy, only few configurations can satisfy the given constraints, and the
cell is in a more specific state with less degrees of freedom. This can be interpreted as 1) the system has been more
finely tuned or 2) the system has a smaller range available to its parameters. We remark that a positive or negative
interpretation of the entropy values must be related to the context in which the measure is performed, as it will be
shown below in our analyses.
Gene expression data are used to construct the distance matrix dij : the choice of a suitable metrics can improve the
information content encoded in it. We chose an euclidean metrics (see below) instead of a correlation-based measure
as in [22] since it allowed the calculation of an entropy value for each sample, useful for the performed statistical
analyses. Since the statistical weight Wl of each bin l is related to the number of interactions that fall within it, also
the choice of distance binning is important. Even if the entropy values depend on the number of bins (whose choice is
a tradeoff between an accurate representation of the empirical distribution and an adequate number of samples falling
into each bin) the achieved results should be robust to small perturbations of this number. We performed our analysis
with linearly spaced bins, considering a range of bin numbers depending on the size of our network: approximately
70± 10 bins for networks with more than 1000 nodes (the whole-genome networks), 25± 5 bins for smaller networks
(the KEGG-induced subnetworks and the statistically significant gene subsets).
For the calculation of the entropy values and the Lagrangian multipliers, we developed an iterative algorithm: given
a strarting guess for the value of the lagrangian multipliers {zi} and {Wl}, the pij values are calculated according to
Eq. (5). These values are then subsituted in the constraint equations (2,3) for the next calculation of the lagrangian
multipliers, and the process is repeated upon convergence. We checked by random sampling that the application
of the iterative algorithm for different initial guesses would lead to the same entropy values. In our analyses, the
algorithm convergence threshold was set to 10−4, and we remark that every significant change in entropy values was
at least of a order of magnitude higher. This algorithm is available both in Matlab and Python code.

Multi-scale entropy approach

Taking advantage of the a priori biological knowledge available from the KEGG database
(http://www.genome.jp/kegg/pathway.html) it is possible to obtain several induced subnetworks on the PPI
network: the genes annotated in the PPI can be divided into 6 functional groups (“Metabolism”, “Genetic
Information Processing”, “Environmental Information Processing”, “Cellular Processes”, “Organismal Systems” and
“Human Diseases”), that can be further subdivided into 42 metapathways and again into about 260 single biological
pathways (see Supplementary Table 3). We found 1976 non-isolated nodes for the ageing dataset and about 1530
for the cancer datasets annotated both in PathwayCommons and KEGG: starting from these genes we calculated
SNE for the subnetworks induced by the 6 functional groups, populated by several hundred genes each (see Tables
III, IV, V, VI, VII, VIII ). We did not scale the analysis down to the single KEGG metapathways and pathways,
because most of the resulting PPI subnetworks were very small (N < 30 nodes) and we were not confident that the
subnetwork features could be considered relevant, but it is not excluded that other larger datasets could be scaled
down to such level.

Cancer dataset analysis

In order to evaluate the differences between gene expression values for each specific sample, we chose the Euclidean
distance as a metrics: for each sample a (with a ranging according to dimension of the considered dataset), we define
the distance daij between i-th gene expression value gai and j-th gene expression value gaj as

daij =
√

(gai − gaj )2 = |gai − gaj | (6)

In this way we obtain 286 SNE values for “Wang” (107 relapsing and 179 not relapsing), 125 values for “Loi” (28
metastatic and 97 non-metastatic), 117 values for “Frid” (26 metastatic and 91 non-metastatic).
We have the same number of samples both for the whole dataset and its 5% significance level selection. This allowed
us to perform significance tests (Student’s T test) between the pooled entropy values of relapsing vs. not relapsing
and metastatic vs non-metastatic groups.
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TABLE I: Values of SNE for the whole-genome cancer datasets, with the P value obtained by Student’s T test.

Rel/Met Not Rel/Not Met P-value

Wang 61.6704 61.6734 0.3194

Loi 61.7031 61.7134 0.0233

Frid 61.3098 61.310 0.9631

TABLE II: Values of SNE for the 5% selection subset of cancer datasets, with the P value obtained by Student’s T test.

