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ALGEBRAIC FOUNDATIONS FOR INFORMATION

THEORETICAL, PROBABILISTIC AND GUESSABILITY

MEASURES OF INFORMATION FLOW

PASQUALE MALACARIA
SCHOOL OF ELECTRONIC ENGINEERING AND COMPUTER SCIENCE

QUEEN MARY UNIVERSITY OF LONDON
LONDON, MILE END ROAD, E1 4NS, UK

Abstract. Several mathematical ideas have been investigated for Quan-
titative Information Flow. Information theory, probability, guessability
are the main ideas in most proposals. They aim to quantify how much

information is leaked, how likely is to guess the secret and how long

does it take to guess the secret respectively. In this paper, we show how
the Lattice of Information provides a valuable foundation for all these
approaches; not only it provides an elegant algebraic framework for the
ideas, but also to investigate their relationship. In particular we will use
this lattice to prove some results establishing order relation correspon-
dences between the different quantitative approaches. The implications
of these results w.r.t. recent work in the community is also investigated.
While this work concentrates on the foundational importance of the
Lattice of Information its practical relevance has been recently proven,
notably with the quantitative analysis of Linux kernel vulnerabilities.
Overall we believe these works set the case for establishing the Lattice
of Information as one of the main reference structure for Quantitative
Information Flow.

1. Introduction

Quantitative security analysis should be able to address confidentiality1

comparison questions like: “given programs P and P ′ which one is more of
a threat?” This comparison problems is related to the other fundamental
question that a quantitative security analysis should be able to address:
“how much of a threat is program P?”

Quantitative analyses are based on some measure, usually a real number.
This number may answer the comparison problems by reducing it to a nu-
merical comparison and the second question by considering the magnitude
of the number in relation to the size of the secret. In many of these measures
the number 0 has been shown to characterise secure programs.

In recent years a number of ideas have emerged as reasonable measures
for Quantitative Information Flow (abbreviated as QIF): Information The-
ory, probabilistic measures and guessability [CHM2, CMS, KB, Sm]. The

1In this work we restrict ourselves to security as confidentiality

1
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information theoretical concepts of entropy, conditional entropy and mutual
information have been used to answer questions like “how much information
can an attacker gain from observing the system?” whereas probabilities can
be used to answer questions like “how likely is that the attacker may guess
the secret in n tries after observing the system?” and guessability measures
the question ”what is the number of guesses needed to guess the secret after
the observations?”

There seems to be an intuitive connection between these questions, but
the connection is not trivial; in fact some deep differences have been noticed
in these approaches [Sm]. In the context of QIF the differences seems mainly
to relate to the variety of attackers models and of what the scope of modelling
should be.

In this work we aim to relate the confidentiality comparison questions in
probabilistic, guessability and information theoretical approaches. We will
do this by studying their relation to an algebraic structure: the Lattice of
Information (abbreviated as LoI).

The Lattice of Information is the lattice of all equivalence relations on
a set; by identifying observations over a system as the equivalence relation
equating all (secret) states that cannot be distinguished by those observa-
tions we see LoI as the mathematical model for all observations generated
by all possible deterministic systems over a set of (secret) states.

This allows for an elegant analysis decomposition of QIF into two steps,
the first being an algebraic interpretation, the second being a numerical
evaluation:

(1) interpret the attacker view of the system as an equivalence relation
identifying the states indistinguishable by the attacker through the
observations,

(2) measure the above equivalence relation. This measure should provide
an indication of the leakage of confidential information (or vulnera-
bility) of the system.

While these equivalence relations have been successfully used in recent years
[CHM2, M2, KB], we aim here to prove some fundamental results about their
algebraic structure.

Given two systems S, S′ and the associated equivalence rela-
tions ≃S ,≃S′ we will show the following equivalences:
(1) ≃S′ refines ≃S

(2) the leakage of S is always less than the leakage of S′

(leakage measured by Shannon entropy).
(3) the expected probability of guessing the secret in n tries

according to ≃S is always less than the expected prob-
ability of guessing the secret in n tries according to ≃S′

(4) the expected numbers of guesses needed to guess the
secret according to ≃S′ is always less than the expected
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numbers of guesses needed to guess the secret according
to ≃S

In other terms given two programs P,P ′ to determine whether P ′ refines P
(as observational equivalence relations) is the same as to determine whether
is always the case that it is more likely to guess the secret using P ′ instead
of P . This is also the same as to determine whether the entropy of P is
always less than the entropy of P ′. Moreover these results are shown to be
consistent with different definitions of Quantitative Information Flow based
on the adversary gain through observations i.e. the difference in threat
before and after observations are made [TA].

These results hence provide a clear connection between the algebraic,
probabilistic and information theoretical view of leakage.

The work also contributes to the foundations of Quantitative Information
Flow, in particular to the important work by G. Smith [Sm], where the
difference between the ”one guess” model and the information theoretical
one were insightfully debated. What Smith noticed was that there exist
programs such that, assuming a uniform distribution of the secret, their
information theoretical measure is the same but whose vulnerability to a one
guess attack is very different. In the argument it is important to consider a
specific (in this case uniform) distribution. It is arguable however that code
analysis should be affected by an element independent of the code, in this
case the distribution. What our result shows is that if we argue about the
relative vulnerability to n tries attack of two programs and the argument is
not dependent on a specific distribution then their relative vulnerability is
determined by their LoI order or equivalently by their entropy order.

The algebraic aspect of QIF, i.e. the LoI interpretation of programs is far
from being a pure academic exercise; in fact it has informed works integrat-
ing QIF with verification techniques [BKR, HM1] where model checkers and
sat-solvers are used to build the equivalence ≃S associated to a program.
More recently these ideas have been exploited to build the first quantita-
tive analysis for real code leakage, in particular to quantify leakage of Linux
kernel functions [HM1]. These works make use of a basic relation between
LoI and Information Theory, i.e. the fact that log(| ≃S |) is the channel
capacity of the system S, i.e. the maximum amount that S can leak.

2. Basics

2.1. Observations and the lattice of information. We can see obser-
vations over a system as some partial information on systems’ states, in
that an observation reveals some information about the states of the sys-
tem. Some systems may allow for observations revealing no information
(all states are possible according to that system’s observations) while other
systems may allow for observations revealing complete information on the
states of the system.
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We will make an important determinacy assumption about observations,
i.e. that a system’s observations form a partition on the set of all possible
states: a block in this partition is the set of states that are indistinguishable
by that observation. This assumption is satisfied for example in the setting
of sequential languages when we take as observations the program outputs
because the inverse image of a function form a partition on the function
domain.

