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Abstract

Learning the conditional probability table (CPT) parameters of Bayesian

networks (BNs) is a key challenge in real-world decision support applications,

especially when there are limited data available. A conventional way to address

this challenge is to introduce domain knowledge/expert judgments that are en-

coded as qualitative parameter constraints. In this paper we focus on a class

of constraints which is naturally encoded in the edges of BNs with monotonic

influences. Experimental results indicate that such monotonic influence con-

straints are widespread in practical BNs (all BNs used in the study contain such

monotonic influences). To exploit expert knowledge about such constraints we

have developed an improved constrained optimization algorithm, which achieves

good parameter learning performance using these constraints, especially when

data are limited. Specifically, this algorithm outperforms the previous state-of-

the-art and is also robust to errors in labelling the monotonic influences. The

method is applied to a real world medical decision support BN where we had

access to expert-provided constraints and real hospital data. The results suggest

that incorporating expert judgments about monotonic influence constraints can

lead to more accurate BNs for decision support and risk analysis.
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straints; Experiments on publicly available BNs; Real medical study.

1. Introduction

Bayesian networks (BNs) have become increasingly popular in the AI field

during the last two decades because of their ability to model probabilistic de-

pendent relationships among variables in many real-world problems. A BN

model consists of two components: a network structure and a set of conditional

probability tables (CPTs) whose entries are considered as parameters.

In real-world decision support problems that we wish to model as BNs, there

are typically limited or no relevant data. In such situations attempts to learn

BN structures purely from data are unlikely to result in useful models. For

example, even 500 data points (which in many real-world situations is a very

large sample) is nowhere near enough to learn the structure of a very small BN

such as the well-known Asia BN that has just 8 nodes and 8 edges in total. Using

the pure data based structure learning algorithm (Eaton and Murphy, 2007) in

this example results in more than half of the learnt edges being different from the

ground truth. The scarce data problem is typical of many real-world decision

support problems in which we have nevertheless used BN models effectively, by

exploiting expert domain knowledge. Specifically, the decision support problems

addressed include:

• determine whether or not to provide a specific type of intervention for a

given psychiatric patient (Constantinou et al., 2016).

• determine whether or not a limb should be amputated given a patient’s

specific pathology (Yet et al., 2014).

• determine whether a given prisoner with a background of violence can be

safely released into the community (Constantinou et al., 2015b).

• determine which of two alternative medical tests optimises the balance

between accuracy, safety and cost (Fenton and Neil, 2010).
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• determine how and when to place bets on football matches to ‘beat the

bookmakers’ (Constantinou et al., 2013).

In all of these problems limited data were available (both in terms of size of

data and complete absence of data for some key variables), but we had access to

relevant domain experts who were able to provide the BN structure (including

causal relationships involving unobserved variables) and insights into the con-

ditional probability table (CPT) parameters where there was little or no data.

However, although there has been some progress in attempts to make more

systematic the methods helping experts define BN structures (see, e.g. Con-

stantinou et al. (2016) and Fenton et al. (2013) the process for fully defining the

CPTs (i.e. eliciting the BN parameters) from experts has been largely ad hoc.

The objective of this paper is to demonstrate a more systematic and rigorous

approach to combining expert knowledge and data to achieve more accurate

parameter elicitation in such models. Hence, to clarify the scope, the paper is

focused on the following common scenario:

A BN structure has been hand-crafted by domain experts to model a real-

world decision support problem. A small amount of data relevant to the

model is available. The challenge is to build the model parameters by com-

bining the limited data with domain knowledge about the parameters.

In addition to the examples described above an increasing number of decision

support problems (medical, financial and safety) fit with this scenario (Fenton

and Neil, 2012), and so there is a genuine demand for improved solutions. It

is also important to note that, because we are restricting our discussion to

BNs whose structures have been hand-crafted by experts, the scope is limited

to relatively ‘small’ BNs (generally expert defined BNs with fewer than 100

nodes), although our experiments do include some larger BNs.

The simplest parameter learning approach is maximum likelihood estimation

(MLE). However, this method usually fails to find good estimates for parameters

with few data points (in some complex BNs, there is an explosion of variable

state configurations, we might not have enough training data in some specific
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variable state configurations even in cases where big-data is available). To ad-

dress this researchers developed the maximum a posteriori probability (MAP)

approach by introducing a Dirichlet parameter prior, which we discuss in Sec-

tion 2. However, as we also discuss in Section 2, experts tend to feel more

comfortable providing qualitative or semi-numerical judgments with less cogni-

tive effort. Such judgments are expressed as constraints between parameters of

interest, and are more easily elicited from experts than corresponding point-wise

estimates.

In this paper we focus on an important class of such constraints elicited from

monotonic influences (also known as qualitative influences (Wellman, 1990) or

qualitative monotonicities (Altendorf et al., 2005)), which are naturally encoded

in the edges/structures of BNs. A monotonic influence is one where the increase

(or decrease) of one variable will monotonically change the value of another vari-

able. This kind of influence can be directly elicited from the BN structures, and

can be easily converted into associated parameter constraints, which we refer

to as monotonic influence constraints. These constraints are exterior parameter

constraints (relations between parameters from different conditional distribu-

tions). For a simple example, in “Smoke → Cancer”, it is widely accepted that

people who smoke have a higher risk of getting cancer than those who do not.

Thus:

P (Cancer = true|Smoke = true) ≥ P (Cancer = true|Smoke = flase)

is an example of a monotonic influence constraint.

When the training data is limited, incorporating such exterior constraints

from experts could help the BN parameter learning. In this paper, we investi-

gate the extent to which such monotonic influences and their generated exterior

constraints are present in a set of real-world BNs, and provide a simple im-

proved constrained optimization algorithm for parameter estimation with these

constraints.

The paper is organized as follows. In Section 2 we discuss related work in

BN parameter learning with limited data. In Section 3 we introduce the BN

parameter learning notation to be used throughout this paper. In Section 4 we

4



describe the monotonic influences and the improved parameter learning method.

In Section 5 we report on the experiments of 12 different real-world BNs. In

Section 6 we present the results of applying the method to a real world medical

decision support BN. Our conclusions are in Section 7.

