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Network geometry with flavor: from complexity to quantum geometry
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Network geometry is attracting increasing attention because it has a wide range of applications,
ranging from data mining to routing protocols in the Internet. At the same time advances in
the understanding of the geometrical properties of networks are essential for further progress in
quantum gravity. In network geometry, simplicial complexes describing the interaction between two
or more nodes play a special role. In fact these structures can be used to discretize a geometrical
d dimensional space, and for this reason they have already been widely used in quantum gravity.
Here we introduce the Network Geometry with Flavor s = −1, 0, 1 (NGF) describing simplicial
complexes defined in arbitrary dimension d and evolving by a non-equilibrium dynamics. The NGF
can generate discrete geometries of different nature, ranging from chains and higher dimensional
manifolds to scale-free networks with small-world properties, scale-free degree distribution and non-
trivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási model
for complex networks the stochastic Apollonian network, and the recently introduced model for
Complex Quantum Network Manifolds. The thermodynamic properties of NGF reveal that NGF
obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The
structure of NGF is strongly dependent on the dimensionality d. In d = 1 NGF are growing complex
networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free
degree distribution. Instead, for NGF with dimension d > 1 it is not necessary to have an explicit
preferential attachment rule to generate scale-free topologies. We also show that NGF admits a
quantum mechanical description in terms of associated quantum network states. Quantum network
states are evolving by a Markovian dynamics and a quantum network state at time t encodes all
possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical
properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces
of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann or Bose-Einstein
statistics depending on the flavor s and the dimensions d and δ.

PACS numbers: 89.75.Hc, 89. 75. Da, 89.75.-k

I. INTRODUCTION

Recently, network geometry [1] is gaining increasing in-
terest. Progress in this field is expected to have relevance
for a number of applications, including routing proto-
cols [2–4], data mining [5–9], and advances in the the-
oretical foundations of network clustering [10]. In this
context, several theoretical questions have been recently
approached including the formulation of models for emer-
gent geometry [21–23], the characterization of hyperbolic
networks [11–14], the modelling of complex networks em-
bedded in the plane or in surfaces [15–20] and finally the
development of a geometric information theory of net-
works [24].
It is also believed that network geometry [25–30] could
provide a theoretical framework for establishing cross-
fertilization between the field of network theory and
quantum gravity. In fact most quantum gravity ap-
proaches rely on a discretization of space-time that
takes a network-like structure. These approaches include
causal sets [31, 32], causal dynamical triangulations [33–
36], group field theory [37, 38], loop quantum gravity
[39–41], energetic causal sets [42, 43], quantum gravity
as an information network [44] and quantum graphity
[45–47]. Already several works explore the frontier ter-

ritory between complex networks and quantum gravity.
The relation between complex hyperbolic networks and
causal sets has been exploited by building a ”network
cosmology” [48]. Moreover causal sets have been used to
analyze citation networks and measuring their effective
dimension [49]. Recently Complex Quantum Network
Manifolds (CQNMs) [23] have been introduced as mod-
els of discrete manifolds that show the relation between
quantum statistics and emergent network geometry.

When faced with the problem of describing a network ge-
ometry, simplicial complexes of dimension d become very
useful. These are discrete structures formed by the sim-
plices of dimension δ, with 0 ≤ δ ≤ d, i.e. nodes (δ = 0),
links (δ = 1), triangles (δ = 2), tetrahedra (δ = 3) and
so on. Simplicial complexes are widely used in the quan-
tum gravity literature. For example in the context of
causal dynamical triangulations [33–36] and group field
theory [37, 38] space-time is described using these dis-
crete structures. In network theory, large attention [50–
52] has been devoted to complex networks described as
sets of nodes and links, i.e. forming simplicial complexes
of dimension d = 1. Only recently additional attention
has been addressed to simplicial complexes of higher di-
mension also called hypergraphs in the network science
community. These structures are important to capture
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relations existing between more than two nodes, such as
the one existing in collaboration networks (where each
paper might result from a collaboration of more than
two individuals, or a movie might have a large cast of ac-
tors), protein interaction networks (where proteins form
complexes consisting in general of more than two types
of proteins) or in Twitter (where one tweet might in-
clude several hashtags). Therefore equilibrium and non-
equilibrium models of random simplicial complexes and
hypergraphs have been recently proposed by physicists
and mathematicians [21–23, 53–58].

Modeling complex networks has been the subject of in-
tense research in network theory over the years. In par-
ticular attention has been focusing on the minimal mod-
els able to generate network structure with the univer-
sal properties observed in real complex network datasets:
the small-world property [59], the scale-free degree dis-
tribution [60] and a non-trivial community structure [61].
In this context, non-equilibrium growing network mod-
els generating scale-free networks [50–52, 60, 62–66] have
been widely studied. Scale-free networks have highly
inhomogeneous degree distribution P (k) decaying as a
power-law for large value of k, i.e. P (k) ' k−γ , with the
power-law exponent γ ≤ 3. The scale-free network distri-
bution affects the properties of dynamical processes de-
fined on networks [1, 67, 68] such as the Ising model, per-
colation, epidemic spreading, and quantum phase transi-
tions. In growing network models formed by nodes and
links, the so-called preferential attachment mechanism
has been identified as a key element for obtaining scale-
free networks as shown in the framework of the famous
Barabási-Albert model [60]. The preferential attachment
rule determines that the probability that a node acquires
new links is proportional to its degree. Additional hetero-
geneity of the nodes, capturing intrinsic characteristics of
the nodes that are different from the node degree, have
been modeled by associating an energy ε to the nodes
of the network. The energy ε of a node determines its
fitness η = e−βε, measuring the ability of the node to
attract new links compared to the ability of other nodes
with the same degree. The first growing scale-free net-
work model introducing this heterogeneity of the nodes is
the Bianconi-Barabási model [62–64] that has been used
to model the Internet and the World-Wide-Web. This
model captures the competition existing between nodes
to attract new links. In fact, nodes acquire new links with
a generalized preferential attachment rule which assigns
to high degree and high fitness nodes higher probability
to acquire new links than to lower degree or lower fitness
nodes.
The characterization of the Bianconi-Barabási model has
unveiled an important relation between complex net-
works and quantum statistics. In fact, the Bianconi-
Barabási model [62–64] can be mapped to a quantum
Bose gas and, under the same circumstances in which
the Bose gas undergoes a Bose-Einstein condensation, a
structural phase transition is observed in the network

structure in which one node grabs a finite fraction of all
the links [63, 64]. Interestingly, the Fermi-Dirac statis-
tics characterizes growing Cayley trees with energy of the
nodes [69], and these results have been extended in dif-
ferent directions [65, 70, 71], including weighted networks
and multiplex networks. It is to note that not only grow-
ing network models but also equilibrium network models
have been shown to be related to quantum statistics [72].
Recently the new results obtained in [23] for CQNMs
show that also growing network manifolds describing a
complex network geometry are related to quantum statis-
tics. In fact, in Complex Quantum Network Manifolds
the Fermi-Dirac, the Boltzmann and the Bose-Einstein
statistics coexist in the same network geometry describ-
ing the statistical properties of the δ-dimensional faces of
the CQNM.

Here our goal is to introduce Network Geometry with
flavor s = −1, 0, 1 (for short NGF) showing the strong
effect of dimensionality d on the geometry emergent from
these models and the relation between NGF and quan-
tum statistics. The NGFs describe growing simplicial
complexes with energies associated to all their simplices,
( i.e. to their nodes, links, triangular faces, etc.) and
evolving with (case s = 1) or without (cases s = −1, 0)
explicit preferential attachment, forming either manifolds
(case s = −1) or more general simplicial complexes (cases
s = 0, 1). The NGF generalizes the CQNM introduced in
Ref. [23] which constitutes the NGF with flavor s = −1.
For s = −1, d = 3 and β = 0 the model reduces to the
random Apollonian network [16–19]. Moreover the NGF
with flavor s = 1 and dimension d = 1 reduces to the
Bianconi-Barabási model.

We will focus specifically on the thermodynamic prop-
erties of NGF, on the relation of NGF to complexity
theory, and on the relation between these geometrical
network structures and their quantum mechanical de-
scription. In particular we will characterize the ther-
modynamic relations satisfied by the NGF evolving by
a non-equilibrium dynamics and obeying a generalized
area law; we will identify in which dimension d and for
which flavor s NGF are scale-free networks; and finally we
will provide a quantum mechanical description of NGF,
constructing quantum network states characterizing the
evolution of these models, and showing how quantum
statistics emerges from the statistical properties of these
networks.

In order to determine the thermodynamics of NGF, we
define its total energy E, total entropy S and area A.
The thermodynamic properties of the NGFs reveal that
these structures follow a generalized area law. Since in
quantum gravity the celebrated Jacobson [73–75] result
relates the area law to the Einstein equations as equation
of state, this result could play a crucial role in determin-
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ing the dynamics of NGFs at the macroscopic, coarse-
grained level.

Our results highlight the strong effect of the dimension-
ality d on the structure of the NGF. For NGF in d = 1,
like in the Barabási-Albert model, preferential attach-
ment is a necessary element for obtaining scale-free net-
works. Here we show that for NGF formed by simplicial
complexes of dimension d > 1 an explicit preferential at-
tachment is not necessary to obtain scale-free networks,
as an effective preferential attachment can emerge in sim-
plicial complexes of dimension d > 1 by dynamical rules
that do not include an explicit preferential attachment.
Therefore in dimension d = 2 also Network Geometry
with flavor s = 0 that is not driven by an explicit pref-
erential attachment generates scale-free networks. In di-
mension d ≥ 3 all the NGFs are scale-free, independently
of their flavor s.

The NGF can be mapped to quantum network states
evolving by a Markovian dynamics. The relation be-
tween the NGF and their quantum mechanical descrip-
tion is also emerging from their statistical properties. In
fact, NGFs in dimension d have the generalized degree of
their δ−faces that as a function of the flavor s and the
dimensions d, δ follows Fermi-Dirac, Boltzmann or Bose
Einstein statistics. The dimension d = 3 again plays a
special role because it is the lowest dimension for observ-
ing the coexistence of the Fermi-Dirac, Boltzmann and
Bose-Einstein statistics describing the statistical proper-
ties of the faces of the NGF of dimensions d.

II. NETWORK GEOMETRY WITH FLAVOR s

A. Network Geometry with Flavor s (NGF) and
simplicial complexes

Here we define NGFs in a constructive way by character-
izing their non-equilibrium dynamical evolution.

By d-dimensional simplex here we indicate a fully con-
nected graph (a clique) of (d+1) nodes. Its δ-faces are all
the δ-dimensional simplices that can be built by a subset
of (δ+1) of its nodes. In general, a simplicial complex of
dimension d is formed by a set of simplices of dimension
d′ ≤ d.

A NGF of dimension d ≥ 1 is a simplicial complex formed
by d-dimensional simplices glued along their (d − 1)-
dimensional faces also called (d − 1)-faces. For exam-

ple, a NGF of d = 1 is formed by links glued at their
end nodes, a NGF of d = 2 is formed by triangles glued
along their links, and a NGF of d = 3 is formed by tetra-
hedra glued along their triangular faces. The set of all
possible δ-dimensional faces (or δ-faces) belonging to the
d-dimensional NGF with N nodes is here indicated by
Qd,δ(N). The set of all δ-dimensional faces belonging to
the d-dimensional NGF with δ < d is indicated by Sd,δ.

B. Energies and Generalized degrees of NGF

To each node i of the NGF we assign an energy of the
node εi from a distribution g(ε). The energy of the node
is quenched and does not change during the evolution of
the network. This parameter describes the intrinsic and
heterogeneous properties of the nodes. To every δ-face
α ∈ Sd,δ we associate an energy εα given by the sum of
the energy of the nodes that belong to the face α,

εα =
∑
i∈α

εi. (1)

Therefore, each link will be associated to an energy of
the link given by the sum of energies of the two nodes
incident to it, and each triangular face will be associated
to the sum of the energy of the three nodes incident to
it and so on. The energy ε(i,j) of the links α = (i, j)
belonging to any given triangle of the NGF formed by
the nodes i, j and r satisfy the triangular inequality

|ε(i,r) − ε(j,r)| ≤ ε(i,j) ≤ ε(i,r) + ε(j,r). (2)

This result remains valid for any permutation of the order
of the nodes i, j and r belonging to the triangle. The en-
ergy of the links can therefore be interpreted as length of
the links and related to the use of spins in spin-networks
and loop quantum gravity [41].
Although most of the derivations shown in this paper
can be performed similarly for either continuous or dis-
crete energy of the nodes and of the higher dimensional
δ-faces, here we consider the case in which the energies of
the nodes {εi} and consequently the energy of the δ-faces
{εα} are integers.

The generalized degrees kd,δ(α) of the δ-face α (i. e. α ∈
Sd,δ) in a d-dimensional NGF is defined as the number
of d-dimensional simplices incident to it. Let us define
the adjacency indicator function a of elements aα′ with
α′ ∈ Qd,d−1(N) taking value aα′ = 1 if the d-dimensional
complex α′ is part of the NGF and otherwise taking value
zero, aα′ = 0. Using the adjacency indicator function, we
can define the generalized degree kd,δ of a δ-face α as

kd,δ(α) =
∑

α′|α⊂α′
aα′ . (3)
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Therefore, in a NGF of dimension d = 1 the generalized
degree k1,0(α) is the number of links incident to a node α,
i.e. its degree. In d = 2, the generalized degree k2,1(α) is
the number of triangles incident to a link α while the gen-
eralized degree k2,0(α) indicates the number of triangles
incident to a node α. Similarly in a NGF of dimension
d = 3, the generalized degrees k3,2, k3,1 and k3,0 indi-
cate the number of tetrahedra incident respectively to a
triangular face, a link or a node.

