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1 Introduction

The dynamics of strings in the background of a collection of Dp-branes provides an excellent

framework to address the problem of string dynamics in curved spacetimes. It also underlies

many important developments in our understanding of quantum gravity, most notably the

gauge-gravity duality [1–3].

In a series of relatively recent papers [4–7] we have addressed the problem of the high-

energy collision of a closed string off a configuration of parallel Dp-branes. By suitably

playing with the various parameters characterizing the process, the number N of branes,

the energy E and impact parameter b of the collision, as well as the string coupling gs,

we could identify [4] a region in parameter space inside which closed string loops can be

safely neglected and, consequently, there is no closed string production or gravitational

bremsstrahlung, a considerable simplification. Even within this region there are several

interesting regimes to study.
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There is a weak-gravity regime (corresponding to very large impact parameters com-

pared to the other length scales in the problem) in which string-size effects can be neglected

and general-relativity expectations are recovered in terms of gravitational deflection and

Shapiro time delay. In this regime the resulting S-matrix satisfies elastic unitarity.

There is also a string-size-corrected weak-gravity regime (corresponding to somewhat

smaller impact parameters) in which tidal excitations of the incoming closed string become

important or even dominant [4]. In this regime we are still able to provide an exactly

unitary S-matrix, but unitarity now works in an enlarged Hilbert space containing excited

closed strings besides the incoming one. In [5, 6] (see also [8, 9]) the microscopic structure

of this S-matrix was analyzed in much detail.

There is finally a strong-gravity regime (corresponding to a gravitational radius of the

effective p-brane geometry Rp larger than b) in which the closed string is captured by the

brane system. Physically this is the most interesting situation since, in the QFT limit,

one expects information about the initial state to be lost in the capture (cf. the fall into a

potential well in quantum mechanics). By contrast, string theory should again be able to

give a unitary (i.e. information preserving) S-matrix by providing a microscopic description

of the (open string) excitations induced on the branes by the absorbed closed string.

The study of this process is in general very hard. It can be simplified, however,

under the assumption that Rp, while comparable or even larger than b, is still smaller

than the string length parameter ls, enhanced by a square root of the logarithm of the

energy, as we will discuss in more detail in the rest of the paper.1 When this is the

case the eikonal resummation of the leading terms (in energy) of the higher-order string

amplitudes [4, 11, 12] should give a correct representation of the dynamics for every value

of the impact parameter, all the way down to b = 0. Although in this limit a geometric

interpretation of the brane background is lacking, the dynamics of the string-brane system

remains extremely rich and interesting.

The absorption process is expected to lead to a state consisting of a very complicated

(yet quantum mechanically pure) linear superposition of multi-open-string excitations of

the brane system. Therefore, we may regard the problem at hand as being very close, in

spirit, to the famous information puzzle arising from the formation and evaporation of a

black hole from a pure initial state.

The study of a similar process was attempted before in the context of string-string

collisions [11, 12] where the regime analogous to the one considered here, corresponds to

taking the gravitational radius RS ≡ 2GN
√
s to be smaller than ls but possibly larger than

b. Although black hole formation is not supposed to happen in such a regime, the final

state was argued [11–13] to have many features in common with the one expected from an

evaporating black hole. Only a rough description of the final state (basically just keeping

track of the number of final strings) was obtained in [11–13]. The hope is that, in the

1In a previous paper [7] we have studied, precisely in this regime, the elastic scattering of a closed string

for what concerns the resolution of the causality issue recently raised by Camanho et al. [10]. In this paper

we look at a complementary aspect, the absorption of the closed string resulting in the above-mentioned

production of open string excitations of the brane system.
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case of string-brane collisions, one should be able to go much further in the microscopic

description of the final state.

Our final aim is to arrive at a unitary S-matrix describing both the tidal excitation and

the absorption of the energetic incoming closed string. In this paper we shall take a first

but important step in this direction by studying in detail the process at tree (i.e. disk) level.

In this approximation the energetic closed string is absorbed through the formation of a

single massive open string attached to the brane system. Our main result will be to derive

an explicit microscopic description of this highly excited open-string state at the quantum

level. In a forthcoming paper [14] a simple and intuitive explanation of the properties of

this state will be given by considering a closed-string brane collision in a kinematic regime

allowing for the formation of an open string at the classical level. Furthermore, when the

conditions for the classical closed to open transition are not met, it will be possible to

perform a semiclassical analysis which confirms qualitatively the results of this work.

The massive open string created on the branes belongs to the n-th level of the string

spectrum, where n ∼ α′E2 is fixed by the energy of the closed string. As the energy

increases we are therefore exploring higher and higher levels of the spectrum. Since the

covariant methods are not very suitable to deal with generic excited states, we will work in

the light-cone gauge and derive the form of the open state by taking the high-energy limit

of the light-cone closed-open vertex [15–19].

The dimensionality of the Hilbert space of possible final states is exponentially large

and one would expect that the massive open string would have a very complex represen-

tation in a generic basis. Instead, we find that by choosing a natural basis for the process,

a light-cone gauge aligned with the direction of large momentum, detailed calculations

become possible leading to an extremely simple representation of the final state.

As already mentioned, the detailed understanding of the absorption process at tree level

is only the first step in the construction of a unitary S-matrix. In order to achieve this, one

needs to take into account higher (open string) loops. We shall present elsewhere [20] how

to generate an explicitly unitary S-matrix in a suitable narrow-resonance approximation.

This paper is organized as follows. In section 2, we first review the elastic scattering

amplitude of a tachyon off a collection of D-branes and its Regge limit. We then use

the eikonal and Reggeon vertex operators to derive a general formula for the Regge limit

of the same type of scattering amplitude but with arbitrary external closed-string states.

We finally discuss the s-channel factorization of the elastic string-brane amplitudes and

their imaginary part, which gives the total absorption probability of a closed string by the

D-branes.

In section 3 we start our analysis aiming at identifying the massive open state whose

creation amplitude can account for the full absorption probability at high energy. To this

purpose we introduce the closed-open transition amplitudes and the closed-open light-cone

vertex. The latter is essential to work with arbitrary external closed and open states.

The form of the closed-open vertex in the high-energy limit is determined in section 4.

These results are used in section 5 to derive a simple and explicit form for the open state

created on the brane system by the absorption of a closed string at high energy. We analyze

in turn the absorption of a tachyon, of a massless state and of a state belonging to the

– 3 –
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first massive level and finally give a formula for a generic closed string. As a test of our

results we show how to reconstruct the imaginary part of the elastic amplitude in impact

parameter space. In section 6 we present our conclusions.

We collected some additional material in two appendices. In the first we compare

the closed-open transition amplitudes given by the light-cone vertex and by the covariant

methods for states belonging to the lowest levels. In the second we provide some technical

details on the evaluation of the imaginary part of the disk using the closed-open vertex.

2 Elastic scattering of closed strings by D-branes

When a closed string propagates in the presence of a stack of N coincident Dp-branes,

the simplest new processes that can occur at leading order in perturbation theory are its

scattering (elastic or inelastic) off the Dp-branes and its absorption by the Dp-branes. Both

processes are given by a two-point function on the disk, the first with two closed string

vertex operators and the second with one closed and one open string vertex operator, since

at leading order in gsN the absorption process results in the creation of a single massive

open string on the branes worldvolume.2

The possibility of having a closed-open transition induces a non-vanishing imaginary

part for the tree-level elastic scattering amplitude of the closed string. The imaginary part

gives the total splitting probability for the closed string to turn into an open string, a

quantity that, in the high energy limit and as a function of the impact parameter b, will

play an essential role in our analysis. Indeed, in sections 3 to 5 of our paper we will derive

the explicit form of the high energy limit of the closed-open transition amplitudes, thus

identifying the precise open string state created on the Dp-branes. As an important check of

our result, we will verify that the square of the closed-open amplitude precisely reproduces

the imaginary part of the elastic closed-closed amplitude. For this reason in this section

we will derive, following the discussion in ref. [5], a general formula for the imaginary part

of the elastic scattering amplitude of an arbitrary closed string off the Dp-branes in the

Regge limit.

In this paper we shall restrict our attention, for simplicity, to the bosonic string.

Generalization to the superstring case is in principle straightforward but is postponed to

further work. We will begin this section by reviewing the elastic scattering amplitude of a

closed string tachyon off a stack of Dp-branes and its imaginary part in the Regge limit as a

function of the energy s and the impact parameter b. Then, in order to obtain a formula for

the total splitting probability valid for an arbitrary closed string state, we will review the

results of ref. [5], where it is shown that a simple and efficient way to calculate the Regge

limit of a generic elastic (or inelastic) closed-closed scattering amplitude is to evaluate the

matrix elements of the eikonal operator for string-brane scattering [4]. As particular cases

2The disk amplitudes for an arbitrary number of open and closed strings with Neumann boundary

conditions were first computed in ref. [21] (see eq. (3.9) of [21]). Their extension to include Dirichlet

boundary conditions and their application to the physics of the Dp-branes were first done in refs. [22–24].

For a more recent discussion of tree level string amplitudes involving both closed and open strings and their

relations to pure open string amplitudes, which generalize the KLT relations [25], see for instance [26, 27].

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
0

to illustrate this method, we will discuss two other disk amplitudes: the amplitude with

two massless closed string states and the one with two massive states belonging to the first

excited level of the closed string spectrum.

The disk amplitudes describing the elastic scattering of a closed string are character-

ized by t-channel poles due to the exchange of closed strings and by s-channel poles due

to intermediate physical open strings, which will be analyzed in detail in the following sec-

tions. For instance the simplest elastic scattering amplitude, the one for the closed string

tachyon, reads3

ATT =
κNTp

2

Γ(−α′s− 1)Γ
(
−α′

4 t− 1
)

Γ
(
−α′s− α′

4 t− 2
) , Tp =

√
π

24

(
2π
√
α′
)11−p

. (2.1)

The normalization is given in terms of the gravitational coupling κ2 = 2−9g2
s(2π)23(α′)12,

the number of branes N , and the brane tension Tp. The various quantities are taken for

d = 26. The Mandelstam variables are defined in terms of the external momenta p1 and

p2 of the two closed string tachyons [22–24]

t = −(p1 + p2)2 = −4
(
E2 −M2

)
sin2 θ

2
,

s = −1

4
(p1 +Dp1)2 = −1

4
(p2 +Dp2)2 = E2 , (2.2)

where θ is the angle between ~p1 and −~p2, M2 = −4/α′ and D is the standard reflection

matrix for a Dp-brane, Dµ
ν = diag(1, . . . , 1,−1, . . . ,−1) with the first p + 1 eigenvalues

equal to 1 and the remaining 25 − p equal to −1. Notice that we chose a reference frame

where (pi +Dpi) has no space-like components, so
√
s is equal to the energy of the closed

states. Using the relation

Γ(x)

Γ(x+ a)
=
∞∑
n=0

(−1)n

Γ(n+ 1)Γ(a− n)

1

x+ n
, (2.3)

with a 6= 0, 1, . . ., we can write the amplitude in eq. (2.1) in the form

ATT =
κNTp

2

∞∑
n=0

1

n!

Pn

(
α′t
4

)
−α′s− 1 + n

, Pn

(
α′t

4

)
=

Γ
(
α′

4 t+ n+ 2
)

Γ
(
α′

4 t+ 2
) , (2.4)

that clearly displays the s-channel poles and their residues. There is a pole for each level

of the open-string spectrum, the residue being a polynomial Pn(y) of degree n in y = α′t
4 .

The imaginary part of the amplitude follows from the usual iε prescription and is obtained

from (2.4) by substituting each pole 1/(−α′s+m) with πiδ(α′s−m)

ImATT = π
κNTp

2

∞∑
n=0

δ
(
α′s− n+ 1

) 1

n!
Pn

(
α′t

4

)
. (2.5)

3For a derivation of this amplitude see for instance [7].
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In the Regge limit, α′s� 1 with α′t fixed, the amplitude (2.1) behaves as4

ATT ∼ ATT =
κNTp

2
e
−iπ

(
1+α′

4
t
)

Γ

(
−1− α′

4
t

)
(α′s)1+α′

4
t . (2.6)

Its real and imaginary part are easily evaluated

ReATT =
κNTp

2
cosπ

(
1 +

α′

4
t

)
Γ

(
−1− α′

4
t

)
(α′s)1+α′

4
t ,

ImATT = π
κNTp

2

(α′s)1+α′
4
t

Γ
(
2 + α′

4 t
) . (2.7)

It is interesting to derive the imaginary part in the Regge limit directly from the imaginary

part of the full amplitude in eq. (2.5). When α′s� 1 the discrete distribution of poles can

be approximated by a continuum, since the relative separation between adjacent levels of

the open string spectrum that are accessible at a given energy becomes of order 1
α′s . To

study the contribution of the levels in a neighborhood of α′s let us set

n = α′sx ,

∞∑
n=0

δ(α′s− n+ 1) ∼
∫ ∞

0
dx δ

(
1− x+

1

α′s

)
. (2.8)

In the limit α′s� 1 we then reproduce

ImATT ∼ π
κNTp

2

∫ ∞
0

dx δ(1− x)
Pn

(
α′t
4

)
Γ(n+ 1)

∼ πκNTp
2

∫ ∞
0

dx δ(1− x)
(α′sx)1+α′t

4

Γ
(
2 + α′t

4

)
= π

κNTp
2

(α′s)1+α′
4
t

Γ
(
2 + α′

4 t
) . (2.9)

In the following we will also be interested in scattering and absorption processes happening

at fixed impact parameter. The imaginary part of the elastic disk amplitude in impact

parameter space is

ImATT (s, b) =

∫
d24−pq

(2π)24−p e
−i~b~q ImATT (s, t) ∼ πκNTp

2

α′s

(πα′ logα′s)
24−p

2

e
− b2

α′ logα′s ,

(2.10)

where ~q is a 24−p-dimensional vector satisfying −(~q)2 ≡ t. In the last step we approximated

Γ
(

2 + α′

4 t
)
∼ 1. This approximation amounts to neglecting at any given order in an

expansion in powers of b2

α′ logα′s terms that are suppressed by additional powers of log α′s.

