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THE SELF-REPRESENTING UNIVERSE

SHAHN MAJID

Abstract. We revisit our approach to Fourier and observer-observed duality

as the origin of the structure of physical reality. We explain how Fourier du-
ality on the exterior algebra recovers Hodge duality. We describe recent joint

work on duality of quantum differential structures on quantum groups and

speculate on the interpretation of de Morgan duality and bi-Heyting algebras
in this context. We describe our recent work on the algebraic description of

a classical Riemannian geometry as a certain type of Batalin-Vilkovisky alge-
bra. Using this we explain how classical Riemannian geometry emerges out of

nothing but the Leibniz rule, as a kind of 2-cocycle that governs the possible

ways that a noncommutative differential algebra can extend a given classical
manifold. This explains how classical Riemannian geometry emerges out of

noncommutative algebra under very minimal assumptions and in some sense

explains why there is Riemannian geometry in the first place. These mat-
ters are discussed within our general philosophy of ‘Relative Realism’ whereby

physical reality is in some sense created by the assumptions of Science.

1. Introduction

In our philosophy works [15, 2] we have argued for a position which we called
‘relative realism’. This takes the view that there both isn’t and is such a thing
as a hard and solid physical reality governed by the equations of physics and that
if this paradox could be properly understood then we would in fact understand
the origin of the equations of physics. The philosophy comes out of the nature of
mathematics and says basically that how we look at the world and our assumptions
going into that in some sense ‘create’ the reality that we perceive. In particular we
have argued that scientific or more precisely physical reality should be characterised
by a kind of meta-equation that picks out its structure out as subset of the tableau
of all mathematics. This meta-equation would then be the ultimate theory of
physics just with colourful names for the structures involved. Moreover, we have
formulated what we believe to be the essence of this meta-equation as the principle
of representation theoretic self-duality[15]:

The search for the ultimate theory of physics is the search for a
self-dual structure in a self-dual category, i.e. physical reality is
characterised as being self-representing.

Key words and phrases. Relative realism, quantum theory, gravity, quantum gravity, non-

commutative geometry, quantum groups, representation, Fourier theory, Born reciprocity, Hodge

duality, buddhism, Heyting algebra.
On leave 2014 at the Mathematical Institute, University of Oxford when this work was

completed.
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Like many philosophical statements, if you make this too precise you will probably
be making it wrong, i.e. one needs to treat this only as the ‘principle’ and not the
detail of what is going on.

In this article I want to explore new concrete mechanisms for how physical reality as
we know it ‘emerges’ from the assumptions of Science, such as[22, 23] how Riemann-
ian geometry emerges out of the axioms of differential calculus and a breakdown
of associativity. And if such ideas are indeed how physical reality emerges then
what are the moral implications? I will argue as I have in the past[2] that these
implications are not unlike the philosophical implications of buddhism.

2. Relative Realism and the nature of Reality

It is hardly a new idea that somehow reality as we perceive it might be an illusion,
for example inside someone else’s computer programme as we might say in the 21st
century, or someone’s dream according to some ancient beliefs. But what this really
means is that some other being sets the structures within which we find ourselves
embedded, be it a computer programme or the dreamer in whose dream we are,
which only postpones and does not answer what their reality is. Do they have an
absolute reality or is there perhaps an infinite hierarchy of dreamers?

Relative realism is a new approach to this conundrum in that there is no need for an
external dreamer although there is still a hierarchical structure to physical reality.
Instead of a dreamer, we the observer are the source of the ‘hardness’ of reality
through the choices that we consciously or unconsciously make in understanding
the world. This hardness is important particularly for the ‘hard sciences’ because
it means that reality is in some sense absolute and it is not the case that everything
is arbitrary. On the other hand being dependent on the observer one could also say
it is relative to the observer. In that case the question of reality becomes: what
choices does the observer have to chose from. In relative realism these possible
observer choices are themselves seem as a ‘hard reality’ but as a fact at a higher
level of understanding. The hardness of those choices is in turn sourced from deeper
choices that we the observer made, hence the hierarchical structure. In summary:

(1) Reality is a collective phenomenon that we all generate together through
choices or assumptions.

(2) The things we generate are not arbitrary but constrained by their own hard
reality dictating the possible choices.

(3) There is an absolute reality but it consists of the hierarchical structure of
all the structures that we have to chose from.

(4) There is a freedom in that we can choose or not choose to make those
choices to determine where we are in the hierarchy.

In [15, 2] I have given a number of examples, such as the ‘reality’ created by the
decision to agree and play by the rules of chess. So long as you accept the rules and
are playing chess, you can experience the reality and anguish of being checkmated
in a game. But you are also free to become aware that it is ‘just a game’ and then
the reality of your checkmate dissolves. It is still the case that chess is a good
game for which the rules work well, and that is an element of reality at a higher
level whereby there are not that many games to chose from, a kind of meta-reality
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Figure 1. Mathematical reality as a series of rooms within rooms
and the observer within it.

that you move into when you decide that chess is just a game you did not have to
play. Above that there are meta-meta realities and so forth. Also note that this
conception of reality is relative specifically to what the observer is conscious of and
hence the latter has a central role.

All of this should make sense to a pure mathematician, where ‘mathematical real-
ity’ is all about writing down axioms or assumptions that create a field of study.
At the same time the possible axioms of interest are highly constrained and part
of a higher mathematical reality about what interesting axioms you could have
chosen. For this reason mathematics is generally hierarchically structured where
you move up the hierarchy as you drop axioms or assumptions. On the one hand
pure mathematicians enjoy the freedom to make or not make such assumptions
so they can move up and down this hierarchy. It also suggests that mathematics
is invented and hence arbitrary yet many mathematicians take the view that the
‘right axioms’ or mathematical structures are an absolute (Platonic) reality ‘out
there’ waiting to be discovered in some cross section or other. So these are the two
faces of relative realism. I have proposed in [2] to think of the structure here as
a series of ‘rooms within rooms’ where when you take on some axioms to study
a field of mathematics you enter that room. Now at the threshold of a room you
can look two ways: facing into the room you see all the elements of reality of that
branch of mathematics. Facing out of the room you turn your back on that as a
mere product of assumptions and look into and around the bigger room in which
the room you began with is just one of many structures.

As the reader may not be a pure mathematician, let me try now to give a more
everyday example. Consider a day in this your fictional life. You wake up. You
are sleepy and want to stay in bed but are you have to face the hard reality that
you have a job that requires you to clock in at 9am every weekday. You reflect on
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how did your life come to this? Unfortunately, when you were looking around for
jobs a few years ago your choices were limited by your decision not to complete
high school was well by your interests. And how did that come about? You did
not complete high school in order to look after your sick parents and as for your
interests, they were formed in your childhood and you could hardly help that. So
here you are, your life is a product of all the limited choices you made to get here
and if you want to pay the mortgage the hard reality is that you have to get up
and go to work.

