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Composer classification models for music-theory
building

Dorien Herremans, David Martens, Kenneth Sörensen

Abstract The task of recognizing a composer by listening to a musical piece used
to be reserved for experts in music theory. The problem we address here is that of
constructing an automatic system that is able to distinguish between music written
by different composers and identifying the musical properties that are important for
this task. We take a data-driven approach by scanning a large database of existing
music and develop five types of classification models that can accurately classify
a musical piece in groups of three composers (Bach, Haydn and Beethoven). Both
more comprehensible models, such as decision trees and rulesets are built, as well
as black-box models such as support vector machines. The first type of models offer
important insights into the differences between composer styles, while the latter
provide a performance benchmark.

1 Introduction

Automatic composer-identification is a complex task that remains a challenge in the
field of music information retrieval (MIR). The problem we address here is that of
constructing an automatic system that is able to distinguish between music written
by different composers and identifying the musical properties that are important for
this task. The latter can offer interesting insights for music theorists.
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A data-driven approach is taken in this research by extracting global features
from a large database of existing music. Based on this data, five types of classifica-
tion models (decision tree, ruleset, logistic regression, support vector machines and
Naive Bayes) are developed that can accurately classify a musical piece between
Bach, Haydn or Beethoven. Most of the developed models are comprehensible and
offer insight into the styles of the composers. Yet, a few black-box models were also
built as a performance benchmark.

2 Prior work in Music Information Retrieval

The task of composer classification belongs to the domain of Music Information
Retrieval (MIR), a multidisciplinary field concerned with retrieving and analysing
multifaceted information from large music databases (Downie, 2003). The field of
MIR has grown intensely in recent years due to the digitization of the music industry.
In 2011 alone, the European consumer expenditure on digital media exceeded 33
billion euros (Stenzel and Downes, 2012).

The first mention of the term MIR is due to Kassler (1966), who named the
programming language he developed to extract information from music files “MIR”.
The early work done on the topic of computer music analysis is described in more
detail by Mendel (1969).

Recently, many topics have been explored in the field of MIR. Examples of these
are the content-based music search engine “query-by-humming”, which allows a
user to hum a tune in order to search for the original song in a large database (Ghias
et al., 1995; Tseng, 1999). Pfeiffer et al. (1997) developed a system that can detect
violence in video soundtracks. The techniques developed by Wold et al. (1996) are
used to, for instance, identify different types of human speakers (e.g. female versus
male). Music similarity research is another topic that has been explored by MIR
scientists, in which the similarity of two musical pieces is measured (Berenzweig
et al., 2004). In this research however, the focus lies on composer classification. A
more detailed overview of research done in the field of MIR is given by Typke et al.
(2005), Weihs et al. (2007) and Casey et al. (2008).

2.1 Classification systems

The task of music classification can be seen as building models that assign one or
more class labels to musical pieces based on their content. These models are often
evaluated based on accuracy, i.e., the number of correctly classified instances versus
the total number of instances. It should be noted however that accuracy is not always
the best performance measure, for instance in the case of an unbalanced dataset. In
this research, the area under the curve (AUC) of the receiver operating characteristic
(ROC) is used to evaluate the performance of the models. This metric, which takes
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into account the true positives versus the false positives, is more suited since the
dataset is slightly skewed (see Fig. 1) (Fawcett, 2004). Most existing studies on
music classification only evaluate their model based on the accuracy rate. When
comparing the performance of previous studies, one should take into account that
accuracy is not always comparable.

While the specific task of composer classification has not received much atten-
tion in existing literature (Geertzen and van Zaanen, 2008), music classification
has been applied to a plethora of topics. Machine learning tools have been ap-
plied to classifying pieces per cultural origin (Whitman and Smaragdis, 2002), ge-
ographic region (Hillewaere et al., 2009), timbre (Cosi et al., 1994), mood (Laurier
et al., 2008), artist (Mandel and Ellis, 2005), hit ranking (Herremans et al., 2014),
genre (Tzanetakis and Cook, 2002; Chew et al., 2005), confirming authorship of
disputed fugues (Backer and van Kranenburg, 2005; van Kranenburg P., 2008) etc.

There is an important difference between the data representation in classification
models that work with audio data (e.g., WAV files) and symbolic data (e.g., MIDI
files). The types of features that can be extracted from a dataset and used to build
models are vastly different for both categories. A study by Whitman et al. (2001)
builds neural networks and support vector machine models for artist identification
based on audio features. These classify with an accuracy of 91% in a one-in-five
artist space over a small song-set (35 songs) and 70% correct over a larger song
(50 songs) set with ten artists. However, in this research, the focus is on building
comprehensible models, therefore we chose to work with symbolic features since
they are generally more meaningful for music theorists.

