
Web Audio Evaluation Tool: A browser-based listening test environment
Jillings, N; De Man, B; MOFFAT, D; Reiss, JD; 12th Sound and Music Computing

Conference

 

 

 

 

 

http://smcnetwork.org/system/files/SMC2015_submission_88.pdf

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/12628

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/77040471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://qmro.qmul.ac.uk/xmlui/handle/123456789/12628


WEB AUDIO EVALUATION TOOL: A BROWSER-BASED LISTENING
TEST ENVIRONMENT

Nicholas Jillings
n.g.r.jillings@se14.qmul.ac.uk,

Brecht De Man
{b.deman,

David Moffat
d.j.moffat,

Joshua D. Reiss
joshua.reiss}@qmul.ac.uk

Centre for Digital Music, Queen Mary University of London

ABSTRACT

Perceptual evaluation tests where subjects assess certain
qualities of different audio fragments are an integral part
of audio and music research. These require specialised
software, usually custom-made, to collect large amounts
of data using meticulously designed interfaces with care-
fully formulated questions, and play back audio with rapid
switching between different samples. New functionality
in HTML5 included in the Web Audio API allows for in-
creasingly powerful media applications in a platform in-
dependent environment. The advantage of a web applica-
tion is easy deployment on any platform, without requiring
any other application, enabling multiple tests to be eas-
ily conducted across locations. In this paper we propose
a tool supporting a wide variety of easily configurable,
multi-stimulus perceptual audio evaluation tests over the
web with multiple test interfaces, pre- and post-test sur-
veys, custom configuration, collection of test metrics and
other features. Test design and setup doesn’t require pro-
gramming background, and results are gathered automati-
cally using web friendly formats for easy storing of results
on a server.

1. INTRODUCTION

Perceptual evaluation of audio plays an important role in
a wide range of research on audio quality [1, 2], sound
synthesis [3, 4], audio effect design [5], source separation
[6, 7], music and emotion analysis [8, 9], and many oth-
ers [10].

Table 1. Available audio perceptual evaluation tools
Name Language Ref.
APE MATLAB [11]
BeaqleJS HTML5/JS [12]
HULTI-GEN Max [13]
MUSHRAM MATLAB [6]
Scale MATLAB [14]
WhisPER MATLAB [15]

Copyright: c©2015 Nicholas Jillings et al. This is an

open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Various listening test design tools are already available,
see Table 1. A few other listening test tools, such as OPA-
QUE [16] and GuineaPig [17], are described but not avail-
able to the public at the time of writing.

Many are MATLAB-based, useful for easily processing
and visualising the data produced by the listening tests,
but requiring MATLAB to be installed to run or - in the
case of an executable created with MATLAB - at least cre-
ate the test. Furthermore, compatibility is usually limited
across different versions of MATLAB. Similarly, Max re-
quires little or no programming background but it is pro-
prietary software as well, which is especially undesirable
when tests need to be deployed at different sites. More
recently, BeaqleJS [12] makes use of the HTML5 audio
capabilities and comes with a number of predefined, es-
tablished test interfaces such as ABX and MUSHRA [18].
BeaqleJS provides a number of similar features including
saving of test data to a web server. The main difference
is that with BeaqleJS, the configuration is done through
writting a JavaScript file holding a JavaScript Object of the
notation. Instead our presented system uses the XML doc-
ument standard, which allows configuration outside of a
web-centric editor. The results are also presented in XML
again allowing 3rd party editors and programs to easily ac-
cess. Finally, the presented system does not require web
access to run, instead being deployed with a Python server
script. This is particularly useful in studios where ma-
chines may not, by design, be web connected, or use in
locations where web access is limited.

