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RESEARCH ARTICLE Open Access

Assessing potential sources of clustering in
individually randomised trials
Brennan C Kahan* and Tim P Morris

Abstract

Background: Recent reviews have shown that while clustering is extremely common in individually randomised
trials (for example, clustering within centre, therapist, or surgeon), it is rarely accounted for in the trial analysis. Our
aim is to develop a general framework for assessing whether potential sources of clustering must be accounted for
in the trial analysis to obtain valid type I error rates (non-ignorable clustering), with a particular focus on individually
randomised trials.

Methods: A general framework for assessing clustering is developed based on theoretical results and a case study
of a recently published trial is used to illustrate the concepts. A simulation study is used to explore the impact of
not accounting for non-ignorable clustering in practice.

Results: Clustering is non-ignorable when there is both correlation between patient outcomes within clusters, and
correlation between treatment assignments within clusters. This occurs when the intraclass correlation coefficient is
non-zero, and when the cluster has been used in the randomisation process (e.g. stratified blocks within centre) or
when patients are assigned to clusters after randomisation with different probabilities (e.g. a surgery trial in which
surgeons treat patients in only one arm). A case study of an individually randomised trial found multiple sources of
clustering, including centre of recruitment, attending surgeon, and site of rehabilitation class. Simulations show that
failure to account for non-ignorable clustering in trial analyses can lead to type I error rates over 20% in certain
cases; conversely, adjusting for the clustering in the trial analysis gave correct type I error rates.

Conclusions: Clustering is common in individually randomised trials. Trialists should assess potential sources of
clustering during the planning stages of a trial, and account for any sources of non-ignorable clustering in the
trial analysis.

Keywords: Clustering, Randomised controlled trials, Unadjusted analyses, Therapeutic trials, Surgical trials,
Multicenter trials

Background
Many randomised controlled trials (RCTs) involve some
form of clustering. Common examples include cluster
randomised trials (where clusters themselves are ran-
domised to treatment arms), multicentre trials (where
patients are clustered within centres), and therapist or
surgical trials (where patients are clustered within sur-
geons or therapists). It is well known that while ignoring
clustering in the analysis of a RCT will give asympto-
tically unbiased estimates of treatment effect [1], it can
lead to incorrect estimates of the standard error (SE),

and therefore incorrect type I error rates. Perhaps the
most well-known example of this is cluster randomised
trials, where failure to appropriately adjust for the clus-
ters in the analysis will result in SEs that are too small,
leading to type I error rates that are too large [2,3].
Clustering is also common in individually randomised

trials (e.g. multicentre or therapist/surgical trials). Lee
and Thompson found that 90% of the individually ran-
domised trials they reviewed involved some form of
clustering [4]. Despite the frequency of clustering in
randomised trials, recent articles have highlighted the
lack of awareness many trialists have regarding the is-
sues clustering presents for the analysis [4-6]; for exam-
ple, Lee and Thompson found only 4/38 trials (11%)
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adjusted for clustering (and 3 of the 4 trials that did ad-
just for clustering did not account for all sources of clus-
tering). This may lead to incorrect conclusions regarding
treatment efficacy, and could potentially lead to ineffec-
tive treatments being adopted, or effective treatments
being discarded. Despite this, there are some situations
where not accounting for clustering in the analysis will
still lead to valid results (for example, as long as the ran-
domisation is not stratified on centre in a multicentre
trial, an unadjusted analysis will still give correct type I
error rates [7]).
It is important to clarify under what conditions clus-

tering must be accounted for in the analysis of a RCT so
that trialists are able to perform an appropriate analysis.
The aim of this paper is to develop a framework to as-
sess when non-ignorable clustering occurs in individu-
ally randomised trials (i.e. clustering that must be
accounted for in the analysis in order to obtain valid
type I error rates), and examine its potential impact on
trial results.

