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The experimental evidence for the Hall-Petch dependence of strength on the inverse 

square-root of grain size is reviewed critically. Both the classic data and more recent 

results are considered. While the data are traditionally fitted to the inverse square-root 

dependence, they also fit well to many other functions, both power-law and non-power-

law.  There have been difficulties, recognised for half-a-century, in the inverse square-

root expression. It is now explained as an artefact of faulty data analysis. A Bayesian 

meta-analysis shows that the data strongly supports the simple inverse or lnd/d 

expressions. Since these expressions derive from underlying theory, they are also more 

readily explicable. It is concluded that the Hall-Petch effect is not to be explained by the 

variety of theories found in the literature, but is a manifestation of, or underlain by, the 

general size effect observed throughout micromechanics, due to the inverse relationship 

between the stress required and the space available for dislocation sources to operate.    
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1. Introduction 

 

In the years around 1950, two effects of size were identified in the strength of 

materials; both can be summarised as smaller is stronger. Hall [1] and Petch [2] found 

that the strength of iron and steel increases when the grain size is smaller. On the basis of 

the theoretical work on dislocation pile-up by Eshelby et al. [3], their work established 

experimentally the eponymous relationship, 

 
d

k
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where d is the grain size, (d) is the stress at yield or a flow stress at higher plastic 

strains, 0 is the corresponding stress for large single crystals or very large-grained 

material (we refer to it here as the bulk stress), and kHP is a constant that may be predicted 

by theory or may be considered to be a material constant. This relationship was soon 

reported to apply quite generally to other metals, however, we show here quantitatively 

that the data does not in fact support Eq.1.   

On the other hand, Frank and van der Merwe [4] and later van der Merwe and co-

workers, and especially Matthews and his co-workers, investigated theoretically and 

experimentally the elastic misfit strain that could be supported by thin epitaxial layers of 

one metal or semiconductor grown on another. By considering the force balance on 

threading dislocations or the minimum energy configuration of the system, Matthews 

developed the relationship between the maximum or critical thickness hc for a given 

misfit 0 [5]. For an 001-oriented layer this is given as 
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where b is the magnitude of the Burgers vector,  is the Poisson’s ratio, and  and  are 

angles between the slip plane and the Burgers vector and the growth plane. Many 

versions of Eq.2 were given subsequently by various authors [6].  

Over the decades that followed, these two size effects were addressed by different 

communities, with very little interaction.  Matthew’s critical thickness theory was 

developed and applied within, largely, the semiconductor device community in the 

context of the strained heterostructures required for, e.g., semiconductor lasers [7] and 

high-electron-mobility transistors [8]. This theory remains essentially correct. The 

principal modification relevant here was the realisation that for significant plastic 

relaxation of the elastic strain a relaxation critical thickness needed to be defined, about 

four or five times the hc of Eq.2, to take account of the operation of dislocation sources 

[9-11, 6]. From Eq.2, elastic strain rather than stress (i.e. stress normalised by the relevant 

elastic modulus), and normalised size (d measured in units of Burgers vector b or lattice 

constant a0), are the relevant parameters. These considerations lead to a general size-

dependence equation,  
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where the dimensionless constant k is expected to be of the order of unity. In the present 

paper d will the grain size in units of a0 and the bulk strength is described by the elastic 

strain 0 = 0 /Y.  Eq.3 is theoretically applicable to any situation where a dimension 

(such as grain size) constrains the size of the dislocation sources that have to operate if 
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plasticity is to occur, and their dislocation curvatures. We refer to it below as the size-

effect equation from dislocation curvature (the EDC equation). Our Bayesian meta-

analysis of a large body of Hall-Petch data in Section 3 below shows that this equation is 

supported by the data.   

 Meanwhile, in the wider materials science community, a number of theories were 

put forward to supplement the pile-up theory [4] in accounting for the inverse-square root 

of d in Eq.1 (see Section 4).  Size effects became recognised in micro-mechanical testing 

generally, in nano-indentation [12], in thin wires under torsion [13], in thin foils in 

flexure [14], and most dramatically in micropillars under compression [15].  Despite a 

few key papers – such as that of Nix [16] applying critical thickness theory to thin films, 

that of Thompson [17] addressing grain-size effects in thin films in the framework of 

critical thickness theory, and our own [18] applying critical thickness theory to wire 

torsion and foil bending – theories of the micromechanical size effect proliferated in 

parallel with the various theories of the Hall-Petch effect.  One symptom of this was the 

expression of the effect of the size of the specimen or of the loaded region in 

micromechanical testing as  

 
xkaa  0)(  (4) 

where a is some suitable characteristic dimension such as micropillar diameter or 

indentation contact radius.  Much effort has been invested in finding appropriate values 

of the scaling exponent x for particular datasets, particular materials, for types of 

materials such as FCC or BCC metals, and for large collections of data (e.g. [19, 20]. 

However, we have suggested that such efforts are in vain. Despite apparent good fits to 

Eq.4 with various x in the range 0 < x < 1, we proposed that x = 1 (or the Eq.3 lnd / d) is 

better supported by the data [21]. 