C. NGF evolution

The NGF comes in three flavors indicated by the vari-
able s = −1, 0, 1. In order to define the non-equilibrium
dynamics of NGF we associate to each (d − 1)-face α
the number nα given by the sum of the d-dimensional
simplices incident to α minus one, i.e.

nα = kd,d−1(α)− 1. (4)

If the variable nα can only take values 0, 1 the NGF is
a manifold also called CQNM. If instead the variable nα
can also take values greater than two we have a NGF
which is not a manifold. As we will see in the follow-
ing, NGFs with flavor s = −1 describe manifolds, the
CQNMs, while NGFs with flavor s = 0, 1 do not gener-
ate manifolds.
The NGFs in dimension d are evolving according to a
non-equilibrium dynamics enforcing that at each time the
NGF is growing by the addition of a new d-dimensional
simplex. Here we describe the NGF evolution for NGF
with every type of flavor s = −1, 0, 1 (see Supplementary
Material [76] for the MATLAB code generating NGF in
dimensions d = 1, 2, 3).
At time t = 1 the NGF is formed by a single d-
dimensional simplex. At each time t > 1 we add a sim-
plex of dimension d to a (d− 1)-face α ∈ Sd,d−1 which is

chosen with probability Π
[s]
α given by

Π[s]
α =

1

Z [s](t)
e−βεα(1 + snα), (5)

where β ≥ 0 is a parameter of the model called inverse
temperature, s = −1, 0, 1 and Z [s](t) is a normalization
sum given by

Z [s](t) =
∑

α∈Sd,d−1

e−βεα(1 + snα). (6)

Having chosen the (d − 1)-face α, we glue to it a new
d-dimensional simplex containing all the nodes of the
(d − 1)−face α plus the new node i. It follows that the
new node i of the new simplex is linked to each node j
belonging to α. Finally we note here that the number
of nodes N at time t is given by N = t + d. In fact

s=-‐1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s=1	  

d=1	  

d=2	  

FIG. 1: (Color online) The figure schematically illustrates
the temporal evolution of the NGF of flavor s in dimension
d = 1, 2. In dimension d = 1 at each time step a new node
is added to the network and is connected to the existing net-
work by a single link. In dimension d = 2, at each time a
new node is added to the network. This node is connected
to the existing network by a triangle, i.e. it is linked to
two adjacent nodes of the network. When NGF has flavor
s = −1, each (d − 1)−simplex can be connected at most to
two d−dimensional simplices. This implies that in d = 1 each
node can have at most degree two and in d = 2 each link
can be adjacent to at most two triangles. Therefore NGF
with flavor s = −1 are manifolds, and are also called CQNM
[23]. On the contrary, NGF with flavor s = 0, 1 does not
have this constraint and each (d−1)-dimensional simplex can
be connected to an arbitrarily large number of d-dimensional
simplices. Therefore in d = 1 each node can have an arbitrar-
ily large degree and in d = 2 each link can be incident to an
arbitrarly large number of triangles.
For s = 1 the NGF evolution includes an explicit preferen-
tial attachment rule implying that each new d−dimensional
simplex is linked to a (d−1)−face α with a probability that in-
creases linearly with its generalized degree kd,d−1(α). There-
fore the NGF with d = 1, s = 1 for β = 0 reduces to the
Barabási-Albert model [60] and for β > 0 it reduces to the
Bianconi-Barabási model [62, 63].

for t = 1 the NGF is formed by a single d-dimensional
simplex, and has N = d + 1 nodes. At each time t > 1,
a new d dimensional simplex is added to the NGF. This
simplex has a single new node. Therefore the number of
nodes grows at each time step by one, and is given by
N = t+ d.
In Figure 1 we show the first few steps of the NGF evolu-
tion for the cases d = 1, 2 and s = −1, 0, 1. In Figure 2 we
show a visualization of NGF with s = −1, 0, 1, d = 1, 2, 3
and β = 0.1. These NGFs for d = 1 are trees, for d > 1
they have at the same time large clustering and small
average distance between the nodes, i.e. they are small
world and they have a non-trivial community structure.
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D. The NGF of different flavor s have significantly
different structure and dynamics

The NGF of different flavor s have significantly dif-
ferent geometry and statistical properties. In fact,
depending on the flavor s either manifolds (s = −1)
or more general simplicial complexes are generated.
The dynamical properties of NGF of different flavor
s are also very different, with NGF of flavor s = 1
including an explicit preferential attachment while NGF
with flavor s are driven by an homogeneous attachment
dynamics. In the following we will discuss the prop-
erties of NGF as a function of their flavor s and their
dimension d. Moreover we will relate specific limiting
cases of NGFs with existing models of complex networks.

The dynamical rules of the NGF imply that only for the
case s = −1 NGF are actually manifolds, also called

CQNMs [23]. In fact, for s = −1 the probability Π
[−1]
α

defined in Eq. (S − 5) is zero, (i.e. Π
[−1]
α = 0) for every

(d−1)−face α with nα = 1. If a (d−1)−face has nα = 1
it is already incident to two d−dimensional simplices, as
its generalized degree is kd,d−1(α) = nα + 1 = 2. Such a
face α cannot be glued to any additional d−dimensional
simplex because the probability that we glue an addi-

tional d−simplex to this face is Π
[−1]
α = 0. In particular

the NGF of d = 1 and flavor s = −1 is a chain.
For s = 1, we observe that the probability to attach a

new simplex to the (d − 1)−face α, Π
[1]
α , is proportional

to its generalized degree kd,d−1(α) = 1 + nα providing
a generalization of the so-called preferential attachment
mechanism, known to be necessary for generating scale-
free networks in simplicial complexes of dimension d = 1.
The evolution of NGF is related to existing complex net-
work models with fitness of the nodes [60, 62–65, 69–71].
In particular the NGF with d = 1, β = 0 and s = 1 is the
Barabási-Albert model [60] (with the number of initial
links of each node given by one), while for d = 1, β > 0
and s = 1 it is the Bianconi-Barabási model [62, 63]
(always with the number of initial links given by one).
Moreover, the NGF of d = 2 with flavor s = 0 and β = 0
has been first proposed as a scale-free network model
in Ref. [66]. The NGF in d = 2 is related to models
proposed in the recent literature on emergent network
geometry [21, 22].
Finally the NGF for s = −1, d = 3 and β = 0 is a stacked
polytope model and as such reduces to the stochastic
Apollonian network [16–19]. We note here that it is pos-

sible to define NGF allowing also for a Π
[s]
α given by Eq.

(S − 5) with real values of s, as long as s > 0. These
models will include energy of the δ-faces and preferential
attachment with an initial additive constant [77]. These
models will qualitatively behave like the NGF with s = 1.
Also it is possible to consider negative values s 6= −1.

Nevertheless, to avoid having negative probabilities Π
[s]
α

given by Eq. (S-5), we should impose that s takes nega-
tive rational values s = −1/m with m ≥ 1. This model
allows the generalized degree of (d − 1)-faces to be at
most m and therefore nα ≤ m. These models are related
to the ones recently proposed in Ref. [21] for simplicial
complexes in d = 2. For simplicity here we restrict our
study only to NGF with flavor s = −1, 0, 1 that display
a significant change in their structural properties.

E. Area and volume of NGFs

The boundary of the NGF is defined as the set of
(d − 1)−faces with nα = 0, i.e. incident to exactly one
d−dimensional simplex. We will call the area A of the
NGF the number of (d− 1)−faces in the boundary, i.e.

A =
∑

α∈Sd,d−1

δ(nα, 0). (7)

At each time step of the NGF dynamical evolution, a
(d−1)-face is chosen and a new simplex is attached to it.
If this face is initially at the boundary of the NGF, after
the addition of the simplex it will leave the boundary,
contributing to a negative change of A of one. At the
same time the new simplex adds d new (d− 1)−faces to
the boundary, contributing to an increase of A by d. For
NGF with flavor s = −1 (i.e. for CQNMs), the new d
dimensional complex is attached exclusively to a (d− 1)-
face at the boundary. Moreover at time t = 1 the area is
the area of a single d-dimensional simplex, and is given
by A = d+ 1 . Therefore we have

A = (d− 1)t+ 2. (8)

In general for NGF with every flavor s = −1, 0, 1, and
sufficiently low values of β, we have

A ' λt (9)

for t� 1 with λ ∈ [d− 1, d). The volume V of the NGF
is given by the total number of d−dimensional simplices
that form the NGF. The volume V of the NGF at time
t is equal to the time, i.e.

V = t, (10)

since at each timestep one d-dimensional simplex is added
to the NGF. Therefore in NGF the area A is proportional
to the volume V , i.e. A ∝ V . This property of the NGF is
crucial to determine the NGF small-world diameter, i.e.
a diameter at most increasing like the logarithm of time
t, for sufficiently low values of the inverse temperature β.
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(a) (b) (c)
d = 1, s=-1 d = 1, s = 0 d = 1, s = 1

(d) (e) (f)
d = 2, s = -1 d = 2, s = 0 d = 2, s = 1

(g) (h) (i)
d = 3, s = -1 d = 3, s = 0 d = 3, s = 1

FIG. 2: (Color online) Network Geometry with flavor s = −1, 0, 1 and dimension d = 1, 2, 3. The NGFs have N = 103 nodes,
β = 0.1 and uniform distribution of the energy of the nodes g(ε) = 1/10 for 0 ≤ ε < 10. The color of the nodes indicates
their energy, the color code keeps the same order of the frequency of light (in order of increasing energy we have red,orange,
yellow,green, blue, violet) the size of the nodes is proportional to their degree.
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F. The dual of the NGFs

The NGF have a particularly simple dual network struc-
ture. The dual network is formed by considering nodes
indicating the d-dimensional simplices and links connect-
ing d-dimensional simplices that share a (d−1)-face. For
NGF with flavor s = −1, i.e. for the CQNMs, the dual is
a tree with degree bounded by d+1. In fact each (d−1)-
face connects at most two d-dimensional simplices and
each d-dimensional simplex has exactly d + 1 (d − 1)-
dimensional faces. Interestingly, as it is possible to see
in Figure 2, the CQNMs, also if they have very homoge-
neous dual networks, can display very complex structure,
and as we will see in the next section they are scale-free
for d ≥ 3. This shows a clear example in which the re-
lation between simplicial complexes and their dual net-
works might not preserve the same complexity properties.
For Network Geometry with flavor s = 0, 1 the dual net-
work remains a tree but the degree of its nodes is no
longer bounded.
The tree like nature of the dual network of the NGF
allows for relevant simplifications in the analytical calcu-
lations.

III. THERMODYNAMICS OF NGFS

A. Probability of a given NGF evolution and total
energy of a given NGF

Given the evolutionary dynamics of the NGFs, the evo-
lution of the NGF up to time t is fully determined by
the sequence {αt′}t′≤t, where αt′ indicates the (d − 1)-
face to which the new d-dimensional simplex is added
at time t′ > 1. Moreover the NGF is associated with
the sequence of the energies of its N = t + d nodes
{ε(t′)}t′≤t+d. Of those only the energy of the nodes
arrived in the NGF before time t, i.e. the sequence
{ε(t′)}t′<t+d determines the probabilities of choosing a
particular sequence of {αt′}t′≤...t. Finally it is possible
to evaluate the probability P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s)
that the temporal evolution until time t of the NGF with
flavor s is described by the subsequent addition of d-
simplices to the (d − 1)-faces {α(t′)}t′≤t given that the
energies of the nodes until time t−1 are {ε(t′)}t′<t+d. In
fact P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s) is given by the prod-
uct of the probability of each subsequent addition of the
new simplex to the α(t) face, i.e.

P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s) =
∏
t′≤t

Π
[s]
α(t′), (11)

where Πα(t′) is given by Eq. (S − 5). Inserting the ex-
plicit expression of Πα(t′) in Eq. (11), we obtain

P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s) =
1

Z [s](t)
e−βE

×
∏

α∈Sd,d−1(t)

(1 + snα(t))! (12)

Here we have indicated by E the total energy of the NGF,
given by

E(t) =
∑

α∈Sd,d−1

εαnα(t), (13)

and with Z [s](t) the normalization constant,

Z [s](t) =
∑

{α(t′)}t′≤t

e−βE
∏

α∈Sd,d−1(t)

(1 + snα(t))!

=
∏
t′≤t

Z [s](t′). (14)

Moreover Sd,d−1(t) is the set of (d−1)−faces in the NGF
formed by the subsequent addition of d−dimensional sim-
plices to the faces {α(t′)}t′≤t.

For sufficiently low values of β we have that for large
times, i.e. for t � 1, the ratio Z [s]/t is a self-averaging

quantity and limt→∞ Z [s]/t = e−βµ
[s]
d,d−1 , with µ

[s]
d,d−1 in-

dicating the chemical potential associated to the (d− 1)-
faces in NGF of flavor s. Therefore we can approximate
Z [s] as

Z [s](t) ' e−βµ
[s]
d,d−1t! ' e−βµ

[s]
d,d−1N ! (15)

for large times t � 1 and t ' N . Finally t
P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s) can be expressed as

P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s) =
1

N !
e−β(E−µ[s]

d,d−1N−F )(16)

where F is given by

eβF =
∏

α∈Sd,d−1(t)

(1 + snα(t))! (17)

B. The entropy of the NGF and the generalized
area law

We note that different histories of the NGF up to
time t can give rise to the same network struc-
ture. This network structure is indicated by GN
where N = N(t) is the number of nodes of the
network and {εi}i≤N are the energies of the nodes.
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All the possible temporal evolutions {α(t′)}t′≤t of
the NGF corresponding to the same network GN
have the same probability P ({α(t′)}t′≤t|{εi}i≤N , s) =
P ({α(t′)}t′≤t|{ε(t′)}t′<t+d, s), and they can be obtained
from a given history by considering all causal relabelings
of the nodes. We define the probability P (GN |{εi}i≤N , s)
that the NGF of flavor s at time t results in a given net-
work structure GN , independently of its temporal evolu-
tion, given the energy of the nodes {εi}i≤N . Using the
fact that the dual of the NGF is a tree, this probabil-
ity can be calculated with methods already developed
in [78, 79] by evaluating the number of possible causal
relabelings of the dual tree. Specifically we have

P (GN |{εi}i≤N , s) = e−β(E−µ[s]
d,d−1N−F )z

[s]
N (18)

where

z
[s]
N =

1

N !
L[s](T ) (19)

and where L[s](T ) indicates the number of different NGF
temporal evolutions giving rise to the same network GN .
It can easily be realized that L[s](T ) indicates also the
number of different labelings of the tree T that is the dual

network of the NGF. The introduced quantity z
[s]
N can be

calculated by following the derivation given in Ref. [78]
as long as the NGF is in a stationary state and the de-
gree distribution of the tree describing the dual network
of the NGF is known. In fact, it is possible to evalu-

ate the scaling of z
[s]
N by writing a recursive equation for

L[s](T ) for a tree T given by a root node connected to p
subtrees T1, T2 . . . Tp of N1, N2 . . . Np nodes respectively.
The recursive equation is given by

L[s](T ) =
(N − 1)!

N1!N2! . . . Np!
δ∑

iNi+1,N

p∏
i=1

L[s](Ti). (20)

Here, differently from the case analyzed in [78], the differ-
ent branches T1, T2, . . . , Tp of the tree T are not exchange-
able since the tree T is a dual of a labelled NGF where
the labels indicate the different energies of the nodes. Us-
ing Eq. (20), it is found (see Supplementary Material for

details) that z
[s]
N scales with the number of nodes as

z
[s]
N = C [s]eβν

[s]N (21)

as long as the NGF is not a chain (it is different from the
case s = −1, d = 1), and the NGF reaches a stationary
state (low enough values of β). In fact, the prefactor 1/N !
in Eq. (19) is compensated by the number of terms in the
summand. Therefore, in Eq. (21), C [s] is a subleading
factor, and ν[s] depends on the degree distribution of the
dual of the NGF, and therefore depends on its flavor s.

Finally the probability P (GN , s) scales exponentially
with the number of nodes and can be written for large
networks N � 1 as

P (GN |{εi}i≤N , s) = C [s]e−β(E−µsd,d−1N−ν
[s]N−F ). (22)

The entropy S(N) of the NGF has the natural definition

S(N) = −
∑
GN

P (GN |{εi}i≤N , s) lnP (GN |{εi}i≤N , s).

The total energy E and the entropy S of NGF satisfy
thermodynamics relations. In order to derive them, let
us evaluate the variation in entropy of the network ∆S
given by

∆S(N) = S(N)− S(N − 1). (23)

It can be easily shown, using the definition of the total
energy E in Eq. (13) and the rules determining the NGF
evolution, that

〈εα〉Π[s] = 〈∆E〉Π[s] . (24)

Finally, since the dynamics of the NGF reaches station-
arity for sufficiently low values of β, both 〈εα〉Π and
〈ln(1 + snα)〉Π are independent of time for sufficiently
large times t � 1. Therefore the relation between ∆S
and 〈∆E〉 calculated over the interval ∆t = 1 can be
found using Eqs. (22), (24) and is given by

∆S =
{
β
(
〈εα〉Π[s] − µ[s]

d,d−1 − ν
[s]
)
− 〈ln(1 + snα)〉Π[s]

}
∆t.

Using the scaling of the area A with time given by Eq. (9),
it follows that the change in entropy ∆S can then be
expressed as

∆S =
{
β
[
〈εα〉Π[s] − µ[s]

d,d−1 − ν
[s]
]
− 〈ln(1 + snα)〉Π[s]

} ∆A

λ
.

