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Abstract. We show that a C*-algebra is a 1-separably injective Banach
space if, and only if, it is linearly isometric to the Banach space C0(Ω)
of complex continuous functions vanishing at infinity on a substonean
locally compact Hausdorff space Ω.
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1. Introduction

It is well-known that there are few examples of 1-injective Banach spaces.
These are Banach spaces V for which every continuous linear map T : Y →
V on a Banach space Y admits a norm preserving extension to a super
space Z ⊃ Y , equivalently, contractive linear maps T : Y → V extend to
contractive ones on Z. Indeed, a Banach space V is 1-injective if and only if
it is linearly isometric to the continuous function space C(Ω) on some stonean
space Ω [5, 9]. If the 1-injectivity condition is relaxed to requiring that each
continuous linear map T : Y → V extends to a continuous one on Z ⊃ Y ,
then it is unclear what constitutes the larger class of Banach spaces, called
λ-injective or Pλ spaces, satisfying this condition. However, one can consider
the class of λ-separably injective Banach spaces to which only continuous
linear maps on separable spaces are extendable to separable super spaces. Of
particular interest is the subclass of 1-separably injective Banach spaces to
which contractive linear maps on separable spaces admit contractive extension
on separable super spaces. While c0 is the only λ-separably injective space
among infinite dimensional separable Banach spaces [14], it has been shown
recently in [1] that among nonseparable real Banach spaces, there are indeed
many interesting examples of λ-separably injective spaces. In particular, the
Banach space C(Ω,R) of real continuous functions on a compact Hausdorff
space Ω is 1-separably injective if, and only if, Ω is an F-space. It is natural
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to ask if this result also holds for the space C0(S) of continuous functions
vanishing at infinity on a locally compact space S. This case has not been
discussed in [1] and in fact, the example of c0 provides a negative partial
answer since N is an F-space, but c0 is not 1-separably injective although it
is 2-spearably injective.

In this paper, we give a complete answer to the above question and
prove, more generally, that a C*-algebra is 1-separably injective if, and only
if, it is linearly isometric to the Banach space C0(S) of complex continuous
functions vanishing at infinity on a substonean locally compact Hausdorff
space S. Particularly, abelian monotone sequentially complete C*-algebras
are 1-separably injective. This example may be of interest as the class of
monotone complete C*-algebras is closely related to generic dynamics [13].

2. Separably injective Banach spaces

The concept of a separably injective real Banach space, considered in [1], can
be extended naturally to that for a complex Banach space.

Definition 2.1. A complex (resp. real) Banach space V is said to be 1-separably
injective if for every complex (resp. real) separable Banach space Z and every
closed subspace Y ⊂ Z, every bounded linear operator T : Y → V extends

to a bounded linear operator T̃ : Z → V with ‖T̃‖ = ‖T‖.

Given a locally compact Hausdoff space Ω, we will denote by C0(Ω)
the abelian C*-algebra of complex continuous functions on Ω vanishing at
infinity. If Ω is compact, then we omit the subscript 0 and denote by C(Ω,R)
the Banach space of real continuous functions on Ω.

Definition 2.2. Let Ω be a locally compact Hausdorff space. It is called an
F-space if for each real continuous function f on Ω, there is a real continuous
function k on Ω such that f = k|f | (cf. [3, 14.25]). Following [4], we call Ω
substonean if any two disjoint open σ-compact subsets of Ω have disjoint
compact closures.

The compact substonean spaces are exactly the compact F-spaces. How-
ever, infinite discrete spaces are F-spaces without being substonean. We refer
to [8, Example 5] for an example of a substonean space which is not an
F-space.

Example 2.3. Let Ω be a compact Hausdorff space. Using the results in [6, 11],
it has been shown in [1, Proposition 4.2] that the real continuous function
space C(Ω,R) is 1-separably injective if, and only if, Ω is an F-space. This
result remains true if we replace C(Ω,R) by the complex continuous function
space C(Ω). Indeed, if C(Ω,R) is 1-separably injective and given a contractive
complex linear operator T : Y → C(Ω), where Y is a closed subspace of a
separable complex Banach space Z, the real part ReT : y ∈ Yr 7→ ReT (y) ∈
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C(Ω,R) extends to a real linear contraction Tr : Zr → C(Ω,R) which, as in
the proof of [5, Theorem 2], gives a complex linear contraction

z ∈ Z 7→ Tr(z)− iTr(iz) ∈ C(Ω)

extending T since T (y) = ReT (y) − iReT (iy) for y ∈ Y . Hence C(Ω) is 1-
separably injective. Conversely, if C(Ω) is 1-separably injective, it will follow
from Theorem 3.5 that C(Ω,R) is 1-separably injective.