Rel/Met Not Rel/Not Met Size P-value

Wang 18.7716 18.7807 455 4.25 ·10−5

Loi 13.0773 13.1059 212 0.0012

Frid 6.2603 6.2590 85 0.6898

Ageing dataset analysis

Ageing mechanism can be considered as a really different cellular perturbation compared to cancer and, moreover,
the studied ageing dataset has a specific time sequence (given by samples’ age, since it is not an “old vs. young”
experimental design) that encodes relevant information about the mechanism to be studied. In order to evaluate the
differences among gene expression values at a specific age, we chose the Euclidean distance also for this dataset as in
Eq. 6. In this way we obtained 25 SNE values, one for each sample, both for the whole dataset or the 5% significance
level selection, that allow us to perform significance tests between the age groups (by 1-way ANOVA or multiple
Student’s T tests between age groups).

III. RESULTS/DISCUSSION

Cancer dataset

Considering the entropy values calculated over the whole-genome datasets, the “Loi” dataset showed a significant
difference between the two groups with Student’s T Test (P = 0.023). The mean entropy value for non-metastatic
group was higher than the metastatic (Snon−metNE = 61.71, SmetNE = 61.70). The same trend was observd in “Wang”
and “Frid” datasets, even if not significant at the whole-genome level (see Tab. IV) .
Taking the gene selection with 5% significance level (single-gene T test between groups for each dataset) we found
significant differences in entropy values for both “Wang” (P = 4.3 · 10−5) and “Loi” (P = 0.0012) datasets, with the
same trend observed at whole-genome level, that is, with a greater mean value for the entropy of not relapsing and
non-metastatic samples (see Tab. II).
We remark that the samples of all datasets were taken at the onset of primary tumor, and the “relapsing” and
“metastatic” labels were assigned after a follow-up analysis: thus we are not performing a direct comparison between
metastatic and primary tumour tissues, but they are all primary cells that have eventually progressed into metastatic
or relapsing. In the light of this remark, a higher entropy value for the primary tumour state in both datasets suggests
that the cells that will become relapsing or metastatic have a more controlled expression profile, as if for example a
large group of genes could undergo (in a coordinated way) only strong activation or inactivation. We interpret this
result as the occurrence of an initial “tuning” of expression profiles in order to achieve the following cellular state
(metastatic/relapsing), for example by silencing or overexpressing specific genes that should otherwise be less tightly
regulated [16]. This result does not exclude that, after the primary tumour has evolved into a metastatic or relapsing
phenotype, the cell moves towards a more de-differentiated/deregulated state (as for metastatic cells in most cases
[7, 8, 11]).

Multi-scale analysis of the cancer dataset

We computed the entropy SNE for each sample also in different PPI subnetworks induced by the functional classi-
fications of genes in the KEGG database; SNE was evaluated both at a whole-genome level and on a 5% significance
threshold gene selection (see Tab. III, IV, V, VI, VII). The results for the 5% selection of Frid dataset always produced
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TABLE III: Wang cancer data set: functional groups for the whole-genome cancer dataset (entropy values, network sizes and
P-value of the Student’s T test).

KEGG group Rel Not Rel Size P value

Metabolism 12.5810 12.5838 364 0.0386

Genetic Information Processing 21.6013 21.5540 143 0.0044

Environmental Information Processing 14.4845 14.4848 658 0.7834

Cellular Processes 19.3270 19.3262 303 0.4733

Organismal Systems 17.0946 17.0940 491 0.6829

Human Diseases 11.9827 11.9834 238 0.7157

TABLE IV: Loi cancer data set: functional groups for the whole-genome cancer dataset (entropy values, network sizes and
P-value of the Student’s T test).

KEGG group Met Not Met Size P value

Metabolism 12.5735 12.5735 364 0.9996

Genetic Information Processing 21.5895 21.5960 143 0.7510

Environmental Information Processing 14.4759 14.4743 658 0.1724

Cellular Processes 19.3337 19.3304 303 0.0344

Organismal Systems 17.0808 17.0862 491 0.0228

Human Diseases 11.9942 11.9964 238 0.3439

TABLE V: Frid cancer data set: functional groups for the whole-genome cancer dataset (entropy values, network sizes and
P-value of the Student’s T test).