This relation provides a special type of area law because
for NGF the area A scales like the volume V = N , i.e.
A ∝ V . Nevertheless, we believe that this result opens
new avenues for formulating the macroscopic description
of NGF at the coarse-grained level, in the light of the
results obtained in Refs. [73–75].

C. Relation between the Regge curvature and the
total energy E of NGF with flavor s = −1

We note here that the NGF with flavor s = −1 are man-
ifolds, specifically they are the CQNM. For these mani-
folds, one may wish to characterize their geometry using
Regge’s definition of curvature [41, 80, 81]. The Regge
curvature is localized on (d−2)-faces and is given by the
excess angle formed by the d−dimensional simplices inci-
dent to a given (d−2)-face. Therefore in the case in which
the d−dimensional simplices are assumed all equilateral
the curvature Rα associated to the (d − 2)−face α is
uniquely determined by the generalized degree kd,d−2(α),
i.e.

Rα = aαπ − θd kd,d−2(α) (25)
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where θd > 0 indicates the angle between any two (d−1)-
faces of the d-dimensional simplex and where aα = 1 [81]
for all α ∈ Sd,d−2(N) because for the NGF all (d − 2)-
faces are at the boundary.

The total energy E of the NGF with flavor s is defined
in Eq. (13) as

E =
∑

α∈Sd,d−1

εαnα, (26)

where nα is related to the generalized degree of the (d−
1)-face α by nα = kd,d−1(α)−1 (Eq. (4)), and where the
energy of the face α is given by the sum of the energy of
the nodes belonging to that face (Eq. (1)). We note now
that it is possible to show (see Supplementary Material
for details), using simple combinatorial calculations, that∑

α∈Sd,d−1

εαkd,d−1(α) = Bd
∑

α′∈Sd,d−2

εα′kd,d−2(α′), (27)

with Bd = 2/(d− 1). Using this expression we can ex-
press the total energy E and the total energy of the
boundary Ê of the NGF in terms of the Regge curva-
ture Rα of the (d − 2)-faces. The total energy E of the
NGF can then be written as

E =
Bd
θd

Λ−
∑

α′∈Sd,d−2

εα′Rα′

 (28)

with Λ being independent of the curvature and it can be
shown to be given by

Λ =

(
π − θd

2

) ∑
α′∈Sd,d−2

εα′ . (29)

We note that the expression for E in Eq. (28) differs from
the Regge action [41, 80, 81] by an overall sign, and by
the fact that Eq. (32) contains the energy of the (d− 2)-
faces while in the Regge action their role is played by the
volume of the (d−2)-faces. Additionally, it is possible to

define the total energy of the boundary Ê of the NGF as
given by the sum of the energies of the (d − 1)-faces at
the boundary, i.e.

Ê =
∑

α∈Sd,d−1

εα(1− nα), (30)

with Ê and E being related by

E + Ê =
∑

α∈Sd,d−1

εα. (31)

The total energy Ê of the the boundary can be written
as

Ê =
Bd
θd

 ∑
α′∈Sd,d−2

εα′Rα′ − Λ̂

 (32)

TABLE I: Distribution of generalized degrees of faces of di-
mension δ in a d-dimensional NGF of flavor s at β = 0. For

d ≥ d[δ,s]c = 2(δ+ 1)− s the power-law distributions are scale-
free, i.e. the second moment of the distribution diverges.

flavor s = −1 s = 0 s = 1

δ = d− 1 Binomial Exponential Power-law

δ = d− 2 Exponential Power-law Power-law

δ ≤ d− 3 Power-law Power-law Power-law

with Λ̂ being independent of the curvature and given by

Λ̂ = (π − θd)
∑

α′∈Sd,d−2

εα′ . (33)

We note that the expression for Ê in Eq. (32) differs
from the Regge action [41, 80, 81] by the fact that Eq.
(32) contains the energy of the (d− 2)-faces while in the
Regge action their role is played by the volume of the
(d− 2)-faces.

IV. THE GENERALIZED DEGREE
DISTRIBUTIONS AT β = 0

A. The dependence of the generalized degree
distribution on dimensions d, δ and flavor s

The NGFs display a number of critical dimensions mark-
ing changes in the structure of these networks as their
dimension d changes. These structural changes are re-
vealed by the statistical properties associated with the
distribution of the generalized degree kd,δ of their δ−faces
with 0 ≤ δ < d. To show this, here we focus on the ef-

fect of the dimensions d and δ on the distribution P
[s]
k,δ(k)

of the generalized degrees kd,δ of NGF of flavor s. For
simplicity, our study will focus first on the simpler case
β = 0, where the energies of the nodes play no role in
the NGF dynamics. Using the master equation approach
[50–52] we show that depending on the dimensions d and
δ, and on the flavor s, the generalized degrees kd,δ can
follow either binomial or exponential or power-law distri-
butions. The power-law distributions are characterized
by the asymptotic behavior for large generalized degree
kd,δ = k � 1 given by

P
[s]
k,δ(k) ' k−γ

[s]
d,δ . (34)

Our results on the generalized degree distribution of NGF
of different flavor s, dimension d and β = 0 are summa-
rized in Table I.

Additionally, power-law distributions can be character-
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ized either by a power-law exponent γ
[s]
d,δ > 3 or γ

[s]
d,δ ≤ 3

indicating, in the second case, a divergent second moment〈
k2
d,δ

〉
of the generalized degree distribution P

[s]
d,δ(k). The

critical dimension d
[δ,s]
c is the smallest dimension d of the

NGF of flavor s for which the generalized degree dis-

tribution P
[s]
d,δ(k) is scale-free. For obtaining the exact

asymptotic expression for the generalized degree distri-

bution P
[s]
d,δ(k) of generalized degree kd,δ = k in NGF of

flavor s with s = −1, 0, 1 we use the master equation ap-
proach [50–52] . Here we discuss in detail the results in
the cases s = −1, 0, 1. For details of the calculation we
refer the reader to the Supplementary Material [76].

B. Generalized degree distribution P
[−1]
d,δ (k) for

s = −1, β = 0

In the case s = −1 NGF generates manifolds also called
CQNM [23]. At β = 0 the generalized degree follows a
binomial distribution for faces of dimension δ = d − 1,
an exponential distribution for faces of dimension δ =
d−2, and a power-law distribution for faces of dimension
δ ≤ d − 3 (see Table I). In particular, the distributions

P
[−1]
d,δ (k) of generalized degrees kd,δ are given by

P
[−1]
d,d−1(k) =

{
d−1
d for k = 1

1
d for k = 2

,

P
[−1]
d,d−2(k) =

(
2

d+ 1

)k
d− 1

2
,

P
[−1]
d,δ (k) =

d− 1

d− δ − 2

Γ[1 + (d+ 1)/(d− δ − 2)]

Γ[1 + 2/(d− δ − 2)]

× Γ[k + 2/(d− δ − 2)]

Γ[k + 1 + (d+ 1)/(d− δ − 2)]
, for δ ≤ d− 3. (35)

These distributions perfectly match the simulation re-
sults as shown in Figure 3. For δ ≤ d − 3 and for large

values of k, the distribution P
[−1]
d,δ (k) can be fitted by a

power-law given by Eq. (34) with power-law exponent

γ
[−1]
d,δ given by

γ
[−1]
d,δ = 1 +

d− 1

d− δ − 2
. (36)

This exponent is lower than 3, i.e. γ
[−1]
d,δ ≤ 3 indicating

a scale-free distribution of generalized degrees above the

critical dimension, i.e. for d ≥ d[δ,−1]
c where

d[δ,−1]
c = 2δ + 3. (37)

Therefore for NGF with flavor s = −1 and β = 0 the
generalized degree of faces of dimension δ = d−2 follows

an exponential distribution. This result implies that in
this case the Regge curvature R given by Eq. (25) is
following an exponential distribution, too.

C. Generalized degree distribution P
[0]
d,δ(k) for

s = 0, β = 0

In the case s = 0, the generalized degree of (d−1)−faces
follows an exponential distribution, while the generalized
degree of faces of dimension δ ≤ d−2 follows a power-law
distribution (see Table I). Specifically, the distribution

P
[0]
d,δ(k) of generalized degree kd,δ is given by

P
[0]
d,d−1(k) =

(
1

d+ 1

)k
d

P
[0]
d,δ(k) =

d

d− δ − 1

Γ[1 + (d+ 1)/(d− δ − 1)]

Γ[1 + 1/(d− δ − 1)]

× Γ[k + 1/(d− δ − 1)]

Γ[k + 1 + (d+ 1)/(d− δ − 1)]
, for δ ≤ d− 2.(38)

These distributions perfectly match the simulation re-
sults as shown in Figure 3. For δ ≤ d − 2 and for large

values of k the distribution P
[0]
d,δ(k) can be fitted by a

power-law given by Eq. (34) with power-law exponent

γ
[0]
d,δ given by

γ
[0]
d,δ = 1 +

d

d− δ − 1
. (39)

This exponent is lower than 3, i.e. γ
[0]
d,δ ≤ 3 indicating

a scale-free distribution of generalized degrees above the

critical dimension, i.e. for d ≥ d[δ,0]
c where

d[δ,0]
c = 2δ + 2. (40)

D. Generalized degree distribution P
[1]
d,δ(k) for

s = 1, β = 0

In the case s = 1 the generalized degree distribution

P
[−1]
d,δ is power-law (see Table I) for any dimension δ ≤
d− 1 and is given by

P
[1]
d,δ(k) =

d+ 1

d− δ
Γ[1 + (d+ 1)/(d− δ)]

× Γ[k]

Γ[k + 1 + (d+ 1)/(d− δ)]
. (41)

These distributions perfectly match the simulation re-
sults as shown in Figure 3. For any δ ≤ d − 1 for large
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FIG. 3: (Color online) The generalized degree distribution P
[s]
d,δ(k) of generalized degrees kd,δ = k in NGF of dimension d = 3

with value of flavor s = −1, 0, 1 and β = 0. The simulation results indicated with blue circles are shown for networks of N = 104

nodes. These results perfectly match the theoretical predictions of Eqs. (35), (38) and (41) indicated here with solid black
lines.

values of k the distribution P
[1]
d,δ(k) can be fitted by a

power-law given by Eq. (34) with power-law exponent

γ
[1]
d,δ given by

γ
[1]
d,δ = 1 +

d+ 1

d− δ
. (42)

This exponent is lower than 3, i.e. γ
[1]
d,δ ≤ 3 indicating

a scale-free distribution of generalized degrees above the

critical dimension, i.e. for d ≥ d[δ,1]
c where

d[δ,1]
c = 2δ + 1. (43)

E. The critical dimensions d
[δ,s]
c

Summarizing the results of the previous paragraphs,
NGFs of flavor s follow a regular pattern, with the flavor
s having the effect of shifting the statistical properties
of generalized degree kd,δ as indicated in Table I. The
critical dimension for having a scale-free distribution of
generalized degree for faces of dimension δ in NGF of
dimension d at β = 0 is given by

d[δ,s]
c = 2(δ + 1)− s, (44)

which is a simple expression which summarizes the Eqs.
(37)− (40)− (43).

Therefore the generalized degree kd,δ of NGF of flavor s
is scale-free for every dimension d of the NGF satisfying

d ≥ d[δ,s]
c = 2(δ + 1)− s. (45)

Since in NGF the generalized degree of node α, kd,0(α),
is related to its degree K(α) by the simple relation

K(α) = kd,0(α) + d− 1, (46)

the critical dimension d
[0,s]
c indicates also the smallest

dimension d of the NGF for which the NGF has a scale-
free degree distribution. Therefore the NGFs at β = 0 are
scale-free networks as long as the dimension d is greater

than the critical dimension d
[0,s]
c , i.e.

d ≥ d[0,s]
c = 2− s. (47)

Therefore for s = −1 NGF at β = 0 are scale-free for

d ≥ d
[0,−1]
c = 3, while for s = 0 they are scale-free for

any d ≥ d
[0,0]
c = 2, and for s = 1 they are scale-free for

any dimension d ≥ d[0,−1]
c = 1.

This interesting result implies that an explicit preferen-
tial attachment rule is not necessary for generating scale-
free NGF in dimension d > 1. In fact both NGF with
flavor s = 0 and s = −1 do not have an explicit prefer-
ential attachment rule, but they can generate scale-free
networks respectively for d ≥ 2 and d ≥ 3. This apparent
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contradiction with the results obtained by the seminal
Barabási-Albert model [60] is solved by observing that
NGFs of dimension d > 1 and flavor s 6= −1 that are
scale-free, although they do not evolve according to an
explicit preferential attachment rule, follow an effective
preferential attachment rule emergent from their dynam-
ics (see Supplementary Material [76] for details ).

V. QUANTUM NETWORK STATES

To each NGF of flavor s, evolved up to time t, we can
associate a quantum network state

∣∣ψ[s](t)
〉

belonging

to the Hilbert space H[s]
tot by following a similar proce-

dure as the one used in precedent works [22, 23, 45–47].

An Hilbert space H[s]
tot is associated to a simplicial com-

plex of N nodes formed by gluing together d-dimensional

simplices along (d − 1)-faces. The Hilbert space H[s]
tot

is the tensorial product of the Hilbert spaces Hnode as-
sociated to the nodes of the NGF and of two Hilbert
spaces Hd,d−1 and H̃[s]

d,d−1 associated to each of the pos-

sible (d− 1)−faces of the NGF, i.e.

H[s]
tot =

N⊗
Hnode

P⊗
Hd,d−1

P⊗
H̃[s]
d,d−1, (48)

with P =

(
N

d

)
indicating the maximum number of

(d− 1)-faces in a network of N nodes. The Hilbert space
Hnode is the one of a fermionic oscillator of energy εi, with

basis {|oi, ε〉}, with oi = 0, 1. We indicate with b†i (ε), bi(ε)
respectively the fermionic creation and annihilation op-
erators acting on this space. The Hilbert space Hd,d−1

associated to a (d − 1)-face α is the Hilbert space of a
fermionic oscillator with basis {|aα〉}, with aα = 0, 1. We
indicate with c†α, cα respectively the fermionic creation
and annihilation operators acting on this space. Finally

the Hilbert space H̃[s]
d,d−1 associated to a (d − 1)-face α

has a different definition depending on the flavor s of

the NGF. For s = −1, H̃[−1]
d,d−1 is the Hilbert space of

a fermionic oscillator with basis {|nα〉}, with nα = 0, 1.

For s = 1, H̃[1]
d,d−1 is the Hilbert space of a bosonic os-

cillator with basis {|nα〉}, with nα = 0, 1, 2, 3, .... For

s = 0, H̃[0]
d,d−1 is the Hilbert space with basis {|nα〉},

with nα = 0, 1, 2, 3, .... For s = 1, and s = −1 we in-

dicate with h
†,[s]
α , h

[s]
α the fermionic/bosonic creation and

annihilation operators acting respectively on the space

H̃[−1]
d,d−1 and H̃[1]

d,d−1. For s = 0 we indicate with h
†,[0]
α , h

[0]
α

the operators with commutation relations

[h†,[0]
α , h[0]

α ] = b (49)

with the operator b having elements

bmn = 〈m|b |n〉 = δm,nδm,0, (50)

such that

h†,[0] |n〉 = |n+ 1〉 (51)

and

h[0] |n〉 = |n− 1〉 for n > 0

h[0] |0〉 = 0 .

Having introduced the Hilbert space H[s]
tot, we can decom-

pose any quantum network state |φ〉 ∈ H[s]
tot as

|φ〉 =
∑

{oi,εi,aα,nα}

C({oi, εi, aα, nα})

×
N⊗
i=1

|oi, εi〉
⊗

α∈Qd,d−1(N)

(|aα〉 ⊗ |nα〉) , (52)

where with Qd,d−1(N) we indicate all the possible
(d− 1)-faces of a network of N nodes.