The imaginary part has a characteristic Gaussian dependence on the impact parameter,

that indicates that in the Regge limit the Dp-branes behave as black disks with a radius

growing like the square root of the logarithm of the energy, R ∼
√
α′ logα′s.

The elastic amplitude for the tachyon is extremely compact due to the fact that this

state is a scalar with a simple vertex operator

VT,T̄ =
κ

2π
eipX . (2.11)

4Here and in the following we will use the symbol A for the Regge limit of an amplitude A.
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The vertex operator for a generic closed string state |ψ〉 can be written as follows:

VS,S̄ =
κ

2π
εµ1...µr ε̄ν1...νs Vµ1...µr

S V̄ν1...νs
S̄

, (2.12)

where S and S̄ are labels that identify the little group representations of the left and right

part of the closed state, ε, ε̄ the corresponding polarization tensors and5

VS = PolS (∂rX) eipXL , (2.13)

with PolS a polynomial in the holomorphic derivatives of Xµ. Elastic and inelastic ampli-

tudes for arbitrary states of the string spectrum become more and more complex as the

number of possible contractions between momenta and polarizations increases.

Their structure however drastically simplifies in the Regge limit and, as discussed

in [5], it is possible to give a general and explicit formula in terms of the matrix elements

of the phase of the eikonal operator [4, 11, 12]. The Regge limit is characterized by a

single spatial direction of large momentum that naturally leads to a separation of the

dynamics in a longitudinal and a transverse part. It is therefore convenient to introduce a

frame consisting of two light-like vectors e±, whose spatial component coincides with the

direction of large momentum and that satisfy the following conditions:

e+ · e+ = e− · e− = 0 , e+ · e− = 1 , (2.14)

together with 24 transverse spatial vectors ei, orthogonal to e±. By convention we will

choose the large momentum along the spatial axis corresponding to the last coordinate

e+ =
1√
2

(−1, 0, . . . , 0, 1) , e− =
1√
2

(1, 0, . . . , 0, 1) . (2.15)

When α′s � 1 and α′t is kept fixed, the scattering process is dominated by the exchange

of the states of the leading Regge trajectory that can be represented by a single effective

string state, the Reggeon [28–30]

VR =

(√
2

α′
i∂X+

√
α′E

)1+α′t
4

e−iqXL , X+ = e+ ·X . (2.16)

In this limit the string-brane scattering amplitudes factorize in the product of the three-

point coupling of the two external states to the Reggeon and the one-point function of the

Reggeon in the brane background, which coincides with the Regge limit of the tachyon

scattering amplitude, eq. (2.6). If the initial state is (S1, S̄1) with polarization tensor ε, ε̄

and the final state (S2, S̄2) with polarization tensor ζ, ζ̄ we can write

A(S1,S̄1),(S2,S̄2) = ATT CS1,S2,R C̄S̄1,S̄2,R̄ , (2.17)

where

CS1,S2,R = 〈VS1VS2VR〉 = εµ1...µrζν1...νs T
µ1...µr;ν1...νs
S1,S2,R

. (2.18)

5We write X(z, z̄) = XL(z) +XR(z̄).
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The tensors TS1,S2,R are formed using the flat metric ηµν , the momentum transfer qµ and

the longitudinal polarization vector vµ, with coefficients that depend only on t and the

masses of the external states (see [5] for details).

The formula (2.17) can be simplified even further if we describe the string spectrum

using a basis of DDF operators rather than a basis of covariant vertex operators [5]. In

this way we only maintain manifest invariance with respect to the transverse SO(24) ro-

tation group but it becomes straightforward to enumerate the physical states. Moreover

the couplings of the external states to the Reggeon become elementary and all the tree-

level scattering amplitudes in the Regge limit can be represented as matrix elements of a

very simple operator W (s, q), closely related to the phase δ̂(s, q) of the eikonal operator.

These simplifications occur if the null vector required by the DDF construction is chosen

proportional to e+. In this way the amplitudes obtained using the DDF operators coincide

with the amplitudes given by the three-string vertex in the light-cone gauge adapted to

the kinematics of the Regge limit, as given in eq. (2.15).

The operator W that gives the tree-level scattering amplitudes is6

W (s, q) = 4Eδ̂(s, q) = ATT (s, t)

∫ 2π

0

dσ

2π
: eiqX̂ : . (2.19)

The operators Xi are the string position operators (without zero modes and at τ = 0)

X̂i(σ) = i

√
α′

2

∑
k 6=0

1

k

(
Aike

−ikσ + Āike
ikσ
)
, (2.20)

in a light-cone gauge with the spatial direction aligned with the direction of large momen-

tum. The evaluation of the Regge limit of elastic or inelastic scattering amplitudes become

straightforward using the operator in eq. (2.19). We illustrate this method with the elastic

scattering of states in the massless and in the first massive levels. A generic massless state

(level Nc = 1) can be written as follows:

|gε, ḡε̄〉 = εiε̄jA
i
−1Ā

j
−1|0〉 . (2.21)

The polarization tensor

εij = εiε̄j , (2.22)

can be decomposed in a trace, symmetric traceless and antisymmetric part correspond-

ing respectively to the dilaton, graviton and Kalb-Ramond field. Denoting with ε the

polarization of the incoming state and with ζ the polarization of the outgoing state we find

Agg = 〈gζ , ḡζ̄ |W (s, q) |gε, ḡε̄〉 =

(
εζ − α′

2
(εq) (ζq)

)(
ε̄ζ̄ − α′

2
(ε̄q)

(
ζ̄q
))
ATT . (2.23)

This is therefore the Regge limit of the disk scattering amplitude involving two massless

closed strings.7 The structure of the asymptotic form of this amplitude, eq. (2.23), is a

6See [7] for a derivation of the eikonal operator for string-brane scattering in the bosonic string.
7A derivation of the complete scattering amplitude involving two massless closed strings, and not just

of its Regge limit, can be found in section 2 and appendix A of ref. [7] and it agrees with the one given in

ref. [22] for the case of the bosonic string.
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general result. In the Regge limit all the scattering amplitudes are obtained by multiplying

the tachyon amplitude with a suitable polynomial in the polarizations and the momentum

transfer. In impact parameter space the polynomial becomes a differential operator in ∂bi
acting on ATT (s, b). For instance

Agg
(
s,~b
)

=

(
εζ +

α′

2
(ε∂b) (ζ∂b)

)(
ε̄ζ̄ +

α′

2
(ε̄∂b)

(
ζ̄∂b
))
ATT (s, b) . (2.24)

The differential operator reflects the presence of higher derivative corrections to the gravi-

tational couplings in the bosonic string [7, 10]. As far as the imaginary part is concerned the

derivatives generate terms suppressed by additional powers of log(α′s) and we will neglect

them for consistency with the approximations made in deriving eq. (2.10). Therefore

ImAgg
(
s,~b
)
∼ εζ ε̄ζ̄ ImATT (s, b) . (2.25)

As an additional example of the general structure of the amplitudes let us consider the

first massive level, that contains the SO(25) representations in the tensor product of two

symmetric traceless tensors, one for the left and one for the right half of the string. The

SO(25) symmetric traceless tensor decomposes into a symmetric tensor and a vector of the

transverse SO(24)

|Hε〉 =
1√
2
εijA

i
−1A

j
−1|0〉 , |Lε〉 =

1√
2
εiA

i
−2|0〉 . (2.26)

The symmetric tensor can be further decomposed into a traceless and a trace part. Let

us discuss separately the elastic scattering of a closed state given by the product of two

tensors (H ⊗ H̄) and by the product of two vectors (L⊗ L̄). The remaining cases (H ⊗ L̄
and L⊗ H̄) can be analyzed in a similar way. For the state

|Hε, H̄ε〉 =
1

2
εij ε̄klA

i
−1A

j
−1Ā

k
−1Ā

l
−1|0〉 , (2.27)

we find

AHH =

(
εijζij −

α′

2
εii′q

i′ζjj′q
j′ +

α′2

16
εijq

iqjζi′j′q
i′qj

′

)
(
ε̄klζ̄kl −

α′

2
ε̄kk′q

k′ ζ̄ll′q
l′ +

α′2

16
ε̄klq

kqlζ̄k′l′q
k′ql

′

)
ATT . (2.28)

For the state

|Lε, L̄ε〉 =
1

2
εiε̄jA

i
−2Ā

j
−2|0〉 , (2.29)

we find

ALL =

(
εζ − α′

8
(εq) (ζq)

)(
ε̄ζ̄ − α′

8
(ε̄q)

(
ζ̄q
))
ATT . (2.30)

A generic closed state |ψ〉 at level Nc is characterized by the collection of left and right

modes that create it acting on the vacuum

Aiα−kα , Ā
iβ
−k̄β

,
∑
α

kα =
∑
β

k̄β = Nc , (2.31)
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and by a collection of polarization vectors εiαα , ε̄
iβ
β . To describe a state transforming in

a specific irreducible representation of the transverse SO(24), one simply acts with the

corresponding Young projector on the tensor product of the vector representations. The

elastic scattering amplitude

Aψζψε = ATT
∫ 2π

0

dσ

2π
〈ψζ | : eiqX : |ψε〉 , (2.32)

can be evaluated by expanding the exponential and collecting the terms that give a non-

vanishing matrix element.8 This will result in a polynomial where the polarization vectors

of the incoming and outgoing states are contracted among themselves or with the momen-

tum transfer, like in the examples just discussed. From (2.32) it is clear that at t = 0

the elastic amplitude reduces to the contraction between the initial and final polarization

tensors

Aψζψε(s, 0) =
∏
α

(ζαεα)
∏
β

(
ζ̄β ε̄β

)
ATT (s, 0) = π

κNTp
2

α′s
∏
α

(ζαεα)
∏
β

(
ζ̄β ε̄β

)
.

(2.33)

In impact parameter space the polynomial in the momentum transfer that multiplies the

tachyon amplitude ATT (s, t) becomes a differential operator in ∂bi that acts on ATT (s, b).

Up to terms suppressed by additional powers of log α′s, the imaginary part is simply

ImAψζψε(s, b) =
∏
α

(ζαεα)
∏
β

(
ζ̄β ε̄β

)
ImATT (s, b) . (2.34)

To summarize, in this section we have reviewed the computation of the Regge limit of

the disk scattering amplitudes involving two arbitrary closed string states [5]. It turns

out that, in the Regge limit, all the scattering amplitudes are obtained by multiplying

the tachyon amplitude with a suitable polynomial in the polarizations and the momentum

transfer. We have seen that these amplitudes have s-channel poles for values of s such that

1 + α′s = n ≥ 0 corresponding to the creation of an open string. The residue of the pole,

given by the imaginary part of the amplitude, is equal to the absolute value square of the

coupling of the closed string with a specific open string state belonging to the level n. The

aim of the next three sections will be to find a precise and explicit form for this highly

excited open string state.

3 Absorption of closed strings by D-branes

In the background of a Dp-brane a closed string can split turning itself into an open string.

This process is described at tree level by a two-point function on the disk with one closed

and one open vertex operator. These closed-open correlation functions give the transition

amplitude to specific open string states while the imaginary part of the elastic amplitude,

discussed in the previous section, gives the total splitting probability. In order to derive

8In [5] it is shown in detail how to relate the matrix elements of the eikonal operator and the covariant

amplitudes.
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the quantum state that represents the massive open string we need to determine the high

energy limit of the closed-open couplings for arbitrary external states.

We begin this section by discussing the closed-open amplitudes in the basis of the

covariant vertex operators. Since the covariant methods are not very suitable to study

highly excited string states, we then introduce the light-cone closed-open vertex [15–19]

that encodes all the correlation functions between arbitrary closed and open string states.

This vertex can be derived by a variety of methods: factorizing the non-planar one-loop two

open-string amplitude [15, 16], finding the operator solution to the continuity conditions

for the string coordinates [17, 19] or evaluating the string path integral [18]. It can also

be derived using the DDF operators, following the analysis in [31] for the three open-

string vertex.

In this section we will give the explicit form of the vertex for a generic Dp-brane

background and discuss two inequivalent choices for the spatial axis of the light-cone:

along the branes worldvolume or along the direction of collision. The latter choice will

turn out to be the most convenient to derive the high energy limit of the vertex. After

discussing this limit in section 4, we will be able to determine in section 5 the precise form

of the highly excited open state and verify that it reproduces the imaginary part of the

elastic amplitudes at high energy.

3.1 Closed-open amplitudes

Let us consider the transition from a closed string at level Nc with spatial momentum ~pc
in a direction orthogonal to the branes9

pc =
(
E,~0p, ~pc

)
, α′M2 = α′

(
E2 − ~p 2

c

)
= 4(Nc − 1) Nc = 0, 1, 2 . . . , (3.1)

to an open string at level n with momentum

po =
(
−m,~0p,~025−p

)
, α′m2 = −α′p2

o = n− 1 n = 0, 1, 2 . . . . (3.2)

The transition is possible if

α′E2 = α′m2 = n− 1 , α′~p 2
c = n− 4Nc + 3 ≥ 0 . (3.3)

The lowest accessible level is therefore n = 4Nc−3. As the momentum of the closed string

increases it is possible to reach an arbitrarily high level of the open string spectrum. For

instance the tachyon can create any open state, the massless states can create an open

string with n ≥ 2, closed states from the first massive level can create an open string with

n = 5 and above. For the open vertex operators we use a notation similar to the one

introduced in eq. (2.12)

Vχ = go εµ1...µr Vµ1...µr
χ , (3.4)

where go =
√

2α′gp+1, with gp+1 the coupling constant of the gauge theory living on the

branes world-volume.10 When we have a stack of N Dp-branes, the open state carries

9The components of the momenta are given in the following order: (t, vol, perp), where t is the time

direction, vol the p-dimensional branes volume, perp the (25−p)-dimensional space transverse to the branes.
10In terms of the string coupling constant gs and the Regge slope α′ this constant is given by g2

p+1 =

2πgs(2π
√
α′)p−3. The Chan-Paton factors are normalized as Tr(λiλj) = δij .
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Chan-Paton factors λa that form a basis for the Lie algebra of U(1) × SU(N). Since

the closed strings are singlets, the open string state must belong to the U(1) factor with

λs = 1√
N
IN and tr(λs) =

√
N . At tree level the absorption amplitude is given by the

correlation function on the disk of two vertex operators, one for the closed string state ψ

and one for the open string state χ

Bψ,χ(pc) = β 〈VSVS̄Vχ〉D , (3.5)

where the normalization β is given by

β2 =
κ

2α′
NTp . (3.6)

The imaginary part of the two-point elastic closed string amplitudes can be written as

ImAψ,ψ(p1, p2) = πα′
∑
χ

Bψ,χ(p1)B∗ψ,χ(p2) . (3.7)

The sum extends to all the open states χ at level n and includes a sum over their po-

larizations. Some explicit examples of closed-open amplitudes obtained by evaluating the

correlation functions on the disk can be found in appendix A. Since we are interested in

the absorption of highly energetic strings and therefore in very massive open states, the

direct evaluation of correlation functions of vertex operators becomes soon prohibitively

complex. We would like to have a simple method to derive the closed-open amplitudes

when the strings are highly energetic and to characterize the resulting open string state

that reproduces eq. (3.7). We will develop this method in the following sections by studying

the high-energy limit of the light-cone closed-open string vertex, to which we now turn.

