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ABSTRACT

Mixing multitrack music is an expert task where charac-
teristics of the individual elements and their sum are ma-
nipulated in terms of balance, timbre and positioning, to
resolve technical issues and to meet the creative vision of
the artist or engineer. In this paper we conduct a mixing
experiment where eight songs are each mixed by eight dif-
ferent engineers. We consider a range of features describ-
ing the dynamic, spatial and spectral characteristics of each
track, and perform a multidimensional analysis of variance
to assess whether the instrument, song and/or engineer is
the determining factor that explains the resulting variance,
trend, or consistency in mixing methodology. A number of
assumed mixing rules from literature are discussed in the
light of this data, and implications regarding the automa-
tion of various mixing processes are explored. Part of the
data used in this work is published in a new online mul-
titrack dataset through which public domain recordings,
mixes, and mix settings (DAW projects) can be shared.

1. INTRODUCTION

The production of recorded music involves a range of ex-
pert signal processing techniques applied to recorded mu-
sical material. Each instrument or element thereof exists
on a separate audio ‘track’, and this process of manipulat-
ing and combining these tracks is normally referred to as
mixing. Strictly creative processes aside, each process can
generally be classified as manipulating the dynamic (bal-
ance and dynamic range compression), spatial (stereo or
surround panning and reverberation), and spectral (equal-
isation) features of the source material, or a combination
thereof [1, 4, 8, 15].

Recent years have seen a steep increase in research on
automatic mixing, where some of the tedious, routine tasks
in audio production are automated to the benefit of the in-
experienced amateur or the time constrained professional.
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cense (CC BY 4.0). Attribution: Brecht De Man, Brett Leonard,
Richard King and Joshua D. Reiss. “An Analysis and Evaluation of Au-
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Most research is concerned with the validation of a mixing
rule based on knowledge derived from practical literature
or expert interviews [2, 6, 7, 9], usually through an exper-
iment where a method based on this assumption is com-
pared to a set of alternative methods. Furthermore, some
research has been done on machine learning systems for
balancing and panning of tracks [13]. In spite of these ef-
forts, the relation between the characteristics of the source
material and the chosen processing parameters, as well as
the importance of subjective input of the individual ver-
sus objective or generally accepted target features, is still
poorly understood. Recurring challenges in this field in-
clude a lack of research data, such as high-quality mixes in
a realistic but sufficiently controlled setting, and tackling
the inherently high cross-adaptivity of the mixing problem,
as the value of each processing parameter for any given
track is usually dependent on features and chosen process-
ing parameters associated with other tracks as well.

In this work, we conduct an experiment where a group
of mixing engineers mix the same material in a realistic
setting, with relatively few constraints, and analyse the ma-
nipulation of the signals and their features. We test the
validity of the signal-dependent, instrument-independent
model that is often used in automatic mixing research [6,
7], and try to identify which types of processing are largely
dependent on instrument type, the song (or source mate-
rial), or the individual mixing engineer. Consequently, we
also identify which types of processing are not clearly de-
fined as a function of these parameters, and thus warrant
further research to understand their relation to low-level
(readily extracted) features or high-level properties (instru-
ment, genre, desired effect) of the source audio. We dis-
cuss the relevance of a number of audio features for the
assessment of music production and the underlying pro-
cesses as described above. This experiment also provides
an opportunity to validate some of the most common as-
sumptions in autonomous mixing research.

2. EXPERIMENT
The mixing engineers in this experiment were students of
the MMus in Sound Recording at the Schulich School of
Music at McGill University. They were divided in two
groups of eight, where each group corresponds with a class
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from a different year in the two-year programme, and each
group was assigned a different set of four songs to mix.
Each mixing engineer allocated up to 6 hours to each of
their four mix assignments, and was allowed to use Avid’s
Pro Tools including built-in effects (with automation) and
the Lexicon PCM Native Reverb Plug-In Bundle, a set of
tools they were familiar with.

Four out of eight songs are available on a new multi-
track testbed including raw tracks, the rendered mixes and
the complete Pro Tools project files, allowing others to re-
produce or extend the research. The testbed can be found
on c4dm.eecs.qmul.ac.uk/multitrack. The au-
thors welcome all appropriately licensed contributions con-
sisting of shareable raw, multitrack audio, DAW project
files, rendered mixes, or a subset thereof. Due to copyright
restrictions, the other songs could not be shared.