In symbolic music classification, there are two main approaches. On the one hand
there are systems that use a language modelling approach, including n-grams and
hidden Markov models. They take into account local features that change over the
course of the musical fragment (Pérez-Sancho et al., 2008). On the other hand are
the systems that extract a finite vector of global features from each song (Steinbeck,
1982).

A study by Volk and van Kranenburg (2012) shows that recurring motifs are im-
portant when classifying songs into tune families. This suggests that locality, and
thus local features, are an important factor in classifying songs. This first approach,
based on local features, is confronted with the challenge of efficiently representing
data for machine learning. Techniques such as multiple viewpoints offer a possible
solution for this problem (Pearce et al., 2005; Conklin and Witten, 1995). The prob-
lem of classifying folk songs per region is tackled with a language model by Li et al.
(2006). They achieve an accuracy rate of 72.5% on a data set of European folk songs
from six different regions. Pérez-Sancho et al. (2008) model chord progressions and
melodies as n-grams and strings, and constructed genre classification models based
on this representation. They are able to achieve a 86% accuracy rate for three broad
genres. An success rate of 96.6% is obtained by Hontanilla et al. (2013) with an
n-gram approach classifying between Shostakovich and Bach.

The second approach, based on global features, is the one used in this research.
Other studies that use this approach include the work done by Steinbeck (1982), who
uses global features to cluster melodies into meaningful groups such as hymns, chil-
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dren’s songs and hunting songs. Eerola et al. (2001) use global features for assessing
similarity. de León and Iñesta (2003) use global melodic, harmonic and rhythmic de-
scriptors for style classification. The ensemble method based on a neural network
and a k-nearest neighbour developed by McKay and Fujinaga (2004) for genre clas-
sification used 109 global features and reach an accuracy of 98% for root genres
and 90% for leaf genres. Moreno-Seco et al. (2006) also apply ensemble methods
based on global features to a style classification problem. Bohak and Marolt (2009)
use the same type of features to assess the similarity between Slovenian folk song
melodies. Herlands et al. (2014) combine typical global features with a novel class
of local features to detect nuanced stylistic elements. Their classification models
obtain an accuracy of 80% when classifying between Haydn’s and Mozart’s string
quartets.

A small number of studies have compared both types of features and com-
pares their performance on the folk music classification problem. Jesser (1991) cre-
ates classification models based on both features using the dataset from Steinbeck
(1982). Her conclusion is that global features do not provide much to the classifi-
cation. A study by Hillewaere et al. (2009) found that event models outperform a
global feature approach for classifying folk songs by their geographical origin (Eng-
land, France, Ireland, Scotland, South East Europe and Scandinavia). In another
study with European folk tunes, Hillewaere et al. (2012) compares string methods
with n-gram models and global features for genre classification of 9 dance types.
They conclude that features based on duration lead to better classification, no mat-
ter which method is used, although the n-gram method performs best overall. van
Kranenburg et al. (2013) obtain similar results for the classification of Dutch folk
tunes per tune family. Their study does show that local features always obtain the
best results, yet global features can be successfull on a small corpus when the op-
timal subset of features is used. Similar results are obtained in a study that detects
similarity between folk tunes (van Kranenburg, 2010). Since the dataset used in this
research is relatively small and global features are a relatively simple way of rep-
resenting melodies that can be easily processed by different types of classifiers, we
opted to use a carefully selected set of global features in this research.

2.2 Composer classification

While a lot of research done on the task of automatic music classification (see pre-
vious subsection), the subtask of composer classification remains relatively unex-
plored.

Wołkowicz et al. (2007) use n-grams, to classify piano files in groups of five
composers. Hillewaere et al. (2010) also use n-grams and compare them with global
feature models to classify string quartets between Haydn and Mozart. The classifi-
cation accuracy of their trigram approach for recognising composers for string quar-
tets is 61% for violin and viola, and 75% for cello. Another system that classifies
string quartet pieces by composer has been implemented by Kaliakatsos-Papakostas
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et al. (2011). They use a Markov chain to represent the four voices of the quartets
as a monophonic melody. A classification success of 59 to 88% is reached when
classifying between two composers with their weighted Markov chain model. The
study performed by Pollastri and Simoncelli (2001) has a lower accuracy rate than
the previously discussed research. The Hidden Markov Models they designed for
the classification of 605 monophonic themes by five composers has an accuracy of
42% on average. Backer and van Kranenburg (2005) have applied statistical pattern
recognition to classifying Bach from Handel, Telemann, Haydn and Mozart using
20 features in different time slices throughout the pieces. They conclude that it is
“very possible to isolate the style of J.S. Bach from Telemann, Handel, Haydn or
Mozart”.

van Kranenburg and Backer (2004) use 20 global style markers based on prop-
erties of counterpoint. A decision tree (C4.5) and nearest neighbour classification
algorithm are built on a database of 320 pieces from the eighteenth and early nine-
teenth century. They are able to achieve a fairly low error rate. Although the features
are described in the paper, a detailed description of the models is missing. Similar
features based on counterpoint are used by Mearns et al. (2010) to develop a C4.5
decision tree and naive Bayes models. Their models correctly classified 44 out of 66
pieces with 7 groups of composers. The resulting decision tree could give music the-
orists insight in the differences between styles of composers, yet it is not displayed
in the paper.