3.2 The closed-open string vertex

The closed-open light-cone vertex describes the transition from an arbitrary closed string

state to an arbitrary open state living on a Dp-brane. The closed-open vertex for the

bosonic string for the case of purely Neumann boundary conditions was first discussed

in [15, 16] and then generalized to include ghosts [18] and purely Dirichlet boundary condi-

tions [19]. The extension to the superstring in the Green-Schwarz formalism was considered

in [17]. Here we give the explicit form of the vertex, which we derived using the DDF op-

erators as in [31], for a generic Dp-brane background. Indeed, by observing that the vertex

operator of a closed string is the product of two vertex operators of open strings, the

closed-open vertex can be easily deduced from the three open-string vertex of [31], as it

will be clear from the form of the vertex displayed below.

The light-cone is determined by two light-like vectors e± satisfying the following con-

ditions:

e+ · e+ = e− · e− = 0 , e+ · e− = 1 . (3.8)

There are three inequivalent choices for the spatial direction of the light-cone: along the

direction of the large momentum carried by the closed string, along the volume of the

Dp-branes or transverse to both the branes and the direction of large momentum. We will
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discuss explicitly the first two choices. As we will see, the open state created at high energy

has an extremely simple description if the light-cone is chosen along the direction of large

momentum, as we did in the previous section in our discussion of the Regge limit of the

closed-closed scattering amplitudes and their relation to the eikonal operator.

Having chosen e± the light-cone vertex is given by

|VB〉 = β exp

 3∑
r,s=1

∞∑
k,l=1

1

2
Ar,i−kN

rs
kl A

s,i
−l +

3∑
r=1

∞∑
k=1

P iN r
kA

r,i
−k

 3∏
r=1

(
|0〉(r)

)
, (3.9)

where

Pi ≡
√

2α′
[
αrp

(r+1)
i − αr+1p

(r)
i

]
. (3.10)

Let us explain our notation. The normalization constant β is given in eq. (3.6) and it is

related to the normalization of the closed 2-point function on the disk. The index i runs

along the d − 2 directions orthogonal to both e± (d = 26 for the bosonic string) and the

quantities labelled by r, s = 1, 2 refer to the left/right parts of the closed string, while those

labelled by r, s = 3 refer to the open state. In particular

p(1) =
pc
2
, p(2) =

Dpc
2

, p(3) = po , (3.11)

where pc is the momentum of the closed string11

pc =
(
E,~0p, ~pt, p

)
, α′M2 = −α′p2

c = 4(Nc − 1) , (3.12)

and po the momentum of the open string

po =
(
−m,~0p,~024−p, 0

)
, α′m2 = −α′p2

o = n− 1 . (3.13)

Finally, the harmonic oscillators satisfy the following commutation relations:

[Ar,ik , A
s,j
h ] = k δh+k,0 δ

rs δij . (3.14)

When considering the high energy limit we will choose, as in the previous section, the large

momentum along the spatial axis corresponding to the last coordinate, i.e. p2 � ~p2
t . We

will use capital letters for the light-cone modes of the closed string and small case letters

for the light-cone modes of the open string

A1,i
k = Aik , A2,i

k = (DĀi)k , A3,i
k = aik . (3.15)

Finally the Neumann matrices N in the vertex are

N r
k = − 1

kαr+1

(
−kαr+1

αr

k

)
=

1

αrk!

Γ
(
−kαr+1

αr

)
Γ
(
−kαr+1

αr
+ 1− k

) , (3.16)

N rs
kl = − klα1α2α3

kαs + lαr
N r
kN

s
l = − α1α2α3

kαs + lαr

1

αr+1αs+1

(
−kαr+1

αr

k

)(
−lαs+1

αs

l

)
,

11The components of the momenta are given in the following order: (t, vol, perp, z), where t is the time

direction, vol the p-dimensional branes volume, perp the (24−p)-dimensional space transverse to the branes

and to the direction z of the large momentum p.
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while the quantities αr are given by

αr = 2
√

2α′(e+p(r)) , r = 1, 2, 3 , (3.17)

with

α1 + α2 + α3 = 0 . (3.18)

The momenta Pi and the light-cone components αi depend on the choice of gauge. We

give below the explicit expressions for two inequivalent choices of the spatial components

of the light-cone vectors e±: along the direction of the large momentum carried by the

closed string and along the worldvolume of the Dp-branes.

The first choice can be made for every Dp-brane background. The light-cone vectors are

e+ =
1√
2

(−1, 0, . . . , 0, 1) , e− =
1√
2

(1, 0, . . . , 0, 1) , (3.19)

and the αr are equal to

α1 =
√
α′ (E + p) =

√
n− 1 +

√
n− 1− 4ω ,

α2 =
√
α′ (E − p) =

√
n− 1−

√
n− 1− 4ω , (3.20)

α3 = −2
√
α′E = −2

√
n− 1 ,

where

ω =
α′

4

(
M2 + ~pt

2
)

= Nc − 1 +
α′~pt

2

4
. (3.21)

In this light-cone gauge the index i runs over the directions transverse to the branes and

to the direction of large momentum, i.e. i = p+ 1, ..., 24. Using eq. (3.11) we find

Pi = α3

√
α′

2
pt,i . (3.22)

Note that the argument of the Gamma functions in the Neumann coefficients depends on

the value of the energy and of the transverse momentum.

The second gauge choice is possible only for Dp-branes with p ≥ 1. The light-cone

vectors are

e+ =
1√
2

(−1, 1, . . . , 0, 0) , e− =
1√
2

(1, 1, . . . , 0, 0) . (3.23)

We then find

α1 = α2 =
√
α′E , α3 = −2

√
α′E , (3.24)

and

Pi = α3

√
α′

2
pc,i , (3.25)

where pc,i are the components of the momentum of the closed string along the transverse

directions. In this light-cone gauge the index i runs over all directions transverse to the

brane, i = p+ 1, ..., 25. In this case the argument of the Gamma functions in the Neumann

coefficients does not depend on the value of the energy and of the transverse momentum.
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In the rest of this paper we will work mostly in the first gauge, where we will find a very

simple representation for the massive open string. Before continuing, there is a subtlety

related to this gauge choice for the open string that deserves some explanations. The gauge

choice X+ = 2α′p+τ together with the Virasoro constraints requires that the two open

string coordinates chosen to form the light-cone satisfy Neumann boundary conditions.

This seems incompatible with defining the coordinates X± for the open string states as the

combination of the time coordinate X0, which satisfies Neumann boundary conditions, and

the direction of collision Z, which satisfies Dirichlet boundary conditions. For instance,

for any given X0 and Z the reparametrization of the open worldsheet required to set

X+ = 2α′p+τ does not leave the worldsheet boundaries fixed.

The way around this problem is to define a modified light-cone gauge using for the

open string instead of the coordinate Z a coordinate Z̃ given by12

Z(τ, σ) = z(σ+)− z(σ−) 7→ Z̃(τ, σ) = z(σ+) + z(σ−) , (3.26)

where σ± = τ ± σ. The coordinate Z̃ satisfies Neumann boundary conditions and there

is no subtlety in fixing the light-cone gauge X̃+ = 2α′p̃+τ , where X̃± = 1√
2
(X0 ± Z̃) and

√
2p̃+ = p0

o. Since the massive open strings do not have a momentum zero-mode, their

description in terms of the coordinate Z or the coordinate Z̃ is equivalent.13

In eq. (3.9) we wrote the vertex as a ket in the closed-open Hilbert space. Equiva-

lently, we could represent it as an operator mapping the closed string Hilbert space to the

open string Hilbert space, simply by replacing all the closed string creation operators with

annihilation operators. Given a closed state |ψ〉 at level Nc and with energy α′E2 = n− 1,

the closed-open vertex gives its couplings to all the open string states |χ〉 at level n

Bψχ = 〈χ|V |ψ〉 . (3.27)

The imaginary part of the elastic disk amplitude with two external closed string states

|ψ1〉 and |ψ2〉 can be computed combining two closed-open vertices. At finite energy it is

convenient to choose in our first light-cone gauge a brick-wall frame where the momenta of

the incoming and outgoing closed strings are given by

p1 =

(
E,~0p,

~q

2
, p

)
, p2 =

(
−E,~0p,

~q

2
,−p

)
, (3.28)

so that t = −(p1 + p2)2 = −~q 2. The angle θ between ~p1 and −~p2 is given by

~q 2

4
=
(
E2 −M2

)
sin2 θ

2
, p2 =

(
E2 −M2

)
cos2 θ

2
. (3.29)

We can then write

ImAψψ(s, t) = πα′〈ψ2|V †~q/2V~q/2|ψ1〉 , α′s = n− 1 , α′t = −α′~q 2 . (3.30)

12We write X(τ, σ) = XL(σ+) +XR(σ−).
13In terms of the original coordinates this gauge choice sets X+

L (σ+) = α′p+
Lσ

+ and X−R (σ−) = α′p−Rσ
−,

with
√

2p+
L =
√

2p−R = p0
o.
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Here and in the following, we show explicitly the dependence of the closed-open vertex on

the transverse momentum carried by the closed state on which it acts. We will use this

choice of frame to check that the closed-open vertex correctly reproduces the imaginary

part of the elastic scattering of the tachyon for the first massive level of the spectrum in

appendix A. In the Regge limit it is sometimes more convenient to choose

p1 =
(
E,~0p, ~q,

√
p2 − ~q2

)
, p2 =

(
−E,~0p,~024−p,−p

)
. (3.31)

In this frame the relation t = −(p1 + p2)2 ∼ −~q 2 remains valid up to terms of order s−1,

which are negligible in the high energy limit if we are only interested in the leading order.

4 The high-energy limit of the closed-open vertex

In the previous section we summarized the form of the vertex that gives the transition

amplitude between an arbitrary closed string state and an arbitrary open string state.

We now discuss how the structure of this operator simplifies when the absorbed string is

ultrarelativistic, α′s � 1 and M � E. In this section and in the rest of the paper we

will work in the light-cone gauge parallel to the collision axis, or more precisely to the

direction of large momentum, since it is in this gauge that we will be able to give a very

explicit description of the massive open state created on the brane worldvolume. As a

check of our construction we will verify that starting from the high-energy limit of the

closed-open vertex we can reproduce the imaginary part of the elastic amplitude, which

is due to the creation of on-shell states in the s-channel. This analysis complements the

analysis performed in [5] where we studied the Regge limit of the three closed-string light-

cone vertex, which gives all the inelastic closed-closed transitions at high energy in the

background of the Dp-branes.

Consider a closed state |ψ〉 at level Nc, with energy E such that

α′E2 = n− 1 , (4.1)

and carrying a momentum ~pt in the transverse directions, p2
t � E2. The non-trivial part

of the closed-open vertex in eq. (3.9) when acting on this state can be written as

V~pt |ψ〉 = β Pn eZo+Zc,ψ |ψ〉 , (4.2)

where Zo contains only the open string modes (i.e. the Neumann coefficients N33
kl and N3

k )

and Zc,ψ contains all the remaining terms which have both open and closed string modes,

the latter restricted to those that can have a non-vanishing contraction with the modes

used to define the closed state The operator Pn is the projector on the level n of the open

string Hilbert space and enforces energy conservation. We shall derive the asymptotic

behaviour of the vertex (4.2) in the large n limit

V~pt ∼ V~pt , n� 1 . (4.3)

The asymptotic vertex gives the couplings between a highly energetic closed string |ψ〉 and

a very massive open string |χ〉
Bψχ = 〈χ|V~pt |ψ〉 . (4.4)
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The imaginary part of the elastic disk amplitude in the Regge limit can be computed

combining two closed-open vertices

ImAψψ(s, t) = πα′〈ψ|V†~0V~q|ψ〉 , α′s = n− 1 , t = −~q 2 . (4.5)

We will also be interested in the closed-open couplings and in the imaginary part of the

elastic disk amplitude in impact parameter space

Bψχ(~b) =

∫
d24−pq

(2π)24−p e
−i~b~q 〈χ|V~q|ψ〉 ≡ 〈χ|Ṽ~b|ψ〉 , (4.6)

ImAψψ(s,~b) = πα′
∫

d24−pq

(2π)24−p e
−i~b~q 〈ψ|V†0V~q|ψ〉 ≡ πα

′〈ψ|V†0Ṽ~b|ψ〉 , (4.7)

where we introduced the vertex in impact parameter space

Ṽ~b =

∫
d24−pq

(2π)24−p e
−i~b~q V~q . (4.8)

As we shall see, at high energy the Fourier transforms in the previous expressions are

dominated by the region of small transverse momenta and therefore we will find a simple

relation between the vertex in impact parameter space and the vertex at zero transverse

momentum.