2. Related Works

There are several methods for handling parameterization with limited or

no relevant data, described in a rich literature of books, articles and software

packages, which are briefly summarized in (Druzdel and Van Der Gaag, 2000;

Neapolitan, 2004; O’Hagan et al., 2006; Fenton and Neil, 2012). Of these, expert

knowledge/judgments are widely used in real-world BN construction (de Cam-

pos et al., 2008; Baumgartner et al., 2008; Constantinou et al., 2013), especially

in medical decision support applications (Lucas et al., 2004; Hutchinson et al.,

2009; Flores et al., 2011; Yet et al., 2013, 2014; Constantinou et al., 2015a).

However, expert elicitation is expensive, time-consuming and sometimes

error-prone (Neil et al., 2000), because the number of parameters increase ex-

ponentially with the number of nodes in the BN. Therefore, the challenge has

mainly been addressed using methods that minimize the number of elicited pa-

rameters. The Noisy-OR (Diez, 1993) and Noisy-MAX (Pradhan et al., 1994)

are examples of methods to reduce the number of elicited parameters, based on

the independence of causal influences (ICI) assumption (Zagorecki and Druzdzel,

2013). Extensions of these models include the Ranked Node (Fenton et al., 2007)

and NIN-AND tree (Xiang and Jia, 2007; Xiang and Truong, 2014) models.

To address the problem that some parameters have zero observations in

limited training data, a Dirichlet parameter prior is introduced for them. Ex-

perts are required to provide Dirichlet hyperparameters. In the BDeu prior,

experts are only needed to provide the equivalent sample size parameter (Heck-

erman et al., 1995). Guidance in choosing the value of equivalent sample size

is well studied (Silander et al., 2007). However, elicited hyperparameters of ICI

models and Dirichlet distributions are both numerical, which means they are

quantitative knowledge. Previous work has shown that eliciting qualitative or
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semi-numerical judgments is easier than collecting numerical values of CPTs

(Helsper et al., 2005). Parameter constraint (Druzdzel and van der Gaag, 1995)

is an important class of such qualitative judgments. For example, the state-

ment “the probability of people getting cancer is very low” is such a parameter

constraint.

Several models have been proposed to integrate parameter constraints and

improve the learning accuracy. The most popular is the constrained convex

optimization (CO) formulation (Niculescu et al., 2006; de Campos and Ji, 2008;

de Campos et al., 2008; Liao and Ji, 2009; de Campos et al., 2009). These algo-

rithms seek the global optimal estimation (maximal log likelihood) with respect

to the parameter constraints. The parameters also can be estimated by the

Monte Carlo method (Chang et al., 2008), where only the samples that consist

of the constraints are kept. Recently, auxiliary BN models (Zhou et al., 2013,

2014a, 2015) have been developed for solving this problem. In this approach,

the target parameters, data observations and elicited constraints are all mod-

elled as nodes in the auxiliary BNs. Thus, the parameters are estimated via the

inference in the auxiliary BNs. However, constraints discussed in these models

are not elicited from qualitative monotonic influences, and are usually expensive

to elicit.

An alternative approach to reducing the burden of expert elicitation is to find

monotonic influences in some edges of BNs, and use them to generate exterior

parameter constraints. BNs that are fully specified by monotonic influences

are referred to as Qualitative Probabilistic Networks (QPNs) (Wellman, 1990).

An efficient sign-propagation algorithm is achieved by restricting the maximal

number of node-sign changes during the inference (Druzdzel and Henrion, 1993;

Renooij and Van der Gaag, 2008). The inference results answer the question

of how observations of some variables change the probability distributions of

other variables. The combination of QPNs and BNs is referred to as Semi-

Qualitative Probabilistic Networks (SQPNs) (Renooij and van der Gaag, 2002),

which means parts of the variables are represented by joint probability tables

rather than qualitative influences. Inference and learning in SQPNs is discussed
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in later work (de Campos and Cozman, 2005).

As in previous work (Altendorf et al., 2005; Feelders and van der Gaag,

2006; van der Gaag et al., 2006; Feelders, 2007), in this paper, we only use signs

of qualitative probabilistic networks and their generated monotonic influence

constraints to constrain the probabilities in the standard BN parameter learning.

Thus, experts are only required to identify which edges in the BN have such

qualitative monotonicity property. Cano et al. (2011) and Masegosa and Moral

(2013) proposed an interactive BN structure learning approach that iteratively

queries the domain expert about the reliability of learnt edges. This interactive

paradigm can be easily applied to help elicit edges’ monotonic influences from

experts and suggests that the theoretical method presented in this paper can

be applied in practice (we do not use the interactive paradigm here because in

our experiments we assume that any edges with monotonic influences are known

and we simulate errors made by experts).

More discussions about parameter learning with exterior constraints gen-

erated from monotonic influences can be found in (van der Gaag et al., 2009;

Yang and Natarajan, 2013; Zhou et al., 2014b). Although parameter learning

with these constraints has been well studied, there is no empirical analysis of

the extent to which such monotonic influences exist in real-world BNs. This

paper addresses this research gap by investigating the qualitative monotonicity

for each edge in a set of real-world BNs. Moreover, the learning performance of

state-of-the-art CO algorithm and our simple improved version (which we refer

to as COFP) in these BNs is also reported.

3. Bayesian Networks Parameter Learning

A BN consists of a directed acyclic graph (DAG) G = (U,E) (whose nodes

U = {X1, X2, X3, . . . , Xn} correspond to a set of random variables, and whose

arcs E represent the direct dependencies between these variables), together with

a set of probability distributions associated with each variable (Pearl, 1988).
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For discrete variables1 the probability distribution is described by a conditional

probability table (CPT) that contains the probability of each value of the vari-

able given each instantiation of its parent values in G. We write this as P (Xi|Πi)

where Πi denotes the set of parents of the variable Xi in DAG G. Thus, the

BN defines a simplified joint probability distribution over U given by:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|Πi) (1)

Let θ denote a set of numerical parameters of the categorical random vari-

ables in some set U . Let ri denote the cardinality of the space of Xi, and

|Πi| represent the cardinality of the space of parent configurations of Xi. Let

P (Xi|Πi = p) denote the discrete probability distribution of Xi given the p-

th state configuration of its parents (Πi = p). The k -th probability value of

P (Xi|Πi = p) can be represented as θipk, where θipk ∈ θ, 1 ≤ i ≤ n, 1 ≤ p ≤ |Πi|

and 1 ≤ k ≤ ri. Assuming D = {D1, D2, . . . , DN} is a dataset of fully observ-

able cases for a BN, then Dl is the l -th complete case of D, which is a vector of

values of all variables in U .