In the next sections, the dataset used in this research is discussed together with the
chosen features. These are then used to build accurate and comprehensible classifi-
cation models in Sec. 4. The resulting models are described in detail in this chapter
and give insight into the differences between the styles of Haydn, Beethoven and
Bach.

3 Data sources

The type of features that can be extracted from music depends greatly on the type
of file they have to be extracted from. Computational music analysis is typically
performed on two types of music files, those based on audio signals and structured
files. The first category is based on the frequency, amplitude etc. of the signal and
includes many popular formats such as WAV and MP3. While there is a large collec-
tion of music available in this format, the types of features that result from analysing
these files (e.g. spectral flux and zero-crossing rate (Tzanetakis et al., 2003)) are not
the most comprehensible, especially for music theorists. For the purpose of this re-
search, it is therefore more suited to work with files from the second category.

Structured, symbolic files such as MIDI files contain very high-level structured
information about music. They describe a specific way of performing a piece and
contain information such as the start, duration, velocity and instrument (among oth-
ers) of each note. This will allow us to extract musically meaningful features.
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3.1 Dataset

The MIDI files used in this research are part of the KernScores database, since
they could be loaded in jSymbolic, the software used to extract the features (see
Section 3.2). This is a large collection (7,866,496 notes in 108,703 files) of virtual
music scores made available by the Center for Computer Assisted Research in the
Humanities at Stanford University (CCARH) (CCARH, 2012). It must be pointed
out that MIDI files are a performance representation, often recorded by a human
playing the score, and they therefore do not guarantee an accurate representation
of the score (van Kranenburg and Backer, 2004). However, the KernScore database
contains MIDI files with correct timing and pitch information, since it is encoded
by hand for the purpose of computational music analysis (Sapp, 2005).

Three composers, Johann Sebastian Bach (BA), Ludwig van Beethoven (BE)
and Franz Joseph Haydn (HA), were chosen for this research since a large number
of pieces is available from them in the KernScores database, which will allow us
to create more accurate models. An overview of the composer class distribution
of the selected 1045 movements is given in Fig. 1. Almost all available pieces per
composer were included in our dataset, except for a few very short fragments.

Fig. 1 Class distribution of
the dataset for the different
composers Haydn (HA) Beethoven (BE) Bach (BA)
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3.2 Feature extraction

There are a number of tools available to extract musical features from symbolic
files, such as Humdrum (Huron, 2002) and MIDI toolbox for Matlab (Eerola and
Toiviainen, 2004). Due to its ease of use, compatibility with polyphonic music, good
support and the quality of the resulting features, the software package jSymbolic was
used to extract the features from the dataset (McKay and Fujinaga, 2007). jSymbolic
is contained within jMIR, the Java based Open Source software toolbox designed
for automatic music classification (McKay and Fujinaga, 2009).
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jSymbolic is able to extract 111 different features. However, for this research, not
all of them are meaningful or computationally easy to implement in classification
models. Multidimensional features, nominal features, features related to instrumen-
tation or that depend upon the key were excluded from the dataset. This resulted
in a selection of twelve one dimensional features that output normalized frequency
information related to intervals or pitches. All of these features are represented in
Table 1. They are measured as normalized frequencies and offer information regard-
ing melodic intervals and pitches.

Table 1 Features extracted with jSymbolic

Variable Feature description
x1 Chromatic Motion Frequency - Fraction of

chromatic intervals
x2 Melodic Fifth Frequency
x3 Melodic Octaves Frequency
x4 Melodic Thirds Frequency
x5 Most Common Melodic Interval Prevalence
x6 Most Common Pitch Prevalence
x7 Most Common Pitch Class Prevalence
x8 Relative Strength of Most Common Intervals

- fraction of intervals belonging to the
second most common / most common melodic intervals

x9 Relative Strength of Top Pitch Classes
x10 Relative Strength of Top Pitches
x11 Repeated Notes - fraction of notes

that are repeated melodically
x12 Stepwise Motion Frequency

Pitch refers to an MIDI pitch, e.g., C in the 7th octave.
Pitch class refers to a MIDI pitch without the octave, e.g., C.
Top pitch or top pitch class refers to the most common pitch or pitch class in the piece.

