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Abstract

At the nth step of a time-inhomogeneous infinite Polya process, either a new bin is created and a ball is put
in that bin, or a ball is put into an existing bin, in which case the bin is chosen according to a preferential
attachment type rule. We introduce a new class of such processes and find the asymptotics of the expected
number of bins of size k, for k fixed, as n→∞.
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1. Introduction

Simon [12] introduced the following model for generating observed word frequencies in data sets from
English and other languages. Initially at time n = 1 there is one word and it is assumed that one word is
added at time n for n ≥ 2. At each time step, either a new word is added with probability α, or a copy of
an existing word is added with probability 1− α. Suppose that a copy of an existing word is added at time
n + 1 and let W (n, k) be the number of words with exactly k copies at time n. Let f(n, k) = E(W (n, k)).
Simon assumed either

• that the probability that the (n+1)-st word is a word that has already appeared k times is proportional
to kf(n, k).

• that the probability a particular word occur next be proportional to the number of its previous occur-
rences.

For our purposes, either of these assumptions can be used, the reason being that in either case the probability
that with probability proportional to kf(n, k) a word appearing k times is copied. The way existing words
are chosen to be copied is similar to the preferential attachment rule used in generating scale-free graphs;
see [1, 4].

Simon’s model is related to the Polya urn model [11] and is basically equivalent to the infinite Polya
process model studied in Chung and Lu [5]. In the infinite Polya process, words are replaced by bins and
the number of copies of a given word corresponds to the number of balls in a bin.

Another widely studied urn model is that of Hoppe [10]. Its description is identical to Simon’s model,
except that at the nth time step (from n to n + 1 balls) a new bin (containing one ball) is added with
probability αn = θ/(θ+n) for a parameter θ > 0. Hoppe’s urn model was extended by Dubins and Pitman,
announced in [2], to a way of constructing random permutations called the Chinese restaurant process. The
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distribution of the process of cycle counts in the Chinese restaurant process is called the Ewens sampling
formula and is of fundamental importance in population genetics [8].

Simon [12] was interested in altering his model so that α is a function of n and heuristically discussed two
examples with varying αn. It was noted by Eriksson and Sjöstrand [6] that nothing is known for dependencies
of αn on n beyond the Polya and Hoppe models. We are motivated, therefore, to study the infinite Polya
process under the condition

αn = θnr−1 +O
(
nr−1−ε

)
, n ≥ 1, (1)

where r ≤ 1 and ε > 0 are parameters. If r = 1, then θ ∈ [0, 1] must hold because the αn are probabilities,
but otherwise we allow θ ≥ 0. The case r = 0 includes Hoppe’s model and r = 1 includes Simon’s model.
The cases r ∈ (−∞, 0)∪ (0, 1) do not previously seem to have been studied . The cases r ∈ (0, 1) interpolate
between the two well known models already described. The O(·) term in (1) introduces generality into our
model.

Let W (n, k) be the number of bins containing k balls and let f(n, k) = E(W (n, k)). We find asymptotics
for f(n, k) for the infinite Polya process with αn given by (1). We assume W (0, 1) = 1 and W (0, k) = 0 for
k > 1. Our main result is

Theorem 1. For the infinite Polya process with αn given by (1) with r = 1, for fixed k ≥ 1,

f(n, k) = Mkn+O
(
n1−ε

′
)

(2)

for a constant ε′ > 0, where Mk is given recursively by

M1 =
θ

2− θ
, Mk = Mk−1

(1− θ)(k − 1)

1 + k(1− θ)
, k ≥ 2.

For αn given by (1) with r ∈ (−1, 1), for fixed k ≥ 1,

f(n, k) =
θ(k − 1)!

(r + 1)(k)
nr +O

(
nr−ε

′
)

(3)

for a constant ε′ > 0, where x(k) = x(x+ 1)(x+ 2) · · · (x+ k − 1) is notation for rising factorial.

Theorem 1 gives a bound ion f(n, k) when r ≤ −1: taking θ = 0 in the theorem shows that if αn =

O
(
nr−1−ε

)
for some r ∈ (−1, 1), then f(n, k) = O

(
nr−ε

′
)

. It should be possible to extend the range of r in

the theorem to r ≤ −1 by our methods, in which case the formulae for the f(n, k) may involve logarithmic
factors of n. For example, if r = −1, f(n, 1) = θ logn

n (1 +O(n−ε
′
)).

The following corollary examines limn→∞ f(n, k)/nr. In the cases other than θ = 0 and r = 1, θ = 1,
the limit is scale-free as k →∞, meaning it decays polynomially.

Corollary 1. For all r, if θ = 0, then f(n, k) = o (nr) for all k as n→∞. If r = 1, θ = 1, we have

lim
n→∞

f(n, k)/n =

{
1 if k = 1;
0 if k > 1.
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As k →∞, we have

lim
n→∞

f(n, k)/nr ∼

{
θ

2−θΓ
(

3−2θ
1−θ

)
k−

2−θ
1−θ if r = 1, θ ∈ (0, 1);

θΓ(r + 1)k−r−1 if r ∈ (−1, 1), θ > 0.