In this work we will use the terms partition or equivalence relation in-
terchangeably. An equivalence relation can always be seen as the partition
whose blocks are the equivalence classes and a partition can always be seen
as the equivalence relation defined by two objects are related iff they are in
the same block.

2.2. Partitions and equivalence relations as lattice points. Given a
finite set Σ the set of all possible equivalence relations over Σ is a complete
lattice: the Lattice of Information (abbreviated as LoI) [LR]. Order on
equivalence relations is the refinement order.

Formally let us define the set LoI as the set of all possible equivalence
relations on a set Σ. Given ≈,∼ ∈ LoI and σ1, σ2 ∈ Σ the ordering of LoI
is defined as

(1) ≈ ⊑ ∼ ↔ ∀σ1, σ2 (σ1 ∼ σ2 ⇒ σ1 ≈ σ2)

This is a refinement order: classes in ∼ refine (split) classes in ≈. Thus,
higher elements in the lattice can distinguish more while lower elements in
the lattice can distinguish less states. It easily follows from (1) that LoI is
a complete lattice.

Alternatively the lattice operations join ⊔ and meet ⊓ are defined as
the intersection of relations and the transitive closure union of relations
respectively.

The restriction to consider finite lattices is motivated by considering in-
formation storable in programs variables: such information is ≤ 2k where k

is the number of bits of the secret variable.
In terms of partitions, a partition is above another if it is more informa-

tive, i.e. each block in the lower partition is included in a block in the above
partition

Here is an example of how these equivalence relations can be used in an
information flow setting. Let us assume the set of states Σ consists of a
tuple 〈l, h〉 where l is an observable, usually called low, variable and h is
a confidential variable, usually called high. One possible observer can be
described by the equivalence relation

〈l1, h1〉 ≈ 〈l2, h2〉 ↔ l1 = l2

That is the observer can only distinguish two states whenever they agree on
the low variable part. Clearly, a more powerful attacker is the one who can
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distinguish any two states from one another, or

〈l1, h1〉 ∼ 〈l2, h2〉 ↔ l1 = l2 ∧ h1 = h2

The ∼-observer gains more information than the ≈-observer by comparing
states, therefore ≈ ⊑ ∼.

2.3. Lattice of information as a lattice of random variables. A ran-
dom variable (noted r.v.) is usually defined as a map X : D → R, where D

is a finite set with a probability distribution and the real numbers R is the
range of X. For each element d ∈ D, its probability will be denoted µ(d).
For every element x ∈ R we write µ(X = x) (or often in short µ(x)) to mean

the probability that X takes on the value x, i.e. µ(x)
def
=

∑

d∈X−1(x) µ(d).

In other words, what we observe by X = x is that the input to X in D

belongs to the set X−1(x). From that perspective, X partitions the space
D into sets which are indistinguishable to an observer who sees the value
that X takes on2. This can be stated relationally by taking the kernel of X
which defines the following equivalence relation ker(X):

(2) d ker(X) d′ iff X(d) = X(d′)

Equivalently we write X ≃ Y whenever the following holds

X ≃ Y iff {X−1(x) : x ∈ R} = {Y −1(y) : y ∈ R}

and thus if X ≃ Y then H(X) = H(Y ).
This shows that each element of the lattice LoI can be seen as a random

variable.
Given two r.v. X,Y in LoI we define the joint random variable (X,Y ) as

their least upper bound in LoI i.e. X ⊔ Y . It is easy to verify that X ⊔ Y

is the partition obtained by all possible intersections of blocks of X with
blocks of Y .

2.4. Basic concepts of Information Theory. This section contains a
very short review of some basic definitions of Information Theory; additional
background is readily available both in textbooks (the standard being Cover
and Thomas textbook [CT]). Given a space of events with probabilities
P = (pi)i∈N (N is a set of indices) the Shannon’s entropy is defined as

(3) H(X) = −
∑

i∈N

pi log pi

It is usually said that this number measures the average information content
of the set of events: if there is an event with probability 1 then the entropy
will be 0 and if the distribution is uniform i.e. no event is more likely
than any other the entropy is maximal, i.e. log |N |. In the literature the
terms information content and uncertainty in this context are often used

2We define an event for the random variable a block in the partition.
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interchangeably: both terms refer to the number of possible distinctions on
the set of events in the sense we discussed before.

The entropy of a r.v. X is just the entropy of its probability distribution
i.e.

−
∑

x∈X

µ(X = x) log µ(X = x)

Given two random variables X and Y , the joint entropy H(X,Y ) measures
the uncertainty of the joint r.v. (X,Y ). it Is defined as

−
∑

x∈X,y∈Y

µ(X = x, Y = y) log µ(X = x, Y = y)

Conditional entropy H(X|Y ) measures the uncertainty about X given
knowledge of Y . It is defined as H(X,Y ) − H(Y ). The higher H(X|Y )
is, the lower is the correlation between X and Y . It is easy to see that
if X is a function of Y , then H(X|Y ) = 0 (there is no uncertainty on X

knowing Y if X is a function of Y ) and if X and Y are independent then
H(X|Y ) = H(X) (knowledge of Y doesn’t change the uncertainty on X if
they are independent) .

Mutual information I(X;Y ) is a measure of how much information X

and Y share. It can be defined as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Thus the information shared between X and Y is the information of X (resp
Y ) from which the information about X given Y has been deduced. This
quantity measures the correlation between X and Y . For example X and Y

are independent iff I(X;Y ) = 0.
Mutual information is a measure of binary interaction. Conditional mu-

tual information, a form of ternary interaction will be used to quantify
leakage. Conditional mutual information measures the correlation between
two random variables conditioned on a third random variable; it is defined
as:

I(X;Y |Z) = H(X|Z)−H(X|Y,Z) = H(Y |Z)−H(Y |X,Z)

2.5. Measures on the lattice of information. Suppose we want attempt
to quantify the amount of information provided by a point in the lattice of
information.

We could for example associate to a partition P the measure |P | = “num-
ber of blocks in P”. This measure would be 1 for the least informative
partition, its maximal value would be the number of atoms and would be
reached by the top partition. It is also true that A ⊑ B implies |A| ≤ |B|
so the measure reflects the order of the lattice. An important property of
“additivity” for measures is the inclusion-exclusion principle: this principle
says that things should not be counted twice. In terms of sets, the inclusion-
exclusion principle says that the number of elements in a union of sets is
the sum of the number of elements of the two sets minus the number of
elements in the intersection. The inclusion-exclusion principle is universal
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e.g. in propositional logic the truth value of A ∨ B is given by the truth
value of A plus the truth value of B minus the truth value of A ∧B.

in the case of the number of blocks the inclusion-exclusion principle is:

|A ⊔B| = |A|+ |B| − |A ⊓B|

Unfortunately this property does not hold. As example, by taking

A = {{1, 2}{3, 4}}, B = {{1, 3}{2, 4}}

as two partitions, then their join and meet will be

A ⊔B = {{1}{2}{3}{4}}, A ⊓B = {{1, 3, 2, 4}}.

hence |A ⊔B| = 4 6= 3 = |A|+ |B| − |A ⊓B|.
Another problem with the map | | is that when we consider LoI as a lattice

of random variables the above measure may end up being too crude; in fact,
all probabilities are disregarded3 by | |. To address these problems more
abstract lattice theoretic notions have been introduced in the literature [B].