The node states |oi, ε〉 are mapped respectively to the
presence (|oi = 1, ε〉) or the absence (|oi = 0, ε〉) of a node
i of energy εi = ε in the simplicial complex. The state
|aα = 1〉 is mapped to the presence of the (d−1)−face α ∈
Sd,d−1 in the network while the quantum state |aα = 0〉
is mapped to the absence of such a face. Moreover, when
aα = 1, the quantum number nα is mapped to the gener-
alized degree of the face α minus one kd,d−1(α)−1. Note

that for s = −1 the Hilbert space H̃[s]
d,d−1 is the one of

a fermionic oscillator therefore allowing only nα = 0, 1
corresponding to generalized degrees kd,d−1(α) = 1, 2.
As already proposed in the literature [22, 23, 45], here we
assume that the quantum network state follows a Marko-
vian evolution. In particular we assume that at time
t = 1 the state is given by∣∣∣ψ[s](1)

〉
=

1√
Ẑ [s](1)

∑
{εi}i=1,..d+1

d+1∏
i=1

√
g(εi)b

†
i (εi)

×
∏

α∈Qd,d−1(d+1)

c†α |0〉 , (53)

where Z [s](1) is fixed by the normalization condition〈
ψ[s](1)|ψ[s](1)

〉
= 1. The quantum network state is up-

dated at each time t > 1 according to the transition

matrix T
[s]
t , i.e.∣∣∣ψ[s](t)

〉
= T

[s]
t |ψ(t− 1)〉 (54)

with T
[s]
t given by

T
[s]
t =

√
Ẑ [s](t− 1)

Ẑ [s](t)

∑
εt+d

√
g(εt+d)b

†
t+d(εt+d)

×
∑

α∈Qd,d−1(t+d−1)

e−βεα/2

 ∏
α′∈F(t+d,α)

c†α′

h†,[s]α c†αcα,
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where F(i, α) indicates the set of all the (d− 1)-faces α′

formed by the node i and a subset of the nodes in α ∈
Qd,d−1(N), Z [s](t) is fixed by the normalization condition

〈ψ[s](t)|ψ[s](t)〉 = 1. (55)

The quantity Ẑ [s](t) is a path integral over NGF evo-
lutions determined by the sequences {εi}i≤t+d, {αt′}t′≤t.
In fact, using the normalization condition in Eq. (55)
and the evolution of the quantum network state given by
Eqs. (54), (55) we get

Ẑ [s] = Z [s] (56)

where Z [s] defined in Eq. (14) describes the temporal
evolution of NGF, and therefore

Ẑ [s] =
∑

{α(t′)}t′≤t

e−βE
∏

α∈Qd,d−1(t)

(1 + snα(t))! (57)

This implies that the set of all classical evolutions of the
CQNM fully determines the properties of the quantum
network state evolving through the Markovian dynamics
given by Eq. (54).

VI. QUANTUM STATISTICS IN NETWORK
GEOMETRY WITH FLAVOR s

A. Fermi-Dirac, Boltzmann and Bose-Einstein
statistics describe the properties of the generalized

degree of δ-faces

For β > 0, as long as β is sufficiently low, we can de-

fine self-consistently the chemical potentials µ
[s]
d,δ and ex-

press the distributions P
[s]
k,δ(k) of the generalized degrees

kd,δ as convolution of binomial, exponential or power-law
distributions corresponding to the generalized degrees of
δ−faces of energy ε. These distributions depend on the

chemical potentials µ
[s]
d,δ. When we average the general-

ized degrees of δ−faces of energy ε and subtract one, i.e.
we evaluate 〈kd,δ − 1|ε, s〉, we observe that these quanti-
ties obey either the Fermi-Dirac, the Boltzmann or the
Bose-Einstein statistics, depending on the dimensions d
and δ and on the flavor s of the NGF, where the Fermi-
Dirac nF (ε, µ), the Boltzmann nB(ε, µ) and the Bose-
Einstein statistics are given [82] by the expressions

nF (ε, µ) =
1

eβ(ε−µ) + 1
,

nZ(ε, µ) = e−β(ε−µ),

nB(ε, µ) =
1

eβ(ε−µ) − 1
. (58)

TABLE II: The average 〈kd,δ − 1|ε, s〉 of the generalized
degrees kd,δ of δ-faces with energy ε minus one in a d-
dimensional NGF of flavor s follows either the Fermi-Dirac,
the Boltzmann or the Bose-Einstein statistics depending on
the values of the dimensions d and δ.

flavor s = −1 s = 0 s = 1

δ = d− 1 Fermi-Dirac Boltzmann Bose-Einstein

δ = d− 2 Boltzmann Bose-Einstein Bose-Einstein

δ ≤ d− 3 Bose-Einstein Bose-Einstein Bose-Einstein

The results are summarized in Table II and simulation
results are compared with the theoretical expectations in
Figure 4.

We note here that the average of kd,d−1(α) − 1 = nα
obeys the Fermi-Dirac statistics for s = −1, the Boltz-
mann statistics for s = 0 and the Bose-Einstein statistics
for s = 1. This is particularly surprising because it shows
that the statistical properties of NGF are intertwined
with the properties of quantum network states in which
nα is mapped to a quantum number which is fermionic
in the case s = −1 and bosonic in the case s = 1. There-
fore, statistically, on the NGF nα follows the Fermi-Dirac
statistics for s = −1 and the Bose-Einstein statistics for
s = 1 even if the NGF does not follow quantum equilib-
rium statistical mechanics. In order to show this result,
let us give the results of the master-equation approach

for the generalized degree distribution P
[s]
d,δ(k) for β > 0

(for the details of the derivation see the Supplementary
Material [76]). We will distinguish the cases in which the
flavor s takes value s = −1, 0, 1.

B. Generalized degree distribution P
[−1]
d,δ (k) for

s = −1, β > 0

As long as the NGF is not a chain, i.e. d > 1, and
as long as we consider sufficiently low values of the in-
verse temperature β, we can define a set of self-consistent

quantities that we call the chemical potentials µ
[−1]
d,δ . The

generalized degrees kd,δ = k of NGF with d > 1 follow

the distribution P
[−1]
d,δ (k) that depends on the chemical

potential µ
[−1]
d,δ , and is given by a binomial distribution

defined only for k = 1, 2 (for δ = d−1), by a convolution
of exponentials (for δ = d − 2), or by a convolution of
power-law distributions (for δ ≤ d − 3) [23]. In fact the

exact asymptotic expression of the distribution P
[−1]
d,δ (k)

of the generalized degree kd,δ = k obtained with the mas-
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ter equation approach is given by

P
[−1]
d,d−1(1) =

∑
ε

ρ
[−1]
d,d−1(ε)

1− 1

exp
[
β
(
ε− µ[−1]

d,d−1

)]
+ 1

 ,

P
[−1]
d,d−1(2) =

∑
ε

ρ
[−1]
d,d−1(ε)

1

exp
[
β
(
ε− µ[−1]

d,d−1

)]
+ 1

,

P
[−1]
d,d−2(k) =

∑
ε

ρ
[−1]
d,d−2(ε)

exp
[
β
(
ε− µ[−1]

d,d−2

)]
(

exp
[
β
(
ε− µ[−1]

d,d−2

)]
+ 1
)k ,

P
[−1]
d,δ (k) =

∑
ε

ρ
[−1]
d,δ (ε)

×
exp

[
β
(
ε− µ[−1]

d,δ

)]
Γ [k + 2/(d− δ − 2)]

Γ
[
k + 1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]]
×

Γ
[
1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]]
Γ [1 + 2/(d− δ − 2)]

,

where ρ
[−1]
d,δ (ε) indicates the probability that a δ-face has

energy ε, the dimension d is greater than one, i.e. d > 1,
and the last expression is valid for values of δ satisfying
0 ≤ δ ≤ d − 3. The average of the generalized degree
minus one, performed over δ−faces of energy ε in dimen-
sion d > 1, is given by the Fermi-Dirac statistics for
δ = d− 1, the Boltzmann statistics for δ = d− 2 and the
Bose-Einstein statistics for δ ≤ d− 3 [23]

〈kd,d−1 − 1|ε, s = −1〉 = nF

(
ε, µ

[−1]
d,d−1

)
, (59)

〈kd,d−2 − 1|ε, s = −1〉 = nZ

(
ε, µ

[−1]
d,d−2

)
,

〈kd,δ − 1|ε, s = −1〉 = A
[−1]
d,δ nB

(
ε, µ

[−1]
d,δ

)
,

where the last expression is valid for δ ≤ d − 3, and
where nF (ε, µ), nZ(ε, µ) and nB(ε, µ) are given by Eqs.

(S − 50), while A
[−1]
d,δ is given by

A
[−1]
d,δ =

(d− δ)
(d− δ − 2)

. (60)

These relations perfectly match the simulation results for
sufficiently low value of the inverse temperature β (see
Figure 4). The self-consistent value of the chemical po-
tential can be found by imposing the following geomet-
rical relations satisfied by the generalized degrees of the
NGF of every flavor s,

lim
t→∞

∑
α∈Sd,δ(t) kd,δ(α)

Nd,δ(t)
=
d+ 1

δ + 1
. (61)

Imposing such condition is equivalent to fixing the nor-

malization conditions for nF

(
ε, µ

[−1]
d,d−1

)
, nZ

(
ε, µ

[−1]
d,d−2

)
,

and nB

(
ε, µ

[−1]
d,δ

)
. These conditions are given by

∑
ε

ρd,d−1(ε)nF

(
ε, µ

[−1]
d,d−1

)
=

1

d
,

∑
ε

ρd,d−2(ε)nZ

(
ε, µ

[−1]
d,d−2

)
=

2

d− 1
,

∑
ε

ρd,δ(ε)nB

(
ε, µ

[−1]
d,δ

)
=

d− δ − 2

δ + 1
. (62)

The case d = 1 is an exception because it is the only case
in which the area A of the NGF is not growing in time,
in fact we have A = 2 for every value of t. This property
of the NGF of flavor s = −1 in dimension d = 1 makes
this case significantly different from the other cases, but
fortunately this NGF has a much simpler dynamics, since
it is a chain.

C. Generalized degree distribution P
[0]
d,δ(k) for

s = 0, β = 0

For NGF of flavor s = 0, using the master equation ap-
proach together with the self-consistent derivation, we

can derive the distribution P
[0]
d,δ(k) of generalized degrees

kd,δ = k. Therefore we define self-consistently the chemi-

cal potentials µ
[0]
d,δ, and express the distribution P

[0]
d,δ(k) as

a convolution of exponentials or a convolution of power-
law distributions depending on the dimension d and δ.
These distributions are given by

P
[0]
d,d−1(k) =

∑
ε

ρ
[0]
d,d−1(ε)

e
β
(
ε−µ[0]

d,d−2

)
(
e
β
(
ε−µ[0]

d,d−2

)
+ 1

)k ,(63)

P
[0]
d,δ(k) =

∑
ε

ρ
[0]
d,δ(ε)

×
exp

[
β(ε− µ[0]

d,δ)
]
Γ [k + 1/(d− δ − 1)]

Γ
[
k + 1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]]
×

Γ
[
1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]]
Γ [1 + 1/(d− δ − 1)]

,

where ρ
[0]
d,δ(ε) indicates the probability that a δ-face has

energy ε, and where the last equation is valid for values
of δ satisfying 0 ≤ δ ≤ d−2. Therefore the (d−1)−faces

have generalized degree distribution P
[0]
d,d−1(k) that is

given by a convolution of exponentials, while the δ−faces
with δ ≤ d − 2 have a generalized degree distribution

P
[0]
d,δ(k) that is given by a convolution of power-laws.

When considering the average 〈kd,δ − 1|ε, s = 0〉, we ob-
serve that for δ = d − 1 this quantity is a Boltzmann
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distribution and for every δ ≤ d − 2 is a Bose-Einstein
distribution, i.e.

〈kd,d−1 − 1|ε, s = 0〉 = nZ

(
ε, µ

[0]
d,d−2

)
, (64)

〈kd,δ − 1|ε, s = 0〉 = A
[0]
d,δnB

(
ε, µ

[0]
d,δ

)
, for δ ≤ d− 2.

with nZ(ε, µ) and nB(ε, µ) given by Eqs. (S − 50) and

A
[0]
d,δ given by

A
[0]
d,δ =

(d− δ)
(d− δ − 1)

. (65)

The chemical potential µ
[0]
d,δ can then be found imposing

the condition in Eq. (S − 64) that all NGF must satisfy.
Therefore, the self-consistent equations that the chemical
potentials must satisfy are∑
ε

ρd,d−1(ε)nZ

(
ε, µ

[−1]
d,d−1

)
=

1

d
,

∑
ε

ρd,δ(ε)nB

(
ε, µ

[−1]
d,δ

)
=

d− δ − 1

δ + 1
, for δ ≤ d− 2.

(66)

D. Generalized degree distribution P
[1]
d,δ(k) for

s = 1, β = 0

The NGF of flavor s = 1, at sufficiently low inverse tem-
perature β, has the generalized degrees kd,δ = k with

distribution P
[1]
d,δ(k) dependent on the chemical potential

µ
[1]
d,δ. The generalized degree distributions P

[1]
d,δ(k) can be

found using the master equation approach, and they are
given by

P
[1]
d,δ(k) =

∑
ε

ρ
[1]
d,δ(ε)

exp
[
β
(
ε− µ[1]

d,δ

)]
Γ [k]

Γ
[
k + 1 + exp

[
β
(
ε− µ[1]

d,δ

)]]
×Γ
[
1 + exp

[
β
(
ε− µ[1]

d,δ

)]]
, (67)

where ρ
[1]
d,δ(ε) indicates the probability that a δ-face

has energy ε. In this case, if we perform the average
〈kd,δ − 1|ε, s = 1〉 over all δ−faces with energy ε, we al-
ways get the Bose-Einstein distribution, independently
of 0 ≤ δ < d, i.e. we obtain

〈kd,δ − 1|ε, s = 1〉 = nB

(
ε, µ

[1]
d,δ

)
, (68)

with nB(ε, µ) given by Eq. (S − 50). The chemical po-

tentials µ
[1]
d,δ must satisfy Eq. (S − 64). Therefore they

can be found self-consistently by solving∑
ε

ρd,δ(ε)nB

(
ε, µ

[1]
d,δ

)
=
d− δ
δ + 1

. (69)

E. The low temperature regime

In the regime of low temperatures, i.e. high enough val-
ues of β, it is possible to observe a breakdown of the
self-consistent hypothesis made for solving the general-
ized degree distribution and the self-consistent equations
might not have a solution. In the NGF of d = 1 and
flavor s = 1 there is a well-defined phase transition in
which one node grabs a finite fraction of all the links.
This phase transition is also called Bose-Einstein conden-
sation in complex networks and has been characterized in
Ref. [63]. In general NGF of higher dimensions and also
different flavors might show phase transitions modifying
the generalized degree distribution of different δ-faces as
shown for the case d = 2 and flavors s = −1 and s = 1 in
Ref. [22]. A full investigation of the nature of the pos-
sible phase transitions occurring in NGF is beyond the
scope of this paper.

