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A DYNAMIC PROGRAMMING VARIANT OF NON-NEGATIVE MATRIX DECONVOLUTION
FOR THE TRANSCRIPTION OF STRUCK STRING INSTRUMENTS

Sebastian Ewert Mark D. Plumbley Mark Sandler

Queen Mary University of London, UK

ABSTRACT
Given a musical audio recording, the goal of music transcription
is to determine a score-like representation of the piece underlying
the recording. Most current transcription methods employ variants
of non-negative matrix factorization (NMF), which often fails to
robustly model instruments producing non-stationary sounds. Using
entire time-frequency patterns to represent sounds, non-negative
matrix deconvolution (NMD) can capture certain types of non-
stationary behavior but is only applicable if all sounds have the same
length. In this paper, we present a novel method that combines
the non-stationarity modeling capabilities available with NMD with
the variable note lengths possible with NMF. Identifying frames in
NMD patterns with states in a dynamical system, our method iter-
atively generates sound-object candidates separately for each pitch,
which are then combined in a global optimization. We demon-
strate the transcription capabilities of our method using piano pieces
assuming the availability of single note recordings as training data.

Index Terms— Non-Negative Matrix Deconvolution, Music
Transcription, Convolutive Signal Models, Dynamical Systems.

1. INTRODUCTION

Automatic music transcription has a long history in musical signal
processing and is often considered a key technology for various tasks
in computational musicology and music information retrieval [1–4].
While discriminative methods have been used successfully for tran-
scription, for example using support vector machines [5] or recurrent
neural networks [6], most state-of-the-art methods use factorization
approaches, with non-negative matrix factorization (NMF) and its
variants being the most successful, see for example [7–11]. In gen-
eral, the underlying idea of NMF-based methods is to model a given
time-frequency representation of a recording as a mixture of note- or
sound-specific spectral template vectors and to estimate their indi-
vidual activity over time. While every NMF-variant has its specific
advantages and disadvantages, an overarching principle is that spec-
tral properties are decoupled from temporal properties in the model,
i.e. neither do the activations provide information about how a note
spectrally manifests nor do the templates describe when a note oc-
curs or how it evolves. While this simplifies the model and accel-
erates the parameter estimation, it also limits the expressivity of the
model, in particular if the sound produced by an instrument for a
note is non-stationary. More precisely, most approaches employ up
to three spectral templates to model a sound or note, which can rep-
resent for example the attack, sustain and release segments of a note.
However, this leads to several problems. First, often the templates
can be used jointly to represent a sound which is often inappropri-
ate, e.g. attack and release templates together. Second, there is no
enforced temporal progression of spectral templates. For example,
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if a key on a piano is hit, we expect a sustain template to occur after
the attack after a certain amount of time. Third, even with three tem-
plates the full non-stationary behavior of many instruments cannot
fully be modeled. Fourth, activations between neighboring frames
are not coupled. Such coupling is useful for modeling instruments
for which the activation of an attack template has direct implications
for the activation of the subsequent sustain templates.

To address the first two problems, a variant of NMF referred
to as non-negative factorial hidden Markov model (N-FHMM) was
introduced where several sets (or dictionaries) of templates are em-
ployed in parallel and a Markov process governs the transition be-
tween the sets [12, 13]. This way, the model introduces a tempo-
ral dependency between spectral templates and can enforce or fa-
vor certain transitions between them, e.g. from attack over sustain
to release. While effectively solving the first two problems men-
tioned above, it does not address the last two, and additionally intro-
duces a new one: computational costs. Similar to a regular factorial
HMM [14], the size of the state space used in an N-FHMM is expo-
nential in the number of independent Markov chains and dictionary
elements used, which can limit its practical use for transcription to
only simple cases [15]. Replacing a parameter estimation based on
expectation-maximization with a variational formulation can only
mitigate this problem to some degree [16]. Also, decoupling a large
number of parameters as typically done with either of these two prin-
ciples can make certain degenerate solutions more likely.