A valuation on LoI is a real valued map ν : LoI→ R, that satisfies the
following properties:

ν(X ⊔ Y ) = ν(X) + ν(Y )− ν(X ⊓ Y )(4)

X ⊑ Y implies ν(X) ≤ ν(Y )(5)

A join semivaluation is a weak valuation, i.e. a real valued map satisfying

ν(X ⊔ Y ) ≤ ν(X) + ν(Y )− ν(X ⊓ Y )(6)

X ⊑ Y implies ν(X) ≤ ν(Y )(7)

for every element X and Y in a lattice [B]. The property (5) is order-
preserving: a higher element in the lattice has a larger valuation than ele-
ments below itself. The first property (6) is a weakened inclusion-exclusion
principle.

Proposition 1. Entropy is join semivaluation on LoI by defining

(8) ν(X ⊔ Y ) = H(X,Y )

Proof. Property 5 is well known; for inequality 6 start from the known equal-
ity

H(X,Y ) = H(X) +H(Y )− I(X;Y )

it will be hence enough to prove that

H(X ⊓ Y ) ≤ I(X;Y )

This can be proved by noticing that

(1) H(X ⊓Y ) = I(X ⊓Y ;X) this is clear because I(X ⊓Y ;X) measure
the information shared betweenX⊓Y andX and becauseX⊓Y ⊑ X

such measure has to be H(X ⊓ Y )

3We will see however in later sections how the number of blocks relates to Information
Theory and channel capacity
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(2) I(X ⊓Y ;X) ≤ I(Y ;X) this is clear because X ⊓ Y ⊑ Y hence there
is more information shareable between Y and X than between X⊓Y

and X

combining we have

H(X ⊓ Y ) = I(X ⊓ Y ;X) ≤ I(Y ;X)

�

2.6. Note: Entropy as the best measure on LoI. An important result
proved by Nakamura [N] gives a particular importance to Shannon entropy
as a measure on LoI. He proved that the only probability-based join semi-
valuation on the lattice of information is Shannon’s entropy. It is easy to
show that a valuation itself is not definable on this lattice, thus Shannon’s
entropy is the best approximation to a probability-based valuation on this
lattice.

Nakamura starts by considering a family of function (fn)n∈N such that
fn is defined on a set of n probabilities p1, . . . , pn and satisfies:

(1) fn is continuous
(2) fn is permutation invariant, i.e. fn(p1, . . . , pn) = fn(pπ(1), . . . , pπ(n))

for any permutation π

(3) fn+1(p1, . . . , pn, 0) = fn(p1, . . . , pn)

Such a family (fn)n∈N induces a function F on partitions with n blocks
X = {X1, . . . ,Xn} with block Xi having probability pi:

F (X) = fn(p1, . . . , pn)

Suppose now that

(1) F is a join-semivaluation on all lattices of partitions
(2) If two partitions X,Y are independent (in probability theory sense)

then

F (X ⊔ Y ) = F (X) + F (Y )

Nakamura’s result is then that such a function F is, up to a constant,
Shannon’s entropy function, i.e.

F (X) = fn(p1, . . . , pn) = −c
∑

1≤i≤n

pi log(pi)

3. Lattice of Information, expected probability of guessing,

expected number of guesses and Entropy

This section contains the main results of this article, i.e. correspondence
between the order relation of LoI, expected probability of guessing, expected
number of guesses and entropy.
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3.1. Expected probability of guessing. We want to define, given an
equivalence relation, the average probability of guessing the secret in n tries.

Given a set X where each element has associated a probability (w.l.g. we
assume the probabilities being ordered decreasingly i.e. µ(xi) ≥ µ(xi+1))
define the probability of guessing the secret in n tries as

gn,µ(X) =
∑

1≤i≤n

µ(xi)

Given a partition X and a distribution µ the probability of guessing the
secret in n tries is

Gn,µ(X) =
∑

Xi∈X

gn,µ(Xi)

As an example consider the partition

{{x1, . . . , x4}{x5, x6}}

where the first four atoms have probability 1
16 each and x5, x6 have proba-

bility 3
8 each.

Then the average probability of guessing the secret in 2 tries is 1
8 +

3
4 = 7

8 ;
indeed after the observations and two tries the probability of non guessing
the secret is 1

8 corresponding to not having exhausted all possibilities from
the first block.

Notice that the above definition is the same as having a probability dis-
tribution on each block, computing the probability of guessing the secret in
each block and then taking the weighted average:

Gn,µ(X) =
∑

Xi∈X

gn,µ(Xi) =
∑

Xi∈X

µ(Xi)
∑

1≤j≤n,xj∈Xi

µ(xj)

µ(Xi)

When clear from the context we will omit the subscript µ from G and g.

Theorem 1.

X ⊑ Y ⇔ ∀µ, n. Gn,µ(X) ≤ Gn,µ(Y )

Proof. Step 1:

X ⊑ Y ⇒ ∀µ, n. Gn,µ(X) ≤ Gn,µ(Y )

w.l.g. it will be enough to consider a block Xi in X splitting into two blocks
Yi, Yj in Y ; we then need to prove that

gn(Xi) ≤ gn(Yi) + gn(Yj)

We can write gn(Xi) =
∑

i≤I µ(xi)+
∑

j≤J µ(xj) where the xi are elements in

the block Yi and the xj are in Yj . We can then write gn(Yi) as
∑

i≤I µ(xi)+ci
where ci ≥ 0 is the sum of the elements in gn(Yi) which are not in gn(Xi)
and similarly gn(Yj) can be written as

∑

j≤J µ(xj) + cj .
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We have hence

gn(Yi) + gn(Yj) =
∑

i≤I

µ(xi) + ci +
∑

j≤J

µ(xj) + cj ≥

∑

i≤I

µ(xi) +
∑

j≤J

µ(xj) =

gn(Xi)

Step 2:

(∀µ, n. Gn(X) ≤ Gn(Y )) ⇒ X ⊑ Y

Reason by contradiction: suppose X 6⊑ Y , w.l.g. we can then find a block
Yi ∈ Y included in two (or more) blocks in X; We then take a distribution 0
everywhere apart from the elements in Yi and apply the previous reasoning,
then for this distribution Gn(X) 6≤ Gn(Y ) by taking n = |Yi| − 1 �

As an example consider the partitions

X = {{1, 2}{3, 4}}, Y = {{1, 3}{2, 4}}

X and Y are not order related because no block in X is refined by a block
in Y and vice-versa; hence following the theorem we can find distributions
and number of guesses ordering them in any order: for G(Y ) < G(X) take
the distribution giving 1

2 to 1, 3 and 0 elsewhere; then n = |{1, 3}| − 1 = 1
and so we have

G1(Y ) = g1({1, 3}) =
1

2
<

1

2
+

1

2
= g1({1, 2}) + g1({3, 4}) = G1(X)

Likewise for G(X) < G(Y ) choose the distribution giving 1
2 to 1, 2 and 0

elsewhere.

