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Sequential visibility graph motifs
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School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E14NS London (UK)
(Dated: May 3, 2016)

Visibility algorithms transform time series into graphs and encode dynamical information in their
topology, paving the way for graph-theoretical time series analysis as well as building a bridge
between nonlinear dynamics and network science. In this work we introduce and study the concept
of sequential visibility graph motifs, smaller substructures of n consecutive nodes that appear with

characteristic frequencies.

We develop a theory to compute in an exact way the motif profiles

associated to general classes of deterministic and stochastic dynamics. We find that this simple
property is indeed a highly informative and computationally efficient feature capable to distinguish
among different dynamics and robust against noise contamination. We finally confirm that it can be
used in practice to perform unsupervised learning, by extracting motif profiles from experimental
heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states.
Applications of this general theory include the automatic classification and description of physical,

biological, and financial time series.

PACS numbers:

I. INTRODUCTION

The interdisciplinary field of Network Science [1H4]
has integrated in the last 15 years under a single
paradigm tools and techniques coming from the Math-
ematics (Combinatorics and Graph Theory), Physics
(Statistical Physics) and Computer Science (Machine
Learning and Data Mining) communities, in the task of
exploring, characterizing and modelling the structure
and function of large and complex networks arising
in nature, technology and society. Perhaps one of the
most interesting concepts that has emerged within this
synergy is that of network motifs, small subgraphs
appearing with statistically significant frequencies that
are suggested to represent building blocks of network
architecture [5]. This local topological feature has
proved to be very useful for classifying large graphs in
areas as biochemistry, neuroscience or ecology to cite a
few (for instance networks that process information of
any garment seem to share similar motif statistics [5]),
or for understanding the interplay between network’s
local structure and function [6]. One can even use the
local information gathered by motif statistics to compare
networks of different sizes, enabling a classification of
networks in terms of superfamilies [7]. Both the role
played by network motifs as well as the computational
problem of efficiently extracting network motifs [§] are
two areas of current active research.

Of course, this useful structural descriptor -and in gen-
eral any topological measure- is narrowed down to those
datasets and systems that have a natural representation
in terms of graphs. As a matter of fact, in some of the
most challenging and complex systems that scientists
face nowadays (let it be spatio-temporal chaotic, or
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turbulent systems, the financial system, brain activity,
etc), information is available in the form of temporal
streams of data: series describing the time evolution
of certain observables. Interestingly enough, in recent
years a novel branch in data analysis has started to
transform time series into graph-theoretical represen-
tations. Among other interesting possibilities [9HI3],
the family of visibility algorithms [I4HI7] stand out
as computationally simple methods to transform time
series into networks which are capable of mapping seem-
ingly hidden structure of the series and the underlying
dynamics into graph space, with the peculiarity of often
being analytically tractable [14]. Here we extend, via
visibility algorithms, a tailored notion of network motifs
to the realm of time series analysis and classification [I1].

The rest of the paper goes as follows. After recalling the
basics of visibility (VG) and horizontal visibility graphs
(HVG), we define sequential VG/HVG motifs (Section
IT) and develop a mathematical theory for the HVG
case (Section III) that allows us to easily derive ana-
lytical expressions for the motif profiles of several classes
of stochastic and deterministic dynamical systems. We
prove, accordingly, that sequential HVG motifs are in-
formative features that can easily distinguish among dif-
ferent types of complex dynamics. In section IV we fur-
ther show that such discrimination is robust, even when
the signals under study are polluted by large amounts
of measurement noise, enabling its use in empirical (ex-
perimental) time series, i.e. in practical problems. We
summarise our results on synthetic time series in section
V and finally make use of this methodology in a real sce-
nario in section VI, where we are able classify different
physiological time series and efficiently disentangle med-
itative from general relaxation states by using the motif
profiles (only five numbers per subject) extracted from
heartbeat time series. In section VII we conclude.
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II. VISIBILITY GRAPHS AND MOTIFS

Visibility algorithms [I4HI7] are a family of methods
to map time series into graphs, in order to exploit the
tools of graph theory and network science to describe and
characterise both the structure of time series and their
underlying dynamics. Let S = {z(¢)}Z_; be a real-valued
time series of T" data. A so called natural visibility graph
(VG) is a planar graph of T nodes in association to S,
such that (i) every datum x(¢) in the series is related to a
node ¢ in the graph (hence the graph nodes inherit a nat-
ural ordering), and (ii) two nodes i and j are connected
by an edge if any other datum x(k) where i < k < j
fulfils the following conwvezity criterion:

T < T + — Z_[acj—aci], Vk:i<k<j

By construction, VGs are connected graphs with a
natural Hamiltonian path given by the sequence of
nodes (1,2,...,T), whose topology is invariant under
a set of basic transformations in the series, including
horizontal and vertical translations. An illustration of
this method is shown in panel (a) of figure |1, where we
plot a time series and its associated VG. VGs inherit in
its topology the structure of the time series, in such a
way that periodic, random, and fractal series map into
motif-like, random exponential and scale-free networks,
respectively. It has been shown that VGs are well suited
to handle non-stationary data [I8-20].

A so called horizontal visibility graph (HVG) is defined
as a subgraph of the VG, obtained by restricting the visi-
bility criterion and imposing horizontal visibility instead.
In this case, two nodes ¢ and j are connected by an edge
in the HVG if any other datum z(k) where i < k < j
fulfil the following ordering criterion:

xp < inf(x;,x;), Ve i<k <j

Such subgraph is indeed an outerplanar graph [2I] (see
Figure panel b) for an illustration). Interestingly,
HVG inherits some of the properties of VGs and, on
top of that, are computationally more efficient [42] and
analytically tractable. Accordingly, several analytical
properties of these family of graphs [I5] 22], associated
to different classes of dynamics including canonical
routes to chaos [23H26] have been investigated in recent
years. For instance, for the class of Markovian processes
with an integrable invariant measure the values of the
degree distribution P(k) can be calculated analytically
using a formal diagrammatic theory [22].

We are now ready to introduce a new topological
property of VG/HVG.

Definition (sequential VG/HVG n-node motifs). Con-
sider a VG/HVG of N nodes, associated to a time
series of N data, and label the nodes according to the

natural ordering induced by the arrow of time (i.e. the
trivial Hamiltonian path). Set n < N and consider,
sequentially, all the subgraphs formed by the sequence
of nodes {s,s+ 1,...,s+n — 1} (where s is an integer
that takes values in [1, N —n + 1]) and the edges from
the VG/HVG only connecting these nodes: these are
defined as the sequential n-node motifs of the VG/HVG.
This is akin to defining a sliding window of size n
in graph space that initially covers the first n nodes
and sequentially slides, in such a way that for each
window, one can associate a motif by (only) considering
the edges between the n nodes belonging to that window.