A second reason, other than musical meaningfulness, for keeping the feature-
set small is to avoid overfitting the models (Gheyas and Smith, 2010). Having a
limited amount of features allows a thorough testing of a model, even with lim-
ited instances, and can thus enhance the quality of a classification model (McKay
and Fujinaga, 2006). This way we avoid the “curse of dimensionality”, whereby the
number of labelled training and testing samples needed increases exponentially with
the number of features.

In the next sections, five types of classification models are developed based on
the extracted features.

4 Classification models

Predictive models can not only be used as practically useful classification models,
they can also play a role in theory-building and testing (Shmueli and Koppius, 2011).
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Using powerful models, in combination with high-level musical features enables us
to construct models that give useful insights into the characteristics of the style of
a composer. The first models in this section (i.e., rulesets and trees) are of a more
linguistic nature and therefore fairly easy to understand (Martens, 2008). Support
vector machines and naive Bayes classifiers are more black-box, as they provide
a complex non-linear output score. Using pedagogical rule extraction techniques
like Trepan and G-REX (Martens et al., 2007), comprehensible rulesets can still
be extracted from black-box models. However, this falls outside the scope of this
chapter. The ruleset built in Sec. 4.2 simply induces the rules directly from the data.
While this research focusses on building comprehensible models, some black-box
models were included to provide performance benchmarks.

The Open Source software Weka is used to create five different types of clas-
sification models, each with varying levels of comprehensibility, using supervised
learning techniques (Witten and Frank, 2005). This toolbox and framework for data
mining and machine learning is a landmark system in this field (Hall et al., 2009).
jSymbolic, used to extract features in the previous section, outputs the features of
all instances in ACE XML files. The jMIR toolbox offers a tool to convert these
features into Weka ARFF format (McKay and Fujinaga, 2008).

The performance results of each of the types of models are displayed in Table 2.
For some types of models, such as decision trees and rulesets, multiple models were
built with different levels of comprehensibility. The results of the best performing
model were included in Table 2. The results are based on a run with stratified 10-fold
cross validation (10CV), whereby the dataset is divided into 10 folds. 9 of them are
used for model building and 1 for testing. This procedure is repeated 10 times. The
displayed AUC and accuracy are the average results over the 10 test sets. The entire
dataset is used to build the resulting final model, which can be expected to have
a performance at least as good as the 10CV performance. In order to compare the
performance of the different models, a Wilcoxon signed-rank test is conducted. The
null hypothesis of this test states: “There is no difference between the performance
of a model and that of the best model”.

Table 2 Performance of the models with 10-fold cross-validation
Method Accuracy AUC
C4.5 Decision tree 80% 79%
RIPPER ruleset 81% 85%
Logistic regression 83% 92%
Naive Bayes 80% 90%
Support vector machines 86% 93%
p < 0.01: italic, p > 0.05: bold, best: bold.
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4.1 C4.5 tree

In this section a decision tree classifier is built, which is a simple, yet widely used
and comprehensible classification technique. Even though decision trees are not al-
ways the most competitive models in terms of accuracy, they are computationally
efficient and offer a visual understanding of the classification process. A decision
tree is a tree data structure that consists of decision nodes and leaves, whereby the
leaves specify the class value (i.e., composer) and the nodes specify a test of one
of the features. A predictive rule is found by following a path from the root to a
leaf based on the feature values of a particular piece. The resulting leaf indicates the
predicted composer for that particular piece (Ruggieri, 2002).

J48 (Witten and Frank, 2005), Weka’s implementation of the C4.5 algorithm is
used to build decision trees (Quinlan, 1993). A “divide and conquer” approach is
used by C4.5 to build trees recursively (Quinlan, 1993). This is a top down approach,
which repeatedly seeks a feature that best separates the classes based on normalized
information gain (i.e., difference in entropy). After this step, subtree raising is done
by pruning the tree from the leaves to the root (Wu et al., 2008).

Three decision trees were built (T1, T2 and T3), each with a different setting
for the confidence factor (confFactor) and the minimum number of instances per
leaf (minNumObj). A low confidence factor will result in more pruning but a less
accurate model. Requiring a greater minimum number of instances per leaf will
equally reduce the size of the tree, so it becomes more easy to understand, yet at the
same time, the accuracy will decrease. The settings for the three trees are displayed
in Table 3, together with their performance results and the size of the resulting trees
(sizeTree), including the number of leaves (numLeaves).

Table 3 Performance and settings of the C4.5 decision trees (10CV)

ID confFactor minNumObj numLeaves sizeTree Accuracy AUC
T1 0.01 100 3 5 73% 72%
T2 0.01 50 8 15 76% 78%
T3 0.25 2 54 107 80% 79%

The first model (T1) was heavily pruned, so that the resulting tree is compact.
As is to be expected, the accuracy and AUC values, respectively 73% and 72%, are
lower than the less pruned models. Figure 2 shows the resulting classifier.