In order to derive the high energy limit of the vertex, we must determine the asymp-

totic behaviour of the Neumann coefficients. At high energy the ratios of the light-cone

components p+ of the momenta of the three strings that appear in eq. (3.16) behave as

follows:

α3

α2
= − 2m

E − p
∼ −n

ω
,

α2

α1
=
E − p
E + p

∼ ω

n
,

α1

α3
= −E + p

2m
∼ −1 +

ω

n
, (4.9)

where the αi are defined in eq. (3.20) and ω is defined in eq. (3.21). Using these expressions

we can analyze the high energy limit of the Neumann coefficients N rs
kl and N r

k
~P . When n

tends to infinity, the coefficients quadratic in the open modes behave like

N33
kl ∼ −

ω

n

1

k + l

k−ω
k
n

Γ
(
1− ω kn

) l−ω
l
n

Γ
(
1− ω l

n

) . (4.10)

If in the large n limit the ratios k/n and l/n tend to zero this is

N33
kl ∼ −

ω

n

1

k + l
. (4.11)

On the other hand, if the open modes are of order n setting

k = nx , l = ny , (4.12)
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we find

N33
kl ∼ −n−ω(x+y)−2 x−ωxy−ωy

Γ(1− ωx)Γ(1− ωy)

ω

x+ y
. (4.13)

The coefficients quadratic in the closed modes have the following behaviour:

N11
kl ∼

ω

n

(−1)k+l

k + l
,

N22
kl ∼

(n
ω

)k+l kk

k!

ll

l!

1

k + l
,

N12
kl ∼ (−1)k+1

(n
ω

)l−1 ll−1

l!
. (4.14)

The left and right closed string modes k, l are always much smaller than n. Note that the

coefficients N22
kl scale like a positive power of n. The mixed coefficients with one closed

and one open mode behave generically like

N13
kl ∼

(−1)k

l − k
ω

n

l−ω
l
n

Γ
(
1− ω l

n

) ,
N23
kl ∼

1

k − ω l
n

kk

k!

(n
ω

)k−1 l−ω
l
n

Γ
(
1− ω l

n

) . (4.15)

The coefficients N13
kl possess an interesting feature. They are enhanced by an additional

power of n when the open and the closed indices coincide

N13
kk ∼ −

(−1)k

k

n

ωk

sin
(
πω kn

)
π

∼ −(−1)k

k
, (4.16)

where the last approximation holds since k � n. This feature will lead to a simple formula

for the absorption of a generic closed string state. Finally the coefficients linear in the

string modes behave as follows:

N1
k
~P ∼ (−1)k

k

√
α′

2
~pt ,

N2
k
~P ∼ −k

k

k!

(n
ω

)k 1

k

√
α′

2
~pt ,

N3
k
~P ∼ k−ω

k
n

Γ
(
1− ω kn

) 1

k

√
α′

2
~pt . (4.17)

5 Closed-open transitions at high energy

We are now ready to derive the explicit form of the highly excited open state created in the

absorption process of a very energetic closed string. For clarity, we will analyze separately

the absorption of a closed string tachyon, of a massless closed string state and of a state

belonging to the first massive level of the closed string spectrum. We will then determine

the open state created by the absorption of an arbitrary closed state.

We will start by considering the case in which the closed state carries zero transverse

momentum, showing how to reconstruct the discontinuity of the elastic amplitude at t = 0.
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We will then include a transverse momentum ~pt (with p2
t � E2) and derive the form of the

open state created at fixed impact parameter b. Finally, we will check that this very massive

open string state reproduces the imaginary part of the elastic closed string amplitude in

the Regge limit and for arbitrary values of b.

5.1 Tachyon

We begin for simplicity with the vertex that describes the transition of a closed string

tachyon with ~pt = 0 to an open string state with mass α′m2 = n− 1

V~0|0〉 = β Pn e
1
2

∑
k,lN

33
kl a

i
−ka

i
−l |0〉 , (5.1)

where for large n

N33
kl ∼ nx+y−2 xxyy

Γ(1 + x)Γ(1 + y)

1

x+ y
, k = nx , l = ny, (5.2)

which follows from eq. (4.13) with ω = −1. Expanding the exponential in eq. (5.1), we

obtain the following series representations for the open state:

V~0|0〉 = β

∞∑
Q=0

1

Q!2Q
Pn

Q∏
α=1

∑
kα,lα

N33
kαlαa

iα
−kαa

iα
−lα |0〉 , (5.3)

and for the imaginary part of the elastic amplitude

ImATT = πα′β2
∞∑
Q=0

1

(Q!)222Q

∑
{kα,lα}

Q∏
α=1

(
N33
kαlα

)2 〈0| Q∏
α=1

aiαkαa
iα
lα

Q∏
α=1

aiα−kαa
iα
−lα |0〉 ,

(5.4)

where the integers kα, lα satisfy the constraint
∑Q

α=1(kα+ lα) = n. It is remarkable that at

high energy and in the gauge aligned to the large momentum, it is sufficient to keep only

the first few terms in the previous series in order to get a very accurate representation of

the state.

Let us evaluate the first term in the series in eq. (5.4), which approximates the open

state with the state created by the action of just one couple of open modes ai−ka
i
−l

ImATT ∼ πα′β2
∑
k,l

k+l=n

1

4

(
N33
kl

)2 〈0|aikailaj−kaj−l|0〉 = πα′β2
∑
k,l

k+l=n

12
(
N33
kl

)2
kl , (5.5)

where we used the fact that the indices i, j run from 1 to 24. At high energy we can

evaluate the previous sum by approximating it with an integral, using eq. (5.2) and the

fact that, for large n,
∑

k,l → n2
∫ 1

0 dx
∫ 1

0 dy and δk+l,n → 1
nδ(x+ y − 1)

ImATT ∼ 12πα′β2 n

∫ 1

0
dx

∫ 1

0
dyδ(x+ y − 1)

x2x+1y2y+1

Γ2(1 + x)Γ2(1 + y)
. (5.6)

Evaluating the integral we find that this approximation to the complete open state already

accounts for 0.93 of the total imaginary part

ImATT ∼ 0.929πα′β2 n . (5.7)
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Note that since in this case the product of the Neumann coefficients
(
N33
kl

)2
kl give a con-

tribution of order one, the power of n required by the discontinuity of the elastic amplitude

is entirely due to the multiplicity of the possible states (the number of partitions of n into

two integers). In general for any given term of the series in eq. (5.4) containing Q couples

of oscillators the overall power of n results from a power of n2−2Q from the product of the

Neumann coefficients and a power of n2Q−1 from the sum over all possible states.

Consider for instance the second term in the series. There are now eight modes in the

matrix element and two classes of inequivalent contractions among them, giving respectively

a double trace and a single trace in the transverse indices. In the first case we have

72

∫
dx1dy1dx2dy2

2∏
i=1

x2xi+1
i y2yi+1

i

Γ2(xi + 1)Γ2(yi + 1)

δ (x1 + y1 + x2 + y2 − 1)

(x1 + y1)2(x2 + y2)2
, (5.8)

and in the second

6

∫
dx1dy1dx2dy2

2∏
i=1

x2xi+1
i y2yi+1

i

Γ2(xi + 1)Γ2(yi + 1)

δ (x1 + y1 + x2 + y2 − 1)

(x1 + y1)(y1 + x2)(x2 + y2)(y2 + x1)
, (5.9)

where in both cases we omitted a factor πα′β2n. Adding the contribution of these two

terms to the leading contribution we obtain

ImATT ∼ 0.998πα′β2 n . (5.10)

Therefore only 0.2% of the full forward imaginary part is left to terms with six or more

oscillators. This is strong evidence that the series converges rapidly and that

〈0|eZ
†
0PneZ0 |0〉 = n , (5.11)

as required by eq. (4.5).

Let us now consider the absorption amplitude and the imaginary part of the disk at

fixed impact parameter. We will find that the open state is closely related to the one

created by the tachyon when ~pt = 0. We start from the vertex with a non-vanishing

transverse momentum ~q and evaluate its Fourier transform. For clarity, in the following

we will display explicitly the dependence of the Neumann coefficients on the transverse

momentum ~q, writing N rs
kl (~q) and N r

k (~q).

When the transverse momentum is non zero, the vertex becomes

V~q|0〉 = β Pn e
1
2

∑
k,lN

33
kl (~q)ai−ka

i
−l+

∑
k N

3
k (~q)P iai−k |0〉 , (5.12)

where

N33
kl (~q) ∼ k(1−λ) k

n l(1−λ) l
n

Γ
(
1 + (1− λ) kn

)
Γ
(
1 + (1− λ) ln

) (1− λ)

n(k + l)
, λ =

α′~q 2

4
,

N3
k (~q) ~P ∼ k(1−λ) k

n

Γ
(
1 + (1− λ) kn

) 1

k

√
α′

2
~q . (5.13)
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Expanding the exponential in eq. (5.12), it is easy to see that the linear and the quadratic

Neumann coefficients give contributions of the same order in the energy. It is however

possible to find a very simple form for the closed-open vertex in impact parameter space.

The main observation is that the essential dependence of the coefficients N33
kl (~q) and N3

k (~q)

on the transverse momentum is in the factors k−λ
k
n or, with k = nx,

(nx)−λx = e−
α′~q 2

4
x log(nx) ∼ e−

α′~q2
4
x logn , (5.14)

since x log x� x log n. In order to evaluate

Ṽ~b|0〉 =

∫
d24−pq

(2π)24−p e
−i~b~q V~q|0〉 , (5.15)

we expand the Neumann coefficients in eq. (5.13) in a power series in ~q 2, retaining however

in each term the ~q 2-dependent powers of the energy in eq. (5.14). We then expand the

exponential rewriting the operator in eq. (5.12) as follows:

V~q =W
[
1 + ~q 2O2 + ~q 2qiOi3 + ...+ qi1 ...qikOi1...ikk + . . .

]
, (5.16)

where the operator W is given by

W = β Pn e
1
2

∑
k,lW

33
kl a

i
−ka

i
−l+

√
α′
2

∑
kW

3
k a

i
−kq

i

|0〉 , (5.17)

with

W 33
kl = N33

kl (0) e−
α′~q 2

4
k+l
n

logn , W 3
k =

k
k
n
−1

Γ
(
1 + k

n

) e−α′~q 2

4
k
n

logn . (5.18)

Here N33
kl (0) are the Neumann coefficients at zero transverse momentum in (5.1) and the

coefficients W 33
kl coincide with them except for the Gaussian factor in ~q. Note also that we

kept in the exponential the terms linear in ~q and in the open modes.

We can evaluate the contribution of the first term in the series following the same steps

as at the beginning of this section. We find

Ṽ~b|0〉 ∼ β

∫
d24−pq

(2π)24−p e
−i~b~q Pn

[
e

1
2

∑
k,lW

33
kl a

i
−ka

i
−l+

√
α′
2

∑
kW

3
k a

i
−kq

i
]
|0〉

= β

∫
d24−pq

(2π)24−p e
−i~b~q e−

α′~q 2

4
logn Pn

 e 1
2

∑
k,lN

33
kl (0)ai−ka

i
−l+

√
α′
2

∑
k

k
k
n−1

Γ(1+ k
n)

ai−kq
i

 |0〉
=

1

(πα′ logα′s)
24−p

2

Pn

 e− 1
α′ logα′s

(
bi+i

√
α′
2

∑
k

1
k
ai−k

)2

V~0

 |0〉 . (5.19)

In the second line we used that, due to the presence of the projector, the ~q 2-dependent

powers of the energy in the coefficients W 33
kαlα

and W 3
kα

combine in an overall Gaussian

factor. In the last line we approximated k/n ∼ 0 in the operator multiplying V~0 since in

impact parameter space the leading contributions due to this operator arise from modes

with k � n.
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The Fourier transform of the first term in the series in eq. (5.16) thus coincides with

the vertex at zero transverse momentum up to the insertion of an operator with an overall

dependence on b given by a Gaussian form factor

e
− b2

α′ logα′s . (5.20)

Note that the length scale in this form factor is the string scale enhanced by a logarithm

of the energy

α′ logα′s . (5.21)

This is due to the well-known logarithmic growth of a highly energetic string in the trans-

verse directions. Precisely as a consequence of this phenomenon, all the other contributions

in the series in eq. (5.16) are subleading in the high-energy limit and the term we have just

evaluated gives the full answer.

To verify this we do not need the precise form of the operator coefficients Oi1...ik ,

all that is relevant is that each term is multiplied by the Gaussian factor in eq. (5.20).

When we evaluate the Fourier transform of the other terms in the series, the powers of the

transverse momentum become derivatives with respect to the impact parameter and the

resulting contribution is then suppressed by inverse powers of log α′s. The final result is

therefore

Ṽ~b|0〉 =
1

(πα′ logα′s)
24−p

2

Pn

 e− 1
α′ logα′s

(
bi+i

√
α′
2

∑
k

1
k
ai−k

)2

V~0

 |0〉 . (5.22)

This is the form of the vertex that we will use in actual calculations. It can also be written

in a very suggestive form if we interpret the Gaussian factor as a squeezed state for the

effective creation and destruction operators

Bi =
1√

log n

n∑
k=1

aik
k
, Bi† =

1√
log n

n∑
k=1

ai−k
k

. (5.23)

In the high energy limit they satisfy

[Bi, Bj†] =
δij

log n

n∑
k=1

1

k
∼ δij . (5.24)

Since the squeezed states represent the position eigenstates in the oscillator basis of the

Hilbert space we can write

|b〉X =
1

(
√
πln)

24−p
2

e
− b2

2l2n
−i
√

2
ln
B†b+ 1

2(B†)
2

|0〉 = e−ib
~P |0〉X , l2n = α′ log n , (5.25)

where |b〉X is an eigenstate of the position operators

Xi = i
ln√

2

(
Bi −Bi†

)
= i

√
α′

2

n∑
k=1

(
aik
k
−
ai−k
k

)
≡

n∑
k=1

xik , (5.26)
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with eigenvalue bi and the P i are the corresponding momentum operators

P i =
1√
2ln

(
Bi +Bi†

)
=

1√
2α′ logα′s

n∑
k=1

(
aik
k

+
ai−k
k

)
≡ 1

logα′s

n∑
k=1

pik . (5.27)

Here xk and pk are the position and momentum modes of the open string, as defined in the

two previous equations. The state |b〉X is normalized in the standard way, 〈b|b′〉 = δ(b−b′).
We can then write

Ṽ~b|0〉 =
e
− b2

2α′ logα′s

(πα′ logα′s)
24−p

4

Pn V~0 |b〉X . (5.28)

This form of the closed-open vertex in impact parameter space is very natural. The appear-

ance of the squeezed state |b〉X indicates that the closed-open transition is proportional to

a delta function δ(X − b) for the effective position operator X. Its presence reflects the

locality of the string interactions, the light-cone vertex allowing only transitions between

closed and open strings that overlap along their entire length. This requires in particular

that the closed string should touch the branes in at least one point in order for the transi-

tion to take place. The way that a closed string initially localized away from the location

of the branes manages to touch them and split is via quantum fluctuations in its position.