A browser-based perceptual evaluation tool for audio has
a number of advantages. First of all, it doesn’t need any
other software than a browser, meaning deployment is very
easy and cheap. As such, it can also run on a variety of de-
vices and platforms. The test can be hosted on a central
server with subjects all over the world, who can simply go
to a webpage. This means that multiple participants can
take the test simultaneously, potentially in their usual lis-
tening environment if this is beneficial for the test. Natu-
rally, the constraints on the listening environment and other
variables still need to be controlled if they are important to
the experiment. Depending on the requirements a survey or
a variety of tests preceding the experiment could establish
whether remote participants and their environments are ad-
equate for the experiment at hand.

The Web Audio API is a high-level JavaScript Applica-
tion Programming Interface (API) designed for real-time
processing of audio inside the browser through various pro-

mailto:b.deman@qmul.ac.uk
mailto:n.g.r.jillings@se14.qmul.ac.uk
mailto:d.j.moffat@qmul.ac.uk
mailto:joshua.reiss@qmul.ac.uk
http://creativecommons.org/licenses/by/3.0/


cessing nodes 1 . Various web sites have used the Web
Audio API for creative purposes, such as drum machines
and score creation tools 2 , others from the list show real-
time captured audio processing such as room reverberation
tools and a phase vocoder from the system microphone.
The BBC Radiophonic Workshop shows effects used on
famous TV shows such as Doctor Who, being simulated in-
side the browser 3 . Another example is the BBC R&D per-
sonalised compressor which applies a dynamic range com-
pressor on a radio station that dynamically adjusts the com-
pressor settings to match the listener’s environment [19].

In contrast with the tools listed above, we aim to pro-
vide an environment in which a variety of multi-stimulus
tests can be designed, with a wide range of configurabil-
ity, while keeping setup and collecting results as straight-
forward as possible. For instance, the option to provide
free-text comment fields allows for tests with individual
vocabulary methods, as opposed to only allowing quantita-
tive scales associated to a fixed set of descriptors. To make
the tool accessible to a wide range of researchers, we aim
to offer maximum functionality even to those with little or
no programming background. The tool we present can set
up a listening test without reading or adjusting any code,
provided no new types of interfaces need to be created.

Specifically, we present a browser-based perceptual eval-
uation tool from which any kind of multiple stimulus audio
evaluation tool where subjects need to rank, rate, select, or
comment on different audio samples can be built. We also
include an example of the multiple stimulus user interface
included with the APE tool [11], which presents the sub-
ject with a number of axes on which a number of mark-
ers, corresponding to audio samples, can be moved to re-
flect any subjective quality, as well as corresponding com-
ment boxes. However, other graphical user interfaces can
be put on top of the engine that we provide with minimal
or no modifications. Examples of this are the MUSHRA
test [18], single or multiple stimulus evaluation with a two-
dimensional interface (such as valence and arousal dimen-
sions), or simple annotation (using free-form text, check
boxes, radio buttons or drop-down menus) of one or more
audio samples at a time. In some cases, such as method
of adjustment, where the audio is processed by the user, or
AB test, where the interface does not show all audio sam-
ples to be evaluated at once [20], the back end of the tool
needs to be modified as well.

In the following sections, we describe the included inter-
face in more detail, discuss the implementation, and cover
considerations that were made in the design process of this
tool.

2. INTERFACE

At this point, we have implemented the interface of the
MATLAB-based APE (Audio Perceptual Evaluation) tool-
box [11]. This shows one marker for each simultaneously
evaluated audio fragment on one or more horizontal axes,
that can be moved to rate or rank the respective fragments

1 http://webaudio.github.io/web-audio-api/
2 http://webaudio.github.io/demo-list/
3 http://webaudio.prototyping.bbc.co.uk/

in terms of any subjective property, as well as a comment
box for every marker, and any extra text boxes for extra
comments. The reason for such an interface, where all
stimuli are presented on a single rating axis (or multiple
axes if multiple subjective qualities need to be evaluated),
is that it urges the subject to consider the rating and/or
ranking of the stimuli relative to one another, as opposed
to comparing each individual stimulus to a given reference,
as is the case with e.g. a MUSHRA test [18]. As such, it
is ideal for any type of test where the goal is to carefully
compare samples against each other, like perceptual evalu-
ation of different mixes of music recordings [21] or sound
synthesis models [4], as opposed to comparing results of
source separation algorithms [6] or audio with lower data
rate [18] to a high quality reference signal.

