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Abstract 

Adoptive transfer of Chimeric Antigen Receptor transduced T cells is a promising strategy 

for cancer immunotherapy. The CD38 molecule, with its high expression on Multiple 

Myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used 

three different CD38 antibody sequences to generate second generation retroviral CD38- 

Chimeric Antigen Receptor constructs; transduced T cells of healthy donors and Multiple 

Myeloma patients and evaluated their preclinical efficacy and safety. Irrespective of the 

donor and antibody sequence, CD38-Chimeric Antigen Receptor transduced T cells 

proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and 

primary malignant cells from acute myeloid leukemia and multi-drug resistant Multiple 

Myeloma patients in a cell-dose, and CD38-dependent manner, despite becoming CD38 

negative during culture. CD38-Chimeric Antigen Receptor transduced T cells also displayed 

significant anti-tumor effects in a xenotransplant model, in which Multiple Myeloma tumors 

were grown in a human bone marrow-like microenvironment. CD38-Chimeric Antigen 

Receptor transduced T cells, also appeared to lyse the CD38+ fractions CD34+ 

hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and 

B cells but, did not inhibit the outgrowth progenitor cells into various myeloid lineages, and 

were furthermore effectively controllable with a caspase-9-based suicide gene. These 

results signify the potential importance of CD38-Chimeric Antigen Receptor transduced T 

cells as therapeutic tools for CD38+ malignancies and warrant further diminishing their 

undesired effects using appropriate strategies.  
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Introduction 

Multiple myeloma (MM), the malignant disorder of antibody producing clonal plasma cells is 

the second most common hematologic neoplasia worldwide.1 Despite four decades of drug 

innovation, MM remains incurable with chemotherapy. Furthermore, the prognosis of MM 

patients, who become refractory to recently developed novel agents, is very poor.2 On the 

other hand, clinical and experimental data collected over the past decades suggest the 

possibility to successfully treat MM through (cellular) immunotherapy.3,4 The curative 

potential of cellular immunotherapy in MM is illustrated by the induction of long-term 

sustained remissions after allogeneic stem cell transplantation (SCT) or donor lymphocyte 

infusions (DLI) in a subset of patients.5,6 A highly appealing and more specific 

immunotherapy strategy for cancer is the adoptive transfer of cytotoxic T cells (CTLs) that 

are genetically engineered to express Chimeric Antigen Receptors (CAR).7,8 A CAR is an 

artificial hybrid receptor, in which the antigen recognizing domain of a tumor-reactive 

monoclonal antibody is fused with T-cell signaling domains. Upon retro- or lentiviral 

transduction of CTLs, CARs expressed on the cell surface redirect the CTLs toward the 

original target of the antibody in a non-HLA restricted manner7,8, providing the possibility to 

apply the therapy regardless of the HLA type of the patient. Currently the most successful 

CAR-approaches are based on targeting the CD19 molecule, which is broadly expressed in 

several B cell malignancies but not on malignant plasma cells of MM patients. Among a few 

potential CAR candidates for MM9, the CD38 molecule, with its high and uniform expression 

on malignant plasma cells, has long been suggested a suitable target for antibody therapy 

of MM. The utility of CD38 as a suitable target has indeed been supported by the results of 

recently initiated clinical trials in which MM patients were safely and effectively treated with 

the CD38-specific human monoclonal antibody daratumumab10. 

Encouraged by these clinical results, we now started to explore the feasibility of 

development of a CART cell therapy based on targeting the CD38 molecule. Using variable 

heavy and light chain sequences of three different human CD38 antibodies, we generated 
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three different CD38-CARs. We transduced T cells from healthy individuals and MM 

patients with CD38-CARs and evaluated them for essential functions such as antigen-

specific proliferation and cytokine production, for in vitro and in vivo anti-tumor efficacy and 

for potential undesired effects such as targeting normal CD38+ cell fractions in the 

peripheral blood and bone marrow. We also evaluated the feasibility of controlling CD38-

CART cells by introduction of a caspase-9 based suicide gene.   
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Methods 

Bone marrow Mononuclear cells (BM-MNC) from MM and AML patients   

Bone marrow mononuclear cells containing 5-20% malignant plasma cells or ~50% AML 

blasts were isolated from bone marrow aspirates of MM/AML patients through Ficoll-Paque 

density centrifugation and cryopreserved in liquid nitrogen until use. All bone marrow and 

blood sampling from the patients was performed after informed consent and approved by 

the institutional medical ethical committee.   

