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ABSTRACT

Large music content libraries often comprise multiple ver-
sions of a piece of music. To establish a link between dif-
ferent versions, automatic music alignment methods map
each position in one version to a corresponding position in
another version. Due to the leeway in interpreting a piece,
any two versions can differ significantly, for example, in
terms of local tempo, articulation, or playing style. For
a given pair of versions, these differences can be signif-
icant such that even state-of-the-art methods fail to iden-
tify a correct alignment. In this paper, we present a novel
method that increases the robustness for difficult to align
cases. Instead of aligning only pairs of versions as done in
previous methods, our method aligns multiple versions in a
joint manner. This way, the alignment can be computed by
comparing each version not only with one but with several
versions, which stabilizes the comparison and leads to an
increase in alignment robustness. Using recordings from
the Mazurka Project, the alignment error for our proposed
method was 14% lower on average compared to a state-
of-the-art method, with significantly less outliers (standard
deviation 53% lower).

1. INTRODUCTION

Recent years have seen significant efforts to create large,
comprehensive music collections. Music content providers
(e.g. Spotify, iTunes, Pandora) rely on their existence,
while national libraries and charitable organizations cre-
ate and curate them in order to provide access to cultural
heritage. For a given piece of music, large collections of-
ten contain various related recordings (cover songs, dif-
ferent interpretations), videos (official clip, live concert)
and musical scores (in different formats such as MIDI and
MusicXML, covering several editions). To identify and
link these different versions, various automatic alignment
methods have been proposed in recent years. Such syn-
chronization methods have been used to facilitate naviga-
tion in large collections [1], to implement score following
in real-time [2–5], to compare different interpretations of
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a piece [6], to identify cover songs [7] or to simplify com-
plex audio processing tasks [8].

In general, the goal of music synchronization is, given
a position in one version of a piece of music, to locate the
corresponding position in another version. To compute a
synchronization, existing methods align two versions of a
piece at a time, even if several relevant versions are avail-
able. For example, in [9, 10] a score of a piece is automat-
ically aligned to a corresponding audio recording, while
in [11] two acoustic realizations are being synchronized.
As shown previously, current methods yield in many cases
alignments of high accuracy [9–11]. However, musicians
can interpret a piece in diverse ways, which can lead to sig-
nificant local differences in terms of articulation and note
lengths, ornamental notes, or the relative loudness of notes
(balance). If such differences are substantial, the alignment
accuracy of state-of-the-art methods can drop significantly.

To increase alignment robustness for difficult cases, the
main idea in this paper is to exploit the fact that multiple
versions of a piece are often available and can be aligned in
a joint way. This way, we can exploit the additional infor-
mation that each version provides about how a certain po-
sition in a piece can be realized by a musician. As a conse-
quence, while two given recordings might be rather differ-
ent and hard to align, both of them might actually be more
similar to a third recording and including such a record-
ing within the alignment process can lead to an increase in
overall robustness. To compute our joint synchronization,
we modify a multiple sequence alignment method typically
employed in biological signal processing and combine it
with strategies developed in a musical context based on
Multiscale-DTW (FastDTW) and chroma-based onset fea-
tures for increased computational efficiency and synchro-
nization accuracy. In the following, we describe technical
details of this method in Section 2. Then, we report on
some of our experiments in Section 3. Conclusions and
prospects for future work are given in Section 4.

2. ALIGNMENT METHOD

Various methods have been proposed to align two given
data sequences, including Dynamic Time Warping (DTW)
and Hidden Markov Models (HMM) [2], Conditional Ran-
dom Fields (CRF) [9], and Particle Filter / Monte-Carlo
Sampling (MCS) based methods [4,5]. With the exception
of MCS methods, which are online methods, the remaining
three methods operate in an offline fashion and are quite



Figure 1. Alignment of two interpretations of Chopin Op. 24
No. 2, measures 115-120: (a) Score for the six measures. (b)/(c)
Chroma features for an interpretation by Magin and Indjic, re-
spectively; chroma features with uniform energy distribution are
the result of silence in the recording. (d) Alignment results for
our baseline pairwise (gray) and proposed method (black).

similar from an algorithmic point of view. We describe our
proposed method as an extension to DTW. However, the
underlying ideas are applicable in HMM and CRF contexts
as well.

