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Abstract—Perfect secrecy describes cases where an adversary
cannot learn anything about the secret beyond its prior distri-
bution. A classical result by Shannon shows that a necessary
condition for perfect secrecy is that the adversary should not
be able to eliminate any of the possible secrets. In this paper
we answer the following fundamental question: What is the
lowest leakage of information that can be achieved when some
of the secrets have to be eliminated? We address this question
by deriving the minimum leakage in closed-form, and explicitly
providing “universally optimal” randomized strategies, in the
sense that they guarantee the minimum leakage irrespective
of the measure of entropy used to quantify the leakage. We
then introduce a generalization of Rényi family of asymmetric
measures of leakage which generalizes the g- leakage and show
that a slight modification of our strategies are optimal with
respect to an important class of such measures. Subsequently,
we show that our schemes constitute the Nash Equilibria
of closely related two-person zero sum games. This game
perspective provides implicit solutions for a wider set of
structural constraints and asymmetric entropies. Finally we
demonstrate how this work can also be seen as designing a
universally optimal channel given a specified prior.

I. INTRODUCTION

It is increasingly accepted that in many setups, like
side channels and database queries, the quantification of
leakage of confidential information is essential. In recent
years considerable progress has been made in the field
of quantitative information flow both on the theory and
applications, e.g. [1]–[4]. Particularly important for the field
are advances on fundamental security guarantees of leakage
measures (what security can be achieved with that measure)
and robust techniques and results (how much a technique or
result is valid across different notions of leakage).

This work contributes to both leakage guarantees and
robustness in that it investigates channels which are optimal,
in the sense of guaranteeing minimum leakage, for all
possible notions of leakage. By channel here we mean
a probabilistic system where for each secret, there is a
probability distribution over the behaviors or states that can
be observed by an attacker.

In its essence the aim of this paper is to investigate the
concept of relative perfect secrecy, a concept inspired by
Shannon perfect secrecy theorem [5]. Following Shannon’s
theorem a “perfect” encryption scheme must in part be such

that an adversary cannot eliminate any secret key by observ-
ing the system. We study here the case where perfect secrecy
is not possible, in particular, when the operational constraints
on the system are such that each observation allows the
attacker to eliminate a certain number of possible secrets.
As real world examples of such constraints we can think
of timing observations which allow the attacker to eliminate
certain keys, or Geo-location privacy where some geographic
locations are impossible given the observations, or in private
querying when not the entire database but a portion of
it is downloaded, or when some but not all features of
a device/browser can be suppressed against fingerprinting.
To formalize the problem we think of N possible secrets
with a given distribution, and that an observation on the
system allows elimination of N − k possible secrets. We
then ask the question: Is there an “optimal” channel given
these constraints, i.e., a channel with minimum leakage?

A challenging problem in investigating optimal channels
is that there are several notions of information leakage,
e.g., Shannon based [6], Min Entropy based [7], Bayesian
[8] and g-leakage [9] and they have largely incomparable
behavior. So there is no a priori reason why the notion of
optimality should be robust. Moreover the few robustness
results in the field have been hard to prove (e.g. the proof
of the Coriaceous Conjecture [10]). The universal optimality
results in this paper are hence non-trivial both in their
meaning and in their proof, and they extend the toolkit of
robust methods and results in the field.

Our presentation uses the notion of cloaks. A cloaking
scheme is a non-cryptographic method of hiding secrets by
conflating them with larger sets of possibilities, potentially
employing randomization. In this context perfect secrecy can
only be achieved when the cloaks are the entire secret space.

A simple example of cloaking comes from the famous
Monty Hall problem, where there are multiple closed doors
behind one of which is the prize, i.e., the secret. The
player makes an initial guess, after which the game host
has to open one door, but it should not be the one that
the player has chosen and also not the prize-holding door,
thus eliminating one possible secret. The cloak is then the
set of the remaining closed doors, since each can harbor the
secret. The game host acts as a channel. The famously tricky



question1 of “should the player revise her initial guess?” can
be equivalently asked as: “does this channel leak?”. The fact
that the player should change their initial guess is indeed
because the channel leaks information.

The focus of this work is foundational. In particular, the
list of our contributions is as follows:

Road-map and Contributions: We formalize the prob-
lem of minimizing the information leakage given a prior
distribution of the secret and a cap on the size of the cloaks,
where the information leakage is quantified as a difference
between the prior and posterior uncertainties of an adversary
for a generic entropy measure (Section II). In Section III,
we express and prove our main result (Theorem 1), that
is, we provide the lowest achievable leakage across all
(potentially probabilistic) cloaking strategies in closed form.
We explicitly construct randomized strategies that achieve
this information theoretical bound, and establish that they are
universally optimal, in that they achieve minimum leakage
with respect to any choice of entropy measure that satisfies
three mild conditions: core-concavity (which we define in
the text), symmetry and expansiblity. Next, in Section IV, we
consider non-symmetric (gain-based) entropies, introduce a
generalization of g-entropy and g-leakage, and establish a
natural extension of our main result to this class of entropies
(Theorem 2). In Section V, we make a connection between
designing minimum leakage channels and 2-player-zero-sum
games with respect to g-leakage, which enables us to give a
Linear Program that produces the optimal strategies for any
secret-dependent cloaking constraints and any gain function
g. Finally, in Section VI, we numerically investigate the
effect of the maximum allowable size of the cloaks, the
choice of the entropy, comparing with baseline of uniform
randomization, and checking the effect of the knowledge of
the prior distribution.

Our proofs follow non-trivial techniques that we believe
will add to the theoretical toolbox of the research com-
munity. Despite the theoretical nature of this work, we
envisage possible applications of our results in fields such
as side channels countermeasures in the style of bucketing
[11], [12], in privacy preserving mechanisms like crowd-
based anonymity protocols [13], (Geo)-location privacy [14],
[15], or obfuscation-based web searching [16], etc. Detailed
investigation of these connections and potential practical
implementations will be part of our future work.

Related Literature: The measures of leakage this work
refers to have been the object of many works in the past
decade. These works mostly use Shannon (e.g. [6]), Min
Entropy (e.g. [7]) and Bayes risk [8]. More recent works
[4], [9] introduce the notion of g-leakage in order to model
leakage scenarios that are not satisfactorily modeled using
standard entropic measures of leakage. Our results apply to
all these approaches.

1It is said that Paul Erdős at first thought the player should not switch.

The leakage ordering has been the object of robustness
analysis in several works e.g. [10], [17]. These works are
quite different in nature from our work: here we design a
channel given a prior on the secret, there the channel is given
and the ordering is over all possible priors.

Information-theoretic relaxation of the absolute-privacy
through cloaking is also investigated in [18] in the context
of Internet search engines. The paper however does not
quantify the leakage and provides only a lower-bound on the
posterior entropy. Also, the proposed policies are heuristic
and no claim or quantification of optimality is made.

There has been little work relating quantitative informa-
tion flow and game theory. Few exceptions are [19], [20].
In [19] optimal protection against timing attacks is proven
as an equilibrium in a game between the defender and
the adversary. There optimal refers to crypto optimal not
information theoretical optimal. [20] formalizes the privacy-
vs-utility trade-offs in the context of Geo-location privacy
as a game of inference against an attacker, and presents
an implicit framework based on LP for derivation of the
Stackelberg strategies. It does not however provide the
strategies in closed-form nor does it consider robustness. In
general there has been little work on quantifying information
flow in interactive systems and strategic behavior. Some
notable exceptions are the works of [21]–[23]. None of these
works however is game theoretical in nature nor seems to
fit the context of channel design as the channel is typically
a given.

Non-cryptographic schemes are also investigated in the
context of secret sharing and key-distribution [24], but in
such scenarios, the goal is to hide a secret from a third
party (e.g. eavesdropper), while in our setting, there is only
one system vs. an adversary, and no “communication” of
information is intended.

II. MODEL

Let the random variable θ represent the secret. It can
take one of the n possibilities from the (discrete finite) set
Θ := {θ1, . . . , θn} that are generated independently and
identically distributed (i.i.d.) over time, according to the
(categorical) distribution P , that is, at each instance and
irrespective of the past history, Pr(θ = θi) = P (θi) := pi.
Whenever not ambiguous, we only refer to a secret by its
index, e.g., we may use i to designate θi. Without loss of
generality, assume supp(P ) = Θ, i.e., pi > 0, ∀i. Also,
without loss of generality, assume pis are in descending
order, i.e., p1 ≥ . . . ≥ pn.2

We make a worst-case (for the defender) assumption
about the adversaries: that they know the true distribution

2Note that throughout the paper by terms such as descending/decreasing,
we mean non-ascending/non-increasing, unless accompanied by the quali-
fier: strictly. The same applies to terms like positive, concave, distinguished
from strictly positive, strictly concave, and so on.



according to which the secrets are generated.3 That is, we
take P to be the prior belief of the adversary about the
secret, hence we will simply refer to P as the prior.4

The defender, observing the (realization of the) secret,
chooses a cloak M to submit. A cloak is a subset of the
secrets including the actual one. As we noted before, in the
absence of any restriction on the choice of the cloak, the best
trivial cloak is the entire secret space, but in practice, the
choice of the cloak is restricted. Let the set of permissible
cloaks given secret realization θ be denoted by M(θ). The
minimal requirement on any M ∈ M(θ) is that θ ∈ M :
the cloak must include the secret itself. The action space of
the defender is hence M := ∪θ∈ΘM(θ). Up to Section V,
we consider a size-capped cloaking constraint, that is, each
cloak is restricted to have at most k elements, where k,
1 ≤ k ≤ n, is a given parameter of the problem. Specifically,
M(θ) = {M ⊂ Θ : θ ∈ M, |M | ≤ k}, and M = {M ⊂
Θ : |M | ≤ k}.

We will use the following toy example to clarify the
concepts: Suppose the secret space is Θ = {1, 2, 3}
with the prior distribution of P = (5/9, 3/9, 1/9), and
the cloaks are limited to at most k = 2 elements.
Then the set of feasible cloaks for secret 1 is M(1) =
{{1}, {1, 2}, {1, 3}}, and the set of all feasible cloaks is
M = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

A deterministic cloaking plan of the defender, or a de-
terministic cloaking strategy, denoted by d, is a function
from the set of secrets to set of permissible cloaks for that
secret.5 Specifically, the space of the deterministic cloaking
strategies of the defender is D := {d : Θ→M s.t. d(θ) ∈
M(θ),∀θ ∈ Θ}. An adversary (which could be the service
provider itself) observes the cloak M and updates his belief
about the distribution of the secret.

The defender may incorporate randomness in her cloaking
strategy, as intuitively, this would increase the uncertainty of
the adversary. A randomized (cloaking) strategy, which we
designate by δ, assigns each secret a probability distribution
over the set of permissible cloaks for that secret. Specifically,
the space of randomized cloaking strategies is D := {δ :
Θ→ ∆M s.t. ∀θ ∈ Θ, supp(δ(θ)) ⊆M(θ)}, where ∆M
represents the set of all probability distributions over M.
We use the notation δ(M ; θ) to designate the probability
at which, under the randomized strategy of δ, the defender
chooses cloak M when her secret is θ. Using this notation,
the space of randomized cloaking strategies can be specified

3The fact that this is a worst-case assumption for the defender (and
hence, provides stronger guarantees in terms of leakage) is closely related
to results such as the Gibbs’ inequality, or equivalently, the positivity of
the Kullback–Leibler divergence.

4Adversaries can indeed learn the distribution of the secrets by observing
a long enough history of the defender even for an i.i.d. source.