We consider three types of instruments - drums, bass,
and lead vocal - as they are featured in all test songs in this
research, and as they are common elements in contempo-
rary music in general. Furthermore, we split up the drums
in the elements kick drum, snare drum, and ‘rest’. Three
out of eight songs had a male lead vocalist, and half of
the songs featured a double bass (in one case part bowed)
while the other half had a bass guitar for the bass part.

For the purpose of this investigation, we consider a frag-
ment of the song only, consisting of the second verse and
chorus, as all considered sources (drums, bass and lead vo-
cal) are active here.

Whereas the audio was recorded and mixed at a sam-
pling ratio of 96 kHz, we converted all audio to 44.1 kHz
to reduce computational cost and to calculate spectral fea-
tures based on the mostly audible region. The processed
tracks are rendered from the digital audio workstation with
all other tracks inactive, but with an unchanged signal path
including send effects and bus processing 1 .

3. FEATURES
The set of features we consider (Table 1) has been tailored
to reflect properties relevant to the production of music in
the dynamic, spatial and spectral domain. We consider the
mean of the feature over all frames of a track fragment.

We use the perceptually informed measure of loudness
relative to the loudness of the mix, as a simple RMS level
can be strongly influenced by high energy at frequencies
the human ear is not very sensitive to. To accurately mea-
sure loudness in the context of multitrack content, we use
the highest performing modification in [12] (i.e. using a
time constant of 280 ms and a pre filter gain of +10 dB)
on the most recent ITU standard on measuring audio pro-
gramme loudness [3].

1 When disabling the other tracks, non-linear processes on groups of
tracks (such as bus dynamic range compression) will result in a different
effective effect on the rendered track since the processor may be trig-
gered differently (such as a reduced trigger level). While for the purpose
of this experiment, the difference in triggering of bus compression does
not affect the considered features significantly, it should be noted that
for rigorous extraction of processed tracks, in such a manner that when
summed together they result in the final mix, the true, time-varying bus
compression gain should be measured and applied on the single tracks.

Category Feature Reference
Dynamic Loudness [3, 12]

Crest factor (100 ms and 1 s) [17]
Activity [7]

Spatial SPS [16]
P[band] [16]
Side/mid ratio
Left/right imbalance

Spectral Centroid [5]
Brightness
Spread
Skewness
Kurtosis ·
Rolloff (.95 and .85) ·
Entropy
Flatness
Roughness
Irregularity
Zero-crossing rate
Low energy [5]
Octave band energies

Table 1: List of extracted features

To reflect the properties of the signal related to dynamic
range on the short term, we calculate the crest factor over
a window of 100 ms and over a window of 1 s [17].

To quantify gating, muting, and other effects that make
the track (in)audible during processing, we measure the
percentage of time the track is active, with the activity state
indicated by a Schmitt trigger with thresholds at −25 and
−30 dB LUFS [7].

To analyse the spatial processing, we use the Stereo
Panning Spectrum (SPS), which shows the spatial position
of a certain frequency bin in function of time, and the Pan-
ning Root Mean Square (P[band]), the RMS of the SPS over
a number of frequency bins [16]. In this work, we use the
absolute value of SPS, averaged over time, and the stan-
dard Ptotal (all bins), Plow (0-250 Hz), Pmid (250-2500
Hz) and Phigh (2500-22050 Hz), also averaged over time.
Furthermore, we propose a simple stereo width measure,
the side/mid ratio, calculated as the power of side chan-
nel (sum of left and right channel) over the power of the
mid channel (average of left channel and polarity-reversed
right channel). We also define the left/right imbalance, as
(R − L)/(R + L) where L is the total/average power of
the left channel, and R is the total/average power of the
right channel. A centred track has low imbalance and low
side/mid ratio, while a hard panned track has high imbal-
ance and high side/mid ratio. Note that while these features
are related, they do not mean the same thing. A source
could have uncorrelated signals with the exact same energy
in the left and right channel respectively, which would lead
to a low left/right imbalance and a high side/mid ratio.