2.1 Baseline Pairwise Alignment

To summarize DTW-based alignment, let X := (x1, x2,
. . . , xN ) and Y := (y1, y2, . . . , yM ) be two feature se-
quences with xn, ym ∈ F , where F denotes a suitable fea-
ture space. Furthermore, let c : F ×F → R denote a local
cost measure on F . We define a resulting (N ×M) cost
matrix C by C(n,m) := c(xn, ym). An alignment be-
tween X and Y is defined as a sequence p = (p1, . . . , pL)
with p` = (n`,m`) ∈ [1 :N ]×[1 :M ] for ` ∈ [1 :L] sat-
isfying 1 = n1 ≤ n2 ≤ . . . ≤ nL = N and 1 = m1 ≤
m2 ≤ . . . ≤ mL = M (boundary and monotonicity con-
dition), as well as p`+1 − p` ∈ {(1, 0), (0, 1), (1, 1)} (step
size condition). An alignment p having minimal total cost
among all possible alignments is called an optimal align-
ment. To determine such an optimal alignment, one recur-
sively computes an (N ×M)-matrix D, where the matrix
entry D(n,m) is the total cost of the optimal alignment
between (x1, . . . , xn) and (y1, . . . , ym):

D(n,m) := min


D(n− 1,m− 1) + w1C(n,m),

D(n− 1,m) + w2C(n,m),

D(n,m− 1) + w3C(n,m),

for n,m > 1. Furthermore, D(n, 1) :=
∑n

k=1 w2C(k, 1)

for n > 1, D(1,m) =
∑M

k=1 w3C(1, k) for m > 1, and
D(1, 1) := C(1, 1). The weights (w1, w2, w3) ∈ R3

+

can be used to adjust the preference over the three step
sizes. By tracking the choice for the minimum starting
from D(N,M) back to D(1, 1), an optimal alignment can
be derived in a straightforward way [2]. In a musical con-
text, F typically denotes the space of normalized chroma
features, c is usually a cosine (or Euclidean) distance with

weights set to (w1, w2, w3) = (2, 1, 1) to remove a bias for
the diagonal direction [2, 11].

A main difficulty in aligning music stems from the de-
gree of freedom a musician has in interpreting a score,
in particular regarding the local tempo, balance (relative
loudness of concurrent notes), articulation and playing style.
If several differences occur together, standard alignment
methods sometimes fail to identify the musically correct
alignment. In Fig. 1(b)/(c), we see chroma features for
two interpretations of Chopin Op. 24 No. 2 measures 115-
120 (Fig. 1(a)) as performed by Magin and by Indjic, re-
spectively. Besides the tempo, we see differences in the
interpretation of pauses (the uniform energy distributions
in the features correspond to silence), articulation and in
the balance (relative loudness of notes). In this case, the
differences are significant such that pairwise DTW-based
approaches [10, 11] fail to compute the correct alignment,
see upper path in Fig. 1(d). The red dots indicate corre-
sponding beat positions in the two versions.

2.2 Joint Alignment of Multiple Versions

Comparing several versions of a piece, interpretations vary
in different ways and to different extents. If several ver-
sions of a piece are available, each version provides an
example of how a specific position in a piece can be real-
ized, and this additional information can be used to stabi-
lize the alignment for difficult sections. A straightforward
strategy to compute a joint alignment could be to extend
DTW to allow for more than two versions. For example,
to align three versions, one can define an order-3 cost ten-
sor in a straightforward way and apply the same dynamic
programming techniques as used in DTW [12] (note that
a cost matrix for two versions is an order-2 tensor). How-
ever, assuming that each feature sequence to be aligned is
roughly of length N , the time and memory requirement to
align K recordings would be in O(NK), which prohibits
the alignment of more than a very few recordings.

In computational biology, multiple sequence alignment
is a well-studied problem. Most popular are so called profile-
based methods and progressive alignment methods [12].
Profile-based methods employ a specific type of HMM,
which is trained via Expectation-Maximization (EM) on
the set of feature sequences to be aligned. Each state of
the resulting profile-HMM corresponds to a position in a
so called average-sequence: the sequence of means of the
observation probabilities of the HMM-states, see [12] for
details. A multiple synchronization is then computed by
aligning each sequence to the average-sequence via the
Viterbi algorithm. This procedure has been attempted in
a musical context with limited success [13]. We believe
this is due to, using EM training, whereby aligned features
are essentially averaged (with Gaussian observation proba-
bilites), which results in a loss of information and can lead
to a loss of alignment accuracy.