Methods
Definition of clustering
In the context of a RCT, we define clustering as when
observations are grouped together based upon common
attributes. This includes standard examples of clustering
such as multicentre trials (where patients are grouped
together within centres), crossover trials (where observa-
tions are grouped within patients), and trials where the
intervention is a type of surgery or therapy and patients
are grouped together by surgeon or therapist.
Our definition of clustering also includes some non-

standard situations (for example when patients are
grouped according to baseline factors, for example age
and sex, and then randomised within these strata). Al-
though this type of scenario would not generally be
regarded as clustering in the typical sense, it affects the
analysis in exactly the same way as standard clustering,
and therefore we have included it in our definition for
completeness.
Clustering can also be defined as either pre- or post-

randomisation, and determining whether clustering is
non-ignorable will depend on when it occurs. Pre-
randomisation clustering occurs when patients are
grouped into clusters and then randomised, for example
when patients present to different centres and are
randomised upon presentation. Post-randomisation clus-
tering occurs when patients are randomised and then
assigned to clusters, for example when they are
randomised to a type of surgery and then assigned to a
specific surgeon.
It should be noted that whether clustering is consi-

dered to be pre- or post-randomisation largely depends
on the timing of the randomisation. For example, if

patients are randomised and then are assigned to a ther-
apist, therapist would be considered post-randomisation
clustering. However, if therapist is used as a stratification
factor in the randomisation, and patients are assigned to
a therapist and then randomised, therapist would be
considered pre-randomisation clustering.

Theoretical definition of non-ignorable clustering
Based on results from Parzen et al. [7], it can be shown
under what circumstances clustering will be non-
ignorable. In the presence of clustering, the true variance
of the treatment effect for a continuous outcome can be
written as:

Var β̂
� �

¼ V0 þ VE

where β̂ is the treatment effect, V0 is the usual (asymp-
totic) variance of the treatment effect when clustering is
not present, and VE is an additional factor based on the
clustering, which can be either positive or negative. For
further mathematical details of this expression, please
see Parzen et al. [7] (it should be noted that our notation
differs slightly to theirs).
When VE=0, the estimate of variance ignoring cluste-

ring will be unbiased, and clustering will be ignorable.
However, when VE≠0 the estimate of variance ignoring
clustering will be either biased upwards (if VE<0) or
downwards (if VE>0). When VE≠0 the clustering is there-
fore non-ignorable, and needs to be accounted for in the
analysis in order to obtain valid results.
VE is a function of the correlation between outcomes

for patients in the same cluster (generally referred to as
the intraclass correlation coefficient or ICC), and the
correlation between treatment assignments for patients
in the same cluster. If either of these correlations are 0,
VE will also be 0 and the clustering will not need to be
included in the analysis in order to obtain valid type I
error rates (although it still may be preferable to adjust
for this type of clustering as it could increase power or
precision). However, if both of these correlations are
non-zero then VE≠0, and the clustering will be non-
ignorable, and must be accounted for in the analysis.
Parzen et al. showed similar results for binary and time-
to-event outcomes [7].
Assuming that the ICC is positive, then VE>0 when

the correlation between treatment assignments is po-
sitive (leading to the SE for treatment being biased
downwards), and VE<0 when the correlation between
treatment assignments is negative (leading to the SE be-
ing biased upwards).

Non-ignorable clustering in practice
Correlation between patient outcomes within a cluster
may occur for two primary reasons. The first is that
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patients with similar characteristics may be more likely
to present to the same cluster (e.g. patients with similar
socio-economic status may be share the same hospital).
The second possibility is that the clusters themselves
exert some influence on outcome (e.g. patients within a
certain hospital may be more likely to have a positive
outcome due to different processes of care or quality of
hospital staff ).
Treatment assignments between patients in the same

cluster will be correlated if patients in certain clusters
are more likely to be in a certain treatment group [7]. A
simple example of this is a cluster randomised trial, in
which all patients in a cluster receive the same treat-
ment. If we know the treatment group of one patient,
we then know the treatment group of all patients in that
cluster, leading to a correlation between treatment as-
signments of 1. Conversely, in a 2×2 crossover trial
where each patient receives one treatment in the first
period and the other treatment in the second period, if
we know which of the two treatments they received in
the first period than we also know which treatment they
received in the second period, indicating the correlation
between treatment assignments is −1. Stratified per-
muted blocks within clusters leads to negative correl-
ation between treatment assignments (for each patient
assigned to a specific treatment, it makes it less likely
that future patients will be assigned to that same treat-
ment). The exact correlation for stratified permuted
blocks is �1