KEGG group Met Not Met Size P value

Metabolism 12.3057 12.3035 363 0.2498

Genetic Information Processing 21.6723 21.6422 143 0.2283

Environmental Information Processing 14.3175 14.3168 657 0.6659

Cellular Processes 19.0730 19.0729 302 0.9632

Organismal Systems 16.7771 16.7747 489 0.2078

Human Diseases 11.3462 11.3472 235 0.7222

networks with N ≤ 10 nodes, so we excluded them from the analysis.
The PPI network was divided into 6 six biological functional groups (see Methods Section). The “Metabolism” group
was significant for the “Wang” dataset only at whole-genome level (P = 0.039) with a higher entropy value for the non
relapsing case, while the “Genetic Information Processing” group was significantly different both at a whole-genome
level (P = 0.0044) and in the 5% selection (P = 0.00011), with higher entropy values for the relapsing samples. The
“Environmental Information Processing” group was significantly different in the 5% selection for “Wang” (P = 0.035)
and “Loi” (P = 0.028) datasets, with a higher entropy value in the relapsing/metastatic cases. The increase in entropy
in the most aggressive cases, related to the the “Information Processing” functional groups, might reflect a larger
deregulation, or a wider parameter landscape that can be explored by the cells in such a state, as compared to less
aggressive phenotypes (that did not relapse nor developed metastases).

Ageing dataset

The entropy values as a function of age are presented in Fig. 1. For both the whole-genome network and the
5% significance level selection network, we plotted the mean value of SNE and its standard deviation of the mean
(SDOM) for each age group. For the whole dataset, we observe the smallest values of SNE in the fifth group, the
so-called “successfully aged” people SA (that live longer than average life expectancy of about 80 years, see for
example www.indexmundi.com) that behaves in a significantly different way from the rest of the age groups: we have
P = 0.011 by 1-way ANOVA, with significant differences between group 3 and group 5 (P = 0.0052) and group 4
and group 5 (P = 0.013) calculated by Student’s T test as a post-hoc test. In the same figure, we plot the time trend
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TABLE VI: Wang cancer data set: functional groups for the 5% selection subset (entropy values, network sizes and P-value of
the Student’s T test).

KEGG group Rel Not Rel Size P value

Metabolism 3.3180 3.3153 46 0.4841

Genetic Information Processing 6.2894 6.2301 33 0.0001

Environmental Information Processing 3.9513 3.9447 69 0.0351

Cellular Processes 3.9491 3.9658 37 0.0096

Organismal Systems 3.6396 3.6422 55 0.5510

Human Diseases 2.0865 2.0865 36 0.9982

TABLE VII: Loi cancer data set: functional groups for the 5% selection subset (entropy values, network sizes and P-value of
the Student’s T test).

KEGG group Met Not Met Size P value

Metabolism 3.1166 3.1066 27 0.5269

Genetic Information Processing 1.815 1.7987 10 0.6001

Environmental Information Processing 1.8550 1.8380 28 0.0284

Cellular Processes 3.6077 3.6047 26 0.7531

Organismal Systems 3.0037 2.9901 33 0.0096

Human Diseases 1.9222 1.9054 18 0.2091

of the average distance for each sample, that shows no direct relationship with the entropy values, confirming that
they represent a different kind of information. This decreasing trend in entropy means that the number of possible
gene expression profiles that lead to a SA phenotype are lower, in agreement with the fact that only a small subset of
total population will become SA, and also that since the possible profiles allowed in this state are less, SA subjects
may have a reduced range of responses to stimuli and perturbations, implying a minor plasticity.

For the 5% selection subset we observe a non monotonic trend in time: the smallest mean values are observed
for the youngest and the SA group, while in the middle-aged groups entropy increases and reaches its maximum in
the third age group. Moreover, the SA individuals have the smallest standard deviation and they are significantly
different with the third age group (P = 0.043 by 1-way ANOVA over the five age groups, and P = 0.0032 between
group 3 and group 5 with post-hoc Student’s T test). This result supports the fact that SA individuals maintain
specific gene expression profiles unchanged in time (as compared to the young group) while the middle and old age
groups (that have a very low probability to become SA) show a significant drift from this range of ‘optimal” values.
We remark that this definition of optimality assumes that healthy young samples represent the best case of cell
performance, and that SNE is not a simple function of gene expression values, but integrates the differences between
expression levels of genes with the network of proteins that are supposed to interact, thus taking into account the
mutual relationships between them. The increase in entropy in the middle groups suggest an increasing global
deregulation or loosening of the expression ranges with age, that is kept controlled in the SA samples.
The relevance of the information encoded in gene expression values for the calculation of entropy is reflected by
the fact that configuration entropy values (that considers only the constraints on PPI network degree sequence,
as described in the Methods Section) are significantly higher than SNE values, for both the whole-genome and
the selection dataset. For the whole-genome dataset the average value of spatial entropy over the 25 samples