Note that, importantly, this definition differs from the
one of a standard network motif (which looks at the fre-
quencies of appearance of all subgraphs of a given size,
without imposing any restriction on the nodes forming
a given subgraph), as here it is required that the labels
of the nodes appearing in a motif are in strict sequential
order -this is consistent with the vertex ordering of the
natural Hamiltonian path induced by construction in the
VGs/HVGs-. That is, in order to preserve in graph space
the dynamical information of the series, the n nodes of an
n-size motif are taken in sequential order, and only those
edges that connect nodes from the motif are considered.
For readability, from now on we will call these simply
VG/HVG motifs but the reader should not get confused
and remind that these are not directly the standard no-
tion of network motifs computed on a VG/HVG. Some
basic properties of these motifs are:

e Trivially, there is a total of N —n motifs (which can
be the same motifs or not) within each VG/HVG.

e Each motif is a subgraph of the original VG/HVG.
Moreover, HVG motifs are outerplanar and have a
trivial Hamiltonion path, thus HVG motifs are also
HVGs [21]. As a result, there are only 6 admissible
motifs of size 4, and 2 admissible motifs of size 3
(see table [[| for an enumeration).

e Computational complexity: Computing motifs in
both VG and HVG is extremely efficient. If instead
of exploring the motif occurrence in the structure
of the adjacency matrix, one directly examines the
set of inequalities reported in table [[, one directly
has an algorithm that runs in linear time O(N) for
HVG motifs. A similar complexity is found for VG
motifs [31].

As is done traditionally with network motifs [7], we can
compare VG/HVGs associated to different time series
and dynamics by comparing the relative occurrence of
each motif inside a VG/HVG. In order to do that, we
introduce the extension to the VG/HVG realm of a
significance profile:

Definition (VG/HVG motif profile Z™). Let p be
the total number of admissible VG/HVG motifs with
n-nodes. Assign to each of these p motifs a label from
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FIG. 1: (Color online) Schematic of two families of visibility algorithms. (a):
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Natural Visibility Algorithm applied to 20

data points of a periodic time series (top) and the corresponding Visibility Graph (VG) (bottom); each datum in the series
corresponds to a node in the graph and two nodes are connected if their corresponding data heights show mutual visibility (see

the text). (b):

Horizontal Visibility Algorithm applied to the same series (top) and the corresponding Horizontal Visibility

Graph (HVG) (bottom); each datum in the series corresponds to a node in the graph and two nodes are connected if their
corresponding data heights show horizontal visibility (see the text).

1 to p (that is, choose an ordering for the motifs). The
motif assigned with the label ¢ will be called a type-i
motif. Then, we define the n-node VG/HVG motif
significance profile Z™ (or simply HVG motif profile) of
a certain time series of size N as the vector function
Z" :n e N = [P},...,P}] € [0,1]” whose output is a
vector of p components, where the i-th component, P,
is the relative frequency of the type-i motif.

Several technical comments are in order:

e First, since Z" are n-dimensional real vectors, any
L, norm induces a natural similarity measure (dis-
tance) between two graphs.

e Second, Z™ has, by construction, unit Li-norm, as
p n| — p mn
i PR =22 PP =1

e Third, note that if one considers dynamical pro-
cesses instead of individual time series, then the
estimated relative frequencies P} for an individual
realization of the dynamical process converge for in-
finitely long series to the probabilities of type-i mo-
tif associated to the process. For the motif profile
to be a well-defined feature of a certain dynamical
process, it needs to be self-averaging. We check this
property by estimating Z™ for an ensemble of real-
izations of the process, computing the mean (P})
and standard deviation /([P?']2) — (P?)? over this
ensemble, and checking that the standard deviation
is small (meaning that a single realization provides
a good description of the average behaviour). As
we will show below, both VG and HVG motif pro-
files have very good self-averaging properties. In
any case, for every dynamical process considered

in this work, instead of P? we compute (P?) and
VA[P?]2) — (P™)2, but for readability, from now on
we will drop the (-) for the elements of the motif
profile, as we found that for the size of the series
used in the numerical analysis, /([P?']?) — (P7")?
was very small and hence P} ~ (P7).

Fourth, note at this point that the definition of the
VG/HVG motif profile is different from standard
profiles (significance profile, subgraph ratio profile)
defined in the literature [7], as in the latter case,
they make use of a null model (ensemble of ran-
domised networks) to appropriately normalise each
frequency. The rationale for this normalization is
that one wants to compare motif statistics across
very different networks (with different sizes and de-
gree sequences), so variations in the motif relative
frequencies only due to size effects need to be re-
moved to be able to correctly compare across dif-
ferent networks. The reader will quickly come to
the conclusion that, in the context of VG/HVG,
the null model is not a randomised ensemble of
the graph under study (which would not yield a
VG/HVG with high probability), but on the con-
trary, it should be the VG/HVG of a randomisation
of the time series under study. In other words, nor-
malisation in the case of VG/HVG profiles should
deal with the motif statistics of uncorrelated ran-
dom series (i.i.d. white noise or surrogate series
that preserve certain structures) with similar prob-
ability densities than the series under study. In the
next section we will prove that, in the case of HVGs
(which will be the family of visibility graphs under
study), such null model has a universal motif pro-
file, independent of the probability density of the
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FIG. 2: (Color online)Sample time series from (a) i.i.d. Gaus-
sian white noise, (b) fully chaotic logistic map, and (c) fully
chaotic logistic map polluted with a certain amount of extrin-
sic white noise are shown for illustrative purpose. Visibility

graph motifs can be extracted from these series to reveal dif-
ferences in their intrinsic structure.

i.i.d. process. Therefore, it is not necessary in this
case to normalise each profile accordingly as this
would only yield a trivial, constant rescaling.

For illustration purposes, let n = 4, and consider two
different dynamical processes: (i) white Gaussian noise
described by the map z; = &, where £ are independent
and identically distributed (i.i.d.) Gaussian random vari-
ables £ ~ N0, 1], and (ii) chaotic dynamics given by the
fully chaotic logistic map z¢1 = 42:(1 — x¢). In order
to estimate the probability of appearance of each of the
motifs, we have generated a time series of size N = 10*
data for both processes (sample time series can be seen
in the top panels of figure , and we have computed the
relative frequencies of each motif. Results, averaged over
an ensemble of 100 realizations, are shown in figure 3| (er-
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FIG. 3: (Color online) 4-node motif profiles Z* associated
to Gaussian white noise (red squares) and to a fully chaotic
logistic map (black stars) extracted respectively from HVG
(panel a) and VG (panel b). Each dot represents the rela-
tive frequency of a given motif, averaged over an ensemble of
100 realizations of each process (time series of N = 10* data
per realization). Standard deviations of each motif relative
frequency over the ensemble are plotted as error bars, which
are not visible as error bars fall inside the symbols. We con-
clude that these motifs can be used to distinguish between
deterministic and stochastic dynamics.

ror bars describing the ensemble standard deviation are
contained inside the symbols); in panel (a) we plot the
HVG motif profile, whereas in panel (b) we plot the VG
profile. As we can see, in every case the type-II motif
is absent. The simple reason is that this profile is ab-
sent for irregular (aperiodic) real-valued time series, by
construction (see table [I).

For the chaotic process, some other motifs are absent:
this is related to forbidden patterns arising in chaotic
dynamics. More importantly, in both panels, the average
relative frequency of some motifs seems to be different
for both dynamical processes, enabling the possibility of
using both HVG and VG motif profiles to distinguish
amongst different dynamical origins. From now on we
will focus our motif analysis on the horizontal visibility
graphs (HVG) alone, and comparison with the VG case is
left for future work [31]. In the next section we advance



a theory to compute the motif profile Z" in an exact
way for different classes of dynamical systems. We will
confirm that HVG motifs can indeed distinguish several
kinds of dynamics, and we will explore how to build on
this peculiar property for feature-based classification.