n�1 , where n is the block size. This indicates
that the correlation will always be between −1 and 0.
Simple randomisation (where all patients are rando-
mised independently) leads to a correlation of 0.
As discussed in the previous section, non-ignorable

clustering occurs when both the ICC and the correlation
between treatment assignments within a cluster is non-
zero. However, if either the ICC or the correlation be-
tween treatment assignments within a cluster is 0, the
clustering is ignorable, and valid SEs and type I error
rates can be obtained regardless of whether the clus-
tering is accounted for in the analysis (although not
adjusting for clustering may lead to a loss of power).

Determining whether clustering is non-ignorable
It is important to identify any sources of non-ignorable
clustering during the planning stages of the trial to
ensure they can be adequately adjusted for in the ana-
lysis. In order to determine whether clustering is non-
ignorable, we first need to determine whether the ICC
and the correlation between treatment assignments is
non-zero.
The ICC will not generally be known prior to the trial

commencing (unless previous data is available). It is pos-
sible to estimate the ICC based on the trial data,

however this type of data-dependent model selection has
been shown to give poor results, and could potentially
inflate the type I error [8]. Therefore, in order to avoid
erroneously excluding non-ignorable clustering from the
analysis, we suggest that the ICC should be assumed to
be non-zero unless there is evidence to the contrary or
strong reasons for suspecting it is 0.
Determining whether the correlation between patient

assignments within clusters is non-zero depends on
whether the clustering is pre or post-randomisation. If it
is pre-randomisation clustering (i.e. patients are grouped
into clusters and then randomised) then this correlation
will be non-zero if the clustering is used in the random-
isation process. Examples of clusters being used in the
randomisation process include cluster randomised trials
(where the clusters themselves are randomised), ran-
domisation that balances on patient factors (such as
recruiting centre or baseline prognostic factors), or any
trials where patient outcomes are measured and ana-
lysed at several time points (as happens in crossover tri-
als and longitudinal studies). If the cluster is not used in
the randomisation process then the clustering is igno-
rable, and type I error rates will be correct regardless
of whether the cluster is accounted for in the analysis.
For example, an analysis of a multicentre trial ignoring
centre effects will give unbiased SEs and correct type I
error rates, provided that centre was not balanced on in
the randomisation.
For post-randomisation clustering, the correlation

between treatment assignments will be 0 if patients in
both treatment groups have an equal chance of being
assigned to the same clusters (for example, if ward nur-
ses are responsible for the care of patients, but have an
equal chance of treating patients from each treatment
arm). If the treatment groups are assigned to clusters
with different probabilities, then the correlation will be
non-zero. Examples of this include therapy or surgery
trials when therapists and surgeons only treat patients in
one arm. If therapists or surgeons treat patients in both
arms, but are more likely to treat patients from a specific
arm, this will still result in correlation between treat-
ment assignments within clusters.

Case study – the FASTER trial
We use the FASTER trial (Function After Spinal Treat-
ment: Exercise and Rehabilitation) [9] as a case study for
assessing sources of clustering in a real RCT. FASTER was
a 2×2 factorial trial designed to assess the impact of a series
of rehabilitation classes or an educational booklet on out-
comes following back surgery. Although two treatments
were assessed in this trial, we focus here on rehabilitation.
The primary outcome was the Oswestry disability index,
which assesses how much impact a patient’s back pain has
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on their functional ability. Table 1 shows the structure of
the clustering for FASTER.
338 patients were recruited from seven centres, and

operations were performed by one of 23 surgeons in-
volved in the trial. The majority of surgeons performed
operations across multiple centres. Randomisation was
stratified by operating surgeon and the type of surgery
(discectomy or decompression), but not by recruiting
centre.
Six weeks after randomisation, patients assigned to the

rehabilitation group were expected to attend rehabilita-
tion classes for six weeks, with two classes per week. Pa-
tients generally attended classes at the centre where the
surgery was performed, but could choose to attend at
another centre if they wished.
During the planning stages of the trial, the following

sources of clustering would need to be assessed to deter-
mine whether they are non-ignorable:

Recruiting centre (pre-randomisation clustering)
Patients from the same centre may have similar out-
comes (implying a positive ICC value). However, because
the recruiting centre was not used in the randomisation
process, the correlation between treatment assignments
within centres will be 0, indicating that this is not a form
of non-ignorable clustering. However, it should be noted
that although it is not strictly necessary to adjust for
centre-effects in this situation, if the ICC is high then
adjustment for centre will increase power.

Surgeon (pre-randomisation clustering)
Patient outcomes may vary based on their surgeon, as
more skilled surgeons may produce better outcomes or

be required to treat the most difficult cases, resulting in
a non-zero ICC value. Because surgeon was a stratifica-
tion factor, the correlation between patient assignments
within surgeon will also be non-zero, indicating that sur-
geon is a source of non-ignorable clustering. Ignoring
surgeon in the analysis could lead to a type I error rate
that was too conservative.

Type of surgery - discectomy or decompression
(pre-randomisation clustering)
Type of surgery may affect back pain, resulting in a posi-
tive ICC value. This variable was balanced on in the ran-
domisation process, creating correlation between patient
assignments within each level of surgery type, meaning
it is a source of non-ignorable clustering. Ignoring type
of surgery in the analysis may lead to a type I error rate
that was too conservative.

Rehabilitation classes (post-randomisation clustering)
Because patients in only one treatment group attended
rehabilitation classes, the correlation between treatment
assignments within classes will be positive. It is possible
that the quality of classes may vary, and patients in some
classes have better outcomes than patients in other clas-
ses. This is therefore a form of non-ignorable clustering.
Ignoring rehabilitation class in the analysis could lead to
inflation of the type I error rate.
Of the four sources of clustering, we have identified

three as non-ignorable. Two of the non-ignorable sour-
ces of clustering were pre-randomisation, and one was
post-randomisation. Because some sources of clustering
would lead to upward bias in the SE, and others to
downward bias, it is possible the different sources of
clustering may cancel each other out to some degree.
However it is very unlikely that the bias in the SE will be
cancelled out entirely, and so ignoring all sources of
clustering in the analysis will likely lead to bias of
unknown magnitude and direction. Therefore, we rec-
ommend all sources of non-ignorable clustering be
accounted for. The analysis model for FASTER would
need to account for surgeon, type of surgery, and which
rehabilitation class they attended. It would be important
that this assessment be done during the planning stages
of the trial, so that the relevant information could be
collected during the trial (e.g. which rehabilitation class
the patient attended).
The FASTER trial received ethical approval from

Hammersmith and Queen Charlotte’s and Chealsea Hos-
pitals research Ethics Committee, and was carried out in
compliance with the Helsinki Declaration.

Simulation study
We performed a simulation study to assess the impact
of clustering on study results. Simulations imitated a

Table 1 Example of the potential clustering structure in
FASTER

Patient Centre Procedure Surgeon Rehab Class attended

1 1 Dis 1 Y A

2 1 Dis 1 N -

3 1 Dis 2 Y A

4 1 Dis 2 N -

5 1 Dec 1 Y B

6 1 Dec 1 N -

8 1 Dec 2 Y C

9 1 Dec 2 N -

10 2 Dis 1 Y A

11 2 Dis 1 N -

12 2 Dec 3 Y C

13 2 Dec 3 N -

Patients are randomised to either receive rehab or not. Patients are clustered
within centre, and are stratified by the type of surgical procedure they receive.
Surgeons operate across centres. Patients are able to choose which rehab
class they attend.
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trial of therapeutic intervention, where patients were
randomised, and then assigned to a therapist (post-ran-
domisation clustering).
Data were generated from the following model (which