is < SNE >= 90.358 ± 0.013 (1-σ confidence interval) and the configuration entropy SconfT = 90.412 (equal
for all the samples since it depends only on the PPI), so their difference is about 4.14 σ; for the selection

dataset we have < SNE >= 17.524 ± 0.012 and SconfSEL = 17.573, so ∆S = 4.13 σ. We remark that spatial and
configuration entropy values become more and more similar when the distance distribution approaches a random uni-
form distribution, thus when no information is encoded in the distance matrix (see Supplementary Material Section 2).
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FIG. 1: Error plots for the Ageing dataset. Left boxes: plot of SNE over the 5 age groups, for the whole-genome PPI network
(top) and for the 5% significance level selection (bottom). Right boxes: error plots of the mean values of all the euclidean
distances, at a whole-genome level (top) and for the selection (bottom).

Multi-scale analysis of the ageing dataset

We computed the entropy SNE for each sample also in 6 PPI subnetworks induced by the functional groups as in
the KEGG database. Considering at least one significant difference between two age groups (evaluated by Student’s
T test, see Fig. 2 and Tab. VIII) we observed both monotonic and non-monotonic trends. We interpreted the
monotonic trends as markers of a progressive ageing of the cell, whereas the non-monotonic trends could be associ-
ated to successful ageing, characterizing functionalities that are preserved from the young to the old age. For the
whole-genome dataset, the “Environmental Information Processing” and the “Organismal Systems” groups showed a
significant decrease in entropy mainly for the SA group, that might represent a reduction of plasticity in terms of the
possible expression profiles achievable by the cell. This could be associated to the so-called “frail” phenotype [14], a
state of high sensitivity and inability to respond to perturbations (e.g. traumas, illnesses) that leads to irreversible
damage of organismal functionality. We remark that our dataset consisted of healthy subjects, thus not classified as
frail with the existing definitions [15]: it could be interesting to verify if the expression profiles of frail samples would
show an early decrease of entropy as compared to non-frail subjects of the same age, enforcing our hypothesis of frailty
as a state of reduced plasticity, and suggesting entropy as a possible marker of this pathologic state. Interestingly,
the “Metabolism” group has an opposite trend in which entropy increases in the elderly (even if it is not statistically
significant), as if a more strict regulation necessary for the metabolic processes would be loosening with age. We
remark that the same trend for SNE has a different meaning in relation to the biological context: it is plausible that
metabolic processes have to be strictly regulated in order to achieve an optimal cellular functionality, while signalling
processes must be able to respond to different internal and environmental stimuli, thus keeping a wide range of possible
responses.
The “Genetic Information Processing” and the “Cellular Processes” functional groups show a non monotonic trend,
with opposite behavior in the median groups. The “Genetic information processing” functional group shows a decrease
in entropy for people of median age, that is in agreement with the decline in plasticity observed in the “Environ-
mental Information Processing” group, whereas the “Cellular Processes” group (related to catabolism, cell cycle and
transport) is in agreement with the interpretation of the trend for the “Metabolism” group. No clear trend was
observed for the “Human Diseases” group, and no significant differences were found between age groups in this case.
For the 5% significance subset, we observed a good agreement of the trends with respect to the global dataset, even
if the number of nodes in the subnetworks is very low (e.g. an increase in “Metabolism”, a non-monotonic trend for
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FIG. 2: Entropy trends of the 6 functional groups groups for the ageing dataset. We underline the similar decreasing trend for
both “Environmental Information Processing” and “Organismal Systems”. We also spot a significant non-monotonic behavior
of “Genetic Information Processing”.

TABLE VIII: Functional groups for the whole-genome ageing dataset: network sizes and significant comparisons (Student’s T
test). Note: italics values are weakly non significant (P ' 0.07).