III. THEORY

In order to numerically explore and compute the fre-
quency of each HVG motif, one can generate the HVG
associated to a given time series and count the presence
of each motif directly from the adjacency matrix. How-
ever, in this section we will show that it is not necessary
to do that as, via the zero-order terms of a diagram-
matic expansion recently advanced [22], we can also work
out the motif occurrence directly from the exploration of
the time series, that enables motif computation in linear
time. This will allow us to build a theory by which the
motif profiles can be computed exactly for a large set of
classes of dynamics that fulfil certain properties. Let us
consider a dynamical process H : R — R with a smooth
invariant measure f(z) that fulfils the Markov property.
That is, from a probabilistic point of view, conditional
probabilities fulfil f(z,|Tn—1,2n—2,...) = f(Tn|Tn-1),
where f(x,|x,—1) is the transition probability distribu-
tion (note that this concept has a clear meaning in ran-
dom dynamical systems, whereas for deterministic sys-
tems, say maps x441 = H(x:), the Markov property is
also trivially fulfilled with f(xzs]z1) = d(xe — H(z1)),
where 0(z) is the Dirac-delta distribution). The key el-
ement is that for these processes, each HVG motif has
a probability of appearance as a subgraph that can di-

J

rectly be computed as the measure of a set of ordering
inequalities that take place in the time series. For in-
stance, for n = 3 and n = 4, probabilities associated to
the appearance of a certain motif are based on integrals
of the form:

[ s [ faleo)don [ faafedee ()

for n = 3, and

[ s [ fsodar [ foalar)dos [ flasloaiz,
2)

for n = 4. The range of integration and the shape of
the conditional probabilities are particular for each mo-
tif and each process, respectively. First, the range of
integration fully determines the motif. In table [ we de-
pict the conditions in the time series that have to be ful-
filled among n consecutive data xg, x1,...,T,_1 to yield
a certain motif of size n in the HVG, for n = 3,4 (ex-
tension to arbitrary n is easy but gets cumbersome as
n increases). It can be proved quite easily that a given
motif appears in an HVG if and only if these ordering
restrictions are fulfilled in the time series. These restric-
tions directly translate in the integration range of the
probabilities, we illustrate this principle in an example.
The first motif, Z$, according to table [I| is guaranteed
when 4 consecutive values xg, €1, 2 and x3 are such that
{V(l'(),l'l),(ﬂg < T1,r3 < ZL'Q} U {V(I’o,(ﬂg),xl > X, X2 >
x1}. Accordingly, if € [a,b] C R, the probability of this
event is

b b Ty T2
Z%EP‘%:/ f(xo)dm()/ f(x1|a:0)da:1/ f(acg\:ﬁl)de/ fxs|xs)dzs+

b b b b
/ f(Io)dI’o/ f(331|1’0)dl‘1/ f(IQ|SC1)d£C2/ f(1'3|132)d1'3. (3)
[

Analogous expressions can be found for the rest of the
probabilities that form the motif profile Z. These terms
are nothing but the contributions to the degree distri-
bution at zero-order from a diagrammatic expansion
in the number of hidden nodes [22]. From a geometric
point of view, the first motif will not appear in fast
fluctuating signals and hence deals with the degree of
smoothness of a time series at short (order n) scales,
whereas the other motifs deal with certain fluctuation
shapes.  Accordingly, in those processes where the
degree of smoothness can vary -such as in fractional
Brownian motion, where the smoothness of the signal
increases with the Hurst exponent- we would expect

that the first motif is particularly informative, whereas
for fast-fluctuating series we expect this motif to be less
informative. Integrals accounting for the probabilities
are easy to deal with; in several cases these are exactly
solvable, and in general one can solve them up to
arbitrary precision with any symbolic programming
software. In what follows we determine the motif profiles
for i.i.d. (white noise), coloured noise with exponentially
decaying correlations, and deterministic chaos (fully
chaotic logistic map). We show that Z* capture enough
information to easily distinguish different processes and
thus represent excellent features for series classification.



Motif label Motif type

Inequality set
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{V(z0,z2),21 > zo} U{Vx0,21 < 0,22 < X1}

{Vao,z1 < 20,22 > 71}
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{V(xo,lﬁ),l@ < z1,r3 < :L‘Q} U {V(Z‘o,mg,),ml > xo, T2 > x1}
{Vl’o,xl < Xo,T2 = T1,T3 > mz}

{Vzo, 21 < 20,21 < 22 < To, 23 < T2} U{V(x0,23),21 < To,ZT2 > To}
{on,xl > 2o, T2 < T1,T3 > 552} U {V$0,$1 <20, T2 < T1,T2 < T3 < $1}
{Vzo,21 < 20,21 < T2 < To, T3 > T2}

{V$07$1 < To,T2 < T1,T3 > 23'1}

TABLE I: Enumeration of all 3 and 4-node motifs. Each motif can be characterized according to a hierarchy of inequalities
in the associated time series. Note that for real-valued aperiodic dynamics the type-II 4-node motif has a null probability of
occurrence as the probability that two data in the time series repeat vanishes almost surely (if, on the other hand, the series
only take values from a finite set then this motif has a finite probability). For the rest, the probability of each motif reduces to

the measure of the set of inequalities (see the text).

Relation with ordinal patterns. At this point it is
important to highlight the relation between the probabil-
ity of occurrence of a given HVG motifs and the proba-
bility of occurrence of so called ordinal patterns [27), [30].
In the theory proposed by Bandt and Pompe in[27] for
the case of the embedding dimension equal to 4 one pro-
ceeds to map each local time series segment of size 4
into an ordering symbol of 4 letters from the alphabet
{0,1,2,3} (where the largest value maps to the letter 0,
the second largest to 1, the third largest to 2, and the
smallest to 3). There are 4! = 24 permutations, defin-
ing 24 symbols (ordinal patterns) whose frequencies are
then counted to measure the so-called permutation en-
tropy that acts as a complexity measure of the series
[27]. Interestingly, the probability of occurrence of each
HVG motif indeed reduces to the probability of occur-
rence of a set of possible ordinal patterns (this is no
longer the case for VG motifs [31]). For instance, Z}
is the probability of finding any of the ordinal patterns
0123, 1023, 1203, 1230, 2103, 2130, 2310, or 3210, and sim-
ilarly the rest of the motif probabilities can be linked to
the probability of appearance of different sets of ordi-
nal patterns. Accordingly, HVG motifs indeed induce a
particular partition of the set of ordinal patterns. The
HVG motif profile is thus intimately linked with the so
called permutation spectrum [29] that accounts for the
histogram of ordinal patterns.