From eq. (5.22) we see in fact that the transition happens with a non negligible ampli-

tude as long as b2 ≤ α′ logα′s, that is for impact parameters that can be much larger than

the maximal size α′M of a string of mass M , which is kept fixed in the high energy limit.

We can picture the transition as happening in two stages. First the closed string becomes

polarized, stretching towards the branes so that it touches them in at least one point, then

it splits to form the final open string. The Gaussian dependence on the impact parameter

of the transition amplitude can then be related to the probability amplitude of finding the

closed string in a configuration where it overlaps with the branes. We will confirm this

picture in [14] where we will discuss the classical open string solutions that correspond to

the state created on the branes in the closed-open transition.

Let us finally note that using eq. (5.28) one can prove that states created at different

values of the impact parameter are orthogonal. This follows from the fact that at high

energy PnV0|b〉X remains to a first approximation an eigenstate of the transverse position

opertors Xi.

Using this vertex we can evaluate the discontinuity of the elastic amplitude in impact

parameter space. The calculation is most easily done representing the imaginary part as

the product of the vertex at impact parameter b and the vertex at zero momentum, as

in eq. (4.7)

ImATT (s, b) = πα′〈0|V†~0Ṽ~b|0〉 . (5.29)

In order to evaluate

〈0|V†~0 Pn

 e− 1
α′ logα′s

(
bi+i

√
α′
2

∑
k

1
k
ai−k

)2

V~0

 |0〉 , (5.30)
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it is sufficient to notice that, compared with the calculation done for t = 0, the additional

terms in the previous formula give contributions that are suppressed by powers of log α′s.

We then find

ImATT (s, b) = πα′β2 α′s
e
− b2

α′ logα′s

(πα′ logα′s)
24−p

2

, (5.31)

reproducing eq. (2.10). Here the factor α′s ≡ n comes from the matrix element containing

two vertices at t = 0, as we have already seen in eqs. (5.6), (5.10) and (5.11).

5.2 Massless states

We now discuss the absorption of a massless closed string state

|gε, ḡε̄〉 = (εA−1) (ε̄Ā−1)|0〉 , (5.32)

with polarization tensor εiε̄j . The open state created by the absorption of a very energetic

massless closed string has an extremely simple description, simpler than the one we found

for the absorption of a tachyon. When the transverse momentum vanishes it is given by

V~0|gε, ḡε̄〉 = β (εa−1) (a−n+1Dε̄)|0〉 . (5.33)

In order to derive this result we have to deal with some technical complications, which

arise because our light-cone gauge is not very suitable to describe the right part of a closed

massless state with zero transverse momentum. The action of the reflection matrix Dµν

makes it equivalent to a state with p+ = 0, see α2 in (3.20) with Nc = 1 and ~pt = 0.

We could simply evaluate the transition amplitudes with ~pt 6= 0 and then take the limit

~pt → 0. However it turns out that in order to have a well defined limit it is necessary

to give a small mass µ to the massless state and send first ~pt to zero and then µ to zero.

Otherwise the result of the limit would depend on the direction of ~pt, as a consequence

of the singular behaviour of the Neumann coefficients N2
k . A more detailed discussion of

this subtlety can be found in appendix A, where we make a direct comparison between a

covariant amplitude and an amplitude derived using the light-cone vertex and show that

the two agree when the limit of zero transverse momentum is taken as explained above.

When acting on a massless state the general closed-open vertex becomes

V~pt |gε, ḡε̄〉 = β PneZo+Zc,g |gε, ḡε̄〉 , (5.34)

where

Zc,g = N12
11A1DĀ1 +N23

1uĀ1Da−u +N13
1uA1a−u +N1

1
~PA1 +N2

1
~PDĀ1 ,

Zo =
1

2
N33
kl a−ka−l +N3

uPa−u . (5.35)

Therefore

V~pt |gε, ḡε̄〉 = β Pn eZo
[
(εDε̄)N12

11 +N23
1uN

13
1v (εa−v) (a−uDε̄) + N23

1uN
1
1 (a−uDε̄)

(
ε ~P
)

+ N13
1uN

2
1 (εa−u)

(
ε̄D ~P

)
+N1

1N
2
1

(
ε̄D ~P

)(
ε ~P
)]
|0〉 . (5.36)
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This expression simplifies considerably in the high-energy limit. Let us set

λ =
α′

4
~p 2
t + α′µ2 , (5.37)

where µ is the small mass introduced to regularize the limit ~pt → 0. For large n the

Neumann coefficients in eq. (5.36) behave as follows:

N12
11 ∼ 1 , N13

1k ∼ −
1

k − 1

λ

n

k−λ
k
n

Γ
(
1− λ kn

) , k 6= 1 , N13
11 ∼ 1 . (5.38)

Note the enhancement of the contractions between left modes and open modes when the

mode numbers coincide. We also have

N23
1k ∼

n

n− λk
k−λ

k
n

Γ
(
1− λ kn

) , N33
kl ∼ −

λ

n(k + l)

k−λ
k
n

Γ
(
1− λ kn

) l−λ
l
n

Γ
(
1− λ l

n

) , (5.39)

and

N1
1
~P ∼ −

√
α′

2
~pt , N2

1
~P ∼ −n

λ

√
α′

2
~pt , N3

k
~P ∼ 1

k

k−λ
k
n

Γ
(
1− λ kn

)√α′

2
~pt . (5.40)

Focusing on the energy dependence of the Neumann coefficients, we can see that the fourth

term in eq. (5.36) would give a leading contribution of order n which however disappears

in the ~pt → 0 limit. Similarly we can discard all other terms containing factors of ~P which

vanish in the ~pt → 0 limit thanks to the presence of the mass µ. Thus the next most

relevant term is the second when v = 1 and u = n− 1, so as to use the last in (5.38), and

is of order
√
n when written in terms of mode operators that commute to one. Therefore

the leading terms at high energy are

V~pt |gε, ḡε̄〉 ∼ β Pn
[
eZoN13

11N
23
1u(εa−1) (a−uDε̄)

]
|0〉 . (5.41)

Let us now take the limit ~pt → 0 on Zo. Since N33
kl vanish when we set µ = 0 we also have

eZo ∼ 1. Taking into account the projector Pn and using that N23
1,n−1 ∼ n−α

′µ2
we find the

state in eq. (5.33)

V~0|gε, ḡε̄〉 = β (εa−1) (a−n+1Dε̄)|0〉 . (5.42)

This open state reproduces the imaginary part of the elastic amplitude at t = 0 in the

high-energy limit in eq. (2.33)

ImAgg = πα′〈gζ , ḡζ̄ |V
†
~0
V~0|g, ḡ〉 = πα′β2 εs(Dε̄)rζs′(Dζ̄)r′〈0|ar

′
n−1a

s′
1 a

r
−n+1a

s
−1|0〉

= πα′β2(εζ)(ε̄ζ̄)(n− 1) ∼ πα′β2n(εζ)(ε̄ζ̄) , (5.43)

as one can see by using eq. (3.6).

Let us now consider the leading terms in the expansion of V~pt for small transverse

momenta and derive the absorption amplitude in impact parameter space. We shall focus

on the leading term in eq. (2.34), neglecting contributions suppressed by additional powers

of logα′s. The steps are essentially the same as for the absorption of the tachyon. We
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first notice that as in that case the Neumann coefficients multiplying an open mode a−k

have a dependence on the transverse momentum of the form k−
α′
4
~q 2 k

n
logn, that in impact

parameter space gives again a Gaussian in b. We can then neglect all the terms proportional

to ~P since they become derivatives ∂b and correspond to subleading terms14 in an expansion

in powers of b2

α′ logα′s . Therefore at high energy and for small λ the second (dominant) term

in the right-hand-side of eq. (5.36) becomes

V~pt |gε, ḡε̄〉 ∼ −β Pn
[
eN

3
kPia

i
−k N23

1u(εa−1) (a−uDε̄)
]
|0〉 . (5.44)

Using that

N23
1u ∼ u−λ

u
n , N3

k ∼
k−λ

k
n

k

√
α′

2
~pt , (5.45)

and following the same steps as in the discussion of the tachyon, we find in impact param-

eter space

Ṽ~b |gε, ḡε̄〉 =
1

(πα′ logα′s)
24−p

2

Pn

 e− 1
α′ logα′s

(
bi+i

√
α′
2

∑
k

1
k
ai−k

)2 ∞∑
u=1

(εa−1) (a−uDε̄)

|0〉
=

e
− b2

2α′ logα′s

(πα′ logα′s)
24−p

4

Pn
∞∑
u=1

(εa−1) (ε̄Da−u) |b〉X , (5.46)

and

ImAgg = πα′〈gζ , ḡζ̄ |V
†
~0
Ṽ~b|gε, ḡε̄〉 = (εζ)(ε̄ζ̄) ImATT , (5.47)

in agreement with eq. (2.25).

5.3 First massive level

We turn now to the absorption of a massive string state belonging to the first massive level

Nc = 2, reviewed in section 2. We will discuss the absorption of a closed state of the form

(L⊗ L̄) or (H ⊗ H̄). We will see that in both cases the enhancement of the N13 Neumann

coefficients in eq. (4.16) leads to a simple form for the open state. The analysis of the

absorption of (H ⊗ H̄) will also show that in the closed-open vertex at high energy while

the left components of the polarization tensor always appear contracted with open modes

(terms proportional to N13), the right components can appear either contracted with open

modes (terms proportional to N23) or among themselves (terms proportional to N22).

It is therefore not immediate to see how the product of two absorption amplitudes

can reproduce the imaginary part of the elastic amplitude in eqs. (2.33) since the latter

contains only one type of contraction, where the left (right) components of the polarization

tensor of one state are contracted with the left (right) components of the other. We will

argue that the coefficients of all the other types of contractions that could appear in the

product indeed vanish.

14If we set µ = 0 before taking the limit of small transverse momentum this would not be true for the

terms containing N2
1 and up to two factors of ~P , since N2

1 ∼ 1
α′~p 2

t
. These terms would lead to a dependence

of the open state on the direction along which the transverse momentum is sent to zero.
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The simplification of the form of the open state due to the enhancement of the N13

Neumann coefficients and the above-mentioned cancellation are the two main new features

that appear in the evaluation of the absorption of a massive closed string. The analy-

sis of the first massive level will then make the discussion of the general case relatively

straightforward.

Let us consider first the state

|Lε, L̄ε̄〉 =
1

2
(εA−2) (ε̄Ā−2)|0〉 . (5.48)

At high energy the Neumann coefficients become

N33
kl ∼ −

ω

n

1

k + l

k−ω
k
n

Γ
(
1− ω kn

) l−ω
l
n

Γ
(
1− ω l

n

) , N23
2k ∼

n

ω

2

2− ω
nk

k−
k
n

Γ
(
1− k

n

) ,
N12

22 ∼ −
n

ω
, N13

2k ∼
ω

n(k − 2)

k−ω
k
n

Γ
(
1− ω kn

) , k 6= 2 , N13
2,2 ∼ −

1

2
, (5.49)

N1
2
~P =

1

2

√
α′

2
~pt , N2

2
~P = −n

2

ω2

√
α′

2
~pt , N3

k
~P =

k−ω
k
n

Γ
(
1− ω kn

) 1

k

√
α′

2
~pt ,

where ω = 1 + α′

4 ~p
2
t . For this example we find, limiting ourselves to ~pt = 0,

Zc,L = N12
22A2DĀ2 +N23

2uĀ2Da−u +N13
2uA2a−u , (5.50)

and

V~0|Lε, L̄ε̄〉 = βPneZo
[
2(εDε̄)N12

22 + 2N13
2vN

23
2u(εa−v) (a−uDε̄)

]
|0〉 . (5.51)

To identify which of the terms in the square brackets in eq. (5.51) gives the leading contri-

bution at high energy we need to keep track of the powers of the energy associated with the

Neumann coefficients N33
kl . The main observation is that since these coefficients scale like

N33
kl ∼ n−ω( kn+ l

n)−2 , (5.52)

the insertion of Q couples of open modes gives a contribution to the discontinuity of the

elastic amplitude that scales like

n−2Q−2ωn2Q−1 = n−1−2ω = n1−2Nc−α
′

2
~p2
t , (5.53)

where the power n2Q−1 comes from the sum over all possible states. In order for a term

in the expansion of eZc,ψ to contribute with the leading power of the energy we then need

a power of n2Nc from the square of the corresponding Neumann coefficients and the sum

over the possible states. In the case at hand we need a factor of n4. The first term in

eq. (5.51) is therefore always subleading while in the second we need to set v = 2 so that

V~0|Lε, L̄ε̄〉 = −β N23
2u Pn

[
eZo(εa−2) (a−uDε̄)

]
|0〉 . (5.54)

The form of the open state is very simple. The left part of the closed polarization tensor

is contracted with open modes with the same mode number as the left closed modes,
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as a result of the enhancement of the coefficient N13
22 , eq. (4.16). The right part of the

closed polarization tensor is contracted with open modes with mode number u of order n

(coefficients N23
2u).

As a check of eq. (5.54) let us evaluate the product

〈Lζ , L̄ζ̄ |V
†
~0
V~0|Lε, L̄ε̄〉 = ζs′

(
Dζ̄
)
r′
εs(Dε̄)r β

2
∑
u,v

N23
2uN

23
2v 〈0|as

′
2 a

r′
v e

Z†oPneZoas−2a
r
−u|0〉 .