 Returning to the Hall-Petch effect, many authors have considered exponents other 

than x = ½. Some proposed other exponents because they fit some datasets (e.g. x = ¼ 

[22], x = 0.66 [23]). Baldwin [24] and Kocks [25, 26] pointed out the difficulty (or 

impossibility) of deciding which exponent fits the data best. On theoretical grounds 

closely related to the Matthews theory of Eq.2, Bragg, as early as 1942 [27], and Kocks 

[26] proposed x = 1. Hirth acknowledged these earlier proposals, but did not consider 

them further and adopted x = ½ [28]. Narutani and Takamura [29] showed data for large-

grain nickel fitting better x = 1 at high strain. More recently, Arzt [30] and Saada [31] 

recognised the theoretical arguments for x = 1 but also the strength of the experimental 

evidence for x = ½.   

Until recently, it is only in the context of the relationship between subgrain or 

dislocation cell size and stress during work-hardening that x = 1 has been considered 

seriously both experimentally [32-34] and theoretically [35-38]. Following Matthews [5], 

the argument of similitude notes that if a dislocation structure is at equilibrium under a 

stress , then if that structure is rescaled to a size n times smaller, the stress must now be 

n. Raj and Pharr [34] collated a large amount of experimental data and identified a 

correlation between the prefactor and the exponent, a correlation of the type that suggests 

that the range of fitting parameters is simply due to experimental error (see [39, 40]. It 

may be thought surprising none of these authors considered extending the argument from 

sub-grains to the Hall-Petch grain-size effect too. 

Recently, there has renewed interest in data, simulation and theory suggesting x > 

½ for the Hall-Petch effect itself [41-44]. More typically, Hansen [45] concludes that 
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although no mechanism has been quantified to the extent that it would verify Eq.1, 

nevertheless Eq.1 is empirical and has predictive capability.  Indeed, Hahn and Meyers 

[44] note that Eq.1, x = ½, with the associated theory of pile-up, is so deeply embedded in 

the fabric of materials science as to be indelible.   

In a previous paper we showed that the micromechanical data is consistent with 

Eq.4 with x = 1, and with Eq.3 with k ~ 1. We drew attention to the complete lack of any 

data falling under the line of Eq.3 with k ~ 1 and 0 = 0, implying that Eq.3 thus describes 

the minimum strength, due to the size effect [21]. Then other strengthening mechanisms 

lead to data above the line, but if plasticity occurs through dislocation multiplication and 

motion, there are no weakening mechanisms to give data below the line.  A collection of 

datasets from the literature displaying the Hall-Petch effect are likewise concentrated 

above this line. We proposed that this can be taken as experimental support for the 

applicability of Eq.3 to the Hall-Petch effect, while the data are merely consistent with 

Eq.1 [46]. It is this proposal that we develop here. In Section 2 we review the data, both 

those used in [46] and many additional datasets. We show that the analyses of the 

datasets taken individually provide no support for Eq.1 and that these analyses can 

neither determine the value of x in Eq.4 nor even show that Eq.4 applies.  In Section 3 we 

give a fully Bayesian analysis of the support the data taken as a whole (i.e. a meta-

analysis) gives to the different hypotheses, Eq.1 and Eq.3.  Finally, in Section 4 we 

compare the predictions of the different theories of the Hall-Petch effect with the data.  

We conclude that Eq.3 and the theory from which it derives always apply. That is, it 

describes the size dependence of dislocation plasticity in general, and specifically in the 

grain-size effect, while of course underlying other effects which may also increase the 

strength of metals. The indelible may yet be erased.  

 

2.  Review and analysis of the data 

 

 We present in Fig.1 sixty-one datasets of which seventeen were already 

considered in [46]. These data sets, among many others, are what is referred to by the 

authors cited above who say that the data supports Eq.1. We show in Section 2.2 that 

these datasets support neither Eq.1 nor even Eq.4.  In Section 3, we use meta-analysis to 

show that the ensemble of data supports Eq.3 very strongly.     

 

2.1. Data selection and presentation  

 The data presented here have not been selected in any way.  They are simply all 

the data we have found at the time of writing relevant to testing Eq.1. Our literature 

search methods consist of using information from colleagues, following up references 

and citations and internet search engine results.  It is highly implausible that these 

methods would yield a selective sampling of the literature that could be biased against 

data supporting Eq.1.  

Most of the original authors plotted against the inverse square-root of grain size 

and reported straight-line fits in accordance with Eq.1. Digitised and changed from the 

authors’ units to SI units, all the full datasets are given in the supplementary electronic 

information. Normalised by Young’s modulus Y and lattice constant a0, they are plotted 

in Fig.1, on double logarithmic axes because of the very wide range of data values. It is 

worth noting here that the exact value of Y for each metal is not important. The purpose is 
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to facilitate comparisons by taking out the known differences between metals. We use 

average or representative values from handbooks for each metal, given below. Similarly, 

while the Burgers vector b for each metal might be known quite accurately, the relevant 

projection b may not be, so we use the handbook values of lattice constant as a proxy. 

The fits shown in Fig.1 are described in Section 2.2.  The heavy lines are Eq.3 drawn for 

k = 0.72 and 0 = 0. Two key features of these plots, analysed below, are that the different 

fits for x = ½ and x = 1 diverge significantly only outside the range of each dataset 

(Section 2.2), and that no data are found significantly below the Eq.3 0 = 0 line (Section 

3).  