The markers on the slider at the top of the page are po-
sitioned randomly, to minimise the bias that may be in-
troduced when the initial positions are near the beginning,
end or middle of the slider. Another approach is to place
the markers outside of the slider bar at first and have the
subject drag them in, but the authors believe this doesn’t
encourage careful consideration and comparison of the dif-
ferent fragments as the implicit goal of the test becomes to
audition and drag each fragment in just once, rather than to
compare all fragments rigorously.

See Figure 1 for an example of the interface.

3. ARCHITECTURE

The tool uses entirely client side processing utilising the
new HTML5 Web Audio API, supported by most major
web browsers. The API allows for constructing audio pro-
cessing elements and connecting them together to produce
a high quality, real time signal process to manipulate audio
streams. The API supports multichannel processing and
has an accurate playback timer for precise, scheduled play-
back control. The API is controlled through the browser
JavaScript engine and is therefore highly configurable. Pro-
cessing is all performed in a low latency thread separate
from the main JavaScript thread, so there is no blocking
due to real time processing.

The web tool itself is split into several files to operate:
• index.html: The main index file to load the scripts,

this is the file the browser must request to load.
• core.js: Contains global functions and object pro-

totypes to define the audio playback engine, audio
objects and loading media files

• ape.js: Parses setup files to create the interface
as instructed, following the same style chain as the
MATLAB APE Tool [11].

The HTML file loads the core.js file along with a
few other ancillary files (such as the jQuery JavaScript ex-
tensions 4 ), at which point the browser JavaScript begins
to execute the on-page instructions, which gives the URL
of the test setup XML document (outlined in Section 5).
core.js parses this document and executes the func-
tions in ape.js to build the web page. The reason for
separating these two files is to allow for further interface

4 http://jquery.com/



Figure 1. Example interface, with one axis, seven fragments, and text, radio button and check box style comments.

designs (such as MUSHRA [18] or 2D rating [20]) to be
used, which would still require the same underlying core
functions outlined in core.js.

The ape.js file has several main functions but the most
important are documented here. loadInterface(xmlDoc) is
called to decode the supplied project document in respect
for the interface specified and define any global structures
(such as the slider interface). It also identifies the num-
ber of pages in the test and randomises the order, if spec-
ified to do so. This is the only mandatory function in any
of the interface files as this is called by core.js when
the document is ready. core.js cannot ’see’ any inter-
face specific functions and therefore cannot assume any are
available. Therefore loadInterface(xmlDoc) is essential to
set up the entire test environment. Because the interface
files are loaded by core.js and because the functions
in core.js are global, the interface files can ‘see’ the
core.js file and can therefore not only interact with it,
but also modify it.

Each test page is loaded using loadTest(id) which per-
forms two major tasks: to populate the interface with the
slider elements and comment boxes; and secondly to in-
struct the audioEngine to load the audio fragments and
construct the backend audio graph. loadTest(id) also in-
structs the audio engine in core.js to create the au-
dioObject. These are custom audio nodes, one representing
each audio element specified in each page. They consist of
a bufferSourceNode (a node which holds a buffer of au-
dio samples for playback) and a gainNode, both of which
are Web Audio API Nodes. Various functions are applied,
depending on which metrics are enabled, to record the in-
teraction with the audio element. These nodes are then
connected to the audioEngine (itself a custom web audio
node) containing a gainNode (where the various audioOb-
jects connect to) for summation before passing the output

to the destinationNode, a permanent node of the Web Au-
dio API created as the master output. Here, the browser
then passes the audio information to the system.