Now of course you could chuck it all and think laterally. You could step out of the
box and reinvent your life. You could in some sense rewind the clock and make
a whole different set of choices. But what is available to you, that’s still the ‘real
world’ and where did that come from. How did it get to be that society works the
way it does and that these are your choices? Why do bankers and footballers get
the high salaries and could society be different? Here again there were choices but
this time buried in the history and mechanisms of societal development, sometimes
shaped by choices of key leaders at the time and perhaps if we believe Tolstoy in
War and Peace subject to their own immutable laws of history. Could we think
laterally and reject all that too? Possibly by setting up on a tropical island but
we would be divorced from the rest of society and we would have a different set of
limitations. Moreover, the rest of society would still be there and does not disappear
in absolute terms so long as many people still think that way.

Could you go further? Most people would assume that there is ultimately a physical
reality which is not a product of any assumptions or choices and within which the
limits to society operate. But what if the process continues and physical reality
which provided the backdrop to our tale is also a product of choices and assumptions
made now not by society but by the development of language and Science? As we
probe into these more fundamental matters we are digging deeper and probably
earlier both into the development of our own psychology and into the development
of Science. Maybe we do have choices and assumptions but thinking laterally and
rejecting these deepest assumptions would require such originality of thought as to
be on the edge of sanity. On the other hand it’s on this cutting edge that revolutions
in Science do take place from time to time. We can sometimes in Science think
laterally and completely rethink what is going on. In the context of our tale above
we could imagine that we were born on some different planet or if you believe string
theorists then some different multiverse with different values for the constants of
Nature and perhaps even different rules. Suddenly our philosophy of reality is on
the cutting edge of modern physics and given that we do not have a complete theory
of physics that reconciles quantum theory and gravity, there really are assumptions
and choices to be explored and that we perhaps did not have to make.

Now there is one big difference here when we talk about the physical world rather
than social realities and this is a kind of convergence phenomenon whereby when
there is a paradigm shift the experimental facts are not changed just their inter-
pretation. It is not usually felt by scientists that reality is being changed, only
our view and precision of it, but I would argue that this is a different use of ‘real’
as pertaining just to experimental facts. In fact the reality in any paradigm is an
experience that is and interaction between theory (what we think is going on) and
so-called fact. In that sense every scientific fact is still within a paradigm or set of
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choices about this or that structure and is more in the nature of a measurement
on that structure. In other words, even ‘hard science’ depends on theoretical or
structural choices. Rejecting those choices does not change the facts any more than
going to a tropical island changes the rest of society, but nor are those ‘facts’ any
more real in that they take place within a series of assumptions about how we look
at the world.

Since the more fundamental choices are for an individual made earlier in life, in [2] I
have taken this to its logical conclusion that our experience of reality can be traced
back to the day we first became conscious and the choices we took on. In that
case the deepest aspects of the hard Sciences should have their roots in the very
earliest assumptions that we, an otherwise clean slate, take on. And the search
for the as yet elusive theory of quantum gravity (the still missing foundation of
modern physics) should probably require us to think laterally about a very very
basic assumption, i.e. about something we have taken on very early in this process.
It is impossible for me to say what and when exactly was that assumption since
quantum gravity is not known, but for both quantum theory and gravity one can
identify key moments in a child’s development which we have to wind back to in
order to make the step to each of those theories. Here are just a couple of examples,
from[2]:

(1) for quantum theory children go through a container phase in which they enjoy
putting things into containers. This is their first exposure to Boolean logic or set
theory, however there is anecdotal evidence (from my own kids experience) that
initially at least kids to not assume that if you put something in a box and then
open the box, that it is still there. Similarly children at this age (around 2) can
also be comfortable with someone being at two places at the same time. These are
elements of quantum logic where the full rules of classical logic are not yet assumed.

(2) for gravity we need geometry and of course children learn the basics of geometry
as they learn to walk and play. But they also learn language and in particular the
use of relative coordinates or ‘pronouns’. Thus ‘me’ and ‘you’ are learned in place of
absolute third person references just as we eventually learn to describe geometrical
points by coordinates relative to a choice of frame rather than simply pointing,
which ultimately leads to the modern notion of a classical manifold. For quantum
gravity however, it is my own view that we can and should rewind the clock back
to an absolute coordinate free (and symbolic) description of geometry.

3. Relative Realism and morality

Although I suspect my mathematician colleagues might not agree, as far as I am
concerned this section is about the moral implications of the world view known as
Pure Mathematics. Personally I think that scientists of all kinds can and should
see their work in the bigger picture and conversely relative realism says that the
bigger picture can’t be separated from Science.

So, at a mathematics conference on, say, differential geometry, you will generally
find two kinds of talks. There will be talks working within the axioms of differential
geometry and people arguing about the implications of these. These can even be
heated arguments resolved by logical analysis. Then there will be talks about the



6 SHAHN MAJID

axioms of differential geometry and their placement within a wider context, i.e.
generalisations thereof. From this point of view the reality of differential geometry
is a game that you don’t have to play. These are the two faces of relative realism.
If people don’t realise this distinction then arguments can get cross-purpose.

Similarly, I suppose that many disputes, even wars, have at their root assumptions
of a particular ideology or set of assumptions and the enforcement of those on
other people. In relative realism this should be a matter of individual freedom as
to whether a person wants to accept such a world view or adopt a different one.
Certainly differential geometers do not war with group theorists about who is ‘right’,
each group is equally entitled to work within its own paradigm. Just if they want
to call themselves mathematicians (and they do not have to of course) then they
should work within the meta-rules of logic and elegance that govern mathematics.
Similarly in a conflict between two parties the first thing to ask should be are they
making the same assumptions?, i.e. living in the same relative reality and if not
then this should be pointed out and the focus shifted ‘out of the box’ to look at
the assumptions themselves. Perhaps one party of another can accept that some of
the assumptions it was making were not really essential and could be replaced.

The same thinking can be useful at a personal level. Whenever faced with a difficult
choice we can ask if those choices are really the only ones or if we are allowed to think
laterally or ‘out of the box’ and change the underlying premise to the something
more suitable. Sometimes the answer is that the ‘rules’ are being dictated from
above but quite often those ‘above’ had not really thought about it and could be
flexible if there was a good reason to be.

We surely are all familiar with such situations but if we believe that all of reality
is assumption-based then this should become a way of life or philosophy about
the Universe and our place in it. We would both enjoy the restrictions that we
have assumed at a certain point in the same way as we may enjoy a game of
chess, or we may choose to transcend those restrictions to move up the hierarchy
to a more elevated viewpoint. Regarding assumptions that we are not aware of,
we may seek to elucidate hidden assumptions to clarify the relative nature of our
experience and in so doing we would be gaining understanding of why something was
true, i.e. a theoretical explanation. This process of becoming self-aware of hidden
assumptions is a particular type of revelation and my own vision of the ultimate
goal of theoretical physics is to travel so far up this hierarchy as to understand that
all of physics has to be the way it is as a consequence of very basic assumptions
about the nature of Science. We can even go beyond that and seek to understand
why the wider world is the way it is and our place within it, and meanwhile on
the way moving with greater equanimity from ‘room’ to ‘room’ in our increasingly
uncovered hierarchy of assumptions.