For each dataset, we give in the electronic supplementary information the 

information in the original papers about the metallurgical processing, especially grain-

size modification and determination, and the yield or flow stress determination, or we 

mention the absence of this information.  However, we do not use this information.  The 

original authors did not correct their raw data for any known effects that might follow 

from these variables, and it would not appropriate, even if possible, to do so here.   

The normalisation constants used for iron and steel are Y = 211 GPa, a0 = 0.287 

nm [46]. The data shown in Fig.1a come from Hall [1, 46] (the attribution to Ref.46 

indicating that we used this data in [46], Fe(7); Petch [2, 46], Fe(1); Armstrong et al. 

[47], Fe(6) – here and below, where there are multiple datasets under one key it is 

because the authors reported data at various values of strain; Douthwaite [48], Fe(5); 

Douthwaite and Evans [49], Fe(2); Kashyap and Tangri (1997), Fe(4); Aghaie-Khafri et 

al. [23], Fe(3).   

For brass and copper, we used Y = 115 GPa and a0 = 0.361 nm [46]. Data shown 

in Fig.1b comes from Bassett and Davis [51, 46], B(1), B(2), and Babyak and Rhines 

[52,46]. We took this data from Jindal and Armstrong [53] who plotted this data against 

d
–½

. Armstrong and Elban [54] also reported that Mathewson [22] fitted the inverse 

fourth-root to the data of Bassett and Davis [51]. Data comes also from [47, 46], B(4), 

and  [48,46], B(5). The copper data in Fig.1c is from Feltham and Meakin [55], Cu3; 

Hansen and Ralph [56], Cu(1) (room temperature data) and Cu(2) (77K data).  

Some of the data in Fig 1d is diamond point hardness (DPH) data, for which we 

divide by the Tabor factor of 2.8. For W (DPH) it comes from Vashi et al. [57, 46]; Cr 

(DPH) from Brittain et al. [58, 46]; Ti(1) (DPH), Hu and Cline [59, 46]; Jones and 

Conrad [60], Ti(2). For W we used Y = 411 GPa and a0 = 0.316 nm; for Cr, Y = 279 GPa 

and a0 = 0.228 nm; for Ti Y = 116 GPa and a0 = 0.295 nm [46].  

For silver, we used Y = 83 GPa and a0 = 0.409 nm. The data in Fig.1e is from Aldrich and 

Armstrong [62], Ag(1), Ag(2).  They compared linear fits to d
–1

,
 
d

–½ 
and d

–⅓
 and 

concluded that d
–½ 

fitted best. They ruled out the d
–⅓

 fit on the grounds that it gives an 

unphysical negative intercept on the y-axis – note that the datasets Fe(3), Au, Al(4) and 

Al(5) do the same in the d
–½

 fits. The dataset Au, using Y = 79 GPa and a0 = 0.408 nm is 

from Emery and Povirk [62]. The nickel data, with Y = 200 GPa and a0 = 0.352 nm, is 

from Thompson [63], Ni(1); Keller and Hug [64], Ni(2); Narutani and Takamura [29], 

Ni(3). Keller and Hug studied foils with a thickness to grain size ratio t/d between 1.3 and 

15. At yield stress, they observed a normal Hall-Petch behaviour for t/d =15 and we use 

this data. For higher strain and smaller t/d, deviations from the normal Hall-Petch 

behaviour were observed, and explained in terms of the effect of the free surface on the 

work-hardening mechanisms.  This data is not considered here.  
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Fig.1. Normalised datasets from the literature for flow or yield stress against 

grain size. The heavy line in all panels is for Eq.3 with k = 0.72 and 0 = 0. 

The dashed lines are fits using Eq.4 with x = 1, k and 0 as fitting parameters. 

The chain-dotted lines are fits using Eq.1, normalised, so that kHP and 0 are 

the fitting parameters. The thin solid lines are for Eq.3 with k = 0.72 and 0 as 

the only fitting parameter. The keys link the datasets to the references cited in 

the text. 
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 Fig.1f shows data for aluminium, using Y = 70 GPa and a0 = 0.316 nm. They are 

from Carreker and Hibbard [65], Al(3); Hansen [66], Al(1) and Al(2); Tsuji et al. [67], 

Al(4); Yu et al. [68], Al(5) and Al(6).  

 

2.2. Fits to the data. 

 

Using the Mathematica
©

 function NonlinearModelFit the data were fitted with Eq.1 (HP 

fit), with Eq.3 with k as a free fitting parameter (ECD fit), and with Eq.4 with x = 1 (SI 

fit) and also with x a free fitting parameter (EQ4 fit). Some (not all, for clarity) of these 

fits are shown in Fig.1. Full details, fitting parameter values and R
2
 values are given in 

the supplementary electronic material. 

 All the fits are very good, with R
2
 values typically well over 0.999. However, the 

exponents returned by the EQ4 fit are scattered about x = ½ – twenty-five are more than 

and twenty-five less than ½. All forty of the datasets returning x < 0.7 have R
2
 values 

favouring the HP fit over the SI and ECD fits; only fifteen with x > 0.7 have R
2
 values 

favouring the SI or EDC fits. These observations might be taken to favour the HP fit. A 

detailed analysis of a few typical datasets, however, shows that it is not so.  