Corollary 1.

X ⊑ Y ⇔ ∀µ G1,µ(X) ≤ G1,µ(Y )

Proof. Direction ⇒ is the same as theorem 1; direction ⇐ is also similar:
just notice that the choice of n = |Yi| − 1 in Gn,µ implies n ≥ 1 because as
Yi is split in several blocks it must have at least 2 elements, hence we can
replace |Yi| − 1 with 1 �

3.2. Expected number of guesses. The expected probability of guessing
should be related to the expected number of guesses.

Given a set X where each element has associated a probability (w.l.g. we
assume the probabilities being ordered decreasingly i.e. µ(xi) ≥ µ(xi+1))
define the expected number of guesses as

NGµ(X) =
∑

1≤i≤n

iµ(xi)
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Given a partition X and a distribution µ the expected number of guesses is
(we abuse the notation):

NGµ(X) =
∑

Xi∈X

NGµ(Xi)

Intuitively the more is known of the secret the less guesses are needed,
hence we should expect the NG order to reverse the LoI order; consider for
example the set {a, b, c, d} with probabilities 1

2 ,
1
4 ,

1
8 ,

1
8 respectively; we have

then

NG({{a, b, c, d}}) =
15

8
>

10

8
= NG({{a, d}{b, c}})

We can now show that LoI order is the dual of the NG order:

Theorem 2.

X ⊑ Y ⇔ ∀µ, NGµ(Y ) ≤ NGµ(X)

Proof.
X ⊑ Y ⇒ ∀µ, NGµ(Y ) ≤ NGµ(X)

w.l.g. it will be enough to consider a block Xi in X splitting into two
blocks Yi, Yj in Y ; consider an element x ∈ Xi; this element will appear as
a term jµ(x) in the sum NGµ(Xi). As the elements of Xi are split in the
two sets Yi, Yj then the same x will appear in NG(Yi) or in NG(Yj): in any
case it will appear as a term j′µ(x) where j′ ≤ j because Xi is split in the
two sets Yi, Yj so the relative order of x in Yi or Yj has to be less than the
relative order of x in Xi. Hence the statement is true.

X ⊑ Y ⇐ ∀µ, NGµ(Y ) ≤ NGµ(X)

Reason by contradiction: suppose X 6⊑ Y , w.l.g. we can then find a block
Yi ∈ Y included in two (or more) blocks in X; We then take a distribution
0 everywhere apart from the elements in Yi and apply the above reasoning:
then for this distribution NG(Y ) 6≤ NG(X) �

3.3. Entropy and LoI. The next fundamental result is about entropy;
again we can relate entropy to order in LoI. Two partitions are order related
if and only if they are entropy related (in the same direction) for all possible
distributions

Theorem 3.

X ⊑ Y ⇔ ∀µ, Hµ(X) ≤ Hµ(Y )

Proof. Step 1:
X ⊑ Y ⇒ ∀µ, Hµ(X) ≤ Hµ(Y )

This is a well known property of entropy: taking larger probabilities reduce
entropy and it is a consequence of the Jensen inequality

Step 2:
X ⊑ Y ⇐ ∀µ, Hµ(X) ≤ Hµ(Y )

Reason by contraposition;
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suppose X 6⊑ Y , w.l.g. we can then find a block Yi ∈ Y included in
two (or more) blocks in X (say X1 . . . Xn); We then take a distribution 0
everywhere apart from the elements in Yi; notice that for such a distribution
µ(Yi) = 1 whereas in X there are more two or more blocks with non zero
probability: we have hence

H(X) = −
∑

1≤i≤n

µ(Xi) log(µ(Xi)) > 0 = −µ(Yi) log(µ(Yi)) = H(Y )

�

3.4. Shannon’s order of information. The Lattice of Information was
pioneered in a little known note by Shannon [S2] in order to characterise
information.

One of Shannon’s motivations was that while Information Theory is a
measure of information it is not a characterisation of it. Information Theory
aims to measure the amount of information of random variables or of some
sort of stochastic process: what the information is about is not a concern
of the theory, the measure is based on the number of distinctions available
in an information context. As an example consider the information-wise
very different processes “flipping a coin” and “presidential election between
two candidate”. While the first is a rather inconsequential process and the
second may have important consequences they are both contexts allowing
for two choices hence they both have an information measure of (at most) 1
bit. In a context where n choices are possible (a process with n outcomes)
the information associated is measured in terms of the number of bits needed
to encode those possible choices, so it is at most log2(n). Hence completely
different information contexts may result in the same information theoretical
measure.

We can however try to characterise “information” using Information The-
ory. In the above example while “flipping a coin” and “presidential election
between two candidate” may have the same measure, it is not the case that
knowing one of the two gives information about the other, so H(X|Y ) > 0
for X,Y being one of “flipping a coin” or “presidential election”.

Given random variables X,Y Shannon’s order is defined by:

X ≤d Y ⇔ H(X|Y ) = 0

The intuition here is that Y provides complete information about X, or
equivalently X has less information than Y , so X is an abstraction of Y
(some information is forgotten).

Shannon also defined the related distance function:

d(X,Y ) = H(X|Y ) +H(X|Y )

The function d and the relation ≤d are related as follows:

d(X,Y ) = 0 ⇔ X ≤d Y ∧ Y ≤d X
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In fact suppose d(X,Y ) = 0; then H(X|Y ) + H(X|Y ) = 0 so as con-
ditional entropy is non negative X ≤d Y ∧ Y ≤d X. On the other hand
X ≤d Y ∧ Y ≤d X implies H(X|Y ) = 0,H(Y |X) = 0 so d(X,Y ) = 0.

The equivalence classes of the order ≤d, i.e. points s.t. X ≤d Y ∧Y ≤d X

or equivalently the sets of points of distance 0, are the information theoretical
characterization of information: all items in a class can be seen as objects
having the same information, not just sharing the same measure.