PBMC from healthy individuals   

PBMCs were isolated from Buffy coats of healthy blood-bank donors by Ficoll-Paque 

density centrifugation after informed consent and approval by the institutional medical 

ethical committee.  

Retroviral constructs   

The sequences of three different human CD38 antibodies, which are distinct from, but 

display similar affinities to the recently documented daratumumab10 (Table S1) were kindly 

provided by Genmab. Cloning methods are described in supplementary methods.  

Retroviral CAR Transduction into T cells  

Transduction methods are described in supplementary methods.  

Flow cytometry-based cell lysis assays  

To detect the lysis of various cell subsets by CART cells in whole BMNC or in PBMC, serial 

dilutions of CART cells were incubated with CFSE labeled BMMNC or PBMC for 24 hours. 

The cells were then harvested, stained for different CD markers and topro3 or LIVE/DEAD® 

Fixable Near-IR (Life Technologies L10119) and were quantitatively analyzed through 

volume-equalized measurements using a FACS Canto flow cytometer. For each cell subset 

identified with a CD marker, CFSE+, viable+/Topro3- cells were counted as surviving target 

cells. Percentage cell lysis in a treated sample was calculated as follows and only if the 

analyzed target cell population contained >500 viable cells in the untreated samples. % lysis 
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cells = 1 − (absolute number of surviving cells in treated wells / absolute number of 

surviving cells in untreated wells) × 100%. 

BLI-based cell lysis assays   

To determine the lysis of Luc-GFP-transduced human malignant cell lines by CD38-CART 

cells, serial dilutions of mock or CD38-CART cells were co-incubated with the malignant cell 

lines. The luciferase signal produced by surviving malignant cells was determined after 16-

24 hours with a luminometer SpectraMax, Molecular Devices within 15 minutes after the 

addition of 125 μg/mL beetle luciferin (Promega).11 The percent lysis was then calculated as 

in flow-based cytotoxicity assay above.  

Experimental animals 

RAG2-/-γc-/- mice used in this study were originally obtained from the Amsterdam Medical 

Center (AMC, Amsterdam, the Netherlands). The mice were bred and maintained in filter 

top cages under specified pathogen-free conditions at the Central Animal Facility (GDL, 

Utrecht University, Utrecht, the Netherlands) and received sterile water and radiation-

sterilized food pellets ad libitum. 

In vivo efficacy of CD38-CART cells against MM tumors growing in a humanized 

microenvironment. 

To create a human bone marrow-like environment in mice, hybrid scaffolds were coated in 

vitro with human mesenchymal stromal cells. After a week of in vitro culture, humanized 

scaffolds were seeded with CD38+ UM9 cells and implanted subcutaneously into the mice, 

as described previously,11,12 and described in supplementary methods. 

 Haematologica HAEMATOL/2015/137620 Version 3



 

8 

 

Results 

Generation of CD38-CART cells 

We used the variable heavy and light chain sequences of three different CD38 antibodies 

with CD38 binding affinities comparable to daratumumab (Table S1), which is now being 

tested in clinical trials. T cells from healthy PBMC were transduced with the different CD38-

CAR genes or with the empty vector (mock) separately. After selection of transduced cells 

to high purity by neomycin treatment, the surface expression of CARs was determined by 

incubating the T cells with biotinylated bacterial protein L, which specifically binds to the 

variable region of kappa light chains of antibodies.13 Indirect staining with PE-conjugated 

streptavidin revealed the expression of all three CARs on >95% of the T cells, whereas T 

cells transduced with an empty vector (mock-transduced T cells) displayed only background 

staining (Fig. 1B left panel). The CAR-transduced cells contained variable levels of both 

CD4+ and CD8+ cells (Fig. 1B; right panel).  

CD38-dependent proliferation and cytokine secretion of CD38-CART cells. 