We choose Cu(1) for this detailed analysis because the three datasets in it have 

relatively little scatter, Ag(1) because it was considered by Aldrich and Armstrong [61] 

as potentially fitting exponents of x = 1/3, x = 1/2 and x = 1, and B(1) because, like many 

of the iron and steel datasets of Fig.1a, it has unusually high values of kHP and k, and a 

wide range of grain size. Additional fits were carried out, to models with different 

functional forms, namely, 

dcce

d

k
cd

d

HP

ln:LOG:EXP

:A3:LIN

00

3/100







 

The fits to LIN are to provide statistical benchmarks for a function that is surely not 

correct, and A3 because it was applied by Aldrich and Armstrong [61] to dataset Ag(1). 

The EXP and LOG fits are included to compare non-power-law fits with the power-law 

fits. Results of all eight fits are given in Table I. The LIN fit has the lowest R
2
 coefficient 

of determination. The other seven, from SI through to EQ4, return 1 – R
2
 values (the 

proportion of the variance in the data which is not explained by the model) which are 

very small, and very similar for the different models across each dataset. The 1 – R
2
 

values clearly reveal no evidence that the true dependence is a power-law dependence as 

in Eq.4, rather than any other function that is monotonically decreasing with grain size, 

asymptotically to 0 and so with some positive curvature, such as LOG and EXP. The 

silver data has more scatter than the other datasets, and therefore consistently higher 

values of 1 – R
2
.  The only significant feature of these fits is that the model EQ4 returns 

consistently low values for the exponent x – though with large uncertainties – and 

consequently, generally better R
2 

values even than the HP model.  

 

Table I.  Results of fitting real data and dummy datasets to eight models. All 

data are (1 – R
2
) values in ‰ (per mill, to reduce the number of zeroes) 

except the last column which gives the exponents returned by EQ4, x for the 

real datasets and x  for the dummy datasets.    
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 LIN SI HP A3 EDC EXP LOG EQ4 x, x  

Cu(1) 5% 2.1 0.9 0.5 0.5 0.8 0.6 0.6 0.5 0.30  0.16 

Cu(1) 10% 1.1 0.7 0.6 0.6 0.7 0.6 0.6 0.6 0.22  0.27 

Cu(1) 20% 0.9 0.6 0.5 0.5 0.6 0.6 0.6 0.5 0.35  0.39 

Ag(1) 68 30 21 20 27 22 22 20 0.28  0.19 

B(1) 11 1.4 1.4 1.8 1.3 1.5 3.2 1.1 0.74  0.13 

HPyCu 1.8 0.6  0.4 0.4 0.5 0.4 0.5 0.4 0.50  0.16 

HPyAg 63 17 20 22 17 21 30 17 0.48  0.18 

SIyCu  4.5 0.7 1.1 1.3 0.7 0.6 2.2 0.6 1.02  0.21 

SIyAg 64 18 13 14 16 14 19 13 1.01  0.25 

HPxCu 1.9 0.6 0.3 0.3 0.5 0.4 0.5 0.3 0.23  0.15 

HPxAg 67 33 19 17 29 17 20 17 0.38  0.11 

SIxCu  2.5 2.0 1.4 1.3 1.9 1.2 1.3 1.3 0.32  0.20 

SIxAg 78 34 25 26 31 20 33 25 0.55  0.18 

 

There are, however, assumptions in the least-squares fitting procedures.  The 

assumptions are that the grain sizes are as specified, that the scatter comes from 

Gaussian-distributed errors in the measurements of the yield or flow stresses, and that the 

least sum of squared residuals is an unbiased estimator.  The effect of these assumptions 

is best demonstrated by setting up dummy datasets and subjecting them to the same 

fitting routines. First, the dummy datasets HPyCu and HPyAg, with random errors added 

to the y (stress) values, 

 

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k
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where the di and the other parameters are taken from the Cu(1) 5% strain and the silver 

Ag(1) datasets and their HP fits. The random numbers i are drawn from the normal 

distribution with mean  = 0, standard deviation  = 2.8 MPa (equal to the standard 

deviation of the residuals in the HP fit to the Cu(1) 5% strain data) and  = 16MPa for 

silver. Generating five hundred such datasets and fitting each with EQ4, exponents x are 

obtained with mean values x  and standard deviations given in Table I.  Similarly, 

dummy datasets SIyCu and SIyAg are set up according to Eq.5 but with the SI fits (k/d). 

From Table I, for these four dummy datasets, set up according to the assumptions above, 

and specifically with the random error in the data attributed entirely to  (y-axis values), 

the fitting returns exponents the same within error as those used to create the dataset. 

(Note that the error in the mean is the standard deviation divided by 500 ). The R
2
 

values are comparable with those of the real datasets.  

 The situation is quite different when we put the scatter on the grain sizes instead 

of the stresses. Now the yield or flow stresses are taken to be definite. The errors in grain 

size measurement are expected to be proportional to grain size – i.e. a lognormal 

distribution – and so we set up dummy datasets as  

 
  
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2
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for HP and similarly for SI. The datasets are inverted ( and d axes exchanged) and fitted 

with the inversions of the functions HP and SI to obtain the parameters k and 0. The 

random parameters i are drawn from the normal distribution with mean  = 0, standard 

deviation 0.11 for copper and 0.18 for silver, chosen to give the same variance on the 

residuals as the HP fits. Fitting five hundred such datasets with the eight functions LIN to 

EQ4, R
2
 values are much as before. But the exponents found by fitting with EQ4 are now 

dramatically smaller than the values used to set up the datasets, 0.2 – 0.4 for the HP 

dummy datasets where the true x = ½, and 0.3 – 0.6 for the SI datasets where the true x = 

1.  