The classical maximum likelihood estimation (MLE) (Barber, 2012) is to find

the set of parameters that maximize the log likelihood `(θ|D) =
∑
l logP (Dl|θ).

Let Nipk be the number of data records in sample D for which Xi takes its k -

th value and its parents Πi take the p-th state configuration. Then `(θ|D)

can be rewritten as `(θ|D) =
∑
ipkNipk log θipk. MLE seeks to estimate θ by

maximizing `(θ|D). In particular, we can get the estimation of each parameter

as follows:

θ∗ipk =
Nipk
Nip

(2)

where Nip =
∑ri
k=1Nipk.

However, it is common (even for a large dataset) that certain parent-child

state combinations seldom appear, and MLE fails in this situation. Hence,

1For continuous variables we normally refer to a conditional probability distribution.
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another classical parameter learning algorithm (maximum a posteriori, MAP)

is used to mediate this problem by introducing the Dirichlet prior:

θ∗ = arg max
θ
P (D|θ)P (θ) (3)

Therefore, the MAP estimation of each parameter is:

θ∗ipk =
Nipk + αipk
Nip + αip

(4)

Intuitively, one can think of the hyperparameter αipk in the Dirichlet prior

as an experts’ guess of the virtual data counts of the parameter θipk. When

there is no related expert judgments, people usually use a uniform/flat prior

αipk = 1 or BDeu prior αipk =
1

ri|Πi|
(likelihood equivalent uniform Bayesian

Dirichlet) (Heckerman et al., 1995).

4. Parameter Learning with Monotonic Influence Constraints

This section provides a full formalism of how to translate a set of quali-

tative judgments into probability constraints. Here, we follow Wellman’s ap-

proach (Wellman, 1990), where qualitative judgments involve monotonic influ-

ences between nodes. We will firstly discuss the exterior constraints and then

give the formal definition of monotonic influences and their converted exterior

constraints. After that, we will discuss how to solve the parameter estimation

problem with such constraints. Finally, we will discuss the computational time

complexity of the proposed learning algorithm.

4.1. The Exterior Constraint

Parameter constraints can be divided into two types according to the con-

strained parameters’ parent state configurations: 1) interior constraint and 2)

exterior constraint. The interior constraint restricts the node parameters within

a CPT column (parameters that share the same parent state configuration). For

example, an interior constraint could be “the probability of a patient getting

cancer is smaller than 1%” in a medical BN. In Zhou et al. (2014a) we showed
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that significant improvements to CPT learning can be achieved from a relatively

small number of expert provided interior constraints. However, in many situ-

ations it is possible (and actually more efficient) to elicit constraints between

parameters with different parent state configurations. These constraints are

referred to as exterior constraints, and defined as follows:

Definition 4.1. Exterior Constraints For any variable Xi in a BN, if
the two associated parameters θipk and θiqk in Xi have different parent state
configurations Πi = p or Πi = q (p 6= q), we call θipk ≥ α + βθiqk or θipk <
α+ βθiqk (where α, β ∈ R and β 6= 0) an exterior constraint.

This kind of constraint can be generated from monotonic influences which

can greatly reduce the burden of expert judgment elicitation. Next, we will

discuss the definition of monotonic influences.

4.2. The Monotonic Influences and Generated Exterior Constraints

Definition 4.2. Monotonic Influences For any dependent relationship
Xj → Xi in a BN with ordered categorical variables, if an increase in Xj leads
to an increase in Xi no matter the values of other variables in Πi \{Xj}, we call

this a positive monotonic influence Xj
+→ Xi. Conversely, if an increase in Xj

leads to a decrease in Xi no matter the values of other variables in Πi \ {Xj},
we call this a negative monotonic influence Xj

−→ Xi.

A zero influence (Xj
0→ Xi) is defined analogously whereby an increase

in Xj will not change the value of Xi. This influence is left implicit in the

network’s graphical representation. Finally, if there is no positive or negative

monotonic influence between Xj and Xi, we call this ambiguous monotonic

influence Xj
?→ Xi.

Xs

+ -

Xm

Xc

Figure 1: A three-node BN with two monotonic influences.

As we will show in Section 5, positive and negative monotonic influences

occur widely in real-world BN applications. Based on the above definitions
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(and using smoking Xs, cancer Xc and medical treatment Xm as example vari-

ables shown in Figure 1), two monotonic influences in the BN example can be

formulated as exterior constraints as follows:

Xs
+→ Xc: F (xc| Xs = false, xm) ≥ F (xc| Xs = true, xm)

Xm
−→ Xc: F (xc| xs, Xm = false) ≤ F (xc| xs, Xm = true)

(5)

Here there variables Xs, Xm and Xc are ordered binary categorical variables,

their values xs, xm and xc are from the set {false, true}. Moreover, F (xc) =

P (Xc ≤ xc). Thus, for the example above, in Xs
+→ Xc, observing higher values

for Xs makes higher values for Xc more likely, regardless of any other values of

Xm. The arc signs (
+→ and

−→) specify the types of the monotonic influence.

The negative influence represents the opposite relationship compared with the

positive influence.

Although such monotonic influences has been well discussed in previous

works (Wellman, 1990; Altendorf et al., 2005; Feelders and van der Gaag, 2006),

there is no empirical analysis on using such generated exterior constraints in pa-

rameter leaning. Next, we will introduce a flat parameter prior (K2 prior) into

the parameter learning with such exterior constraints, and derive the related

equations for the constrained optimization problem.

4.3. The Constrained Optimization Method

Parameter learning with monotonic influence constraints can be formulated

as a constrained optimization problem, and solved by the gradient descent ap-

proach. Therefore, the parameter estimation is converted to find the most prob-

able parameters that maximize the log likelihood given training data and mono-

tonic influence constraints. Any violation of constraints is penalized by reducing

the objective log likelihood.

Without loss of generality, for a monotonic influence of Xj on Xi, we can

generate its monotonic influence constraints (denoted by eckci,p,q):∑kc
k=1 θipk ≥

∑kc
k=1 θiqk
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where 1 ≤ i ≤ n, 1 ≤ p ≤ |Πi|, 1 ≤ q ≤ |Πi|, 1 ≤ k ≤ kc. p and q are two

parent state configurations, their corresponding sub-indices2 on Xj are denoted

as sub(p, j) and sub(q, j). The kc is the state index for which the cumulative

distribution function is evaluated, and satisfies the condition 1 ≤ kc < ri.