VII. CONCLUSIONS

In conclusion here we have presented the model of Net-
work Geometry with Flavor s. This is a model for grow-
ing simplicial complexes in dimension d. Simplicial com-
plexes are very useful generalizations of networks and
can be used to model interactions involving more than
just two nodes, as the one occurring for example in col-
laboration networks, or in protein-interaction networks.
Moreover simplicial complexes of dimension d are use-
ful structures to discretize a geometrical d-dimensional
space, and for this reason they are widely used in quan-
tum gravity.
Network Geometry with flavor s evolves by a non-
equilibrium dynamics that enforces an indefinite growth
of these geometrical structures. Moreover these networks
are formed by simplices having heterogeneous properties
modeled by assigning an energy to them that determines
their evolution. The statistical mechanics of the NGF
allows to characterize the thermodynamic properties of
these networks and to relate these networks to complex-
ity theory on the one side and to quantum geometry on
the other side.
The thermodynamic properties of NGF reveal that these
networks obey the area law and the change in their en-
tropy S depends on the change of their area A. From the
point of view of network theory we observe that charac-
terizing NGF of dimensionality d > 1 allows for a signif-
icant generalization of previous results, showing that an
explicit preferential attachment is not necessary for ob-
taining scale-free networks in the case of NGF of d > 1.
Finally the significant interplay between the NGF and
their quantum mechanical description in terms of quan-
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FIG. 4: (Color online)The average 〈kd,δ − 1|ε, s〉 for NGF of flavor s in dimension d = 3 follows either the Fermi-Dirac statistics
nF (ε, µ), the Boltzmann statistics nZ(ε, µ) or the Bose-Einstein statistics nB(ε, µ) given by Eqs. (S − 50) depending on the
value of δ and s as predicted by Eqs. (S − 63), (S − 73) and (S − 80). Here the simulation results for NGF of dimension
d = 3 formed by N = 104 nodes for β = 0.05, 0.1, 0.2 (indicated respectively by blue circles, red squares and orange diamonds)
averaged 20 times are compared with the theoretical expectations (indicated with solid black lines). The energies of the nodes
take integer values and their uniform distribution is given by g(ε) = 1/10 for 0 ≤ ε < 10.

tum network states is revealed by the statistical prop-
erties of the generalized degrees of δ-faces, whose aver-
age follows either the Fermi-Dirac, the Boltzmann or the
Bose-Einstein statistics depending on the dimensions d, δ
and on the flavor s.
Overall we have proposed the theoretical framework of
NGF for describing the non-equilibrium dynamics of sim-
plicial complexes. Our framework generates a large vari-
ety of network geometries, from chains and higher dimen-
sional manifolds to scale-free networks with communities
and small-world properties. Interestingly, NGF with fla-

vor s = −1, 0, 1 displays a strikingly regular pattern in
their structural properties. We believe that these results
extend our understanding of growing complex networks
to simplicial complexes of larger dimensionality and can
be used in network theory to model network-like struc-
tures where nodes are connected by interactions involv-
ing more than two nodes. Finally we hope that this
work, showing the rich interplay between NGF and their
quantum mechanical description, will stimulate the cross-
fertilization between network theory and quantum grav-
ity.
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SUPPLEMENTARY INFORMATION

INTRODUCTION

Network Geometries with Flavor s = −1, 0, 1 (NGFs) are simplicial complexes of dimension d formed by gluing d-
simplices along (d− 1)-faces. The NGFs evolve according to a non-equilibrium dynamics that enforces the simplicial
complex to grow continuously by the subsequent addition of d-dimensional simplices. In this Supplementary Material
we will first provide some useful definition of important properties of the NGFs (Sec. V II), then we will define the
dynamical evolution of NGF (Sec. VII). In the subsequent sections we will provide details of the analytic results
reported in the main body of the paper and provide the codes for the simulation of NGF in dimension d = 1, 2, 3. In
particular in Sec. VII we will provide the details of the Eq. (21) and Eq. (28) used to derive the thermodynamic
properties of NGF in the main text and in Sec. B we discuss the generalized degree distribution for β = 0 and β > 0,
and in Sec. D 3 we will provide the codes for generating NGF of flavor s = −1, 0, 1 in dimensions d = 1, 2, 3.

GENERALIZED DEGREE AND ENERGY OF THE δ−FACES

Here we provide some useful definitions of important structural properties of the δ-faces of the NGFs. Let us indicate
with Qd,δ(N) the set of all possible δ-dimensional faces (also called δ−faces) with δ ≤ d of a d-dimensional NGF
formed by N nodes. Moreover we will indicate with Sd,δ the set of all δ-dimensional faces (also called δ−faces) with
δ < d belonging to the d-dimensional NGF of N nodes. The generalized degrees kd,δ(α) of the δ-face α ∈ Sd,δ in a
d-dimensional NGF is the number of d−dimensional simplices incident to it. Given the adjacency tensor a with the
generic element aα′ with α′ ∈ Qd,d(N) taking the values

aα′ =

{
1 if α′ ∈ Qd,d(N)

0 otherwise
, (S-1)

the generalized degree of a δ-face α is given by

kd,δ(α) =
∑

α′|α⊂α′
aα′ . (S-2)

For example, in a NGF of dimension d = 2, the generalized degree k2,1(α) is the number of triangles incident to a link
α while the generalized degree k2,0(α) indicates the number of triangles incident to a node α. Similarly in a NGF of
dimension d = 3, the generalized degrees k3,2, k3,1 and k3,0 indicate the number of tetrahedra incident respectively
to a triangular face, a link or a node. A useful quantity to associate to each (d− 1)-face α ∈ Sd,d−1 is nα given by

nα = kd,d−1(α)− 1, (S-3)

indicating the generalized degree of the face minus one, i.e. how many d-dimensional simplices have been glued to the
(d−1)−face α during the NGF evolution. Moreover, to each node i we assign an energy εi drawn from a distribution
g(ε) and quenched during the evolution of the network. To every δ-face α ∈ Sd,δ we associate an energy εα given by
the sum of the energy of the nodes that belong to α,

εα =
∑
i⊂α

εi . (S-4)

The energies of δ−faces characterize their heterogeneous properties, which are not captured by the generalized degree.
Here we will always consider the case in which the energies of the nodes take only integer values, although the extension
to models having real energy values is straightforward.
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EVOLUTION OF THE NGF

The NGFs evolve by a non-equilibrium dynamics depending on the energy of their δ−faces which enforces an
indefinite growth of the NGF. Here we give the algorithm determining the NGF evolution.

At time t = 1 the NGF of dimension d and flavor s = −1, 0, 1 is formed by a single d-dimensional simplex.

At each time t > 1 we add a simplex of dimension d to a (d− 1)-face α ∈ Sd,d−1 chosen with probability Π
[s]
α given by

Π[s]
α =

1

Z [s]
e−βεα(1 + snα), (S-5)

where β ≥ 0 is a parameter of the model called inverse temperature and Z [s] is a normalization sum given by

Z [s] =
∑

α∈Sd,d−1

e−βεα(1 + snα), (S-6)

and s is the flavor of the NGF. Having chosen the (d− 1)-face α, we glue to it a new d-dimensional complex contain-
ing all the nodes of the face α plus the new node i. It follows that the new node i is linked to each node j belonging to α.

The NGFs of flavor s = −1 are Complex Quantum Network Manifolds introduced in [23] having generalized degrees
of their (d− 1)−faces taking only values kd,d−1 = k = 1, 2. The NGF of flavor s = 1 includes an explicit preferential

attachment rule since Π
[1]
α ∝ kd,d−1(α), i.e. for each (d − 1)−face the probability to attract the new d−dimensional

simplex is proportional to the number of d−dimensional simplices already incident to it, i.e. to its generalized degree
kd,d−1(α) = 1+nα. Therefore the NGF with flavor s = 1 and dimension d = 1 is the Bianconi-Barabási model [62, 63]
and for β = 0 the Barabási-Albert model [60]. The case s = 0 and d = 2 has been first proposed as a scale-free
network in [66]. The NGF in d = 2 is also related to the recent papers [21, 22].

Since at time t = 1 the number of nodes in the NGF is N(1) = d+ 1, and at each time we add a new additional node,
the total number of nodes is N(t) = t + d. The NGF evolution up to time t is fully determined by the sequences
{εi}i≤t+d, {αt′}t′≤t, where εt′+d indicates the energy of the node added to the NGF at time t′ > 1, εi with i ≤ d+ 1
indicates the energy of an initial node i of the NGF, and αt′ indicates the (d−1)-face to which the new d-dimensional
complex is added at time t′.

THERMODYNAMIC PROPERTIES OF THE NGFs

The thermodynamic properties of the NGF are widely discussed in the main text where it is shown that the NGF
follows a generalized area law. Here we provide additional details of the derivation of two equations used in the main
text, Eq. (21) and Eq. (28).

A. Derivation of Eq. (21) of the main text

Here we want to provide the detailed derivation of Eq. (21) of the main text. Given the quantity

z
[s]
N =

1

N !
L[s](T ) (S-7)
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where L[s](T ) indicates the number of different NGF temporal evolutions giving rise to the same network GN , we
want to show (Eq. (21) of the main text), that

z
[s]
N = C [s]eβν

[s]N , (S-8)

where C [s] is a subleading factor, and ν[s] depends on the degree distribution of the dual of the NGF, and therefore
depends on its flavor s. It can easily be realized that L[s](T ) indicates the number of different labelings of the tree

T that constitutes the dual network of the NGF. The introduced quantity z
[s]
N can be calculated by following the

derivation given in Ref. [78], as long as the NGF is in a stationary state. In fact it is possible to evaluate the scaling

of z
[s]
N by writing a recursive equation for L[s](T ) where the tree T is given by a root node connected to p subtrees

T1, T2 . . . Tp formed respectively by N1, N2 . . . Np nodes. The recursive equation is given by

L[s](T ) =
(N − 1)!

N1!N2! . . . Np!
δ∑

iNi+1,N

p∏
i=1

L[s](Ti). (S-9)

Here, differently from the case analyzed in [78], the different branches T1, T2, . . . , Tp of the tree T are not exchangeable
since the tree T is a dual of a labelled NGF where the labels indicate the different energies of the nodes. In oder to
use the recursive Eq. (S − 9), we consider the generating function G(µ̂) given by

G[s](µ̂) =
∑
N

z
[s]
N e
−µ̂N . (S-10)

The recursive Eq. (S − 9) can be written in terms of the generating function as

dG[s](µ̂)

dµ̂
= −e−µ̂

∞∑
p=1

π[s](p+ 1)[G[s](µ̂)]p = −e−µ̂F [s][G[s](µ̂)], (S-11)

where π[s](p) is the degree distribution of the dual of the NGF of flavor s. Integrating this differential equation we
obtain

e−µ̂(G[s]) = H [s](G[s]) = C +

∫ G[s]

G0

dz

F [s](z)
, (S-12)

where C and G0 are constants. For any NGF different from the chain (flavor s = −1 and d = 1), as long as we consider
sufficiently low values of β, we obtain stationary NGF characterized by a stationary degree distribution π[s](p) of the
dual network that is not trivial (i.e. π[s](p) is not equal to zero for all p 6= 1, 2). Under this very general conditions, the
function H [s](G[s]) is a positive monotonically increasing function of G[s], bounded from above. Hence µ̂ is bounded
from below and G[s](µ̂) has a singularity at some µ̂ = βν[s], with ν[s] given by

βν[s] = − lnH [s](x) (S-13)

where x is the radius of convergence of H [s](x). The singularity of the generating function G[s](µ̂) for µ̂ = βν[s]

dictates the leading behavior of z
[s]
N , given by Eq. (S − 8) for large values of N .

B. Derivation of Eq. (28) of the main text

Here our aim is to provide the detailed derivation of the combinatorial Eq. (28) of the main text, given by∑
α∈Sd,d−1

εαkd,d−1(α) = Bd
∑

α′∈Sd,d−2

εα′kd,d−2(α′), (S-14)

with Bd = 2/(d− 1). This equation can be easily derived using the definition of generalized degree kd,δ(α) and energy
εα for the generic δ-face α, given respectively by Eqs. (S − 2) and (S − 4). Using Eqs. (S − 2) and (S − 4) and
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assuming that the (d− 1)-face α includes the nodes i1, i2, . . . id while α′ = {i1, i2, . . . id+1} is a d-dimensional simplex
comprising α, (i.e. such that α ⊂ α′), we have

∑
α∈Sd,d−1

εαkd,d−1(α) =
1

d!

∑
{i1,i2,...,id}

d∑
p=1

εip
∑
id+1

ai1,i2,...id+1
(S-15)

where {i1, i2 . . . id} indicates a generic ordered sequence of d labels of the nodes. The d! in the right side of Eq.
(S − 15) takes into account all the equivalent permutations of the d label of the nodes in the sequence {i1, i2 . . . id}.
The expression can be further simplified by noticing that

d∑
p=1

εip =
1

d− 1

∑
α′∈Dd,d−2(α)

εα′ , (S-16)

where εα′ is the energy of any of the d possible (d − 2)-faces α′ ⊂ α, (i.e. α′ ∈ Dd,d−2(α) where Dd,d−2(α) indicates
all the (d− 2)-faces that are subsets of α). For example, for d = 3 we have

ε1 + ε2 + ε3 =
1

2

(
ε(1,2) + ε(2,3) + ε(1,3)

)
(S-17)

where the energy ε(i,j) of the link α = (i, j) is given by ε(i,j) = εi + εj . Using Eq. (S − 16) and changing the order of
the sums in Eq. (S − 15) we get

∑
α∈Sd,d−1

εαkd,d−1(α) =
1

(d− 1)!

1

d− 1

∑
{i1,i2,...,id−1}

ε(i1,i2,...,id−1)

∑
id,id+1

ai1,i2,...id+1
(S-18)

Given that

kd,d−2(α′) = kd,d−1(i1, i2, . . . id−1) =
1

2

∑
id,id+1

ai1,i2,...id+1
, (S-19)

we have ∑
α∈Sd,d−1

εαkd,d−1(α) =
2

d− 1

1

(d− 1)!

∑
{i1,i2,...,id−1}

ε(i1,i2,...,id−1)kd,d−2(i1, i2, . . . , id−1)

=
2

d− 1

∑
α′∈Sd,d−2

εα′kd,d−2(α′). (S-20)

This final expression is equivalent to Eq. (S − 14) (and Eq. (28) in the main text).

DISTRIBUTION OF THE GENERALIZED DEGREES

In this section we provide the details for deriving the generalized degree distribution for NGF of flavor s = −1, 0, 1
for β = 0 and β > 0. For deriving our results at β = 0 we use the master equation approach [50–52] that provides
exact asymptotic solutions for the distribution. In the case β > 0 we combine the master equation approach with the
self-consistent approach introduced in the context of the Bianconi-Barabási model [62, 63] yielding exact results for
the generalized degree distribution as long as the self-consistent hypothesis is satisfied, i.e. for low enough values of
the inverse temperature β. The NGFs with flavor s = −1 are the Complex Quantum Network Manifolds introduced
in Ref. [23]. Nevertheless, for completeness, we report here the details of the derivation of the generalized degree
distribution also for s = −1.
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C. Distribution of Generalized Degrees for β = 0

The distribution P
[s]
d,δ(k) of the generalized degrees kd,δ = k in NGF with flavor s can be obtained for β = 0 using the

master-equation approach [51]. Here we give the details for the derivation of the results presented in the main paper,
distinguishing between the three cases s = −1, 0, 1.

1. Case s = −1

For NGF with flavor s = −1 the generalized degree of (d − 1)−faces can only take values kd,d−1 = 1, 2. We will
call the (d− 1)−faces with generalized degree kd,d−1(α) = 1 unsaturated, and the (d− 1)− faces α with generalized
degree kd,d−1(α) = 2 saturated. The evolution of the NGF with flavor s = −1 described in Sec. V II allows the new
d−dimensional simplex to attach exclusively to unsaturated (d − 1)−faces. In the case d = 1 the NGF with flavor
s = −1 in dimension d are d-dimensional manifolds. In the case d = 1 the NGF with flavor s = −1 is a chain. Here
we focus first on the case d > 1 and at the end of the paragraph we will discuss the case d = 1.