A. iid.

Let us start by considering time series generate by i.i.d.
uniform random variables £ ~ UJ[0,1]. In this case we
have a = 0,0 = 1, f(z) = 1 and f(z|y) = f(x) Yy, and
simply enough, probabilities defined by egs. [I] and 2] eas-
ily factorize. According to table [[ after a little bit of
calculus we find

2 1
ZP=|2,-|; Z

3°3
Note that these results are in perfect quantitative
agreement with numerics performed for finite size series

6622] )

a_ |8 6 6 2 2
T 124777247247 24 24

(left panel of figure ; we will show in the next sub-
section that results for finite series converge quite fast
to the (asymptotic) theory as the series size increases.
Interestingly, results indeed coincide despite the fact
that the theoretical values were computed for uniform
white noise (f(z) = 1), while the numerics in figure
were performed on Gaussian white noise (where f(-) is
the Gaussian function). This suggests that i.i.d. may
have a universal HVG motif profile, indeed independent
of f(-). We now state and prove a theorem that actually
guarantees this result.

Theorem 1. Consider a bi-infinite series of i.i.d.
random variables extracted from a continuous distribu-
tion f(z) with support (a,b), where a,b € R. Then the
probability of finding n-node HVG motifs (with n = 3,4)
follows eq. {4} independently of the shape of f(x).

Proof. The proof is a constructive one. We only
give here the explicit proof for P}, as the proof for
the rest of probabilities follow analogously. We rely on
the cumulative distribution function F(z), defined as
[7 f(@)da' = F(x), with properties F(a) = 0,F(b) = 1
and

We have

Pt —
/abf(xo)dxo /abf(xl)dxl/;l f(2)ds / Fles)dst
/ab f(zo)dzo /: f(z1)dzy /b f(@2)das /bf(.’l,';),)dx?)

xrq a



Using the properties of F'(x), the first term above is then

/fffodﬂﬂo/fl‘ldwl/ fﬂczdwz/ f(xs)des =
/ f(zo)dzo / F(a1)day / F(@2) F(w2)des =
/fxodﬂﬁo/f )dl_

f;fo o 1

67

and analogously for the second term,

/fxodxo fxldml/fxgdxg/fxgdxg—

/ f(zo) dxo/ flz1)(1 = F(x1))dzy =

/fwo {—F( ) )]dazoz

o)  F(x0) FB(x)”_
20 20 60 T 6 (6)

a

hence P} = 2/6 = 8/24, coinciding with the result for
uniform and Gaussian series, and being independent
of f(x). The rest of the elements in Z* are computed
analogously. W

As a matter of fact, the independency from f(z) can
be trivially extended for an arbitrary size of the motif
n. This is intuitive so we only give here the strategy
of a proof. The main ingredient which is required for
this independency to hold Vn is that the limits of the
n-th integral are either the extremes of the distribution
support a,b (where the cumulative distribution F(z)
take the constant values 0 and 1 respectively, and
independently of f(x)), or other variables xq...x,_1.
In this latter case, one can use iteratively the prop-
erty in eq. to solve these integrals up to the last
one (in ), whose range is always (a,b) and where
F(a) = 0, F(b) = 1 can be finally applied, to give a
result which will not depend on the precise shape of f(z).

According to theorem 1, Gaussian, uniform, power
law, etc, uncorrelated random series all have the same
HVG motif profiles. As a byproduct, for any kind of
sufficiently long time series {z;}}; where x; € f(x)
and f(z) is continuous, if we randomize (shuffle) the
time series, the motif profile of the randomized series
is equal to eq. [} This is the reason why, at odds with
the standard definition of a network’s motif profile, for
HVGs we don’t need to rescale Z in any way to be able
to compare across different time series and dynamical
process.

Another notable consequence of theorem 1 is that it guar-
antees that series for which Z* differ (even in the case of

sufficiently long time series) from eq. are not uncor-
related random series. This suggests a simple test for
randomness [I5]. For instance, one can use a Pearson’s
X2 hypothesis test, where the null hypothesis is that the
observed time series of N data is random and uncorre-
lated (white noise). The test statistic is then

B Z [P} (observed) — P#(i.i.d.)]? 7
N n) — P*(observed)

X2 upper-critical values with p — 1 degrees of freedom,
for p = 6 (n = 4) are 11.07 and 15.086 at the 95%
and 99% significance level (meaning that values of the x>
larger than 11.07 suggest that the observed series is not
random at the 95% significance level). More rigorously,
as type-1I motif is forbidden for aperiodic dynamics, we
have only p = 5 different motifs of size n = 4, so the x?
upper-critical values should be considered for 4 degrees
of freedom: 9.49 (95%) and 13.28 (99%).

B. Deterministic chaos: fully chaotic logistic map

As previously stated, deterministic maps z41 = H(z)
are indeed Markovian, and for these situations the con-
ditional probability is simply f(xs|z1) = §(ze — H(z1)),
where 6(x) is the Dirac-delta distribution. Therefore eqs.
and 2] combined with inequality sets given in table [[
can be used to compute the motif profiles for different
deterministic processes. In these cases, one has to deal
with simple integrals of the form

[da—nam={guEbd @

While in principle any deterministic process can be stud-
ied, we are interested in complex signals, so we focus on
irregular, aperiodic dynamics. As a paradigmatic case,
we tackle the fully chaotic logistic map

1

H(z) =4z(1 — ), z €[0,1], f(z) = m

In this case, f(z) is the invariant measure that describes
in a probabilistic way the average time spent by a chaotic
trajectory in each region of the attractor. Let us start by
considering Z* := (P$,P3), for which

/ f(o)dizo / 8(w1 — H(zo))ds /0 (s — M (w0))d,

/fxodxo/ o(xy —

According to property in eq. [8] the Dirac-delta integrals
only have the effect of shrinking the range of integration

H(wo))dzs / 5(xs — H2(wo))das.
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FIG. 4: Cobweb plot of the iterates of the fully chaotic logistic
map H(z) = 4z(1 — z).

of ro. For instance, for P$, the integral in x; requires
H(xo) > xo, whereas the integral in xo simply requires
H%(z0) € [0,1]. While the latter inequality is fulfilled
for all zp € [0,1] (and thus has no effect), the former
one requires xg € [0,3/4]. This can be easily seen from
the cobweb plot of H(z) and its iterates (see figure |4]):
H(z) > x for x € [0,3/4]. Altogether,

3/4
0
On the other hand, motif normalization imposes P3 =
1/3. The same result is obviously found if we compute P3

explicitly: in this case the integral in a1 requires H(zg) <

J

xo, which holds when x¢ € [3/4,1], and the integral in
xo requires H?(zo) > x1 > H?(x9) > H(xp). Looking
at the cobweb plots, this final condition is met in two
subintervals, so the intersection with the first condition
yields a final interval zq € [3/4, 1], for which

1

f(xo)dxg = 1/3,
3/4

Pj =

as expected. These results coincide with those found for
iid. series, meaning that Z3 doesn’t capture enough
structure to distinguish both processes. Let us proceed
in an equivalent way to compute Z* = (Pf,...,P3).
It becomes evident that integrals associated to x, deal
with the cobweb plots of H(z), H?*(x),...,H"(z). Ac-
cordingly, these integrals are ultimately related with the
structure of fixed points of H"(x), and with the solu-
tions of equations of the form H"(z) = H®(x) for some
r and s. We only have algebraic closed expressions
for the fixed points of H(z) — {0,3/4} and H?*(z) —
{0,535, 3/4, 555} (for n > 3, H" () is a polynomial of
order larger or equal to 6 and according to Abel-Ruffini’s
theorem, the set of fixed points does not have in gen-
eral an algebraic expression, however we can compute
them up to arbitrary precision). Other values of interest
include the roots of H3(x) = H?(x), and specially the
largest one x = 1/2 +/3/4.