If the monotonic influence is positive (Xj
+→ Xi), we have sub(p, j) <

sub(q, j). If it is negative(Xj
−→ Xi), the sub-indices of Xj satisfy the con-

dition that sub(p, j) > sub(q, j). Moreover, the sub-indices of Xi’s parents in

Πi \ {Xj} satisfy the condition sub(p, j̃) = sub(q, j̃) (caeteris paribus condition

Wellman (1990)).

Let Ci = {eckci,p,q} represent all the elicited exterior constraints in Xi, which

means:

Ci = {
∑kc
k=1 θipk ≥

∑kc
k=1 θiqk|1 ≤ p ≤ |Πi|, 1 ≤ q ≤ |Πi|, 1 ≤ k ≤ kc < ri}

Therefore, the constrained maximization problem can be written as follows:

arg maxθ(`(θ|D)− w
2 ·

∑n
i=1

∑
eckci,p,q∈Ci

penalty(eckci,p,q))

s.t.
∑ri
k=1 θipk − 1 = 0

(6)

where the w is the penalty weight, and chosen empirically. The penalty function

is normally set as the squared difference of two parameters (Altendorf et al.,

2005):

penalty(eckci,p,q) = I∑kc
k=1(θiqk−θipk)≥0 · (

∑kc
k=1(θiqk − θipk))2

where I(·) is the indicator function whose value equal to 1 if the condition (·) is

satisfied, otherwise its value equal to 0.

Here, the condition
∑ri
k=1 θipk = 1 ensures that the sum of all the estimated

parameters in a probability distribution is equal to one. To eliminate this con-

2The conversion between parent state configurations and sub-indices is needed in the
implementation of the algorithm. This is supported by the ind2subv function, which
is available at http://research.microsoft.com/en-us/um/people/minka/software/
lightspeed/.
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dition, we introduce a new parameter µipk so that

θipk =
eµipk∑ri
k=1 e

µipk
(7)

Thus, the estimated parameters will automatically respect the condition∑ri
k=1 θipk = 1. Meanwhile, the local maximum w.r.t µipk is also the local

maximum w.r.t θipk, and vice versa.

The solution of equation (6) moves towards the direction of reducing con-

straint violations and increasing data log likelihood. To ensure the returned

solution is global optimum, the objective function must be convex, which limits

the usage of constraints. Meanwhile, because the starting points are randomly

generated in gradient descent, this may cause unacceptably poor parameter es-

timation results when learning with zero or limited data counts Nipk. Thus,

we simply improve the first term of equation (6) by introducing a flat Dirichlet

prior θ′:

J(θ) = `(θ|D, θ′)− w

2
·
n∑
i=1

∑
eckci,p,q∈Ci

penalty(eckci,p,q) (8)

The derivative of J(θ) w.r.t µ can be expressed as:

∂

∂µipk
J(θ) =

∂

∂µipk
`(θ|D, θ′)− w

2
·
n∑
i=1

∑
eckci,p,q∈Ci

∂

∂µipk
penalty(eckci,p,q) (9)

The derivative of the first term is defined by the partials:

∂

∂µipk
`(θ|D, θ′) = Nipk + 1− eµipk∑ri

k=1 e
µipk
· (Nip + ri) (10)

The derivative of the second term is only valid when the constraint is vio-

lated. For each exterior constraint eckci,p,q, the violation margin can be repre-

sented as:

ε =

∑kc
k=1 e

µiqk∑ri
k=1 e

µiqk
−

∑kc
k=1 e

µipk∑ri
k=1 e

µipk
> 0 (11)
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Thus, the derivative of the penalty is defined by:

∂
∂µipk

penalty(eckci,p,q) = (−2) · Iε≥0 · ε · eµipk · (
Ik≤kc ·

∑ri
k=1 e

µipk−
∑kc
k=1 e

µipk

(
∑
k e

µipk )2
)

∂
∂µiqk

penalty(eckci,p,q) = 2 · Iε≥0 · ε · eµiqk · (
Ik≤kc ·

∑ri
k=1 e

µiqk−
∑kc
k=1 e

µiqk

(
∑
k e

µiqk )2
)

(12)

Given the equation (6) and decomposability property of the log likelihood,

the large optimization problem can be decomposed into n smaller sub-problems:

θi = arg max
θi

(`(θi|D)− w

2
·

∑
eckci,p,q∈Ci

penalty(eckci,p,q)) (13)

Based on the gradients (equations (9–12)) discussed above, this sub-problem

can be solved using the Karush-Kuhn-Tucker theorem. And we use Sequential

Quadratic Programming (SQP) to compute its solutions (Nocedal and Wright,

2006). The parameter learning algorithm is shown in Algorithm 1. We refer

to it as the Constrained Optimization algorithm with a Flat parameter Prior

(COFP). The COFP algorithm consists of two parts. For unconstrained pa-

rameters, we perform the standard estimation. For constrained parameters, we

make the solutions move towards the direction of increasing objective function

value.

The A = {Aj,i|1 ≤ j ≤ n, 1 ≤ i ≤ n} in Algorithm 1 is the monotonic

influence label matrix, where Aj,i = 1 and Aj,i = −1 represent a positive

(Xj
+→ Xi) and a negative (Xj

−→ Xi) monotonic influence respectively, and

Aj,i = 0 means there is no monotonic influence between Xj and Xi (Xj
?→ Xi).

4.4. Time Complexity Analysis

The constrained optimization step usually takes a fixed amount time to find

the optimal parameter estimate. Therefore, we treat this optimization step as

the elementary operation O(1). The bottleneck in terms of efficiency of the

COFP algorithm lies in the total number of exterior constraints generated from

the monotonic influences.

Assuming there are n nodes in a BN and each node has maximum r states,

the worst-case time complexity T (n) of the COFP algorithm happens in the BN
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INPUT : Bayesian network G, Data D, Monotonic influence label
matrix A.