KEGG group Size P value (ANOVA) Post-hoc test P value (Groups)

Metabolism 488 0.5615

Genetic Information Processing 177 0.0612 0.032 (1-3), 0.075 (3-5)

Environmental Information Processing 849 0.0340 0.018 (1-5), 0.029 (2-5), 0.0032 (3-5), 0.031 (4-5)

Cellular Processes 465 0.1040 0.018 (3-4), 0.0071 (3-5)

Organismal Systems 611 0.0141 0.018 (1-5), 0.014 (2-5), 0.012 (3-5), 0.068 (4-5)

Human Diseases 317 0.7087

“Genetic Information Processing” and “Cellular Processes” groups, see Supplementary Materials Section 1).
The results for the ageing dataset are in qualitative agreement with previous analyses [19], showing also non-

monotonic trends for the same dataset, even if we have shown that there is not a trivial relation between entropy and
gene expression values.

The same analysis performed with the entropy-like measure described in [22] showed a strong dependence on the
number of nodes in the network, with a systematic reduction of statistical significance for the 5% subsets, both for
the cancer and the ageing datasets (as shown in Supplementary Materials Section 4).

IV. CONCLUSION

We have applied an entropy measure based on a rigorous statistical mechanics definition, that integrates the
protein interaction network with gene expression profiling, to characterize different levels of cellular perturbation
(cancer subtypes and physiological ageing). This measure characterizes the number of networks that satisfy given
constraints (namely the PPI network degree sequence and the empirical distribution of distances between gene
expression profiles), and can be interpreted as the extent of the “parameter space” allowed to the cell in a given
state. We showed that, due to the imposed constraints, it is not just a measure of cellular “disorder”: depending
on the considered biological function, a high value of entropy can represent a high degree of cellular plasticity, seen
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as the ability to adjust its internal state to the incoming stimuli (thus with a positive connotation) or a high level
of deregulation in terms of the range of values allowed to the expressed genes (in this case with a negative connotation).

These results show different perspectives on the analysis of gene expression data, providing a global view that takes
into account single gene measurements and their functional relationships inside the cell mechanisms. The entropy
measure SNE seems an observable sensitive enough to evaluate the effect of physiological perturbations such as the
changes occurring during the cellular ageing process, and also the differences between cancer subtypes before the
progression to metastatic and relapsing phenotypes. The statistical significance of SNE resulted independent on
network properties, such as the number of nodes, and increased when a selected subset was considered, thus reflecting
the biological relevance of the data used.

We were able to scale the analysis at different levels based on a priori biological knowledge (as obtained from
KEGG database) dividing the full PPI network into subnetworks related to specific biological functions and pathways.
The number and type of subnetworks depend on the a priori biological knowledge available (e.g. for the organism
studied) and on the number of nodes of the initial PPI network (in order not to obtain too small subnetworks, even
if this point needs further study).

For the cancer datasets, in the full PPI case we observed a decrease in entropy as compared to the primary tumours
(both in the whole-genome and in the selection datasets), that may reflect a more refined tuning of the expression
levels in order to reach the metastatic/relapsing states.
For the ageing dataset, we observed different trends over time. Two groups, related to “Environmental Information
Processing” and “Organismal Systems”, showed a monotonic decrease in entropy: we can interpret it as if the
parameter space explored by the cells is reducing, allowing less plasticity in cell response. The “Metabolism” group
had an increasing trend in entropy, that could be associated to a progressive deregulation of its functionality. The
“Genetic Information Processing” and “Cellular Processes” groups showed a non-monotonic trend, in which the
oldest and the youngest samples have similar values of entropy, thus they might represent a set of functionalities
conserved through lifetime in the successfully aged people.
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Supplementary Material

Analysis of the functional groups for the 5 % selection of the ageing dataset

In this section we show the results for the 5 % selection of the ageing dataset. In Fig. IV we can observe which
trends are qualitatively similar to those of the whole-genome dataset: same increasing trend for the ”Metabolism”
functional group (with a significant difference between two age groups, see Tab. IV); same non-monotonic trend for
the ”Genetic Information Processing” functional group, with significant differences between middle age group and
extremal age groups; same non-monotonic trend for the ”Cellular Processes” functional group. We remark that the
”Environmental Processing” and ”Organismal Systems” functional groups differ in the first part of the trend between
the whole-genome and the 5% selection datasets, but they are similar to the respective trends of the the whole PPI
network SNE values.