Secondly, a slightly less pruned model (T2) was built (see Fig. 3). As shown in
Table 3, the accuracy and AUC values are slightly higher. The tree itself is slightly
bigger (8 leaves), but still comprehensible.

The third tree (T3) is not visualised in this chapter due to its size (54 leaves).
With an accuracy of 80% and and AUC of 79% it is the most accurate model, yet
the least easy to comprehend. The confusion matrix of this best model is displayed
in Table 4. This matrix reveals that there is a relatively higher misclassification rate
between Haydn and Beethoven; and Haydn and Bach. This could be due to the fact
that the dataset was larger for Bach and Haydn. It might also be due to the fact
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Most Common Melodic Interval Prevalence

Melodic Octaves Frequency

≤ 0.3007

Haydn

≤ 0.02922

Beethoven

> 0.02922

Bach

> 0.3007

Fig. 2 C4.5 decision tree (T1)

that Haydn and Beethoven’s styles are indeed more similar, as they have a greater
amount of chronological and geographical overlap in their lives, just like Haydn
and Bach have chronological overlap. Furthermore, Haydn was once Beethoven’s
teacher (DeNora, 1997). Bach and Beethoven on the other hand never lived in the
same country, nor during the same time period (Greene, 1985). For more details on
the musicological similarities and background of Haydn and Beethoven, the reader
is referred to (Rosen, 1997).

When examining the three models, the importance of the ‘Most common melodic
interval prevalence” feature for composer recognition is clear, as it is the root node
of all three models. It indicates that Bach focuses more on one particular interval
than the other composers. Bach also seems to use less repeated notes than the other
two composers. The “melodic octaves frequency” feature indicates that Beethoven
uses more octaves than Haydn.

Table 4 Confusion matrix for C4.5 (model T3)

a b c classified as
175 39 40 a = HA
66 110 20 b = BE
24 21 550 c = BA

4.2 RIPPER

Similar to decision trees, the rulesets in this section are built with an inductive
rule learning algorithm (versus rule extraction techniques such as Trepan and G-
REX (Martens et al., 2007)). They are comprehensible models based on “if-then”
rules, that are computationally efficient to implement.
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Fig. 3 C4.5 decision tree (T2)
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JRip, Weka’s implementation of the “Repeated Incremental Pruning to Produce
Error Reduction algorithm” (RIPPER) was used to built a ruleset for composer clas-
sification (Cohen, 1995). RIPPER uses sequential covering to generate the ruleset.
It consists of a building stage and an optimization stage. The building stage starts
by growing one rule by greedily adding antecedents (or conditions) to the rule, un-
til it is perfect (i.e., 100% accurate) based on an initial growing and pruning set
(ratio 2:1). The algorithm tries every possible value for each attribute and selects
the condition with the highest information gain. Then each condition is pruned in
last-to-first order. This is repeated until there are no more positive examples; the
description length (DL) is 64 bits greater than the smallest DL found so far; or the
error rate is >50%. In the optimization phase, the instances covered by existing
rules are removed from the pruning set. Based on this new pruning set, each rule
is reconsidered and two variants are produced. If one of the variants offers a better
description length, it replaces the rule. This process is repeated (Hall et al., 2009).
The models below were created with 50 optimizations.

Similar to the previous section, three models were built (R1, R2 and R3), each
with varying levels of complexity. This was achieved by varying the minimum total
weight of the instances in a rule (minNo). Setting a higher level for this parameter
will force the algorithm to have more instances for each rule, thus reducing the total
number of rules in the model. The settings and performance results of the models
are summarised in Table 5.

Table 5 Performance and settings of the RIPPER rulesets (10CV)

ID minNo Number of rules Accuracy AUC
R1 50 3 75% 75%
R2 25 5 78% 80%
R3 2 12 81% 85%

The first model is created by setting the minimum total weight of the instances
in a rule very high. This resulted in an easy to understand ruleset (see Fig. 4). As
can be seen in Table 5, its performance is slightly lower than the other models, yet
comparable to the performance of the decision trees from the previous section.

if (Most Common Melodic Interval Prevalence) ≤ 0.2678 and (Melodic Octaves Frequency ≥
0.03006) then

Composer = BE
else if (Stepwise Motion Frequency ≤ 0.5464) and (Chromatic Motion Frequency ≥ 0.1726)
and (0.06466 ≤Most Common Pitch Prevalence ≤ 0.1164) then

Composer = HA
else

Composer = BA
end if

Fig. 4 RIPPER Ruleset (R1)
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Secondly, a model (R2) was created with a higher setting for the minimum total
weight of the instances in a rule. This resulted in five “if-then” rules, which are
displayed in Fig. 5. The model is slightly more complicated to understand, but it has
better performance results (see Table 5).