(5.55)

In order to do this, we expand the exponentials and use the fact that the open modes

with mode number of order n in Zo commute with the open modes with mode number

of order one. The direct contraction between the oscillators without any N33 insertion is

subleading since the sum over u is then restricted to u = n− 2 and N23
2,n−2 ∼ 4

n . The next

term requires the matrix element

〈0|ar′v aik′ail′ a
j
−ka

j
−la

r
−u|0〉 , (5.56)

which gives two inequivalent contractions between the transverse indices. We find

ImALL ∼ πα′β2n(εζ)
(
ε̄ζ̄
)

[96 · IL,1 + 8 · IL,2] , (5.57)

where the explicit expressions for the integrals IL,i, i = 1, 2, can be found in appendix B

together with a more detailed description of the calculation. Substituting the numerical

values we obtain the first approximation to the imaginary part of the disc

ImALL ∼ πα′β2 n(εζ)
(
ε̄ζ̄
)

0.841 . (5.58)

If we include the second term in the series, we obtain

ImALL ∼ πα′β2 n(εζ)
(
ε̄ζ̄
)

0.994 . (5.59)

The matrix elements and the integrals required to evaluate this second term are again

collected in appendix B (see eqs. (B.8), (B.9) and (B.10)).

We turn now to the state

|Hε, H̄ε̄〉 =
1

2
εi(1)ε

j
(2)ε̄

k
(1)ε̄

l
(2)A

i
−1A

j
−1Ā

k
−1Ā

l
−1|0〉 , (5.60)

with ε̂ij ≡ εi(1)ε
j
(2) and ˆ̄εkl ≡ ε̄k(1)ε̄

l
(2) symmetric tensors. The Neumann coefficients with two

open modes are the same as before while those with two closed modes are

N11
11 ∼

ω

2n
, N12

11 ∼ 1 , N22
11 ∼

n2

2ω2
. (5.61)

The mixed open-closed coefficients are

N23
1k ∼

1

1− ω kn

k−ω
k
n

Γ
(
1− ω kn

) , k 6= n , N23
1n ∼

1

n
, k = n ,

N13
1k ∼ −

ω

n(k − 1)

k−ω
k
n

Γ
(
1− ω kn

) , k 6= 1 , N13
11 ∼ 1 . (5.62)
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Finally

N1
1
~P = −

√
α′

2
~pt , N2

1
~P = −n

ω

√
α′

2
~pt , N3

k
~P =

k−ω
k
n

Γ
(
1− ω kn

) 1

k

√
α′

2
~pt . (5.63)

Let us discuss explicitly only the vertex with ~pt = 0. We need to retain the following

closed modes:

Zc,H =
1

2
N11

11A
r
1A

r
1 +

1

2
N22

11 Ā
r
1Ā

r
1 +N12

11A
r
1DĀ

r
1 +N23

1uĀ
r
1Da

r
−u +N13

1uA
r
1a
r
−v , (5.64)

and terms up to the forth order in the expansion of eZc,H can contribute to the absorption

amplitude. We find

V~0|Hε, H̄ε̄〉 = β Pn eZo
[
(N12

11 )2
(
ε(1)Dε̄(1)

) (
ε(2)Dε̄(2)

)
+

1

2
N11

11N
22
11

(
ε(1)ε(2)

) (
ε̄(1)ε̄(2)

)
+

1

2
N22

11N
13
1uN

13
1v ε

s
(1) ε

t
(2)

(
ε̄(1)ε̄(2)

)
as−ua

t
−v

+
1

2
N11

11N
23
1uN

23
1v

(
ε(1)ε(2)

)
(Dε̄(1))

s (Dε̄(2))
tas−ua

t
−v

+2N12
11N

23
1uN

13
1v

(
ε(1)Dε̄(1)

)
εt(2) (Dε̄)s(2)a

s
−ua

t
−v

+
1

2
N23

1uN
23
1vN

13
1wN

13
1z ε

t
(1) ε

y
(2) (Dε̄)r(1) (Dε̄)s(2) a

r
−ua

s
−va

t
−wa

y
−z

]
|0〉 . (5.65)

Let us analyze this expression and show that the leading contribution at high energy is due

to the first term in the second line and to the last term. Substituting the explicit values of

the Neumann coefficients in the first two terms we find contributions of the form

eZo
[(
ε(1)Dε̄(1)

) (
ε(2)Dε̄(2)

)
+
n

4

(
ε(1)ε(2)

) (
ε̄(1)ε̄(2)

)]
|0〉 , (5.66)

which are clearly subleading. The next three terms are

eZo
[
n2

4
N13

1uN
13
1v

(
ε̄(1)ε̄(2)

)
εs(1)ε

t
(2)a

s
−ua

t
−v +

1

4n
N23

1uN
23
1v

(
ε(1)ε(2)

)
(Dε̄(1))

s
(
Dε̄(2)

)t
as−ua

t
−v

+ 2N23
1uN

13
1v

(
ε(1)Dε̄(1)

)
εt(2)(Dε̄(2))

sas−ua
t
−v

]
|0〉 . (5.67)

For generic values of the indices they are subleading but when both N13 factors are en-

hanced the first term scales with the power of the energy required to be relevant in the

high energy limit. Finally also the term with four open modes gives a leading contribution

only when both the N13 factors are enhanced. The result of this analysis is that

V~0|Hε, H̄ε̄〉 = β Pn eZo
[

1

2

∑
u,v

N23
1uN

23
1v ε

s
(1)ε

t
(2)

(
Dε̄(1)

)r (
Dε̄(2)

)l
as−1a

t
−1 a

r
−ua

l
−v

+
n2

4

(
ε̄(1)ε̄(2)

)
εs(1)ε

t
(2)a

s
−1a

t
−1

]
|0〉 . (5.68)

The open state has again a simple form. As before, the left part of the closed polarization

tensor is contracted with open modes that coincide with the left closed modes, as a result
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of the enhancement of the coefficient N13
11 , eq. (4.16). However the indices of the right

part of the closed polarization tensor can be contracted either with open modes of order n

(coefficients N23
1u) or among themselves (coefficient N22

11 ). The latter terms give additional

contributions to the closed-open couplings of closed states with non-vanishing traces for

their right polarization tensor.

Let us now consider the imaginary part of the elastic amplitude. We proceed as we

did for the tachyon, expanding the exponentials eZo and evaluating the first few terms in

the series to show that they already account for most of the discontinuity. We shall use

again the fact that low frequency open modes commute with the high frequency modes in

Zo. We find

ImAHH ∼ πα′β2
(
ε̂ij ζ̂ij

) 1

8
〈0|
[
n2 ˆ̄ζll + 2N23

1u′N
23
1v′

(
D ˆ̄ζD

)
r′w′

ar
′
u′a

w′
v′

]
eZ
†
o

PneZo
[
n2 ˆ̄εkk + 2N23

1uN
23
1v

(
Dˆ̄εD

)
rw
ar−ua

w
−v
]
|0〉 . (5.69)

The first non-vanishing term in the series is(
ε̂ij ζ̂ij

)(
ˆ̄εkl

ˆ̄ζkl

)∑
u,v

δu+v,n

(
N23

1uN
23
1v

)2
uv ∼

(
ε̂ij ζ̂ij

)(
ˆ̄εkl

ˆ̄ζkl

)
n

∫ 1

0
dx

x1−2x(1− x)−1+2x

Γ2(2− x)Γ2(1 + x)
.

(5.70)

The numerical value of the integral is

IH,1 =

∫ 1

0
dx

x1−2x(1− x)−1+2x

Γ2(2− x)Γ2(1 + x)
∼ 0.831797 , (5.71)

and we see that, as in the previous cases, the first term already accounts for most of the

discontinuity. However, as shown in eq. (B.13) and also discussed below, the other two

contributions in eq. (5.69) turn out to give contractions among the polarizations that are

not present in the imaginary part of the amplitude. In order to see if they cancel, we have

included higher order terms that come from the expansion of the exponentials in eq. (5.69).

The detailed derivation of them is given in appendix B. The result is

ImAHH ∼ πα′β2 n
(
ε̂ij ζ̂ij

) [
(IH,1 + 12IH,4 + 2IH,5)

(
ˆ̄εkl

ˆ̄ζkl

)
(5.72)

+

(
−1

2
IH,2 +

3

2
IH,3 +

1

2
IH,6 − 6IH,7 −

1

2
IH,8 + 9IH,9 +

3

4
IH,10

)(
ˆ̄εkk

ˆ̄ζll

)]
,

where the explicit expressions for the integrals IH,i and their numerical values are collected

in the appendix. The main new feature is that the imaginary part seems to be proportional

to two different contractions of the polarization tensors

(ε̂ij ζ̂ij)(ˆ̄εkl
ˆ̄ζkl) , (ε̂ij ζ̂ij)ˆ̄εkk

ˆ̄ζll . (5.73)

The first contraction is the only one we expect according to the discussion in section 2 and

therefore the coefficient of the second one should vanish. A cancellation is indeed possible

since the coefficient of the contraction ˆ̄εkk
ˆ̄ζll receives contributions from terms with opposite

sign according to whether they contain an even or an odd number of coefficients N33
kl . We
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do not have a general proof that the cancellation actually occurs but the explicit evaluation

of the higher order terms in eq. (5.72) seems to indicate that this is the case since the sum

of all the IH,i in the second line of eq. (5.72) gives a result which is one order of magnitude

smaller than the individual terms. Indeed, substituting the numerical values of the integrals

in eq. (5.72) we find

ImAHH ∼ πα′β2 n
(
ε̂ij ζ̂ij

) [
0.993

(
ˆ̄εkl

ˆ̄ζkl

)
− 0.004

(
ˆ̄εkk

ˆ̄ζll

)]
. (5.74)

It would be interesting to have a general proof of this cancellation to all orders in the series

expansion.

So far our discussion of the closed-open vertex for the states of the first massive level

has been limited to ~pt = 0. As we did for the tachyon and the massless sector, we can

derive the vertex in impact parameter space from the small ~pt behaviour of the vertex in

momentum space. The steps are the same and the result is again that the vertex in impact

parameter space is given by the vertex at zero momentum multiplied by the squeezed state

in the effective modes (5.23). It is easy to check that it reproduces the leading term in the

imaginary part of the elastic amplitude, eq. (2.34).

5.4 Generic massive states

The pattern observed in our study of the first massive level generalizes to arbitrary mass

levels, with the only requirement that the closed state be ultrarelativistic, M � E. We

will find that, thanks to the properties of the Neumann coefficients discussed in section 4,

even in this more general case it is still possible to give a simple, explicit and systematic

description of the open state created in the s-channel. Consider a closed state |ψ〉 at

level Nc

|ψ〉 =

∞∏
k=1

1√
nk!knk

(
ε(k)A−k

)nk ∞∏
l=1

1√
n̄l!ln̄l

(
ε̄(l)Ā−l

)n̄l |0〉 , (5.75)

created by a collection of left and right modes, Aik−k and Ājl−l, with multiplicity nk and n̄l
such that

∞∑
k̄=1

knk =
∞∑
l̄=1

ln̄l = Nc , (5.76)

and characterized by a collection of left and right polarization vectors εiα(kα), ε̄
jβ
(lβ) with

α = 1, ..., nk and β = 1, ..., n̄l. Here we are using the compact notation

(
ε(k)A−k

)nk ≡ nk∏
α=1

εiα(kα)A
iα
−k . (5.77)

The action of the closed-open vertex on this state gives

V~0|ψ〉 = β Pn eZo+Zc,ψ |ψ〉 , (5.78)

where, as before, Zo contains only open string modes while Zc,ψ both open and closed

string modes, the latter restricted to those in the set used to define the closed state.
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Consider first the vertex with ~pt = 0. The action of eZc,ψ on the state gives a polynomial

in the open modes of the same order as the monomial in the closed modes that defines

the closed state. From the high-energy scaling of the Neumann coefficients discussed in

section 4, it follows that the leading contributions to the absorption amplitude are obtained

when the indices of the open and closed modes in the coefficients N13
ku coincide. The right

closed modes are then either coupled to open modes of order n through the coefficients

N23
lu or contracted among themselves using the coefficients N22

kl . Finally one acts on the

resulting polynomial with the operator eZo . The first few terms in the expansion of the

exponential already give an accurate description of the open state.

We can then write the following general formula for the open state created on the

brane world-volume when the closed state |ψ〉 is absorbed by the Dp-brane system:

V~0|ψ〉= β Pn eZo
∞∏
k=1

√
knk

nk!

(
N13
kk

)nk (ε(k)a−k
)nk  ∞∏

l=1

√
ln̄l

n̄l!

n̄l∏
β=1

N23
luβ
Dε̄

jβ
(lβ)a

jβ
−uβ

+

∞∑
r=1

n̄r
2

(n̄r−1)N22
rr

(
ε̄(r1)ε̄(r2)

)√rn̄r

n̄r!

n̄r∏
ρ=3

N23
ruρDε̄

jρ
(rρ)a

jρ
−uρ

∞∏
l=1
l 6=r

√
ln̄l

n̄l!

n̄l∏
β=1

N23
luβ
Dε̄

jβ
(lβ)a

jβ
−uβ

+

∞∑
r,s=1
r 6=s

n̄rn̄sN
22
rs

(
ε̄(r1)ε̄(s1)

) √rn̄r

n̄r!

n̄r∏
ρ=2

N23
ruρDε̄

jρ
(rρ)a

jρ
−uρ

√
sn̄s

n̄s!

n̄s∏
σ=2

N23
suσDε̄

jσ
(rσ)a

jσ
−uσ

∞∏
l=1
l 6=r,s

√
ln̄l

n̄l!

n̄l∏
β=1

N23
luβ
Dε̄

jβ
(lβ)a

jβ
−uβ + . . .

 |0〉 , (5.79)

where the dots stand for all the other possible pairings of the right closed modes. Although

notationally cumbersome, the previous formula neatly summarizes the representation of the

massive open state in our basis of light-cone modes. There is a subset of open modes that

are contracted with the left polarization vectors and copy precisely the left part of the

closed state, in that they carry exactly the same indices. There are then open modes of

order n contracted with the right polarization vectors, plus all possible terms that can be

obtained by contracting couples of right polarization indices among themselves. Finally

there are insertions of traces of open modes ai−ua
i
−v from the expansion of the operator

eZo , as for the absorption of a closed tachyon.