5Note that we take the cloaks to be “sets”, hence, the implicit assumption
is that always a uniformly randomized “permutation” of the elements of a
cloak is also performed, so that any information associated with the order
of elements is eliminated.

by the following two conditions:

δ(M ; θ) ≥ 0 for all θ ∈ Θ, M ∈M; (1a)∑
M∈M(θ)

δ(M ; θ) = 1 for all θ ∈ Θ. (1b)

Referring to our toy example, an instance of a determin-
istic cloaking strategy is: {1 → {1, 2}, 2 → {1, 2}, 3 →
{1, 3}}, and an example of a randomized strategy can be:
{1 → ({1, 2} +1/2 {1, 3}), 2 → {1, 2}, 3 → {1, 3}}.6
Clearly, any deterministic strategy can also be represented
as a randomized strategy with degenerate distributions.

The objective of the defender is to receive the sensitively
secret-dependent service while leaking the least information
about the secret to the adversary. To quantify the expected
leakage of information, we need to consider a measure of
information content or entropy of the secret in the eye of the
adversary, to be compared before and after the interaction.
n in the entropy quantifies the leakage of information to the
adversary.

Interpretation of Cloaking Strategies as Channels: A
channel is defined as a triple (X,Y,C) where X and Y
are finite sets. X is the set of secret input values and Y the
set of observables. C is an |X| × |Y | matrix (the channel
matrix) whose entries are between 0 and 1 and whose rows
each sum to 1. The channel matrix represents the conditional
probability of an observable given a secret: C[x, y] is the
probability of observing y given x.

In the context of this work we can associate to a cloaking
strategy the channel defined as follows: X is the set of
secrets Θ, Y is the set of cloaks M(θ). The coefficients
for the channel matrix C are

C[θ,M ] = δ(M ; θ)

For the inverse direction a channel can be interpreted as a
cloaking strategy of size k by considering the observables’
pre-images. In terms of the channel matrix the pre-image
of an observable is the set of secrets θ s.t. C[θ,M ] > 0,
i.e. the non-zero elements in the column corresponding to
the observable. Given a channel we can associate a cloaking
strategy of size k if:

1) the pre-image of any observable has no more than k
elements;

2) no two observables have the same pre-image.
For a channel satisfying the above properties we can

identify each observable with the cloak that is its pre-image.
Notice that in most works in Quantitative Information

Flow the channel is given. The problem tackled in this paper
is different: we are given a prior on the secret and an integer
k and we are tasked with designing a channel which is
optimal in the sense of leaking as little as possible.

6We use the notation a +p b to represent an outcome which is a with
probability p, and b with probability 1− p.



Entropies: Let H[θ] := H(P ) denote the entropy of the
random variable θ with probability distribution P , where the
entropy function H is from the set of (discrete) probability
distributions to the real numbers. In our setting, H[θ] is a
measure of the prior uncertainty of the adversary about the
secret. We consider a general entropy function H that only
needs to satisfy a set of mild conditions as follows:
• Symmetry. H(P ) is invariant under permutations of
p1, . . . , pn. In other words, the entropy should depend
only on the probability distribution of a random vari-
able, and not on the specific labeling of them.

• Expansibility. Enlarging the secret space by adding
zero probability secrets (“expansion” by zero compo-
nents) should not change the entropy.

• Core-Concavity.7 H(P ) is core-concave if it can be
written as H(P ) = η(F (P )), where η : R → R is a
non-constant function on real numbers, F is a scalar
function on probability distributions, and we have:8

η: increasing, F : concave; or (2a)
η: decreasing, F : convex. (2b)

Note that since η is just a non-constant univariate function,
the symmetry and expansibility of H simply translate to
F and vice versa. These conditions are not restrictive; in
fact, the first two are among the axiomatic conditions of
any entropy function [25]. The core-concavity property, as
we defined above, is also a weak restriction and virtually all
well-known entropy measures, some of which we discuss
later, are indeed core-concave.

Next, we overview the concepts of majorization and
Schur-concavity, which we use later in our analysis. First,
some preliminaries: for a vector a = (a1, . . . , an) ∈ Rn,
let a↓ = (a[1], . . . , a[n]) denote a vector with the same
elements but sorted in descending order, that is, a↓(i) = a[i]

represents the i’th-largest element of a. Now, for a, b ∈ Rn,
we denote a � b and say a majorizes b (or equivalently, b is
majorized or dominated by a) iff:

∑j
i=1 a[i] ≥

∑j
i=1 b[i] for

all j = 1, . . . , (n− 1), and
∑n
i=1 ai =

∑n
i=1 bi. A function

f : Rn → R is called Schur-concave iff: for a, b ∈ Rn,
a � b implies f(a) ≤ f(b). From basic convex analysis,
e.g. [26, Proposition 3.C.2], we have that every function that
is symmetric and concave, is also Schur-concave. Therefore,
the entropy functions H that we consider (and their corre-
sponding F functions) are Schur-concave as well.

Some notable examples of frequently used entropies with
practical interpretations are listed below. Note that all of
these example entropy functions satisfy the symmetry, ex-
pansibility, and core-concavity properties:
• 1-Guess-Error-Probability. H(P ) = 1 − p[1], which

is the probability of failure of an adversary that gets

7No other potential meaning of the term “core-concavity” is intended.
8By definition, F (P ) is concave (resp. convex) in P iff for any λ ∈

(0, 1) and P 1,P 2 ∈ ∆Θ, we have: λF (P 1) + (1− λ)F (P 2) ≤ (resp.
≥) F (λP 1 + (1− λ)P 2).

to make one (optimal) guess about the secret. This
measure is closely related to the more well-known Min-
Entropy, where H(P ) = − log p[1].

• l-Guess-Error-Probability. A generalization of the 1-
guess-error-probability, H(P ) = 1 −

∑l
i=1 p[i], which

is the probability of failure of an adversary that gets to
make l (optimal) guesses.

• Guesswork. H(P ) =
∑n
i=1 ip[i], which is the ex-

pected number of tries of an (optimally guessing)
adversary with unlimited number of allowed guesses
before (and including) the correct one.

• (Gibbs)-Shannon. H(P ) = −
∑n
i=1 pi log(pi).

• Rényi Entropy A parametric family of entropies (for
parameter α where α ≥ 0, α 6= 1), defined as fol-
lows: Hα(P ) = 1

1−α log(
∑n
i=1 p

α
i ), or equivalently,

Hα(P ) = α
1−α log ‖P ‖α, where ‖P ‖α denotes the α-

norm of P . Shannon and Min-Entropy can be derived
as special cases by letting α → 1 and α → ∞,
respectively. Two other well-known members of this
family are Collision entropy for α = 2: H2(P ) =
− log

∑n
i=1 p

2
i , and Hartley entropy, for α = 0:

H0(P ) = log | supp(P )| = log(n).

It is straightforward to see the symmetry and expansibility
of each of the above entropy measures. Regarding core-
concavity, note that for 1/l-Guess-Error-Probability, Guess-
work and Shannon entropies, η can be simply taken as the
identity function, η(x) = x, which is increasing. This is
because for all of these entropies, H is itself concave. For
Rényi family, we can either take η(x) = −1

α−1 log(x) for x >
0 and F (P ) = ‖P ‖αα =

∑n
i=1 p

α
i , or η(x) = −α

α−1 log(x)
and F (P ) = ‖P ‖α. Now, for both representations, if
α ∈ [0, 1), η is increasing and F is concave, and if α > 1,
η is decreasing and F is convex. Hence, in both cases, the
H function is core-concave.

The posterior (conditional) entropy of the secret, some-
times also referred to as the equivocation, is denoted by
H[θ|M ], where M is the random variable associated with
the observed outputs, here, cloaks. H[θ|M ] should be a
measure of the uncertainty of the adversary about the secret
on average after observing the cloaks. The reduction in the
uncertainty of the adversary about the secret after observing
the cloak, i.e., H[θ]−H[θ|M ], is the leakage of information
(see, e.g. [6]). Note that in our setting, the defender cannot
choose or change the distribution of her secret, and therefore,
irrespective of the choice of the entropy function, the prior
entropy of the secret is unaffected by her cloaking strategy.
Hence, the problem of minimizing information leakage
becomes equivalent to maximizing the posterior entropy of
the secret, i.e., solving: maxδ∈D H[θ|M ].

Consider an arbitrary strategy of the defender δ, and
let M+(δ) be the set of all cloaks that each has a
nonzero probability of being observed by the adversary, i.e.,
M+(δ) = ∪θ∈Θ supp(δ(θ)). These are labeled as the “on-
path” cloaks. We will omit the argument δ whenever not



ambiguous.
We assume that the conditional entropy for an entropy

measure H(P ) = η(F (P )) has the following structure:9

H[θ|M ] = η
( ∑
M∈M+

Pr(M)F (P (θ|M))
)

(3)

where Pr(M), short for Pr(M = M), is the prob-
ability that cloak M is observed by the adversary,
and P (θ|M) is the “posterior” distribution of the se-
crets given cloak M is observed, which is given
by applying the Bayes’ rule. Specifically, P (θ =
θ|M) := Pr(θ,M)/Pr(M) = P (θ)δ(M ; θ)/Pr(M) where
Pr(M) =

∑
θ′∈ΘP (θ′)δ(M ; θ′). Notice that we did not

impose positivity of the entropy function H , as our results
indeed do not rely on that. Moreover, our assumed prop-
erties are sufficient to establish that the leakage, defined as
H[θ]−H[θ|M ] is always positive. Specifically, suppose that
case (2a) holds. Then, taking Pr(M) to be the coefficients
of a convex combination (as they are positive and add up to
one), the concavity of F directly gives:10

∑
M∈M+

Pr(M)F (P (θ|M)) ≤ F

( ∑
M∈M+

Pr(M)P (θ|M)

)
The right hand side can be simplified to
F (
∑
M∈M+ P (θ,M)) = F (P ). Moreover, since

η is just an increasing univariate function, we have
η
(∑

M∈M+ Pr(M)F (P (θ|M))
)
≤ η (F (P )), which

is exactly the positivity of leakage. An almost identical
argument applies for the (2b) cases.

Recall that for 1/l-Guess-Error Probability, Guesswork
and Shannon entropy, η was just the identity function.
Hence, for these entropies, (3) simply reduces to:

H[θ|M ] =
∑

M∈M+

Pr(M)H(P (θ|M)) (4)

For Shannon entropy, the expression in (4) is exactly the
classic conditional entropy. However, there is no commonly
accepted definition of conditional entropy for other en-
tropies. Nevertheless, the problem of maximizing the poste-
rior entropy as defined in (4) have intuitive interpretations
for a number of entropy measures that we introduced.
Specifically, for the “1-Guess-Error-Probability”, we show in
Section V, this equivalently models a two-player zero-sum
game of incomplete information in which the defender faces
a strategic adversary with knowledge of the prior who can
make at most one guess after observing the cloak, gain one
unit if his guess is correct and zero otherwise. Similarly, the
problem of maximizing the posterior entropy with respect

9Note that this structure for the conditional entropy is consistent with
the unconditional entropy, since conditioning on an independent random
variable gives H[θ] = H(P ) = η (F (P )). If η is strictly monotonic, (3)
can also be written in terms of the unconditional entropy function, H , as:
H[θ|M ] = η

(∑
M∈M+ Pr(M)η−1 (H (P (θ|M)))

)
.