if (Most Common Melodic Interval Prevalence) ≤ 0.2688 and (Melodic Octaves Frequency ≥
0.04438) then

Composer = BE
else if (Most Common Pitch Prevalence≤ 0.07191) and (Most Common Melodic Interval Preva-
lence ≤ 0.2956) and (Melodic Octaves Frequency ≥ 0.02489) then

Composer = BE
else if (Most Common melodic Interval Prevalence ≤ 0.328) and (Melodic Thirds Frequency ≥
0.1119) and (Chromatic Motion Frequency ≥ 0.1692) and (Most Common Pitch Prevalence ≤
0.106) then

Composer = HA
else if (Stepwise Motion Frequency ≤ 0.5245) and (Chromatic Motion Frequency ≥ 0.1166)
and (Repeated Notes Frequency ≥ 0.1972) then

Composer = HA
else

Composer = BA
end if

Fig. 5 RIPPER Ruleset (R2)

A final model (R3) was created by setting minNo very low. The resulting model
consisting of 12 rules is not shown in this chapter as it is too extensive. With an
accuracy of 81% and AUC of 87% it does outperform the previous two models.
The confusion matrix of the model is shown in Table 6. The misclassification rates
are very similar to those of the decision trees in the previous section, with least
misclassifications occurring between Beethoven and Bach.

Table 6 Confusion matrix for RIPPER
a b c classified as

189 32 33 a = HA
48 124 24 b = BE
37 21 537 c = BA

It is noticeable that the first feature evaluated by the rulesets is the same as the
root feature of the trees from the previous section, which confirms its importance.
The rulesets can be interpreted in a comparable way as the decision trees. By ex-
amining the rules it again becomes clear that Beethoven seems to use more melodic
octaves than the other composers. Haydn seems to use more repeated notes than
Bach, a result also found in the decision trees built in the previous section.
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4.3 Logistic regression

In the previous sections, two techniques were explored to built comprehensible mod-
els. Both trees and rulesets provide crisp classification. This means that they classify
a musical piece either as a certain composer or not. The logistic regression model
built in this section offers a continuous measure that indicates “how much” the prob-
ability is that a piece is from a certain composer. These models are built for each
composer and the one with the highest probability is chosen as the predicted class.
Just like the previously discussed models, implementing logistic regression models
is computationally efficient. They are also less prone to overfitting than other models
such as neural networks (Tu, 1996).

A logistic regression model was built with Weka’s SimpleLogistic function. This
implementation uses LogitBoost, an algorithm that performs additive logistic re-
gression (Witten and Frank, 2005). LogitBoost sequentially applies a simple regres-
sion function to reweighted versions of the training data. The optimal number of
LogitBoost iterations to perform is cross-validated, which leads to automatic at-
tribute selection (Landwehr et al., 2005). This simple boosting strategy often results
in dramatic performance improvements (Friedman et al., 2000).

The model outputs the statistical probability that a piece belongs to a certain
composer (see Eq.s 1 to 4). P(y) represents the probability that a piece is composed
by composer y.

P(Ly) =
1

1+ e−Ly
(1)

whereby

LHA =−3.39+21.19 · x1 +3.96 · x2 +6.22 · x3 +6.29 · x4−4.9 · x5

−1.39 · x6 +3.29 · x7−0.17 · x8 +0 · x9

−0.72 · x10 +8.35 · x11−4.21 · x12

(2)

LBE = 6.19+5.44 · x1 +14.69 · x2 +24.36 · x3−0.45 · x4−6.52 · x5

−29.99 · x6 +3.84 · x7−0.38 · x8−3.39 · x9

−2.76 · x10 +2.04 · x11−0.48 · x12

(3)

LBA =−4.88−13.15 · x1−6.16 · x2−5.28 · x3−11.63 · x4 +11.92 · x5

+34 · x6−13.21 · x7 +3.1 · x8 +2.37 · x9

+0.66 · x10−5.05 · x11 +3.03 · x12

(4)

Whereby xi refers to the corresponding feature value from Table 1.
This type of continuous output score allows it to be included in an evaluation

metric used by a music generation algorithm. In a previous study, the authors used
a local search heuristic to generate music with characteristics of a certain composer.
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The amount of influence of a certain composer contained within a certain piece was
measured by the probability of a logistic regression model (Herremans et al., ress).

The logistic regression equations are not as straightforward to interpret as the
previous two models. Yet they still offer a lot of information about the differences
between styles of the composers. When a feature has a high coefficient, it means
that it is important for distinguishing a particular composer from other composers.
For instance, x5 (Most Common Melodic Interval Frequency) has a high coefficient
value, especially for BA. When looking at the previous models, this feature is also
at the top of the decision tree (see Fig. 3) and occurs in almost all of the rules from
the ruleset (see Fig. 5).