Shannon’s order and LoI order are the same:

Theorem 4.

X ⊑ Y ⇔ ∀µ. X ≤d Y

Proof. Direction X ⊑ Y ⇒ ∀µ.X ≤d Y :
By definition of join in a lattice

X ⊑ Y ⇔ X ⊔ Y = Y

hence we have

X ⊑ Y ⇔ H(X,Y ) = H(X ⊔ Y ) = H(Y )

and so
H(X|Y ) = H(X,Y )−H(Y ) = H(Y )−H(Y ) = 0

which proves ∀µ. X ≤d Y

For the other direction assuming X 6⊑ Y then X ⊏ X ⊔ Y so we can find
a distribution s.t. H(X ⊔ Y ) > H(X) and so

H(Y |X) = H(X ⊔ Y )−H(X) > H(X)−H(X) = 0

and we conclude X 6≤d Y �

Shannon also noticed that d defines a pseudometric and so the quotient
space by the equivalence classes of points of distance 0 is a metric space.

4. Measuring leakage of programs

Now we want to connect LoI with leakage of confidential information in
programs.

4.1. Observations over programs. Observations over a program P form
an equivalence relation on states of P . A particular equivalence class will be
called an observable. Hence an observable is a set of states indistinguishable
by an attacker making that observation.

The above intuition can be formalized in terms of several program seman-
tics. We will concentrate here on a specific class of observations: the output
observations [M2, M1]. For this observation the random variable associated
to a program P is the equivalence relation on any two states σ, σ′ from the
universe of states Σ defined by

(9) σ ≃ σ′ ⇐⇒ [[P ]](σ) = [[P ]](σ′)

where [[P ]] represents the denotational semantics of P . Hence the equiva-
lence relation amounts to“ have the same observable output”. We denote
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the interpretation of a program P in LoI as defined by the equivalence re-
lation (9) by LoI(P ). According to denotational semantics commands are
considered as state transformers, informally maps which change the values
of variables in the memory; similarly, language expressions are interpreted as
maps from the memory to values. The equivalence relation LoI(P ) is hence
nothing else than the set-theoretical kernel of the denotational semantic of
P . Assuming that the set of confidential inputs h is equipped with a proba-
bility distribution µ we can see LoIµ(P ) as a random variable. We will write
simply LoI(P ) unless we need to specify a specific distribution µ.

4.2. LoI interpretation of programs and basic properties. In this pa-
per we will consider the well known while programming language [W], that
is a simple imperative language with assignments, sequencing, condition-
als and loops. Syntax and semantics for the language are standard, as in
e.g. [W]. The expressions of the language are arithmetic expression, with
constants 0, 1, . . . and boolean expressions with constants tt, ff.

To see a concrete example, let P be the program

if (h==0) then x=0; else x=1;

where the variable h ranges over {0, 1, 2, 3}. We will assume for the time
being that in all program we consider the low variables are initialized in the
code; we will discuss this assumption in section 5.

The equivalence relation (i.e. partition) LoI(P ) associated to the above
program is then

LoI(P ) = {{0}
︸︷︷︸

x=0

{1, 2, 3}
︸ ︷︷ ︸

x=1

}

LoI(P ) effectively partitions the domain of the variable h, where each dis-
joint subset represents an output. The partition reflects the idea of what
an attacker can learn of secret inputs by backwards analysis of the program,
from the outputs to the inputs.

The quantitative evaluation of the partition LoI(P ) measures such knowl-
edge gains of an attacker, solely depending on the partition of states and
the probability distribution of the input.

4.3. Definition of leakage. Let us start from the following intuition

The leakage of confidential information of a program is de-
fined as the difference between an attacker’s uncertainty about
the secret before and after available observations about the
program.

For a Shannon-based measure, the above intuition can be expressed in terms
of conditional mutual information. In fact if we start by observing that the
attacker uncertainty about the secret before observations is H(h|l) and the
attacker uncertainty about the secret after observations is H(h|l, LoI(P ))
then using the definition of conditional mutual information we define leakage
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as

H(h|l) −H(h|l, LoI(P )) = I(h; LoI(P )|l)

We can now simplify the above definition as follows

I(LoI(P );h|l) = H(h|l)−H(h|l, LoI(P ))

= H(LoI(P )|l) −H(LoI(P )|l, h)

=A H(LoI(P )|l)− 0

= H(LoI(P )|l)

=B H(LoI(P ))(10)

where in the first equality we used the symmetry of conditional mutual
information; the equality A holds because the program is deterministic and
B holds when the program only depends on the high inputs, for example
when all low variables are initialised in the code of the program; we will
discuss this assumption in the next section. Thus, for such programs

Leakage: (Shannon-based) leakage of a program P is de-
fined as the (Shannon) entropy of the partition LoI(P ).

We can now apply the results from section 3 in the context of programs,
hence we deduce a correspondence between the refinement order of the ob-
servations, leakage, expected probability of guessing and expected number
of guesses.

In terms of programs the results from section 3 state the following equiv-
alences:

(1) LoI(P ) ⊑ LoI(P ′)
(2) ∀µ. Hµ(LoI(P )) ≤ Hµ(LoI(P

′))
(3) ∀n, µ. Gn,µ(LoI(P )) ≤ Gn,µ(LoI(P

′))
(4) ∀µ. NGµ(LoI(P

′)) ≤ NGµ(LoI(P ))

In words: The equivalence relation associated to a program P is refined by
the equivalence relation associated to a program P ′ if and only if for all
distributions the leakage of P is less than the leakage of P ′, if and only
if for any number of tries and any distribution the expected probability of
guessing the secret is less according to P than it is according to P ′, if and
only if for all distributions the expected number of guesses required to guess
the secret according to P is greater than the expected number of guesses
required to guess the secret according to P ′.

4.4. Relation with Yasuoka and Terauchi ordering results. These or-
der results are related to some recent work by Yasuoka and Terauchi [YT1];
they define quantitative analysis in terms of Shannon entropy, Smith’s vul-
nerability and guessability.

Their definitions follows the pattern we discussed before:

The quantitative analysis of confidential information of a
program is defined as the difference between an attacker’s
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capability before and after available observations about the
program.