can be used to describe both pre- and post-randomisation
clustering):

yij ¼ αþ βtreatxij þ uj þ eij

where yij is a continuous outcome for patient i from the-
rapist j, α is an intercept, βtreat is the treatment effect and
xij a binary variable indicating which treatment arm the
patient was in, uj the therapist effect for therapist j, and eij
a random error term for patient i from therapist j. We
generated eij from a normal distribution with mean 0 and
variance 1, and uj from a normal distribution with mean
0, and σ2 (where σ2 was set to give the desired ICC). We
generated eij and uj independently. βtreat was set to 0 for
all simulations. It should be noted that the choice of var-
iance for eij is arbitrary and has no effect on results.
We varied the following parameters:

� 10 and 50 therapists were used
� two different sample sizes were used for each

number of therapists. For 10 therapists we used
sample sizes of 100 and 200, and for 50 therapists
we used 500 and 1000 patients (an average of 10 and
20 patients per therapist respectively for both
scenarios)

� ICC values of 0, 0.05, and 0.10 were used;
� Patients were assigned to different therapists after

randomisation in one of three ways:
○ Therapists treated patients in both treatment
arms equally. Patients were assigned to
therapists with equal probability.

○ Therapists treated patients in both treatment
arms, but were more likely to see patients from

a certain treatment arm. Therapists were split
into two groups, with an equal number of
therapists in each. Patients in the first treatment
arm were randomly assigned to a therapist from
the first set with a probability of 80%, and to a
therapist in the other set with a probability of
20%. Patients in the second treatment arm were
assigned to the therapists with the reverse
probabilities.

○ Therapists only treated patients in one
treatment arm (with an equal number of
therapists per arm). Patients in each treatment
arm were randomly assigned to one of the
therapists treating patients in their treatment
arm only with equal probability.

We used 5000 replications for each of the 36 si-
mulated scenarios. For each scenario we performed two
analyses; the first adjusted for therapist effects, whereas
the second did not. For each analysis method we as-
sessed the type I error rate. Unadjusted analyses were
performed using a linear regression model with the
treatment assignment as the only covariate. When thera-
pists treated patients in both arms (regardless of whether
they treated both arms equally), adjusted analyses were
performed using a linear regression model with treat-
ment as a covariate, and therapist included as a fixed ef-
fect, using indicator variables.
When therapists treated only patients in one treat-

ment arm, adjusted analyses were performed using
cluster level summaries [2]; briefly, this involves cal-
culating the mean outcome for each therapist, and fit-
ting a linear regression model with these summaries
as the outcome, and which treatment arm the therap-
ist saw as a covariate. We used cluster-level summar-
ies rather than a mixed-effects model in this scenario
as there is evidence that mixed-effects models may
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Figure 1 Simulation results (10 therapists, 100 patients). Continuous outcomes were generated based on a treatment effect of 0 and
therapist effects and a random error term, both of which followed a normal distribution. Patients were assigned to therapist post-randomisation.
An equal number of patients were assigned to each therapist, and we used 5000 replications for each scenario.
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not perform well in scenarios when clustering occurs
within treatment arms, and there is a small number
of clusters [2].

Results
Simulation results
Simulation results are shown in Figures 1, 2, 3 and 4.
Results were similar across all cluster and sample size
combinations. When clustering was ignorable (that is,
when either the ICC was 0, or therapists treated patients
from both arms equally), type I error rates were correct
regardless of whether an adjusted or unadjusted analysis
was used (mean 5.1 and 5.0% for unadjusted and adjus-
ted analyses respectively).
When clustering was non-ignorable (ICC > 0 and pa-

tients were assigned to therapists with different proba-
bilities depending on the treatment group they were in),
unadjusted analyses led to inflated type I error rates.
This was most pronounced when therapists only trea-
ted patients in one arm (mean 13.6 and 21.5% for ICC
values of 0.05 and 0.10 respectively). Even when

therapists treated patients in both arms, but were more
likely to treat patients in one arm, type I error rates were
inflated (mean 7.8 and 11.1% for ICC values of 0.05 and
0.10 respectively).
Conversely, adjusted analyses gave correct type I er-

ror rates in all scenarios with non-ignorable clustering
(mean 5.1%, range across 24 scenarios 4.1 to 5.6%).