Non-negative matrix deconvolution (NMD) as introduced in
[17] is capable of addressing all four problems mentioned above.
The idea is to use, instead of individual spectral templates, entire
time-frequency patterns, which concatenate several templates over
time, as building blocks within the model. The use of patterns does
not only enforce a specific temporal order for the templates inside
them, but also effectively couples their activations. However, since
many instruments allow a fine-grained control over their acoustic
properties, an extremely large number of patterns would be required
to properly model their sound, which practically limits the appli-
cation of NMD to percussive instruments, where such control is
typically very limited. For example, NMD has been successfully
employed to transcribe drum performances [18, 19]. However, since
the patterns have a fixed length, NMD has not been used to transcribe
struck string instruments such as the piano (or some plucked string
instruments including the harpsichord), where notes are typically of
variable length.

The idea in this paper is to construct a signal model appropriate
for the class of struck string instruments capable of producing sound
of variable length. Combining ideas from both N-FHMM and NMD,
each sound source (corresponding to individual keys on a piano, for
example) is modeled as a dynamical system, which is either in a
silent state or in one of several sounding states, where each sounding
state is associated with a template in an NMD pattern and activa-
tions are coupled across time. Our method proceeds iteratively in



two steps. First, the state sequence is decoded using dynamic pro-
gramming (similar to Viterbi decoding), which generates a set of
sound-object candidates for each sound source. In a second step, ac-
tivation parameters for all candidates are updated jointly in a large
sparse linear system. By essentially combining ideas from Viterbi
training [20] with a subsequent global optimization, our parameter
estimation can avoid some degenerate solutions that can result from
extreme parameter decoupling.

The paper is organized as follows. Technical details of our
method are described in Section 2. We report on some of our exper-
iments in Section 3. Conclusions and prospects on future work are
given in Section 4.

2. PROPOSED METHOD

For our method, we assume that a recording for each of K possible
sound sources (corresponding to individual keys on a piano or drums
in a drumkit) is available as training material. Computing a log-
frequency magnitude spectrogram from each recording, we obtain K
time-frequency patterns, each consisting of T>0 spectral templates.
By adding the vector containing only zeros at the beginning of the
pattern to model silence for the sound source, we obtain a pattern
dictionary tensor D ∈ RK×M×T+1

≥0 , where M is the number of
frequency bins. Next, given a log-frequency magnitude spectrogram
V ∈ RM×N

≥0 of a recording to be transcribed, we model each entry in
V as a mixture of the K sound sources, where each sound source can
only be in one of the T sounding states or in the silent state. More
precisely, we try to minimize the generalized Kullback-Leibler (KL)
divergence D(V, Ṽ ) :=

∑
m,n d(V (m,n), Ṽ (m,n)) between the

given data and our model, where d(a, b) := a · log
(
a
b

)
− a + b for

a, b > 0. The complete model is defined as a sum over K sound
models

Ṽ (m,n) :=
∑
k

Ṽk(m,n), (1)

which are defined as

Ṽk(m,n) := D(k,m,S(k, n)) · A(k, n− S(k, n) + 1), (2)

where S ∈[0 :T ]K×N is the state matrix that encodes in which state
each sound source is in each time frame, and A ∈ RK×N

≥0 is the ac-
tivity matrix, which specifies the intensity (or loudness) of a sound
source. For n /∈[1 :N ], we set A(k, n) := ∞. Note that, the state
matrix also controls which activation values are coupled between
time frames – a concept similar to NMD. Furthermore, we require
for each k ∈[1 :K] and n ∈[2 :N ] that the transition from state
S(k, n− 1) to state S(k, n) follows a discrete dynamical system,
which is illustrated in Fig. 1 and will be described in more detail
below. Essentially, the system allows the state to be silent and stay
silent, or to transition into the first sounding state. From there, how-
ever, it must traverse through at least the next TM−1 subsequent
states, and can only then return to silence, or continue sounding. In
this context, TM is called the minimum sound length.

2.1. Estimating the State Matrix

Our objective now is to estimate S and A. Since our method com-
prises K independent dynamical systems, each of which is similar to
a Markov process as used commonly in probabilistic modeling, one
could try to cast this problem as a factorial hidden Markov model.
As discussed in detail in [14], even without the temporal coupling
between activation parameters that we use in our system, the num-
ber of states in the resulting HMM would roughly be TK such that

Fig. 1. Dynamical system describing allowed transitions between
states for each sound source. State 0 is the silent state while all
others are sounding states and are associated with a template in a
time-frequency pattern. If the sounding states are entered, at least
TM states have to be traversed.

exact inference would be impossible (a typical setting for our appli-
cation is T=300 and K=88). A typical approach in such a scenario is
to decouple most parameters, which intuitively means to fix most pa-
rameters in some way and updating only a few at a time [14,16]. This
is typically done either following expectation maximization (EM) or
variational Bayes (VB) principles. However, due to the temporal
coupling between activations the state space increases even further,
such that only a minimal number of parameters can practically be
updated jointly, which in some initial experiments often led to use-
less local minima of D(V, Ṽ ) and meaningless transcription results.