The logistic regression model built in this section outperforms the two previous
models with an AUC of 92% and accuracy of 83% and is the second best model
overall (see Table 2). The confusion matrix, displayed in Table 7, reflects this higher
accuracy rate. When examining the misclassified pieces, we notice that their average
probability is 64%. Examples of misclassified musical pieces include String Quartet
No. 9 in C major, Op. 59, No. 3, Allegro molto from Beethoven, which is classified
as Haydn with a probability of 4% and the Brandenburg Concerto No. 5 in D major,
BWV 1050, Mvmt. 1 from Bach, which is classified as Haydn with a probability of
37%.

Table 7 Confusion matrix for logistic regression

a b c classified as
190 30 34 a = HA
57 119 20 b = BE
25 15 555 c = BA

4.4 Naive Bayes

In this section, a naive Bayes classifier is built with Weka. Similar to the logistic
regression model, a naive Bayes model also outputs the probability that a piece
belongs to a certain composer. This probability estimate is based on the assumption
that the features are conditionally independent. Given class label (i.e., composer) y,
this independence assumption can be represented as follows (Tan et al., 2007):

P(x|Y = y) =
M

∏
j=1

P(x j|Y = y), (5)

whereby each attribute set x = {x1,x2, . . . ,xM} consists of M attributes.
Because of the independence assumption, we do not need to calculate the class-

conditional probability for every combination of x. Only the conditional probability
of each xi given Y has to be estimated. This offers a practical advantage since a
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good estimate of the probability can be obtained without the need for a very large
training set. Given a test piece, the posterior probability for each composer Y can
be calculated by the following formula (Lewis, 1998):

P(Y |x) =
P(Y ) ·∏M

j=1 P(x j|Y )
P(x)

(6)

Since the attributes are continuous, a normal distribution is often chosen to rep-
resent the class-conditional probability. However, we found that better performance
was achieved by using a kernel estimator instead of a normal distribution (John and
Langley, 1995). However, unlike the previous models, it has become too extensive
to display in this chapter and easily comprehend. Its results are included as a bench-
mark value for the other models. The resulting model has an accuracy of 80% and
an AUC value of 90%, which is a less good than the previous logistic regression
model. The confusion matrix is displayed in Table 8. There are a greater amount of
Haydn pieces classified as Beethoven. Other than that, the misclassification errors
are comparable to the previous models, with least confusion between Beethoven and
Bach.

Table 8 Confusion matrix for naive Bayes

a b c classified as
199 28 27 a = HA
69 118 9 b = BE
41 34 520 c = BA

4.5 Support Vector Machine

In order to provide a benchmark for the performance of the comprehensible mod-
els created in the previous sections, a support vector machine classifier was im-
plemented. Support vector machines (SVMs) are black-box models, yet they out-
perform more traditional models in many areas including stock market predic-
tion (Huang et al., 2005), text classification (Tong and Koller, 2002), celtic violin
performer identification (Ramirez et al., 2011), gene selection (Guyon et al., 2002)
and others.

In this section, the library LibSVM (Chang and Lin, 2011) was used to build
a support vector machine (SVM) classifier. This is a learning procedure based on
the statistical learning theory (Vapnik, 1995). Given a training set of N data points
{(xi,yi)}N

i=1 whereby the features xi ∈ IRn and corresponding binary class labels
yi ∈ {−1,+1}, the SVM classifier should fulfil the following conditions (Vapnik,
1995; Cristianini and Shawe-Taylor, 2000):

Preprint accepted for publication in the Springer book on Computational Music
Analysis, ISBN: 978-3-319-25929-1, pages 369-392, Editors: David Meredith -

page 16



Dorien Herremans, David Martens, Kenneth Sörensen
4. CLASSIFICATION MODELS{

wT ϕ(xi)+b≥+1, if yi =+1
wT ϕ(xi)+b≤−1, if yi =−1 (7)

which is equivalent to

yi[wT ϕ(xi)+b]≥ 1, i = 1, ...,N. (8)

The input space is mapped to a high (possibly infinite) dimensional feature space
by the non-linear function ϕ(·). In this new feature space, the above inequalities
construct a hyperplane wT ϕ(x) + b = 0 discriminating between the two classes.
The margin between both classes is maximized by minimizing wT w. Describing
the inner workings of the SVM falls beyond the scope of this chapter. The inter-
ested reader is referred to Cristianini and Shawe-Taylor (2000), who describe the
optimization problem that results in the following formula for the actual classifier:

y(x) = sign[∑N
i=1 αi yi K(xi,x)+b], (9)

whereby K(xi,x) = ϕ(xi)
T ϕ(x) is taken with a positive definite kernel satisfying

the Mercer theorem and αi are the Lagrange multipliers, determined by optimizing
the dual dual problem. In this research, the Radial Basis Function (RBF) kernel was
used to map the feature space to a hyperplane:

K(x,xi) = exp{−‖x−xi‖2/σ2}, (RBF kernel)

where σ is a constant.
The GridSearch procedure in Weka was used to determine the optimal settings

for the regularization parameter (see Cristianini and Shawe-Taylor (2000)) of the
optimization problem and the σ for the RBF kernel (Weka, 2013).