However, as noted earlier, the above result is not valid for the space
C0(S) of continuous functions vanishing at infinity on a locally compact
Hausdorff space S. Separable injectivity of C0(S) has not been considered
in [1]. A topological criterion for 1-separable injectivity of C0(S) follows from
Theorem 3.5.

Let V be a complex 1-separably injective Banach space and let T :
Y → V be a bounded linear operator on a closed subspace Y of a complex
Banach space X. The arguments in the proof of [1, Proposition 3.5 (a)] for
real 1-separably injective spaces can be extended to the complex case and one

can show that T has a norm preserving extension T̃ : X → V ∗∗. A further
application of the arguments in the proof of [10, Theorem 2.1, (9)⇒(1)],
which are also valid for complex spaces, gives the following result. The result
for real 1-separably injective spaces has been shown in [1].

Lemma 2.4. Let V be a 1-separably injective complex Banach space. Then the
bidual V ∗∗ is 1-injective.

3. Separably injective C*-algebras

We characterize 1-separably injective C*-algebras in this section. Let us begin
with a simple lemma.

Lemma 3.1. A 1-separably injective C*-algebra is abelian.

Proof. Let A be a 1-separably injective C*-algebra. By Lemma 2.4, the bidual
A∗∗ is 1-injective and hence linearly isometric to a continuous function space
C(Ω) on some stonean space Ω [5]. The linear isometry between the C*-
algebras A∗∗ and C(Ω) preserves the Jordan triple product

{a, b, c} :=
1

2
(ab∗c+ cb∗a) (a, b, c ∈ A∗∗)

by a well-known result of Kadison [7] (see also [2, Theorem 3.1.7]). Since
C(Ω) is an abelian algebra, we must have, via the isometry between C(Ω)
and A∗∗,

{a, b, {c,1,1}} = {a, {b, c,1},1}
for a, b, c ∈ A∗∗, where 1 denotes the identity in A∗∗. Let p be a projection
in A∗∗ and a ∈ A∗∗. A simple computation gives

1

2
(pa+ ap) = {p, p, {a,1,1}} = {p, {p, a,1},1}

=
1

4
(pa+ ap+ 2pap)
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and pa + ap = 2pap, which implies pa = ap. Hence A∗∗ is abelian since it is
generated by projections. In particular, A itself is abelian. �

We have the following result readily.

Proposition 3.2. Let A be a von Neumann algebra. The following conditions
are equivalent.

(i) A is 1-separably injective.
(ii) A is 1-injective.

Proof. (i) ⇒ (ii). By the above observation, the unital algebra A is abelian
and hence linearly isometric to a continuous function space C(Ω) on some
compact Hausdorff space Ω. Since A has a predual, Ω must be hyperstonean
and therefore C(Ω) is 1-injective by [5].

�

Remark 3.3. The above proposition is false for unital C*-algebras. Indeed,
let βN be the Stone-Čech compactification of N. Then βN\N is a compact
F-space by [3, p. 210]. Hence the C*-algebra C(βN\N) is 1-separably injective
(cf. Example 2.3), but not 1-injective since βN\N is not stonean [3, p. 98].

We now determine the class of 1-separably injective C*-algebras. A use-
ful fact noted in [4, Proposition 1.1] is that a locally compact Hausdorff
space S is substonean if, and only if, the following condition holds: given f
and g in C0(S) satisfying fg = 0, there are functions f1, g1 ∈ C0(S) such
that f1g1 = 0, f1f = f and g1g = g. We will need the following definition
introduced in [8].

Definition 3.4. A nonempty subset S0 of a topological space S is called a
P-set if it is closed and any Gδ-set containing S0 is a neighborhood of S0. A
point p ∈ S is called a P-point if {p} is P-set in S.

It has been remarked in [8] that a nonempty subspace S0 of S is a P-set
if, and only if, each real continuous function f on S, vanishing on S0, must
vanish on a neighborhood of S0. If S is a locally compact and noncompact
space, then S is substonean if, and only if, the one-point compactification
S ∪ {∞} is an F-space and ∞ is a P-point in S ∪ {∞} (cf. [8, Theorem 1]).

Theorem 3.5. Let A be a C*-algebra. The following conditions are equivalent.

(i) A is 1-separably injective.
(ii) A is linearly isometric to the Banach space C0(S) of complex contin-

uous functions vanishing at infinity on a substonean locally compact
Hausdorff space S.

Proof. (i) ⇒ (ii). By Lemma 3.1, A is abelian and hence linearly isometric
to the function space C0(S) on some locally compact Hausdorff space S. We
show that S is substonean.

Given any function f ∈ C0(S), we define the cozero set of f to be the set
coz(f) = {x ∈ S : f(x) 6= 0}. Let U and V be two disjoint open σ-compact
sets in S. We show that they have disjoint compact closures. It has been
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observed in [4, p.125] that one can find, via Urysohn’s lemma, two functions
f, g ∈ C0(S) with 0 ≤ f, g ≤ 1 such that U = coz(f) and V = coz(g). We
note that fg = 0 in this case.