Therefore, our method approaches the parameter estimation
problem from a different angle, resulting in an easy to implement
and efficient update process. First, we estimate the best fitting state
sequence independently for each of the K sound sources using
dynamic programming - this is much simpler than estimating full
posterior probabilities as in EM or VB and vaguely resembles the
concepts behind Viterbi training [20]. While this simplicity often
leads initially to many wrong state estimates, it enables us to create
sound-object candidates from the state sequences, whose activations
we can optimize jointly across all sound sources. This way, the joint
optimization does not only mitigate the problems resulting from the
simple first step, it often avoids degenerate local minima typical for
updates heavily relying on parameter decoupling.

To describe the first step in more detail, we define for each k a
distance matrix Ck ∈ RT+1×N

≥0 , which describes the KL-divergence
between the T + 1 templates in the k-th pattern and the N frames in
V , as follows:

Ck(t, n) :=
∑
m

d
(
D(k,m, t) · A(k, n− t + 1) +

Ṽ (m,n)− Ṽk(m,n), V (m,n)
)

for t ∈[0 :T ] and n ∈[1 :N ]. Here, Ṽ (m,n)− Ṽk(m,n) is the cur-
rent model excluding the k-th sound source. Using Ck and dynamic
programming, we can find the state sequence S(k, 0), . . . ,S(k,N)
minimizing the distance

∑
n Ck(S(k, n), n) among all sequences

valid under the dynamical system shown in Fig. 1. To this end, we
recursively define an accumulated distance matrix Dk ∈ RT+1×N

≥0

and a step matrix Ek ∈[0 :T ]T+1×N as

Dk(t, n) := Ck(t, n) +

{
Dk(t− 1, n− 1), t > 0

min
t̃∈∆

(Dk(t̃, n− 1)) t = 0 (3)

Ek(t, n) :=

{
t− 1, t > 0

argmint̃∈∆(Dk(t̃, n− 1)) t = 0
(4)

where ∆ := {0, TM + 1, TM + 2, . . . , T} is the set of states that
allow a return to the silence state and Dk(t, 0) := Ck(t, 0) for



all t. We start by setting S(k,N) = argmint Dk(t,N) and set
S(k, n) = Ek(S(k, n + 1), n + 1) for n ∈[1 :N − 1]. Note that
the definition in Eqn. 3 only allows state transition that are valid
according to our dynamical system. Furthermore, note that we are
making a hard decision on the state sequence, which is in contrast
to expectation maximization where all states are essentially possi-
ble in all time frames and only differ in their probability. Since we
will make use of this estimated sequence to update other parameters
in our model, this approach is similar to Viterbi training, which is
sometimes called hard-EM [20]. Finally, note that this process can
easily be parallelized over k.

2.2. Estimating the Activations

After updating S, we next need to update the other set of parameters
in our model: the activations A. Here, our method has to take into
account that one activation value can actually be used across several
time frames, which complicates the update process. However, we
can exploit two details. First, the coupling is not random but fol-
lows an meaningful pattern. Second, by making a hard decision on
the state sequences, we do not have to account for a huge posterior
probability distribution that describes the likelihood of all sequence
combinations, but we have exactly one state for each k in each frame.
Combining these aspects, we obtain a straightforward way to update
A, following ideas similar to [21].

To this end, we first identify which templates are scaled by
the same activation value in Eqn. (2). In particular, assuming that
S(k, n) = 1, the model will use the first sounding template in the k-
th pattern to represent the n-th time frame by scaling it by A(k, n).
In this case, enforced by the dynamical system, S(k, n + 1) = 2,
such that the second sounding template will be used in frame n + 1.
However, again A(k, n) will be used to scale it. This continues,
until the state switches back to the silent state, i.e. S(k, n + `) = 0
for an ` > 0. This way, we obtain a sound-object starting in frame n
and ending in frame n+ `−1, which is linearly scaled in its entirety
by the activationA(k, n). Nothing else will be affected by the value
of A(k, n).