Using progressive alignment such averaging is not nec-
essary. The underlying idea is to successively build a data
structure referred to as a template, which provides efficient
access to several aligned feature sequences, see Fig. 2(a).



Figure 2. Progressive alignment: Three aligned chroma se-
quences contained in the template (a) are compared to the chroma
sequence (b). The resulting individual cost matrices (c) are
merged into one (d), which is used to compute the alignment.
The white lines in (a) and (c) indicate the positions of gap sym-
bols.

By comparing a given feature sequence (Fig. 2(b)) to the
sequences contained in the template, the alignment can be
computed not only using one cost matrix (as in pairwise
alignment) but several matrices in parallel - one for each
sequence in the template (Fig. 2(c)). By suitably combin-
ing the information provided by each individual cost ma-
trix, the influence of strong local differences on the align-
ment, that often only occur between specific pairs of ver-
sions, can be attenuated. As shown in Section 3, this can
lead to a significant boost in alignment robustness.

To describe this procedure in more detail, we assume
that we have K different versions of a piece and that their
feature sequences are denoted by Xk = (xk

1 , . . . , x
k
Nk

) for
k ∈[1 :K]. In each step of the progressive alignment, the
template Z contains several of these feature sequences that
have been stretched to have the same length. Initially, Z
only consists of X1. The remaining feature sequences are
then successively aligned to Z, and after each alignment
Z is updated by adding one more sequence. To this end,
let Z̃ = (z̃1, . . . , z̃L̃) denote the current template which
contains k − 1 sequences of length L̃ (i.e. each z̃` con-
tains k − 1 features), Xk the sequence to be aligned, and
p = (p1, . . . , pL) =

(
(n1,m1), . . . , (nL,mL)

)
an align-

ment between Z̃ and Xk. Intuitively, to add Xk to Z̃, we
use p to stretch Z̃ and Xk such that corresponding fea-
tures are aligned and become part of the same element
of Z. However, whenever features need to be copied to
do the stretching (step sizes (1, 0) and (0, 1)), we rather
insert a special gap symbol instead of the features them-
selves. More precisely, let Z = (z1, . . . , zL) denote the
updated template, zn(k) denote the k-th feature in the n-
th element of Z, and G denote the gap symbol 1 . Set
z1 = (z̃1(1), . . . , z̃1(k−1), xk

1), then for l = (2, 3, . . . , L):

z` =


(z̃n`

(1), . . . , z̃n`
(k − 1), xk

m`
), p` − p`−1 = (1, 1)

(z̃n`
(1), . . . , z̃n`

(k − 1), G), p` − p`−1 = (1, 0)

(G, . . . , G, xk
m`

), p` − p`−1 = (0, 1)

1 Since chroma features contain only non-negative entries, the gap
symbol can often be encoded as a pseudo-feature having negative entries.

The gap symbol and its influence will be further discussed
in Section 3.

The alignment procedure itself is almost identical to
standard DTW; only the local cost measure has to be ad-
justed to take the properties of the template into account.
For a template Z comprising k−1 feature sequences and a
feature sequence X, we define a template-aware cost func-
tion cT : (F ∪G)k−1 ×F → R as

cT (zn, xm) =

k−1∑
r=1

{
c(zn(r), xm), zn(r) 6= G,

CG, zn(r) = G,

where CG > 0 is a constant referred to as the gap penalty.
The influence a single additional recording can have us-

ing progressive alignment is illustrated in Fig. 1(d). Here,
we included a third performance by Poblocka in the align-
ment, which could be considered as being “between” the
two versions shown in Fig. 1 in terms of articulation style
and balance. As we can see, the resulting path (black) fol-
lows the ground-truth markings (red dots) quite closely and
improves significantly over the pairwise result.