Let h = χcoz(f) be the characteristic function of coz(f). Let Y be the

closed linear span of {f1/n, g1/n : n = 1, 2, . . . .} in C0(S), and let Z =
Y + Ch ⊂ `∞(S). Since C0(S) is 1-separably injective, the identity map
ι : Y → C0(S) admits a norm preserving extension ι̃ : Z → C0(S). Write
k = ι̃(h) ∈ C0(S) and note that ‖k‖ ≤ 1.

For each n ∈ N, we have ‖h − 2f
1
n ‖ ≤ 1 and therefore ‖k − 2f

1
n ‖ =

‖ι̃(h)− 2ι̃(f
1
n )‖ ≤ 1. In particular, |k(x)− 2f

1
n (x)| ≤ 1 for all n ∈ N which,

together with |k(x)| ≤ 1, implies k(x) = 1 for x ∈ coz(f). It follows that
kf = f .

Since hg = 0, we have ‖h+ eiθg
1
n ‖ ≤ 1 for every θ ∈ [0, 2π) which gives

‖k + eiθg
1
n ‖ = ‖ι̃(h) + ι̃(eiθg

1
n )‖ ≤ 1. Hence for each x ∈ coz(g), one has

|k(x) + eiθg
1
n (x)| ≤ 1 for all n ∈ N and θ ∈ [0, 2π). This implies k(x) = 0 for

x ∈ coz(g) and therefore kg = 0.

We have coz(f) ⊂ {x ∈ S : k(x) = 1} and coz(g) ⊂ {x ∈ S : k(x) = 0},
where {x ∈ S : k(x) = 1} is compact and contained in the open set {x ∈ S :

|k(x)| > 3
4}. Applying Urysohn’s lemma to the compact set coz(f) ⊂ {x ∈

S : k(x) = 1}, one can find a function f1 ∈ C0(S) such that 0 ≤ f1 ≤ 1,

f1 = 1 on coz(f) and f1 = 0 outside {x ∈ S : |k(x)| > 3
4}.

Considering the function h′ = χcoz(g) with similar arguments, we can
find another function k′ ∈ C0(S) with ‖k′‖ ≤ 1 such that coz(g) ⊂ {x ∈ S :

k′(x) = 1} and hence coz(g) is a compact subset of S. Since {x ∈ S : |k(x)| <
1
4} is an open subset of S containing coz(g), Urysohn’s lemma again yields

a function g1 ∈ C0(S) such that 0 ≤ g1 ≤ 1, g1 = 1 on coz(g) and g1 = 0
outside {x ∈ S : |k(x)| < 1

4}. It follows that f1g1 = 0 and f1f = f, g1g = g.

It follows that the closures U = coz(f) ⊂ {x ∈ S : f1(x) ≥ 1/2} and

V = coz(g) ⊂ {x ∈ S : g1(x) ≥ 1/2} are compact and disjoint.

(ii)⇒ (i). Let A be linearly isometric to C0(S) where S is a substonean
locally compact Hausdorff space. We show that C0(S) is separably injective.
This is true if S is compact, as shown in Example 2.3. Let S be noncompact.
Since the one-point compactification S ∪ {∞} is an F -space, C(S ∪ {∞}) is
1-separably injective, again by Example 2.3.

Let Y be a closed subspace of a separable Banach space Z and let
T : Y → C0(S) be a bounded linear operator. We identify C0(S) with the

closed subspace {u ∈ C(S ∪ {∞}) : u(∞) = 0} of C(S ∪ {∞}). Let T̃ : Z →
C(S ∪ {∞}) be a norm preserving extension of T .

Let {fn : n ∈ N} be a countable dense subset of T (Y ) ⊂ C0(S). Since
S is substonean, ∞ is a P-point and there exists an open neighbourhood Un
of ∞ such that fn = 0 on Un.

Moreover, the Gδ-set
⋂
n Un contains an open neighbourhood U of ∞.

Hence Urysohn’s lemma again enables us to choose a function e ∈ C0(S) with
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‖e‖ = 1 such that e = 1 on S\U and e(∞) = 0. This gives fne = fn for all
n ∈ N.

It can now be seen readily that the linear map Te : Z → C0(S) defined
by

Te(z) = T̃ (z)e (z ∈ Z).

is a norm preserving extension of T . �

We conclude by mentioning some interesting examples of substonean
spaces. For any locally compact, σ-compact Hausdorff space S with Stone-
Čech compactification βS, the space βS\S is a compact F-space [3, 14.27].
Locally compact substonean spaces include the Rickart spaces which are ex-
actly those locally compact spaces S for which C0(S) is monotone sequen-
tially complete [4]. In particular, abelian monotone sequentially complete
C*-algebras are 1-separably injective.
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