10Or equivalently, using the Jensen’s inequality.

to “l-Guess-Error-Probability” matches the problem of a
defender in another two-player zero-sum game in which the
adversary gets to make up to l guesses after observing the
cloak and wins one unit if any of the guesses are correct
and zero otherwise. In the same spirit, the corresponding
two-player zero-sum game for the “Guesswork” entropy is
one in which the adversary incurs a cost proportional to
the number of guesses he takes before a correct guess. In
Section V, besides establishing these connections to zero-
sum games, we also show an interesting result: we provide
a sufficient condition under which there is no pure strategy
Nash Equilibrium of the corresponding games.

For Rényi entropies, the definition of conditional entropy
as in (4), except for the limit case of α → 1, violates two
desirable properties of “monotonicity” and “chain rule”. Two
commonly used alternative definitions that accommodate a
set of desirable properties (ref. [27], [28]) are the following:

H[θ|M ] =
−1

α− 1
log
( ∑
M∈M+

Pr(M)‖P (θ|M)‖αα
)
; (5a)

H[θ|M ] = − α

α− 1
log
( ∑
M∈M+

Pr(M)‖P (θ|M)‖α
)
. (5b)

where, as before, ‖ · ‖α denotes the α-norm. In particular,
both of these definitions for α → ∞ yield the same
definition for the conditional Min-Entropy: H[θ|M ] =
− log

(∑
M∈M+ Pr(M) max(P (θ|M)

)
. Both variants of

conditional entropy for Rényi family comply with the gen-
eral structure of (3). In particular, for the first expression
for conditional Rényi entropy (5a), η(x) = −1

α−1 log(x)
for x > 0 and F (P ) = ‖P ‖αα =

∑n
i=1 p

α
i . For the

alternative definition in (5b), we have η(x) = −α
α−1 log(x)

and F (P ) = ‖P ‖α. Once again, recall that for α ∈ [0, 1),
for both cases η is increasing and F is concave, and for
α > 1, η is decreasing and F is convex.

As each entropy measure has its own distinct form and
interpretation, it could have been the case that optimality
of a cloaking scheme sensitively depend on the measure of
entropy considered. However, in the next section, given P
and k, we construct a cloaking strategy that is optimal with
respect to any entropy measure that satisfies our four mild
assumptions, and hence, in that sense, is universally optimal.

Table I
LIST OF THE MAIN NOTATIONS.

Parameter Definition

Θ, n Set of possible secrets, number of possible se-
crets: n = |Θ| ≥ 3.

d, δ A deterministic plan of action (pure strategy), and
a randomized strategy of defender.

M(θ) Set of permissible cloaks M for secret θ.
M Set of all permissible cloaks: ∪θ∈ΘM(θ).
k The maximum allowed size of the cloaks, where

1 ≤ k < n.



III. ANALYSIS

In this section, we derive (in closed form) the maximum
possible posterior entropy that can be achieved among all
feasible randomized cloaking strategies for a given prior
on the secrets P , a cloak size cap k, and a measure of
entropy H (Theorem 1-A). Our result is “constructive”,
in that, in Algorithm 1, we explicitly provide a cloaking
strategy that achieves this maximum posterior entropy (and
hence, minimum leakage) for any symmetric, expansible,
core-concave measure of entropy (Theorem 1-B).

Before we present our formal result, let us get a feeling
about the behavior of an optimal cloaking. Intuitively, the
randomized strategy should try to induce posterior distribu-
tions over the secrets that are as close to uniform distribution
as possible, since any well-defined measure of uncertainty
increases as the distributions gets closer to uniform. The
ideal case is that given any shown cloak, after the Bayesian
update, the secret be equally likely any of the k members
of the cloak, i.e., inducing uniform posteriors over the k
elements of the cloak. However, if the prior distribution is
too “skewed” and the cap size of the cloaks is small, then this
might not be feasible, as the secrets with too big prior proba-
bilities will still have higher posteriors. If a prior probability
of a secret is too big to be made uniform in the posterior,
i.e., a “giant”, then it should be instead maximally leveraged
against to hide other secrets in its “shadow”. So, intuitively,
an optimal strategy should try to induce posteriors that are
uniform over as many of the “small” probability secrets
as possible and the “giants” should always be included in
the cloaks to provide “coverage” for the small probability
secrets.

In order to formally present our results, we need to
introduce some auxiliary parameters. Given k and P =
(p1, . . . , pn), sorted in descending order, let index J be
defined as follows:

J := min

{
j : 1 ≤ j ≤ k, pj ≤

∑n
i=j pi

k − j + 1

}
. (6)

Note that for j = k, the condition pj ≤
∑n
j=1 pi/(k − j +

1) reduces to pk ≤
∑n
i=k pi, which is trivially satisfied.

Therefore, J is well-defined (i.e., can always be found), and
we have 1 ≤ J ≤ k. Along the lines of the above intuitive
discussion, the first J − 1 probabilities are the “elephant”
secrets. Next, for a j ∈ {1, . . . , k} and prior distribution
P = (p1, . . . , pn), let πj denote the probability distribution
over k elements as the following:

πj :=
(
p1, . . . , pj−1,

∑n
i=j pi

k − j + 1
, . . . ,

∑n
i=j pi

k − j + 1

)
, i.e.:

πj(l)=pl : l≤j−1, πj(l)=

∑n
i=j pi

k − j + 1
: j≤ l≤k (7)

In words, πj is a k-sized probability distribution that is
constructed by keeping the top j − 1 probabilities of the

prior as is, and then “wrapping” or “mashing” the remain-
ing probabilities of the prior together and spreading them
uniformly over the remaining k − (j − 1) elements. Note
that π1 is simply the uniform distribution over the entire k
elements. Finally, recall that we usedM(θ) to denote the set
of feasible cloaks for secret θ, which is composed of all the
subsets of size at most k that include θ. Now, we introduce
the notation M∗(S), where S ⊆ Θ and |S| ≤ k, to denote
the set of feasible cloaks that include all the elements of S
and have size exactly equal to k, i.e., are maximally sized.
Formally, M∗(S) := {M ⊂ Θ : S ⊆ M, |M | = k}.11 This
notation is used in Step-2 of the Algorithm as well as in our
proofs. For a simple example, suppose Θ = {1, 2, 3, 4} and
k = 3, then M∗({1}) = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, and
M∗({1, 2}) = {{1, 2, 3}, {1, 2, 4}}, and so on.

We are now ready to express our main result:
Theorem 1: Let P = (p1, . . . , pn) be the prior (sorted in

descending order), and let k be the maximum permissible
size of the cloaks. Let index J and probability distributions
πj be defined as in (6) and (7), respectively. Let the entropy
be measured by the symmetric, expansible and core-concave
function H . Then:

A. The maximum achievable posterior entropy among all
(potentially randomized) cloaking strategies is H(πJ ).

B. Algorithm 1 explicitly provides a feasible (randomized)
cloaking strategy that achieves the above maximum
posterior entropy for any choice of the entropy, and
hence, in this sense, is universally optimal.12

Algorithm 1: Optimal Cloaking Strategy for a given P , k (Theorem 1)

Input: P = (p1, . . . , pn) in descending order, k
Output: δ(M ; θ) for ∀θ ∈ Θ,∀M ∈M

1: Find J ← min
{

1 ≤ j ≤ k : pj ≤
∑n
i=j pi

k − j + 1

}
2: Solve

∑
M∈M∗({1,...,J−1,i})

xM = pi, ∀i = J, . . . , n

s. t.: xM ≥ 0, ∀M ∈M∗({1, . . . , J−1})

3: δ(M ; i)← xM/pi ∀i = J, . . . , n
∀M ∈M∗({1, . . . , J−1, i})

4: δ(M ; i)← xM (k − J + 1)/
∑n
j=J pj
∀i = 1, . . . , J−1

∀M ∈M∗({1, . . . , J−1})
5: δ(M ; θ)← 0 everywhere else

Although the Algorithm may look cryptic, it is essentially

11Note that of course bothM(θ) andM∗(S) depend on the parameter
k, however, since k does not vary in our usage of these two notations and
this dependence is clear from the context, we have not made it explicit.

12Note that the optimal strategy may not be unique, since the set of
positive solutions to the linear system of equations in Step 2 of Algorithm 1
are in general convex polyhedra. The theorem guarantees that all of such
solutions are universally optimal.



doing something simple: it generates randomized strategies
δ(M ; θ) such that given any cloak M that is shown to
the adversary, the posterior distribution over the secrets in
the cloak is exactly πJ (following a straightforward use of
Bayes’ rule). It does so by always including the θ1, . . . , θJ−1

in the cloak, and carefully choosing the randomization of
the cloaks such that the posterior probability over the rest
of the remaining k − J + 1 items is uniform (guaranteed
by the solution of the linear system of equations in Step 2),
and the posterior distribution over the first J − 1 secrets is
exactly their priors (guaranteed by steps 3 and 4). The proof
of the theorem is provided in Appendix A in its entirety. It
follows simple logical steps but is nevertheless non-trivial. In
particular, first, we establish that H(πJ ) is an upper-bound
for the posterior Entropy, that is, no feasible cloaking scheme
can increase the posterior uncertainty of the adversary above
H(πJ ). Subsequently, we show that Algorithm 1 provides
a feasible cloaking strategy that achieves this upper-bounds,
and hence is optimal. A tricky step of the proof is to show
that the linear system of equations in Step 2 indeed has a
positive solution.

Here, we compute the optimal strategies through a few
toy examples to gain some intuition about the algorithm.
Consider the case of four possible secrets 1, 2, 3, 4 and k =
3. We have then the following possible size 3 cloaks:

M1 ={1, 2, 3},M2 ={1, 2, 4},M3 ={1, 3, 4},M4 ={2, 3, 4}

Consider the following three possible priors over the secrets:
P 1 = (0.3, 0.28, 0.22, 0.2), P 2 = (0.36, 0.3, 0.2, 0.14),
P 3 = (0.4, 0.35, 0.15, 0.1). For P 1, we have: P 1(1) =
0.3 ≤ 1/k = 1/3 = 0.33, hence J = 1, and the optimal
strategy will induce (1/3, 1/3, 1/3) posterior distributions.
For P 2, we have: P 2(1) = 0.36 > 1/k but P 2(2) =
0.3 ≤ (0.3 + 0.2 + 0.14)/(k − 1) = 0.64/2 = 0.32,
therefore J = 2, and the optimal strategy will always
include 1 in the cloak and induce (0.36, 0.32, 0.32) posterior
distributions. For P 3: P 3(1) = 0.4 > 1/k, P 3(2) = 0.35 >
(0.35 + 0.15 + 0.1)/(k − 1) = 0.6/2 = 0.3, and only
P 3(3) = 0.15 ≤ (0.15+0.1)/(k−2) = 0.25/1 = 0.25, thus
J = 3, and the optimal strategy will always include 1 and
2 in the cloak and induce (0.4, 0.35, 0.25) posterior distri-
butions. Then the corresponding optimal cloaking strategies
for P 1,P 2,P 3 respectively, as given by Algorithm 1 are
the following:

1 2 3 4
0.3 0.28 0.22 0.2

M1: 0.4444 0.4762 0.6061 0
M2: 0.3778 0.4048 0 0.5667
M3: 0.1778 0 0.2424 0.2667
M4: 0 0.1190 0.1515 0.1667

1 2 3 4
0.36 0.3 0.2 0.14

M1 0.5625 0.6000 0.9000 0
M2 0.3750 0.4000 0 0.8571
M3 0.0625 0 0.1000 0.1429
M4 0 0 0 0

1 2 3 4
0.4 0.35 0.15 0.1

M1 0.6000 0.6000 1.0000 0
M2 0.4000 0.4000 0 1.0000
M3 0 0 0 0
M4 0 0 0 0

Recall from Bayes’ rule that P (θ = θ|M) :=
Pr(θ,M)/Pr(M) = P (θ)δ(M ; θ)/Pr(M). For instance,
we can check that the optimal cloaking strategy for P 1,
irrespective of the shown cloak, induces uniform distribution
over its 3 elements. Since the denominator is the same, we
just need to verify P (θ)δ(M ; θ) is the same for all θ ∈M .
For instance, for M1 = {1, 2, 3} we have: 0.3 × 0.4444 =
0.28 × 0.4762 = 0.22 × 0.6061 = 0.1333. Similarly, for
M2 = {1, 2, 4} we have: 0.3 × 0.3778 = 0.28 × 0.4048 =
0.2× 0.5667 = 0.1133. And finally, for M3 = {1, 3, 4}, we
have: 0.3×0.1778 = 0.22×0.2424 = 0.2×0.2667 = 0.0533.