FIG. 3: Plot of the SNE trends

KEGG group Size P (ANOVA) Post-hoc test P value (Groups)

Metabolism 44 0.1073 P=0.0095 (2-5)

Genetic Information Processing P=0.0171 (1-2), P=0.0001 (1-3)

17 0.0001 P=0.0084 (1-4), P=0.0054 (1-5)

P=0.0054 (2-3), P=0.0033 (3-5)

Environmental Information Processing 94 0.0323 P=0.0051 (2-3), P=0.0465 (2-4)

P=0.0179 (3-5)

Cellular Processes 58 0.4816

Organismal Systems 81 0.0082 P=0.0222 (1-3), P=0.0253 (2-5)

P=0.0003 (3-5), P=0.0483 (4-5)

Human Diseases 34 0.8651

TABLE IX: Functional groups for the 5 % selection of the ageing dataset: network sizes and significant comparisons (1-way
ANOVA and post-hoc Student’s T test between age groups).
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Characterization of configuration and spatial ensembles: a toy model

We present here a toy model for a better understanding of entropy of network ensemble. We want to underline how
the quantity and the quality of the imposed constraints affect the entropy value.
We consider only canonical ensembles, i.e. the imposed constraints are satisfied on average. We consider “simple”
networks, namely, in which a link between two nodes i and j can be present (aij = 1) or absent (aij = 0), no
self-interactions are permitted and the matrix {aij} is symmetric. An ensemble of simple networks is described by
the probability matrix {pij} where, for each (i, j), a link is present with probability pij or absent with probability
(1 − pij). Given that matrix elements are independent and uncorrelated random parameters, we obtain a definition
of entropy for a network ensemble, called also the Shannon entropy of network ensembles

SNE = −
∑
i<j

pij log pij + (1− pij) log(1− pij) (7)

The main goal is the computation of {pij} given the appropriate constraints stated as functions of the probability
matrix (fk({pij}) = Fk for k = 1, 2, ...M). Following the principle of maximal entropy, {pij} is provided by the
maximization of SNE subjected to the chosen constraints

∂

∂pij

{
SNE +

M∑
k

λk (Fk − fk({pij})

}
= 0 (8)

Once outlined a specific network, we consider it as a realization of an ensemble of all the possible networks satisfying
some given constraints. The entropy value of the considered ensemble changes according to the chosen constraints.
The computation of entropy gives us a measure about the specificity of our network, or, on the other hand, tells us
how much the chosen constraints define an accurate model of the real network.
In this paper, for the modelling of biological networks, we mainly referred to two ensembles:

Configuration ensemble: given expected number of interactions per each node (PPI network degree sequence {ki}
)

Spatial ensemble: given expected degree sequence {ki} and given expected number of interactions per bin {Bl}
obtained from the empirical distribution of the distances {dij} between the expression level of genes i and j,
depending on the chosen metrics (we always used the Euclidean distance)

We show an example of two spatial ensembles with the same degree sequence but with a different distance distribution
of nodes, in order to understand how much the differences in the two distance distributions affect the entropy values.
Furthermore, we consider how much the spatial ensemble differs from the configuration ensemble (that has a subset
of the constraints expressed by the spatial ensemble, regarding just the topology of the network). Even if the entropy
value decreases with the addition of constraints (a smaller subset of networks is available) this decrease could be
irrelevant when the information encoded in the new constraints is not discriminating.
For our example, we consider a network of 400 nodes with a fat-tailed distribution, in resemblance to the PPI used
in the paper (see Fig. 4). We investigate three different ensembles:

1. Configuration ensemble (only fixed degree sequence)

2. Spatial ensemble with same degreee sequence and a distance matrix {daij} calculated starting from a random
vector of N = 400 values randomly distributed between 0 and 5

3. Spatial ensemble as before, but the distance matrix {dbij} is calculated starting from the previous random vector
in which 100 values are randomly distributed between 0 and 1

For both the distance distributions we chose a linear binning of 20 bins, and we considered 50 possible realisations
for each case.