OUTPUT: Estimated parameters θ = {θipk}.
1 for each BN variable i = 1 to n do
2 Ci = {};
3 for each parent variable j = 1 to |Πi| do
4 if there is no monotonic influences Aj,i = 0 then
5 for parent state configuration p = 1 to |Πi| do
6 for state index k = 1 to ri do

7 θipk =
Nipk+1
Nip+ri

;

8 end

9 end

10 else
11 if Aj,i = 1 then
12 for parent state configuration pair p and q satisfying

sub(p, j) < sub(q, j) and sub(p, j̃) = sub(q, j̃) do

13 Ci = {Ci, eckci,p,q};
14 end

15 else
16 for parent state configuration pair p and q satisfying

sub(p, j) > sub(q, j) and sub(p, j̃) = sub(q, j̃) do

17 Ci = {Ci, eckci,p,q};
18 end

19 end

20 end

21 end

22 θi = arg maxθi(`(θi|D)− w
2 ·

∑
eckci,p,q∈Ci

penalty(eckci,p,q));

23 end

24 return θ = {θi}
Algorithm 1: COFP BN parameter learning algorithm with mono-
tonic influence constraints and a flat parameter prior

structure that contains one child node and its n−1 parent nodes, with all n−1

edges fully specified by monotonic influences. Therefore, the total number of

monotonic influence constraints is equal to the product of total number of parent

configurations and the number of child node states. Hence, the worst-case time
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complexity is exponential with respect to the total number of nodes:

T (n) = O(
r(n−1)!

2!(r(n−1) − 2)!
r) = O(

1

2
(r(n2−2n+2) − rn)) (14)

Despite this complexity, the COFP algorithm is able to produce the results

relatively efficiently for all the real-world models examined in Section 5 with the

biggest model running in 23.81 seconds3.

5. Experiments

The experiments have two goals. First to demonstrate the widespread exis-

tence of monotonic influences in BNs in the publicly available repository that we

describe in Section 5.1 and second to show the advantages of using the generated

exterior constraints in parameter learning (with the COFP algorithm).

In the experiments in this section we are relying on publicly available BNs.

Unlike the real-world case study that follows in Section 6, this means there are

a number of necessary experimental conditions, which we acknowledge are only

a simulation of reality (and hence limit the general applicability of the results).

Specifically:

• In practice we would have a known BN structure (this is the key scenario

we are assuming, as explained in the Introduction) together with a small

amount of real-world data relevant to the BN variables. However, here we

have to simulate such data – not just because we do not actually have it,

but also because we wish to evaluate our method under different sample

sizes. To simulate a realistic set of data we have to assume that the actual

CPTs provided with the models represent the ‘true’ model parameters (of

course, in practice the ‘true’ parameters are unknown because this is what

we are trying to learn). To do this we use the forwards sampling function

3Relevant experiments are performed on an Intel core i7 CPU running at 2.5 GHz and 16
GB RAM.
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which is built into the BNT package4 to generate data samples (of sizes

50, 100 and 500) randomly from the distributions of the ‘true’ CPTs.

• In practice we would have one or more domain experts on hand from whom

to elicit the monotonic influence labels. Because we do not have access

to such experts, we are using the ‘true’ labels from the BN. However, to

simulate reality we include experiments in which some erroneous labels

are randomly generated.

For comparison we consider the following parameter algorithms:

• Conventional parameter BN learning algorithms (MLE and MAP).

• Constrained optimization (CO) algorithm (considering exterior constraints)

(Altendorf et al., 2005; Liao and Ji, 2009).

• Our improved CO algorithm by incorporating a flat parameter prior (COFP).

In all cases the resulting learnt CPTs are evaluated against the true CPTs

by using the K-L divergence metric5 (Kullback and Leibler, 1951), which is

recommended to measure the distance between distributions. The smaller the

K-L divergence is, the closer the estimated CPT values are to the true CPT

values. If estimated CPT values are zero, they are replaced by a tiny real value

(1×10−7) to guarantee they can be computed by the K-L divergence. Moreover,

each experiment setting is repeated 10 times, and the results are presented with

their mean and standard deviation.

5.1. The BNs Used in The Experiments

The publicly available BN repository6 contains 20 complete BNs, most of

which have been developed in total or in part by domain experts. Hence, they

4BNT is a Matlab toolbox called “Bayes Net Toolbox” that can be found at https:
//code.google.com/p/bnt/.

5Here the K-L divergence is locally measured for each CPT column and averaged over the
whole model. This is to ensure that the fit of each distribution is equally weighted in the
overall metric.

6http://www.bnlearn.com/bnrepository/
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satisfy the scope of our work. These BNs are encoded in the Bayesian Inter-

change Format (.bif). We used a Perl program called bif2bnt7 to convert these

BNs into the standard BNT format. This resulted in 12 of the BNs being

successfully converted and used in the experiments; the rest were clearly not

well-defined, but there is no reason to believe that the 12 that were successfully

extracted are not representative of the kind of real-world BN models that satisfy

the scope of our work.

Table 1: Details and monotonic influence analysis of 12 publicly available Bayesian networks.

Name Nodes Edges Parameters
+→ Edges

−→ Edges

Alarm 37 46 509 18 2
Andes 223 338 1157 336 1
Asia 8 8 18 8 0
Cancer 5 4 10 3 1
Earthquake 5 4 10 4 0
Hailfinder 56 66 2656 23 0
Hepar2 70 123 1453 34 12
Insurance 27 52 984 9 2
Sachs 11 17 178 2 0
Survey 6 6 21 2 1
Weather 4 4 9 3 1
Win95pts 76 112 574 26 3

Table 1 provides a summary of these BNs. They range from typically small

expert-built BNs to those which are as large as any that could be reasonably

produced by experts. Each edge of these BNs is investigated for qualitative

monotonicity, and the details are also described in Table 1. As we can see,

monotonic influences are widespread in all these BNs; in half of them the vast

majority of edges have monotonic influences.

To illustrate in detail the findings we use the example of the well-known

Alarm BN, which is an acronym for “A Logical Alarm Reduction Mechanism”.

This BN is a medical diagnostic application used for patient monitoring that

contains 37 variables in total: 8 diagnoses, 16 findings and 13 intermediate

variables. The BN has 46 edges and 509 parameters, the maximum edge in-

degree is 4.

Figure 2 shows the full structure of the BN, where the signs on the edges

7http://www.digitas.harvard.edu/˜ken/bif2bnt/
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Figure 2: The monotonic influence labels in the Alarm BN.

indicate whether the associated monotonic influences are positive or negative.

There are 18 positive and 2 negative monotonic influences, which means that

43.5% of the edges encode such monotonic influences.