 

2.3. Discussion of fits to the data 

As noted in [46] for seventeen datasets and as confirmed quantitatively in Section 

2.2 for sixty-one, fits of the data to Eq.1 and fits to Eqn.3 (with or without the lnd term) 

are equally good. The rigorous statistical analysis given here confirms that the data 

cannot distinguish between these, nor between these and non-power-law models. From 

this analysis, there is no experimental support even for a power-law with uncertain or 

variable exponent x as in Eq.4.  The most that can be said of the Hall-Petch effect from 

analysis of these datasets is that the strength decreases monotonically – but with positive 

curvature – as the grain size is increased.   

The low values of the exponent obtained by fitting with Eq.4, and the low values 

reported in the literature for the last 60 years, are fully explained by assuming a moderate 

random error in the grain size determination. That is demonstrated here by using dummy 

datasets in standard non-linear least-squares fitting. An error analysis of the grain size 

determinations in the literature is not possible – Rhines [69] listed about ten ways of 

determining the grain size, and most authors do not give this detail. A deeper 

mathematical understanding of the effect of grain-size variance on the least-squares fitted 

exponent can be obtained by further analysis, but that is outside the scope of this paper.  

The vertical least-square residuals is a biased estimator for non-linear models, and Eq.4 is 

non-linear in x. So also will be the orthogonal least-square residuals estimator sometimes 

used, and especially relevant when fitting is done by eye, as much of the earlier data 

would have been. There exist fitting procedures that can handle errors in the independent 

variable (here, grain size), e.g. Deming regression, but they require estimates of the errors 

which are not available here.  

Simulation and modelling are beginning to be able to display the Hall-Petch effect 

and predict Hall-Petch slopes (e.g. [42, 70, 71]). In this case, there is no error bar on the 

grain size, and such work is indeed beginning to show that Eq.3 is preferable to Eq.1 

[43].  

The outcome of this Section is to show that, without benefit of theory, the two and 

three-parameter fits, SI, HP, EDC and EQ4, cannot determine the true functional form 

obeyed by the data – not even to confirm it to be a power-law. In addition, an explanation 

is found, why Eq.1 might be considered to be the best fit to the data even if the data 

actually obeys Eq.3. In the next Section, we show that meta-analysis supported by theory 

can reach an unambiguous conclusion.  

 

3.  Bayesian meta-analysis of support for hypotheses 
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 Previously [46], we reported an analysis of the statistical support that the data 

provides for the different theories, Eq.1 and Eq.3.  We used the semi-Bayesian approach 

of calculating the likelihood L of the data under the two theories – which was 

inconclusive – and then using the Akaike information criterion (AIC), which provides a 

heavy weighting against theories with more free fitting parameters.  Since the Hall-Petch 

theory of Eq.1 has two free fitting parameters per data set (0 and kHP; 34 parameters for 

17 datasets) while the theory underlying Eq.3 has only one free fitting parameter per data 

set (0) plus one (k ~ 1) for all datasets (18 parameters for 17 datasets), the AIC gave 

odds of many millions to one that the dislocation curvature theory is true and the Hall-

Petch theory false.  

 Here we give a more fundamental, fully Bayesian analysis. Bayes’ theorem may 

expressed in the form, the new odds on the hypothesis under test (H) being true when 

new data is acquired are the prior odds, times the ratio of the probability of the new data 

under the hypothesis H and its probability if H is false. Here, we may take H to be the 

hypothesis that Eq.3 is valid, and its negation ~H to be the hypothesis that Eq.1 is valid. 

This applies very directly to our problem. In the absence of a theory constraining the 

values of 0 and kHP in Eq.1, the experimentally-determined values of yield or flow stress 

against grain size are expected to have a uniform probability distribution in the log0 – 

logd space, by Benford’s Law [72, 73]. Let this probability distribution be represented by 

the relative value 1 everywhere. On the other hand, Eq.3 with 0 = 0 divides the log0 – 

logd space into two equal parts – one below the 1/d line (with or without the lnd term 

makes no significant difference) and one above.  Eq.3 asserts that the probability that data 

will be significantly below the line is zero, so the data should be concentrated into the 

half of the space above the line. So, defining H as the hypothesis that Eq.3 is correct, we 

have a relative probability density of 2 for data above the 1/d line and 0 for data 

significantly below the 1/d line. 

 We apply Bayes’ theorem iteratively for each dataset.  We start by postulating a 

value for the the prior probability P0 or odds O0 that H is true before any data is 

considered.  Using only the Principle of Insufficient Reason, we would take P0 = ½, i.e. 

even odds, O0 = 1 to 1.  On the other hand, we might consider that the probability that an 

equation that has stood for sixty years is false is very low, so that perhaps we should take 

P0 = 10
–3

, O0 = 999 to 1 against).  The first dataset, that falls above the 1/d line, gives a 

value 2 to the second term on the RHS, so that the term on the LHS, the odds against H 

halve, or the odds on H double. This becomes the first term of the RHS (for P0 = ½, O1 = 

2 to 1 on, P1 = ⅔) when we consider the second dataset. As each successive dataset i falls 

above the 1/d line, Oi = 2 Oi – 1 and for n datasets On = 2
n 

P0.  So just ten or twenty such 

datasets give overwhelming odds on H, depending on whatever reasonable prior P0 we 

may have chosen. Here we have 61 datasets, giving odds of 2
61

P0 to one – which is 

overwhelming for any reasonable choice of prior P0. 