When an audioObject is created, it is given the URL of
the audio sample to load. This is downloaded into the
browser asynchronously using the XMLHttpRequest ob-
ject, which downloads any file into the JavaScript environ-
ment for further processing. This is particularly useful for
the Web Audio API because it supports downloading of
files in their binary form for decoding. Once downloaded
the file is decoded using the Web Audio API offline de-
coder. This uses the browser available decoding schemes
to decode the audio files into raw float32 arrays, which are
in turn passed to the relevant audioObject for playback.

Once each page of the test is completed, identified by
pressing the Submit button, the pageXMLSave(testId) is
called to store all of the collected data until all pages of
the test are completed. After the final test and any post-test
questions are completed, the interfaceXMLSave() function
is called. This function generates the final XML file for
submission as outlined in Section 5.

4. SUPPORT AND LIMITATIONS

Different browsers support a different set of audio file for-
mats and are not consistent in any format. Currently the
Web Audio API is best supported in Chrome, Firefox, Opera
and Safari. All of these support the use of the uncom-
pressed WAV format. Although not a compact, web friendly
format, most transport systems are of a high enough band-
width this should not be a problem. Ogg Vorbis is an-
other well supported format across the four supported ma-
jor desktop browsers, as well as MP3 (although Firefox
may not support all MP3 types 5 ). One issue of the Web

5 https://developer.mozilla.org/en-US/docs/Web/HTML/
Supported media formats



Audio API is that the sample rate is assigned by the sys-
tem sound device, rather than requested and does not have
the ability to request a different one. As the sampling rate
and the effect of resampling may be critical for some lis-
tening tests, the default operation when an audio file is
loaded with a different sample rate to that of the system is
to convert the sample rate. To provide a check for this, the
desired sample rate can be supplied with the setup XML
and checked against. If the sample rates do not match, a
browser alert window is shown asking for the sample rate
to be correctly adjusted. This happens before any loading
or decoding of audio files so the browser will only be in-
structed to fetch files if the system sample rate meets the
requirements, avoiding multiple requests for large files un-
til they are actually needed.

5. INPUT AND RESULT FILES

The setup and result files both use the common XML doc-
ument format to outline the various parameters. The setup
file determines the interface to use, the location of audio
files, the number of pages and other parameters to define
the testing environment. Having one document to modify
allows for quick manipulation in a ‘human readable’ form
to create new tests, or adjust current ones, without needing
to edit multiple web files. Furthermore, we also provide a
simple web page to enter all these settings without needing
to manipulate the raw XML. An example of such an XML
document is presented below.
<?xml version="1.0" encoding="utf-8"?>
<BrowserEvalProjectDocument>

<setup interface="APE" projectReturn="/save"
randomiseOrder=’false’ collectMetrics=’true’
>
<PreTest>

<question id="location" mandatory="
true">Please enter your location
.</question>

<number id="age" min="0">Please enter
your age</number>

</PreTest>
<PostTest>

<statement>Thank you for taking this
listening test!</statement>

</PostTest>
<Metric>

<metricEnable>testTimer</metricEnable
>

<metricEnable>elementTimer</
metricEnable>

<metricEnable>elementInitialPosition<
/metricEnable>

<metricEnable>elementTracker</
metricEnable>

<metricEnable>elementFlagListenedTo</
metricEnable>

<metricEnable>elementFlagMoved</
metricEnable>

</Metric>
<interface>

<anchor>20</anchor>
<reference>80</reference>

</interface>
</setup>
<audioHolder id="test-0" hostURL="example_eval/"

randomiseOrder=’true’>
<interface>

<title>Example Test Question</title>
<scale position="0">Min</scale>
<scale position="100">Max</scale>
<commentBoxPrefix>Comment on fragment

</commentBoxPrefix>
</interface>
<audioElements url="1.wav" id="elem1"/>
<audioElements url="2.wav" id="elem2"/>

<audioElements url="3.wav" id="elem3"/>
<CommentQuestion id="generalExperience"

type="text">General Comments</
CommentQuestion>

<PreTest/>
<PostTest>

<question id="songGenre" mandatory="
true">Please enter the genre of
the song.</question>