Such a philosophy of life is a humanist position that is the opposite of organised
religion in the sense that it dictates that each person engages in a personal journey
to analyse and transcend their own hidden assumptions. To me this seems closer
to how Science should be done but our outlook also has striking similarities to the
philosophy of buddhism. The central tenets of buddhism revolving around compas-
sion and transcendence from unnecessary assumptions are core to our philosophy
too. The difference is that whereas in buddhism the material world is regarded
as a delusory product of assumptions, for us the structure of these assumptions is
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Figure 2. Was the Buddha a mathematician?

our object of study and is the ‘real world’ that we seek to understand. So it’s a
different spin but the mechanism of perceived reality as a product of assumptions
that we can and should be able to transcend through analysis or reflection is the
same. In that sense I would say that the Buddha was inspired by the same thing
that inspires mathematics itself.

4. From Relative Realism to Self-Duality

Here I will recap my ideas from [15, 2] about self-duality but let me stress that you
do not need to accept this in order to accept the wider vision above. It’s merely an
attempt to formulate a key assumption but is not necessarily the whole picture.

The idea is that, within the general scheme of relative realism, the specific axiom
that characterises Science is the idea of experimental measurement. Something
is hypothecated to be true and an experiment measures or illustrates this. The
outcomes of the measurements are the ‘real’ things that are independent of any
theory in the sense that theories come and go but the outcomes of experiments are
what they are within their error bars. Newtonian mechanics is nowadays seen to
be ‘wrong’ but it lives on within its domain of applicability in that its predictions
are amply verified in everyday life. Those facts have not changed just because our
point of view has. Finally, theory is typically the positing of some kind of abstract
structure and the notion of experimental measurement is some kind representation
of it. By representation we mean loosely some kind of realisation of the abstract
structure in something that is more concrete and self-evident.

Now let X denote some abstract mathematical structure, such as the circle group.
Now for any mathematical structure there is usually some notion of representation f
of that structure in something more primitive, so for each x ∈ X we have the value
f(x) of x in representation f . However, mathematics has an intrinsic ‘observer-
observed’ duality in which the roles can be reversed: we can regard f as a member
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of some collection X̂ of all such representations, with its own structure, and regard
the same value f(x) as x(f), the value of x seen as a representation of X̂ on

f ∈ X̂. The observed can always be seen as instead the observer, observing what
had previously been the observer as an element of the set of all possible observers. In

mathematical terms one usually has X ⊆ ˆ̂
X and in nice cases this is an isomorphism

of structures. In the case of the circle group, its set of representations is labelled
by the integers and we can think of an angle in the circle as a representation of the
additive group of integers. So next time you see an innocent expression f(x) ask
yourself is it really the value of f at x or is it the value of x at f? This was my
answer to the Plato’s cave parable in [15, 2] – one could assume that the shadows
on the cave wall are a representation of the puppet show reality going on behind
the prisoners heads but one could equally well regard the different shadow-sets
(as determined by the location of the fire light source behind the puppets) as the
‘reality’ and the different puppet locations as determining different representations
of that. Turning the tables like this can be very hard to ‘see’ since we generally
have to transcend a lot of assumptions to do this, but it makes sense within relative
realism in that neither point of view is absolute but relative to our choice to regard
X or X̂ as the ‘real thing’.

So, mathematics and hence the mathematical structure of physical reality has this
somewhat arbitrary division into some bits which are assume or chose as the ‘real-
ity’ and other bits which are representations of those first bits but which we could
equally well have regarded as ‘real’. We have argued that this is the deep origin of
Born reciprocity that position and momentum in physics are somewhat interchange-
able. The weak principle of self-duality in [15] is that one has this division and it
is somewhat arbitrary, much as the division into x, p on a symplectic manifold is
somewhat arbitrary. This more or less comes out of the nature of mathematics. The
much stronger ‘strong principle’ goes further and states that the ultimate theory
of physics is self-dual in that the dual picture in which x, p are interchanged looks
much the same. This comes out of an analysis of the nature of Science, namely
that theorists and experimentalists will always have different views that X or X̂
are real and hence will only agree when we accept both. But of we have both X, X̂
then we also won’t be happy with the product X × X̂ because of the feeling that
physics should be irreducible and not disconnected. Hence we will tend to extend
such structures to some X1 and then build its representations X̂1 and so forth. We
have proposed this in [15] as a kind of semantic engine that drives the evolution
of Science and which ‘stalls’ or has a fixed point when the total structure of the
theory if self-dual in the sense of the strong principle of self-duality. For if X ∼= X̂
then we do not need to take a direct product and can instead agree that the two
camps are talking about the same thing with different notations. This last step is
somewhat extreme and in general we are content if X, X̂ are at least the same type
of object, i.e. objects in a self-dual category.

5. Self-duality in quantum gravity

The search for self-dual algebraic structures as toy models of quantum gravity led
to one of the two main classes of examples of true quantum groups in the 1980s,
namely the bicrossproduct ones[16]. This is one of the two origins of quantum
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groups. The simplest example, the ‘Planck scale Hopf algebra’, has two parameters
which can be seen as ~ and the gravitational constant G and is the solution E to
the extension problem

C[p]→ E → C[x]

of position space in one variable x by momentum space in one variable p. Details
of this story are recounted in [1, 2] but the main idea is that the dual Hopf algebra
has the roles of x, p swapped and the roles of quantum and gravity swapped but
is otherwise isomorphic (it is a self-dual Hopf algebra). In some sense quantum
theory and gravity arise out of the possible solutions or choices for E that are
possible once we have assumed position and momentum. This was a toy version of
relative realism at work.

Other bicrossproduct quantum groups can be seen similarly but they also arise
slightly differently in 3D quantum gravity (and hence conjecturally in 4D) as solu-
tions E to the extension problem

C(M)→ E → U(son)

where C(M) is the algebra of functions on a classical momentum group M , i.e. we
consider the choices for all possible ‘Poincare quantum groups’ for the given mo-
mentum and projecting onto the chosen rotations algebra U(son). This quantum
group then acts on the enveloping algebra U(m) viewed as the noncommutative
coordinate algebra of quantum spacetime, where m is the Lie algebra of M . Let’s
call this the A-model. What is more relevant in 3D quantum gravity is a semiduali-
sation process in which we swap the roles of C(M) and U(m) as mutually dual Hopf
algebras i.e. position and momentum – a process which we have called quantum
Born reciprocity. In the resulting semi-dual or B-model, M becomes the classical
spacetime with classical isometry group SOn./M locally factorising into SOn,M .
Such factorisations and the above extensions are equivalent data[16, 3]. We see[24]
that this part of quantum gravity on quantum spacetime (the A-model) semidu-
alises to a classical particle on a classical spacetime (the B-model) which previously
had been momentum, a duality which extends the observable-state duality in [16]
and also has a flavour similar in some respects to mirror symmetry. In particular,
3D quantum gravity with point sources and zero cosmological constant semidu-
alises to a classical particle on S3 = SU2. The q-deformation of the A-model here
is quantum gravity with cosmological constant approximated by quantum space-
time Uq(su2) and its semidual (the B-model) is a q-deformed particle moving on
the quantum spacetime Cq(SU2). These A and B models have different algebras
but remarkably they are related by a twisting equivalence as long as q 6= 1. In this
sense 3D quantum gravity is self-dual up to twisting iff the cosmological constant
is not zero[24]. We see that the search for self-dual systems and quantum Born
reciprocity leads in the specific context of 3D quantum gravity to requiring a non-
zero cosmological constant. As explained in [24], what happens is that the Planck
scale parameter and the cosmological length scale parameter are interchanged under
semidualisation. We refer to [2, 3, 24] for more details.