Discussion: complexity of computing a solution: Re-
ferring to Algorithm 1, if the prior probabilities are already
sorted, then the complexity of finding an optimal cloaking
strategy is determined by the complexity of finding J ,
which is upper-bounded by n, just by an exhaustive search.
However, the following simple lemma shows that in fact,
given a list of partial sums of P , a binary search can be
used, yielding an O(log(n)) worst-case complexity.

Lemma 1: Suppose (as before) the prior
P = (p1, . . . , pn) is sorted in descending order. If
pj ≤ (>)

∑n
i=j pi

k−j+1 , then pm ≤ (>)
∑n

i=m pi
k−m+1 for all

m ≤ (>)j, (respectively).

IV. DEPARTURE FROM SYMMETRIC ENTROPIES:
EXTENSION TO GENERAL GAIN-BASED MEASURES

In the previous section, we provided a probabilistic cloak-
ing strategy that yields minimum leakage with respect to
a large class of classical entropy measures. Our analysis
only relied on structural properties of the entropy function,
namely: symmetry, expansibility, and what we called “core-
concavity”. A major point of departure from this family of
entropies, where potentially all three of these properties can
be violated, is the g-entropy introduced in [9]. g-entropy is
a generalization of the notion of Min-Entropy by allowing
secret/guess dependent gains to a guessing adversary. This
notion of leakage has received attraction in the security
research community (e.g. [4], [10], [29]–[31]). In what
follows, we first overview the notion of g-entropy and g-
leakage, then introduce our generalization of g-entropy by
fusing it with Rényi entropies, and present an extension of
our main theorem.

Recall that in the case of Min-Entropy, the entropy is
related to the expected gain of an adversary that makes one
guess and wins one unit for every correct guess and zero
otherwise, irrespective of the actual secret. Now consider
instead that the adversary gains (and the defender loses) a
reward of g(w, θ) ∈ [0, 1] units if the guess of the adversary



and the actual secret are w ∈ W and θ ∈ Θ, respectively. We
can make the “natural assumption” that, among all guesses,
the highest gain is still achieved for a “correct” guess, but
now the value of the gain for correct guess may depend on
the secret. Moreover, the adversary may gain some value
for “close” guesses, albeit less than the gain for the correct
guess. The space of guesses W can be simply the same as
the space of secrets Θ, or more complicated sets such as
all permutations of the secrets for allowing a generalization
of guesswork entropy through the gain function. The g-
entropy is then defined as the negative of the logarithm of
the maximum expected reward of the adversary. Specifically,
if the random variable θ has distribution P , then the (prior)
g-entropy of θ is given as:

Hg[θ] = Hg(P ) = − log

(
max
w∈W

(∑
θ∈Θ

g(w, θ)P (θ)

))

Representing the gain function g in a matrix G ∈ R|W|×|Θ|,
where Gw,θ := g(w, θ), we can rewrite Hg using the
infinity-norm as follows:

Hg(P ) = − log ‖GP ‖∞

The posterior g-entropy after observing output random vari-
able M is defined as (see [9]):

Hg(θ|M)=− log

( ∑
M∈M+

Pr(M)max
w∈W

(∑
θ∈Θ

g(w, θ)P (θ|M)
))

which, using the matrix representation G can be written as:

Hg(θ|M) = − log

( ∑
M∈M+

Pr(M)‖GP (θ|M)‖∞
)

The difference between prior and posterior g-entropies is
then defined as the g-leakage.

The matrix representation of the gain function makes it
specially evident that the g-entropy is primarily an extension
of the Min-Entropy, which corresponds to the case in which
G is chosen to be the |Θ| × |Θ| identity matrix. However,
as pointed out in [4], l-guess and guesswork entropies
can also be recovered as special cases of g-entropy if the
space of guesses W is respectively expanded to the set
of all subsets of Θ with cardinality l, and the set of all
(n!) permutations of Θ, and the gain entries are selected
appropriately. Specifically, for l-guess, g(w, θ) = 1 if θ ∈ w
and is zero otherwise. For guesswork entropy, the space of
gain values should be extended to include negative numbers,
specifically, g(w, θ) = −i, where i is the index (i.e., the
position) of θ in the permutation w. However, it is not
possible to capture Shannon entropy as a g-entropy with
a g function with countable range anymore.13 Next, we

13In [4], the authors cast Shannon entropy as g-leakage but only by
extending the space of guesses to be the uncountably infinite set of all
probability distributions over the secret space.

introduce an extension of g-entropy that recaptures not only
Shannon, but also all of the Rényi family as special cases.

Comparing the ∞-norm representation of the Min-
Entropy: − log ‖P ‖∞ with that of the g-entropy:
− log ‖GP ‖∞, and noting that Min-Entropy is a limit
member of the Rényi entropies for α → ∞, we introduce
an (α, g) family of entropies for α ≥ 0, α 6= 1, as follows:

Hα,g(θ)=Hα,g(P ) :=Hα(GP )=
α

1− α
log ‖GP ‖α (8)

where Hα is just the usual Rényi entropy for parameter α.
Moreover the conditional (α, g) entropy Hα,g[θ|M ], is also
set toHα[θ|M ] according to one of the forms in (5a) or (5b)
with P (θ|M) replaced by GP (θ|M). All Rényi entropies
are trivially instances of (α, g) family by taking G to be the
identity matrix. In particular, Shannon entropy is retrieved
by also letting α → 1. The (α, g)-leakage can be defined
as the difference between prior and posterior entropies. In
particular, g-leakage defined in [9] is obtained from (α, g)-
leakage by letting α→∞.

More generally, for a symmetric, expansible and core-
concave entropy function H(P ), it may be possible to define
a corresponding gain-based entropy function as Hg(P ) for
a given gain function g with a matrix representation G, by
replacing P with GP in its formulation, i.e., by taking
Hg(P ) := H(GP ), as long as GP is in the domain of
the H function. We will then refer to H as the underlying
symmetric entropy.14 In particular, we consider a general
family of entropies H[θ] that can be expressed as Hg(P ) =
H(GP ) = η(F (GP )), and its conditional entropy can be
written as:

Hg[θ|M ] = η

( ∑
M∈M+

Pr(M)F (GP (θ|M))

)
(9)

where functions η and F satisfy (2a) or (2b). For instance,
by taking η(x) = − log(x) and F (P ) = ‖P ‖∞, we get the
g-entropy [9].

Recall that in our setting, since the defender is unable
to affect the prior distribution of the secret, the problem of
achieving minimum leakage becomes equivalent to maxi-
mizing the posterior entropy. Note that for almost any G
other than the identity matrix, the new entropy function
Hg(P ) = H(GP ) = η(F (GP )) is no longer symmetric
in P , and hence our main result does not directly apply
here. However, for an important class of matrix gains,
namely diagonal matrices, we present a generalization of
Theorem 1. Specifically, for a given prior distribution P ,
diagonal gain matrix G, and the cloak size cap k, we provide
a probabilistic cloaking strategy that is leakage-optimal with

14Note that GP may no longer be a probability distribution, but as long
as the transformation of the probability simplexes under G is in the domain
of the H function, Hg(P ) will simply be the evaluation of the H function
at GP . Moreover, we remind the reader that our results do not rely on the
sign of the H function. However, following similar steps as after (3), the
“leakage” is nevertheless positive (cf. [9, Theorem 4.1]).



respect to any entropy whose conditional entropy follows the
structure of (9). In particular, it is optimal for any choice of
α in the (α, g)-family, and hence with respect to g-leakage
as a special case.

We use the notation G = diag(γ) where γ =
(γ1, . . . , γn) ∈ R+n, to indicate that G is a square diagonal
matrix (zero for every entry except for possibly the diagonal
elements). This models cases where the adversary gains γi ≥
0 if the secret is θi and he identifies it correctly, and zero if
he mis-identifies. Although investigating only diagonal gain
matrices may appear restrictive, they do capture the secret-
dependent non-symmetric essence of the g-leakage notion.
In Section V, using a game theoretic approach, we describe
an LP that yields optimal cloaking strategies for a general
G (although only for α =∞, i.e., g-leakage).

Theorem 2: Let P = (p1, . . . , pn) be the prior, G =
diag(γ), be the diagonal gain matrix, and let k be the
size cap of the cloaks. Without loss of generality, assume
that GP = (γ1p1, . . . , γnpn) is in descending order, i.e.,
(GP )[i] = γipi. Let index Jg and vector πg,j ∈ R+k be
defined as follows:

Jg := min

{
j : 1 ≤ j ≤ k, γjpj ≤

∑n
i=j γipi

k − j + 1

}

πg,j(l) :=γlpl : l≤j−1, πg,j(l)=

∑n
i=j γipi

k − j + 1
: j≤ l≤k

Consider an entropy function Hg(P ) = H(GP ) =
η(F (GP )) with conditional entropy as in (9) where func-
tions η and F satisfy (2a) or (2b), which includes our (α, g)-
entropies as defined in (8). Then:

A. The maximum achievable posterior entropy Hg[θ|M ]
among all cloaking strategies is H(πg,Jg ).

B. If sorted GP (in descending order) instead of sorted
P is passed to Algorithm 1 as its input argument,
it explicitly provides a feasible (randomized) cloaking
strategy that achieves the above maximum posterior
entropy for any leakage measure of this family, in
particular, g-leakage.

The proof of the theorem is provided in Appendix B.
The extension makes intuitive sense: The gain coefficients,

γis, are a measure of the “relative importance” of having a
secret revealed. The algorithm multiplies each probability
by its corresponding gain and tries to make this effective
importance of the secrets as equal as possible. Also note
that, of course, this theorem reduces to Theorem 1 when G
is the identity matrix.

V. GAME THEORETIC ANALYSIS: EXTENSION TO
GENERAL CLOAKING CONSTRAINTS AND GAIN

MATRICES

In this section, we show how the designing of leakage-
optimal channels with respect to g-entropies can be cast as
2-player zero-sum games (2PZSG in short) of incomplete
information. This observation enables us to develop a Linear

Program that gives the minimum leakage and corresponding
optimal strategies for a general gain matrix G and any
cloaking constraints, beyond just the size-cap case that we
investigated so far. As we mentioned earlier, Min-Entropy,
Guesswork and l-guess entropies can all be expressed as
special cases of g-entropy, so this section’s formulation
generalizes our result for these entropies as well.

