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Text-based LSTM networks for
Automatic Music Composition

Keunwoo Choi, George Fazekas, and Mark Sandler ?
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{keunwoo.choi, g.fazekas, mark.sandler}@qmul.ac.uk

Abstract. In this paper, we introduce new methods and discuss results
of text-based LSTM (Long Short-Term Memory) networks for automatic
music composition. The proposed network is designed to learn relation-
ships within text documents that represent chord progressions and drum
tracks in two case studies. In the experiments, word-RNNs (Recurrent
Neural Networks) show good results for both cases, while character-based
RNNs (char-RNNs) only succeed to learn chord progressions. The pro-
posed system can be used for fully automatic composition or as semi-
automatic systems that help humans to compose music by controlling a
diversity parameter of the model.
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1 Introduction

Music composition is considered creative, intuitive and therefore inherently hu-
man. Nevertheless, it has a long history of mathematical approaches since Hiller
and Isaacson proposed to use Markov chains for automatic composition [6]. The
field of automatic composition includes a wide range of tasks such as the com-
position of melody, chord, rhythm [10], and even lyrics [3], i.e. every typical
components of music, and has been subject to numerous research studies. There
are many applications for automatic composition too; automatic background
music generation, AI-assisted composition systems and improviser software1 for
example.

Music can be represented as a sequence of events and thus it can be modelled
as conditional probabilities between musical events. For example, in harmonic
tracks, some chords are more likely to occur than others given the previous
chords, while the whole chord progressions often depend on the global key of the
music. In many automatic composition systems, these relationships are simplified
by assuming that the probability of the current state p(n) only depends on the
probabilities of the states in the past p(n− k)...p(n− 1). A sequence of musical
events - notes, chords, rhythm patterns - is generated by predicting the following
event given a seed sequence.

? This paper has been supported by EPSRC Grant EP/L019981/1, Fusing Audio and
Semantic Technologies for Intelligent Music Production and Consumption.

1 http://jukedeck.com, http://arpegemusic.com, Band-in-a-Box, PG Music Inc.

http://jukedeck.com
http://arpegemusic.com
https://www.pgmusic.com
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Hidden-Markov models (HMMs) are one of the most popular methods to
model and predict sequences. HMMs are based on the assumption of k = 1
(Markov assumption) given the sequence of the hidden states which determine
the visible states. Choral harmonisation is generated after learning chorales by
Bach using a HMM in [1], where 229 and 153 chorales are used for training and
testing, respectively. In [14], chord progressions are generated to accompany a
melody to help non-musicians to create music using a HMM. The training set of
the HMM consists of 298 lead sheets including pop, rock, R&B, jazz, and coun-
try music. In the prediction, the system generates chords using a 62×62 chord
transition probability matrix. In practice, HMMs had been the most suitable for
time-series modelling given the data, computing power, and feasible optimisa-
tion strategies. One of the drawbacks of HMMs, however, is the inefficiency of
1-of-K scheme of its hidden states. The memory of HMM is limited to log2(N)
bits when there is N hidden states, which requires to learn N2 parameters for
the transition matrix.

Recurrent Neural Networks (RNNs) allow for incorporating long term depen-
dency in the model. Jordan net [8], a simple version of RNNs, is used in [12] to
generate chord sequences. In [13], melodies were generated by a system named
CONCERT, which is trained on sets of 10 Bach pieces to generate melodies by
note-wise prediction. One ability CONCERT lacks is to learn the global struc-
ture; this may be due to the difficulty of training an RNNs. Theoretically, it
can remember infinitely long sequences, although in practice it is limited by the
vanishing gradient problem [7]. During the training of back-propagation through
time, the gradient is extremely diminished by multiplications of sigmoid opera-
tions.

LSTM (Long Short-Term Memory) units solved this vanishing gradient prob-
lem [7]. LSTM allows the gradient to be flowed by a separate path with not
multiplication but addition operations. LSTM is adopted in [4] to learn 12-bar
Blues chords progressions and melodies. [11] focuses on the generation of per-
cussive tracks using LSTM network. The network in [11] directly analyses audio
content of drum tracks and learns features using LSTM.

In this paper, we introduce applications of character- and word-based RNNs
with LSTM units for the automatic generation of jazz chord progressions and
rock music drum tracks. Our work is differentiated from previous works by two
aspects. First, the LSTM networks we use are designed to learn from text data
rather than representations of musical symbols or numeric values. Directly using
text data minimises the overall design procedures for the encoding-decoding
scheme and the network. Second, compared to the previous research [1],[4],[14],
the LSTM networks is trained using a large dataset, which enables itself to learn
more complex relationship between the chords in a large set.