Here we refocus more broadly on the mathematical structures relevant to our at-
tempt to apply the above philosophical ideas to quantum gravity. We think of
Riemannian geometry, which is the basis of gravity, as consisting of three layers:
the topological, the differential manifold and the Riemannian structure.
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(1) Let X be a compact topological space, C(X) = A the unital commutative
algebra of continuous functions on X. But we could equally well regard A as the
real thing and X = SpecA the set of irreducible representations of A with an
inherited topology. This Gelfand-Naimark theorem or some algebraic version of it
is the basis of algebraic geometry, as well as of noncommutative geometry when A
is allowed to be noncommutative. Going beyond this, (projective) modules of A
are, by the Serre-Swan theorem, sections of vector bundles. So in physics one can
say that matter fields are elements of the dual of A or the double dual of X in some
sense. We normally assume that algebras are associative.

(2) Let X be a manifold, Ω the graded-commutative algebra of smooth differential
forms on X equipped with a degree 1 map d axiomatized as a graded-derivation in
the sense

d(ωη) = (dω)η + (−1)|ω|ωdη, ∀ω, η ∈ Ω

and obeying d2 = 0. We can essentially recover X as a space as in setting (1) from
the degree zero part A = C∞(X), and the differential structure on X from d. The
latter at the level of X also appears as the boundary map ∂. We can let A be other
kinds of commutative algebra, which is the basis of algebraic geometry, and we can
also allow A to be noncommutative and Ω non-graded-commutative as an approach
to noncommutative differential geometry.

(3) Let X be a Riemannian manifold, (Ω,d, δ) its differential algebra as above but
further equipped now with the codifferential δ. This can typically be defined via
∗−1d∗ using the Hodge structure or by a trace of the Levi-Civita connection. The
properties of δ have recently been axiomatised in [23] as a certain (nondegenerate
and symmetric) type of Batalin-Vilkovisky algebra. Specifically, we axiomatise the
requirements for δ as a degree -1 map with δ2 = 0, the ‘6-term relation’

δ(aωη)− (δ(aω))η − aδ(ωη)− (−1)|ω|ωδ(aη) + a(δω)η + (−1)|ω|aωδη = 0

for all a ∈ C∞(X), ω, η ∈ Ω, and the ‘symmetry condition’

δ(adb)− aδdb = δ(bda)− bδda, ∀a, b ∈ C∞(X).

We have:

Theorem 5.1. [23] Let δ : Ω→ Ω obey the axioms stated. Then

(ω,da) = δ(aω)− aδω

∇ωη =
1

2
(δ(ωη)− (δω)η + ωδη + iωdη + iηdω + d(ω, η))

for all a ∈ C∞(X), ω, η ∈ Ω1, define a possibly-degenerate metric and metric-
compatible torsion-free covariant derivative.

Here the covariant derivative ∇ and interior product i are defined along 1-forms
but when ( , ) is nondegenerate we obtain a Riemannian metric and a new formula
for its Levi-Civita connection on X along the corresponding vector field. In this
case one finds[23] the 7-term identity

δ(ωηζ) = (δ(ωη))ζ + (−1)|ω|ωδ(ηζ) + (−1)(|ω|−1)|η|ηδ(ωζ)

−(δω)ηζ − (−1)|ω|ω(δη)ζ − (−1)|ω|+|η|ωηδζ

for all ω, η, ζ ∈ Ω as an extension of the assumed 6-term identity. A BV algebra is a
degree -1 operator δ (usually denoted differently) on a graded-commutative algebra
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with δ2 = 0 and this 7-term identity[4]. So a manifold has the structure of a
Riemannian manifold iff its exterior algebra has the structure of a BV algebra with
δ symmetric and with the associated bilinear nondegenerate. The theory in [23] is
slightly more general. First of all we only need δ2 to be tensorial and, secondly,
we can allow δ to have ( , ) degenerate. Our formulation of a covariant derivative
along forms still makes sense and gives a generalisation of Riemannian geometry
to singular metrics. Theorem 5.1 also meets our long-standing goal of a common
language for GR and quantum theory since BV algebras arise naturally in BRST
quantisation.

In each case the algebraic structure maps out or in some sense represents the geo-
metric structure but we can also take the view that the algebra is the ‘real thing’
and the geometry is a ‘geometric realisation’ of the algebra. In this second point
of view we can even let the algebra A be noncommutative and do away with the
explicit geometry; this is noncommutative geometry.

We are using the term ‘representation’ in a loose sense and there is generally more
than one way to say what we mean by representation. Thus the relevant duality in
practice is sometimes quite loose. One of the variants of the above is to linearise
the geometric side, so in place of the space X in the setting of (1) we can take
the vector space CX spanned by X. The pointwise algebra product on A then
corresponds on the dual side to a coalgebra on CX with coproduct ∆x = x ⊗ x
for all x ∈ X. More generally we can take any coalgebra C not necessarily of the
special cocommutative form for an actual space. Similarly, in the setting of (2)
the dual concept to a differential structure on Ω means a graded coderivation i of
degree -1 with respect to a graded coalgebra C and obeying i2 = 0. Here a graded
coderivation means[25]

∆ ◦ i = (i⊗ id + (−1)D ⊗ i) ◦∆

where D is the degree operator with respect to the grading of C. Finally, in the
setting of (3) we have the coalgebra and coderivation i as just discussed but now also
a co-BV structure adjoint to δ, as the linearised notion of Riemannian structure.

Next, according to the self-duality principle we should look for objects which are
of self-dual type in the sense of both the algebra and coalgebra side at the same
time and with some natural compatibility between them. In the above setting (1),
this leads to the notion of quantum group or Hopf algebra as an algebra which is
at the same time a coalgebra and the two are compatible (and there is an antipode
or ‘linearised inverse’), see [1]. We have already recounted the story of this for
quantum gravity. Going beyond this now, in the above setting (2), we are led
in [25] to the notion of a graded super-Hopf algebra Ω (with odd and even parts
according to the grading) equipped with a degree 1 graded bi-derivation. The latter
means d with d2 = 0 which is both a graded-derivation as usual with respect to the
algebra and a graded coderivation with respect to the coalgebra. Let’s call this a
differential super-Hopf algebra. Then

Theorem 5.2. [25] A differential super-Hopf algebra which is generated by its
degree 0 and d, is the same thing as a bicovariant differential calculus on the degree
0 quantum group.
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This gives a new point of view on the standard notion of a bicovariant differential
calculus on a quantum group[27], and also generalises it. Moreover, we are led[25]
to the idea of such a bicovariant calculus augmented further by a degree -1 graded
bi-derivation i with i2 = 0. In this case the axioms are self-dual and in the finite-
dimensional case Ω∗ with all maps adjointed is once again an augmented bicovariant
differential calculus, but this time on the dual degree 0 quantum group[25]. This ex-
tends the duality of quantum groups to duality of quantum groups-with-differential
structure. The self-dualisation in the above setting (3) can in principle be done
in the same way to give a self-dualisation of the concept of Riemannian geometry.
Note, however, that (Ω,d, δ) in (3) by itself already has an aspect of self-duality in
having both a differential and codifferential. We turn to this now.