Let us show how to compute one of these motif probabil-
ities. For instance,

Pi = /01 f(zg)dxo /:U 0(z1 — H(zo))dz /::0 §(zo — H?(20))dx2 /ﬂ; §(z3 — H3(20))dws3 9)

which reduces to
q
]P)g = / f(.’L’())dCC(),
P

where [p, g] can be hierarchically obtained as:

H(Io) < zoN [0, 1] = X9 € [3/47 1];

HQ(LU()) < g N H2($0) > IH(LCQ) N [3/4, 1] = Xg €
(3457, 1);
H3(z0) > H2:(z0) N [%,1] = x0 € [zp, 1], where z,
is the second largest root fulfilling H?(z,) = H?(z,), i.e
r, = 1/2++/3/4. Altogether,

dxo =

1
1

P; :/ —_——

g 1/24v3/4 T/ xo (1l — o)

%B[%T’M] (; ;> - %(: 4/24)

(where B is the incomplete Beta function), which is
indeed quite different from the result found for i.i.d.,

(

Pi(i.id.) = 2/24.

Similar arguments can be used to obtain analytically the
rest of probabilities (explicit computations are put in an
appendix), finding

3 21 4 |8 4 8 4
z _[3’3}’ z _[24’ 910217 21°° (10)

Comparing this set of motif probabilities with the re-
sult for i.i.d. (eq. , we can conclude that Z* distin-
guishes the fully chaotic logistic map from a purely un-
correlated stochastic process. Note, of course, that a sim-
ilar derivation can be performed in other deterministic
maps; in this sense the methodology is general (however
one encounters problems when the attractor has a frac-
tal dimension, and one needs to carefully choose a proper
integration theory). These exact results are also in excel-
lent quantitative agreement with numerics performed in
finite series (left panel of figure , so convergence to the
theory with series size is quite fast, enabling its use in



empirical cases. To be more precise, in the next subsec-
tion we make a study of how fast results for short time
series converge to the asymptotic theory as series size
increases.

C. Convergence of finite series

In order to be more precise about the convergence
speed of finite-size numerics to the theory (which in
rigour only holds for bi-infinite time series), we have com-
puted for series of size N the numeral estimate Z*(N)
for both i.i.d. and the fully chaotic logistic map, and
compare it with the asymptotic values Z*. Results are
plotted in figure [5], where we plot ®(N) = (Z*(N))/Z*
as a function of the series size N (the average is with re-
spect to realizations). Results indicate that convergence
to the asymptotic theory is already reached for N < 10*
(which is the conservative size that is used all over this
work).

D. Stochastic processes with correlations

To round off the theory section, and to explore how
results deviate from i.i.d. for correlated stochastic pro-
cesses, we consider coloured noise with exponentially de-
caying correlations as described by the AR(1) process:

zo =& (11)
e =rxi-1 + /(1 —12)&, t>1

J

—(zy—rag)?
T2(1-r2)

IP’4—/OO eiTmO e e
! —o \/27‘(‘ \/277 1—1r2)

—(zy—rag)?
T2(1-r2)

[oo \/277 «/27r 1—7“

For any particular value of r, these integrals can be eval-
uated up to arbitrary precision using Mathematica [32].
In table Table We report the theoretical values of Z(r)
for r € [0.02—0.99]. These are in perfect agreement with
numerical simulations performed on finite series of size
N = 10* (ensemble averaged over 100 realizations) for
r = {0,0.1,0.3,0.5,0.7,0.9,0.99}, as shown in Figure @
As r > 0 the profiles deviate from i.i.d. and thus, again,
these features can easily distinguish between exponen-
tially coloured and white noise.

where & ~ N(0,1) is Gaussian white, and 7, 0 <7 < 1
is a parameter that tunes the correlation. The auto-
correlation function C(t), which describes the correla-
tion of the position at z;, and x,,+ decays exponentially
C(t) = e~'/7, where the characteristic time 7 = 1/In(r).
In the limit r — 0, the correlations vanish and the pro-
cess reduces to a white noise signal. The limit r — 1 is
more delicate, but intuitively in this limit the process gets
completely correlated and tends to be constant x, 411 = =
Vt.

This is a family of models parametrized by the coeffi-
cient r. For 0 < r < 1, these models are indeed Gaus-
sian, Markovian and stationary, with a probability den-
sity f(z) and transition probability f(zs|z1) are

_ exp(=2?/2)
f(l') - /27
exp[—(zz—rz1)?/(2(1—r?))]

V/2m(1—72)

f(zalz1) =

respectively. Since z are Gaussian variables they can
vary in (—oo,00). We focus on Z* that we know gave
good discriminatory results between i.i.d. and chaos. For
illustration, the first element reads

—(@g—rxy)? —(zg—rag)?
T2(1—r2) T2 o 2(1—72)
—————dr3+
0o /27 ( 1—7"2 0o V/27m(1 —1r?)
—(ag=rzp)? —(e3—rwg)?
T2(1—r2) O e 201-r2)

——d
LV 2m( 1—7"2 oo /27m(1 —1?) !

IV. ROBUSTNESS

In the preceding section we have developed a general
theory to compute explicitly the motif profile of HVGs
associated to a given type of dynamics. We have ap-
plied this theory to find theoretical expressions in the
case of white and coloured noise as well as chaotic dy-
namics, and have shown that these predictions perfectly
match the results found in numerical simulations for rea-
sonably short time series. The theory (which is exact
in the limit of infinite size series) is thus correct also in
the case of short time series. These are nonetheless only
idealized models: empirical time series, however, even if
they comply to a particular dynamical system are usu-
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FIG. 5: (Color online) The measured frequency of appear-
ance rescaled by its theoretical value @ is plotted for each
motif associated to Gaussian white noise (panel a) and to a
fully chaotic logistic map (panel b) in function of the time
series size N; results are averaged over 100 realisations. The
curves oscillate with fast decreasing amplitude around the
value 1 (for 2° the amplitude is less than 10~2) indicating
fast asymptotic convergence of the measured motif profile to
the theoretical profile in both cases.

ally polluted with measurement noise. Therefore, before
being able to apply this new technique to real world phe-
nomena, we need to assess its robustness and reliability
against noise contamination. To do that, we consider a
situation where a chaotic time series is contaminated with
different amounts of white noise, and explore the ability
of Z* to detect the chaotic signal. Formally, we pollute
a chaotic signal z(¢t) with uniform white noise £(a) and
thus construct a noisy chaotic signal Y (¢) such that

Yi=uz+¢
T = 4{L‘t71(1 — .’Etfl) (13)
gNU[Oaa]a 0<a<l,

where a tunes the noise power. The noise-to-signal ratio
of the signal Y; is defined as NSR = J?/J% (where