5.2. Results with Different Data Sparsity

In this experiment, we consider three training data sizes: 50, 100 and 500.

Table 2 summarises the average K-L divergence between learnt BNs and true

BNs for three different training sample sizes. The best results are presented in

bold. Statistically significant improvements of the best results over competitors

are indicated with asterisks * (p ≤ 0.05).

For sample size 50 (Table 2(a)), MAP, CO and COFP all achieve good per-

formance compared with the conventional MLE, which suffers from the absence

of data in several state configurations in such limited data. Moreover, COFP

significantly outperforms MAP and CO in most experiment settings. Specifi-

cally, compared with MAP and CO results, COFP achieves 16.3% and 70.0%
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Table 2: Learning results of MLE, MAP, CO and COFP on 12 publicly available BNs.

(a)

50 Data Samples MLE MAP CO COFP

Alarm 2.83±0.18* 0.76±0.03* 2.48±0.17* 0.67±0.03
Andes 1.50±0.03* 0.25±0.01* 0.17±0.01* 0.16±0.01
Asia 0.98±0.22* 0.44±0.03* 0.23±0.08 0.30±0.04*
Cancer 0.93±0.49* 0.11±0.03 0.11±0.04 0.08±0.03
Earthquake 1.58±0.73* 0.16±0.03 0.30±0.06* 0.14±0.05
Hailfinder 3.39±0.04* 0.57±0.01* 3.24±0.03* 0.49±0.01
Hepar2 3.48±0.09* 0.36±0.01* 3.23±0.08* 0.35±0.01
Insurance 2.49±0.11* 1.39±0.01* 2.07±0.10* 1.29±0.02
Sachs 2.21±0.15* 0.91±0.03* 1.97±0.13* 0.84±0.02
Survey 0.47±0.11* 0.05±0.01* 0.15±0.05* 0.03±0.01
Weather 0.03±0.03 0.07±0.02* 0.03±0.03 0.04±0.01
Win95pts 3.88±0.09* 0.89±0.01* 3.22±0.12* 0.83±0.01

Average 1.98±0.19 0.50±0.02 1.43±0.08 0.43±0.02

(b)

100 Data Samples MLE MAP CO COFP

Alarm 2.24±0.12* 0.65±0.02* 2.03±0.10* 0.58±0.03
Andes 1.06±0.02* 0.18±0.00* 0.11±0.03 0.10±0.00
Asia 0.57±0.28* 0.34±0.06* 0.09±0.08 0.19±0.07*
Cancer 0.61±0.60* 0.08±0.03 0.12±0.09 0.07±0.04
Earthquake 1.16±0.46* 0.14±0.04 0.35±0.29* 0.11±0.06
Hailfinder 2.86±0.03* 0.46±0.01* 2.76±0.02* 0.40±0.01
Hepar2 3.13±0.10* 0.33±0.01 2.97±0.08* 0.32±0.01
Insurance 1.85±0.11* 1.17±0.02* 1.59±0.09* 1.07±0.02
Sachs 1.67±0.16* 0.76±0.03* 1.50±0.14* 0.69±0.02
Survey 0.35±0.15* 0.04±0.01* 0.11±0.04* 0.03±0.01
Weather 0.02±0.02 0.03±0.01* 0.02±0.02 0.02±0.01
Win95pts 3.61±0.07* 0.82±0.02* 2.99±0.12* 0.74±0.02

Average 1.59±0.18 0.42±0.02 1.22±0.09 0.36±0.03

(c)

500 Data Samples MLE MAP CO COFP

Alarm 1.39±0.13* 0.43±0.02* 1.29±0.14* 0.39±0.02
Andes 0.37±0.03* 0.07±0.00* 0.05±0.01* 0.02±0.00
Asia 0.25±0.15* 0.21±0.03* 0.02±0.01 0.05±0.01*
Cancer 0.05±0.03* 0.01±0.01 0.03±0.02* 0.01±0.01
Earthquake 0.59±0.19* 0.08±0.03* 0.10±0.08 0.04±0.05
Hailfinder 1.52±0.03* 0.24±0.00* 1.50±0.03* 0.22±0.00
Hepar2 2.43±0.10* 0.26±0.01 2.36±0.09* 0.26±0.01
Insurance 0.88±0.04* 0.65±0.01* 0.77±0.04* 0.58±0.01
Sachs 0.95±0.16* 0.47±0.04* 0.90±0.16* 0.44±0.04
Survey 0.04±0.01* 0.02±0.01 0.02±0.01* 0.01±0.00
Weather 0.00±0.00 0.01±0.00* 0.00±0.00 0.00±0.00
Win95pts 2.97±0.06* 0.64±0.01* 2.53±0.13* 0.50±0.01

Average 0.95±0.08 0.26±0.01 0.80±0.06 0.21±0.01

average reductions of K-L divergence respectively.

For sample size 100 (Table 2(b)), the performance of MLE, MAP, CO and

COFP are all improved compared with their results in 50 data samples. Specifi-

cally, in the small network (Weather BN), the basic MLE also achieves the best

learning result, which means 100 training example is already enough to train

a good model. Again, COFP beats the competitors in every setting except
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the Asia BN. Compared with MAP and CO results, COFP achieves 14.3% and

70.5% average reductions of K-L divergence respectively.

For sample size 500 (Table 2(c)), the performance of MLE, MAP, CO and

COFP are further improved. Compared with other learning methods, COFP

still achieves the best overall learning performance. Specifically, of the total 12

experiments, 10 experiments show improvement in COFP over both MAP and

CO. Moreover, the COFP achieves 19.2% and 73.8% average reductions of K-L

divergence compared with MAP and CO.
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Figure 3: The learning performance of MLE, MAP, CO and COFP in the Alarm BN under
different data sizes.

As a detailed example, Figure 3 highlights the learning results of the Alarm

BN under different data sizes ranging from 50 to 500 samples. It is clear that the

average K-L divergence of all four algorithms show the decreasing trends with

increasing sample sizes. Moreover, the CO results always outperform the MLE

results, which demonstrate the usefulness of using elicited exterior constraints

from monotonic influences. As expected, with the increase of data sizes, the

gap between the performances of CO and MLE decreases.

More importantly, COFP greatly outperforms MLE and CO, and it also

outperforms MAP with 10.8% average reduction of K-L divergence. These find-
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ings show the superiority and effectiveness of applying COFP in the Alarm BN

parameter estimation with extremely limited data.