By replacing the word “capability” with: (A) uncertainty about the se-
cret, (B) probability of guessing the secret in one try, (C) expected number of
guesses we derive different quantitative analysis. Once formalized (A)(B)(C)
as a function F (and also its conditional counterpart F (−|−) ) on a proba-
bility space all these definitions will have the form:

F (h|l) − F (h|l, LoI(P ))

Formally the choices for F,F (−|−) are:

(A) for uncertainty about the secret F and F (−|−) are Shannon entropy
and conditional entropy

(B) for probability of guessing in one try (noted ME)

F (X) = − log(max
x∈X

µ(X = x)) and F (X|Y ) = − log(
∑

y∈Y

µ(y)(max
x∈X

µ(X = x|Y = y)))

(C) for the expected number of guesses (noted GE)

F (X) =
∑

xi∈X,i≥1

i µ(X = xi) and F (X|Y ) =
∑

y∈Y

µ(y)(
∑

xi∈X,i≥1

iµ(X = xi|Y = y))

(assuming i < j implies µ(X = xi) ≥ µ(X = xj))

Shannon’s entropy is unique in that

(1) conditional mutual information is symmetric, so for F being Shan-
non’s entropy.

F (h|l) − F (h|l, LoI(P )) = F (LoI(P )|l)− F (LoI(P )|l, h)

and
(2) entropy of the result of a function given its arguments is 0 so

F (LoI(P )|l, h) = 0

In particular and again considering low inputs intialized in the program
it is only when F is Shannon’s entropy that

F (h) − F (h|LoI(P )) = F (LoI(P ))

what this mean is that

It is only when using Shannon entropy that leakage as the dif-
ference in capability before and after observations is a mea-
sure on LoI

We now want to relate results from section 3 with ME and GE definitions
of leakage.

To appreciate the difference in the definitions let’s consider the examples
from [YT1]; we consider the following programs:

(1) M1 ≡ if(h == 1)o = 0; else o = 1;
(2) M2 ≡ o = h;
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Table 1 shows the results of analyses of these programs for a 2 bits se-
cret uniformly distributed. Columns H, G, NG corresponds to our def-
initions for Shannon entropy, the expected probability of guessing (in 1
guess) and the expected number of guesses on LoI(P ), i.e. H, G, NG
stands for H(LoI(P )), G(LoI(P )), NG(LoI(P )). ME and GE corresponds
to the definitions in [YT1] for computing the min entropy and the guess-
ing entropy on P ; the final two columns ME’ and GE’ corresponds to ap-
ply the definitions in [YT1] directly to LoI(P ). For example ME(M1) =
ME(h)−ME(h|LoI(M1)) and ME′(M1) = ME(LoI(M1)).

Table 1. comparing measures

H G NG ME GE ME’ GE’
M1 0.8112 0.5 1.75 1 0.75 0.415 1.25
M2 2 1 1 2 1.5 2 2.5

The results express different ideas which can be connected in a uniform
narrative. Take program M1 : G = 0.5 means after running the program an
attacker has probability 0.5 of guessing the secret in one try. The chances of
guessing the secret have doubled from 0.25 (before the program) to 0.5 (after

the program), so the rate of increase is 2ME(M1) = 21; the average number of
questions needed (initially 2.5) has been reduced by 0.75 (GE=0.75) so that
it will take now on average to guess it NG=1.75 tries. And the observations
provide 0.8112 bits of information about the secret.

Consider now the second row, i.e. program M2: here H = 2 means
that everything is leaked, i.e. the observations provide 2 bits of information
about the secret. In this case we are sure to guess the secret in one try
(G=1, NG=1) and our chances have hence increased 4 folds from the initial

probabilities (2ME(M2) = 22 so 0.25 ∗ 2ME(M2) = 1); the average number of
questions needed (initially 2.5) has been reduced by 1.5 (GE=1.5) to one
(NG=1).

We have left out from the narrative the measures ME′, GE′. The reason
is that they seem of limited interest; for example ME′ will always pick
the most likely observation and disregard all the others: a dubious security
measure.

The narrative can be strengthened formally:

Proposition 2. For a program P

(1) ∀µ. 2(ME(P ))G(h) = G(LoI(P ))
(2) ∀µ. GE(P ) = NG(h) −NG(LoI(P ))

Proof. (1) We start by recalling Smith’s definition of vulnerability:

ME(P ) = log
1

maxh µ(h)
− log

1
∑

o∈LoI(P )maxh(h|o)
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We have then ∀µ

2ME(P )G(h) = 2
log 1

maxh µ(h)
−log 1∑

o∈LoI(P ) maxh(h|o)
G(h)

= 2log
∑

o∈LoI(P ) maxh(h|o)−logmaxh µ(h)
G(h)

=
2log

∑
o∈LoI(P ) maxh(h|o)

2log maxh µ(h)
G(h)

=

∑

o∈LoI(P )maxh(h|o)

maxh µ(h)
G(h)

=

∑

o∈LoI(P )maxh(h|o)

maxh µ(h)
max
h

µ(h)

=
∑

o∈LoI(P )

max
h

(h|o)

= G(LoI(P ))

(2) We can rewrite the definition of GE(P ) from [YT1] as:

GE(P ) =
∑

1≤i≤n

iµ(hi)−
∑

o∈LoI(P )

∑

hi∈o,1≤i≤m

iµ(hi)

It is easy to see that the first term coincides with our definition on NG on
sets and the second term with our definition of NG on partitions; the result
then follows. �

The connections between these concepts extends to the orders they in-
duce:

Theorem 5. Given programs P,P ′ (non depending on the low inputs) the
following are equivalent:

(1) LoI(P ) ⊑ LoI(P ′)
(2) ∀µ. LoI(P ) ≤d LoI(P

′)
(3) ∀µ. Hµ(LoI(P )) ≤ Hµ(LoI(P

′))
(4) ∀n, µ. Gn,µ(LoI(P )) ≤ Gn,µ(LoI(P

′))
(5) ∀µ. NGµ(LoI(P

′)) ≤ NGµ(LoI(P ))
(6) ∀µ. MEµ(P ) ≤ MEµ(P

′)
(7) ∀µ. GEµ(P ) ≤ GEµ(P

′)

Proof. equivalence 1 ⇔ 3 was first proved in [HM3], equivalences 1 ⇔ 2, 4, 5
proved in section 3; equivalences 1 ⇔ 3, 6, 7 are proven in [YT1]. It may be
however interesting to reprove the equivalences in [YT1] using the algebraic
techniques and results from this paper. For example we can prove 1 ⇔ 6 as
follows:

LoI(P ) ⊑ LoI(P ′) ⇔ ∀µ. G(LoI(P )) ≤ G(LoI(P ′))

⇔ ∀µ. 2(ME(P ))G(h) ≤ 2(ME(P ′))G(h)

⇔ ∀µ. ME(P ) ≤ ME(P ′)

where the first equivalence is corollary 1 and the second is proposition 2.
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1 ⇔ 7 follows from Proposition 2(2):just rewrite it as GE(P ) = NG(h)−
NG(LoI(P )) �

Hence we conclude that in terms of the induced orderings all these quan-
titative analyses are consistent. In other words it is only on programs not
ordered on LoI that these notions can really differ. One such difference is
now discussed.