The imposed constraints are expressed as a function of the probability matrix {pij}: the configuration ensemble
considers only the first constraint, while the spatial ensemble considers both:

ki =

N∑
j

pij ; i = 1, ..., N = 100 (9)

Bl =

N∑
i<j

χl(dij)pij ; l = 1, ..., Nb = 20 (10)
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where N is the number of nodes in the network, Nb is the number of bins considered for the empirical distribution
of distances, and χl is the characteristic function of each bin of width (∆d)l: χl(x) = 1 if x ∈ [dl, dl + (∆d)l],
χl(x) = 0 otherwise. Therefore, the configuration ensemble has N = 400 constraints and, the spatial ensembles have
N +Nb = 420 constraints.
We obtained value of entropy for the configuration ensemble (corresponding to a single degree sequence) and a
distribution of 50 entropy values for each spatial ensemble: the summary statistics are shown in Tab. IV

Ensemble SNE σ ∆S

Configuration ensemble SCONF 7.60

Spatial ensemble {daij} < Sa
NE > 7.57 0.01 1.9σ

Spatial ensemble {dbij} < Sb
NE > 7.53 0.017 4.7σ

TABLE X: Entropy values for the configuration entropy and the two ensembles. The difference ∆S is computed with respect
to SCONF rescaled with the average of the two standard deviations.

The small differences in the entropy values are determined by the larger number of constraints associated to the
topology of the network (degree sequence, 400 constraints) as compared to the constraints associated to the distance
bins (20 constraints). The addition of the constraints on distance distribution reduces SNE , and with the same number
of imposed constraints SNE is lower when the added information is less random. The differences between the two
spatial ensembles is highly significant (∆S = 2.8σ, average standard deviation).

FIG. 4: Degree distribution of the network: N = 400 nodes, 558 total links, kmin = 1, kmax = 24, 〈k〉 = 2.8.
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KEGG database hierarchy

In this Section we present the subdivision of functional groups into metapathways. The further subdivision into
about 260 pathways is not shown. We remark that in our analyses we scaled our results to the functional groups level
only, because most of the metapathways had a very small number of nodes in each subnetwork (N < 30).

TABLE XI: Table of KEGG Functional groups and metapathways

KEGG Functional Group Metapathway

Metabolism Carbohydrate metabolism

Energy metabolism, Lipid metabolism

Nucleotide metabolism

Amino acid metabolism

Metabolism of other aminoacids

Glycan biosynthesis and metabolism

Metabolism of cofactors and vitamins

Metabolism of terpenoids and polyketides

Biosynthesis of other secondary metabolites

Xenobiotics biodegradation and metabolism

Reaction module maps

Chemical structure transformation maps

Genetic Information Processing Transcription, Translation

Folding, sorting and degradation

Replication and repair

Environmental Information Processing Membrane transport, Signal transduction

Signaling molecules and interaction

Cellular Processes Transport and catabolism

Cell motility, Cell growth and death

Cell communication

Organismal Systems Immune system, Endocrine system

Circulatory system, Digestive system

Excretory system, Nervous system

Sensory system, Development

Environmental adaptation

Human Diseases Cancers, Immune diseases

Neurodegenerative diseases

Substance dependence, Cardiovascular diseases

Endocrine and metabolic diseases

Infectious diseases: Bacterial

Infectious diseases: Viral

Infectious diseases: Parasitic
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Entropy of information flux distribution {Si
F }

We recall here the entropy-like measure {SiF } proposed in [22]. This measure is a single-node entropy measure, in
fact, {SiF } is a collection of entropy values, one for each node of the designed network (i = 1, ...N where N is the total
number of nodes). In [22] the method was applied to four cancer datasets, three of them (“Wang”, “Loi”, “Frid”) also
considered for testing our entropy measure SNE . We want to investigate how {SiF } behaves both in cancer analysis
and in ageing analysis, using the same datasets considered for our entropy measure SNE .
We compute {SiF } using the following recipe:

1. choose the number of samples used to compute the correlation matrix {cij} (R Pearson correlation coefficient)
of our gene-expression profiles

2. rescale the correlation values cij between 0 and 1 ( dij = (1 + cij)/2))

3. compute the Hadamard product between the PPI and the distance matrix

4. for any given node i with neighbors j we can then assign a probability distribution as follows

pij =
dij∑
j dij

(11)

5. The proposed entropy measure is the entropy of information flux distribution: it quantifies the amount of
randomness/disorder of the local flux distribution surrounding any given node i