 These odds on the Eq.3 hypothesis can be reduced slightly by considering that not 

all the datasets are independent.  If the data for the yield point or lowest strain fall on and 

above the line, it is predictable that the data for the same material at higher strains at the 

same grain sizes will also fall above, so the observation that this is so does not strengthen 

the hypothesis.  This reduces the number of fully-independent datasets to 32, which still 

leaves overwhelming odds on H. 



11 

 

 The probability is not a step-function between 2 in the upper right and zero in the 

bottom left, below the Eq.3 line.  If that were so, any data in the bottom left would 

immediately give a probability of zero for the hypothesis H.  In fact, experimental error, 

grain-size determination, grain-size distributions and non-dislocation-based plasticity at 

small grain sizes all have a non-vanishing probability of putting data a little below the 

line. Thus the data seen there at ultra-fine grain sizes, Ni(1), Al(4), Al(5) and Al(6), may 

be accounted for by grain-boundary sliding, migration and diffusion which have been 

considered in connection with the inverse Hall-Petch effect (e.g. [74, 75]). The surprise, 

then, is how little data is there, not how much. 

 Finally since the conclusion of this Section is that Eq.3 (with k ~ 1 and variable 0 

or 0) provides the best description of the data, we should consider the significant 

number of datasets in Fig.1 where the EDC-fitted value of k is much higher, Fe(1), Fe(3), 

B(1), B(2) and B(3).  These datasets are as difficult to account for by the theories of Eq.1 

(see Section 4) as by the theory of Eq.3. One speculation is suggested by the observation 

that these datasets are all for alloy metals, steels and brass.  Microstructure in such metals 

has scope for size-effect lengths that may be much less than the grain size yet correlated 

with it. Alternatively, this may be a consequence of grain-size dependent strain-hardening 

as in [29].  

 

4.  One-parameter Hall-Petch theories 

 

 While experimentally Eq.1 is treated as if both 0 and kHP are free fitting 

parameters, the theories which have been put forward to account for the inverse square-

root law of Eq.1 do of course make predictions for kHP. And the phenomena in question, 

when they occur in practice, must contribute to the strength. It is appropriate, therefore, to 

compare their predictions of kHP with the data, to test whether they are in fact supported 

by the data and whether they explain the data.  Classic theories of the Hall-Petch inverse-

square-root dependence on d (Eq.1) are shown schematically in Fig.3(a-d) together with 

schematic representations of the dislocation curvature theory leading to Eq.3 in epitaxial 

layers (Fig.3e) and in polycrystalline metals (Fig.3f).    

 

4.1. Dislocation pile-up model 

This is the phenomenon most often used to account for the Hall-Petch Eq.1. In 

this model, a dislocation source in a grain operates many times under an applied stress to 

produce a number of dislocations on the same glide plane (Fig.3a). The leading 

dislocation experiences a force from the stress field, and also the forces from the 

following dislocations behind it, but it is blocked from further movement by the grain 

boundary.  When the force on the leading dislocation is sufficient to stress the material at 

or beyond the grain boundary to theoretical strength (or some lower value), dislocations 

are produced in the neighbouring grain and large-scale plasticity becomes possible. 

Following Cottrell [76], Eshelby et al. [3] and Antolovich and Armstrong [77], the theory 

gives  

 
d

Gb C






2
0  (7) 

where c is the critical shear stress at the grain boundary at which a dislocation is 

generated in the neighbouring grain. The maximum reasonable value of C is the 
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theoretical strength, less than G/10. For the use made of Eq.7 below (Fig.3a), differences 

between  / G and  / Y are unimportant, likewise the approximation b ~ a0. Then Eq.7 

becomes 

 
da

f
1

0

0

1.0~


  (8) 

 for the elastic flow strain f = fY
–1

, in normalised units as used in Fig.1 and 3.     

 

 

           
 

                
 

Fig.2.  The four classic models are shown schematically (a–d) together with 

the dislocation curvature model (e, f). In (a), the pile-up theory of Eshelby et 

al. [3] is represented. The ledge-emission model of Li [78] is shown in (b). 

The effects of crystalline elastic or plastic anisotropy in forcing stress and 

strain gradients (Kelly [79], Meyers and Ashworth [80], Hirth [28], Ashby 

[81]) is illustrated in (c), in which anisotropic grains are subject to a 

homogenous stress field. In (d), the dislocation densities resulting from the 

slip-distance theory (Conrad [82], Kuhlmann-Wilsdorf [36]) are shown as 

low in large-grain and high in small-grain material. The Matthews critical 

thickness concept is illustrated in (e) for the form well-established in 

semiconductor epitaxy, for the spiral source and the Frank-Read source in a 

strained epitaxial layer on a substrate, and in (f) a Frank-Read source is 

shown in a single grain to illustrate that smaller grains require greater 

curvatures and hence stresses varying as 1/d or lnd / d.   