The explicit expression of Π
[−1]
α is easily derived. In fact the number of unsaturated (d−1)-faces in the NGF of flavor

s = −1 evolved up to time t is given by (d− 1)t since at each time we add d unsaturated (d− 1)−faces belonging to
the new d-dimensional simplex, while the face where the simplex is attached to changes from being unsaturated to
being saturated. Since any new d-dimensional simplex can be glued only to unsaturated (d−1)−faces, the probability

Π
[−1]
α that a new d-dimensional simplex is attached to a (d− 1)-face α is given by

Π[−1]
α =

{
1

(d−1)t for kd,d−1(α) = 1,

0 for kd,d−1(α) = 2.

Now we observe that each δ-face, with δ < d− 1, which has generalized degree kd,δ(α) = k, is incident to

2 + (d− δ − 2)k (S-21)

unsaturated (d− 1)-faces.
In fact, is is easy to check that a δ−face with generalized degree kd,δ = 1 is incident to d− δ unsaturated (d−1)-faces.
Moreover, at each time we add to a δ-face a new d-dimensional simplex, a number d−δ−1 of unsaturated (d−1)−faces
are added to the δ-face while a previously unsaturated (d − 1)-face incident to it becomes saturated. Therefore the
number of unsaturated (d − 1)-faces incident to a δ-face of generalized degree kd,δ = k follows Eq. (S − 21). This

result allows us to evaluate the average number m̃
[−1]
d,δ (k) of δ-faces of generalized degree kd,δ = k that increase their

generalized degree by one. For δ = d− 1 and large times t� 1 it is given by

m̃
[−1]
d,d−1(k) =

1

(d− 1)t
δk,1 (S-22)

where δx,y indicates the Kronecker delta. For δ < d− 1, instead, it is given by

m̃
[−1]
d,δ (k) =

2 + (d− δ − 2)k

(d− 1)t
. (S-23)

From Eq. (S − 23) it follows that, as long as δ < d − 2, the generalized degree follows an effective preferential
attachment mechanism [50–52, 60]. In fact each δ-face will be incident to an additional d-dimensional simplex with a
probability that depends linearly on its generalized degree, indicating how many d−dimensional simplices are already
incident to the δ−face. Therefore, even if the evolution of the NGF with flavor s = −1 does not contain an explicit
preferential attachment mechanism, this mechanism emerges from its dynamical rules.

Using Eqs. (S − 22)−(S − 23) and the master equation approach [50–52] , it is possible to derive the exact distribution

for the generalized degrees. We indicate with N
t,[−1]
d,δ (k) the average number of δ-faces that at time t have generalized
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degree kd,δ = k during the temporal evolution of a d-dimensional CQNM. The master equation [50–52] for N t
d,δ(k)

reads

N
t+1,[−1]
d,δ (k)−N t,[−1]

d,δ (k) = m̃
[−1]
d,δ (k − 1)N

t,[−1]
d,δ (k − 1)(1− δk,1)− m̃[−1]

d,δ (k)N
t,[−1]
d,δ (k) +md,δδk,1 (S-24)

with k ≥ 1. Here md,δ =

(
d

δ

)
is the number of δ-faces added at each time t to the CQNM. The master equation

is solved by observing that for large times t � 1 we have Nd,δ(k) ' md,δtP
[−1]
d,δ (k) where P

[−1]
d,δ (k) is the generalized

degree distribution. For δ = d− 1 we obtain the bimodal distribution

P
[−1]
d,d−1(k) =

{
d−1
d , for k = 1

1
d for k = 2

.

For 0 ≤ δ = d− 2 instead, we find an exponential distribution, i.e.

P
[−1]
d,d−2(k) =

(
2
d+1

)k
d−1

2 , for k ≥ 1 . (S-25)

Finally for 0 ≤ δ < d− 2 we have the distribution

P
[−1]
d,δ (k) = d−1

d−δ−2
Γ[1+(d+1)/(d−δ−2)]

Γ[1+2/(d−δ−2)]
Γ[k+2/(d−δ−2)]

Γ[k+1+(d+1)/(d−δ−2)] , for k ≥ 1, 0 ≤ δ ≤ d− 3. (S-26)

From Eq. (S − 26) it follows that for 0 ≤ δ < d− 2 and k � 1 the generalized degree distribution follows a power-law

with exponent γ
[−1]
d,δ , i.e.

P
[−1]
d,δ (k) ' Ck−γ

[−1]
d,δ for 0 ≤ δ ≤ d− 3, (S-27)

and

γ
[−1]
d,δ = 1 +

d− 1

d− δ − 2
. (S-28)

Therefore the generalized degree distribution P
[−1]
d,δ (k) given by Eq. (S − 26) is scale-free, i.e. it has diverging second

moment
〈

(kd,δ)
2
〉

, as long as γ
[−1]
d,δ ∈ (2, 3]. This implies that the generalized degree distribution P

[−1]
d,δ (k) is scale free

for NGF of dimension d satisfying,

d ≥ d[δ,−1]
c = 2δ + 3. (S-29)

2. Case s = 0

In the case s = 0 every new d−dimensional simplex can be attached to an arbitrary (d−1)-face of the NGF. Therefore
the generalized degree kd,d−1 = k can take any value k ≥ 1. Since any new d-dimensional simplex can be glued to

any (d− 1)−face, the probability Π
[0]
α that a new d-dimensional simplex is attached to a (d− 1)-face α is given by

Π[0]
α =

1

dt
, (S-30)

for t� 1. In fact the number of (d− 1)-faces at time t is equal to dt, because each new d-dimensional simplex adds a
number d of (d− 1)-faces to the NGF. Let us now observe that each δ-face, which has generalized degree kd,δ(α) = k,
is incident to

1 + (d− δ − 1)k (S-31)

(d− 1)-faces.
In fact, is is easy to check that a δ−face with generalized degree kd,δ = k = 1 is incident to d − δ (d − 1)-faces.
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Moreover, at each time a new d-dimensional simplex is glued to a δ-face α, adding a number d− δ−1 of (d−1)−faces
incident to it. Therefore the number of (d − 1)-faces incident to a δ-face of generalized degree kd,δ = k follows Eq.

(S − 31). This implies that the average number m̃
[0]
d,δ(k) of δ-faces of generalized degree kd,δ = k that increase their

generalized degree by one is given by

m̃
[0]
d,δ(k) =

1 + (d− δ − 1)k

d t
. (S-32)

From Eq. (S − 32) follows that, as long as δ < d−1, the generalized degree follows an effective preferential attachment
mechanism [50–52, 60]. In fact each δ-face will be incident to an additional d-dimensional simplex with a probability
that depends linearly on its generalized degree, indicating how many d−dimensional simplices are already incident to
the δ−face. Therefore, even if the evolution of the NGF with flavor s = 0 does not contain an explicit preferential
attachment mechanism, the preferential attachment emerges from its dynamical rules.

Using the master equation approach [50–52], it is possible to derive the exact distribution for the generalized degrees.

We indicate with N
t,[0]
d,δ (k) the average number of δ-faces that at time t have generalized degree kd,δ = k. The master

equation [50–52] for N
t,[0]
d,δ (k) reads

N
t+1,[0]
d,δ (k)−N t,[0]

d,δ (k) = m̃
[0]
d,δ(k − 1)N

t,[0]
d,δ (k − 1)(1− δk,1)− m̃[0]

d,δ(k)N
t,[0]
d,δ (k) +md,δδk,1 (S-33)

with k ≥ 1. Here md,δ =

(
d

δ

)
is the number of δ-faces added at each time t to the NGF. The master equation is

solved by observing that for large times t� 1 we have Nd,δ(k) ' md,δtPd,δ(k) where Pd,δ(k) is the generalized degree
distribution. For δ = d− 1 we obtain the exponential distribution

P
[0]
d,d−1(k) =

(
1
d+1

)k
d for k ≥ 1 . (S-34)

Instead, for 0 ≤ δ < d− 1 we obtain the distribution

P
[0]
d,δ(k) = d

d−δ−1
Γ[1+(d+1)/(d−δ−1)]

Γ[1+1/(d−δ−1)]
Γ[k+1/(d−δ−1)]

Γ[k+1+(d+1)/(d−δ−1)] , for k ≥ 1, 0 ≤ δ ≤ d− 2. (S-35)

From Eq. (S − 35) it follows that for 0 ≤ δ < d− 1 and k � 1 the generalized degree distribution follows a power-law

with exponent γ
[0]
d,δ, i.e.

P
[0]
d,δ(k) ' Ck−γ

[0]
d,δ for 0 ≤ δ ≤ d− 2, (S-36)

and

γ
[0]
d,δ = 1 +

d

d− δ − 1
. (S-37)

Therefore the generalized degree distribution P
[0]
d,δ(k) given by Eq. (S − 35) is scale-free, i.e. it has diverging second

moment
〈

(kd,δ)
2
〉

, as long as γ
[0]
d,δ ∈ (2, 3]. This implies that the generalized degree distribution P

[0]
d,δ(k) is scale-free

for NGF of dimension d satisfying

d ≥ d[δ,0]
c = 2δ + 2. (S-38)

3. Case s = 1

In NGF with flavor s = 1 and β = 0 each (d − 1)−face α ∈ Sd,d−1 has a probability to be selected proportional to

its generalized degree kd,d−1(α). In fact the probability Π
[1]
α defined in Eq. (S − 5) includes an explicit preferential

attachment mechanism [50–52, 60] as is given by

Π[1]
α =

kd,d−1(α)

Z [1]
. (S-39)
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For t� 1 the sum of all generalized degrees is given by

Z [1] =
∑

α∈Sd,d−1

kd,d−1(α) = (d+ 1)t, (S-40)

since each d−dimensional simplex augments the generalized degree of its (d+ 1) (d− 1)−faces by one. Therefore we
have

Π[1]
α =

kd,d−1(α)

(d+ 1)t
. (S-41)

Here we want to show that the average number m̃
[1]
d,δ(k) of δ−faces with generalized degree kd,δ = k that increase

their generalized degree by one at a generic time t > 1 is given by

m̃
[1]
d,δ(k) =

(d− δ)k
(d+ 1)t

. (S-42)

In fact the probability πα to attach a new d-dimensional simplex to a δ-face α with 0 ≤ δ ≤ d− 1 is given by

πα =
∑

α′∈Sd,d−1|α⊂α′
Π

[1]
α′ =

∑
α′∈Sd,d−1|α⊂α′

kd,d−1(α′)

(d+ 1)t
. (S-43)

Now we observe that every d-dimensional simplex attached to the δ-face α increases the generalized degree of all
the (d − 1)−faces α′ incident to it by one. The number of the (d − 1)-faces α′ incident to the δ-face α is given by(

d− δ
d− δ − 1

)
= (d− δ). Therefore

πα =
(d− δ)kd,δ(α)

(d+ 1)t
. (S-44)

Therefore t m̃
[1]
d,δ(k) is given by Eq. (S − 42) at a generic time t > 1 . Using the master equation approach [50–52] , it

is possible to derive the exact distribution for the generalized degrees. We indicate with N
t,[1]
d,δ (k) the average number

of δ-faces that at time t have generalized degree kd,δ = k. The master equation[50–52] for N
t,[1]
d,δ (k) reads

N
t+1,[1]
d,δ (k)−N t,[1]

d,δ (k) = m̃
[1]
d,δ(k − 1)N

t,[1]
d,δ (k − 1)(1− δk,1)− m̃[1]

d,δ(k)N
t,[1]
d,δ (k) +md,δδk,1 (S-45)

with k ≥ 1. Here md,δ =

(
d

δ

)
is the number of δ-faces added at each time t to the NGF. The master equation

is solved by observing that for large times t � 1 we have N
t,[1]
d,δ (k) ' md,δtP

[1]
d,δ(k) where P

[1]
d,δ(k) is the generalized

degree distribution. We find

P
[1]
d,δ(k) = d+1

d−δΓ[1 + (d+ 1)/(d− δ)] Γ[k]
Γ[k+1+(d+1)/(d−δ)] , for k ≥ 1. (S-46)

From Eq. (S − 46) it follows that for k � 1 the generalized degree distribution follows a power-law with exponent
γd,δ, i.e.

P
[1]
d,δ(k) ' Ck−γ

[1]
d,δ , (S-47)

and

γ
[1]
d,δ = 1 +

d+ 1

d− δ
. (S-48)

Therefore the generalized degree distribution P
[1]
d,δ(k) given by Eq. (S − 46) is scale-free, i.e. it has diverging second

moment
〈

(kd,δ)
2
〉

, as long as γ
[1]
d,δ ∈ (2, 3]. This implies that the generalized degree distribution is scale free for

d ≥ d[δ,1]
c = 2δ + 1. (S-49)
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D. Distribution of Generalized Degrees for β > 0

For β > 0, as long as β is sufficiently low, we can define self-consistently the chemical potentials µ
[s]
d,δ and derive,

using the master equation approach [50–52], the distributions P
[s]
k,δ(k) of the generalized degrees kd,δ as convolution

of binomials, exponentials or power-law distributions corresponding to the generalized degrees of δ−faces of energy ε.

These distributions will depend on the chemical potentials µ
[s]
d,δ. When we average the generalized degrees of δ−faces

of energy ε, and we remove one, i.e. we evaluate 〈kd,δ − 1|ε, s〉, we observe that these quantities obey either the Fermi-
Dirac, the Boltzmann or the Bose-Einstein statistics, depending on the dimensions d and δ and on the flavor s of the
NGF. The Fermi-Dirac distribution nF (ε, µ), the Boltzmann distribution nZ(ε, µ) and the Bose-Einstein distribution
nB(ε, µ) are given [82] by

nF (ε, µ) =
1

eβ(ε−µ) + 1
,

nZ(ε, µ) = e−β(ε−µ),

nB(ε, µ) =
1

eβ(ε−µ) − 1
. (S-50)

In the following we will consider the cases s = −1, 0, 1 separately.

1. Case s = −1

Let us derive the distribution P
[−1]
d,δ (k) of the generalized degrees kd,δ for every 0 ≤ δ ≤ d − 1 in a NGF with flavor

s = −1 and dimension d.
The average number N

t,[−1]
d,d−1(k|ε) of (d−1)-faces of energy ε that at time t have generalized degrees kd,δ = k in a NGF

with flavor s = −1 follows the master equation given by

N
t+1,[−1]
d,d−1 (k = 2|ε)−N t,[−1]

d,d−1(k = 2|ε) =
e−βε

Z [−1]
N
t,[−1]
d,d−1(k = 1|ε),

N
t+1,[−1]
d,d−1 (k = 1|ε)−N t,[−1]

d,d−1(k = 1|ε) = − e
−βε

Z [−1]
N
t,[−1]
d,d−1(k = 1|ε) +md,d−1ρ

[−1]
d,d−1(ε) (S-51)

where ρ
[−1]
d,d−1(ε) is the probability that a (d− 1)-face added to the network at a generic time t� 1 has energy ε and

md,d−1 =

(
d

d− 1

)
= d is the number of δ-faces added to the network at each time t. In order to solve this master

equation we assume that the normalization constant Z [−1] ∝ t has a finite limit, and we put

e−βµ
[−1]
d,d−1 = lim

t→∞

Z [−1]

t
. (S-52)

For large times t� 1, using the asymptotic expression of Z [−1] ' e−βµ
[−1]
d,d−1t, we can rewrite Eqs. (S − 51) as

N
t+1,[−1]
d,d−1 (k = 2|ε)−N t,[−1]

d,d−1(k = 2|ε) =
e
−β
(
ε−µ[−1]

d,d−1

)
t

N
t,[−1]
d,d−1(k = 1|ε),

N
t+1,[−1]
d,d−1 (k = 1|ε)−N t,[−1]

d,d−1(k = 1|ε) = −e
−β
(
ε−µ[−1]

d,d−1

)
t

N
t,[−1]
d,d−1(k = 1|ε) +md,d−1ρ

[−1]
d,d−1(ε). (S-53)
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Imposing that for large times t� 1, N
t,[−1]
d,d−1(k|ε) ' md,d−1tρd,d−1(ε)P

[−1]
d,d−1(k|ε), where P

[−1]
d,d−1(k|ε) is the distribution

of generalized degrees kd,d−1 = k of nodes with energy ε, we can solve Eqs. (S − 53) for P
[−1]
d,d−1(k|ε), obtaining

P
[−1]
d,d−1(k|ε) =



(
1− 1

exp
[
β
(
ε−µ[−1]

d,d−1

)]
+1

)
, for k = 1,

1

exp
[
β
(
ε−µ[−1]

d,d−1

)]
+1
, for k = 2.