Discussion
Clustering is common in randomised trials, and although
it is well known in certain situations that clustering needs
to be accounted for (e.g. cluster randomised and crossover
trials), there is evidence that other types of clustering are
not properly handled [4].
It is important for trialists to recognise when non-

ignorable clustering occurs in order to appropriately ad-
just their analysis; failure to do so will lead to biased SEs
and incorrect type I error rates. This is of particular con-
cern for post-randomisation clustering, where the clus-
tering may not always be immediately apparent. Our
simulations show type I error rates could be inflated to
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Figure 2 Simulation results (10 therapists, 200 patients). Continuous outcomes were generated based on a treatment effect of 0 and
therapist effects and a random error term, both of which followed a normal distribution. Patients were assigned to therapist post-randomisation.
An equal number of patients were assigned to each therapist, and we used 5000 replications for each scenario.
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Figure 3 Simulation results (50 therapists, 500 patients). Continuous outcomes were generated based on a treatment effect of 0 and
therapist effects and a random error term, both of which followed a normal distribution. Patients were assigned to therapist post-randomisation.
An equal number of patients were assigned to each therapist, and we used 5000 replications for each scenario.
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over 20% if clustering is not accounted for in the ana-
lysis. The amount the type I error rate will be inflated
partly depends on the ICC. Cooke et al. presented 45
ICCs from surgical trials and found that 42% were >0.05
and 16% were >0.20, which could lead to substantial in-
flations in the type I error rate [10]. It should be noted
that even in the presence of a true treatment effect, not
accounted for non-ignorable clustering in the analysis
can overstate the evidence by giving confidence intervals
that are too narrow.
One frequent situation of non-ignorable clustering

that is not commonly recognised in practice is when tri-
als balance randomisation within centres or by prognos-
tic factors [11-13]. It has been shown that when the
chosen balancing factors are associated with outcome,
unadjusted analyses can lead to a large over-inflation of
the SE, leading to type I error rates that are too low and
a substantial reduction in power (>20% in some cases)
[11].
A number of analysis methods are available that ac-

count for clustering. Common methods include fixed-
effects, random-effects (or mixed-effects models), and
generalised estimating equations, although a number of
other methods exist that may be more appropriate in
certain situations. The best method of adjustment will
depend on the particular trial and the nature of the clus-
tering. It is also possible to account for clustering using
methods such as permutation tests [14,15], although this
may be difficult in some scenarios (e.g. when clustering
within treatment arm is present), and further research in
this area is needed.
It is also important for trialists to recognise when clus-

tering is ignorable, as there are some situations where an
analysis that does not account for clustering may be
preferable. For example, in a multicentre trial with very
few patients per centre, adjusting for centre effects can
be difficult and may lead to poor results. Therefore, if

centre has not been balanced on in the randomisation
scheme, the best analysis may be one that ignores centre.
Another example is when there are multiple layers of
clustering (e.g. patients within therapists within hospitals
within countries); attempting to control for all levels of
clustering can lead to an overly complex analysis that
may not work well in practice. A simpler analysis adjus-
ting for only the sources of non-ignorable clustering
may be preferable.
When clustering is ignorable, unadjusted analysis will