Finally, we use features included in the MIR Toolbox
[5] (with the default 50 ms window length) as well as oc-
tave band energies to describe the spectral characteristics
of the audio.
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4. ANALYSIS AND DISCUSSION
4.1 Analysis of variance

Table 2 shows the mean values of the features, as well as
the standard deviation between different mixing engineers
and the standard deviation between different songs. Most
considered features show greater variance for the same en-
gineer across different songs, than for the same song over
different engineers. Exceptions to this are the left/right im-
balance and spectral roughness, which on average appear
to be more dependent on the engineer than on the source
content. The change of features (difference before and af-
ter processing, where applicable) varies more for differ-
ent mixing engineers than for different songs, too, for all
features. However, when considering the features instru-
ment by instrument, the source material only rarely causes
the means of the feature to differ significantly (the means
are only significantly different through the effect of source
material for the zero-crossing rate of the snare drum track,
and for the spectral entropy of the vocal track). This sug-
gests that engineers would disagree on processing values,
whereas the source material has less effect.

For each feature, we perform an analysis of variance
to investigate for which feature we can reject the hypothe-
sis that the different ‘treatments’ (different source material,
mixing engineer or instrument) result in the same feature
value. For those features for which there is a significant ef-
fect (p < 0.05), we perform a multiple comparison of pop-
ulation means using the Bonferroni correction to establish
what the mean values of the feature are as a function of the
determining factor, and which instruments or songs have a
significantly lower or higher mean than others. We discuss
the outcome of these tests in the following paragraphs.

As some elements were not used by the mixing engi-
neer, some missing values are dropped when calculating
the statistics in the following sections.

4.2 Balance and dynamics processing
In general, the relative loudness of tracks, averaged over
all instruments, is dependent on the song (p < 5 · 10−11).
However, when looking at each instrument individually,
the relative loudness of the bass guitar (p < 0.01), snare
drum (p < 0.05) and other drum instruments (‘rest’, i.e.
not snare or kick drum, p < 5 · 10−4) is dependent on
mixing engineer.

In automatic mixing research, a popular assumption is
that the loudness of the different tracks or sources should
be equal [7]. A possible exception to this is the main ele-
ment, usually the vocal, which can be set at a higher loud-
ness [1]. From Figure 1, it is apparent that the vocal is sig-
nificantly louder than the other elements considered here,
whereas no significant difference of the mean relative loud-
ness of the other elements can be shown. Furthermore, the
relative loudness of the vocal shows a relative narrow range
of values (−2.7 ± 1.6 LU), suggesting an agreement on a
‘target loudness’ of about −3 LU relative to the overall mix
loudness.

It should be noted that due to crosstalk between the
drum microphones, the effective loudness of the snare drum
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Figure 1: Average and standard deviation of loudness of
sources relative to the total loudness of the mix, across
songs and mixing engineers.

and kick drum will differ from the loudness measured from
the snare drum and kick drum tracks. As a result, dis-
agreement of the relative loudnesses of snare drum and
other drum elements such as overhead and room micro-
phones does not necessarily suggest a significantly differ-
ent desired loudness of the snare drum, as the snare drum is
present in both of these tracks. In this work, however, we
are interested in the manipulations of the different tracks
as they are available to the engineer.

The crest factor is affected by both the instrument (p <
5 · 10−3) and song (p < 10−20), and every instrument in-
dividually shows significantly different crest factor values
for different engineers (p < 5 · 10−3). One exception to
the latter is the kick drum for a crest factor window size of
1 s, where the hypothesis was not disproved for one group
of engineers.

All instruments show an increase in crest factor com-
pared to the raw values (ratio significantly greater than
one). This means that the short-term dynamic range is
effectively expanded, which can be an effect of dynamic
range compression as transients are left unattenuated due
to the response time of the compressor, while the rest of
the signal is reduced in level.

The percentage of the time the track was active did not
meaningfully change under the influence of different source
material, individual mixing engineers or instruments. A
drop in activity in some instances is due to gating of kick
drum, but this is the decision of certain mixing engineers
for certain songs, and no consistent trend.

4.3 Stereo panning
Both the average left/right imbalance and average side/mid
ratio were significantly higher for the non-pop/rock songs
(p < 10−6).

The Panning Root Mean Square values P[band] all show
a larger value for the total mix and for the ‘rest’ group. The
difference is significant except for the lowest band, where
only the bass is significantly more central than the total
mix. This can be explained by noting that most of the low
frequency sources are panned centre (see further).