5.3. Time Complexity Analysis

As discussed in Section 4.4, the computational complexity is mainly deter-

mined by the total number of exterior constraints. Table 3 describes the average

computational time of each learning task for different learning algorithms.

Table 3: Running time (seconds) for MLE, MAP, CO and COFP in 12 publicly available BN
parameter learning problems.

Name Data MLE MAP CO COFP

Alarm
50 0.02 0.01 2.75 0.98
100 0.02 0.01 2.54 1.17
500 0.02 0.01 2.61 1.40

Andes
50 0.05 0.05 18.38 9.67
100 0.05 0.07 21.81 15.60
500 0.06 0.06 22.71 12.11

Asia
50 0.00 0.00 0.23 0.19
100 0.00 0.00 0.23 0.20
500 0.00 0.00 0.22 0.21

Cancer
50 0.00 0.00 0.12 0.09
100 0.00 0.00 0.13 0.11
500 0.00 0.00 0.12 0.11

Earthquake
50 0.00 0.00 0.13 0.10
100 0.00 0.00 0.15 0.11
500 0.00 0.00 0.16 0.10

Hailfinder
50 0.01 0.01 2741.99 20.05
100 0.01 0.01 1694.87 21.78
500 0.02 0.02 2579.77 23.81

Hepar2
50 0.02 0.01 2.91 1.66
100 0.02 0.02 3.01 1.99
500 0.02 0.02 2.73 2.19

Insurance
50 0.01 0.01 8.19 4.36
100 0.01 0.01 12.23 5.39
500 0.01 0.01 19.32 8.13

Sachs
50 0.00 0.00 0.98 0.32
100 0.00 0.00 0.90 0.31
500 0.00 0.00 0.59 0.36

Survey
50 0.00 0.00 0.16 0.11
100 0.00 0.00 0.14 0.10
500 0.00 0.00 0.13 0.14

Weather
50 0.00 0.00 0.11 0.10
100 0.00 0.00 0.10 0.10
500 0.00 0.00 0.14 0.12

Win95pts
50 0.02 0.02 6.92 4.80
100 0.02 0.02 7.55 5.38
500 0.03 0.02 7.73 6.78

Average N/A 0.01 0.01 198.97 4.17

As expected from the complexity analysis, there is clearly a much greater

computational overhead in using CO and COFP compared to MLE and MAP

(which is inevitable given the iteration steps in the constraint optimization).
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Crucially, however, COFP performs much more efficiently than CO (it outper-

forms CO in 34 of the 36 experiments).

5.4. Results with Error Labels

As shown in the above experiments, incorporating exterior constraints gen-

erated from monotonic influences can significantly improve the learning perfor-

mance. However, in real-world applications it is inevitable that, when eliciting

such constraints from experts, the influence labels will sometimes be wrong.

Hence, it is important to investigate the sensitivity of the results to such errors.

To this end, we generate “error labels” for a randomly selected small subset of

the previously elicited monotonic influences (where an error label is a positive

influence labelled negative or vice versa). We consider two sets of experiments

for each BN: one in which there is exactly one edge with an error label; and

one in which 5% of the edges have error labels (also note that, for BNs with

less than 20 edges with monotonic influences, these are the same). We feel that

anything more than 5% does not realistically represent expert judgment error.

Table 4: Learning results of MLE, MAP, CO and MPL-EC with error monotonic influence
labels and 100 training data samples in 12 publicly available BN parameter learning problems.

Name
1 Error Label 5% Error Labels† COFP Better or

Equal

CO COFP CO COFP Than MAP?

Alarm 2.09±0.10 0.59±0.02 2.09±0.10 0.59±0.02 Yes
Andes 0.11±0.01 0.10±0.00 0.19±0.03 0.13±0.00 Yes
Asia 0.30±0.10 0.41±0.11 0.30±0.10 0.41±0.11 Yes
Cancer 0.22±0.07 0.16±0.03 0.22±0.07 0.16±0.03 No
Earthquake 0.86±0.21 0.46±0.06 0.86±0.21 0.46±0.06 No
Hailfinder 2.75±0.04 0.42±0.01 2.77±0.05 0.43±0.01 Yes
Hepar2 2.94±0.07 0.32±0.01 2.94±0.07 0.32±0.01 Yes
Insurance 1.69±0.12 1.12±0.02 1.69±0.12 1.12±0.02 Yes
Sachs 1.63±0.15 0.75±0.02 1.63±0.15 0.75±0.02 Yes
Survey 0.16±0.08 0.03±0.01 0.16±0.08 0.03±0.01 Yes
Weather 0.07±0.02 0.07±0.01 0.07±0.02 0.07±0.01 No
Win95pts 3.08±0.11 0.75±0.02 3.10±0.11 0.83±0.02 Yes

Average 1.33±0.09 0.43±0.03 1.33±0.09 0.44±0.03 N/A

† The final number of error labels is rounded up to the nearest integer.

As expected, the results in (Table 4) show the performance of CO and COFP

are both worse than their previous results that learnt with correct influence

labels (Table 2(b)). For example, the average K-L divergence of COFP learnt
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with one error label and 5% error labels are 0.43 and 0.44, which are much

higher than the previous result (0.36) learnt with correct influence labels.

However, as is shown in the last column of Table 4, even with the errors intro-

duced, COFP outperforms MAP in most cases. The exceptions are the Cancer,

Earthquake and Weather BNs, which have less than 5 edges with monotonic

influence constraints (so a single error represents 25% of the edges, and it is

unsurprising in such cases that the performance of COFP is badly affected).
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Figure 4: The learning performance of CO and COFP in the Alarm BN with increasing
number of error labels.

For large BNs, the performance of COFP is remarkably robust to errors,

as can be seen in Figure 4, which shows how the introduced errors affect the

learning results of CO and COFP in the Alarm BN with 100 data samples.

Obviously errors are irrelevant for the learning performance of MLE and MAP

so their estimation results are fixed over varying numbers of error labels. As we

can see, there are increasing trends of K-L divergence in CO and COFP with

increasing number of error monotonic influences. The slight fluctuation comes

from randomly chosen error labels in each experiment repetition. However,

COFP outperforms MAP with up to 5 errors (which is 25% of the relevant

edges).
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6. A Real Medical Case Study

The previous experiments demonstrated the effectiveness of our COFP algo-

rithm on repository BN models under simulated conditions of scarce data and

generated exterior constraints. In this section we demonstrate its effectiveness

to learn parameters of a real BN developed for a medical problem, where the

“true” parameters and monotonic influences are unknown.