By scanning through S(k, 1), . . . ,S(k,N), we can easily find
all positions where the state sequence enters state 1 as well as the
closest, subsequent position where it enters state 0 again. This way,
we can create a list of potential sound-object candidates, which we
store in a sound-object candidate list L ∈ NR×3, where R is the
total number of sound-objects identified and each row is of the form
(k, n, n+`−1), i.e. the three entries encode the sound source index,
the beginning frame as well as the end frame. Once we have this
list, we can decompose our model into individual sound-objects. To
make the next steps more convenient, we store these sound-objects
as columns in a matrix D̂ ∈ RM·N×R, which is defined as follows

D̂(n ·M + m, r) := D(L(r, 1),m,S(k, n))

if n ∈ {L(r, 2), . . . , L(r, 3)}; we set D̂(n ·M + m, r) := 0 other-
wise. That means, to create column r, we only keep, from the entire
model defined in Eqn. 1, only the templates corresponding to the r-th
sound-object, set the rest to zero and stack the columns of the model
on top of each other. Similarly, we create a stacked version of the
input spectrogram V̂ (n ·M + m) := V (m,n). Note that while D̂
is potentially R times bigger than the input V , most entries will be
zero such that using sparse data structures D̂ will typically be much
smaller.

Making the sound-objects accessible like this, the update
process for A is now equivalent to minimizing the generalized
Kullback-Leibler divergence D(V̂ , D̂ · Â), where Â ∈ RR

≥0 are the

activations corresponding to the R sound-objects. Since V̂ , D̂ and
Â are non-negative matrices, this is a special case of NMF, and we
can use one of the available algorithms to solve for Â. For the sake
of simplicity, we follow the method proposed in [22], leading to the
following iteratively applied update rule:

Â ← Â �
D̂> · ( V̂

D̂·Â )

D̂> · J
(5)

where the · operator denotes the usual matrix product, the� operator
denotes the Hadamard product, J ∈ RM·N denotes the vector of
ones, and the division is understood point-wise. Once Eqn. 5 has
been applied a fixed number of times, the updated entries in Â can
be copied back into A: A(L(r, 1), L(r, 2)) := Â(r).

2.3. Practical Considerations

Similar to any reasonably complex model, the update process de-
scribed in this paper can get stuck in a local minimum of the function
to be minimized. Therefore, the parameters should be meaningfully
initialized to discourage certain degenerate solutions. In particular,
it is desirable to initially create a large number of sound-objects,
which has the effect that a large number of activation parameters can
be jointly optimized. To this end, we can initialize S to the silent
state, as then each dynamical system responsible for a certain sound
source will initially try to explain the energy of other sound sources
as well, which leads to additional sound-objects. Furthermore, in-
stead of creating a new list L in each iteration, it can be useful to
only amend it with sound-objects newly found in a given iteration.
Finally, the activations should not be initialized randomly but with a
uniform value Amin, which also serves as a threshold to define which
sound-objects will finally be used to generate a transcription result,
consisting of the list L being plotted in a piano roll representation,
see Fig. 2 for an example.

3. EXPERIMENTS

To illustrate the performance of our proposed method, we conducted
a series of experiments. In particular, we were interested in how
our method would perform in a scenario in which it is reasonable to
assume that recordings of individual notes can be provided, for ex-
ample during a recording studio session or a piano student’s exercise
session. Since we were not able to find a dataset, which includes
both audio recordings of entire piano pieces and single note record-
ings of a certain length, we decided to create a dataset. In particu-
lar, we downloaded 10 MIDI files that are publically available from
the University of Minnesota piano-e-competition website1. These
MIDI files were recorded using a Yamaha Disklavier during an in-
ternational piano playing competition and therefore closely capture
the actual, real-world performance of highly skilled pianists. The
pieces were selected to cover a broad range of composers and per-
formers but were otherwise selected randomly, see Table 1 for an
overview. To create high quality audio versions from these MIDI
files, we employed Native Instruments’ Vienna Concert Grand VST
plugin, which comprises samples for a Boesendorfer 290 concert
grand with an uncompressed size of almost 14 GB. Additionally,
we used the plugin to create recordings of single notes for that pi-
ano, each 6 seconds long and played in forte (MIDI velocity 100).
Overall, while the acoustic data was synthesized, we believe that the
choice of the MIDI files in combination with the high quality plugin
can be used to obtain some insight into our proposed method.