4.5. Discussion on Smith’s argument on the foundations of Quan-

titative Information Flow. Consider the following two programs [Sm]:

(1) P1 ≡ if (h%8 == 0) o = h; else o = 1;
(2) P2 ≡ o = h&037;

The program P1 will return the value of h when the last three bits of the
secret are 0s and will return 1 otherwise; its LoI interpretation will hence
be the partition of the form

X = {{h1000}, . . . , {hm000},X1}

where the hi are arbitrary binary string of length k − 3.
The program P2 copies the last 5 bits of the secret in o (here 037 is the

octal constant and & the bitwise and). The partition associated has hence
the shape

Y = {Y1, . . . , Yr}

where each Yi is a set of string with the same 5 last bits.
Smith’s argument is that under uniform distribution and for a secret of

size 8k bits the two programs have a very similar entropy but they have a
very different guessing behaviour; in the case of the first program in fact
with probability one eight the whole secret is revealed, while in the second
program all attempts reveal the last 5 bits of the secret but give no indication
of what the remaining bits are. Hence in general it is much easier to guess
the secret in one try after running the first program than it is to guess the
secret after running the second one.

The argument however relies on choosing a particular distribution; this
choice is independent from the source code and should, we believe, be clearly
separated from the leakage inherent to the code.

In fact since the partitions X,Y are unrelated in LoI, by the results from
section 3 we can find distributions and number of guesses that make one’s
expected guessing probability less than the other.

For Gn(X) < Gn(Y ) notice that X1 splits in many blocks Yi: hence take
any distribution non zero only on the atoms in X1 e.g. let’s consider the
uniform distribution on the atoms in X1 and take n = |X1| − 1.

Then

Gn(X) = gn(X1) =
n

n+ 1
< 1 = Gn(Y )

To make Gn(X) > Gn(Y ) pick any block Yi in Y whose last three bits are
0s; then this block is split in many Xis in X, again by taking the distribution
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uniform over the elements of Yi and 0 otherwise and taking n = |Yi| − 1 we
have

Gn(Y ) = gn(Y1) =
n

n+ 1
< 1 = Gn(X)

In fact all distributions giving probability 0 to all values divisible by 8 will
favour program P2 even when we consider a single guess (n=1), and things
don’t change when we take ME instead of Gn.

Similarly we can find distributions that make the expected number of
guesses of any of the two programs less than the expected number of guesses
of the other program. In particular while for the uniform distribution it is
much easier to guess the secret in the case of the first program compared
to the second (which is at the heart of Smith’s argument), by choosing the
distribution zero everywhere apart from the block X1 it become easier to
guess the secret using the second program. While such a distribution may
be seen as pathological it still shows the possible problems in making code
analysis dependent on particular distributions.

4.6. LoI, maximum leakage and Channel Capacity. The relation be-
tween LoI and channel capacity has been investigated in the literature
[MC, YT2, KS]. The channel capacity of a program is defined as the maxi-
mum possible leakage for that program. Intuitively this is the context most
advantageous for the attacker. LoI provides an elementary characterization
of channel capacity: in fact as the leakage is defined by H(LoI(P )) using
the well known information theoretical fact that the maximal entropy over
a system with n probabilities is log(n) we deduce that the channel capacity
is log(|LoI(P )|).

We note by CC(P ) for the channel capacity of the program P . We have
then

Proposition 3.

LoI(P ) ⊑ LoI(P ′) ⇒ CC(P ) ≤ CC(P ′)

If LoI(P ) ⊑ LoI(P ′) then all blocks of LoI(P ) are refined by blocks of
LoI(P ′) so the number of blocks of LoI(P ) is ≤ than the number of blocks
of LoI(P ′), but the channel capacity for programs is the log of the number
of blocks interpretation, hence the result is proved.

The opposite direction of the implication doesn’t hold: for example the
partitions

{{a, b, c}, {d}} and {{a, b}, {c, d}}

are not order related but have the same channel capacity 1.

4.6.1. LoI and min-entropy Channel Capacity. The relation between chan-
nel capacity of a program P and log(|LoI(P )|) is not confined to Shannon
entropy. In fact Köpf and Smith have shown that even if we choose Smith’s
min-entropy quantitative analysis [KS] we get the same value, i.e. max-
imum vulnerability of a program P according to Smith measure ME is
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log(|LoI(P )|). We hence have the equalities

CC(P ) = log(|LoI(P )|) = max
µ

Hµ(LoI(P )) = max
µ

MEµ(P )

5. Low inputs, Multiple runs and l.u.b. in LoI

A major source of confusion in security analysis derives from poorly de-
fined attacker models. In this section we discuss a few common modelling
issues and how they can be dealt with in LoI.

5.1. Active and passive attackers. The lattice of information allows for
different attacker’s models: the most common and possibly interesting is
the one corresponding to an active attacker, i.e. an attacker who control the
low inputs; a typical example would be a cash machine where an attacker is
able to choose a pin number. An active attacker can be modelled as we did
in the previous sections by assuming that the low variables are initialised in
the code, the initialisation values corresponding to the attacker choice.

We could however also model a passive attacker, an eavesdropper with no
power to choose the low inputs. In this case the lattice atoms are the pair
of low and high inputs. Take for example the program

if (h == l) o= 1; else o=2;

where h, l are 2 bits variables. The partition associated to the programs
is:

{{(0, 0)}, {(0, 1), (0, 2), (0, 3)}, . . . , {(3, 3)}, {(3, 0), (3, 1), (3, 2)}}

assuming uniform distribution on the low and high inputs we then compute
leakage as

H(LoI(P )|l) = 4
1

8
log(4) + 4

1

8
log(

4

3
) = 0.60375

In fact an active attacker is a particular case of this setting, where the
distribution on the inputs is such that only one low input has probability
non-zero. In that case the atoms of the lattice are, up to isomorphism, only
the high inputs and H(LoI(P )|l) = H(LoI(P )).

5.2. Non termination. In this work we have mostly considered output
observations as values. We can however relax this and include among the
possible observations non termination. This doesn’t change the theory: non-
termination is just an additional equivalence class: the class of all input
states over which the program doesn’t terminate; of course the usual com-
putational and complexity problems arise when we try to compute such a
class.
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5.3. Multiple runs. Another aspect of an attacker model that has a nat-
ural algebraic interpretation in LoI is an attacker capability to run the sys-
tem n times: for example an attacker trying three pin numbers on a cash
machine. Running a program several times with different low inputs may
reveal more and more information about the secret; For example consider
the password checking program P

if (h == l) o= 1; else o=2;

If we run it once assigning the value 5 to the low variable we gain the
information whether the secret is 5 or not; by running it twice, assigning to
the low variable the value 5 and the value 7 we will gain the information
whether the secret is 5 or is 7 or something else.