</PostTest>
</audioHolder>

</BrowserEvalProjectDocument>

5.1 Setup and configurability

The setup document has several defined nodes and struc-
ture which are documented with the source code. For ex-
ample, there is a section for general setup options where
any pre-test and post-test questions and statements can be
defined. Pre- and post-test dialogue boxes allow for com-
ments or questions to be presented before or after the test,
to convey listening test instructions, and gather informa-
tion about the subject, listening environment, and overall
experience of the test. In the example set up document
above, a question box with the id ‘location’ is added, which
is set to be mandatory to answer. The question is in the
PreTest node meaning it will appear before any testing will
begin. When the result for the entire test is shown, the re-
sponse will appear in the PreTest node with the id ‘loca-
tion’ allowing it to be found easily, provided the id values
are meaningful.

We try to cater to a diverse audience with this toolbox,
while ensuring it is simple, elegant and straightforward.
To that end, we currently include the following options that
can be easily switched on and off, by setting the value in
the input XML file.
• Snap to corresponding position: When enabled and

a fragment is playing, the playhead skips to the same
position in the next fragment that is clicked. Otherwise,
each fragment is played from the start.

• Loop fragments: Repeat current fragment when end is
reached, until the ‘Stop’ or ‘Submit’ button is clicked.

• Comments: Displays a separate comment box for each
fragment in the page.

• General comment: Create additional comment boxes
to the fragment comment boxes, with a custom question
and various input formats such as checkbox or radio.

• Resampling: When this is enabled, fragments are re-
sampled to match the subject’s system’s sample rate (a
default feature of the Web Audio API). When it is not,
an error is shown when the system does not match the
requested sample rate.

• Randomise page order: Randomises the order in which
different ‘pages’ are presented.

• Randomise fragment order: Randomises the order and
numbering of the markers and comment boxes corre-
sponding to the fragments. Fragments are referenced to
their given ID so referencing is possible (such as ‘this is
much brighter than fragment 4’).

• Require (full) playback: Require that each fragment
has been played at least once, partly or fully.

• Require moving: Require that each marker is moved
(dragged) at least once.



• Require comments: Require the subject to write a com-
ment for each fragment.

• Repeat test: Number of times each page in the test
should be repeated (none by default), to allow familiari-
sation with the content and experiment, and to investi-
gate consistency of user and variability due to familiar-
ity. These are all gathered before shuffling the order so
repeated tests are not back-to-back if possible.

• Returning to previous pages: Indicates whether it is
possible to go back to a previous ‘page’ in the test.

• Lowest rating below [value]: To enforce a certain use
of the rating scale, it can be required to rate at least one
sample below a specified value.

• Highest rating above [value]: To enforce a certain use
of the rating scale, it can be required to rate at least one
sample above a specified value.

• Reference: Allows for a separate sample (outside of the
axis) to be the ‘reference’, which the subject can play
back during the test to help with the task at hand [18].

• Hidden reference/anchor: Whether or not an explicit
‘reference’ is provided, the ‘hidden reference’ should be
rated above a certain value [18] - this can be enforced.
Similarly, a ‘hidden anchor’ should be rated lower than
a certain value [18].

• Show scrub bar: Display a playhead on a scrub bar to
show the position in the current fragment.

When one of these options is not included in the setup
file, they assume a default value. As a result, the input file
can be kept very compact if default values suffice for the
test.