To analyze the proliferative and functional properties, the neomycin-selected, highly purified 

CD38-CART cells were expanded using irradiated feeder cells in the presence of PHA and 

IL-2. While the mock T cells initially expanded better than the CD38-CART cells (Fig. 1C; 

left panel), the growth disadvantage of CD38-CART cells disappeared in the second 

expansion round (Fig. 1C; right panel), indicating that transduction of CD38-CAR construct 

did not affect the proliferative capacity of T cells. We then tested whether CD38-CART cells 

can be activated by CD38-triggering. To this end, we co-cultured mock- and CD38-CAR-

transduced T cells with irradiated CD38+ MM cell line UM9 and used the CD38- MM cell line 

U266 as a control (Fig. 1D; left panel). CD38-CART cells, but not mock T cells, specifically 

proliferated and produced IFN-γ, TNF-α and IL-2 (Fig.1D; right panel), but not IL-4, -5 and -

10 (data not shown) upon stimulation with UM9 cells. These results indicated that CD38 

CART cells had no defects in cytokine production but displayed a typical Th1-like cytokine 
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response upon target recognition. Furthermore, the CD38- cell line U266 was unable to 

stimulate CD38-CART cells, demonstrating the proper antigen-specific function of CD38-

CART cells.  

 CD38-dependent lysis of MM cell lines by CD38-CART cells  

To determine the CD38-dependent lysis of malignant cells by CD38-CART cells, we first 

used luciferase-transduced MM cell lines with variable CD38 expression levels in BLI-based 

cytotoxicity assays.11,14 As expected, there was no CD38-CAR-specific lysis of the CD38- 

U266 cell line (Fig. 2A). In contrast, all three CD38-CART cells, but not mock-T cells, 

effectively lysed CD38+ MM cell line UM9 in a cell-dose dependent manner (Fig. 2B), 

showing the feasibility of generating effective CART cells with any of the CD38 antibody 

sequences we used. Since there was no functional difference between the three different 

CD38-CARs (028, 056, 026), we continued our investigation with one type of CD38-CART 

cell (CAR056). Flow cytometry and BLI-based cytotoxicity assays, executed using other 

malignant cell lines expressing various levels of CD38 (Supplementary Fig.S1) as target 

cells revealed a good correlation between the CD38 expression and CD38-CART cell-

mediated lysis (Fig. 2C). Though one AML cell line, the Burkitt lymphoma-derived cell line 

Daudi as well as normal T cells appeared less sensitive to CD38-CART cell mediated lysis 

as compared to MM cell lines with similar levels of CD38 expression (Fig. 2C). 

Lysis of primary MM and AML cells by CD38-CART cells.  

To test the efficacy of CD38-CART cells against primary MM and AML cells, we used a 

previously described flow cytometry-based ex vivo cytotoxicity assay, in which the lysis of 

malignant cells is tested, directly in the BM-MNCs without isolating them from other cells.15 

As depicted in Figure 3A, primary CD138+CD38+ MM cells of three different MM patients, 

who were refractory to treatment with lenalidomide, and bortezomib (left panel), were 

effectively lysed by CD38-CART cells, but not by mock-transduced T cells. Similarly in the 

BM-MNCs of two Acute Myeloid Leukemia (AML) patients malignant cells, which were 
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identified as CD13+ CD45+ cells and expressed either low/intermediate (patient 1) or high 

CD38 (patient 2) were effectively lysed by CD38-CART cells (Fig 3A). Finally, CD38-CART 

cells that were generated (Fig 3B) from a MM patient were effective towards autologous 

malignant MM cells in BM-MNCs indicating the feasibility of generating effective 

CD38CART cells also from MM patients. 

Fully-functional CD38 CART cells are negative for CD38 

While CD38-CART cells had no apparent functional deficiencies, a phenotyping assay 

revealed that they, despite a mixed effector/central memory phenotype, lost the expression 

of CD38 (Fig. 4A). Interestingly, when we co-cultured CD38-CART cells with an autologous 

CD19 CART cell population, these CD19CART cells also became largely negative for CD38 

expression but fully maintained their capacities to proliferate, secrete cytokines and kill the 

relevant target cells in a CD19 dependent fashion (supplementary Figure S2), indicating 

that the loss of CD38 was not associated with detectable T cell dysfunction. Nonetheless, 

since CD38 molecule could also play a role in migration, we also evaluated whether CD38 

negative CD38-CART cells would properly migrate through endothelial layers in a transwell 

migration assay (fig 4B). These assays revealed no differences between the mock-

transduced, CD38-positive and CD38-CAR-transduced CD38-negative T cells, ruling out an 

apparent migratory dysfunction of CD38-CART cells.  