Written in terms of partitions this is nothing else than the join operation
in LoI

{{5}, {6= 5}} ⊔ {{7}, {6= 7}} = {{5}, {7}, {6= 5, 7}}

Hence the knowledge available to an attacker who can choose the low
inputs and run the program m times is modelled by the partition

LoI(P1) ⊔ · · · ⊔ LoI(Pm)

where LoI(Pi) is the partition corresponding to the i-th run of the program.

5.3.1. Does it leak the same information? A related question is whether a
program leaks always the same information for each run of the program;
for example a program leaking the last bit of the secret always leaks the
same information no matter how many times we run the program but a
password check leaks different information when we run it choosing different
low inputs. This question can also be addressed by using l.u.b.: if the
program P leaks different information over different runs this means we can
find two runs Pi, Pj such that

LoI(Pi) ⊔ LoI(Pj) > LoI(Pi), LoI(Pj)

The interpretation of multiple runs in terms of l.u.b.s has also somehow
a reverse implication, i.e. it is possible, given programs P1, P2 to build
a program whose interpretation is their l.u.b. This result has a practical
significance: when P1, P2 are different runs of the same program the l.u.b.
is their self-composition [GAR]. Formally [MH]:

Proposition 4. Given programs P1, P2 there exists a program P1⊔2 such
that

LoI(P1⊔2) = LoI(P1) ⊔ LoI(P2)

Given programs P1, P2, we define P1⊔2 = P ′
1;P

′
2 where the primed pro-

grams P ′
1, P

′
2 are P1, P2 with variables renamed so to have disjoint variable

sets. If the two programs are syntactically equivalent, then this results in
self-composition [GAR] For example, consider the two programs

P1 ≡ if (h == 0) x = 0; else x = 1;, P2 ≡ if (h == 1) x = 0; else x = 1;
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with their partitions LoI(P1) = {{0}, {h 6= 0}} and LoI(P2) = {{1}, {h 6=
1}}. The program P1⊔2 is the concatenation of the previous programs with
variable renaming

P1⊔2 ≡ h
′ = h; if (h′ == 0) x′ = 0; else x

′ = 1;

h
′′ = h; if (h′′ == 1) x′′ = 0; else x

′′ = 1;

The corresponding lattice element is the join, i.e. intersection of blocks, of
the individual programs P1, P2

LoI(P1⊔2) = {{0}, {1}, {h 6= 0, 1} = {{0}, {h 6= 0}} ⊔ {{1}, {h 6= 1}}

6. Further applications of LoI

We quickly review two applications of LoI beyond the foundational aspect:

6.1. Loop analysis. Loop constructs are difficult to analyse. However they
have a natural interpretation in the lattice of information. In informal terms
the idea is that loops can be seen as l.u.b. of a chain in the lattice of
information, where the chain is the interpretation of the different iterations
of the loop.

To understand the ideas let’s consider the program

l=0;

while(l < h) {

if (h==2) l=3 else l++

}

and let us now study the partitions it generates. The loop terminating
in 0 iterations will reveal that h=0 i.e. the partition W0 = {{0}{1, 2, 3}},
termination in 1 iteration will reveal h=1 if the output is 1 and h=2 if the
output is 3 i.e. W1 = {{1}{2}{0, 3}}, the loop will never terminate in 2
iterations i.e. W2 = {{0, 1, 2, 3}} and in 3 iterations will reveal that h=3

given the output 3, i.e. W3 = {{3}{0, 1, 2}}. Let’s define W≤n as ⊔n≥i≥0Wi;
we have then the chain4

W≤1 = W≤2 = W≤3 = {{0}{1}{2}{3}}

We also introduce an additional partition C to cater for the collisions in the
loop: the collision partition is C = {{0}{1}{2, 3}} because for h=2 the loop
terminates with output 3 in 1 iterations and for h=3 the loop terminates
with output 3 in 3 iterations. We have then

LoI(P ) = ⊔n≥0W≤n ⊓ C = {{0}{1}{2, 3}}

This setting is formalized in [MH]. Given a looping program P define
W≤n as the equivalence relation corresponding to the output observations
available for the loop terminating in ≤ n iterations and let the collision
equivalence of a loop be the reflexive and transitive closure of the relation
σ ≃C σ′ iff σ, σ′ generate the same output from different iterations.

4the chain is trivial in this example
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The following is then true:

Proposition 5.

LoI(P ) = ⊔n≥0W≤n ⊓ C

Hence leakage H(LoI(P )) for looping programs can be computed in terms
of the chain (W≤n)n≥0 and the collision equivalence C. The equivalence of
this technique with previous information theoretical analysis of loops [M2]
is proved in [MH].

6.2. Analysis of C-code vulnerabilities. Recent work [HM1] based on
the LoI interpretation of programs, has demonstrated the applicability of
QIF to real world vulnerabilities. Previous attempts to implement a quan-
titative analysis had hit a major hurdle: in very simple terms since QIF
is based on LoI(P ) and LoI(P ) is the set theoretical kernel of the denota-
tional semantics of P computing LoI(P ) is computationally unfeasible. The
approach followed in [HM1] is to change the QIF question from computing
LoI(P ) to computing bounds on the channel capacity CC(P ). We saw these
concepts are related in theorem 3. Using assume-guarantee reasoning ques-
tions about bounds can be expressed in verification terms5. In particular
by expressing them as drivers for the symbolic model checker CBMC [CKL]
several CVE reported vulnerabilities in the Linux kernel were quantitatively
analysed in [HM1]; moreover the official patches for such vulnerabilities were
formally verified as fixing the leak. That work is the first demonstration of
quantitative information flow addressing security concerns of real-world in-
dustrial programs.

7. Conclusions

We investigated the importance of the Lattice of Information for Quan-
titative Information Flow. This lattice allows for an algebraic treatment of
confidentiality and clarifies the relationship between the Information The-
oretical, probabilistic and guessability measures that are used in QIF. Our
results show that these measures are all consistent w.r.t. the classification
of language based confidentiality threats, and this classification is captured
by the refinement order in LoI.

We have seen how these results fit and contribute to recent work in the
community, especially the ones by Yasuoka and Terauchi [YT1] and by Smith
[Sm]. It is a matter for future research to determine whether the Lattice
of Information can also provide a unifying foundation for non-deterministic
and probabilistic systems.

7.1. Acknowledgements. I am very grateful to Jonathan Heusser with
whom work reported in section 2 and section 6 was carried on.

5A similar idea has been independently proposed by Yasuoka and Terauchi in [YT2]
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