2.3 Order of Alignments and Iterative Processing

The alignment of the first two versions in our progressive
approach is equivalent to standard pairwise alignment. Er-
rors in this first step influence to some degree all subse-
quent alignment steps. We discuss now two strategies that
can help to increase the reliability of the first few align-
ments in our progressive approach. First, the order in which
the alignments are computed is of importance, and we should
start with recordings that are easy to align. In computa-
tional biology, a common approach to identify a reasonable
order is referred to as the guide tree approach [12]. While
there are various ways to implement such an approach, we
consider the following procedure. First, for each pair of
recordings, we compute the total cost of an optimal align-
ment between the pair to identify the pair having the low-
est average cost, which is defined as the total cost of the
alignment divided by its length L. We call the feature se-
quences for the recordings in this pair X1 and X2. For the
next recording, we identify the one being jointly closest to
X1 and X2. To this end, we sum for each of the remaining
recordings the average cost of the alignments between the
recording and X1, and the recording and X2. We call the
feature sequence of the recording with the lowest sum X3.
We continue with this procedure until all recordings are in
order. We refer to this strategy as DTW-cost-based order.

While this strategy leads to a useful order, its computa-
tional costs are significant. In our experiments, we found
an alternative based on a much simpler strategy: We sorted
the versions according to their length, starting with the
shortest recordings. In the following, we refer to this strat-
egy as length-based order. In Section 3, we compare both
ordering strategies and discuss their behavior.

A second strategy to improve the reliability of the first
alignments is referred to as iterative progressive alignment.
The idea behind this strategy is, after all versions are aligned
and included in the template, to remove one version from



ID Piece No. Rec. No. Pairs
M17-4 Opus 17 No. 4 62 1891
M24-2 Opus 24 No. 2 62 1891
M30-2 Opus 30 No. 2 34 561
M63-3 Opus 63 No. 3 81 3240
M68-3 Opus 68 No. 3 49 1176

Table 1. Chopin Mazurkas and their identifiers used in our ex-
periments. The last two columns indicate the number of perfor-
mances available for the respective piece and the number of eval-
uated unique pairs.

the template and realign it, starting with the first version
that was aligned. This way, errors made early in the pro-
gressive alignment can potentially be corrected. We imple-
mented this extension as well and discuss it in Section 3.

2.4 Increasing the Computational Efficiency and
Alignment Accuracy

Since progressive alignment shares its algorithmic roots
with standard DTW, we can incorporate extensions that
were successfully used with DTW-based methods. In par-
ticular, the methods described in [10, 14] employ a variant
of DTW referred to as multiscale DTW (FastDTW) to in-
crease the computational efficiency. The general idea is
to recursively project an alignment computed at a coarse
feature resolution level to a next higher resolution, and to
refine the projected alignment on that resolution. This way,
the matrix D only has to be evaluated around the projected
path. This multiscale approach typically leads to a signifi-
cant drop in runtime by up to a factor of 30, see [14].

Furthermore, the authors in [10] introduce a type of
features that indicate onset positions separately for each
chroma. These chroma-based onset features (DLNCO fea-
tures) are then combined with normalized chroma features.
As shown by the experiments in [10], these combined fea-
tures can lead to a significant increase in alignment accu-
racy for pairwise methods. In the following, we employ
the same features and cost measure as used in [10].

3. EXPERIMENTS

To illustrate the performance of our proposed method as
well as the influence of certain parameters, we conducted
a series of experiments using recordings taken from the
Mazurka Project 2 , which compiled a database of over 2700
recorded performances by more than 130 distinct pianists
for 49 Mazurkas composed by Frédéric Chopin. The record-
ings are dated between 1902 and today, and were made
under strongly varying recording conditions. For our ex-
periments, we employ a subset of five Mazurkas and 288
recordings, for which manually annotated beat positions
are available, see Table 1. Performances with structural
differences compared to the majority of recordings (such
as additional repetitions of a part of a piece) were excluded
from our experiments.

2 http://www.mazurka.org.uk

3.1 Evaluation Measure

To evaluate the accuracy of an alignment between two dif-
ferent versions of a piece, we employ the beat annotations
as ground truth. To this end, we use the alignment to lo-
cate for each annotated beat position in the one version
a corresponding position in the other version. Using the
manual beat annotations for the other version, we can then
compute the absolute difference between the correct beat
position and the one obtained from the alignment. By av-
eraging these differences for all beats, we obtain the aver-
age beat deviation (ABD) for a given alignment, which we
measure in milli-seconds. For our evaluation, we compute
this measure for each Mazurka and each pair of recordings.
For example, for M17-4 our setup contains 62 recordings,
which results in

(
62
2

)
= 1891 unique pairs and correspond-

ing average beat deviation values, see Table 1.