The setup should be now familiar: Consider an adversary
that makes a guess w ∈ W after observing a cloak M . A
deterministic plan of action for such an adversary, denoted
by a, is hence a function from M to W , specifying his
guess given each (permissible) cloak. Hence, the space of
the adversary’s pure strategies is A :=WM, i.e., the set of
all functions from M to W .

Similar to a randomized cloaking strategy of the defender,
a randomized strategy of the adversary, designated by α,
assigns a potentially probabilistic guess to each cloak, i.e.,
α : M → ∆W . Hence the space of randomized strategies
of the adversary is simply A := (∆W)M, i.e., the set
of all functions from permissible cloaks to the probability
distributions over guess choices. A pure and randomized
strategy profile of the game are the pairs (d,a) ∈ (D ×A)
and (δ,α) ∈ (D × A ), respectively. Recall that we used
the notation δ(M ; θ) to designate the probability at which,
under the randomized strategy of δ, the defender chooses
cloak M when her secret is θ. Likewise, α(w;M) denotes
the probability at which the adversary makes his guess to
be w after observing M .

The outcome of each instance of the game is the follow-
ing: the adversary wins (and the defender loses) g(w, θ) if
adversary’s guess and the (realization) of the secret had been
w and θ respectively. The payoff of the game can in general
be represented by the function v : Θ ×M ×W → R. In
our game, in particular, we have v(θ,M,w) = g(w, θ). The
payoff of the defender is the negative of the adversary’s.

Recall that we used M(θ) to denote the set of feasible
cloaks that the defender can select for secret θ. In the
previous section, we considered an important case of such
constraints: that the cloak can be any subset of the secrets
that include θ, as long as the size of the cloak does not
exceed a given cap k. In our game formulation, we allow
these cloaking constraints to be arbitrary, and in the most
general form, given explicitly as M =M(θ1)×. . .×M(θn).

Let V (P ,M, δ,α), which we show by V for brevity, rep-
resent the expected payoff of the adversary (to be maximized
by him, and minimized by the defender). The expectation is
taken with respect to the random realization of the secret
according to P as well as any randomization present in the
strategies of the two players.15 Hence, in our problem:

V =
∑
θ∈Θ

∑
M∈M

∑
w∈W

P (θ)δ(M ; θ)α(w;M)g(w, θ) (10)

15Note that pure strategies can be emulated as special cases of random-
ized strategies (where the distribution is degenerate).



As before, let M+ be the set of cloaks that (under the
defender’s strategy δ) each has a strictly positive prob-
ability of being observed by the adversary, i.e., M+ =
∪θ∈Θ supp(δ(θ)). Since only these “on-path” cloaks con-
tribute to the expected utilities, we have:

V =
∑
θ∈Θ

∑
M∈M+

∑
w∈W

P (θ)δ(M ; θ)α(w;M)g(w, θ)

=
∑

M∈M+

P δ(M)
∑
w∈W

α(w;M)
∑
θ∈M

g(w, θ)
P (θ)δ(M ; θ)

P δ(M)

where: P δ(M) :=
∑
θ∈ΘP (θ)δ(M ; θ), that is the probabil-

ity that M is observed by the adversary (which is nonzero for
M ∈M+). Note that P (θ)δ(M ; θ)/P δ(M) is the posterior
probability that the secret is θ given that the observed cloak
is M where the update in belief is done using the Bayes’
rule. Let us denote the Bayesian update of the distribution
of the secret given the observation of M by PB(·|M),
that is, PB(θ|M) := P (θ)δ(M ; θ)/P δ(M). Therefore, the
expression for the expected payoff of the adversary can be
written as:

V =
∑

M∈M+

P δ(M)
∑
w∈W

α(w;M)
∑
θ∈Θ

g(w, θ)PB(θ|M)

Given a strategy of the defender δ, let the highest value of V
achieved when the adversary adopts a best response strategy
to δ be denoted by V , which depends on P , M and δ. From
the above expression for V , any best response strategy of
the adversary must select a maximizer of the conditional
expectation of the gain given each “on-path” cloak, that is:

V (P ,M, δ) =
∑

M∈M+

P δ(M) max
w∈W

{∑
θ∈Θ

g(w, θ)PB(θ|M)

}
Using the matrix representation of the gain function and
the notion of infinity norm, this can be written simply as∑
M∈M+ P δ(M)‖GP (θ|M)‖∞. The value of V (P ,M, δ)

quantifies the worst expected loss of the defender given her
randomized cloaking strategy δ. Let V

∗
(P ,M) denote its

minimum over all feasible randomized cloaking strategies:

V
∗
(P ,M) = min

δ∈D

∑
M∈M+

P δ(M)‖GP (θ|M)‖∞ (11)

This is the minimax problem of the defender.
Recall the notion of g-entropy: Hg[θ] = − log ‖GP ‖∞

and Hg[θ|M ] = − log
(∑

M∈M+ P δ(M)‖GP (θ|M)‖∞
)
.

The connection should now be clear, that: finding the op-
timal (randomized) cloaking strategy that yields the least
information leakage through cloaking (subject to cloaking
constraints) with respect to g-leakage is equivalent to the
minimax problem of the defender as stated in (11), where
the defender, in a 2PZSG, faces a strategic adversary with
knowledge of the prior that makes guesses about the secret
after observing the cloak who gains g(w, θ) units if his guess
is w and the actual secret is θ.

In any two-person game, a strategy pair is a (Nash)
equilibrium if none of the players have any strictly ad-
vantageous unilateral deviation. In other words, keeping
the strategy of the other player fixed, the strategy of each
player must be a maximizer of its expected utility. Our
first result shows that for an important class of cloaking
constraints, deterministic strategy profiles never constitute a
(Nash) equilibrium (except when the whole secret space is a
permissible cloak for all secrets), and hence, any equilibrium
(and thus, any optimal channel design as well as adversaries
guessing strategy) must involve randomization. Suppose the
cloaking constraints are such that ∀θi, θj ∈ Θ, we have:
M(θi) ∩ M(θj) 6= ∅. In words, any two secrets have at
least one permissible cloak in common. We refer to this
property as permissible connectivity. Note that the “size-
capped” cloak scenarios satisfy this property for any k ≥ 2.

Proposition 3: If the cloaking constraints satisfy “permis-
sible connectivity” and the gain matrix is diagonal with
positive entries, then except for the trivial case of Θ ∈M(θ)
∀θ, there is no equilibrium solution among pure strategy
profiles.
The proof of the proposition is provided in Appendix C. In-
tuitively, in such problems, even the “best” non-probabilistic
strategies of the defender can be strictly improved (the
uncertainty of the adversary strictly increased) by injecting
ambiguity through randomization into it, as there is “room”
for such maneuvers and the adversary cannot “corner” the
defender, thanks to the “permissible connectivity”.

The above result shows that the search for equilibria must
be extended to randomized strategies. Existence of a solution
among randomized strategy profiles is guaranteed by (an
extension of) Nash’s Theorem (or the duality in LPs).

Referring back to (11), since for M ∈ M+ we have
Pδ(M)PB(θ|M) = P (θ)δ(M ; θ), the minimax problem
of the defender can be simply re-written as:

V
∗
(P ,M) = min

δ∈D

∑
M∈M

max
w∈W

{∑
θ∈Θ

g(w, θ)P (θ)δ(M ; θ)

}
Consider a defender strategy δ∗ that achieves the above

optimization, that is, δ∗ ∈ arg maxδ∈D V (P ,M, δ). Then
by adopting strategy δ∗, she can “guarantee” that her ex-
pected cost will never be above V

∗
(P ,M) irrespective of

the strategy of the adversary. Introducing auxiliary variables
v = (vM ) for M ∈M, and x = (xθM ) := P (θ)δ(M ; θ) for
all M ∈ M(θ) and θ ∈ Θ (or equivalently, for all θ ∈ M
and M ∈M), the above minimax optimization problem can
be cast as a linear program (LP):

V
∗
(P ,M) = min

x,v

∑
M∈M

vM

s.t.: vM ≥
∑
θ∈Θ

g(w, θ)xθM , ∀w ∈ W, ∀M ∈M

xθM ≥ 0,∀M ∈M(θ),∀θ ∈ Θ,
∑

M∈M(θ)

xθM = P (θ), ∀θ ∈ Θ



Specifically, a solution of the above LP denoted by x∗ =
(x∗θM ) provides the randomized equilibrium strategy of
the defender through the transformation: δ∗(M ; θ) =
x∗θM/P (θ) for M ∈ M(θ), θ ∈ Θ, and δ∗(M ; θ) = 0
for M /∈ M, θ ∈ Θ. Introducing variables u = (uθ) for
θ ∈ Θ and y = (yMw ) for w ∈ W , M ∈M, the dual of the
above LP is:

V ∗(P ,M) := max
y,u

∑
θ∈Θ

P (θ)uθ

s.t.: uθ ≤
∑
w∈W

g(w, θ)yMw , ∀M ∈M(θ),∀θ ∈ Θ

yMw ≥ 0, ∀w ∈ W,∀M ∈M,
∑
w∈W

yMw = 1, ∀M ∈M

Let y∗ = (y∗Mw ) be the solution of the dual LP (above). By
adopting strategy α∗(w,M) = y∗Mw for all M ∈ M and
w ∈ W , the adversary can “guarantee” that his expected
reward will never fall below V ∗(P ,M) irrespective of the
cloaking strategy of the defender. Note that from strong
duality of LPs, we have V

∗
(P ,M) = V ∗(P ,M) which

we denote by V ∗(P ,M). This in part implies that (δ∗,α∗)
such found is indeed a randomized (Nash) equilibrium.

The above primal-dual LPs provides mutually optimal
cloaking strategies of the defender and identification strate-
gies of the adversary for any general cloaking constraints
and G-matrix for the 2PZSG corresponding to g-leakage.

When the cloaking constraints are size-capped (to size
at most k), any of the strategies given in Theorem 2 is
also a NE and a minimax strategy of the defender. Our
game-theoretic formulation provides the optimal cloaking
strategies for a general (non-diagonal) gain matrix in g-
leakage and arbitrary cloaking constraints that include the
size-capped model of Theorem 2. However, it requires
solving a linear optimization as opposed to the much simpler
problem of finding any positive solution for the linear system
of equations in Theorem 2 (with less number of variables).
Moreover, we showed that our strategies in Theorems 1
and 2 are optimal with respect to any measure of entropy
that satisfy mild conditions. In contrast, the game-theoretic
approach requires solving a new LP per each entropy.
For instance, for “Guesswork” entropy, the action space
of the adversary (his feasible guesses) is the set of all
the permutations of secrets, and hence, the size of the
linear programming in our game theoretic model grows
exponentially with the size of the secret space. Finally,
unlike the LP formulation, Theorems 1 and 2 yield the value
of the minimum achievable leakage in closed-form.

Next, we provide the minimum achievable leakage in
closed-form with respect to Min-Entropy. We establish this
result in two ways: first, as a direct corollary of Theorem 1 to
showcase the versatility of our main result, and next, through
a game theoretic argument which provides intuition about
the optimal strategies, and in particular, provides the optimal
guessing strategies of the adversary as well.

Proposition 4: For a given prior P and cloak size-cap k,
the maximum achievable posterior entropy with respect to
Min-Entropy is − log(max(1/k,P [1])). This in turn implies
that the minimum achievable leakage with respect to Min-
Entropy, denoted by L∞(P , k), is as follows: L∞(P , k) =
0 for any k ≥ 1/P [1], and L∞(P , k) = − log(kP [1]) if
k < 1/P [1].