10

r |Pi |P5|P5, P3|Ps, PG
0.02(0.3370|0 |0.2482|0.0833
0.04{0.3406|0 |0.2464|0.0833
0.06|0.3443|0 |0.2446|0.0832
0.08(0.3478|0 |0.2429|0.0831
0.1 |0.3514|0 |0.2412|0.0830
0.2 10.3690|0 |0.2333|0.0822
0.3 ]0.3862|0 |0.2260|0.0809
0.4 |0.4030|0 |0.2192|0.0793
0.5 |0.4196|0 |0.2130{0.0772
0.6 |0.4359|0 |0.2072|0.0748
0.7 10.4521|0 |0.2018|0.0722
0.8 |0.4681|0 |0.1967|0.0692
0.9 |0.4841|0 |0.1920|0.0660
0.95(0.4919|0 |0.1897|0.0643
0.97(0.4945|0 |0.1888|0.0636
0.99(0.4973|0 |0.1879|0.1879

TABLE II: Theoretical values of Z*(r) for the AR(1) process
evaluated at different values of the coefficient r.
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FIG. 6: (Color online) HVG significance profile Z* for AR(1)
processes described by eq[TT] for different values of the corre-
lation coefficient . When 7 increases the appearance proba-
bility of motif of type-I increases while the rest of probabilities
decrease. This is simply due to the fact that finding constant
sequences Tiy3 = Ti+2 = Ti41 = &+ becomes more probable
as 7 increases.

o2 denotes the variance of signal -), thus NSR will
increase monotonically with a. For NSR <« 1, the noise
contamination is small. Any technique that is able to
distinguish Y'(¢) and &(t) for increasing values of NSR
is said to be robust to noise. For NSR = 1 the levels of
the signal and the noise contamination are comparable
and for NSR > 1 the underlying chaotic signal is
effectively hidden. Of course, when a reaches a certain
value it won’t be possible any more to distinguish the
underlying chaotic nature of the time series by looking
at the motif profile. To estimate this threshold we can
use two different tests:

e The first test makes use of the (L) distance in mo-
tif space between the signal and the noise d(a) =



|Z*(Y) — Z*(iid)|. This is just a simple, motif-
based similarity metric between two graphs, that
we use here to measure the similarity between two
series. Ideally, the threshold of distinguishability is
the smallest value of a for which d(a) = 0. How-
ever, in practice, as we are dealing with finite size
series, there will always be a small uncertainty as-
sociated to small finite-size deviations from the the-
ory. That is, if one estimates the Z*(iid) with an
ensemble average of m realizations of a finite ran-
dom time series of N data, then for each element in
the profile, the standard deviation of the estimate
P} will be a finite value (that converges to zero as
N and m increases). We define o(Z*(iid)) as the
vector where the i-th term is such standard devia-
tion, for the same values of N and m used in the
analysis of Y(¢). Then, we define the uncertainty
threshold a* as the smallest value of a such that
d(a) < |o(Z*(iid))| (intuitively, a* is the smallest
value for which we don’t know if the difference in
the motif profile between the empirical results and
the theory are due to the fact that there is a chaotic
signal underlying the process, or just due to finite
size effects).

e The second possibility is to use a Pearson’s x? hy-
pothesis test such as equation [7] with 4 degrees of
freedom, where the null hypothesis is that Y (¢) (the
observed series) is just white noise (no hidden sig-
nal). In this latter case, we are not taking into
account the deviations associated to finite size ef-
fects in the profile of i.i.d., though. If y? < 9.49,
then we can’t reject the null hypothesis at the 95%
significance level: this is the limit of what we could
call certain distinguishability.

For each value of the parameter a, we have simulated
a time series of N = 10* steps from the process Y (¢),
and results were ensemble averaged over m = 100 reali-
sations. In panel (b) of figure[7] we plot the motif profile
as a function of a. It is interesting to observe that the
probabilities which vary most with a are related to types
III, IV, V and VI, while type-I seems to maintain ap-
proximately the same rate of appearance (we will show
later that this is not always the case). In the panel (a)
of the same figure we plot d(a). As expected, d(a) is
a monotonically decreasing function of a, and we find
a* =~ 1. Remarkably, this corresponds to a value of the
noise to signal ratio NSR ~ 2.67. This is indeed con-
firmed by the Pearson x? test, where we found that the
limit for confidently rejecting the null hypothesis -certain
distinguishability- is a & 1 (i.e. NSR ~ 2.67). These re-
sults prove that Z* is indeed an extremely robust feature
with respect to measurement noise contamination, hence
useful for applications.

11
V. PRINCIPAL COMPONENT ANALYSIS

According to the last sections, we can conclude that

the HVG Z* is an informative feature of complex dy-
namics. Here we summarise and gather the findings on
ii.d., fully chaotic logistic maps (with and without noise
contamination) and coloured noise, and we complement
those with additional chaotic maps (Ricker’s map, Cubic
map, Sine map). Each process is described by the six
dimensional vector Z* (although in practice this space
is 5-dimensional as P§ = 0). As this representation is
obviously not very convenient for readability, we have
projected each point into a 2-dimensional space spanned
by the principal components of the data. We recall
that Principal Component Analysis (PCA) [33] is a
common statistical procedure to perform dimensionality
reduction on data. It uses an orthogonal transformation
to project our set of observations, originally described
in R% -where each direction describes the probability
of occurrence of a given motif, this being possibly
correlated among observations- into a lower dimensional
subspace spanned by the so called principal components,
obtained from the eigenvectors of the dataset covariance
matrix. These particular directions are such that (i)
they are orthogonal, (ii) the first principal component
has the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and each
succeeding component in turn has the highest variance
possible under the constraint that it is orthogonal to
(i.e., uncorrelated with) the preceding components. If
the data can be efficiently projected in a lower dimen-
sional space, then the eigenvalues associated to each of
the principal components sum up a large percentage of
the data variability. In that case, the projection is said
to be faithful, and constitutes an accurate description of
the data.
To summarise, the following processes have been consid-
ered (for all of them, we have estimated Z* from a time
series of N = 10* points, and have averaged this over
100 realisations):

e White noise (i.i.d.) with Gaussian, exponential,
uniform and power-low probability densities.

e Chaotic maps, in particular: Fully chaotic logis-
tic map xp11 = 4ay(1 — x¢), Ricker’s map zpy1 =
20xie~%t, Cubic map 441 = 3x4(1 —x?), Sine map
Tyrq = sin(mxy)

e Noisy logistic map with a = {0.2,0.4,0.6,0.8,1.0}
e Coloured noise for » = {0.1,0.3,0.5,0.7,0.9,0.99}

The projection into the space spanned by the first two
principal components is shown in figure |8} Interestingly,
these first two components capture about 98.3% of the
variability of the set of variables {Z*}. This means that
motif probabilities are indeed highly correlated, and as
few as two real numbers per time series seem already
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FIG. 7: (Color online) Robustness of motif profiles for chaotic series (fully chaotic logistic map) polluted with white noise.
Panel a): by increasing the amount of extrinsic noise (parameterised by a) the distance in motif space between the noisy chaotic
signal and white noise decreases (see the text). The method is extremely robust as one can distinguish the noisy chaotic signal
from pure white noise up to a noise-to-signal ratio NSR = 2.67. Panel b): the 4-node motif profile of the noisy chaotic signal
Y, for different degrees of noise contamination (a). Motifs III, IV, V and VI are the most informative as they concentrate most
of the profile variability.
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FIG. 8: (Color online) 2-dimensional projection obtained via Principal Component Analysis on Z* for time series generated from
different deterministic and stochastic processes: different white noise series respectively with Gaussian, exponential, uniform
and power low (blue squares), chaotic maps (brown diamonds), noisy logistic map for different levels of contamination (purple
dots) and different stochastic correlated AR(1) processes (green triangles). The relative weight of each motif in this projection
principal components is also plotted using red solid axes.