3.2 Pairwise vs Progressive Alignment

In a first experiment, we compare the alignment accuracy
for pairwise and progressive alignment. Since the pair-
wise method described in [10] employs the same features
and cost measure as our proposed progressive method, we
use [10] as a baseline (other pairwise methods [11] showed
a similar behavior). In particular, we use a temporal res-
olution of 20ms for both chroma and onset-indicator (DL-
NCO) features. The DTW weights are set to (w1, w2, w3) =
(2, 1.5, 1.5). As proposed in [10], we use the cosine dis-
tance for the chroma features and the Euclidean distance
for the DLNCO features. Moreover, for our proposed pro-
gressive alignment, we use the length-based alignment or-
der and set the gap penalty parameter to the highest value
the cost measure c can assume. The distribution of the av-
erage beat deviation (ABD) values for all pairs is summa-
rized for each of the five Mazurkas separately in the box-
plots 3 shown in Fig. 3, as well as in column A and B in
Table 2.

Comparing the results for pairwise and progressive align-
ment, we can see that the mean ABD drops slightly us-
ing the progressive approach for most examples. For ex-
ample, the mean ABD for M17-4 drops from 68ms using
pairwise alignment to 59ms using our progressive method
(decrease by 13%). On average, the mean ABD drops by
14%. More importantly though, the progressive alignment
is significantly more stable. In particular, the inter-quartile
range is smaller for all five Mazurkas using the progres-
sive alignment (Fig. 3). Further, the number of alignments
with a very high ABD is significantly reduced. This can
be measured by the standard deviation (std), which for
M17-4 using pairwise alignment is 19ms, while progres-
sive alignment leads to an std of 12ms. This difference is
even greater for other Mazurkas (M24-2 and M63-3). On
average, the std is reduced by more than 50%. So over-
all, while our proposed procedure also led to an increase in

3 We use standard boxplots: the red bar indicates the median, the blue
box gives the 25th and 75th percentiles (p25 and p75), the black bars
correspond to p25 − 1.5(p75 − p25) and p75 +1.5(p75 − p25), and the
red crosses are called outliers.



Figure 3. Comparison of the baseline pairwise alignment method with our proposed progressive alignment method. The boxplots
illustrate the distribution of the average beat deviation values for each Mazurka separately.

M17-4 [A] [B] [C] [D] [E] [F] [G]
min 15 15 17 15 15 15 19
mean 68 59 68 63 76 80 91
max 210 102 118 116 789 129 252
std 19 12 13 13 94 13 22

M24-2
min 12 15 17 12 15 16 11
mean 39 31 38 33 31 46 56
max 311 68 118 59 68 98 320
std 20 6 12 7 6 9 22

M30-2
min 7 7 7 7 16 6 6
mean 30 30 31 29 31 40 43
max 61 46 49 53 46 64 80
std 8 5 6 6 5 7 9

M63-3
min 11 13 15 12 13 14 9
mean 46 40 46 40 40 53 62
max 1000 97 99 99 97 109 1000
std 32 11 12 11 11 11 33

M68-3
min 14 17 21 15 17 21 12
mean 58 46 57 53 46 71 86
max 172 89 144 105 89 179 335
std 23 13 18 15 13 21 34

Table 2. Statistics over the average beat deviation (ABD) values
for the five Mazurkas and for 7 different alignment approaches
(see text). [A]: Pairwise alignment. [B]: Proposed progressive
alignment. [C]: Proposed without gap symbols. [D]: Proposed
using DTW-cost-based alignment order. [E]: Proposed using it-
erative alignment. [F]: Proposed without DLNCO features. [G]:
Pairwise without DLNCO features. All values in milli-seconds.

alignment accuracy on average, the main effect is a gain in
robustness against strongly incorrect alignments.

3.3 Gap Penalties

In the next experiment, we investigate the influence of the
gap penalty parameter by testing a slightly modified ver-
sion of our proposed method. To this end, we modify
the way the template is creating by setting z` = (z̃n`

(1),
. . . , z̃n`

(k − 1), xk
m`

) for ` ∈ [1 :L], i.e. we do not insert
gap symbols but copy features as necessary to create the
new template (comparing to Section 2.2). The results us-
ing this modification are shown in column C in Table 2.
Comparing these values to our proposed method (column
B) and the reference pairwise method (column A), we see

that this gap-less version typically improves over pairwise
alignment in terms of maximum ABD values and the stan-
dard deviation, just as the proposed method. For example,
for M17-4, the max ABD in column A is 210ms, while the
max ABD in column C is 118ms. However, we do not ob-
serve a decrease in the mean ABD compared to pairwise
alignment. For example, for M17-4, while using gaps the
mean ABD drops from 68ms (column A) to 59ms (column
B), it stays on a similar level in column C (68ms). The
reason could be that by copying the features to create the
template, some temporal precision is lost and this results
in a minor loss of alignment accuracy.