We emphasize again that when one evaluates the imaginary part of the disk using the

closed-open couplings given by eq. (5.79) only the term proportional to the contraction∏
(k,α)

(
ζ(kα)ε(kα)

) ∏
(l,β)

(
ζ̄lβ ε̄lβ

)
, (5.80)

between the polarizations of the initial and the final state should remain, while all the

terms containing one or more factors of the form(
ζ̄(rρ)ζ̄(sσ)

) (
ε̄(r′

ρ′ )
ε̄(s′

σ′ )

)
, (5.81)

should cancel. We do not have a general proof that this is the case.
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Finally, the vertex in impact parameter space is given by the vertex at zero momentum

multiplied by the squeezed state in the effective modes in eq. (5.23) and reproduces the

leading term in the imaginary part of the elastic amplitude, eq. (2.34).

6 Conclusions

In this paper we have started the analysis of the absorption of a light, very energetic string

by a stack of Dp-branes and of the consequent excitation of the latter. The final aim of this

study is to show how such a complicated process can be described in terms of a unitary

S-matrix, thereby generalizing to the absorption regime what has been achieved so far in

the scattering regime (including tidal excitation of the closed string).

This problem, in general, is a very complicated one. It becomes tractable, however, by

appropriately restricting the kinematic regime under scrutiny as explained in detail in the

introduction. This allows, on the one hand, to ignore closed-string loops (and therefore

gravitational bremsstrahlung) and, on the other hand, to neglect higher corrections to the

leading eikonal. Under these approximations one expects to be able to construct a unitary

S-matrix in a Hilbert space consisting of a single (but possibly excited) closed string and

of an arbitrary number of open strings living on the brane world-volume.

Here we have considered the first term of this eikonal resummation, namely the tree-

level (disk) approximation, postponing to further work [20] the full unitarization program.

In this approximation also the open-string Hilbert space contains a single (in general highly

excited) string. A very encouraging outcome of our analysis has been the emergence of

a simple description of the relevant states in the open sector. This makes one hope that

resummation of the eikonal series will not be that hard. At the same time, the simple

properties of the open sector can be given a classical (or semi-classical) interpretation [14],

suggesting that a semiclassical treatment of the whole series could be sufficient for yielding

a unitary S-matrix.

We conclude by mentioning that the price to pay for making the problem tractable is to

work at sufficiently small string coupling for the characteristic radius of the brane-induced

geometry Rp to be smaller than the string length ls ∼
√
α′ enhanced by a logarithmic

factor. In that limit we expect the dominantly produced open strings to be heavy. Making

contact with the AdS/CFT correspondence [1–3] in the supergravity approximation will

unfortunately require the opposite limit of a large Rp in string units. Such a regime appears

still far from what our present computational technology can achieve.

Acknowledgements

G.D. thanks the Galileo Galilei Institute for Theoretical Physics for hospitality and the

INFN for partial support while this research was being carried out. G.D. also gratefully

acknowledges the hospitality of the Department of Applied Mathematics and Theoretical

Physics (Cambridge) at various times during the completion of this work. P. D. thanks C.

Maccaferri for discussions on the open-closed string vertex. The research of R. R. is partially

supported by STFC (Grant ST/L000415/1, String theory, gauge theory & duality). G.V.

– 33 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
0

would like to acknowledge the hospitality of the Kavli Institute for Theoretical Physics,

University of California, Santa Barbara (research supported in part by the National Science

Foundation under Grant No. NSF PHY11-25915) where part of this research has been

carried out.

A The light-cone vertex and the covariant amplitudes

In this appendix we make a direct comparison between the closed-open transition ampli-

tudes evaluated using the light-cone vertex and those derived using the covariant formalism.

The simplest closed-open transition amplitudes that can be evaluated using the covariant

formalism are those to open states belonging to the leading Regge trajectory whose vertex

operators are

VSn =
go√
n!

[
−i√
2α′

]n n∏
i=1

ζαi ∂X
αieipoX , α′m2 = n− 1 , (A.1)

where we follow the notation introduced in sections 2 and 3. Since transitions to the

tachyon and the vector are forbidden by the kinematics we only need n ≥ 2.

As in section 3, when we evaluate an amplitude using the covariant formalism we write

pc =
(
E,~0p, ~pc

)
, (A.2)

where ~pc belongs to the (25−p)-dimensional space transverse to the branes. We also define

the tensor δ⊥ as the Kronecker delta in the spatial directions orthogonal to p̂c, where p̂c is

the unit vector p̂c = ~pc
|~pc| .

When we evaluate an amplitude using the closed-open vertex we write

pc =
(
E,~0p, ~pt, p

)
. (A.3)

Here ~pt belongs to the (24 − p)-dimensional space transverse to the branes and to the

direction x25 ≡ z.

A.1 Tachyon to leading Regge

When the initial closed state is a tachyon we find

BT,Sn(p̂c) = β
(−1)n√
n!

(
n+ 3

2

)n
2

n∏
i=1

(ζip̂c) , (A.4)

where we used that α′~pc
2 = n + 3. Only the polarization with all indices longitudinal is

excited. For instance for n = 2 the polarization tensor of the state that is excited is

ζlon,2 =
1

5
√

24
(−δ⊥ + 24p̂cp̂c) , (A.5)

and for n = 3

ζlon,3 =
1

9
√

8
(δ⊥p̂c + δ⊥p̂c + δ⊥p̂c − 24p̂cp̂cp̂c) . (A.6)
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At level n = 2 and n = 3 the states of the leading Regge trajectory give all the physical

states and therefore we can use the amplitudes in eq. (A.4) to reconstruct the discontinuity

of the elastic amplitude at the corresponding energies. Consider the case n = 2. To

evaluate the imaginary part of the elastic amplitude we write

ImA = πα′
∑
ζ

BT,S2(p̂1)BT,S2(p̂2) = πα′β2 25

8

∑
ζ

(
ζij p̂

i
1p̂
j
1

)(
ζklp̂

k
2 p̂
l
2

)
(A.7)

= πα′β2 25

8

[
(p̂1p̂2)2 − 1

25

]
=
πα′β2

8

[
25 cos2 θ − 1

]
= πα′β2

(
3 +

5

2
y +

y2

2

)
,

where θ is the angle between p̂1 and p̂2. The result agrees with eq. (2.4). We used

that the sum over a complete set of traceless symmetric tensors of rank two in 25 spatial

dimensions gives ∑
ζ

ζijζkl =
1

2
(δikδjl + δilδjk)−

1

25
δijδkl , (A.8)

and that

sin2 θ

2
= − y

α′(E2 −M2)
, y =

α′

4
t . (A.9)

The cases n ≥ 3 can be treated in a similar way.

Let us now study the transition from the tachyon to the first massive level using the

light-cone vertex. The closed-open vertex gives in this case

V~pt |0〉 = β

[
1

2
N33

11a
i
−1a

i
−1 +

√
α′

2
N3

2α3p
i
t a

i
−2 +

α′

4

(
N3

1α3

)2
pitp

j
t a

i
−1a

j
−1

]
|0〉 , (A.10)

where

N33
11 = −1− ρ2

8
, N3

2α3 =
ρ

2
, N3

1α3 = 1 , ρ ≡ p

E
=
√

5− α′~p2
t .

(A.11)

More explicitly

V~pt |0〉 = β

[
4− α′~p2

t

16
ai−1a

i
−1 +

√
5− α′~p2

t

2

√
α′

2
pit a

i
−2 +

α′

4
pitp

j
t a

i
−1a

j
−1

]
|0〉 . (A.12)

Therefore the covariant state with the polarization tensor in eq. (A.5) corresponds to the

normalized state

|ζlon,2, ~pt〉 =
1√
3

[
4− α′~p2

t

16
ai−1a

i
−1 +

√
5− α′~p2

t

2

√
α′

2
pit a

i
−2 +

α′

4
pitp

j
t a

i
−1a

j
−1

]
|0〉 ,

(A.13)

which for ~pt = 0 (i.e. when the light-cone gauge is aligned to p̂c) reduces to

|ζlon,2, 0〉 =
1√
48
ai−1a

i
−1|0〉 . (A.14)
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It is amusing to verify that the state in eq. (A.13) can be obtained from the state in

eq. (A.14) by a rotation of an angle ϕ with sinϕ = |~pt|
|~pc| in the plane (p̂c, p̂t), as it should.

If we call the rotation plane the plane (z, y), the rotation operator is

Rzy(ϕ) = e−iϕJ
zy
, Jzy =

i

2
√
α′|p+

o |

∞∑
k=1

1

k

(
ay−kLk − L−ka

y
k

)
, (A.15)

where Lk = 1
2

∑
l 6=0 a

i
k−la

i
l. Let us consider for simplicity an infinitesimal rotation. When

ϕ� 1 we find from eq. (A.13)

|ζlon,2, ~pt〉 ∼
1

4
√

3

[
ai−1a

i
−1 + 5

√
2ϕay−2

]
|0〉 . (A.16)

The term linear in ϕ coincides with the effect of an infinitesimal rotation on the state

with ~pt = 0

−iϕJzy|ζlon,2, 0〉 =
1

4
√

3

ϕ√
2

∞∑
k=1

1

k

[
ay−kLk − L−ka

y
k, a

i
−1a

i
−1

]
|0〉 (A.17)

=
1

4
√

3

ϕ√
2

(
1

2

[
ay−2L2, a

i
−1a

i
−1

]
− 2L−1a

y
−1

)
|0〉 =

1

4
√

3

ϕ√
2

(12− 2) ay−2|0〉 .

We can finally reconstruct the imaginary part of the elastic amplitude for α′E2 = 1. Since

we are not in the high energy limit we work in the brick wall frame defined in eq. (3.28).

Using eq. (3.30) we find

ImA = πα′β2

[
12
(
N33

11

)2
+
y2

8

(
N3

1α3

)4 − y

2
N33

11

(
N3

1α3

)2 − y (N3
2α3

)2]
= πα′β2

(
3 +

5

2
y +

y2

2

)
, (A.18)

in agreement with eq. (2.4).

A.2 Massless to leading Regge

When the initial closed state is a massless state with vertex operator

Vg = − κ

2π

2

α′
εµε̄ν ∂X

µ∂̄Xν eipcX , α′M2 = 0 , (A.19)

we find

Bg,Sn =−β 1√
n!

2

α′

[
−i√
2α′

]n
|z − z̄|2−n|z − x|2n εµε̄ν

{
−α
′

2
Dµν 1

(z − z̄)2
Ln (A.20)

−iα′D
να1ζα1

(z̄−x)2

(
α′

2

Dpµc
z−z̄

+α′
pµo
z−x

)
nLn−1+iα′

ηµα1ζα1

(z − x)2

(
α′

2

Dpνc
z − z̄

+α′
pνo
x−z̄

)
nLn−1

+α′
2D

να1ζα1η
µα2ζα2

(z−x)2(z̄−x)2
n(n−1)Ln−2+

(
α′

2

Dpµc
z−z̄

+α′
pµo
z−x

)(
α′

2

Dpνc
z−z̄

+α′
pνo
x−z̄

)
Ln

}
,

where

Lk =

(
z − z̄
|x− z|2

)k n∏
i=n−k+1

(
−iα′|~pc| ζip̂c

)
. (A.21)
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As a basis for the polarizations of the massless closed string it is natural to use 24 spacelike

vectors orthogonal to the time direction t̂ and to p̂c. The same 24 spacelike vectors together

with p̂c provide a basis for the polarizations of the massive open state. In this basis

εDpc = ε̄Dpc = εpo = ε̄po = 0 , (A.22)

and the previous expression reduces to

Bg,Sn = β
(−1)n+1

√
n!

(
n− 1

2

)n
2

εµε̄ν [Dµνζ1p̂cζ2p̂c + 2n ηµα1ζα1D
να2ζα2 ]

n∏
i=3

(ζip̂c) ,

(A.23)

where we used that α′~pc
2 = n−1. Let us analyze in detail the transition to the first massive

level (n = 2)

Bg,S2 = −β 1

2
√

2
εµε̄ν [Dµνζρσp̂

ρ
c p̂
σ
c + 4 ζµαD

αν ] , (A.24)

where ζρσ is symmetric and traceless. We discuss separately the excitation of an open

string with polarization transverse to p̂c and parallel to p̂c

Bg,S2,tr = −
√

2β εµDε̄νζ
µν , Bg,S2,lon = − β√

12
εµε̄νD

µν , (A.25)

and analyze in turn the absorption of a dilaton ϕ, a graviton G and a Kalb-Ramond field

B. The dilaton can only excite longitudinally polarized states with amplitude15

Bϕ
g,S2,lon =

β√
72

(12− p) . (A.26)

The graviton and the Kalb-Ramond field can only excite states with transverse polarization.

The graviton can be absorbed when its indices are both parallel to the brane or both

orthogonal to the brane and the collision axis

B
G‖,‖
g,S2,tr

= −
√

2β , B
G‖,⊥
g,S2,tr

= 0 , B
G⊥,⊥
g,S2,tr

=
√

2β , (A.27)

while the Kalb-Ramond field can be absorbed when one of its indices is parallel to the

brane and the other is orthogonal to the brane and the collision axis

B
B‖,‖
g,S2,tr

= 0 , B
B‖,⊥
g,S2,tr

= −
√

2β , B
B⊥,⊥
g,S2,tr

= 0 . (A.28)

If the massive polarization is longitudinal we find

Bg,S2,l = − β√
12
εµε̄νD

µν . (A.29)

We see that only the dilaton couples since all the other closed polarizations are traceless16

Bg,S2,l =
β√
12

24− 2p√
24

=
β√
72

(12− p) . (A.30)

15Here p is the dimension of the Dp-branes.
16Here p is the dimension of the Dp-branes.
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The basis of physical polarizations that we used in the previous discussion coincides with

the basis of light-cone polarizations for a massless state with ~pt = 0. In this case the

vertex gives

V0|gε, ḡε̄〉 = β

[
N13

11N
23
11 εiDε̄ja

i
−1a

j
−1 +

1

2
εkDε̄kN

12
11N

33
11a

i
−1a

i
−1

]
, (A.31)

where

N13
11 = −1 + ρ

2
= −1 , N23

11 = N12
11 = 1 , N33

11 = −1− ρ2

8
= 0 , (A.32)

since ρ = p
E = 1. Therefore

V0|gε, ḡε̄〉 = −βεiDε̄jai−1a
j
−1 . (A.33)

Consider now the following basis of light-cone states for the first massive level:

|χtr〉 =
ωij√

2
ai−1 a

j
−1 , |χlon〉 =

1√
48
ai−1 a

i
−1 , (A.34)

with ωij a symmetric traceless tensor in 24 space directions. Then we find

〈χtr|V0|gε, ḡε̄〉 = −
√

2βεiDε̄jω
ij ,

〈χlon|V0|gε, ḡε̄〉 = − β√
12
εiε̄jD

ij , (A.35)

in perfect agreement with the covariant amplitude.