Using a similar approach one can write the master equation for the average number N
t,[−1]
d,d−2(k|ε) of (d − 2)-faces of

energy ε that at time t have generalized degrees kd,d−1 = k in a NGF with flavor s = −1, as

N
t+1,[−1]
d,d−2 (k|ε)−N t,[−1]

d,d−2(k|ε) =
e−β(ε−µ[−1]

d,d−2)

t
N
t,[−1]
d,d−2(k − 1|ε)[1− δk,1]− e−β(ε−µ[−1]

d,d−2)

t
N
t,[−1]
d,d−2(k|ε)

+md,d−2ρ
[−1]
d,d−2(ε)δk,1, (S-54)

where md,d−2 = d(d−1)/2 is the number of (d−2)−faces added at each time t to the NGF, ρ
[−1]
d,d−2(ε) is the probability

that such faces have energy ε, and the chemical potential µ
[−1]
d,d−2 is defined self-consistently by

eβµ
[−1]
d,d−2 = eβµ

[−1]
d,d−1 lim

t→∞

〈∑
α∈Qd,d−2(t)

∑
α′∈Qd,d−1(t)|α⊂α′ e

−β(εα′−εα)δ(kd,d−1(α′), 1)δ(kd,d−2(α), k)∑
α∈Qd,d−2(t) δ(kd,d−2(α), k)

〉
k

. (S-55)

In Eq. (S − 55) we indicate by 〈. . .〉k the average over different values of k. Assuming that N
t,[−1]
d,d−2(k|ε) '

tmd,d−2ρ
[−1]
d,d−2(ε)P

[−1]
d,d−2(k|ε) for t � 1, we can solve Eqs. (S − 54) finding that the distribution P

[−1]
d,d−2(k|ε) that

δ-faces of energy ε have generalized degree kd,δ = k is given by

P
[−1]
d,d−2(k|ε) =

exp
[
β
(
ε− µ[−1]

d,d−2

)]
(

exp
[
β
(
ε− µ[−1]

d,d−2

)]
+ 1
)k . (S-56)

Finally we can derive the expression for the distribution P
[−1]
d,d−2(k|ε) of generalized degrees kd,δ for δ-faces with energy

ε and 0 ≤ δ ≤ d− 3. The chemical potentials µ
[−1]
d,δ for 0 ≤ δ ≤ d− 3 are defined self-consistently as

eβµ
[−1]
d,δ = eβµ

[−1]
d,d−1 lim

t→∞

〈∑
α∈Qd,δ(t)

∑
α′∈Qd,d−1(t)|α⊂α′ e

−β(εα′−εα)δ(kd,d−1(α′), 1)δ(kd,δ(α), k)∑
α∈Qd,δ(t) [k + 2/(d− 2− δ)] δ(kd,δ(α), k)

〉
k

. (S-57)

Assuming that the chemical potential µ
[−1]
d,δ exists and is finite, the master equations [50–52] for the average number

N t
d,δ(k|ε) of δ-faces with energy ε and generalized degree k ≥ 1 read

N
t+1,[−1]
d,δ (k|ε)−N t,[−]

d,δ (k|ε) =
e−β(ε−µd,δ)[k − 1 + 2/(d− δ − 2)]

t
N
t,[−1]
d,δ (k − 1|ε)[1− δk,1]

−e
−β(ε−µd,δ)[k + 2/(d− δ − 2)]

t
N
t,[−1]
d,δ (k|ε) +md,δρ

[−1]
d,δ (ε)δk,1, (S-58)

where md,δ =

(
d

δ

)
is the number of δ−faces added at each time t to the NGF, ρd,δ(ε) is the probability that such

faces have energy ε, and δx,y indicates the Kronecker delta. Since for large times t� 1 the average number of δ-faces

with generalized degree kd,δ = k scales like N
t,[−1]
d,δ (k|ε) ' md,δP

[−1]
d,δ (k|ε) we can derive P

[−1]
d,δ (k|ε) for 0 ≤ δ ≤ d− 3

P
[−1]
d,δ (k|ε) =

exp
[
β
(
ε− µ[−1]

d,δ

)]
Γ [k + 2/(d− δ − 2)]

Γ
[
k + 1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]] Γ
[
1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]]
Γ [1 + 2/(d− δ − 2)]

.(S-59)
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In order to obtain the distributions P
[−1]
d,δ (k) of generalized degree kd,δ = k of δ−faces we use the relation

P
[−1]
d,δ (k) =

∑
ε

ρ−1
d,δ(ε)P

[−1]
d,δ (k|ε), (S-60)

finding

P
[−1]
d,d−1(1) =


∑
ε ρ

[−1]
d,d−1(ε)

(
1− 1

exp
[
β
(
ε−µ[−1]

d,d−1

)]
+1

)
for k = 1,∑

ε ρ
[−1]
d,d−1(ε) 1

exp
[
β
(
ε−µ[−1]

d,d−1

)]
+1

for k = 2,

P
[−1]
d,d−2(k) =

∑
ε

ρ
[−1]
d,d−2(ε)

exp
[
β
(
ε− µ[−1]

d,d−2

)]
(

exp
[
β
(
ε− µ[−1]

d,d−2

)]
+ 1
)k ,

P
[−1]
d,δ (k) =

∑
ε

ρ
[−1]
d,d−2(ε)

exp
[
β
(
ε− µ[−1]

d,δ

)]
Γ [k + 2/(d− δ − 2)]

Γ
[
k + 1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]]
×

Γ
[
1 + 2/(d− δ − 2) + exp

[
β
(
ε− µ[−1]

d,δ

)]]
Γ [1 + 2/(d− δ − 2)]

, for 0 ≤ δ ≤ d− 3. (S-61)

The average of the generalized degree minus one, performed over δ−faces of energy ε is given by the Fermi-Dirac
statistics for δ = d− 1, the Boltzmann statistics for δ = d− 2 and the Bose-Einstein statistics for δ ≤ d− 3 [23]. In
particular, using Eqs. (S − 61) we obtain

〈kd,d−1 − 1|ε, s = −1〉 = nF

(
ε, µ

[−1]
d,d−1

)
, (S-62)

〈kd,d−2 − 1|ε, s = −1〉 = nZ

(
ε, µ

[−1]
d,d−2

)
,

〈kd,δ − 1|ε, s = −1〉 = A
[−1]
d,δ nB

(
ε, µ

[−1]
d,δ

)
,

where the last expression is valid for δ ≤ d− 3, and where nF (ε, µ), nZ(ε, µ) and nB(ε, µ) are given by Eqs. (S − 50),

while A
[−1]
d,δ is given by

A
[−1]
d,δ =

(d− δ)
(d− δ − 2)

. (S-63)

The self-consistent value of the chemical potentials µ
[−1]
d,δ can be found by imposing the following geometrical relations

satisfied by the generalized degrees of the NGF of any flavor s = −1, 0, 1,

lim
t→∞

∑
α∈Sd,δ(t) kd,δ(α)

Nd,δ(t)
=
d+ 1

δ + 1
. (S-64)

Imposing such condition is equivalent to fixing the normalization conditions for nF

(
ε, µ

[−1]
d,d−1

)
, nZ

(
ε, µ

[−1]
d,d−2

)
, and

nB

(
ε, µ

[−1]
d,δ

)
. These conditions are given by

∑
ε

ρd,d−1(ε)nF

(
ε, µ

[−1]
d,d−1

)
=

1

d
,

∑
ε

ρd,d−2(ε)nZ

(
ε, µ

[−1]
d,d−2

)
=

2

d− 1
,

∑
ε

ρd,δ(ε)nB

(
ε, µ

[−1]
d,δ

)
=

d− δ − 2

δ + 1
.

(S-65)
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2. Case s = 0

Let us derive the distribution P
[−1]
k,δ (k) of the generalized degrees kd,δ for every 0 ≤ δ ≤ d − 1 in a NGF with flavor

s = 0.
The average number N

t,[0]
d,d−1(k|ε) of (d−1)-faces of energy ε that at time t have generalized degrees kd,δ = k in a NGF

with flavor s = 0 follows the master equation given by

N
t+1[0]
d,d−1 (k|ε)−N t

d,δ(k|ε) = e
−β
(
ε−µ[0]

d,d−1

)
1

t
N
t[0]
d,δ (k − 1|ε)[1− δk,1]− e−β

(
ε−µ[0]

d,d−1

)
1

t
N
t,[0]
d,δ (k|ε)

+md,δρ
[0]
d,δ(ε)δk,1, (S-66)

where ρ
[0]
d,d−1(ε) indicates the probability that a (d− 1)-face has energy ε and the chemical potential µ

[0]
d,d−1 is defined

self-consistently as

e−βµ
[0]
d,d−1 = lim

t→∞

Z [0]

t
. (S-67)

For large times t � 1 the average number N
t,[0]
d,d−1(k|ε) of (d− 1)−faces with degree k and energy ε in NGF of flavor

s = 0 satisfies N
t,[0]
d,d−1(k|ε) ' tmd,δρ

[0]
d,δ(ε)P

[0]
d,d−1(k|ε), where P

[0]
d,d−1(k|ε) indicates the probability distribution that a

δ-face of energy ε has generalized degree kd,δ = k. Therefore we can solve Eq. (S − 69) for P
[0]
d,d−1(k|ε), obtaining

P
[0]
d,d−1(k|ε) =

e
β
(
ε−µ[0]

d,d−2

)
(
e
β
(
ε−µ[0]

d,d−2

)
+ 1

)k . (S-68)

The average number N
t,[0]
d,δ (k|ε) of δ-faces of energy ε with 0 ≤ δ ≤ d − 2 that at time t have generalized degrees

kd,δ = k in a NGF with flavor s = 0 follows the master equation given by

N
t+1,[0]
d,δ (k|ε)−N t,[0]

d,δ (k|ε) = e
−β
(
ε−µ[0]

d,δ

)
[(k − 1) + 1/(d− δ − 1)]

t
N
t,[0]
d,δ (k − 1|ε)[1− δk,1]

−e−β
(
ε−µ[0]

d,δ

)
[k + 1/(d− δ − 1)]

t
N
t,[0]
d,δ (k|ε) +md,δρ

[0]
d,δ(ε)δk,1, (S-69)

where ρ
[0]
d,δ(ε) indicates the probability that a δ-face has energy ε and the chemical potentials µ

[0]
d,δ for 0 ≤ δ ≤ d − 2

are self-confidently defined as

e−βµ
[0]
d,δ = eβµ

[0]
d,d−1

〈∑
α∈Sd,δ

∑
α′∈Sd,d−1|α⊂α′ e

−β(εα′−εα)δ(kd,δ(α), k)∑
α′′∈Sd,δ [k + 1/(d− δ − 1)]δ(kd,δ(α′′), k)

〉
. (S-70)

For large times t � 1 the average number N
t,[0]
d,δ (k|ε) of δ−faces with generalized degree kd,δ = k and energy ε in

NGF of flavor s = 0 satisfies N
t,[0]
d,δ (k|ε) ' tmd,δρ

[0]
d,δ(ε)P

[0]
d,δ(k|ε). Therefore we can solve Eq. (S − 69) for P

[0]
d,δ(k|ε),

obtaining

P
[0]
d,δ(k|ε) =

exp
[
β(ε− µ[0]

d,δ)
]
Γ [k + 1/(d− δ − 1)]

Γ
[
k + 1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]] Γ
[
1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]]
Γ [1 + 1/(d− δ − 1)]

.

Finally, using Eq. (S − 60) we can obtain the distribution P
[0]
d,δ(k) of generalized degrees kd,δ = k. These are given by

P
[0]
d,d−1(k) =

∑
ε

ρ
[0]
d,d−1(ε)

e
β
(
ε−µ[0]

d,d−2

)
(
e
β
(
ε−µ[0]

d,d−2

)
+ 1

)k , (S-71)

P
[0]
d,δ(k) =

∑
ε

ρ
[0]
d,δ(ε)

exp
[
β(ε− µ[0]

d,δ)
]
Γ [k + 1/(d− δ − 1)]

Γ
[
k + 1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]] Γ
[
1 + 1/(d− δ − 1) + exp

[
β
(
ε− µ[0]

d,δ

)]]
Γ [1 + 1/(d− δ − 1)]

,
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where the last equation is valid for 0 ≤ δ ≤ d − 2. Therefore the (d − 1)−faces have generalized degree distribution

P
[0]
d,d−1(k) that is given by a convolution of exponentials, while the δ−faces with δ ≤ d− 2 have a generalized degree

distribution P
[0]
d,δ(k) that is given by a convolution of power-laws. When considering the average 〈kd,δ − 1|ε, s = 0〉,

we observe that this quantity for δ = d − 1 is a Boltzmann distribution and for every δ ≤ d − 2 is a Bose-Einstein
distribution, i.e.

〈kd,d−1 − 1|ε, s = 0〉 = nZ

(
ε, µ

[0]
d,d−2

)
, (S-72)

〈kd,δ − 1|ε, s = 0〉 = A
[0]
d,δnB

(
ε, µ

[0]
d,δ

)
, for δ ≤ d− 2,

with nZ(ε, µ) and nB(ε, µ) given by Eqs. (S − 50) and A
[0]
d,δ given by

A
[0]
d,δ =

(d− δ)
(d− δ − 1)

. (S-73)

The chemical potential µ
[0]
d,δ can then be found imposing the condition in Eq. (S − 64) that all NGF must satisfy.

Therefore, the self-consistent equations that the chemical potentials must satisfy are∑
ε

ρd,d−1(ε)nZ

(
ε, µ

[−1]
d,d−1

)
=

1

d
,

∑
ε

ρd,δ(ε)nB

(
ε, µ

[−1]
d,δ

)
=

d− δ − 1

δ + 1
, for δ ≤ d− 2. (S-74)

3. Case s = 1

In this section we derive the distribution P
[1]
d,δ(k) of generalized degrees kd,δ = k in NGF with flavor s = 1.