SiF = − 1

log ki

∑
j

pij log pij (12)

6. At the end we obtain, for each pool of samples, a vector of entropy values {SiF }.

This measure is similar to the local disparity-heterogeneity index of weighted networks. When the flux is constrained
along one direction SiF = 0, while when the flux is equally distributed among all neighbors (pij = 1/ki) S

i
F = 1. This

perspective is quite different from SNE measure: for a specific network we have just a unique scalar entropy value
instead of a vector of values, one for each node. The network is then considered as a whole system, not divisible in
its single components.
In [22] there was a comparison of local entropies for the proteins, between the non-metastatic (non-relapsing) and
metastatic (relapsing) networks, in the three datasets. They restricted the analysis to proteins of degree ≥ 10
and because of the greater number of non-metastatic samples compared to the metastatic samples, they considered
metastatic and non-metastatic PPI-mRNA networks with the same number of samples, randomly choosing a non-
metastatic subset. For each cancer dataset the performed 10 bootstraps of the non-metastatic samples to test the
robustness of their results. The proposed measure always showed a small yet significant increase in entropy for the
metastatic network (a Wilcoxon paired test was performed).
We reproduce here the same analysis for “Wang”, “Loi” and “Frid”, with 100 bootstraps. We also present the results
for the subnetworks that survived to a Student’s T test for uncoupled samples over the two different groups, with a
P = 0.05 significance threshold. The results are presented in Tab. XII. The majority of the results agrees with what
was shown in [22], even if, with the selected subnetworks, we found some significant results with the opposite trend.

If we consider the whole Not Rel/Not Met datasets, without performing bootstraps, we obtain a different result,
since the Not Rel/Not Met entropy is always significantly higher than the Rel/Met entropy, except for Wang 5% (see
Tab. XIII).

We consider now the Ageing dataset and we study the distributions of {SiF } for proteins with connectivity ≥10.
We use both the whole-genome network of 6353 nodes (2972 nodes with degree ≥10 ) and the 5% selection subset
of 638 nodes (170 nodes with degree ≥10 ) . For each network we computed 5 correlation matrices, one for each age
group. In Fig. 5 we plotted the related median values of {SiF }. for the two datsets. In Fig. 6 and Fig. 7 we show
their boxplots.

Applying the Kruskal-Wallis test we found P = 0.1315 for the 5% selection and P = 2 · 10−50 for the whole-genome
network, thus we can see how significance is strongly dependent on node number and not on the number of samples,
even if the gene (node) subset comes from a selection based on statistical significance test.
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TABLE XII: Analysis of {Si
F } for the cancer datasets with 100 bootstraps: L0=Not Rel/Not Met and L1=Rel/Met (median

of the entropy distribution). For each case we give the percentage of the bootstraps that showed the result, and also the
percentage of the significant results among them (P≤ 0.05 with a Wilcoxon paired test).

Dataset proteins with k ≥ 10 L1 % L0 < L1 % signif. % L0 ≥ L1 % signif.

Wang 1857 0.9973 100 100 0 0

Wang 5% 147 0.9967 100 100 0 0

Loi 1857 0.9910 97 96.9 3 100

Loi 5% 67 0.9928 83 21.7 17 23.5

Frid 1849 0.9932 98 100 2 100

Frid 5% 19 0.9903 77 19.5 23 0

TABLE XIII: Analysis of {Si
F } for the whole cancer datasets (without bootstrap): L0=Not Rel/Not Met and L1=Rel/Met.

The P-value is given from the Wilcoxon paired test.

Dataset proteins with k ≥ 10 median L0 median L1 P-value

Wang 1857 0.9975 0.9973 6.4 ·10−12

Wang 5% 147 0.9965 0.9967 0.03

Loi 1857 0.9928 0.9910 2.1 ·10−113

Loi 5% 67 0.9944 0.9928 1.8 ·10−7

Frid 1849 0.9952 0.9932 4.5 ·10−138

Frid 5% 19 0.9944 0.9903 0.0055

FIG. 5: Median values of {Si
F } for the whole-genome dataset (green) and for the 5% selection subset (blue).

18



FIG. 6: Boxplot for {Si
F } of the whole-genome dataset.

FIG. 7: Boxplot for {Si
F } of the 5% selection dataset.
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