In vivo efficacy of CD38-CART cells against MM tumors growing in a humanized 

microenvironment.  

To substantiate the in vitro results, we questioned whether the CD38 negative CART cells 

could mediate in vivo anti-MM effects after systemic injection in our recently developed 

model in Rag2-/-γc-/- mice, in which a humanized BM like-niche for MM cells are generated 

by s.c. implantation of ceramic scaffolds coated with human bone marrow stromal cells (hu-

BMSCs)11,12 (Fig4). Thus, we implanted huBMSC-coated scaffolds seeded with luciferase-

transduced UM9 MM cells in the back of the mice (6 scaffolds per mouse). Upon detection 

 Haematologica HAEMATOL/2015/137620 Version 3



 

11 

 

of luciferase signal by BLI, we treated the mice by i.v. injections of CD38-CART cells using 

a previously established treatment scheme.16 Mock-transduced T cells were used as 

controls. As illustrated in Figure 4B, in the control group treated with mock T cells, tumors 

showed a fast progression. Although not curative, treatment of the tumor-bearing mice with 

CD38-CART cells induced a significant anti-tumor effect (Fig. 4B,C) underscoring the 

potential of CD38-CART cells to properly infiltrate and lyse MM tumors growing in their 

natural, protective niche. Post mortem analyses revealed that the remaining CD138+ tumors 

were still positive for CD38 (Fig. 4D), thus ruling out tumor escape due to “antigen loss” 

variants. 

Impact of CD38-CART cells on CD38+ normal hematopoietic cells and hematopoietic 

progenitor cells. 

Besides the high expression levels in MM cells, the CD38 molecule is expressed at 

intermediate levels on a subset of hematopoietic progenitor cells17 and on a fraction of 

normal hematopoietic cells including activated T cells, NK cells, B cells and monocytes. We 

therefore evaluated the possible negative impact of CAR-T cells on these cell subsets by 

co-incubating unsorted BM-MNCs with CD38-CART cells. CD38-CART cells appeared to 

eliminate the CD38+ fractions of mature T, B, NK and monocyte cell subsets (Fig. 5A) and 

the CD38+ fraction of CD34+ cells (Fig. 5B) in a 4 hour assay. The lysis of CD34+CD38+ 

cells had however no influence on the development of colony-forming unit-monocytes 

(CFU-M), and CFU-granulocytes (CFU-G) in a 14-day hematopoietic precursor cell (HPC) 

colony forming assay18,19 (Fig. 5C and D). 

Specific elimination of CD38-CART cells using a suicide gene (iCasp9) 

Although CD38-CART cells did not lyse the CD38 negative fractions of mature 

hematopoietic cells and did not inhibit the outgrowth of these cell populations, still a 

cautious approach toward the clinical application is required. Therefore, as a first step 

towards a more safe application of CD38-CART cells, we tested the possibility to control 
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them with a suicide gene based on the inducible caspase-9 (iCasp9) gene that is activated 

with a small dimerizer molecule AP20187 (B/B).20 Thus, we inserted an iCasp9 vector 

containing a GFP marker gene into the CD38-CART cells by retroviral transduction. Around 

50% of the CD38-CART cells were transduced as detected by GFP expression (figure 6A, 

upper panel) When tested without sorting the iCasp9 transduced (GFP+) cells, all iCasp9 

transduced, GFP+ but none of the iCasp9 non-transduced, GFP-CD38-CART cells were 

eliminated upon incubation with the dimerizer AP20187 (Fig. 6A lower panel). As expected, 

the dimerizer treatment also resulted in a proportional decrease in the lysis of the MM cell 

line UM9. (Fig. 6B). There was still a remaining lysis due to the surviving iCasp9 negative 