In the Section 2, we introduce character-based RNNs and the proposed ar-
chitecture. In Sections 3 and 4, two case studies on the applications of RNNs
to automatic composition are explained - for jazz chord progressions and rock
music drum tracks. We conclude the work in Section 5.
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2 The architecture

2.1 Character-based RNNs

Char-RNNs are RNNs with character-based learning [15], which is different from
the conventional approach of word-based learning. When applied to the texts of
chords, a char-RNN predict a vector that corresponds to a character (e.g. predict
a based on C:m, and predict j based on C:ma), while a word-RNN predicts a
vector, which corresponds to a unique chord (e.g. C:maj based on G:maj ). Using
char-RNNs in this work has two merits.

First, it is based on the minimal assumption - there is no constraint on the
form of the text representation of music. It is worth inspecting if RNNs can learn
musical information with such a weak assumption.

Second, fewer number of characters means fewer number of states, which
results in reducing the computational cost. From a linguistics point of view, se-
quence learning methods such as HMMs and RNNs used to model each word(e.g.
chord) as a state as it is natural to find the relationships between words. One
drawback of word-based learning is the large number of states (or the size of
vocabulary); in natural language processing tasks, the vocabulary size easily ex-
ceeds few thousands to even few millions. In the proposed method the size of
the chord vocabulary is 1,259. With character-based prediction, this decreases
to 39.

The price of small vocabulary size is a longer sequence; as we need to learn
character by character, the model should remember a longer sequence of states.
As mentioned above, the LSTM unit helps the RNNs to learn this long-term
dependency better. This trade-off does not necessarily benefit as in Section 4.

2.2 The Proposed Architecture

We use two LSTM layers, each of which consists of 512 hidden units. Dropout
of 0.2 is added after every LSTM layers [16].

We use the Keras deep learning framework [2]. During the optimisation,
categorical cross-entropy is used as a loss function and optimisation is performed
by ADAM [9]. This optimiser shows an equivalent final performance to Stochastic
Gradient Descent with Nestrov momentum with faster convergence.

The prediction is stochastic. In each prediction for time index n, the network
outputs the probabilities of every states. To make the system tunable, We employ
a diversity parameter α in the prediction stage (see Eqn. ??), which suppresses
(α < 1) or encourages (α > 1) the diversity of prediction by re-weighting the
probabilities. In detail, the probabilities of i-th state, pi, are re-weighted as
p̂i = exp (log(pi)/α). Then, one of the states is selected by sampling a state
according to the re-weighted probabilities.

As stated in Section 3, we perform experiments with char- and words-RNNs.
We keep the same size and number of layers for both networks, although they
result in different effective lengths; for example, manifold states are needed to
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F:9 |
D:min7 G:9 |
C:maj F:9 |
C:maj |

F:9 F:9 F:9 F:9 D:min7 D:min7
G:9 G:9 C:maj C:maj F:9 F:9
C:maj C:maj C:maj C:maj

Table 1: An example of the text representations of chord progressions in score
(left) and the training data (right). A 4-bar chord progression is generally written
in the form on the left, where the positions of the chords loosely indicate the
chord change timings. On the right, the text show how the score on the left is
represented in the training data. Here, the chords for every quarter notes are
explicitly written and bar indicators are removed.

be predicted to complete a chord in char-RNNs while each state correspond to
a chord in word-RNNs.

The dataset, code and audio files are released on web.2

3 Case Study 1: Chord progressions

3.1 Representation

The goal of this experiment is to generate chord progressions by training an
LSTM network on jazz chord progressions. Here, we do not use any musical in-
terpretation of the chords such as binary vectors to represent pitch and chords
(as in [5]) but completely rely on their text representations. Table 1 shows an
example of a chord progression and the corresponding texts. The left is an exam-
ple of a chord notation in The Realbook score, where the positions of chords are
loosely related to the timings of chord changes. The score on the left is converted
into the text on the right, which specifies every chord for each quarter note.

We used 2, 486 scores from The Realbooks and The Fakebooks as training
data. Every score file was parsed from band-in-a-box format to .xlab format.
Then they were transposed to the key of C while every blank quarter note was
filled with its preceding chord as in the Table 1. Finally, we put _START_ and
_END_ flags (any distinctive words can be used as flags) at the beginning and
the end of each score.