In literature on automatic mixing and mixing engineer-
ing textbooks, it is stated that low-frequency sources as
well as lead vocals and snare drums should be panned cen-
tral [1, 2, 4, 6, 8–10, 14]. To quantify the spatialisation for
different frequencies, we display the panning as a function
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Feature Kick drum Snare drum Rest drums Bass Lead vocal Average Mix

Loudness [LU] -13.15± 4.05
3.89 -16.78 ± 6.17

4.57 -12.68 ± 5.46
2.80 -2.65 ± 1.52

1.31 -9.50 ± 3.51
2.86 -10.95 ± 4.14

3.09 N/A

Crest (100 ms) 3.599 ± 0.603
0.330 4.968 ± 0.998

0.469 4.510 ± 1.065
0.354 2.565 ± 0.443

0.166 3.315 ± 0.403
0.208 3.791 ± 0.634

0.274 3.332 ± 0.294
0.116

Crest (1 s) 9.824 ± 3.074
1.911 16.724 ± 6.458

3.135 12.472 ± 4.710
1.823 4.339 ± 1.098

0.449 5.283 ± 1.102
0.514 9.728 ± 2.907

1.398 5.315 ± 0.997
0.554

Activity 0.676 ± 0.250
0.122 0.861 ± 0.161

0.078 0.909 ± 0.115
0.029 0.958 ± 0.076

0.009 0.844 ± 0.089
0.044 0.850 ± 0.117

0.048 0.995 ± 0.009
0.004

L/R imbalance 0.075±0.094
0.137 0.144 ±0.153

0.227 0.361 ± 0.303
0.213 0.107 ±0.135

0.176 0.045 ±0.072
0.085 0.146 ±0.139

0.152 0.088 ± 0.075
0.074

Side/mid ratio 0.036±0.055
0.076 0.036 ±0.040

0.043 0.242 ± 0.183
0.154 0.009 ±0.013

0.015 0.022 ±0.018
0.022 0.069 ± 0.060

0.059 0.101 ± 0.049
0.046

Ptotal 0.104 ± 0.102
0.090 0.108 ± 0.082

0.059 0.307 ± 0.028
0.027 0.075 ± 0.093

0.083 0.134 ±0.022
0.027 0.145 ± 0.060

0.052 0.234 ± 0.030
0.027

Plow 0.066±0.078
0.087 0.122 ± 0.102

0.073 0.243 ± 0.045
0.041 0.040 ± 0.063

0.059 0.147 ±0.034
0.042 0.123 ± 0.061

0.056 0.188 ± 0.042
0.034

Pmid 0.066±0.074
0.076 0.114 ± 0.090

0.064 0.290 ± 0.023
0.023 0.052 ± 0.082

0.067 0.177 ±0.027
0.035 0.140 ± 0.054

0.048 0.248 ± 0.027
0.023

Phigh 0.106 ± 0.104
0.091 0.105 ± 0.081

0.058 0.309 ± 0.029
0.028 0.076 ± 0.094

0.085 0.124 ±0.022
0.028 0.144 ± 0.061

0.053 0.231 ± 0.033
0.029

Centroid [Hz] 2253.8± 1065.6
729.8 4395.3 ± 1448.6

554.2 4130.8 ± 1228.1
483.2 1046.5 ± 520.1

232.4 2920.2 ± 452.1
264.7 2949.3 ± 872.1

418.6 2478.8 ± 517.9
247.1

Brightness 0.306 ± 0.105
0.103 0.598 ± 0.156

0.069 0.557 ± 0.115
0.058 0.135 ± 0.082

0.031 0.455 ± 0.071
0.040 0.410 ± 0.100

0.056 0.362 ± 0.070
0.034

Spread 3250.1± 783.2
447.5 4363.6 ± 701.9

335.9 4422.1 ± 734.6
292.3 2426.6 ± 559.2

320.4 3369.9 ± 324.6
191.3 3566.5 ± 587.5

298.0 3453.2 ± 421.7
200.6

Skewness 3.649 ± 1.068
0.886 1.492 ± 0.663

0.301 1.665 ± 0.682
0.246 6.234 ± 1.885

0.630 2.470 ± 0.573
0.243 3.102 ± 0.912

0.427 2.779 ± 0.600
0.257

Kurtosis 23.847± 11.997
9.164 5.965 ± 2.905

1.474 7.053 ± 3.449
1.263 58.870 ± 31.874

11.107 11.579 ± 4.267
1.784 21.463 ± 9.834

4.477 13.646 ± 4.511
2.073

Rolloff .95 [Hz] 8880.1± 3679.2
2151.2 13450.9± 3100.6

1582.2 13373.4± 2594.1
1007.4 4389.4 ± 2714.7

1244.5 9879.0 ± 1335.7
725.3 9994.5 ± 2498.0

1240.8 9679.0 ± 1563.8
734.3

Rolloff .85 [Hz] 4513.7± 2736.6
1788.8 8984.3 ± 3139.7

1348.5 8755.3 ± 2742.5
975.6 1625.5 ± 1205.0

594.3 5595.8 ± 1121.4
609.7 5894.9 ± 2047.2

986.1 5026.2 ± 1337.8