3.4 Alignment Order

Next, we investigate the influence of the order in which we
compute the progressive alignment, comparing the length-
based and the DTW-cost-based strategy (see Section 2.3).
The results are given in columns B and D of Table 2, re-
spectively. As we can see, there are no significant differ-
ences between both strategies. For example, for M17-4,
the mean ABD using the length-based strategy is 59ms
(column B), while using the DTW-cost-based strategy the
ABD slightly increases to 63ms. The other statistical val-
ues show a similar behavior. Since these results do not
disclose any obvious advantages for the DTW-cost-based
strategy, we therefore propose to simply use the length-
based strategy. Interestingly, using the length-based strat-
egy but starting with the longest recordings led to worse
results.

Since (local) tempo differences can usually be handled
quite well using DTW, it is not obvious why sorting by
length yields a useful order. However, the fact that it does
could indicate that there might be a correlation between
the chosen tempo and other expressive parameters, such
as articulation or balance, as strong differences in these
parameters typically lead to difficulties for the alignment.
Furthermore, the fact that according to our evaluation the
shorter recordings were easier to align, could indicate that
a high tempo could limit the range of possible realizations
of expressive parameters in a performance. However, fur-
ther studies would be necessary to confirm such theories.



3.5 Iterative Alignment

In a further experiment, we investigate whether iterative
processing could further improve the alignment accuracy,
compare Section 2.3. To this end, we use two iterations:
the first iteration corresponds to progressive alignment, and
in the second iteration, each version is removed from the
template once and is then realigned. The results for this
extension are given in column E of Table 2. Overall, the
iterative variant led to a slight decrease in ABD in almost
all examples, which is not even visible in Table 2 as we
rounded all values. On the contrary, we observed a signif-
icant increase in ABD for M17-4 using the iterative vari-
ant. Here, the realignment led to a misalignment of several
shorter recordings. Therefore, the results do not indicate
any significant advantages of using iterative alignment.

3.6 Influence of Onset-Indicator Features

In a final experiment, we investigate the influence of the
chroma-based onset-indicator (DLNCO) features [10] on
the alignment accuracy when using progressive alignment.
To this end, we disabled the DLNCO features in our pro-
posed method, and computed the alignment only based on
the normalized chroma features. The results of this exper-
iment are given in column F in Table 2. As a further ref-
erence, we disabled the DLNCO features in our baseline
pairwise method as well (column G).

As we can see, the minimum over the ABD values re-
mains unaffected for most of the Mazurkas, which means
that easy to align pairs can be aligned with chroma fea-
tures alone just as well. For example, for M17-4, the mini-
mum value in column F is identical to the one in column B.
However, we see a significant increase in ABD in all other
statistical values. For example, the mean ABD for M17-
4 for our proposed method including DLNCO features is
59ms (column B), while disabling the DLNCO leads to a
mean ABD of 80ms (column F). Similar observations can
be made comparing the pairwise results. Overall, the re-
sults seem to indicate that including onset-indicator fea-
tures indeed leads to a significant increase in alignment ac-
curacy also for progressive alignments.

4. CONCLUSION

In this paper, we introduced a method for aligning mul-
tiple versions of a piece of music in a joint way. The
availability of multiple versions to compare against during
the alignment, stabilized the comparison for hard-to-align
recordings and led to an overall increase in alignment ac-
curacy and, in particular, in alignment robustness. Our ex-
periments using real-world recordings from the Mazurka
Project demonstrated that our proposed method can indeed
be used to raise the alignment accuracy compared to pre-
vious methods that are limited to pairwise alignments. For
the future, we plan to further investigate the behaviour of
our procedure. In particular, we plan to analyze how other
ordering strategies influence the alignment accuracy. We
will also further explore different strategies to implement
a cost for the gap symbol and to make it more adaptive.
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