enough to describe them. The patterns related to the in the 2-dimensional space which do not correspond
different processes in this 2-dimensional component space to the coordinates of any other class of processes
help visualize some of the results previously found and considered. Indeed according to the theory, i.i.d.
make interesting considerations: processes share the same Z*.

e All the i.i.d. processes have the same coordinates e Red solid axes (color online) describe the projec-
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TABLE III: Weights of each motif in the 2-dimensional pro-
jection of the set of all dynamical processes analysed (i.i.d.
white noise, coloured noise with exponentially decaying cor-
relations, chaotic maps, noisy chaotic logistic map).

tion of each motif in this new basis (see also table
and give an idea of which motif types are more
related to different processes, thus helping to in-
terpret a particular trajectory in this space, as a
given process changes. For instance coloured noise
which interpolates between white noise (r — 0) and
a constant series (r — 1) projects into a straight
line-like trajectory, departing from the i.i.d. co-
ordinates and following the direction where type-I
motif increases as r increases. Analogously, as the
noise level a increases the noisy logistic map inter-
polates between the fully chaotic logistic coordinate
and i.i.d. following a specific path.

e The distance in this space between i.i.d. and the
(a = 1)-noisy logistic map gives us a rough idea of
the distinguishability or coarse-graining distance, a
lower bound below which any two processes cannot
be distinguished.

We conclude that Z* is a highly informative and robust
feature, which in principle could be used to assess simi-
larities and differences across empirical complex signals.
To test this hypothesis, in the final section we will ex-
plore this idea and will show that clustering of complex
physiological processes is possible with this simple fea-
ture.

VI. UNSUPERVISED LEARNING:
DISENTANGLING MEDITATIVE FROM OTHER
RELAXATION STATES USING HVG MOTIF
PROFILES FROM HEART RATE TIME SERIES

It is well-known that meditation has a measurable ef-
fect on well-being. In particular, neuroscience has shown
that meditation promotes EEG high-amplitude gamma
synchronisation [34], or increases sustained attention [35]
among others effects on the brain [36]. In this final sec-
tion we explore, via a HVG motif profile analysis, if
one can distinguish purely meditative states from gen-
eral states of relaxation by only looking at a single phys-
iological indicator: the heart rate series [37, 38]. This
analysis is based on experiments performed in a former
publication [39]. Data are freely available online [40].

13
A. Data

Data are collected for five different groups of healthy
subjects [39)]:

e The first group of 4 subjects (two women and two
men in the age range 20-52) were expert Kundalini
Yoga meditators. Their heart rate was recorded
for approximately fifteen minutes before the Yoga
practice (pre-meditative state) and for approxi-
mately one hour during the breathing and chant-
ing exercises (meditative state) (a total of 8 time
series);

e The second group comprised 8 Chinese Chi Medi-
tation practitioners, (five women and three man in
the age range 26-35) relatively novice in the prac-
tice. The heart rate of the subjects was recorded for
approximately five hours during the pre-meditation
(pre-meditative state) and for approximately one
hour during the meditation session (meditative
state)(a total of 16 time series).

To better compare the pre-meditation and meditation
states, three healthy, non-meditating control groups were
considered from a database of retrospective electrocardio-
gram (ECG) signals:

e a spontaneous breathing group of 13 subjects (eight
women and five men in the age range 25-35) during
sleeping hours (general relaxation state) (a total of
13 time series);

e a group of 9 elite triathlon athletes (six women
three men, age range 21-55) in the pre-race period
during sleeping hours (general relaxation state) (a
total of 9 time series);

e a group of 14 subjects (nine women and five men,
age range 20-35) during supine metronomic breath-
ing at 0.25 Hz (a total of 14 time series);

Sample time series from each group are plotted in fig-
ure [0 In the original study the authors addressed the
frequency spectra and observed prominent heart rate os-
cillations in the time series recorded during the two med-
itation practices with a peak in the range 0.025-0.35 Hz,
and an overall variability of these series with respect to
those from non-meditative states.

B. Unsupervised clustering based on HVG motif
profiles

The total dataset is made of a total of 60 time series
(60 observations). A priori, we assume that each series
is a different process. For each subject and state, we
extract from the heart beat series the corresponding Z*
(detailed results are put in an appendix).
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FIG. 9: Sample heart rate time series from patients in medi-
tative and non-meditative states.
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As a first analysis, we only consider the expert medita-
tors (first group) performing two different tasks and we
explore if Z* can disentangle the two tasks. Results are
shown in panel (a) of figure In PCA space, we have
8 points scattered over the subspace spanned by the
first two principal components. These aggregate more
than 99% of the data variance and is thus a faithful
projection. Interestingly, already a visual inspection
clusters the 4 subjects in the meditative state (red
circles, right hand side of the plane) from those in the
pre-meditative state (green squares). A simple k-means
algorithm [33] with & = 2 correctly distinguishes the
two states by assigning different clusters to both states
(a black dotted oval is depicted with the purpose of
visualizing the result of the k-means clustering).

In a second step, we consider the second group, formed
now by novice Chi meditators before and during the prac-
tice. We repeat the analysis in the panel (b) of ﬁgure
Again the first two principal components capture more
than 99% of the variability of the motifs considered. The
scores related to the first principal component are very
close to the ones found for the Yoga data subset (see
appendix). For this meditation technique however it is
not that easy to perfectly distinguish pre-meditative from
meditative state clusters: the partition obtained with the
k-means algorithm with input & = 2 (visualized by the
black dotted line) contain ‘false meditators’ and ‘false
non-meditators’. In order to quantify the performance of
the clustering we use the so called purity coefficient [41]
defined by:

1 0
Ny, + Ny

1 0 0 1

Ny, + 1y, + Ny + 1y

purity = (14)

where nl is the number of meditators in the cluster

1, which is defined as the cluster where most of the
meditators are found; nf, is the number of meditators in
the cluster 0, which is defined as the cluster where most
of the non-meditators are found (‘false non-meditators’);
nl is the number of non-meditators in the cluster 1

n
(‘false meditators’); n is the number of non-meditators
in the cluster 0. Purity takes value in [0,1] and was
measured for the different partitions reported in figure
(see table ; in this case we found purity ~ 0.83. Now,
as in this experiment the subjects were inexperienced
Chi meditators, it is plausible that some of them were
not able to concentrate of perform the task adequately,
what would put their motif profile mixed amongst
the pre-meditative state subjects. As we can see in
the figure, there is some evidence of finding the ‘false
non-meditators’ intertwined among non-meditators, but
not the ‘false meditators’ intertwined among meditators.