6. Self-duality v Hodge duality

The key expression of representation-theoretic self-duality in physics is Fourier
transform. This makes sense for any finite-dimensional Hopf algebra and, with the
appropriate care to handle the analysis, a general Hopf algebra A equipped with a,
say, right-integral and a coevaluation. The right-integral means a map

∫
: A → C

(or whatever the field is) such that
∫
a(1) ⊗ a(2) = (

∫
a)1 where ∆a = a(1) ⊗ a(2) is

our notation for the coproduct. It expresses translation in the group in the classical
case. If {eI} is a basis of A and {f I} a dual basis then the coevaluation at least
in the finite-dimensional case means the canonical element exp =

∑
α eI ⊗ f I . The

Fourier transform is then[1]

F : A→ A∗, F(a) =
∑
I

(

∫
aeI)f

I , ∀a ∈ A,

where exp formally plays the role of the exponential. One can also say equivalently

that F(a)(b) =
∫
ab for all a, b ∈ A and use this in the infinite-dimensional case.

The fundamental lemma of Fourier theory is that multiplication on the dual side
corresponds to translation / on A in the sense

F(a/φ) = F(a)φ, a/φ := a(1)〈Sa(2), φ〉, ∀a ∈ A, φ ∈ A∗,

where 〈 , 〉 is the duality pairing and S is the antipode. We have formally applied

such ideas to quantum gravity in [11] as a Fourier transform F : C(G) → U(g)
for suitable types of function on a suitable Lie group and a suitable completion. It
implements the quantum Born reciprocity in 3D quantum gravity for the models
above[24].

Now, this Fourier theory also makes sense for Hopf algebras in braided categories[13]
and in particular in the category of super-vector spaces. If V is a vector space of
dimension n then the exterior algebra Λ = Λ(V ) is a a graded-commutative (super)
Hopf algebra in this category. Its super-dual is Λ(V )∗ = Λ(V ∗).

Proposition 6.1. The super-Fourier transform F : Λ(V )→ Λ(V ∗) is the canonical
Hodge operator ∗. Moreover, super-Fourier transform converts wedge product in Λ?

to interior product on Λ.

Proof. This is a matter of working through the definitions. If {ei} is a basis of V
then eI := ei1 · · · eim for I = (i1, · · · , im), i1 < i2 · · · < im, m ≤ n a multiindex,
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gives a basis of the exterior algebra Λ. The categorical dual super-Hopf algebra Λ?

has the same form with generators a dual basis {f i} of V ∗ and pairing

〈f jm · · · f j1 , ei1 · · · eim〉 = δj1i1 · · · δ
jm
im
, ∀i1 < · · · < im, j1 < · · · < jm.

exp =

n∑
m=0

∑
j1<···<jm

ej1 · · · ejm ⊗ f jm · · · f j1 =

n∑
m=0

1

m!
ei1 · · · eim ⊗ f im · · · f i1

(summation understood in the last expression) which we see looks like an exponen-
tial. For integration we have the usual Berezin integration

∫
e1 · · · en = 1 and zero

on other degrees. Then applying the same definition for Fourier transform as for
Hopf algebras but now on our super-Hopf algebra gives

F(ei1 · · · eim) =
∑
k

∫
ei1 · · · eimej1 · · · ejk⊗f jk · · · f j1 = εi1···imj1···jn−mf

jn−m · · · f j1

with no sum of the j’s, where ε is the totally antisymmetric symbol. If we adopt
the summation convention as usual, this becomes

F(ei1 · · · eim) =
1

(n−m)!
εi1···imj1···jn−m

f jn−m · · · f j1 , F : Λm → Λ?n−m.

This is the standard Hodge * operator aside from a reversal of the order of the f ′’s
and on converting the f ’s to e’s using a metric.

Similarly, right multiplication by f i in Λ? corresponds under F to a right action in
Λ which works out as (−1)m+1 times

(〈f i, 〉 ⊗ id)∆(ei1 · · · eim) = (〈f i, 〉 ⊗ id)((ei1 ⊗ 1 + 1⊗ ei1) · · · (eim ⊗ 1 + 1⊗ eim))

= δii1ei2 · · · eim − δ
i
i2ei1ei3 · · · eim · · ·+ (−1)m−1δiimei1 · · · eim−1

.

This expression is the usual interior product converted in our conventions to a right-
derivation by the (−1)m+1 prefactor that comes from the braiding in the definition
in [13]. �

The reversal in the order of the f ’s in F and the conventions for the interior
product come from the categorical duality pairing between Λ and Λ? being defined
without unnecessary braidings. These conventions are not essential in the present
case in that one could rework the Fourier theory for super-Hopf algebras in the
same conventions as stated for ordinary Hopf algebras. However, the more general
formulation works in any braided category given a suitable left-integral

∫
on Λ

and right-integral
∫ ∗

on Λ? for the inverse Fourier transform[13]. The role of the
minus sign in the usual Fourier inverse is now played by the antipode S of the
braided-Hopf algebra and the role of 2π is played by

Vol = (

∫
⊗
∫ ∗

)(exp)

We need slightly to extend [13] in that
∫

in practice is not a morphism. One
can think that it has values in some non-trivial element of the braided category.
Allowing for this, we have

F∗ = (id⊗
∫ ∗

)(Ψ⊗ id)(id⊗ exp)
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for the adjoint transform in the reverse direction, where Ψ is the braiding. Then
c.f.[13] one has

F∗F = (

∫
⊗id⊗

∫ ∗
)(Ψ−1 ⊗ id)(S ⊗ exp).

In our case
∫
fn · · · f1 = 1 so that Vol = 1 and F∗(f im · · · f j1) = εi1···imj1···jn−m

ej1 · · · ejn−m

(no summation). Then F∗F = (−1)m(n−m) on degree m arises from the antipode
S = (−1)m and a short computation. This is how the square of the Hodge * arises
from the super-transposition and antipode.

The above Proposition 6.1 applies locally on a manifold to the exterior algebra
of the tangent space of each point. Thus usual bosonic Fourier theory on the
symmetric algebra of the tangent space of a point leads to microlocal analysis while
the fermionic version is Hodge theory. One could thus say in view of Theorem 5.1
above that Riemannian geometry arises from this fermionic Fourier transform.

This point of view also allows us in nice cases to define the Hodge * operator and
interior product in noncommutative geometry, via the braided-Fourier transform.
For example, if Ω is a bicovariant differential calculus on a quantum group A as in
Theorem 5.2 above, we have Ω = A.<Λ where Λ is a braided-Hopf algebra in the
braided category of crossed A-modules (we suppose for this that A has invertible
antipode). We can think of the semidual Ω−∗ = A.<Λ? as the exterior tangent bun-
dle and F : Λ → Λ? then defines a quantum Hodge operator. Here V = Λ1 is the
underlying object in the braided category and Λ is a certain quotient of its tensor
algebra defined in such a way[17] that Λ(V ),Λ(V ∗) are dually paired. This con-
struction of a bicovariant calculus Ω is due to the author but recovers[18] a different
construction in [27] using braided-antisymmetrizers and without any braided-Hopf
algebra structure. In nice cases we also have Λ ∼= Λ? via a quantum metric. The
example of braided Fourier transform on the standard 3D noncommutative calculus
on the algebra of functions on S3 (the group of permutations on 3 elements) is in
[19].