Proof: From Theorem 1, if P [1] ≤ 1/k, then J =
1, which means the highest achievable posterior entropy is
H(π1) = H((1/k, . . . , 1/k)). For Min-Entropy, this gives
− log(1/k). If on the other hand P [1] > 1/k, then J is an
index between 2 and k. For any J > 1, the largest element
of πJ is P [1], hence H(πJ ) for Min-Entropy is equal to
− log(P [1]). Putting these together yields the claim.
And now an alternative proof based on game theory:

Proof: In the 2PZSG corresponding to Min-Entropy,
consider the following strategy of the adversary, which we
refer to as α1: always guess θ1 for any observed M that
includes θ1, and make a uniformly random guess from M
if it does not.16 We argue that this strategy “guarantees”
an expected reward of p1 for the adversary, irrespective
of the strategy of the defender. This simply follows by
conditioning on the realization of the secret: with proba-
bility p1, the secret is θ1. For such a case, any feasible
cloak that the defender chooses, the adversary will guess
correctly and gains one unit (since any feasible cloak for
θ1 should include it as well). Now, consider this alter-
native strategy of the adversary, denoted by α2: For any
observed M , choose a uniformly random guess from it.17

This strategy “guarantees” an expected reward of 1/k for
the adversary, irrespective of the strategy of the defender.
This can be seen by conditioning on the observed cloaks, the
expected reward of the adversary that follows this strategy is∑
M∈M+ Pr(M)

∑
θ∈M P (θ|M)· 1

|M | ≥
∑
M∈M+ Pr(M)·

1
k ·
∑
θ∈M P (θ|M) =

∑
M∈M+ Pr(M) · 1

k = 1
k . Note in

particular, that the specific induced posterior distributions do
not play a role.

The adversary can guarantee an expected reward of p1

and 1/k by employing the simple strategies α1 and α2

respectively. Hence, he can also guarantee the better of
the two, i.e., max(1/k, p1), just by comparing the values
of p1 and 1/k and employing the corresponding strategy.
He may even be able to do better by perhaps employing
more intelligent strategies. However, the defender can also
guarantee that, irrespective of the strategy of the adver-
sary, his gain never exceeds max(1/k, p1) by adopting
the strategies prescribed by Algorithm 1. In particular, if
p1 ≤ 1/k, then the defender has a feasible strategy that
induces uniform posterior distribution for any chosen cloak.

16Formally, for all M : θ1 ∈M , take α1(θ1;M) = 1 and α1(θ;M) =
0 ∀θ 6= θ1, and for all M : θ1 /∈ M , take α1(θ;M) = 1/|M | ∀θ ∈ M
and α1(θ;M) = 0 ∀θ /∈M .

17Formally: α(θ;M) = 1/|M | ∀θ ∈ M and α(θ;M) = 0 ∀θ /∈ M ,
for all M ∈M.



Hence, irrespective of the guessing strategy of the adversary,
his gain is going to be 1/k. On the other hand, if p1 > 1/k,
then the defender has a feasible strategy that for any chosen
cloak induces posterior distribution with its maximum value
on θ1 (so in part, for any realization of the secret, θ1 is also
picked as part of the cloak). This guarantees that irrespective
of the strategy of the adversary, his gain is bounded by p1.

Proposition (4) may come as a bit of surprise: if P [1] >
1/k, the information leakage with respect to Min-Entropy
can be made absolutely zero. This can in fact be generalized
to l-Guess-Entropy as well: if P [l] ≥

∑k
i=l P [i]

/ (k − l + 1),
then the minimum leakage with respect to l-Guess-Entropy
is zero. These results however do not contradict the Shan-
non’s perfect secrecy, since, unlike Shannon’s entropy, Min-
Entropy and l-Guess-Entropy do not retain the information
of the whole distribution. Also note that these zero-leakage
cases correspond to priors that are highly skewed. In such
cases, figuratively speaking, the “giants” cannot be helped,
but the secrets with small probabilities can “hide in the
shadow of the giants”. In other words, the prior already is
very revealing and gives a lot of advantage to the adversary,
but the defender can at least leverage those high probability
secrets to not reveal any extra information to the adversary.

Extensions of Prop. 4 to the l-Guess and Guesswork are
the following, which again can be seen as direct corollaries
of Theorem 1 or established using game theoretic arguments.

Proposition 5: In the 2PZSG corresponding to the l-
Guess-Error-Probability entropy, the maximum expected re-
ward of the adversary is the following:

max
0≤j≤l

{ j∑
i=1

P [i] +
(
1−

j∑
i=1

P [i]

) l − j
k − j

}
Proposition 6: In the 2PZSG corresponding to the Guess-

work entropy, the minimum expected cost of the adversary
(expected number of guesses before detection) is:

min
1≤j≤k

{ j−1∑
i=1

iP [i] +
(
1−

j−1∑
i=1

P [i]

)k + j

2

}
VI. NUMERICAL ILLUSTRATIONS

First, we investigate the effect of the maximum permissi-
ble cloak size, k, and the choice of the entropy measures
on the minimum achievable leakage. We consider three
candidate entropy measures: Shannon, Guesswork, and Min-
Entropy. Recall that: HSh.(θ) := −

∑n
i=1 pi log(pi) and

its conditional entropy follows the form of (4). For Min-
Entropy, H∞(θ) := − log maxθ(P (θ)), and conditional
entropy takes the form of (9) (a case of (2b)), that is,
H∞(θ|M) := − log

∑
M∈M Pr(M) maxθ P (θ|M). For

Guesswork, HGu.(θ) =
∑n
i=1 iP [i] and the posterior en-

tropy follows the prescription of (4). However, to obtain a
comparable scale for all three, we added a log to both prior
and posterior of Guesswork entropy (hence, a case of (2a)).

For all examples in this section, we consider a secret
space consisting of 30 elements with the following prior
distribution: P = (30/465, 29/465, . . . , 1/465). Fig. 1a
shows that, as we expect, the minimum leakage reduces as
larger cloaks are allowed. When leakage is quantified with
Shannon entropy, min-leakage only vanishes when k = n,
in accordance with the classic “perfect secrecy” result.
However, the minimum achievable information leakage with
respect to Min-Entropy becomes zero for any k ≥ 16 in our
example. This is in accordance with the result of Proposi-
tion 4, which stated that for any k ≥ d1/P [1]e, an optimal
cloaking strategy can achieve zero leakage with respect to
Min-Entropy. In this example, d1/P[1]e = d465/30e = 16.

Next, we compare the performance of an optimal strategy
against the following base-line strategy: for any given secrets
pick a feasible cloak uniformly randomly. Note that this
strategy is in fact optimal when the prior distribution is
uniform, but not necessarily for other priors. Fig. 1b depicts
the leakage with respect to Min-Entropy achieved by the
optimal strategy and the base-line strategy when P =
(30/465, . . . , 1/465), demonstrating the sub-optimality of
the base-line for any intermediate value of k. Adoption of
this strategy is sub-optimal because it essentially ignores the
fact that an adversary who has learned the distribution of the
secret can exploit it to further improve his guessing power.

Next, we investigate the effect of one of the assump-
tions we made in the paper: that the defender designs her
cloaking strategy assuming that the adversary knows the
true distribution of the secrets. In particular, we consider
an “uninformed” adversary, that does not know the prior
distribution, and thus, for any observed cloak simply chooses
a guess uniformly randomly. What will be the performance
of the strategy that is designed to be optimal with the worst-
case assumption that the adversary is “informed” of the true
distribution, but facing an uninformed adversary. In Fig. 1c,
for the prior of P = (30/465, . . . , 1/465), we have depicted
the posterior Min-Entropy for an “informed” vs. “ignorant”
adversary. As we can see, for k ≥ 16, the Min-Entropy of
the ignorant adversary is larger than that of the informed
one. For k < 16, we have P [1] < 1/k, which implies
J = 1, and hence, the optimal cloaking strategy indeed
induces uniform posterior distributions on any chosen cloak.
Hence, uniformly random guessing from any observed cloak
by the “uninformed” adversary is exactly optimal.
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VIII. CONCLUSION AND FUTURE WORK

We investigated the fundamental properties of leakage
when perfect secrecy is not achievable due to the limit
on the allowable size of the pre-images of outputs. We
have shown the existence of universally optimal strategies
achieving minimum leakage for any measure of entropy that
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Figure 1. For all figures, the prior is P = (30/465, . . . , 1/465) and the max-cloak-size is varied from 1 to n = 30 as the x-axis. (a) The minimum
achievable leakage with respect to Shannon, Guesswork and Min-Entropy, . Note that, as we expect, the minimum leakage improves as larger cloaks are
allowed. The Shannon entropy only becomes zero for k = n, as is the classic perfect secrecy, while the best min-entropy leakage becomes zero for any
k ≥ 16 for this prior distribution as per Proposition 4. (b) Comparison of the Min-Entropy leakage achieved by the optimal strategy and the base-line
(uniform randomization) strategy. (c) Negative of the log of the expected reward of an “informed” adversary, who knows the true prior distribution of
the secret, and an “uninformed” adversary who simply assumes a uniform prior. The channel (randomized strategies) is designed to be optimal assuming
facing an informed adversary.

satisfy a mild set of conditions (symmetry, expansibility,
and what we called “core-concavity”) and extended it to g-
leakage entropies where these conditions may fail. We also
demonstrated how the problem of minimum leakage channel
design is equivalent to Nash equilibria in a corresponding
two person zero-sum games of incomplete information for
a range of entropy measures.

There are several possible directions to explore for future
research. For instance, our theorems give rise to the next
fundamental question: for what other types of constraints
can we construct universally optimal channels? We expect
that the techniques developed in our proofs be reused
specially in unification of different notions of leakage and
establishing robustness results. Another interesting direction
of research is relaxing the i.i.d. assumption of the realization
of the secrets and allowing correlation over time, where
an adversary can learn more than just the distribution by
observing the history. Designing optimal strategies for such
a case is our next research goal.
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APPENDIX A.
PROOF OF THEOREM 1

We develop the proof in the following logical succession:
first, we establish a parametric set of upper-bounds for
the posterior entropy H[θ|M ] for any cloaking strategy
(Lemma 2). Then we show that our algorithm provides a
feasible cloaking strategy that achieves one of such upper-
bounds, and hence is optimal (Lemma 3).

Lemma 2: (part-I) For any δ ∈ D , H[θ|M ] ≤ H(π1).

(part-II) Suppose that pj−1 >

∑n
i=j pi

k − j + 1
for a j ∈

{2, . . . , k}. Then for any cloaking strategy δ ∈ D ,
H[θ|M ] ≤ H(πj).

Proof: Recall from (3) that the general form
of the conditional entropy is as: H[θ|M ] =
η
(∑

M∈M+ Pr(M)F (P (θ|M))
)

where g and F functions
satisfy (2a) or (2b). We provide the proof for the case of
(2a). The arguments for case (2b) follows similarly. For
case (2a), since F is symmetric and concave, it is also
Schur-concave.

Consider an arbitrary randomized cloaking strategy δ ∈
D . Then for any M ∈M+, we have | supp(P (θ|M))| ≤ k,
that is, at most k entries of P (θ|M) are non-zero. This is
due to the facts that |M | ≤ k and P (θ|M) = 0 for any
θ 6∈ M . To see the latter, recall that any assigned cloak for
a secret must include that secret, which lead to requirement
(1b) for any δ ∈ D , which in turn, along with (1a) implies
δ(M ; θ) = 0 for all θ 6∈M .