Although the key was transposed to C, only 867 (out of 2,846) scores end
with C:maj (30%), followed by 489 G:7 (17%), 186 C:maj6 (7%), 52 F:maj (2%),
and 1,252 scores end with the others – 237 chords (46%). This is because the
The Realbook chord progressions usually end with chords for a turn-around to
make the progressions natural to repeat the score.

2 https://github.com/keunwoochoi/lstm_real_book

https://github.com/keunwoochoi/LSTMetallica

https://soundcloud.com/kchoi-research/sets/lstm-realbook-1-5

https://soundcloud.com/kchoi-research/sets/lstmetallica-drums

https://github.com/keunwoochoi/lstm_real_book
https://github.com/keunwoochoi/LSTMetallica
https://soundcloud.com/kchoi-research/sets/lstm-realbook-1-5
https://soundcloud.com/kchoi-research/sets/lstmetallica-drums
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There were 1, 259 unique chords in the training dataset. In other words, the
vocabulary size of word-RNN was 1, 259. However there were only 39 charac-
ters in total, which significantly reduced the computation of char-RNN. The
total numbers of chords (words) and characters were 539, 609 and 3, 531, 261,
respectively.

3.2 Results

We set the system to output a chord progression for every diversity parameter α
after every iteration. In this paper, we present four results from each networks
(char-RNNs and word-RNNs), part of which are reported in the Table 2. For
simplicity, we added bar symbols | and removed repeating chords in the same
bar, e.g. | C:7 C:7 C:7 C:7 | reduced to | C:7 | and | C:7 C:7 E:min E:min |
reduced to | C:7 E:min |.

First, both char-RNN and word-RNN showed well-structured results. They
learned the local structures of chords and bars after sufficient number of it-
erations. In the result, the majority of chords continued for multiples of four,
implying a single chord for within a bar. They also learned the local relationships
between flags and chord. After one iteration, the flags are not placed properly
as in the table 2 (a), where _END_ is not followed by _START_ but repeats itself.

i α Chord progressions

1 0.8 C:maj | G:7 | ... | G:7 | C:maj

1 1.2
A#:maj | A:7 | A:7 D:min7 D:min7 D:min7 | D:hdim C:hdim |C:hdim
| C:hdim G:9 G:9 D:min7 | D:min7 D#:dim

23 0.8 C:7 F:maj|F:min|C:maj...C:maj|G:7| C:maj

23 1.2

C:7/5 C:7 | F:maj6 F#:dim | C:6(9) | C:6(9) | C:6(9) C:6(9) C:6(9)
C:maj | E:7(b9) | A:min(6,9) A#:min(6,9) | A#:min(6,9) |... D:min |
G:9 C:maj | ... G:7 _END_ _START_ C:maj

(a)

1 0.5 C:maj | G:7 | ... | G:7 | C:maj6

1 1.2
...C:maj _END_ ... _START_ _START_ C#:maj A#:min A:sus4/5 C:maj/3
| F:min7 A:min7 D:min7 D:min7... _START_

8 0.5
C:maj A:min | D:min7 G:7(b9) | C:maj | A:min7 | D:9 | D:9 | D:7 |
D:min7 | G:7 | C:maj | C:7 | F:maj | F:min | C:maj

8 1.2

C:Maj | G:min7 | F:maj | D:min7 D:min7 D:min7/4 G:sus4(b7) |
G:min9 G:min9 G:min9 F#:(1,3,b5,b7,9,13) | C:6(9) G:sus4(b7,9) ...
... C:min _END_ _START_ C:maj

(b)

Table 2: Chord progressions generated by char-RNN (a) and word-RNN (b).
Bar symbols (|) are inserted for readability and repeated chords in each bar are
omitted.
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As training continues, the flags start to appear in a sequence of _END_ _START_

C:maj as in the training texts. The last chords of the score, i.e., the chord before
_END_ are not always same as the first chord (C), which is also natural as they
vary in the training file.