We can go further to the full Fourier transform Ω→ Ω? as a super-Hopf algebra as
in Theorem 5.2. This is a tensor product of Hodge duality as above and ordinary
quantum Fourier transform on the bosonic degree 0 quantum group A. The physical
role of this full Fourier-Hodge transform remains to be explored.

7. Self-duality v de Morgan duality

Another algebraic self-dual concept, this time at the ‘birth of geometry’, is in the
notion of Boolean algebra. From the point of view of setting (1) in Section 5, if X is
a set then the collection of subsets is a Boolean algebra, or equivalently a ring with
product given by ∩ and addition by exclusive-or ⊕, and such that every element
obeys x2 = x. Conversely, from a Boolean algebra one can construct a certain type
of highly disconnected space. Also in this context there is a ‘de Morgan duality’
given by complementation, or x 7→ x̄ = 1 − x in the ring-theoretic language. This
operation is an isomorphism if we also interchange ∩,∪ and 0, 1 (where the latter are
the empty set, and all of X respectively from the Boolean point of view). Although
this de Morgan duality is not obviously the same as representation-theoretic duality,
there are physical reasons to think that it is somewhat in the same spirit. These
physical reasons are speculative but are as follows [15, 2].
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Figure 3. Unlikely creation and annihilation process of electron-
positron pair could also be seen as a time-travel loop.

Firstly, dropping the axioms x ∪ x̄ = 1 of a Boolean algebra leads us to a more
general notion of Heyting algebra, often regarded as the correct (intuitionistic)
logic for quantum theory. We refer to [9, 8] for recent work in this area. The de
Morgan dual concept is that of a co-Heyting algebra where we drop the law that
x ∩ x̃ = 0 and where now ˜ denotes the complementation. In this case ∂x := x ∩ x̃
behaves like the boundary of the set (and is a derivation in the co-Heyting algebra)
so can be seen as the beginning of geometry[14]. So, roughly speaking, quantum
theory and gravity are interchanged by the extension of de Morgan duality beyond
Boolean algebra. Yet we have explained in Section 5 that they are also interchanged
by ‘quantum Born reciprocity’ under a process of semidualisation where the posi-
tion and momentum space quantum groups in certain bicrossoroduct models are
interchanged[16, 2, 3, 24]. So it would appear to fit in with the representation-
theoretic self-duality. Following [2], we can illustrate these ideas at the level of
logic:

Schrödinger’s cat (which we assume the reader is familiar with) has
a cat inside a sealed box in a mixed quantum state between dead
and alive. We take the view that the cat is neither dead nor alive
as an illustration of intuitionistic logic.

Dual to this we introduce the Co-Schrödinger’s cat thought ex-
periment. A cat (in a spacesuit) is falling into a large black hole.
From the cat’s perspective it falls in and dies in a finite time when
crushed near the initial singularity. But from our point of view as
a distant observer, however, the cat never dies but is frozen for-
ever hovering on the black hole event horizon due to time dilation
effects. So the right logic here is that the cat is both dead and alive.

Another bit of intuition in support of our hypothesis is that if something moves
along a worldline then its absence moves backwards along the worldline, so a kind
of time-reversal. This is also what happens with random walks based on Hopf
algebras[1] basically because if we dualise a sequence of compositions then its adjoint
is a sequence of compositions of maps between the dual vector spaces but in reverse
order. How these observations translate into physics is not clear particularly as it is
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normally assumed that antiparticles experience gravity in the same way as particles.
However, the arrow of time, according to relative realism, is a prime example of
a reality that it created by hidden assumptions in the way we talk and handle
probability in much the same way as, within a country, it is normal for people to
agree to drive on a fixed side of the road. Anyone that tried to go on the wrong side
would tend to crash and in the same way the equations of physics are time-reversal
(or CPT) invariant, but anyone who insists on interpreting everything with the
reversed arrow of macroscopic time will not be able to interact consistently with
the rest of us. This freedom can, however, be seen at the subatomic level where,
for example, the process in Figure 3, can be read one way from bottom to top as a
photon splitting into an electron and anti-electron then these happen to recombine
producing a photon. Alternatively we could take the view that an electron appeared
out of nowhere (absorbing a photon), travelled up the page where it disappeared
producing a photon and travelled back in time to become the electron we started
with. This kind of time-travel loop is possible at the subatomic level if we chose
to interpret it that way but with very low probability. The reasons for the arrow
of macroscopic time being non-reversible then become, as for thermodynamics, the
nature of entropy or probability and the key thing here is that probability and
associated concepts are a prime example of relative realism as they depend on
subjective choices.

Another speculative but physical idea related to de Morgan duality in [15] refers to
the nature of vacuum energy as dual to a black hole in the sense that space as empty
of matter as quantum fluctuations allow means as full of not-matter (the real objects
from the de Morgan dual side) as the not-gravity (gravity from the de Morgan dual
side) will allow due to the formation of a not-black hole (a black-hole from the de
Morgan dual side). Or simply put, we have already argued that cramming space full
of matter is the dual statement to space being as empty as possible, i.e. black holes
are dual to vacuum energy in some sense. We do not pretend to have a theory here
but we do note that this very issue of the right way to think of vacuum energy is
widely accepted as a likely test of quantum gravity in that naive ideas for its origin
from the zero point energy of each frequency mode gives 10122 times the observed
and otherwise unexplained vacuum density of 10−29g/cm

3
. In this regard let us

note that we have proposed in [21] that vacuum energy arises as a noncommutative
geometry or Planck-scale correction; it is in some sense zero when computed in
noncommutative geometry but arises when this is seen as a correction to classical
geometry, which would explain why it is so much smaller than what would arise
from a quantum correction.

In spite of this circumstantial evidence it remains to relate this type of duality
to representation-theoretic duality more mathematically. Here we want to make
a few small comments. From a mathematical point of view a Heyting algebra is
a (bounded) distributive lattice with an additional binary operation x ⇒ y where
x̄ = (x⇒ 0). A bounded lattice here means a type of poset where any two elements
have a supremum denoted x ∪ y and an infimum denoted x ∩ y with respect to the
partial ordering ≤, and in the bounded case we have associated 0, 1. The ∩,∪ are
compatible by certain absorption axioms. In the distributive case the latter extend
to the distributivity of ∩,∪ over each other (as for Boolean algebras). The extended
duality notion x⇒ y for a Heyting algebra is the largest z such that z∩x ≤ y. It is
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also known that x ≤ ¯̄x and x∩ x̄ = 0. The subset of elements where double-duality
does hold form a Boolean subalgebra.

(1) Our first observation is that as a poset a Heyting or co-Heyting algebra A is itself
a discrete differential geometry in that there is an algebra of 1-forms ωx<y spanned
by the edges x < y (where we do not include the self-edges). The differential calculus
Ω1 is defined on the algebra of functions C(A) with df =

∑
x<y(f(y)− f(x))ωx<y

which makes sense at least in the finite case (one would need some analysis in the
infinite case). From the point of view above, there is also a topological space X
of which a Heyting algebra elements can be seen as the collection of open sets, or
a co-Heyting algebra as the closed sets. Thus we are in some sense doing discrete
geometry on the set of open or closed sets on a topological space.