For part-I, first recall that π1 is the uniform distribution
over support size of k, which is majorized by any distribution
over a support of at most size k. Therefore, following
Schur-concavity of F , each term F (P (θ|M)) is bounded



by F (π1). Hence, also using the fact that η is an increasing
scalar function, we have:

H[θ|M ] = η

( ∑
M∈M+

Pr(M)F (P (θ|M))

)

≤ η

( ∑
M∈M+

Pr(M)F (π1)

)

= η

(
F (π1)

∑
M∈M+

Pr(M)

)
= η (F (π1)) = H(π1)

Part-I was quite intuitive: the highest uncertainty of the
adversary, if the cloaks have to be restricted to size k,
corresponds to uniform distribution over k items. We address
part (II) next.

First, for each M ∈ M+, following the “symmetry”
property of F , we have: F (P (θ|M)) = F (P ↓(θ|M)), that
is, we can safely sort each of the posterior probabilities in
descending order.

Second, as we argued, M ∈M+, | supp(P (θ|M))| ≤ k,
which means that the bottom n − k elements of P ↓(θ|M)
are always zero. Therefore, following the “expansibility”
property of F , we can safely remove them. That is,
F (P ↓(θ|M)) = F (P ↓(θ|M)↓(1,...,k)), where the subscript
↓(1, . . . , k) denotes projecting to only the first k elements.

Third, we note the fact that the probability distribution
Pr(M),M ∈ M+ constitutes the coefficient of a convex
combination: each is positive and they add up to one. Hence,
following the “concavity” property of F and the previous
two steps, we have:18

H[θ|M ] = η

( ∑
M∈M+

Pr(M)F
(
P ↓(θ|M)↓(1,...,k)

))

≤ η

(
F

( ∑
M∈M+

Pr(M)P ↓(θ|M)↓(1,...,k)

))

= H

( ∑
M∈M+

Pr(M)P ↓(θ|M)↓(1,...,k)

)
. (12)

Recall that P (θ|M) = P (θ)δ(M ; θ)/Pr(M) for an M ∈
M+. Therefore, letting δ(M ;θ) denote the n-sized vector
(δ(M ; θ)), θ ∈ Θ and using the element-wise product
symbol �, we can write: Pr(M)P (θ|M) = P � δ(M ;θ).
Therefore, the inequality in (12) can be re-written as:
H [θ|M ] ≤ H(Q) where Q = (qi), i = 1, . . . , k is defined
as follows: qi :=

∑
M∈M+(P � δ(M ;θ))[i] (recall that

subscript [i] denotes the i’th largest element of a vector).
Fourth, we show that given the condition of the lemma,

Q majorizes πj =
(
p1, . . . , pj−1,

∑n
i=j pi

k−j+1 , . . . ,
∑n

i=j pi

k−j+1

)
.

First of all, Q is itself a probability distribution, since
it is a convex combination of probability distributions

18Or equivalently, applying Jensen’s inequality.

P ↓(θ|M)↓(1,...,k). Hence, both Q and πj are k-sized proba-
bility distributions and we have

∑k
i=1 qi =

∑k
i=1 πj(i) = 1.

Moreover, both Q and πj are already in descending order:
For Q this follows from the fact that all P ↓(θ|M)↓(1,...,k)

were in descending order; for πj as described in (7), this
follows from the condition of the lemma that pj−1 >∑n
i=j pi/(k − j + 1), along with the fact that P was in

descending order, and hence, so is (p1, . . . , pj−1). Therefore,
all we need to show is that

∑l
i=1 qi ≥

∑l
i=1 πj(i) for all

l = 1, . . . , (k − 1). We will use the following sub-lemma:
Sub-lemma 1:

∑l
i=1 qi ≥

∑l
i=1 pi for any l < k.

Proof: Recall qi :=
∑
M∈M+(P � δ(M ;θ))[i] from

step 3. Hence, for any l < k:

l∑
i=1

qi =

l∑
i=1

∑
M∈M+

(P � δ(M ;θ))[i]

=
∑

M∈M+

l∑
i=1

(P � δ(M ;θ))[i] ≥
∑

M∈M+

l∑
i=1

P (θi)δ(M ; θi)

The last inequality follows because summation of the
top l elements of any vector is no less than the sum-
mation of any l elements of it. The right hand side
of the inequality, after a change in the order of sum-
mations, is equal to:

∑l
i=1

∑
M∈M+ P (θi)δ(M ; θi) =∑l

i=1 pi
∑
M∈M+ δ(M ; θi) =

∑l
i=1 pi. The last equality

follows because any δ ∈ D satisfies
∑
M∈M+ δ(M ; θ) = 1

for each θ ∈ Θ. Replacing this back in the inequality yields
the statement of the sub-lemma.
Now, for any l ≤ j − 1, the inequality

∑l
i=1 qi ≥∑l

i=1 πj(i) follows directly from the sub-lemma, since
πj(i) = pi for all i ≤ j − 1, by its definition in (7). For
an l ∈ {j, . . . , k − 1}, first we argue that

∑l
i=j qi/(l −

j + 1) ≥
∑k
i=j qi/(k − j + 1): The left hand side is the

(arithmetic) average of (qj , . . . , ql), and the right hand side is
the (arithmetic) average of (qj , . . . , qk); the inequality then
follows due to the fact that qi’s are in descending order.
This inequality can be written as

∑l
i=j qi ≥

l−j+1
k−j+1

∑k
i=j qi.

Adding
∑j−1
i=1 qi to both sides, and rewriting

∑k
i=j qi equiv-

alently as (1−
∑j−1
i=1 qi), we obtain:

∑l
i=1 qi ≥

∑j−1
i=1 qi +

l−j+1
k−j+1 (1 −

∑j−1
i=1 qi). Following Sub-lemma 1, we have∑j−1

i=1 qi ≥
∑j−1
i=1 pi. Now, consider the scalar function

f(x) = x + l−j+1
k−j+1 (1 − x). For any j ∈ {2, . . . , k}, this

function is increasing in x. Therefore,
∑j−1
i=1 qi ≥

∑j−1
i=1 pi

implies
∑j−1
i=1 qi + l−j+1

k−j+1 (1 −
∑j−1
i=1 qi) ≥

∑j−1
i=1 pi +

l−j+1
k−j+1 (1 −

∑j−1
i=1 pi) as well. Note that the right hand

side of the latter inequality is exactly
∑l
i=1 πj(i) when

j − 1 ≤ l ≤ k. Putting the inequalities together, we obtain∑l
i=1 qi ≥

∑l
i=1 πj(i) for any l ∈ j, . . . , k. This completes

the argument for establishing the claim that whenever the
condition of the lemma is satisfied, we have Q � πj , i.e.,
Q majorizes πj .



In the final step, we note that “Schur-concavity” of H
together with Q � πj give H(Q) ≤ H(πj). The lemma
now follows by noting that in step 3, we showed H [θ|M ] ≤
H(Q).

Lemma 3: For a given P and k, Algorithm 1: (I) produces
a strategy δ, (II) that is feasible, and (III) that is optimal.

Proof: Part (I): We need to show that Algorithm 1
indeed terminates with an output δ. As we argued after
(6), J can always be found. Therefore, the only step of the
algorithm that we must ensure returns a result is finding an
all positive solution to the linear system in step 2, which we
prove next.

Sub-lemma 2: Given P (in descending order) and k, if
pJ ≤

∑n
i=J pi

k−J+1 where J ≤ k, then the following system has
a solution:

∑
M∈M∗({1,...,J−1,i}) xM = pi, ∀i = J, . . . , n;

subject to: xM ≥ 0 ∀M ∈ M∗({1, . . . , J−1}). Moreover,
any solution satisfies:

∑
M∈M∗({1,...,J−1}) xM =

∑n
i=J pi

k−J+1 .
Proof: For brevity, take s :=

∑n
i=J pi, t := (n−J+1),

and w := (k − J + 1). Let Ω := {y = (yi) ∈ Rt :∑t
i=1 yi = s, and 0 ≤ yi ≤ s/w,∀i = 1, . . . , t}. Ω is

a convex polyhedron in Rt (since it is described by a
system of linear inequalities). It is also closed (clearly),
and is non-empty, as (s/t, . . . , s/t) ∈ Ω. Hence, Ω is
also a non-empty polytope in Rt (i.e., can be described
as the convex hull of a finite number of points in Rt).
Specifically, any point inside Ω can be written as a convex
combination of the extreme (a.k.a. corner) points of Ω (and
vice versa).19 The extreme points of Ω are t-dimensional
vectors where w of their elements are s/w and the t − w
rest of them are zeros. There are

(
t
w

)
of such vectors.

Let Λ be a matrix whose columns are these extreme
points, i.e, each column is a distinct permutations of w
entries of s/w and t − w entries of zero, that is: Λ :=
[(s/w, . . . , s/w, 0, . . . , 0)T ; . . . ; (0, . . . , 0, s/w, . . . , s/w)T ].

Now, let q := (pJ , . . . , pn). By construction, the condi-
tion of the sub-lemma on P can be equivalently stated as
q ∈ Ω. Hence, q can be expressed as a convex combination
of the extreme points of Ω. Let z ∈ R+( t

w) denote such a
convex combination, thus, we have: Λz = q where z ≥ 0
(element-wise positive), and 1Tz = 1.

On the other hand, the linear system in the sub-lemma
can be written in matrix form as: Λ′x = q where Λ′ is a
t×
(
t
w

)
matrix whose columns are all the

(
t
w

)
permutations of

having w entries of 1 and t−w entries of 0. Therefore, with
some re-ordering of the equations if necessary, we can write:
Λ = (s/w)Λ′. Hence, Λz = q implies (s/w)Λ′z = q, and
z ≥ 0 implies (s/w)z ≥ 0. Therefore, x = (s/w)z is a
feasible solution of the system in the sub-lemma.

The second claim of the sub-lemma follows from summat-
ing all the equations of the system and a simple counting:∑n
i=J pi =

∑n
i=J

∑
M∈M∗({1,...,J−1,i}) xM = (k − J +

1)
∑
M∈M∗({1,...,J−1}) xM .

19In fact, according to Carathèodory’s theorem, this can be done by a
convex combination of at most t+ 1 of them.

Note that the condition of the sub-lemma is clearly satisfied
for J found in the first line of Algorithm 1.

Proof: For brevity, take s :=
∑n
i=J pi, t := (n−J+1),

and w := (k − J + 1). Let Ω := {y = (yi) ∈ Rt :∑t
i=1 yi = s, and 0 ≤ yi ≤ s/w,∀i = 1, . . . , t}. Ω is

a convex polyhedron in Rt−1 (since it is described by a
system of linear inequalities. The minus 1 is due to the
one equality constraint). It is also closed (clearly), and
is non-empty, as (s/t, . . . , s/t) ∈ Ω. Hence, Ω is also
a non-empty polytope in Rt−1 (i.e., can be described as
the convex hull of a finite number of points in Rt−1).
Specifically, any point inside Ω can be written as a convex
combination of the extreme (a.k.a. corner) points of Ω
(and vice versa). In fact, according to Carathèodory’s
theorem, this can be done by a convex combination of at
most t of them. The extreme points of Ω are t-dimensional
vectors where w of their elements are s/w and the t − w
rest of them are zeros. There are

(
t
w

)
of such vectors.

Let Λ be a matrix whose columns are these extreme
points, i.e, each column is a distinct permutations of w
entries of s/w and t − w entries of zero, that is: Λ :=
[(s/w, . . . , s/w, 0, . . . , 0)T ; . . . ; (0, . . . , 0, s/w, . . . , s/w)T ].