Let us now consider ~pt 6= 0. In this case the basis of light-cone polarizations is dif-

ferent from the basis naturally associated to the states in the covariant calculation. The

vertex gives

V~pt |gε, ḡε̄〉 = β

[
N13

11N
23
11 εiDε̄ja

i
−1a

j
−1 + α2

3N
1
1N

23
11N

3
1

α′

2
(ε~pt)Dε̄

ipjta
i
−1a

j
−1

+α3N
1
1N

23
12

√
α′

2
(ε~pt)Dε̄

iai−2 + α2
3N

2
1N

13
11N

3
1

α′

2
(Dε̄~pt) ε

ipjta
i
−1a

j
−1

+α3N
2
1N

13
12

√
α′

2
(Dε̄~pt) ε

iai−2 +
1

2

(
εkDε̄kN

12
11 + α2

3N
1
1N

2
1

α′

2
(ε~pt) (Dε̄~pt)

)
(
N33

11a
i
−1a

i
−1 +

α′

2
α2

3

(
N3

1

)2
pitp

j
ta
i
−1a

j
−1 +

√
2α′α3N

3
2 p

i
ta
i
−2

)]
, (A.36)

where

N13
11 = −1 + ρ

2
, N23

11 = N12
11 = 1 , N33

11 = −1− ρ2

8
,

α3N
1
1 = − 2

1 + ρ
, α3N

2
1 = − 2

1− ρ
, α3N

3
1 = 1 ,

N13
12 = −1− ρ

2
, N23

12 =
1 + ρ

2
, α3N

3
2 =

ρ

2
, (A.37)

– 38 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
0

and

ρ =
p

E
=
√

1− α′~pt2 . (A.38)

In the limit ~pt → 0 we find

V~pt |gε, ḡε̄〉 → −βεi
(
Dε̄j − 2 (Dε̄p̂t) p̂

j
t

)
ai−1a

j
−1 . (A.39)

We see that the result of the limit depends on the direction of ~pt. It does not agree with

eq. (A.33) and does not reproduce the covariant amplitudes. The correct limit is found if

we give a small mass µ to the closed state setting

ρ(µ) =
p

E
=
√

1− α′ (~pt2 + µ2) , (A.40)

and then send ~pt to zero before removing the mass.

B On the calculation of ImA from the vertex

In this appendix we describe in more detail how to derive the imaginary part of the disk

starting from the closed-open vertex. We will discuss the absorption of the massive states

|L, L̄〉 and |H, H̄〉, already analyzed in section 5. It is convenient to define

σω(k) ≡ k−ω
k
n

Γ
(
1− ω kn

) , σω(x) ≡ x−ωx

Γ (1− ωx)
, ω = N − 1 +

α′

4
~p 2
t . (B.1)

We also introduce the following compact notation for the integration over the n-simplex:

∫
dµn ≡

∫ 1

0
dx1...

∫ 1

0
dxnδ

(
n∑
i=1

xi − 1

)
. (B.2)

Let us begin with the evaluation of the first few terms in the series of the imaginary part

of the elastic amplitude for the state |L, L̄〉. The first contribution is

ImALL ∼
π

4
α′β2ζs′Dζ̄r′εsDε̄r

∑
u,k,l
v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′〈0|as

′
2 a

r′
v a

i
k′a

i
l′a

j
−ka

j
−la

r
−ua

s
−2|0〉

=
π

2
α′β2 (ζε)Dζ̄r′Dε̄r

∑
u,k,l
v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′〈0|ar

′
v a

i
k′a

i
l′a

j
−ka

j
−la

r
−u|0〉 ,

(B.3)

where we used the fact that only when the modes a±2 are contracted among themselves

we obtain a leading contribution. Performing the contractions between the modes in the

vacuum expectation value in the second line of the previous equation and taking into

account the symmetry of the coefficients N33
kl with respect to the exchange of the lower
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indices we find

ImALL ∼
π

2
α′β2 (ζε)

(
ζ̄ ε̄
) ∑

u,k,l
v,k′,l′

δu+k+l,nN
23
2uN

23
2vN

33
kl N

33
k′l′ (48kluδuvδkk′δll′ + 4uvlδukδvk′δll′)

=
π

2
α′β2 (ζε)

(
ζ̄ ε̄
)∑
u,k,l

δu+k+l,nklu
[
48
(
N23

2uN
33
kl

)2
+ 4N23

2uN
23
2kN

33
ul N

33
kl

]
(B.4)

= πα′β2(ζε)
(
ζ̄ ε̄
)∑
u,k,l

δu+k+l,nklu
(σ1(u)σ1(k)σ1(l))2(

2− u
n

)
(k+l)

[
96(

2− u
n

)
(k+l)

+
8(

2− k
n

)
(u+l)

]
.

We now approximate the sums with integrals setting u = nx1, k = nx2, l = nx3 and taking

the large n limit, as discussed in section 5

ImALL ∼ πα′β2 n (ζε)
(
ζ̄ ε̄
)

[96IL,1 + 8IL,2] , (B.5)

where

IL,1 =

∫
dµ3 x1x2x3

(
σ1(x1)σ1(x2)σ1(x3)

(2− x1) (x2 + x3)

)2

∼ 0.0082007 , (B.6)

IL,2 =

∫
dµ3

x1x2x3 (σ1(x1)σ1(x2)σ1(x3))2

(2− x1) (2− x2) (x1 + x3)(x2 + x3)
∼ 0.0066155 .

The second contribution is proportional to

1

64
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′〈0|as

′
2 a

r′
v a

i
k′a

i
l′ a

j
g′a

j
h′ a

w
−ga

w
−ha

q
−ka

q
−la

r
−ua

s
−2|0〉 (B.7)

=
1

32
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′ δ

ss′
[
4ugδrr

′
δiwδuvδgk′ + 16ugδwr

′
δirδgvδuk′

]
×〈0|ail′ a

j
g′a

j
h′ a

w
−ha

q
−ka

q
−l|0〉

=
1

32
N23

2uN
23
2vN

33
kl N

33
ghN

33
k′l′N

33
g′h′ δ

rr′δss
′
ughkl

(
96δuvδgk′ + 16δgvδuk′

)
×
(
48δl′hδg′kδh′l + 4δg′hδh′lδkl′

)
,

where we left the sum understood. Setting u = nx1, g = nx2, h = nx3, k = nx4, l = nx5

and taking the large n limit we find

n δrr
′
δss
′

(576 IL,3 + 96 IL,4 + 48 IL,5 + 8 IL,6) , (B.8)

where

IL,3 =

∫
dµ5 x1x2x3x4x5

(
σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5)

(2− x1) (x2 + x3)(x4 + x5)

)2

∼ 0.0002179 , (B.9)

IL,4 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))2

(2− x1) (2− x2) (x2 + x3)(x4 + x5)2(x1 + x3)
∼ 0.0001709 ,

IL,5 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))2

(2− x1)2 (x2 + x3)(x2 + x4)(x4 + x5)(x3 + x5)
∼ 0.0002087 ,

IL,6 =

∫
dµ5

x1x2x3x4x5 (σ1(x1)σ1(x2)σ1(x3)σ1(x4)σ1(x5))2

(2− x1) (2− x2) (x2 + x3)(x4 + x5)(x1 + x4)(x3 + x5)
∼ 0.0001667 .
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Adding the second contribution to the first we obtain

ImALL ∼ πα′β2 n (ζε)
(
ζ̄ ε̄
)

(0.841 + 0.153) = πα′β2 n (ζε)
(
ζ̄ ε̄
)

0.994 . (B.10)

We now give the details of the derivation of the higher order terms in the series expansion

of the imaginary part of the disk for the state |H, H̄〉. We start by rewriting eq. (5.69)

ImAHH ∼ πα′β2
(
ε̂ij ζ̂ij

) 1

8
〈0|
[
n2 ˆ̄ζll + 2N23

1u′N
23
1v′

(
D ˆ̄ζD

)
r′s′

ar
′
u′a

s′
v′

]
eZ
†
o

PneZo
[
n2 ˆ̄εkk + 2N23

1uN
23
1v

(
Dˆ̄εD

)
rs
ar−ua

s
−v
]
|0〉 . (B.11)

In addition to the term already evaluated in eq. (5.70) of section 5, we have the following

terms with two summation variables:

πα′β2
(
ε̂ij ζ̂ij

) 1

8

∑
k,l

δk+l,n

[
4klN23

1kN
23
1l N

33
kl + 12n2kl

(
N33
kl

)2]
n2 ˆ̄εrr

ˆ̄ζss , (B.12)

that in the continuum limit become

πα′β2 n
(
ε̂ij ζ̂ij

)∑
k,l

δk+l,n

[
−1

2
IH,2 +

3

2
IH,3

]
ˆ̄εrr

ˆ̄ζss , (B.13)

where

IH,2 =

∫
dµ2 x1x2

(σ1(x1)σ1(x2))2

(1− x1)(1− x2)(x1 + x2)
∼ 0.178692 ,

IH,3 =

∫
dµ2 x1x2

(σ1(x1)σ1(x2))2

(x1 + x2)2
∼ 0.039863 . (B.14)

In eq. (B.13) we have obtained two terms that do not have the correct contraction for the

polarizations as discussed in eq. (5.73). Therefore, let us go back to eq. (B.11) and include

also higher order terms that come from the expansion of the two exponentials containing

Zo and Z†0. There are four terms with four summation variables that contribute to the

imaginary part. The first one is

πα′β2
(̂
εij ζ̂ij

)(
D ˆ̄ζD

)
r′s′

(Dˆ̄εD)rs
1

8
N23

1uN
23
1vN

33
kl N

23
1u′N

23
1v′N

33
k′l′〈0|ar

′
u′a

s′
v′a

i
k′a

i
l′a

j
−ka

j
−la

r
−ua

s
−v|0〉

= πα′β2n
(
ε̂ij ζ̂ij

)[
(12IH,4 + 2IH,5)

(
ˆ̄εkl

ˆ̄ζkl

)
+

1

2
IH,6ˆ̄εkk

ˆ̄ζll

]
, (B.15)

where the three integrals correspond to three inequivalent contractions of the modes in the

vacuum expectation value and are given by

IH,4 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(1− x1)2(1− x2)2(x3 + x4)2
∼ 0.012072 , (B.16)

IH,5 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(1− x1)2(1− x2)(1− x3)(x3 + x4)(x2 + x4)
∼ 0.007971 ,

IH,6 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(1− x1)(1− x2)(1− x3)(1− x4)(x1 + x2)(x3 + x4)
∼ 0.005733 .
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The second is

πα′β2
(
ε̂ij ζ̂ij

)
ˆ̄ζss (Dˆ̄εD)r′s′

n2

64
N23

1uN
23
1vN

33
kl N

33
k′l′N

33
gh 〈0|aik′ail′ajga

j
ha

w
−ka

w
−la

r′
−ua

s′
−v|0〉

= −πα′β2 n
(
ε̂ij ζ̂ij

)
ˆ̄εrr

ˆ̄ζss

[
3IH,7 +

1

4
IH,8

]
, (B.17)

where the two integrals are

IH,7 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(1− x1)(1− x2)(x1 + x2)(x3 + x4)2
∼ 0.008181 , (B.18)

IH,8 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(1− x1)(1− x2)(x3 + x4)(x1 + x3)(x2 + x4)
∼ 0.007700 .

The third gives a contribution identical to the second and the fourth is

πα′β2
(
ε̂ij ζ̂ij

)
ˆ̄εrr

ˆ̄ζss
n4

512
N33
kl N

33
ghN

33
k′l′N

33
g′h′ 〈0|aik′ail′a

j
g′a

j
h′a

w
−ka

w
−la

t
−ga

t
−h|0〉

= πα′β2 n
(
ε̂ij ζ̂ij

)
ˆ̄εrr

ˆ̄ζss

[
9IH,9 +

3

4
IH,10

]
, (B.19)

where the two integrals are

IH,9 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(x1 + x2)2(x3 + x4)2
∼ 0.007789 , (B.20)

IH,10 =

∫
dµ4 x1x2x3x4

(σ1(x1)σ1(x2)σ1(x3)σ1(x4))2

(x1 + x2)(x3 + x4)(x1 + x3)(x2 + x4)
∼ 0.007538 .

Collecting all the terms with two and four summation variables we then find

ImAHH ∼ πα′β2 n
(
ε̂ij ζ̂ij

) [
(IH,1 + 12IH,4 + 2IH,5)

(
ˆ̄εkl

ˆ̄ζkl

)
+

(
−1

2
IH,2 +

3

2
IH,3 +

1

2
IH,6 − 6IH,7 −

1

2
IH,8 + 9IH,9 +

3

4
IH,10

)
ˆ̄εkk

ˆ̄ζll

]
∼ πα′β2 n

(
ε̂ij ζ̂ij

) [
0.993

(
ˆ̄εkl

ˆ̄ζkl

)
− 0.004 ˆ̄εkk

ˆ̄ζll

]
. (B.21)

The terms contributing to the first kind of contraction are all positive and seem to add to

one. The sign of the terms contributing to the second kind of contraction alternates with

the number of factors of N33 and seem to add to zero. In fact the result of the sum is one

order of magnitude smaller than the individual terms.
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