 

 

 The data from Section 2 are compared with the prediction of the pile-up model in 

Fig.3a.  The shaded triangle below the solid line is the allowed region according to Eq.9.  

Many of the datasets have slopes (values of kHP) greater, even very much greater, than the 

predictions.  Applying the same statistics as in Section 3, the odds against the pile-up 

model are greater than the odds on the hypothesis H that Eq.3 is correct; for many data 

are falling where their relative probability is much less than one-half. In fact this is an 

exaggeration. Different data sets falling where their probabilities are low may not be 
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independent events.  Consider the a priori estimate of the (small) probability P0 that the 

model is correct but the parameter values in Eq.7 have been wrongly estimated. Then all 

data wherever they fall are fully consistent with this hypothesis, which retains the 

probability P0 independent of the data.     

 Pile-up can of course occur, and will give rise to some (grain-size dependent) 

strengthening.  However, Fig.3a shows that it cannot account for the most part of the 

strength in most datasets; that is, it is a weak effect compared with the direct effect of 

grain size on the dislocation mechanisms that are required for plasticity (source 

operation, Eq.3).  This conclusion is confirmed by discrete dislocation dynamics 

simulations of wires in torsion, in which pile-up can be encouraged by prohibiting cross-

slip or reduced by allowing cross-slip.  Torque-torsion curves did not change 

significantly with the amount of pile-up [83]. 

 

 
 

Fig.3. (a) The predictions of the pile-up model (Eq.8) (heavy black line), the 

grain-boundary ledge model (Eq.9) (dashed black lines indicating the range 

of the upper limit of the predictions) and the slip-distance model, Eq.13 

(chain-dotted red lines) are compared with the data.  The depth of shading 

indicates schematically the probability according to these models that data 

will fall in the various regions; white corresponds to a probability close to 

zero.  In (b), the Hall-Petch coefficients are plotted against the normalised 

anisotropy factor as described in the text. The large data points indicate that 

only one data set is available for a metal; the small data points represent many 

results for the same metal. The red filled circles indicate the yield stress data 

sets. The latter are averaged to give a single value for each metal before 

fitting. The solid black line is a least-squares fit of y = ax + b to the averaged 

data and the dashed blue line a fit of y = ax as described in Section 4.4.   

 

4.2. Grain boundary ledge model  

 Li [78] sought a model that could explain the Hall-Petch behaviour in the majority 

of cases where there is no evidence of dislocation pile-up. He proposed that grain 

boundaries and sub-grain boundaries should emit dislocations (Fig.2b). He showed that 



14 

 

the stresses required are nearly the same (1) for a pile-up to drive a dislocation through a 

grain boundary, (2) for a pile-up to activate a source on the other side of the boundary, 

and (3) to move dislocations in a forest formed by all the dislocations emitted by a tilt 

boundary.  In model (3) the grain-size dependence arises from the density of the forest. 

Murr [84] reported observations by electron microscopy supporting this model. The 

prediction of the model is  

 
d

m
Gb




8
0  (9) 

where  is a constant of the order of 0.4, and the constant m is given by the expectation 

that the product mb will be in the range 0.02 to 0.2 [85-87].  Converting to  = /Y ~ /G 

and using b ~ a0, this becomes, 

 
da 1

0

0

15.005.0
~




  (10) 

Fig.3a shows the range where data is to be expected according to Eq.10.  This model is 

again inconsistent with much of the data, and it does not account for the wide scatter of 

the data. The same considerations apply to the probability that it is correct as for the pile-

up model in Section 4.1.     

 

4.3.  Plastic strain models 

 There is a class of theories which give the Hall-Petch coefficient as dependent on 

plastic strain (with no Hall-Petch effect at the yield point). This is too large a topic to deal 

with adequately here, so we consider one typical theory. Conrad [82] and co-workers [88, 

85] developed a theory which gives very naturally the inverse square-root dependence on 

grain size of Eq.1 when square-root strain-hardening occurs. See also [36, 29]. Mobile 

dislocations account for the plastic strain pl, and  

 xbmpl   (11) 

where m is the density of mobile dislocation and x  is their mean free path, taken as 

proportional to the grain size, dx   It is further assumed that a constant proportion of 

the total dislocation density  is mobile, so that m = . Using the Taylor (forest) 

hardening expression, substituting and rearranging, we have  

 
d

b
GGb

pl




 0  (12) 

where  is the Taylor coefficient. Converting as for Eq.10,  

 1

00






 da

pl
 (13) 

Thus the model attributes the Hall-Petch effect to the increased dislocation density in 

small grains (Fig.2c) due to the reduced slip distance. This gives a Hall-Petch coefficient 

which vanishes at the yield point (pl = 0) and is proportional to the square-root of plastic 

strain otherwise. The constant  is normally taken as about 0.3, while the constants  and 

 are both of the order of but less than unity, so the factor 
2
 /  may be taken to be 

about unity. Then for the datasets reported at high plastic strains ~0.2, the value of kHP in 

Eq.13 may be close to 0.5, while for the datasets reported near the yield point (pl ~ 
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0.002) it will be below 0.05.  These two possibilities are plotted on Fig.3a (red chain-

dotted lines). Clearly, this theory can be ruled out for the Hall-Petch effect near the yield 

point, but it survives as a candidate for explaining Eq.1 behaviour at high plastic strains 

when square-root strain-hardening is observed.  