We then perform the same analysis by considering data
from the first two groups (Yoga group and the Chi group)
altogether. Here we also aim at distinguishing meditative
from pre-meditative states, however this is in principle
much more delicate and problematic as we have different
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FIG. 10: (Color online) 2-dimensional Principal Component space of Z* extracted from heart rate time series of subjects
performing different tasks. (a) 4 Yoga meditators recorded during meditation (red dots) and during pre-meditation (green
squares). The k-means algorithm (black dotted line) correctly assigns each of the 8 observations into the correct cluster. (b)
8 Chi meditators recorded during meditation (magenta triangles) and during pre-meditation (blue reverse triangles). The
k-means algorithm correctly 12 out of 16 observations, however in this case subjects were novice meditators, hence clusters are
not that well defined (see the text). (c) The two clusters found by the k-means algorithm correctly clusters the points related
to Yoga meditation and Yoga pre-meditation, and 12 out of 16 points related to different Chi meditators (black dotted line).
(d): although the k-means clustering (small panel on the top right) fails to precisely distinguish a cluster related to meditation
from a cluster related to non-meditation, all the meditation points are surprisingly well separated from the all remaining points,

on the right side of the plane.

subjects performing different tasks. The results are re-
ported in panel (c) of Figure and are consistent with
the first two analysis conducted before. In PCA space,
the first two principal components still capture more
than 99% of the data variability (scores are reported
in the appendix). k-means correctly clusters together
most of the pre-meditative states and distinguishes them
from the meditative states (Yoga and Chi-style), with
purity= 0.75. There are two clear ’false non-meditators’
which seem to correspond to two novice Chi meditators
that falsely fall in the non-meditation state despite they
were supposedly performing meditation. The two ‘false
meditators’ are not mixed among the meditators but
placed in the boundary of the cluster, meaning that a

refined clustering algorithm would very likely do a better
job. On the other hand, it is worth highlighting that
meditators show lower scattering than non-meditators,
and are placed at the right hand side of the plane.
Among these, Chi meditators (the experienced subjects)
appear even more towards the right hand side in the
PCA plane. According to the motif scores (appendix),
one can conclude that meditation promotes the onset of
type-I motifs, that is to say, generates a relative decrease
of high-frequency heart rate fluctuations.

Finally, in panel (d) of Figure [10] we show the results for
the analysis of the whole data set (the projection in PCA
space still gathers more than 94% of the data variabil-



Panel a|Panel b|Panel c¢|Panel d
1 0.83 0.75 0.81

TABLE 1V: Purity measures [41] of the k-means clustering
analysis depicted in the four panels of figure yoga medi-
tators (panel a), chi meditators (panel b), yoga and chi med-
itators (panel c) and all states (panel d).

ity). Here we have highly heterogeneous subjects per-
forming totally different tasks, which somehow can be
classified into ‘meditative’ and ‘non-meditative’ states.
In the inset panel of the same figure, each observation is
labelled according to the result of k-means (crosses for
non-meditative and dots for meditative states). Despite
the heterogeneity of subjects, the purity of the partition
obtained is high (~ 0.81), and most of the observations
associated to the meditative state concentrate towards
the right hand side of the PCA plane (which, again ac-
cording to the scores, corresponds to an overcontribu-
tion of type-I motif). We conclude that meditative prac-
tices leave a unique physiological fingerprint in the heart
rate time series of its practitioners, which can be distin-
guished from other relaxation techniques and states such
as metronomic breathing or sleeping by using the HVG
motif profile of each time series. This is a remarkable
result, taking into account that this profile only consists
of a vector of 6 numbers (actually 5 as P§ = 0) per ob-
servation.

VII. CONCLUSIONS

The theory of visibility graphs (VG and HVG)
allows us to describe and characterise time series and
dynamics using the powerful machinery of graph theory
and network science. Here we have introduced the
concept of Horizontal Visibility Graph (HVG) motifs,
substructures present in the HVG of a time series, whose
statistics have been shown to be informative about
the time series structure and its underlying dynamics
(comparison with VG motifs will be published elsewhere
[31]). We have advanced a mathematically sound theory
by which the motif profile of large classes of stochastic
and deterministic dynamics can be computed exactly.
Interestingly, under the HVG framework, graph motifs
are in direct correspondence with ordinal patterns [27-
30]. This means, for instance, that the theory developed
here can be exported to find rigorous results on the
permutation entropy [28] and permutation spectra [29]
of different dynamical systems. In the same vein, one
could import concepts and ideas from ordinal patters to
the context of visibility graphs. For instance, one can
define an HVG motif entropy S, = —1 3 Z!'log(Z7)
and explore its similarities with permutation entropy.
More generally, the relation (and possible equivalences)
between ordinal pattern analysis (so called permutation
complexity [28, [30]) and horizontal visibility graph
analysis should be studied in more depth. We have
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found that this graph feature is surprisingly robust, in
the sense that it is still able to distinguish amongst
different dynamics even when the signals are polluted
with large amounts of measurement noise, what enables
its use in practical problems. Despite the apparently
difficult combinatorial interpretation of the visibility
criteria, these latter results further suggest that HVG
motifs are more than just an arbitrary partition on
the set of ordinal patterns. As an application, we have
tackled the problem of disentangling meditative from
general relaxation states from the HVG motif profiles
of heartbeat time series of different subjects perform-
ing different tasks. We have been able to provide a
positive, unsupervised solution to this question by apply-
ing standard clustering algorithms on this simple feature.

To conclude, HVG motifs provide a mathematically
sound, computationally efficient and highly informative
simple feature (a few numbers per time series) which can
be extracted from any kind of time series and used to
describe complex signals and dynamics from a new view-
point. In direct analogy with the role played by stan-
dard motifs in biological networks, further work should
evaluate whether HVG graph motifs can be seen as the
building blocks of time series. In this sense a study of
standard network motifs on visibility graphs can be of
interest, especially in the case of directed and weighted
HVG where the edge weights describe temporal relations
between nodes. Potential applications of visibility graph
analysis pervades the biological, financial and physical
sciences. Finally, other questions for future work in-
clude to assess which motifs are more informative for a
given class of dynamics, and to extend this analysis to
the realm of multivariate time series [I7].
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A. Scores

The scores of the two components in terms of motifs
are reported in Table [VITA] and as expected the highest
contribution to the first component (0.874) is given by
motif of type 1.
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APPENDIX II: Motif profiles for all subjects in the
empirical study

In Figure [11] we give an overview of the 4-node motif
profiles, measured for the different subjects in the
different states. Interestingly, the motif that shows more
variability in each of the given states is the one related
to the type-1 motif, which we have seen to play a minor
role in the case of the chaotic dynamics polluted with
noise.
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FIG. 11: HVG motif significance profile Z* obtained by analysing heart rate time series form different groups of subjects in
different states: a) 8 Chi meditators before the meditation practice; b) 4 Yoga meditators before the meditation practice; c)
11 subjects during sleeping; d) same 8 Chi meditators of a) during the meditation practice; e) same 4 Yoga meditators of b)
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Yoga Chi
First Component Second Component First Component Second Component
oo (03874 0.0346 0.871 0.171
e—eoo» |-0.029 -0.203 -0.023 -0.239
oo |-0.379 0.074 -0.376 0.207
oo e |0.204 0.731 0.272 0.666
e—eowe |-0.043 0.01 -0.048 -0.173
—e—o» |-0.219 -0.647 -0.152 -0.631

TABLE V: Principal component scores obtained from PCA considering the Yoga meditators data subset (left) and the Chi
meditators data subset (right).
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TABLE VI: Principal component scores obtained from PCA considering the subset data of Yoga and Chi meditators together

(left) and and considering all data set (right).
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