5.2 Results

The results file is dynamically generated by the interface
upon clicking the ‘Submit’ button. This also executes checks,
depending on the setup file, to ensure that all fragments
have been played back, rated and commented on. The
XML output returned contains a node per fragment and
contains both the corresponding marker’s position and any
comments written in the associated comment box. The rat-
ing returned is normalised to be a value between 0 and 1,
normalising the pixel representation of different browser
windows. The results also contain information collected
by any defined pre/post questions. An excerpt of an out-
put file is presented below detailing the data collected for
a single audioElement.
<browserevaluationresult>

<datetime>
<date year="2015" month="5" day="28">

2015/5/28</date>
<time hour="13" minute="19" secs="17">

13:19:17</time>
</datetime>
<pretest>

<comment id="location">Control Room</
comment>

</pretest>
<audioholder>

<pretest></pretest>
<posttest>

<comment id="songGenre">Pop</comment>
</posttest>
<metric>

<metricresult id="testTime">813.32</
metricresult>

</metric>
<audioelement id="elem1">

<comment>
<question>Comment on fragment 1

</question>
<response>Good, but vocals too

quiet.</response>
</comment>
<value>0.639010989010989</value>
<metric>

<metricresult id="elementTimer"
>111.05</metricresult>

<metricresult id="
elementTrackerFull">
<timepos id="0">

<time>61.60</time>
<position>0.6390</

position>
</timepos>

</metricresult>
<metricresult id="

elementInitialPosition">
0.6571</metricresult>

<metricresult id="
elementFlagListenedTo">
true</metricresult>

</metric>
</audioelement>

</audioHolder>
</browserevaluationresult>

Each page of testing is returned with the results of the en-
tire page included in the structure. One audioelement
node is created per audio fragment per page, along with
its ID. This includes several child nodes including the rat-
ing between 0 and 1, the comment, and any other collected
metrics including how long the element was listened for,
the initial position, and boolean flags showing if the ele-
ment was listened to, moved and commented on. Further-
more, each user action (manipulation of any interface ele-
ment, such as playback or moving a marker) can be logged
along with a the corresponding time code. We also store
session data such as the time the test took place and the
duration of the test. We provide the option to store the re-
sults locally, and/or to have them sent to a server.

Figure 2. An example boxplot showing ratings by differ-
ent subjects on fragments labeled ‘A’ through ‘G’.

Python scripts are included to easily store ratings and
comments in a CSV file, and to display graphs of numer-
ical ratings (see Figure 2) or visualise the test’s timeline.
Visualisation of plots requires the free matplotlib library 6 .

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to creating a
browser-based listening test environment that can be used
for a variety of types of perceptual evaluation of audio.
Specifically, we discussed the use of the toolbox in the
context of assessment of preference for different produc-
tion practices, with identical source material. The purpose

6 http://matplotlib.org



of this paper is to outline the design of this tool, to de-
scribe our implementation using basic HTML5 functional-
ity, and to discuss design challenges and limitations of our
approach. This tool differentiates itself from other percep-
tual audio tools by enabling web technologies for multiple
participants to perform the test without the need for pro-
prietary software such as MATLAB. The tool also allows
for any interface to be built using HTML5 elements to cre-
ate a variety of dynamic, multiple-stimulus listening test
interfaces. It enables quick setup of simple tests with the
ability to manage complex tests through a single file. Fi-
nally it uses the XML document format to store the results
allowing for processing and analysis of results in various
third party software such as MATLAB or Python.

Further work may include the development of other com-
mon test designs, such as MUSHRA [18], 2D valence and
arousal/activity [9], and others. We will add functionality
to assist with setting up large-scale tests with remote sub-
jects, so this becomes straightforward and intuitive. In ad-
dition, we will keep on improving and expanding the tool,
and highly welcome feedback and contributions from the
community.

The source code of this tool can be found on
code.soundsoftware.ac.uk/projects/
webaudioevaluationtool.

7. REFERENCES

[1] M. Schoeffler and J. Herre, “About the impact of audio
quality on overall listening experience,” in Proceedings
of the 10th Sound and Music Computing Conference,
2013, pp. 48–53.

[2] R. Repp, “Recording quality ratings by music pro-
fessionals,” in Proceedings of the 2006 International
Computer Music Conference, 2006, pp. 468–474.

[3] A. de Götzen, E. Sikström, F. Grani, and S. Serafin,
“Real, foley or synthetic? An evaluation of everyday
walking sounds,” in Proceedings of SMC 2013 : 10th
Sound and Music Computing Conference, 2013.