The master equation for the average number N
t+1,[1]
d,δ (k|ε) of δ−faces with generalized degree kd,δ = k and energies ε

is given by

N
t+1,[1]
d,δ (k|ε)−N t,[1]

d,δ (k|ε) =
e
−β
(
ε−µ[1]

d,δ

)
(k − 1)

t
N
t,[1]
d,δ (k − 1|ε)[1− δk,1]

−e
−β
(
ε−µ[1]

d,δ

)
k

t
N
t,[1]
d,δ (k|ε) +md,δρ

[1]
d,δ(ε)δk,1, (S-75)

where ρ
[1]
d,δ(ε) indicates the probability that a δ-face has energy ε and the chemical potentials µ

[1]
d,δ are defined self-

consistently respectively for the cases δ = d− 1 and 0 ≤ δ ≤ d− 2 as,

e−βµ
[1]
d,d−1 = lim

t→∞

Z [1]

t
, (S-76)

e−βµ
[1]
d,δ = eβµ

[1]
d,d−1

〈∑
α∈Sd,δ

∑
α′∈Sd,d−1|α⊂α′ e

−β(εα′−εα)δ(kd,δ(α), k)∑
α′′∈Sd,δ kδ(kd,δ(α

′′), k)

〉
. (S-77)

Since asymptotically in time we observe that N
[k]
d,δ(k|ε) ' md,δρ

[1]
d,δ(ε)P

[1]
d,δ(k|ε), where P

[1]
d,δ(k|ε) is the probability

distribution that a δ-face of energy ε has generalized degree kd,δ = k, we obtain

P
[1]
d,δ(k|ε) =

exp
[
β
(
ε− µ[1]

d,δ)
)]

Γ [k]

Γ
[
k + 1 + exp

[
β
(
ε− µ[1]

d,δ

)]]Γ
[
1 + exp

[
β
(
ε− µ[1]

d,δ

)]]
. (S-78)
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Therefore, using Eq. (S − 60) we obtain that the probability P
[1]
d,δ(k) that a δ-face has generalized degree kd,δ = k is

given by

P
[1]
d,δ(k) =

∑
ε

ρ
[1]
d,δ(ε)

exp
[
β
(
ε− µ[1]

d,δ)
)]

Γ [k]

Γ
[
k + 1 + exp

[
β
(
ε− µ[1]

d,δ

)]]Γ
[
1 + exp

[
β
(
ε− µ[1]

d,δ

)]]
. (S-79)

In this case, if we perform the average 〈kd,δ − 1|ε, s = 1〉 over all δ−faces with energy ε, we always get the Bose-Einstein
distribution, independently of the value of 0 ≤ δ < d, i.e. we obtain

〈kd,δ − 1|ε, s = 1〉 = nB

(
ε, µ

[1]
d,δ

)
, (S-80)

with nB(ε, µ) given by Eq. (S − 50). The chemical potentials µ
[1]
d,δ must satisfy Eq. (S − 64). Therefore they can be

found self-consistently by solving ∑
ε

ρd,δ(ε)nB

(
ε, µ

[1]
d,δ

)
=
d− δ
δ + 1

. (S-81)

CODES FOR GENERATING NGF

In this section we provide three MATLAB codes for generating NGF in dimension d = 1, 2, 3.

E. Code for d = 1

1

2 function [a,kn] = NGF d1(N,s,beta,figure)
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % If you use this code, please cite
5 % G. Bianconi and C. Rahmede
6 % "Network geometry with flavour: from complexity to quantum geometry"
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % Code that generates NGF in dimension d=2 and flavour s=-1,0,1.
9

10 % a adjacency matrix
11 % kn vector of generalized degrees k {1,0} (the degree) of the nodes
12

13 % This code uses
14 % N maximal number of nodes in the NGF
15 % Flavour of the NGF s=-1,0,1
16 % Inverse temperature: beta>0 or beta=0
17 % figure=1 will print the edge list of the network in file
18 % "NGF edgelist d1 s%d.edges"
19 % figure=0 will not print the edge list of the network
20 % energy of the nodes epsilon is uniform from 0-9
21

22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23

24 % Initialization
25 a=sparse(N,N);
26 a occ=zeros(1,N);
27

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 % Assign energies to the nodes
30 % If using Poisson and power-law you must define
31 % the parameters mu, or kappa



33

32 % Examples:
33 % mu=10;
34 % kappa=1;
35 for i=1:N
36 epsilon(i)=floor(10*rand(1));
37 % Alternative energy distributions
38 % epsilon(i)=random('Poisson',mu);
39 % poisson distribution with average mu
40 % epsilon(i)=rand(1)ˆ(1/(kappa+1));
41 % power-law distribution with exponent kappa
42

43 end
44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
45 % Initial condition: at time t=1 a single link (1,2)
46

47 a(1,2)=exp(-beta*(epsilon(1)+epsilon(2)));
48 a(2,1)=exp(-beta*(epsilon(1)+epsilon(2)));
49 k(1)=1;
50 k(2)=1;
51 a occ(1)=1;
52 a occ(2)=1;
53

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
55 % Addition of new links at time t=in-1 the node in is added to the
56 % network geometry with flavour
57

58 for in=2+1:N,
59 % Choose the node to which attach a new link
60

61 V=exp(-beta*epsilon).*a occ;
62 norm=sum(V);
63 x=rand(1)*norm;
64 if (norm>0)
65 for nj1=1:in-1,
66 x=x-V(nj1);
67 if x<0,
68 j=nj1;
69 break;
70 end
71 end
72 end
73 % Attach the new link between node in and node j
74 a(in,j)=exp(-beta*epsilon(in)-beta*epsilon(j));
75 a(j,in)=a(in,j);
76 a occ(in)=1;
77 a occ(j)=a occ(j)+s;
78 end
79 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
80 % Generalized degree (degree) of the nodes
81 kn=sum(a>0);
82 a=a>0;
83

84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85 % Print network file
86 if figure==1
87 [I,J,A]=find(tril(a));
88 filename=sprintf('NGF edgelist d1 s%d.edges',s);
89 fid=fopen(filename,'w');
90 for it=1:max(size(A)),
91 fprintf(fid, '%d %d \n', I(it), J(it));
92 end
93 fclose(fid);
94 end
95

96 end



34

F. Code for d = 2

1

2 function [a,kn,kl] = NGF d2(N,s,beta,figure)
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % If you use this code, please cite
5 % G. Bianconi and C. Rahmede
6 % "Network geometry with flavour: from complexity to quantum geometry"
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % Code that generates NGF in dimension d=2 and flavour s=-1,0,1.
9

10 % a adjacency matrix
11 % kn vector of generalized degrees k {2,0} of the nodes
12 % kl vector of generalized degrees k {2,1} of links
13

14 % This code uses
15 % N maximal number of nodes in the NGF
16 % Flavour of the NGF s=-1,0,1
17 % Inverse temperature: beta>0 or beta=0
18 % figure=1 will print the edge list of the network in file
19 % "NGF edgelist d2 s%d.edges"
20 % figure=0 will not print the edge list of the network
21 % energy of the nodes epsilon is uniform from 0-9
22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 % Inizialization
25 a=sparse(N,N);
26 a occ=sparse(N,N);
27 a occ2=sparse(N,N);
28

29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % Assign energies to the nodes
31 % If using Poisson and power-law you must define
32 % the parameters mu, or kappa
33 % Examples:
34 % mu=10;
35 % kappa=1
36 for i=1:N
37 epsilon(i)=floor(10*rand(1));
38 end
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 % Initial condition at time t=1 including a single triangle between nodes
41 % 1,2,3
42 L=0;
43 for i1=1:3,
44 for i2=(i1+1):3,
45 L=L+1;
46 a(i1,i2)=exp(-beta*(epsilon(i1)+epsilon(i2)));
47 a(i2,i1)=exp(-beta*(epsilon(i1)+epsilon(i2)));
48 a occ(i1,i2)=1;
49 a occ(i2,i1)=1;
50 a occ2(i1,i2)=1;
51 a occ2(i2,i1)=1;
52 end
53 end
54

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 % At each time t=in-2 we attach a new triangle
57

58 for in=(3+1):N,
59 % Choose edge (l1,l2) to which we will attach the new triangle
60

61 [I,J,V]=find(tril(a.*(a occ)));
62

63 norm=sum(V);
64 x=rand(1)*norm;
65 if (norm>0)
66 for nj1=1:numel(V),



35

67 x=x-V(nj1);
68 if x<0,
69 nj=nj1;
70 break;
71 end
72 end
73 l1=I(nj);
74 l2=J(nj);
75

76 a occ(l1,l2)=a occ(l1,l2)+s;
77 a occ(l2,l1)=a occ(l2,l1)+s;
78 a occ2(l1,l2)=a occ2(l1,l2)+1;
79 a occ2(l2,l1)=a occ2(l2,l1)+1;
80

81 % Attach the new node in to the node l1;
82 L=L+1;
83 a(in,l1)=exp(-beta*(epsilon(l1)+epsilon(in)));
84 a(l1,in)=exp(-beta*(epsilon(l1)+epsilon(in)));
85 a occ(in,l1)=1;
86 a occ(l1,in)=1;
87 a occ2(in,l1)=1;
88 a occ2(l1,in)=1;
89

90 % Attach the new node in to the node l2;
91 L=L+1;
92 a(in,l2)=exp(-beta*(epsilon(l2)+epsilon(in)));
93 a(l2,in)=exp(-beta*(epsilon(l2)+epsilon(in)));
94 a occ(in,l2)=1;
95 a occ(l2,in)=1;
96 a occ2(in,l2)=1;
97 a occ2(l2,in)=1;
98 end
99 end

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
101 % Generalized degrees
102 k=sum(a>0);
103

104 [I,J,kl]=find(tril(a occ2));
105 kn=k-ones(size(k));
106 a=a>0;
107 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
108 % Print network file
109

110 if figure==1
111 [I,J,A]=find(tril(a));
112 filename=sprintf('NGF edgelist d2 s%d.edges',s);
113 fid=fopen(filename,'w');
114 for it=1:max(size(A)),
115 fprintf(fid, '%d %d \n', I(it), J(it));
116 end
117 fclose(fid);
118 end
119

120

121 end

G. Code for d = 3

1

2 function [a,kn,kl,kt] = NGF d3(N,s,beta,figure)
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % If you use this code, please cite
5 % G. Bianconi and C. Rahmede
6 % "Network geometry with flavour: from complexity to quantum geometry"
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7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 % Code that generates NGF in dimension d=3 and flavour s=-1,0,1.
9

10 % a adjacency matrix
11 % kn vector of generalized degrees k {3,0} of the nodes
12 % kl vector of generalized degrees k {3,1} of links
13 % kt vector of generalized degrees k {3,2} of triangles
14

15 % This code uses
16 % N maximal number of nodes in the NGF
17 % Flavour of the NGF s=-1,0,1
18 % Inverse temperature: beta>0 or beta=0
19 % figure=1 will print the edge list of the network in file
20 %"NGF edgelist d3 s%d.edges"
21 % figure=0 will not print the edge list of the network
22 % energy of the nodes epsilon is uniform from 0-9
23

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25 % Initialization
26 a=sparse(N,N);
27

28 nt=0;
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 % Assign energies to the nodes
31 % If using Poisson and power-law you must define
32 % the parameters mu, or kappa
33 % Examples:
34 % mu=10;
35 % kappa=1;
36 for i=1:N,
37 epsilon(i)=floor(10*rand(1));
38 % Alternative energy distributions
39 %epsilon(i)=random('Poisson',mu);
40 %poisson distribution with average mu
41 %epsilon(i)=rand(1)ˆ(1/(kappa+1));
42 %power-law distribution with exponent kappa
43

44 end
45

46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
47 % Initial condition: at time t=1 a single tedrahedron (1,2,3,4)
48

49 for i1=1:4,
50 for i2=(i1+1):4,
51 a(i1,i2)=1;
52 a(i2,i1)=1;
53 for i3=(i2+1):4,
54 nt=nt+1;
55 tri(nt,1)=i1;
56 tri(nt,2)=i2;
57 tri(nt,3)=i3;
58 at(nt)=exp(-beta*(epsilon(i1)+epsilon(i2)+epsilon(i3)));
59 a occ(nt)=1;
60 a occ3(nt)=1;
61 end
62 end
63 end
64

65

66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 % At each time t=in-3 we attach a new tetrahedron
68

69 for in=4+1:N,
70 % Choose triangular face to which to attach the new tetrahedron
71

72 [I,J,V]=find(at.*a occ);
73

74 norm=sum(V);
75 x=rand(1)*norm;
76 for nj1=1:numel(V),
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77 x=x-V(nj1);
78 if x<0,
79 nj=J(nj1);
80 break;
81 end
82 end
83

84 l(1)=tri(nj,1);
85 l(2)=tri(nj,2);
86 l(3)=tri(nj,3);
87

88 a occ(nj)=a occ(nj)+s;
89 a occ3(nj)=a occ3(nj)+1;
90 %Add the tethaedron
91 for n=1:3,
92 a(in,l(n))=1;
93 a(l(n),in)=1;
94 end
95 for n1=1:3,
96 for n2=n1+1:3,
97 a(l(n1),l(n2))=a(l(n1),l(n2))+1;
98 a(l(n2),l(n1))=a(l(n2),l(n1))+1;
99 end

100 end
101 for n=1:3,
102 for n2=n+1:3,
103 nt=nt+1;
104 tri(nt,1)=l(n);
105 tri(nt,2)=l(n2);
106 tri(nt,3)=in;
107 at(nt)=exp(-beta*(epsilon(l(n))+epsilon(l(n2))+epsilon(in)));
108 a occ(nt)=1;
109 a occ3(nt)=1;
110 end
111 end
112 end
113

114

115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
116 % Generalized degrees
117 kn=sum(a>0);
118 kn=kn-2;
119 [I2,J2,A2]=find(tril(a));
120 kl=A2;
121 kt=a occ3;
122 a=a>0;
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124 % Print network file
125 [I2,J2,A2]=find(tril(a>0));
126 if (figure==1)
127 filename=sprintf('NGF edgelist d3 s%d.edges',s);
128 fid=fopen(filename,'w');
129 for it=1:numel(A2),
130 fprintf(fid, ' %d %d \n', I2(it), J2(it));
131 end
132 fclose(fid);
133 end


	I Introduction
	II  Network Geometry with flavor s
	A Network Geometry with Flavor s (NGF) and simplicial complexes
	B Energies and Generalized degrees of NGF
	C NGF evolution
	D The NGF of different flavor s have significantly different structure and dynamics
	E Area and volume of NGFs
	F The dual of the NGFs

	III Thermodynamics of NGFs
	A Probability of a given NGF evolution and total energy of a given NGF
	B The entropy of the NGF and the generalized area law
	C Relation between the Regge curvature and the total energy E of NGF with flavor s=-1

	IV  The generalized degree distributions at =0
	A The dependence of the generalized degree distribution on dimensions d, and flavor s 
	B  Generalized degree distribution Pd,[-1](k) for s=-1,=0 
	C  Generalized degree distribution Pd,[0](k) for s=0,=0
	D  Generalized degree distribution Pd,[1](k) for s=1,=0
	E  The critical dimensions dc[,s] 

	V Quantum network states
	VI  Quantum statistics in Network Geometry with Flavor s
	A  Fermi-Dirac, Boltzmann and Bose-Einstein statistics describe the properties of the generalized degree of -faces 
	B  Generalized degree distribution Pd,[-1](k) for s=-1,>0
	C  Generalized degree distribution Pd,[0](k) for s=0,=0 
	D  Generalized degree distribution Pd,[1](k) for s=1,=0 
	E  The low temperature regime

	VII Conclusions
	 References
	 SUPPLEMENTARY INFORMATION 
	 INTRODUCTION
	 GENERALIZED DEGREE AND ENERGY OF THE -FACES
	 EVOLUTION OF THE NGF
	 THERMODYNAMIC PROPERTIES OF THE NGFs
	A Derivation of Eq. (21) of the main text
	B Derivation of Eq. (28) of the main text

	 DISTRIBUTION OF THE GENERALIZED DEGREES
	C Distribution of Generalized Degrees for =0
	1 Case s=-1
	2 Case s=0
	3 Case s=1

	D Distribution of Generalized Degrees for >0
	1 Case s=-1
	2 Case s=0
	3 Case s=1


	 CODES FOR GENERATING NGF
	E Code for d=1
	F Code for d=2
	G Code for d=3