still give valid type I error rates. However, if the ICC is
high, then an unadjusted analysis will lead to a loss of
power, making it more difficult to detect a treatment ef-
fect. For example, in a therapy trial, if therapists have a
large effect on the outcome, but are not any more likely
to treat patients from a specific treatment group, then
therapists are ignorable, and an analysis that does not
account for therapist effects will still give valid results.
However, adjusting for therapist in the analysis may be
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Figure 4 Simulation results (50 therapists, 1000 patients). Continuous outcomes were generated based on a treatment effect of 0 and
therapist effects and a random error term, both of which followed a normal distribution. Patients were assigned to therapist post-randomisation.
An equal number of patients were assigned to each therapist, and we used 5000 replications for each scenario.
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Figure 5 Loss in power from not accounting for ignorable
clustering in the analysis.
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preferable as it will increase power. This is demonstrated
in Figure 5, which shows the expected loss in power for
trials which do not account for ignorable clustering in
the trial (given the trial is powered at 80%). For large
ICCs, the loss in power can be substantial; for example,
ICCs of 0.10, 0.20, and 0.30 would lead to a reduction in
power of 4%, 9%, and 15% respectively. Further work on
the benefits of adjusting for factors associated with the
outcome can be found elsewhere [16,17].
We have not considered the issue of treatment-

by-cluster interactions (such as treatment-by-centre, or
treatment-by-therapist). Although this could potentially
be of interest in some scenarios, we agree with the ICH
E9 guidelines, which suggest that treatment-by-centre
interactions should not be involved in the primary ana-
lysis, but should rather be regarded as secondary analyses
[18]. We have therefore been focused on issues pertaining
to the primary analysis, and ignored treatment-by-cluster
interactions. However, it should be noted that when there
is clustering in one arm only, an analysis that accounts for
the cluster is implicitly assuming a treatment-by-cluster
interaction. For example, consider a trial of surgery vs.
medical therapy, where patients are clustered within sur-
geons in one arm only. Under the null hypothesis of no
treatment effect, assuming that outcomes vary by therapist
implicitly assumes a treatment-by-surgeon interaction,
meaning that surgery is beneficial compared to medical
therapy for some surgeons and harmful for others.
It is generally recommended that adjustment for post-

randomisation variables should be avoided in the analysis
of RCTs in case they are on the causal pathway. For ex-
ample, if a new treatment reduces mortality by lowering
the patient’s blood pressure, adjustment for blood pressure
at 6 months will lead to a biased result for mortality. In
order to avoid adjustment for a variable on the causal
pathway, trialists should adjust only for post-randomisa-
tion clustering when (1) it is part of the treatment (e.g.
therapists or surgeons in a therapy or surgery trial); (2) pa-
tients are not assigned to clusters based on a post-
randomisation factor, such as response to treatment, or an
outcome at 6 weeks post-randomisation; and (3) clusters
are not assigned to treatments based on the expected
cluster-effect (e.g. therapists or surgeons are not assigned
to a particular treatment group based on their skill level).

Conclusion
Non-ignorable clustering is common in individually ran-
domised trials, and can lead to large inflations in the
type I error rate if not accounted for in the analysis.
When planning a randomised trial it is important to give
careful consideration to potential clustering, and to as-
sess whether it is non-ignorable. This is important to do
during the planning phases so that the appropriate data

can be collected during the trial. Any sources of non-
ignorable clustering should then be accounted for in the
trial analysis in order to obtain correct confidence inter-
vals and type I error rates.

Abbreviations
FASTER: Function after spinal treatment: exercise and rehabilitation;
ICC: Intracluster correlation coefficient; RCT: Randomised controlled trial;
SE: Standard error.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BK devised the study, performed the simulations, and wrote the first draft of
the manuscript. TM input into the manuscript. Both authors had final
approval for the decision to submit the manuscript for publication.

Acknowledgements
We thank Daniel Bratton and Caroline Doré for their helpful comments
on an early draft of the manuscript. We would also like to thank the
referees, whose comments helped to improve the paper. No specific
funding was received for this study, though open-access publishing
costs were provided by the MRC London Hub for Trials Methodology
Research.