Now, let q := (pJ , . . . , pn). By construction, the condi-
tion of the sub-lemma on P can be equivalently stated as
q ∈ Ω. Hence, q can be expressed as a convex combination
of the extreme points of Ω. Let z ∈ R+( t

w) denote such a
convex combination, thus, we have: Λz = q where z ≥ 0
(element-wise positive), and 1Tz = 1.

On the other hand, the linear system in the sub-lemma
can be written in matrix form as: Λ′x = q where Λ′ is a
t×
(
t
w

)
matrix whose columns are all the

(
t
w

)
permutations of

having w entries of 1 and t−w entries of 0. Therefore, with
some re-ordering of the equations if necessary, we can write:
Λ = (s/w)Λ′. Hence, Λz = q implies (s/w)Λ′z = q, and
z ≥ 0 implies (s/w)z ≥ 0. Therefore, x = (s/w)z is a
feasible solution of the system in the sub-lemma.

The second claim of the sub-lemma follows from summat-
ing all the equations of the system and a simple counting:∑n
i=J pi =

∑n
i=J

∑
M∈M∗({1,...,J−1,i}) xM = (k − J +

1)
∑
M∈M∗({1,...,J−1}) xM .

Part (II): Next, we show that the returned solution δ
corresponds to a feasible randomized cloaking strategy.
The conditions δ(M ; θ) ≥ 0 are trivially satisfied by
construction. Hence, we only need to show that for any
θ ∈ Θ,

∑
M∈M(θ) δ(M ; θ) = 1. For an i ∈ {J, . . . , n},

Algorithm 1 assigns δ(M ; i) = xM/pi for all M ∈
M∗({1, . . . , J−1, i}), and zero for any other M . Hence,∑
M∈M(i) δ(M ; i) =

∑
M∈M∗({1,...,J−1,i}) xM/pi = 1,

where the last equality follows directly from the system
of equations in Step 2 of the algorithm, specifically, the
equality constraint of

∑
M∈M∗({1,...,J−1,i}) xM = pi. On

the other hand, for an i ∈ {1, . . . , J − 1}, the algorithm
assigns: δ(M ; i) = xM (k − J + 1)/

∑n
j=J pj for all

M ∈M∗({1, . . . , J−1}) and zero for any other M . There-



fore,
∑
M∈M(i) δ(M ; i) =

∑
M∈M∗({1,...,J−1}) xM (k−J+

1)/
∑n
j=J pj = 1, where the last equality is due to the sec-

ond claim of Sub-lemma 2, that
∑
M∈M∗({1,...,J−1}) xM =

(
∑n
i=J pi)/(k − J + 1).

Part (III): Finally, we show that the reported feasible
strategy is indeed optimal. First, note that only cloaks
M for which xM > 0 receive a non-zero probability.
All of such cloaks are in M∗({1, . . . , J − 1}), i.e., in-
clude secrets θ1, . . . , θJ−1 along with k − J + 1 oth-
ers. Let M = {θ1, . . . , θJ−1, φ1, . . . , φk−J+1}, where
{φ1, . . . , φk−J+1} ⊂ {θJ , . . . , θn} be any of such cloaks
for which xM > 0. The posterior probability distribu-
tion for M (the updated probability distribution given
M is observed) can be computed using the Bayes’
rule: P (θ|M) = P (θ)δ(M ; θ)/Pr(M) where Pr(M) =(∑

θ′∈M P (θ′)δ(M ; θ′)
)
. Replacing from the assignments

in lines 3 through 5 of Algorithm 1, first, for Pr(M) we
get:

Pr(M) =

J−1∑
i=1

pi

(
xM (k − J + 1)∑n

j=J pj

)
+

k−J+1∑
i=1

P (φi)
xM
P (φi)

= xM (k − J + 1)

(∑J−1
i=1 pi∑n
j=J pj

+ 1

)
=
xM (k − J + 1)∑n

j=J pj

Hence, for all i = 1, . . . , k − J + 1:

P (φi|M) =
P (φi)xM/P (φi)

xM (k − J + 1)/
∑n
j=J pj

=

∑n
j=J pj

k − J + 1

On the other hand, for i = 1, . . . , J − 1:

P (θi|M) =
P (θi)xM (k − J + 1)/

∑n
j=J pj

xM (k − J + 1)/
∑n
j=J pj

= pi

Hence, our randomized cloaking strategy ensures that
for each M ∈ M+, P (θ|M) = πJ . This gives
H[θ|M ] = H(πJ ). Now, if J = 1, then our algo-
rithm achieves the upper-bound of Lemma 2-Part (I). If
J ≥ 2, then following its definition, we must have:
pJ−1 >

∑n
i=J−1 pi/(k − J + 2). Multiplying both sides by

k − J + 2 and canceling out one of the pJ ’s, we get the
equivalent inequality that pJ−1 >

∑n
i=J pi/(k − J + 1).

This is exactly the condition for Part (II) of Lemma 2. Hence,
our randomized cloaking strategy achieves the upper-bound
of H(πJ ). This concludes the proof of Lemma 3, and thus,
of the theorem.

APPENDIX B.
PROOF OF THEOREM 2

The proof follows almost identically the steps of the proof
of Theorem 1 with P replaced with GP . As before, we
first establish that H(πg,Jg ) is among a set of upper-bounds
for Hg[θ|M ] for any cloaking strategy, and then we prove
that if Algorithm 1 is fed with GP = (γ � P ), sorted in
descending order, produces a feasible strategy that achieves
this upper-bound. The main observation to bear in mind is

that although the entropy function Hg(P ) = H(GP ) may
no longer be symmetric, expansible or core-concave with
respect to P , but it has all these properties with respect
to GP as assumed for the H(·) = η(F (·)) function. For
brevity, we will only point out the important changes from
the proof of Theorem 1.

Lemma 4: (part-I) For any δ ∈ D ,Hg[θ|M ] ≤ H(πg,1).
(part-II) Suppose that γj−1pj−1 >

∑n
i=j γipi

k−j+1 for a j ∈
{2, . . . , k}. Then for any δ ∈ D , Hg[θ|M ] ≤ H(πg,j).

Proof: The proof mirrors that of Lemma 2 where P is
replaced by GP , heeding the following two observations:

(1) For both parts, we used the fact that for any ob-
served cloak, | supp(P (θ|M))| ≤ k, since the secret is
certainly one of the members of the cloak. For a diagonal
matrix G, we have supp(GP (θ|M)) ⊆ supp(P (θ|M)),
since any zero entry of P leads to a corresponding zero
entry in GP . Therefore, | supp(P (θ|M))| ≤ k implies
| supp(GPθ|M))| ≤ k too.

(2) Following the steps as in Lemma 2 leads to
the inequality Hg [θ|M ] ≤ H(Q) where Q =
(qi), i = 1, . . . , k is now defined as follows: qi :=∑
M∈M+((GP )� δ(M ;θ))[i], which for G = diag(γ), is

equal to
∑
M∈M+(γ � P � δ(M ;θ))[i]. Note that neither

Q nor πg,j are necessarily probability distributions. In
order to show that Q still majorizes πg,j , following the
definition of majorization, we first need to show

∑k
i=1 qi =∑k

i=1 πg,j(i). For the first summation, we have:

k∑
i=1

qi =

k∑
i=1

∑
M∈M+

(γ � P � δ(M ;θ))[i] =

∑
M∈M+

k∑
i=1

(γ � P � δ(M ;θ))[i] =
∑

M∈M+

k∑
i=1

γipiδ(M ; θi)

=

k∑
i=1

γipi
∑

M∈M+

δ(M ; θi) =

k∑
i=1

γipi

On the other hand, replacing from the definition of πg,j
in the statement of the theorem, we get:

∑k
i=1 πg,j(i) =∑j−1

l=1 γlpl+(k−j+1)
∑n
i=j γipi/(k−j+1) =

∑k
i=1 γipi,

hence the first step for showing majorization is established.
For the second step, note that, as before, both Q and πg,j

are already in descending order: Q by design, and πg,j due
to the assumption (without loss of generality) that elements
of GP are in descending order along with the inequality
condition of the lemma. Hence we are only left to show that
the partial sums of Q are larger than those of πg,j . This
follows from a generalization of Sub-lemma 1. The only
part that is different in its proof is to consider the function
f(x) = x+ l−j+1

k−j+1 (c−x), where c =
∑n
i=1 γipi, and noting

that for any c, the function f is still increasing in x.
The rest of the proof follows identically as in the proof of
Theorem 1 if we replace P with GP .



APPENDIX C.
PROOF OF PROPOSITION 3

Recall that M+(δ) denotes the set of cloaks that has
a strictly positive probability of being observed by the
adversary. For pure strategy profiles (and following the
assumption that supp(P ) = Θ), we have M+(δ) = d[Θ],
where d[Θ] represents the image of the pure strategy of the
defender, i.e., d[Θ] := {M ∈M|∃θ ∈ Θ,M = d(θ)}.

Suppose the claim is false and there is a (pure) strategy
profile (d∗,a∗) ∈ D ×A that constitutes a (Nash) equilib-
rium. First, since the trivial cloak of the whole secret space
is not permissible for all secrets, following the pigeon-hole
principle, there must exist M1,M2 ∈ d∗[Θ], M1 6= M2

(recall that any cloak picked for a secret must contain it).
Let a∗(M1) = θ1 and a∗(M2) = θ2. We must have:

d∗(θ1) = M1 and d∗(θ2) = M2, i.e., the strategy of
the defender must choose M1 for θ1 and M2 for θ2. This
follows from the fact that a∗ must be a best response to
d∗. If for instance d∗(θ1) 6= M1, then, everything else
fixed, the adversary can strictly improve his expected payoff
by changing a∗(M1) from θ1 to any secret that chooses
cloak M1, i.e., any θ ∈ d∗−1(M1), where d∗−1(M1) is
the pre-image20 of M1 under d∗ (note that d∗−1(M1) 6= ∅
because M1 ∈ d∗[Θ]). This is because for a diagonal gain
matrix with positive rewards, any non-zero probability of a
correct guess strictly dominates a certain wrong guess for
the adversary. Moreover, we must have: θ1 6= θ2. To see this,
suppose θ1 = θ2. Then, as we argued, we must both have
d∗(θ1) = M1 and d∗(θ1) = M2, which cannot be, given
that d∗ is a legitimate pure strategy of the defender.

Consider the sets of permissible cloaks for θ1 and θ2,
i.e., M(θ1) and M(θ2), respectively. Since d∗ also is
a best response to a∗, we must have ∀M ∈ M(θ1):
a∗(M) = θ1, and ∀M ∈ M(θ2): a∗(M) = θ2. This
is because if, e.g., there exists an M ′ ∈ M(θ1) that
a∗(M ′) 6= θ1, then, everything else fixed, the defender
has a strictly advantageous deviation from d∗(θ1) = M1

to d∗(θ1) = M ′. This is because for any sensible gain
matrix, given the secret, a wrong guess of the adversary
yields a strictly higher payoff for the defender than a
correct guess. Now, following the “permissible connectivity”
property, we have M(θ1) ∩ M(θ2) 6= ∅. However, for
any M ∈ M(θ1) ∩ M(θ2), we reach the contradicting
requirement that a∗(M) = θ1 and a∗(M) = θ2 where
θ1 6= θ2. Therefore, (d∗,a∗) could not have been an
equilibrium.

20d−1(M) := {θ ∈ Θ|d(θ) = M}.