 Other theories, such as the plastic anisotropy theory of Ashby [81], give very 

similar expressions for kHP, so the same comments apply. However, before leaving the 

topic for a fuller treatment elsewhere, it is worth noting that the datasets Fe(4), Fe(5), 

Fe(6), B(4), B(5), Cu(1), Cu(2), Ag(1,2) Al(1) and Al(2) all have data for different 

strains.  Any dependence of kHP on the plastic strain is weak or absent. Only Ni(3), from 

Narutani and Takamura [29], shows the strong dependence expected from these theories 

– and these authors note that their data deviates from Eq.1.    

 

4.4. Elastic anisotropy model 

 This model was proposed by Kelly [79], Hirth [28] and Meyers and Ashworth 

[80].  Given the random orientation of grains, a homogenous elastic stress field 

necessitates an inhomogeneous elastic strain field, resulting in gaps and overlaps between 

grains as shown in Fig.3d.  Here a two-dimensional polycrystalline cubic material with 

non-zero anisotropy C = c11 – c12 – 2c44 is shown elastically deformed under a uniform 

shear stress field. Gaps and overlaps form. Deforming the grains to eliminate them results 

in inhomogeneous stress and strain fields. The resulting strain gradients require the 

creation of geometrically necessary dislocations if plastic deformation is to occur, and a 

consequent increase in strength. The grain-size dependence arises naturally, in that if the 

grains are smaller the strain gradients and the densities of GNDs will be proportionately 

larger.  This model predicts that under suitable normalisation kHP will be proportional to 

the elastic anisotropy. The factor of proportionality is unspecified by the theory – it is 

phenomenological, depending on the characteristic length in the strain-gradient theory, 

which can only be found by experiment. In Fig.3b we plot the values of kHP for the cubic 

metals against their normalised anisotropy parameters C/Y . While there is a considerable 

scatter of the data for metals where we have more than one value of kHP, it is clear that 

there is no strict dependence, nor even a trend suggesting that kHP depends upon C.  This 

model is therefore neither consistent with nor explanatory of the data.    

 

4.5. Discussion 

The outcome of this Section is that none of these theories explain the observed strength 

of metals as a function of grain size. They fail in a variety of ways, including unfulfilled 

predictions of parameter values and of functional dependence on known parameters, but 

most fundamentally they fail against the Bayesian criticism – none of them are consistent 

with all the data appearing above the Eq.3 (0 = 0) line of Fig.1 and almost no data 

below.  The odds against them are thus consistently millions to one against.   

 

5. Conclusions 

 

 It is clear that there is neither experimental nor theoretical evidence for the 60-

year-old Hall-Petch equation, Eq.1. The role of errors in grain-size determination in 

approximately halving the apparent exponent in least-squares fitting has previously been 

overlooked, but is a very plausible explanation for the apparent agreement of the data 
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with the Eq.1 value of x = ½ if the data actually obey lnd/d or d
–1

. The wide range of 

experimentally reported values for the Hall-Petch constant, kHP, for similar materials do 

not support Eq. 1, neither are they predicted by any of the theories in section 4.  On the 

other hand, the large body of experimental data is fully consistent with the size-effect 

expected from dislocation curvature, Eq.3, for the minimum strength expected for a given 

grain size.  That consistency depends on the necessary caveats: non-dislocation based 

plasticity such as grain-boundary sliding may take over at small grain sizes; other 

strengthening mechanisms may be correlated with grain size with or without being 

caused by grain size.  

 An argument in favour of this conclusion is that it brings the Hall-Petch effect 

under the umbrella of the size effect(s) generally, rather than being sui generis with its 

own unique inverse-square-root exponent and therefore a need for its own explanations. 

We argue that the underlying size-dependence that dictates the minimum strength for 

dislocation plasticity should be in the singular – the only size effect that will be 

necessarily present in all experimental situations is the Orowan size-stress relationship, 

aka Matthews critical thickness theory [5], aka the argument from similitude [37]: the 

size must be inversely proportional to dislocation curvature and hence to stress.  

 It might be considered that this doesn’t matter.  It might be pointed out that the 

Hall-Petch relation, Eq.1, is a valid empirical relation and as such it is useful for 

prediction – for interpolation and extrapolation of material properties – whether or not it 

is theoretically correct [28].  That is certainly so for interpolation, for which it will be as 

useful – but no more useful – than a smooth curve drawn through the data by hand – but 

this is a very dangerous approach to extrapolation.  

 One may also regret the loss of time – the wasted effort – in attempts to explain 

the inverse-square-root form of Eq.1, and of course the parameter values therein too.  On 

the other hand, one may anticipate theoretical and practical advances that may be made 

when it is considered that the grain-size effect operates through the same mechanism as 

other size effects and therefore may be combined with them, as in Ehrler coupling of 

structural size and grain size [89]. 

 The other main conclusion from this work is that it can never be sufficiently 

strongly emphasised that a good fit of data to an equation or to a theory is of no 

significance unless it has been adequately considered what else might fit the data. And 

statistical methods such as least-squares fitting should always be tested with dummy data 

where one knows what outputs should be obtained. This is a much more general 

conclusion, of interest to non-metallurgists as much as to metallurgists.  
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