599.8

Entropy 0.655 ± 0.104
0.090 0.840 ± 0.084

0.057 0.832 ± 0.051
0.025 0.552 ± 0.073

0.026 0.735 ± 0.043
0.016 0.723 ± 0.066

0.038 0.744 ± 0.043
0.015

Flatness 0.148 ± 0.072
0.051 0.350 ± 0.142

0.056 0.337 ± 0.118
0.045 0.073 ± 0.035

0.020 0.167 ± 0.030
0.018 0.215 ± 0.074

0.035 0.174 ± 0.046
0.020

Roughness 84.72±84.85
98.32 36.30 ±41.16

43.32 67.57 ± 71.76
46.28 236.04±160.38

176.05 247.00±216.15
247.36 134.33±319.30

338.44 1843.31±1341.50
1419.35

Irregularity 0.158 ± 0.098
0.063 0.235 ± 0.151

0.079 0.297 ± 0.135
0.069 0.502 ± 0.176

0.065 0.540 ± 0.165
0.094 0.346 ± 0.136

0.075 0.705 ± 0.090
0.078

Zero-crossing 584.7 ± 509.5
409.4 2222.0 ± 1183.3

604.7 1988.9 ± 944.1
466.1 246.6 ± 217.8

89.6 1177.5 ± 233.7
143.6 1243.9 ± 554.3

305.4 905.2 ± 237.4
118.8

Low energy 0.752 ± 0.113
0.081 0.723 ± 0.084

0.055 0.682 ± 0.047
0.034 0.507 ± 0.096

0.033 0.544 ± 0.065
0.048 0.641 ± 0.073

0.048 0.541 ±0.035
0.038

Figure 1: default

1

Table 2: Average values of features per instrument, including average over instrument and value of total mix, with standard
deviation between different songs by the same mixing engineer (top), and between different mixes of the same song (bot-
tom). Values for which the variation across different mixes for the same song is greater than the variation across different
songs for the same engineer are displayed in bold.

102 103 1040

0.05

0.1

0.15

0.2

Frequency [Hz]

Av
er

ag
e 

SP
S

Figure 2: Mean Stereo Panning Spectrum (with standard
deviation) over all mixes and songs

of frequency in Figure 2, using the average Stereo Panning
Spectrum over all mixes and songs. From this figure a clear
increase in SPS with increasing frequency is apparent be-
tween 50 Hz and 400 Hz. However, this trend does not
extend to the very low frequencies (20-50 Hz) or higher
frequencies (>400 Hz).

4.4 Equalisation
To assess the spectral processing of sources, mostly equali-
sation in this context, we consider both the absolute values
of the spectral features (showing the desired features of the
processed audio) as well as the change in features (show-
ing common manipulations of the tracks). When only tak-

ing the manipulations into account, and not the features
of the source audio, similar to blindly applying a software
equaliser’s presets, the results would be less translatable
to situations where the source material’s spectral charac-
teristics differs from that featured in this work [2]. How-
ever, considering the change in features could reveal com-
mon practices that are less dependent on the features of the
source material. Therefore, we investigate both.

The spectral centroid of the whole mix varies strongly
depending on the mixing engineer (p < 5 · 10−6). The
centroid of the snare drum track is consistently increased
through processing, due to a reduction of the low energy
content as well as spill of instruments like kick drum (see
further regarding the reduction of low energy) and/or the
emphasis of a frequency range above the original centroid.