[4] G. Durr, L. Peixoto, M. Souza, R. Tanoue, and J. D.
Reiss, “Implementation and evaluation of dynamic
level of audio detail,” in Audio Engineering Society
Conference: 56th International Conference: Audio for
Games, 2015.

[5] B. De Man and J. D. Reiss, “Adaptive control of ampli-
tude distortion effects,” in Audio Engineering Society
Conference: 53rd International Conference: Semantic
Audio, 2014.

[6] E. Vincent, M. G. Jafari, and M. D. Plumbley, “Pre-
liminary guidelines for subjective evalutation of au-
dio source separation algorithms,” in UK ICA Research
Network Workshop, 2006.

[7] J. D. Reiss and C. Uhle, “Determined source separation
for microphone recordings using IIR filters,” in 129th
Convention of the Audio Engineering Society, 2010.

[8] Y. Song, S. Dixon, M. T. Pearce, and G. Fazekas, “Us-
ing tags to select stimuli in the study of music and emo-
tion,” Proceedings of the 3rd International Conference
on Music & Emotion (ICME), 2013.

[9] T. Eerola, O. Lartillot, and P. Toiviainen, “Prediction of
multidimensional emotional ratings in music from au-
dio using multivariate regression models,” in Proceed-
ings of the 10th International Society for Music Infor-
mation Retrieval (ISMIR2009), 2009, pp. 621–626.

[10] A. Friberg and A. Hedblad, “A comparison of percep-
tual ratings and computed audio features,” in Proceed-
ings of the 8th Sound and Music Computing Confer-
ence, 2011, pp. 122–127.

[11] B. De Man and J. D. Reiss, “APE: Audio Perceptual
Evaluation toolbox for MATLAB,” in 136th Conven-
tion of the Audio Engineering Society, 2014.

[12] S. Kraft and U. Zölzer, “BeaqleJS: HTML5 and Java-
Script based framework for the subjective evaluation of
audio quality,” in Linux Audio Conference, Karlsruhe,
DE, 2014.

[13] C. Gribben and H. Lee, “Toward the development of
a universal listening test interface generator in Max,”
in 138th Convention of the Audio Engineering Society,
2015.

[14] A. V. Giner, “Scale - a software tool for listening exper-
iments,” in AIA/DAGA Conference on Acoustics, Mer-
ano (Italy), 2013.

[15] S. Ciba, A. Wlodarski, and H.-J. Maempel, “WhisPER
– A new tool for performing listening tests,” in 126th
Convention of the Audio Engineering Society, 2009.

[16] J. Berg, “OPAQUE – A tool for the elicitation and grad-
ing of audio quality attributes,” in 118th Convention of
the Audio Engineering Society, 2005.

[17] J. Hynninen and N. Zacharov, “GuineaPig - A generic
subjective test system for multichannel audio,” in 106th
Convention of the Audio Engineering Society, 1999.

[18] Method for the subjective assessment of intermediate
quality level of coding systems. Recommendation
ITU-R BS.1534-1, 2003.

[19] A. Mason, N. Jillings, Z. Ma, J. D. Reiss, and F. Mel-
chior, “Adaptive audio reproduction using personalized
compression,” in Audio Engineering Society Confer-
ence: 57th International Conference: The Future of
Audio Entertainment Technology – Cinema, Television
and the Internet, 2015.

[20] S. Bech and N. Zacharov, Perceptual Audio Evalua-
tion - Theory, Method and Application. John Wiley &
Sons, 2007.

[21] B. De Man, M. Boerum, B. Leonard, G. Massenburg,
R. King, and J. D. Reiss, “Perceptual evaluation of mu-
sic mixing practices,” in 138th Convention of the Audio
Engineering Society, 2015.


	 1. Introduction
	 2. Interface
	 3. Architecture
	 4. Support and limitations
	 5. Input and result files
	5.1 Setup and configurability
	5.2 Results

	 6. Conclusions and future work
	 7. References