CD38-CART cells, indicating that the triggering of suicide gene induced no bystander 

damage to the cells in the close vicinity. When tested after sorting of GFP+ cells (Fig 6C 

and 6D), almost all GFP+ cells died after treatment with the dimerizer (Fig. 6C) and there 

was no CD38 specific lysis left (Fig 6D), confirming the results obtained by previous 

studies20,21, and suggesting the possibility to control CD38-CART cells using the iCasp9 

suicide gene without undesired consequences.  
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Discussion 

While cellular immunotherapy of hematological malignancies has been applied for many 

decades in the most non-specific form as allo-SCT or DLI, it has recently entered a more 

specific level of innovation with several encouraging strategies, including vaccination with 

antigen-loaded dendritic cells or adoptive immunotherapy with TCR-gene transferred T 

cells, tumor infiltrating T cells and more recently with CTLs endowed with tumor-reactive 

CARs. Among these strategies, CAR-based therapies are perhaps the most appealing, as 

CART cells recognize their target antigens in an MHC-independent manner. Set out to 

develop a CAR-based strategy for MM, we have been encouraged by the highly promising 

clinical results of the therapy with daratumumab, which targets CD38, a type II 

transmembrane glycoprotein, expressed with high and uniform levels in most, if not all, MM 

cells in all stages of the disease10. Recently daratumumab has been applied to several 

patients at moderate to high doses and for prolonged periods with little or no toxicity. This, 

despite the fact that CD38 molecule is also expressed, albeit at lower levels, on a fraction of 

hematopoietic cells, cerebellar purkinje cells, liver and lung smooth muscle cells, and 

insulin-secreting β cells of pancreas.17 Our study was therefore designed to test the 

feasibility, potential efficacy and pitfalls of a CD38-based CART cell approach for MM. To 

investigate the feasibility of generating CD38-CARs, we started the investigation using three 

distinct human CD38 antibodies, which displayed similar binding affinities to CD38 as 

daratumumab (Supplementary Table S1). Based on successful usage of 4-1BB-containing 

CARs in recent studies22–24 we have constructed CARs containing 4-1BB (CD137) co-

stimulatory and CD3ζ activating domains. Our results demonstrate the successful 

generation of CD38-CARs and CD38-CART cells regardless of the antibody sequences. T 

cells transduced with these CD38-CARs are highly proliferative, produce inflammatory Th1 

like cytokines and, most importantly, are effective in killing malignant cells and normal 

hematopoietic cells in a CD38-dependent fashion, with some subtle differences between 

cell lines or hematopoietic cell types.  
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More importantly, CD38-CART cells appeared capable of eliminating primary CD38+ MM 

cells of patients who became resistant to various chemotherapies. This suggests that 

CD38-CAR therapy could be a viable option for patients with little or no further 

chemotherapy options. These in vitro data were substantiated by the results obtained in our 

in vivo model. Although we did not observe the complete eradication of MM cells in our in 

vivo assays, we need to note that, since our CD38-CART cells appeared to lose their CD38 

expression upon culture, we primarily designed our in vivo assays to determine the anti-

tumor efficacy of these CD38 negative, but long-term cultured CD38-CART cells. This may 

have negatively influenced the anti-tumor efficacy, since it is known that long-term cultured 

T cells rapidly lose their in vivo persistence capacities.25,26 In addition, and perhaps even 

more important, in our model, unlike all previously reported CAR studies, the human MM 

tumors are grown to larger masses in a fully humanized BM microenvironment. The MM 

microenvironment is known to provide essential signals for survival, growth and more 

importantly immune resistance of MM cells.11,12,27,28 Since our model includes some of the 

microenvironment related aspects, our results suggest that it the efficacy of CART cell 

treatment could be improved if the therapy would be combined with immune checkpoint 

inhibitors and or with survivin and/or MCL-1 inhibitors which are effective modifiers of cell 

adhesion mediated immune resistance (CAM-IR) induced by tumor microenvironment.11 

Unlike a number of earlier reports, which mainly focused on the anti-tumor efficacy of CD38-