Received: 8 January 2013 Accepted: 12 April 2013
Published: 16 April 2013

References
1. Liang KY, Zeger SL: Longitudinal data analysis using generalized linear

models. Biometrika 1986, 73:13–22.
2. Hayes RJ, Moulton LH: Cluster Randomised Trials. Boca Raton: Chapman &

Hall/CRC; 2009.
3. Donner A, Klar N: Design and Analysis of Cluster Randomization Trials in

Health Research. New York: Oxford University Press Inc.; 2000.
4. Lee KJ, Thompson SG: Clustering by health professional in individually

randomised trials. BMJ 2005, 330(7483):142–144.
5. Biau DJ, Porcher R, Boutron I: The account for provider and center

effects in multicenter interventional and surgical randomized
controlled trials is in need of improvement: a review. J Clin Epidemiol
2008, 61(5):435–439.

6. Localio AR, Berlin JA, Ten Have TR, Kimmel SE: Adjustments for
center in multicenter studies: an overview. Ann Intern Med 2001,
135(2):112–123.

7. Parzen M, Lipsitz SR, Dear KBG: Does clustering affect the usual test
statistics of no treatment effect in a randomized clinical trial? Biom J
1998, 40:385–402.

8. Raab GM, Day S, Sales J: How to select covariates to include in the
analysis of a clinical trial. Control Clin Trials 2000, 21(4):330–342.

9. McGregor AH, Dore CJ, Morris TP, Morris S, Jamrozik K: ISSLS prize winner:
function after spinal treatment, exercise, and rehabilitation (FASTER):
a factorial randomized trial to determine whether the functional
outcome of spinal surgery can be improved. Spine (Phila Pa 1976) 2011,
36(21):1711–1720.

10. Cook JA, Bruckner T, MacLennan GS, Seiler CM: Clustering in surgical
trials–database of intracluster correlations. Trials 2012, 13:2.

11. Kahan BC, Morris TP: Improper analysis of trials randomised using
stratified blocks or minimisation. Stat Med 2012, 31(4):328–340.

12. Kahan BC, Morris TP: Analysis of multicentre trials with continuous
outcomes: when and how should we account for centre effects?
Stat Med 2013, 32(7):1136–49.

13. Kahan BC, Morris TP: Reporting and analysis of trials using stratified
randomisation in leading medical journals: review and reanalysis.
BMJ 2012, 345:e5840.

14. Follmann D, Fay M: Exact inference for complex clustered data using
within-cluster resampling. J Biopharm Stat 2010, 20(4):850–869.

Kahan and Morris BMC Medical Research Methodology 2013, 13:58 Page 8 of 9
http://www.biomedcentral.com/1471-2288/13/58



15. Proschan M, Follmann D: Cluster without fluster: the effect of correlated
outcomes on inference in randomized clinical trials. Stat Med 2008,
27(6):795–809.

16. Hernandez AV, Steyerberg EW, Habbema JD: Covariate adjustment in
randomized controlled trials with dichotomous outcomes increases
statistical power and reduces sample size requirements. J Clin Epidemiol
2004, 57(5):454–460.

17. Turner EL, Perel P, Clayton T, Edwards P, Hernandez AV, Roberts I, Shakur H,
Steyerberg EW: Covariate adjustment increased power in randomized
controlled trials: an example in traumatic brain injury. J Clin Epidemiol
2012, 65(5):474–481.

18. International Conference on Harmonisation E9 Expert Working Group: ICH
Harmonised Tripartite Guideline. Statistical principles for clinical trials.
Stat Med 1999, 18:1905–1942.

doi:10.1186/1471-2288-13-58
Cite this article as: Kahan and Morris: Assessing potential sources of
clustering in individually randomised trials. BMC Medical Research
Methodology 2013 13:58.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kahan and Morris BMC Medical Research Methodology 2013, 13:58 Page 9 of 9
http://www.biomedcentral.com/1471-2288/13/58


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Definition of clustering
	Theoretical definition of non-ignorable clustering
	Non-ignorable clustering in practice
	Determining whether clustering is non-ignorable
	Case study – the FASTER trial
	Recruiting centre (pre-randomisation clustering)
	Surgeon (pre-randomisation clustering)
	Type of surgery - discectomy or decompression (pre-randomisation clustering)
	Rehabilitation classes (post-randomisation clustering)

	Simulation study

	Results
	Simulation results

	Discussion
	Conclusion
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