(2) Next we can also think of A as a category with at most one morphism ≤ between
any two objects and ∩ as product. In this context one can view the Heyting algebra
map x ⇒ y as an ‘exponential element’ yx or internal hom Hom(x, y) depending
on notation. The ‘evaluation map’ is the morphism ev : Hom(x, y) ∩ x ≤ y where
in our category the morphisms are ≤ and the product is ∩. So in this context
x̄ = Hom(x, 0) which starts to look like a representation-theoretic dual space of all
maps to a trivial object, but with respect to this internal hom structure. Also x ≤ ¯̄x
is still close to double-duality in the sense of a morphism from x to ¯̄x. Similarly for
a co-heyting algebra with respect to ∪ and a dual interpretation.

(3) Usually a bi-Heyting algebra[26] is defined as something that is both a Heyting
and co-Heyting algebra at the same time (but generally with different complemen-
tations for the two cases). In this case we have both

∂x := x ∩ x̃, δx := x ∪ x̄.
If we view ∂ as a homology version of differential as in Section 5 then we could view
δ as a homology version of a codifferential. According to Section 5 we could start
to think of this as the beginning of a ‘Riemannian manifold’ but let us stress that
we are not claiming that we really have the structure in that section.

(4) Based on the ‘self-dualisation’ ideas in Section 5, a slightly different approach to
a bi-Heyting algebra would our following proposal: a bounded distributive lattice
with a single operation complementation obeying double duality and de Morgan
duality interchanging ∩,∪. In this case δx = ∂x̄ just as in Hodge theory, i.e. de
Morgan duality could from this point of view be more in the spirit of Hodge duality.
We again have ∂ a derivation with respect to ∩ and dually δ(x∪y) = (δx∪y)∩(x∪δy)
as well as

δx = δx̄, ∂x = ∂x̄, x ∩ δx = x ∪ ∂x = x

∂2 = ∂, δ2 = δ, δ∂ = δ, ∂δ = ∂

under our assumptions. One may also show

x⊕ y := (x ∩ ȳ) ∪ (x̄ ∩ y)

is commutative with zero and associative up to ∂ terms. The latter is because,
omitting the product ∩ and grouping it ahead of ∪, we have

(x⊕ y)⊕ z = (∂x ∪ ∂y)z ∪ xyz ∪ x̄ȳz ∪ x̄yz̄ ∪ xȳz̄
where the last group of terms is symmetric in permutations of x, y, z. We also have

xy ⊕ xz = x(y ⊕ z) ∪ (∂x)(y ∪ z).
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Thus the Boolean ring gets replaced by some kind of ‘homotopy ring’ meaning up
to ∂. Instead of x being inverse to itself, and instead of x⊕ x̄ = 1 as in the Boolean
ring case, we have

x⊕ x = ∂x, x⊕ x̄ = δx, x̄ = x⊕ 1, x⊕ y = (x⊕ ȳ) ∪ ∂x ∪ ∂y.
The realisation of this proposal in terms of proving the existence or not of such
objects (beyond the Boolean case) remains to be seen.

8. Relative realism and the origin of Riemannian geometry

We now address what could be considered as the biggest problem in quantum
gravity at the moment, namely how exactly does gravity and classical Riemannian
geometry emerge. In the spirit of relative realism we are going to argue that Rie-
mannian metrics and connections are forced by the choices already made in having a
manifold and assuming that quantum gravity effects make things noncommutative.
This does not answer the question of how does a manifold itself emerge, i.e. we
assume some kind of differential structure encoded as in setting (2) of Section 5, as
a differential graded algebra, but within that, i.e. assuming basically nothing but
the Leibniz rule of differential calculus, we shall see that this assumption creates
or forces on us Riemannian geometry. This is philosophically then the origin of
Riemannian geometry, while at the practical level it also translates into a concrete
mechanism, for the first time, for how Riemannian structures can emerge from
quantum gravity without having assumed anything like a metric or Riemannian
structure in advance.

Specifically, we interpret recent results in [23] now in the context of relative realism.
The starting assumption is that whatever quantum gravity is, it must in some limit
recover classical Riemannian geometry and classical gravity in the vanishing limit
of some parameter, assumed to be the Planck scale λ. If so then at non-zero values
of the parameter we should see corrections or deformation to classical Riemannian
geometry. As these are quantum gravity effects one could assume – and this is now
widely accepted as an expectation for quantum gravity – that these corrections
take the form of noncommutative geometry where spacetime coordinates become
noncommuting operators or noncommuting algebra variables. This is the reason,
proposed in [16], for interest in noncommutative geometry as the foundation of
current generation quantum gravity models.

Now if this assumption of noncommutative geometry as a better approximation of
what emerges from quantum gravity holds, how much reality is created or forced
by that? The following is not the whole story but let’s suppose for the sake of
analysis that we are in only the mildest form of noncommutative geometry where
the coordinate algebra A remains classical and the noncommutativity enters only
between 1-forms and functions, i.e. only the differential calculus is being quan-
tised. This is so as to focus on this issue alone. Now, due to previously identified
mathematical constraints it turns out that in many cases one has to have one or
more extra cotangent direction in order to keep associativity[5] so we allow for this
possibility too. Thus we assume:

(1) There is in the classical limit a classical manifold X and let Ω(X) be its asso-
ciated differential exterior algebra
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(2) For general parameter values we assume the same algebra A = C∞(X) but
allow all possible differential ‘manifold’ structures in the form of some differential
graded algebra E over A but not necessarily graded-commutative and not necessarily
generated by A,d in that we allow possibly an extra dimension.

(3) We assume an extension of associative differential graded algebras of the form

Ωθ′ → E → Ω(X)

as maps of differential algebras, where Ωθ′ is the differential graded algebra with a
single 1-form θ′ with θ′2 = 0 and dθ′ = 0. There is a technical cleftness condition[23]
similar to assumptions made in Section 5 in those other contexts.

(3) We assume that the extension is graded-central in that θ′ anticommutes with
1-forms.

In short we are looking at all possible 1-dimensional central extensions of the clas-
sical differential ‘manifold’ structure on X within noncommutative geometry while
still close to classical. We are not assuming any kind of metric or Riemannian
structure. We use the notation

LB(ω, η) := B(ωη)− (Bω)η − (−1)b|ω|ωBη, ∀ω, η ∈ Ω

for the ‘Leibnizator’ measuring failure of any operator B of degree b to obey the
Leibniz rule.

Theorem 8.1. [23] All possible central extensions E as above of a fixed classical
exterior algebra are given by ‘2-cocycle’ data (∆, [[ , ]]) where

∆ : Ω→ Ω, [[ , ]] : Ω⊗ Ω→ Ω

of degrees 0, -1 respectively, obey

[∆,d] = 0

[[ωη, ζ]] + [[ω, η]]ζ = [[ω, ηζ]] + (−1)|ω|ω[[η, ζ]]

L∆(ω, η) = d[[ω, η]] + [[dω, η]] + (−1)|ω|[[ω,dη]]

for all ω, η, ζ ∈ Ω. Moreover, given such an extension there is an associated possibly-
degenerate metric and form-covariant derivative

(ω,da) =
1

2
[[ω, a]], ∇ωη =

1

2
[[ω, η]], ∀a ∈ C∞(X), ω, η ∈ Ω1

which are compatible in the sense

(ω,d(η, ζ))− (∇ωη, ζ)− (η,∇ωζ) = T (ω, η)(ζ) + T (ω, ζ)(η), ∀ω, η, ζ ∈ Ω1

where T is the torsion tensor.