CART cells,29–31 we devoted a considerable part of our investigation on identifying the 

potential drawbacks and risks of the CD38-CART cell therapy. Although CD38-CART cells 

eliminated the CD38+ fractions of immune cell subsets as well as the CD38+ fraction of 

hematopoietic progenitor cells, we observed no inhibition of the outgrowth of hematopoietic 

lineages from CD34+CD38- progenitor cells. Furthermore, CD38-CART cells did not induce 

complete depletion of mature hematopoietic cells in the periphery. The CD38 negative 

fractions of important immune cells, such as B and T cells, were unaffected as well. These 

results suggest that the therapy will spare sufficient numbers of T and B cells to maintain 
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their functions. However, since CD38 is a well-known T cell activation molecule, and has 

also been implicated in chemotaxis,32 T cell development33, dendritic cell trafficking and 

humoral immune responses34, it would be relevant to answer the question whether an intact 

immune response would be possible in the absence of CD38. A partial answer to this issue 

came from the analyses of CD38-CART cells: we remarkably discovered that the CD38-

CART cells, regardless of which scFv was used, became completely devoid of CD38 

expression on their surface in various independently generated batches of cells. The loss of 

CD38 was thus unlikely to be caused by a genetic defect, but was most probably due to the 

“self lysis” of the CD38+ fractions, which was also described in another CD38-CAR study29. 

Our CD38 negative CD38-CART cells, however, had no growth disadvantage, displayed 

highly activated status, CD38-dependent proliferation, cytokine production, cytotoxic 

activities and showed no other detectable functional aberrancies. This was also the case for 

CD19CART cells which became CD38 negative after co-culture with CD38-CART cells 

(Figure S2). Furthermore CD38-CART cells did not show any defects in a transmigration 

assays and they also mediated significant anti-MM effects in vivo, thus indicating their 

capacity to properly migrate and infiltrate into the MM niches and to kill them. Thus, it 

seems likely that i) not all activated T cells have to be CD38 positive and ii) CD38 

expression is not essential for T cells to fulfill their functions. This conclusion is also 

supported by the fact that there is yet no evidence, even in CD38 KO mice,32 that CD38-

deficient effector T cells are defective in function.  

On the other hand, the relative broad expression of the target antigen of CD38-CART cells 

increases the risk of the so called “cytokine release syndrome (CRS)” due to massive 

activation of CAR-T cells, as have been observed in the previous trials with ERBB2- and 

CD19-CART cells.35–37 Although the IL-6R antagonist tocilizumab appears to successfully 

reduce CRS38 it would still be desirable to minimize the occurrence of such severe side 

effects. Furthermore, since we cannot rule out toxicities occurring die to the possible attack 

of non-hematopoietic CD38+ cells, development of an optimal CD38-CART cell therapy 
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would require the improvement of the target-specificity as well as the in vivo control on 

CD38-CART cells, and probably also in the case of other CART cell approaches targeting 

kappa light chain39, CD13840, Lewis Y antigen41, BCMA42, CS143,44, and CD44v6.45 One 

future option to improve the target-specificity could be the optimization of the target cell 

affinity of CART cells. In addition, suicide genes may enable the in vivo control of adoptively 

transferred CART cells. Indeed, in our first attempt to improve the safety profile of CD38-

CART cells we observed, that the inducible caspase 9 (iCasp9) gene20,46 can effectively 

control CART cells. These results, which are in agreement with other studies20,45,47 provide 

positive prospects for the future clinical trials. The safety profile of CART cells could also be 

improved by the generation of inducible CAR constructs or using the recently developed 

dual CAR technologies.  

Taken together, we conclude that CD38-CART cells are powerful immunotherapeutic tools 

and can be beneficial especially for MM patients who have no other chemotherapy options. 

Therefore these results warrants further studies towards diminishing their undesired effects 

against normal CD38+ cells through optimizing their CD38 affinity and improving in vivo 

controllability. 
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Figure Legends 

 

Figure 1 CD38-CAR construct and CD38-CART cell phenotype 

(A) Schematic overview of the CD38-CAR construct. CD38-scFv sequence is based on 

three different antibody sequences (028, 056 and 26, see also supplementary Table S1), 

with CD8a as transmembrane domain and 4-1BB and CD3ζ as intracellular domains. (B) 

CAR expression on the cell surface of healthy donor T cells was determined by binding of 

biotinylated protein L to the scFv domain (left panel), stained with PE labeled streptavidin. 