The brightness of each track except bass guitar and kick
drum (the sources with the highest amount of low energy)
is increased.

For a large set of spectral features (spectral centroid,
brightness, skewness, roll-off, flatness, zero-crossing, and
roughness), the engineers disagree on the preferred value
for all instruments except kick drum. In other words, the
values describing the spectrum of a kick drum across engi-
neers are overlapping, implying a consistent spectral target
(a certain range of appropriate values). For other features
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(spread, kurtosis and irregularity) the value correspond-
ing with the kick drum track is also significantly different
across engineers. The roughness shows no significantly
different means for any instrument except the ‘rest’ bus.

The low energy of each track is reduced for each in-
strument, with significantly more reduction for snare drum
than for kick drum and bass guitar. Its absolute value for
bass and vocal is significantly different across engineers,
whereas there is a general overlap for all other instruments
including the mix. As the variation in the resulting value of
low energy is higher than the variation for the unprocessed
versions, no target value is apparent for any instrument, nor
for the total mix.

Analysis of the octave band energies reveals definite
trends across songs and mixing engineers, for a certain in-
strument as well as the mix. The standard deviation does
not consistently decrease or increase over the octave bands
for any instrument when compared to the raw audio. The
suggested ‘mix target spectrum’ is in agreement with [11],
which derived a ‘target spectrum’ based on average spec-
tra of number one hits from various genres and over sev-
eral decades. Figure 4 shows the measured average mix
spectrum against the octave band values of the average
spectrum of a number one hit after 2000 from that work,
which lies within a standard deviation from our result with
the exception of the highest band. The average relative
change in energies is not significantly different from zero
(no bands are consistently boosted or cut for certain instru-
ments), but taking each song individually in consideration,
a strong agreement of reasonably drastic boosts or cuts is
shown for some songs. This confirms that the equalisation
is highly dependent on the source material, and engineers
largely agree on the necessary treatment for source tracks
showing spectral anomalies.

5. CONCLUSION
We conducted a controlled experiment where eight mul-
titrack recordings mixed by eight mixing engineers were
analysed in terms of dynamic, spatial and spectral process-
ing of common key elements.

We measured a greater variance of features across songs
than across engineers, for each considered instrument and
for the total mix, whereas the mean values corresponding
to the different engineers were more often statistically dif-
ferent from each other.

The relative loudness of the lead vocal track was found
to be significantly louder than all other tracks, with an av-
erage value of −3 LU relative to the total mix loudness.

The amount of panning as a function of frequency was
investigated, and found to be increasing with frequency up
to about 400 Hz, above which it stays more or less con-
stant.

We measured a consistent decrease of low frequency
energy and an increase of crest factor for all instruments,
and an increase of the spectral centroid of the snare drum
track. Spectral analysis has shown a definite target spec-
trum that agrees with the average spectrum of recent com-
mercial recordings.
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Figure 3: Average octave band energies (blue) with stan-
dard deviation (red) for different instruments after process-
ing, compared to the raw signal (black).
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Figure 4: Average octave band energies for total mix,
compared to ‘After 2000’ curve from [11] (green dashed
line)

6. FUTURE WORK
Future work will be concerned with perceptual evaluation
of mixes and its relation to features, using both qualita-
tive (‘which sonic descriptors correspond with which fea-
tures?’) and quantitative analysis (‘which manipulation of
audio is preferred?’).

Further research is needed to establish the desired loud-
ness of sources, as opposed to loudness of tracks, and its
variance throughout songs, genres, and mixing engineers.

An extrapolation of the analysis described in this paper
to other instruments is needed to validate the generality of
the conclusions regarding the processing of drums, bass
and lead vocal at the mixing stage, and to further explore
laws underpinning the processing of different instruments.

Based on the findings of this work, which showed trends
and variances of different relevant features, we can inform
knowledge engineered or machine learning based systems
that automate certain mixing tasks (balancing, panning,
equalising and compression).

This work was based on a still relatively limited set of
mixes, for which the engineers came from the same insti-
tution. Through initiatives such as the public multitrack
testbed presented in this paper, it will be possible to anal-
yse larger corpora of mixes, where more parameters can be
investigated with more significance.
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