Proof If θ = 0, then Mk = 0 for all k ≥ 1 and f(n, k) = O
(
nr−ε

′
)

= o (nr). If θ = 1, then M1 = 1 and

Mk = 0 for k ≥ 2. Calculating as in [5, 12], for k ≥ 2 we have

Mk = Mk−1
k − 1

k + 1
1−θ

and so

Mk =
θ

2− θ

k∏
`=2

`− 1

`+ 1
1−θ

=
θ

2− θ

Γ(k)Γ
(

2 + 1
1−θ

)
Γ
(
k + 1 + 1

1−θ

) =
θ

2− θ

Γ(k)Γ
(

3−2θ
1−θ

)
Γ
(
k + 2−θ

1−θ

) .
The well-known property of the Gamma function

Γ(k)

Γ(k + ρ)
∼ k−ρ, k →∞,

results in

Mk ∼
θ

2− θ
Γ

(
3− 2θ

1− θ

)
k−

2−θ
1−θ ,

giving us the result for r = 1, θ ∈ (0, 1). We also have

θ(k − 1)!

(r + 1)(k)
=
θΓ(k)Γ(r + 1)

Γ(r + k + 1)
∼ θΓ(r + 1)k−r−1.

giving the result for r ∈ (−1, 1), θ > 0.
For the time-homogeneous Polya process, (2) was obtained previously in [5, 12]. Watterson [13] found

falling factorial moments for the Ewens sampling formula implying (3) for the Hoppe urn model, in which
case r = 0 and f(n, k) converges to θ/k. It also holds that the distribution of W (n, k) converges in to-
tal variation distance to Poisson(θ/k). A great deal more information is contained in [3] on the process
(W (n, 1),W (n, 2), . . .) for the Ewens sampling formula and related random combinatorial structures.

Limit shapes are an area of interest connected with this research; see [6, 7]. Theorem 1 does not give
results regarding a possible limit shape, the reason being that we have not obtained information on the
largest bin size, but only on the smallest k bin sizes for a fixed k. The probability that there is a bin size
larger than k is bounded below by the probability that in the first k+ 1 steps of the process no new urns are
created and that all of the balls are put into the first urn, which is (1− θ)k+1 > 0. Erlihson and Granovsky
[7] prove a theorem showing that the existence of a limiting shape implies the property that there is no
gelation, which in our context has to do with the almost sure behaviour of the size of the bin with the most
number of balls.

The framework of our proof of Theorem 1 is introduced in Section 2 and Theorem 1 is proved in Section 3.
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2. Preliminaries

The starting point for our analysis are recursions for f(n, k) which were also used in [5, 12]. There
is a slight generalisation here, because we let αn vary with n. Let Fn be the σ-algebra generated by
{W (j, k), j ≤ n, k ≥ 1}. By the description of the process in Section 1, we have

f(n+ 1, 1) = E(W (n+ 1, 1)

= E(E(W (n+ 1, 1)|Fn))

= E

(
W (n, 1) + αn − (1− αn)

W (n, 1)

n

)
= f(n, 1) + αn −

(1− αn)f(n, 1)

n

=

(
1− 1− αn

n

)
f(n, 1) + αn (4)

and, for k ≥ 2,

f(n+ 1, k) = E(W (n+ 1, k)

= E(E(W (n+ 1, k)|Fn))

= E

(
W (n, k) + (1− αn)

(k − 1)W (n, k − 1)

n
− (1− αn)

kW (n, k)

n

)
= f(n, k) + (1− αn)

(k − 1)f(n, k − 1)

n
− (1− αn)

kf(n, k)

n

=

(
1− (1− αn)k

n

)
f(n, k) +

(1− αn)(k − 1)f(n, k − 1)

n
. (5)

Both (4) and (5) are recursions of the form

cn+1 = ancn + bn, n ≥ 1. (6)

It is easy to verify by induction that the solution to recursion (6) is

cn =

n−1∑
j=1

bj

n−1∏
`=j+1

a` + c1

n−1∏
j=1

aj . (7)

We will use (7) to find expressions for the f(n, k) and then find the asymptotics of the expressions
inductively. In doing so, we will need the following result. In proving the lemma and in proofs in Section 3,
we will use the asymptotic for the harmonic numbers (see [9])

∑n
`=1 1/` = log n + γ + O(n−1), where γ is

Euler’s constant and the fact that
∑n
j=2 j

β = nβ+1

β+1 +O(nβ) for any constant β > −1. We let ε′ > 0 denote
a constant which can change from line to line.

Lemma 1. Let k ≥ 1 be an integer. As n→∞, for all integers j ∈ [k, n− 1], the following estimate holds,
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where the ε′ > 0 are constants and where the constants in the O(·) bounds are universal.

n−1∏
`=j+1

(
1− (1− α`)k

`

)
=

 (j/n)
k−kθ

(
1 +O

(
j−ε

′
))

if r = 1;

(j/n)
k
(

1 +O
(
j−ε

′
))

if 0 ≤ r < 1.