Trying to comprehend the logic of the classifications made is quite difficult, if not
impossible since the SVM classifier with non-linear kernel is a complex, non-linear
function (Martens et al., 2009; Martens and Provost, 2014). It does however outper-
form the previous models. The resulting accuracy is 86% and the AUC-value is 93%
for the SVM with RBF kernel (see Table 2). However, when testing for the differ-
ence in AUC performance between SVM and other models, the p-value remained >
0.01 for both logistic regression and naive Bayes. This indicates that these two mod-
els closely match the performance of the SVM. The confusion matrix (see Table 9)
confirms that SVM is the best model for classifying between Haydn, Beethoven and
Bach. Most misclassification occurs between Haydn and Beethoven, which might
be correlated with the geographical and temporal overlap between the lives of these
composers as mentioned in Sec. 4.1. When examining the misclassified pieces, they
all seem to have a very low probability, with an average of 39%. Examples of mis-
classified pieces are String Quartet in C major, Op. 74, No. 1, Allegro moderato
from Haydn, which is classified as Bach with 38% probability and Six Variations on
a Swiss Song, WO 64 (Theme) from Beethoven, which is classified as Bach with a
probability of 38%.
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Table 9 Confusion matrix for support vector machines

a b c classified as
204 26 24 a = HA
49 127 20 b = BE
22 10 563 c = BA

5 Summary of results

The receiver operating characteristic (ROC) of the most accurate model for each of
the different classifiers is displayed in Fig. 6. The ROC curve displays the trade-
off between true positive rate (TPR) and false negative rate (FNR). The logistic
regression and the SVM classifiers score best, which is confirmed by their high
AUC value in Table 2. The SVM classifier is able to reach the highest AUC value.
Yet when testing for the difference in AUC performance between SVM and other
models, the p-value remains > 0.01 for logistic regression, which makes this the best
performing comprehensible model. Although trees and rulesets are more intuitive
to understand, their performance is slightly lower, which is reflected in their ROC
curves.

All models clearly score better than a random classification, which is represented
by the diagonal through the origin. While the SVM significantly outperforms the
other models (except the AUC of logistic regression and naive Bayes), they can
still be used to get a better understanding of the style characteristics of the three
composers.

6 Conclusions

In this research a number of global musical features were extracted from a large
database of music consisting of pieces from three composers (Bach, Beethoven and
Haydn). Based on these features, five types of classification models were built. The
first three models can offer the reader more insight and understanding into the char-
acteristics of each composer’s style and the differences between them. The latter two
models serve as a performance benchmark as they are too complex or extensive to
be easily understood. While the black-box models (SVM) have the highest perfor-
mance (AUC 93% and accuracy 86%), comprehensive models such as the RIPPER
ruleset still performs well (AUC 85% and accuracy 81%).

The comprehensible models give us musical insights such as “Beethoven typi-
cally does not focus on using one particular interval, in contrast to Haydn or Bach,
who have a higher prevalence of the most common melodic interval”. The reader
should be aware that these conclusions are based on a limited corpus and should not
be generalised without further investigation.
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(a) ROC decision tree
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(b) ROC ruleset
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(c) ROC logistic regression
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(d) ROC naive Bayes

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R

BA
HA
BE

(e) ROC support vector machine

Fig. 6 ROC curves of the models
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In the future, it is interesting to examine how an approach based on local fea-
tures could contribute to gaining even more insight into the styles of composers.
Classification models with an even higher accuracy rate might also be developed.
It could be interesting to extract comprehensible rules from SVM models with rule
extraction techniques such as Trepan and G-REX (Martens et al., 2007). This might
offer a even more accurate comprehensible models. According to Backer and van
Kranenburg (2005), the composers examined in this research are relatively easy to
distinguish. It would therefore be interesting to apply the methods from this chapter
to distinguish pieces of composers such as Bach, Telemann and Handel.
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Hillewaere, R., Manderick, B., and Conklin, D. (2012). String methods for folk tune
genre classification. In Proceedings of the 13th International Society for Music
Information Retrieval Conference (ISMIR), Porto, Portugal, pages 217–222.
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