Second, after sufficient training, both results showed chord progressions that
lie in Jazz grammar. Examples are II-V-I progressions (D:min7- G:9 - C:maj),
passing chords (A:dim - Ab:dim - G:min7), modal interchange chords (C:min6,
Db:maj ) and substitutions (B:7 as a tritone subdominant of F:7) in char-RNN;
modal interchanges (G:min7), circle of fifths (Eb:sus - Gb:maj6 - B:maj7), and
descending bass (C:maj6,9 - B:dim - A:min7 - Ab:7) in word-RNN. The authors
noticed a subtle difference between the results from the two approaches. The
results from word-RNN are more conventional progressions than those of char-
RNN. However, it cannot be the fundamental difference of the two approaches.
Instead, it may be caused by the difference of effective lengths between char-
and word-RNNs layers - they have the same length of state sequences, but it
results in a longer chord sequence in the word-RNN as mentioned in Section 2.2.
In other words, the short memory of char-RNN may result in predictions that
seem to be less constrained and stereotyped.

4 Case 2. Drum Tracks

4.1 Representation

There are issues when applying LSTM networks to drum tracks including find-
ing a way to create and effective text representation. Both chord progressions
and drum tracks are sequences of simultaneous events (pitches and drum com-
ponents). However, drum tracks do not have a meaningful and compressive rep-
resentation such as chord and it necessitate an encoding strategy of the track
into text. We also need a finer time resolution as generally there are more than
four events in a bar.

To encode simultaneous events in a track into texts, we used a binary rep-
resentation of pitches, i.e., components of drums - kick, snare, hi-hats, cymbals,
and tom-toms. For example, 100000000 and 010000000 represent kick and snare,
respectively, and a simultaneous playing of kick and snare can be represented by
110000000.

For efficient representation and learning, only nine components were allowed;
kick, snare, open hi-hats, closed hi-hats, three tom-toms, crash cymbal, and ride
cymbal.3 We limited the number of events in a bar to 16 by quantising the drum
track by 16th-note.

In the experiment, we first loaded 60 midi files of drum tracks of Metallica
and quantised them. Then they were encoded into the above described binary

3 Some of the components in the texts also represent other similar components, e.g. a
closed hi-hats in the texts can mean either closed hi-hats or pedalled hi-hats in the
original midi file.
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Fig. 1: A score of a generated drum track.

representation. We also added a flag _BAR_ as an annotation of the bar segments
in order to check if the networks learns the local structure.

There can be theoretically 29 = 512 words, but there are supposedly much
fewer words because the combinations of drum components that are played si-
multaneously are limited. The size of the word vocabulary in the training file is
119 and the file consists of 2,141,692 words in total.

4.2 Results

Char-RNNs turned out to fail to learn the drum tracks and output arbitrary
0’s and 1’s without any structures (the results have no spaces or _BAR_ flags).
The length of network may be too short to learn the long-term relationship be-
tween characters. In char-RNNs, representing a single bar requires 16 events×10
characters=160 time steps. Encoding music sequences with only two characters
- 0 and 1 (+space to for segmentation) - is an extreme approach for char-RNNs.
In this paper, we therefore only report the result of word-RNNs.

Figure 1 shows one example of our results - a part of the generated track with
α = 1.0 after 25 iterations.4 It consists of reasonable rock drum patterns - 8-
beat hi-hats, combinations of kick and snare, and occasional crash cymbals and
tom-toms. Although there are occasional kick/snare/tom-toms notes on back
beats (of sixteen notes), hi-hats remain consistent, playing on 4-beat and 8-beat
pattern, which is very common for instance in drum tracks of Metallica.5

Controlling α provides a way to tune the technical virtuosity of the track.
Since large α increases the probabilities of occasional events, large α (=1.5)
results in tracks with many fill-ins with tom-toms and a crash cymbal. On the
other hands, when α < 1, the track almost never contains anything but kick,
snare, and hi-hats. As a result, it is possible to use a combination of small and
large α in a drum track generator that is guided by user, who specifies where to
add fill-ins.
4 The score uses the percussion clef where × refers to hi-hats, notes on middle and

bottom lines refers to snare and kick, respectively.
5 https://soundcloud.com/kchoi-research/00-24-100-bonus-for-score,

The score in the figure starts from 34-second.

https://soundcloud.com/kchoi-research/00-24-100-bonus-for-score
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5 Conclusion

We introduced an algorithm of text-based LSTM networks for automatic com-
position and reported results for generating chord progressions and rock drum
tracks. Word-RNNs showed good results in both cases while char-RNNs only
successfully learned chord progressions. The experiments show LSTM provides
a way to learn the sequence of musical events even when the data is given as
text. With the diversity parameter, the proposed algorithm can be used as a
tool that helps human composers. In the future, a more complex network with
the capability of learning interactions within music (instruments, melody/lyrics)
will be examined for a more complete automatic composition algorithm.
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