Proof For all ` ≥ k + 1, 0 ≤ (1− α`)k/` ≤ k/(k + 1) < 1. Thus, for all j ∈ [k, n] we have

n−1∏
`=j+1

(
1− (1− α`)k

`

)
= exp

− n−1∑
`=j+1

(1− α`)k
`

+O

 n−1∑
`=j+1

1

`2


= exp

− n−1∑
`=j+1

k

`
+

n−1∑
`=j+1

k
[
θ`r−2 +O

(
`r−2−ε

)]
+O

(
j−1
)

= exp

−k log

(
n

j

)
+

n−1∑
`=j+1

k
[
θ`r−2 +O

(
`r−2−ε

)]
+O

(
j−1
) . (8)

If r = 1, then (8) becomes

n−1∏
`=j+1

(
1− (1− α`)k

`

)
=

(
j

n

)k−kθ
exp

(
O
(
j−ε

′
))

=

(
j

n

)k−kθ (
1 +O

(
j−ε

′
))

,

for some 0 < ε′ ≤ 1. If r ∈ (−1, 1), then

n−1∏
`=j+1

(
1− (1− α`)k

`

)
=

(
j

n

)k
exp

(
O
(
j−ε

′
))

=

(
j

n

)k (
1 +O

(
j−ε

′
))

.

3. Proofs

We will use Lemma 1 and induction on k to prove Theorem 1.
The identities (4) and (7) along with f(n, 1) = 1, imply

f(n, 1) =

n−1∑
j=1

αj

n−1∏
`=j+1

(
1− 1− α`

`

)
+

n−1∏
j=1

(
1− 1− αj

j

)

=

n−1∑
j=1

αj

n−1∏
`=j+1

(
1− 1− α`

`

)
+ α1

n−1∏
j=2

(
1− 1− αj

j

)
. (9)
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Observe that f(j, k) = 0 if j < k. Therefore, for k ≥ 2, (5) and (7) produce

f(n, k) =

n−1∑
j=1

(1− αj)(k − 1)f(j, k − 1)

j

n−1∏
`=j+1

(
1− (1− α`)k

`

)

=

n∑
j=k−1

(1− αj)(k − 1)f(j, k − 1)

j

n−1∏
`=j+1

(
1− (1− α`)k

`

)

=

n∑
j=k

(1− αj)(k − 1)f(j, k − 1)

j

n−1∏
`=j+1

(
1− (1− α`)k

`

)

+ (1− αk−1)f(k − 1, k − 1)αk

n−1∏
`=k+1

(
1− (1− α`)k

`

)
. (10)

3.1. The case r = 1

Using (1) and Lemma 1 in (9) produces

f(n, 1) =

n−1∑
j=1

[
θ +O

(
j−ε
)]( j

n

)1−θ (
1 +O

(
j−ε

′
))

+O
(
nθ−1

)
=

n−1∑
j=1

θ

(
j

n

)1−θ (
1 +O

(
j−ε

′
))

+O
(
nθ−1

)
=

θn

2− θ
+O

(
n1−ε

′
)
.

We have shown that (2) holds when k = 1.
Suppose, now, that (2) holds for all f(n, k − 1). We will show that (2) holds for f(n, k) holds as well.

Using (1) and Lemma 1 in (10), we have

f(n, k) =

n∑
j=k

[1− θ −O(j−ε)] (k − 1)
[
Mk−1j +O(j1−ε

′
)
]

j

(
j

n

)k−kθ (
1 +O

(
j−ε

′
))

+O
(
nkθ−k

)
= (1− θ)(k − 1)Mk−1n

kθ−k
n∑
j=k

jk−kθ
(

1 +O
(
j−ε

′
))

+O
(
nkθ−k

)
=

(1− θ)(k − 1)

k − kθ + 1
Mk−1n+O

(
n1−ε

′
)

= Mkn+O
(
n1−ε

′
)
,

proving the inductive step. Therefore, by induction, (2) holds for all k ≥ 1.
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3.2. The case r ∈ (−1, 1)

Now, (1) and Lemma 1 in (9) give

f(n, 1) =

n−1∑
j=1

[
θjr−1 +O

(
jr−1−ε

)]( j
n

)(
1 +O

(
j−ε

′
))

+O
(
n−1

)
= θn−1

n∑
j=2

jr
(

1 +O
(
j−ε

′
))

+O
(
n−1

)
=

θnr

r + 1
+O

(
nr−ε

′
)
,

establishing (3) for k = 1.
Define Nk for k ≥ 1 by Nk = θ(k − 1)!/(r + 1)(k). Now, suppose that r ∈ (−1, 1) and that (3) holds for

f(n, k − 1). We have

f(n, k) =

n∑
j=k

[
1−O(jr−1)

]
(k − 1)

[
Nk−1j

r +O
(
jr−ε

′
)]

j

(
j

n

)k (
1 +O

(
j−ε

′
))

+O
(
n−k

)
= (k − 1)Nk−1n

−k
n∑
j=k

jr+k−1
(

1 +O
(
j−ε

′
))

+O
(
n−k

)
=

k − 1

r + k
Nk−1n

r +O
(
nr−ε

′
)

= Nkn
r +O

(
nr−ε

′
)
,

proving the inductive step and therefore showing that (3) is valid for all k ≥ 1.
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