Figure 5: The Trauma Care Bayesian network, which contains four main parts: “Injury”,
“Shock”, “Coagulopathy” and “Death”.

The BN was developed by trauma care specialists, and relates to procedures

in hospital. The full details of the BN (whose graph is shown in Figure 5) and

datasets are proprietary to the hospitals involved. This BN contains 18 discrete
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variables (of which 3 are hidden) and 11 Gaussian variables8 that are grouped

into 4 parts:

• the degree of overall tissue injury,

• the degree of hypoperfusion resulting from blood loss for the patient,

• the risk of developing acute traumatic coagulopathy, and

• the risk of death for the patient.

Here, a well learnt BN is important because rapid and accurate identification

of hidden risk factors and conditions modelled by the network are important to

support a doctors’ decision making about treatments which reduce mortality

rate (Karaolis et al., 2010).

In this experiment, we elicited monotonic influences from medical experts

and were also give access to a hospital dataset. Hence we are able, in a real-world

setting, to evaluate the MPL-TC method.

The monotonic influences and their descriptions are shown in Table 6, which

constrain the variables: ‘Death’, ‘ATC’, ‘Age’, ‘Hypoperfusion’, and ‘Head’

(their details can be found in Table 5).

Table 5: Details of constrained variables.

Variable Description States

Death The risk of patient’s death in 48 hours.
No
Yes

ATC Acute traumatic coagulopathy.
No
Yes

Age Patient’s age.
Y: Age ≤ 45
M: 45 < Age < 65
O: Age ≥ 65

Hypoperfusion The degree of decreased blood flow through an organ.
Uncompensated
None
Compensated

Head Severe head injury of patient.
No
Yes

The real dataset was collected from an inner city hospital in Germany, and

contains 105 instances. We perform cross-validation in this dataset, using half

8The details of these variables can be found in http://www.traumamodels.com/.
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Table 6: The elicited expert judgments for monotonic influences in the Trauma Care BN.

Monotonic influences Description

ATC
+→ Death ATC occurs will result in the death of patient

with very high probability.

Age
+→ Death Old patient has higher risk of death than young

patient.

Hypoperfusion
−→ Death Uncompensated hypoperfusion will very likely

result in the death of patient.

Head
+→ Death Severe head injury will likely result in the death

of patient.

Table 7: Prediction performance (AUC) for the Trauma Care BN. The query variable is
“Death”.

Algorithm MLE MAP CO COFP

AUC 0.829* 0.872 0.859* 0.938

the instances to train the model, and half to evaluate the model. To evaluate the

model we instantiate the evidence variables in the target domain test set, select

one of the variables of interest (Death), and query this variable. AUC values are

calculated for the query variable. To get an effective decision support model, we

need to pick up the trained model that has the highest AUC value. The results

are presented in Table 7, with the best result in bold, and statistically significant

improvements of the best result over competitors indicated with asterisks *

(p ≤ 0.05).

As shown in Table 7, all learning algorithms mentioned in this paper have

been compared. Due to data scarcity, MAP outperforms MLE. After incorpo-

rating constraints generated from monotonic influences, the performance of CO

is better than MLE, which demonstrates the correctness of expert judgments in

Table 6. Moreover, the COFP achieves the best result, which shows the poten-

tial benefit of using COFP for real-world decision support problems, especially

when the training data are extremely limited.

7. Conclusions and Future Work

When data are limited, purely data driven BN learning is inaccurate. In this

paper our focus is on those scenarios in which we have a BN whose structure is
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expert-defined, but whose parameters we seek to learn from a combination of

scarce data and expert judgments. By incorporating monotonic influence con-

straints discussed in this paper parameter learning performance is significantly

improved.

The broad goal of this paper was to understand the monotonic influence con-

straints in a range of BNs, and to determine the extent to which knowledge of

such constraints improved learning performance. We analysed such properties

in each edge of every readable BN in the publicly available BN repository. Sur-

prisingly, monotonic influences were widespread in all the BNs (typically over

40% of all edges in most of the 12 BNs used in the study). We described an

improved parameter learning algorithm (COFP) that incorporates constraints

generated from these monotonic influences, and compared its performance to

MLE, MAP and the previous state-of-the-art algorithm CO using a range of

different sample size settings.

We demonstrated that over the full set of models in the experiment COFP

consistently outperforms CO. We also demonstrated that, while COFP is obvi-

ously far more computationally demanding than MLE and MAP it is actually

at least as efficient as CO in most BNs. We also showed that, COFP is robust

with respect to a small number of error labels, especially in large BNs. In Alarm

BN, it requires more than 25% errors before COFP is outperformed by MAP.

The experiments in Section 5 were only a simulation of the real-world prob-

lem of learning parameters for a fixed BN structure given scarce data together

with expert judgments. However, we believe the set of BNs was representative

of those defined within the scope of our research, and the simulation method,

which included simulating expert errors, was a reasonable match to real-world

scenarios. In our real medical case study, we had access to a BN structure

developed by trauma care experts (for coagulopathy risk), together with ex-

pert elicited monotonic influences and a hospital dataset; the COFP algorithm

achieved the best learning results.

While this paper has provided a contribution to improving the accuracy of

BN parameter learning by incorporating monotonic influences, there are a num-
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ber of areas in which the work could be extended in future research. First, in

real-world decision support applications, the dataset might contain ‘missing val-

ues’. In such cases the simplest way continue to use our algorithm is to employ

imputation techniques that fill the missing values of the dataset with the most

likely value; however, this may introduce large amounts of bias especially when

the data is scarce. To address this we could apply the EM algorithm (Murphy,

2012), where the exterior constraints should be incorporated in the M-step. Be-

cause of the multiple iterations in the EM algorithm, this would, however reduce

the efficiency of the algorithm. A second area of future research would be to in-

vestigate the existence of the extended representations of monotonic influences

in the BNs that we studied, which are named context-specific influences (Renooij

et al., 2002). This representation can model knowledge about monotonic influ-

ences (Xj → Xi) that hold only for specific values of Πi \ {Xj}. Therefore,

ambiguous monotonic influences could be further exploited, and might be used

to improve the parameter learning accuracy in some BNs.
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