1http://www.piano-e-competition.com



Composer Piece Performer Pre Rec F
Bach BWV. 851 Colafelice 91% 93% 92%
Beethoven Op. 10 No. 3 Wang 86% 89% 87%
Chopin Op. 25 No. 11 Kim 76% 83% 79%
Haydn HobXVI 52 Mizumoto 86% 87% 86%
Liszt Polonaise E-Maj Denisova 90% 92% 91%
Mendelssohn Op. 54 Sham 94% 84% 89%
Mozart K284-01 Ozaki 83% 89% 86%
Ravel Alb. D. Grac. Teo 86% 87% 86%
Schubert Op. 142 No. 3 Chon 92% 91% 91%
Stravinsky Op. 7 No. 4 Lin 84% 96% 89%
Average 87% 89% 88%

Table 1. Evaluation results: Precision, Recall and F-Measure for
detected note onsets for 10 classical piano pieces.

We used the method described above to transcribe the first 30
seconds of each recording and compared it with the underlying MIDI
files. Similar to [23, 24], we employed precision (Pre), recall (Rec),
and F-measure (F) values as used in the MIREX evaluation cam-
paign for the onset detection task to evaluate how well our method
detects note onsets. More precisely, a detected note is considered
as correct if there is a note in the corresponding ground truth MIDI
file having the same MIDI pitch, with on onset position up to 50ms
apart from the detected note. Every ground truth note can only val-
idate up to one detected note. By counting the number of correctly
detected notes (TP), incorrectly detected extra notes (FP) and incor-
rectly missed notes (FN), we can define the precision Pre := TP / (TP
+ FP), recall Rec := TP / (TP + FN) and the f-measure F := 2 · Pre ·
Rec / (Pre + Rec). The result for the 10 pieces are given in the last
three columns of Table 1.

Some typical errors made by our method are illustrated in Fig. 2,
which shows a piano roll representation of the Disklavier MIDI file
as well as of the transcription result obtained from the corresponding
audio for Schubert’s Impromptu Opus 142 No. 3. Comparing Fig. 2a
and b, we see that most notes were correctly detected. For our dis-
cussion, we highlighted two positions where the transcription failed.
In particular, the red marker starting at 4 seconds shows a D]4 note
with an over-estimated length. Note that at the same time an A4 was
played, whose length was under-estimated by our method. Here, the
underlying reason is that the A4 was played softly, which led to a dif-
ferent energy distribution over the harmonics compared to our single
note pattern, which was played in forte and comprises prominent
higher partials. This mismatch in the pattern let the parameter esti-
mation to rather prolong the D]4. A similar problem occurred at the
second marker in Fig. 2b. Here, a D3 is played softly as well, and due
to the resulting spectral differences compared to our time-frequency
pattern, the method does not detect the note event. A similar ef-
fect happens around 2 seconds as well. We confirmed these findings
experimentally, by replacing the forte time-frequency patterns with
patterns played in mezzo forte. In this case, the evaluation measures
for the Chopin piece, which are slightly below the others in Table 1,
improved considerably as the interpretation by Kim features quite a
few softly played notes at the beginning.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel method for the transcription of
struck string instruments that offer control over the length of the
sound they produce, such as the piano. By combining ideas from
non-negative factorial hidden Markov models and non-negative
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Fig. 2. Transcription result for Schubert’s Impromptu Opus 142
No. 3 performed by Sae-Yoon Chon. The red, dashed markers in-
dicate positions discussed in the text.

matrix deconvolution, our approach models each sound source as
dynamical system, which is either in a silent state or in one of
a sequence of sounding states, each of which is associated with
a time frame in a time-frequency pattern. Our method employs
dynamic programming to hard-decode the independent state se-
quences, which in its simplicity yields results inferior to EM or
VB decoding, but at the same time enables a subsequent global
optimization over sound-objects, which not only compensates for
the simplicity in the first step but helps avoiding local-minima that
result from parameter decoupling in EM or VB. Our experiments
on classical piano music indicate a high transcription accuracy on
the note-onset level of 88% f-measure on average for the proposed
method. In the future, we plan to extend some of the ideas behind
the parameter estimation process, and to evaluate the method in
various real-world and simulated application scenarios [25].
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