Depicted are the results for CD38-CART cells generated with CAR056, representative for all 

three CARs. The expression of surface markers CD4 and CD8 on (right panel) was 

determined by fluorescence-labeled monoclonal antibodies. (C) The expansion of mock and 

CD38-CART cells after transduction (left panel) and after the second round of stimulation 

(right panel; new stimulation set at “0”). (D) The relative 3H-thymidine uptake (left panel) of 

mock and CD38-CART cells after 72 h stimulation with the CD38+ MM cell line UM9: 

responder ratio of 3:1. Error bars represent mean + SEM, n=3. The results are expressed 

as relative stimulation index, compared to mock and considered significant if the stimulation 

index is >=3. The cytokine secretion (right panel) from of mock and CD38-CART cells 

stimulated with αCD3/CD28 beads or CD38-specific with the MM cell line UM9. The 

cytokine secretion was measured with the flow cytometry-based CBA kit (BD) in the cell free 

supernatants after 24 hours of stimulation. Graph shows the secretion of IFN- γ, TNF and 

IL-2. Secretion of IL-4, -5 and -10 were below the detection limits. These data are therefore 

not shown in this figure. Similar results were obtained in two independent assays. 

Figure 2 Efficacy of CD38-CART cells to lyse MM cell lines. In 24 h cytotoxicity assays, 

three different CD38-CART cells were tested against two MM cell lines with different CD38 

expression levels (A) U266, a CD38-negative cell line, (B) UM9, a CD38+ cell line. 

Effector:Target ratios are indicated. Target cells per well were 10,000 MM cells. Closed 
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circles (�) indicate mock and open squares, triangle and diamond (□,�,�) indicate 

CAR028, 056 and 026. Error bars indicate mean + SD. (C) Correlation between mean 

fluorescent intensity (MFI) of CD38 on target cells and consequential CD38-CAR specific 

lysis. CD38-CART cells (CAR056) were co-cultured with leukemic cell lines and allogeneic 

healthy donor PBMCs. The resulting lysis in a 3:1 ratio was determined with BLI or flow 

cytometry, minus the spontaneous lysis caused by mock T cells. Open circles (�) indicate 

MM cell lines (LME-1, UM9, MM1.S, U266, L363 and UM3), triangles (�) indicate AML 

(HEL, MOLM13), T lymphoblast (CEM) and Burkitt Lymphoma (Daudi), closed circles (�) 

indicate healthy immune cells (T= T cells, B=B cells, NK= NK cells, Mo= monocytes, 

C=CEM, H=HEL, M=MOLM13, D=Daudi), Error bars represent mean + SEM of duplicate 

measurements.. 

Figure 3. Efficacy of CD38-CART cells generated from healthy individuals to lyse 

primary MM cells. (A) Bone marrow derived mononuclear cells (BM-MNCs) of three MM 

patients, all three refractory to lenalidomide, and bortezomib and BM-MNCs of two AML 

patients were co-incubated with no, mock- or CD38-CART cells generated from healthy 

PBMC for 16 h. Closed circles (�) indicate mock and open squares (□) indicate CAR056T 

cells (representative for all CARs). The graphs depict the resulting lysis of CD138+/CD38+ 

cells (MM) or CD13+/CD7+/CD45dim/CD38+ (AML1, moderate CD38 expression) and 

CD33+/CD133+/CD45dim/CD38+ (AML2, high CD38 expression) in three E:T ratios. The % 

lysis in these flow cytometry assays was calculated as described in the methods section. 

(B) Efficacy of CD38CART cells generated from a MM patient: CAR expression on the cell 

surface of patient’s T cells was determined by flow cytometry with protein L staining (see 

also figure 1). (C) Bone marrow derived mononuclear cells (BM-MNCs) of the MM patient 

were co-incubated with autologous mock- or CD38-CART cells for 16 h. The graph depicts 

resulting lysis of CD138+/CD38+ cells in two ratios, determined in flow cytometry based 

assays. .  
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Figure 4. Tumor growth in Mock- and CD38-CART cell treated mice. (A) Analysis of 