We refer to [23] for the proof and merely note here that if we are given (∆, [[ , ]])
data as above, the product and exterior derivative of E are

ω ∧E η = ω ∧ η − λ

2
θ′[[ω, η]], dEω = dω − λ

2
θ′∆ω

for all ω, η ∈ Ω. The parameter λ here is included on dimensional grounds (and
allows us to think of the classical limit as λ → 0) but any non-zero value can be
absorbed in the normalisation.
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What Theorem 8.1 says is that the different possible metric geometries on a given
manifold correspond to the different possible noncommutative differential structures
that centrally extend the classical one. So if quantum gravity involves such a
noncommutative differential algebra then classical Riemannian geometry will be
induced when we write its structure in terms of the classical manifold. The result
also says that the kind of geometry that emerges is not quite Levi-Civita unless the
torsion is zero, and predicts a specific relationship between the two as stated.

Standard Riemannian geometry with zero torsion corresponds to a further assump-
tion. Note that there is an obvious notion of equivalence of different extensions
given by cocycles that differ by a kind of coboundary. We can sometimes use this
equivalence to set ∆ = 0:

(4) We say a cleft extension as above is flat if it is equivalent to one where ∆ = 0,
i.e. where d is undeformed.

Proposition 8.2. [23] An extension as above is flat iff there exists a map δ of
degree -1 such that ∆ = dδ + δd. If in this case δ2 = 0 and the associated bilinear
is symmetric then the associated form-covariant derivative is torsion-free and given
by our formula in Theorem 5.1.

So this shows how the Levi-Civita connection emerges as a flat cleft extension of
the classical manifold. Nondegeneracy in this context does not have a particular
interpretation i.e. degenerate metrics could also arise. Aside from this, we see
how Riemannian geometry emerges from nothing much but the requirements of
a differential calculus and the assumption that the Leibniz rule also holds in the
quantum case.

These methods also apply when the original calculus that we are extending is al-
ready noncommutative. So let Ω be a general standard differential calculus but this
time Ω and its degree zero part A could be noncommutative in the first place. We
consider possible cleft central extensions

Ωθ′ → E → Ω

These are still classified by the same kind of ‘2-cocycle’ data and this time the same
formulae as above induce a quantum metric and quantum (bimodule[10]) connec-
tion on Ω, see [23]. What this means is that our above point of view as to what
Riemannian geometry is also applies when the algebra A is noncommutative, i.e.
our analysis and philosophy are not limited to the classical case that we focussed
on. It also means that we can use this mechanism to generate examples of noncom-
mutative Riemannian geometry. An example and some applications can be found
in [23].

Next, we remark on a striking parallel with a different problem in which instead
of centrally extending the differential calculus Ω(X), we deform it keeping dimen-
sions classical but allowing it possibly to be nonassociative and also allowing the
coordinate algebra C∞(X) to be quantized. This was recently analysed in [7] as an
extension of [5]. It is well-known that the data for the quantisation of the coordi-
nate algebra is a Poisson tensor π, say, if we work to low order in the deformation
parameter λ. The further data at this level for the noncommutativity of the dif-
ferential structure is a connection ∇ on Ω1 which typically has torsion and has,



THE SELF-REPRESENTING UNIVERSE 21

Figure 4. The moduli of Riemannian structures on a given mani-
fold X can be viewed intuitively as the fibre of a ‘bundle’ of central
extensions over different classical manifolds. It has parallels to the
‘normal bundle’ of deformations of classical manifolds within the
space of possibly nonassociative quantum differential algebras with
fibre at X the moduli of Poisson structures and compatible con-
nections.

in the associative case, zero curvature. What we require is that this is Poisson
compatible[12, 5], which we have written in [7] as

πµν ;ρ = πηµT νηρ + πνηTµηρ

up to some changes of notation. Here the semicolon denotes covariant derivative
by the Poisson-compatible connection and T denotes its torsion. Now compare
the above Poisson-compatibility condition with the generalised metric-compatibility
condition in Theorem 8.1, which in tensor notation we can write as

gµν ;ρ = gηµT νηρ + gνηTµηρ

where now the semicolon and torsion refer to the metric connection. Instead of
the antisymmetric Poisson tensor we have the symmetric metric tensor. Instead
of being relevant to an extension by a 1-form θ′ with θ′2 = 0 as in the second
case, we can view the first case as relevant (one can say) to extending by a central
bosonic variable λ with λ2 = 0 since we work only at the semiclassical level. Thus
the two compatibility conditions are parallel and would seem to be odd and even
aspects of a single concept. For example, we can write the two together for a single
hermitian tensor g + ıπ. We do not even need π strictly to be a Poisson tensor
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– any antisymmetric bivector will do though in nice cases we do want it to be
nondegenerate, thus even more analogous to the Riemannian case.

We have seen that metrics and generalised metric-compatible connections (as in
Theorem 8.1) on a manifold X describe the moduli of its noncommutative central
extensions and its curvature is related to gravity. By contrast, this parallel theory
of Poisson tensors and Poisson-compatible connections on X describes the ‘fibre of
the normal bundle’ at X in the moduli of all noncommutative deformations with
differential structure including nonassociative ones, with curvature leading to the
nonassociativity. This is depicted in Figure 4.

Nevertheless, these two parallel constructions are often related as follows: many
noncommutative algebra deformations do not admit any associative differential
calculi of classical dimensions, which is to say at semiclassical level for such π,
all Poisson-compatible connections have curvature. This is the no-go theorem in [5]
and is a kind of anomaly for differentiation. However, often with anomalies we can
trade the curvature obstruction for an extra dimension which can be used to absorb
the anomaly, i.e. the anomaly translates into an associative central extension. This
then by Theorem 8.1 is governed by a metric and metric connection, typically with
curvature. This suggests the possibility of an interchange between these two types
of structure. It would mean that gravity originates in an anomaly for the associative
implementation of the Leibniz rule when working with noncommutative algebras.

Finally, many noncommutative differential structures admit only a much reduced
moduli of quantum metrics. Again this is part of the greater rigidity of noncom-
mutative geometry. At the semiclassical level it means that many choices of π and
Poisson-compatible connection admit only a much reduced moduli of classical met-
ric g that are compatible with the connection. What that means is that if a classical
geometry is to be a limit of a quantum one then the metrics that may appear are
highly constrained and in particular are often forced to have curvature. This could
ultimately hint at the origin of gravity. The analysis is in [7] and an example in 2
dimensions appeared in [6]. The curvature in a similar 4D model can be such that
the Einstein tensor corresponds to a perfect fluid, so in this case one could say that
the matter distribution is also in some sense forced by the metric quantizability
assumption[6]. This is thus another example of how physical phenomena can be
forced out of the assumed mathematical structure in the spirit of relative realism.
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