CD38-CART cells after two weeks of in vitro culture, with fluorescence labeled monoclonal 

antibodies for CD45RA and CD62L and CD38. (B) Leukocyte transmigration assay, where 

mock and CART cells were cultured in a transwell system in the inserts with endothelial 

(HUVEC) cells, which were activated with TNF-α. Spontaneous TNFα-induced 

transmigration was compared to active migration induced by 10% of human serum in the 

lower compartment. % migrated cells = (Relative Fluorescence Units (RFU) of cells in lower 

compartment / RFU of total cells in both compartments) * 100%. (C) Analysis of tumor load 

in mice by quantification of BLI measurements. Each group contained six mice, each 

harboring 6 scaffolds. Results are mean tumor load (cpm/cm2) of 6 mice per group. Closed 

circles (�) indicate Mock and open squares (□) indicate CAR056. The error bars represent 

mean + SEM, n=6. The differences between groups were analyzed after week 6 in, an 

unpaired student’s T test, p < 0.0001 (D) Bioluminescent imaging of mice on right side, mice 

were implanted with fully humanized BMSC scaffolds each coated with 1×106 UM9-GFP-

Luc tumor cells. 7, 9 and 13 days after implantation, mice were i.v. injected with 20×106 

Mock or CD38-CART cells. (E) Representative immunohistochemistry figure, remaining 

tumor were stained with CD38 and CD138 antibody, T = tumor, sc = scaffold. 

 

Figure 5. The impact of CD38-CART cells on non-malignant hematopoietic cells in BM 

and outgrowth of Hematopoietic cell lineages. (A) BM-MNCs of 3 MM patients were co-

incubated with none, mock- or CD38-CART cells for 16 h. The graphs depict the resulting 

lysis of the total or the CD38+ fractions of CD3+ (T cells), CD56+, (mainly NK cells), CD14+ 

(monocytes) and CD19+ (B cells) cell subsets in three ratios, determined with flow cytometry 

and calculated as described in the methods section. Results are 3 individual experiments 

combined. Closed circles (�) indicate Mock and open squares (□) indicate CAR056. Error 

bars represent mean + SEM, n=3. (B) CD34+ fraction of BM-MNCs from healthy donors 

were co-incubated with none, mock- or CD38-CART cells for 4 h at different T:BM cell ratios 
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before transferring into the semisolid HPC culture medium. After the incubation, cells were 

analyzed by flow cytometry for surviving CD34+ cells with CD38 expression. The graphs 

depict the resulting lysis of the total or the CD38+ fraction of CD34+ cells. Closed circles (�) 

indicate Mock and open squares (□) indicate CAR056. (C) After 14 days of culture in plastic 

dishes, colony-forming unit-monocytes (CFU-M), and CFU-granulocytes (CFU-G) were 

visible, (D) the number of CFU-M, and CFU-G colonies were determined microscopically. 

Results of a representative experiment are shown mean + SD.  

Figure 6. Dimerizer AP20187-mediated elimination of the iCasp9 suicide gene 

transduced CD38-CAR T cells. (A) Flow cytometry histogram plots, CD38-CAR T cells 

that were additionally transduced with the iCasp9-GFP construct. Upper panel shows the 

untreated cells 50% GFP+; lower panel the cells treated with 100nM dimerizer AP20187 

(B/B). (B) The lysis of UM9 cell line by iCasp9-transduced CD38-CAR T cells that were 

untreated or treated with the dimerizer. The significant reduction of GFP+ cells (A) is a 

consequence of cell death activated by the dimerizer B/B. Note (in B) the decrease in 

cytolysis is proportional to the elimination of the suicide gen transduced cells (50% of all 

CAR-positive cells in A. The residual cytolysis is thus caused by the CAR-positive cells that 

were not transduced with iCasp9 n=2, mean + SD. (C) CD38-CART iCasp9-GFP-high 

sorted cells. Upper panel shows the untreated cells 100% GFP+; lower panel the cells 

treated with 100nM dimerizer B/B. (D) The lysis of UM9 cell line by iCasp9-High-CD38-

CART cells that were untreated or treated with the dimerizer. Closed circles (�) indicate 

Mock and open diamond (�) and triangle (�) indicate CAR056 – and + B/B. n=2, mean + 

SD. 
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