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ABSTRACT

We improve on our previous treatments of the long-term evolution of protostellar disks by explicitly solving
disk self-gravity in two dimensions. The current model is an extension of the one-dimensional layered accretion
disk model of Bae et al. We find that gravitational instability (GI)-induced spiral density waves heat disks via
compressional heating (i.e., PdV work), and can trigger accretion outbursts by activating the magnetorotational
instability (MRI) in the magnetically inert disk dead zone. The GI-induced spiral waves propagate well inside of
the gravitationally unstable region before they trigger outbursts at R ! 1 AU where GI cannot be sustained. This
long-range propagation of waves cannot be reproduced with the previously used local α treatments for GI. In our
standard model where zero dead-zone residual viscosity (αrd) is assumed, the GI-induced stress measured at the
onset of outbursts is locally as large as 0.01 in terms of the generic α parameter. However, as suggested in our
previous one-dimensional calculations, we confirm that the presence of a small but finite αrd triggers thermally
driven bursts of accretion instead of the GI + MRI-driven outbursts that are observed when αrd = 0. The inclusion
of non-zero residual viscosity in the dead zone decreases the importance of GI soon after mass feeding from the
envelope cloud ceases. During the infall phase while the central protostar is still embedded, our models stay in a
“quiescent” accretion phase with Ṁacc ∼ 10−8–10−7 M⊙ yr−1 over 60% of the time and spend less than 15% of
the infall phase in accretion outbursts. While our models indicate that episodic mass accretion during protostellar
evolution can qualitatively help explain the low accretion luminosities seen in most low-mass protostars, detailed
tests of the mechanism will require model calculations for a range of protostellar masses with some constraint on
the initial core angular momentum, which affects the length of time spent in a quasi-steady disk accretion phase.
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1. INTRODUCTION

Recent infrared surveys have shown that the luminosity func-
tions of protostars peak near 1 L⊙ and have a significant fraction
of objects at sub-solar luminosities (Enoch et al. 2009; Evans
et al. 2009; Kryukova et al. 2012; Dunham et al. 2013; Stutz
et al. 2013, see also Dunham et al. 2014 for review) which seem
too low given the need to accrete the central protostar in typi-
cal estimated lifetimes (e.g., Kenyon et al. 1990). After many
improvements (e.g., Cheng 1978; Terebey et al. 1984; Fatuzzo
et al. 2004; Mac Low & Klessen 2004) to the singular isother-
mal sphere collapse model of Shu (1977), theoretical models
imply accretion luminosities of 10–100 L⊙ for typical mass and
radius of low-mass protostars (0.5 M⊙ and 2 R⊙). One plausible
solution to this “luminosity problem” is that mass infall occurs
first to the disk, and subsequent disk accretion is low for the
most of the time with occasional short-lived, rapid accretion
outbursts (Kenyon et al. 1990). A number of models were de-
veloped over decades to explain such episodic accretion events.
Possible mechanisms include thermal instability in the inner
disk (Bell & Lin 1994), interactions with companions (Bonnell
& Bastien 1992; Pfalzner et al. 2008; Forgan & Rice 2010), disk
fragmentation plus subsequent migration of clumps generated
(Vorobyov & Basu 2005, 2006, 2010), and a combination of
gravitational instability (GI) and magnetorotational instability
(MRI; Armitage et al. 2001; Zhu et al. 2009, 2010a, 2010b;
Martin et al. 2012; Bae et al. 2013a).

One shortcoming of previous work on GI + MRI-driven
outbursts is the use of simple parameterized α viscosities

(Shakura & Sunyaev 1973) to represent the mass transport and
energy dissipation for the GI and the MRI (Armitage et al.
2001; Zhu et al. 2009, 2010a, 2010b; Martin et al. 2012; Bae
et al. 2013a). This allows one to easily evolve models for the
long timescales (∼Myr) needed to follow disk evolution through
the infall phase to the T Tauri phase, and to explore a large
parameter space as well. How well the α treatments mimic
the nature of GI and the MRI, however, is still controversial.
For example, the intrinsic non-locality of self-gravity can
make the appropriateness of an αGI treatment questionable
(e.g., Balbus & Papaloizou 1999), although other studies argue
that transport via self-gravity is reasonably well described by
α parameterizations when the disk is not too massive (e.g.,
Gammie 2001; Lodato & Rice 2004; Cossins et al. 2009;
Vorobyov 2010).

In our previous work (Bae et al. 2013a, hereafter Paper I),
adopting α prescriptions to treat the GI and the MRI, we exam-
ined disk evolution and outburst behavior in one-dimensional
(1D; radial) models. A layered accretion disk model was imple-
mented in that work, where we solved a separate set of viscous-
disk equations in each layer: the magnetically active surface
layer (hereafter active layer) and the underlying magnetically
inert region (hereafter dead zone). We found that outbursts are
triggered as the MRI activates in the dead zone either thermally
or through GI, depending on the dead-zone properties. More
specifically, the presence of a small but finite dead-zone resid-
ual viscosity generates additional viscous heating in the dead
zone, and thus can thermally trigger outbursts starting at or
near the inner edge of the disk, instead of the previously found
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GI + MRI-driven outbursts with zero dead-zone residual viscos-
ity (e.g., Zhu et al. 2010b).

In this study, we improve the treatment of disk self-gravity by
moving to two-dimensional (2D; R,φ) models. We assume that
the disks have a layered structure as in Paper I; we show how this
can be accommodated solving only one set of hydrodynamic
equations. While the overall scenario of accretion outbursts
remains valid, the details vary. We find that in contrast to a
local treatment of GI, gravitationally unstable regions generate
spiral density waves which can propagate into inner disk regions
that are formally GI-stable via the Toomre Q parameter; this
triggers the MRI at somewhat smaller radii than would be
found with αGI treatments. Also, as we found in Paper I,
the presence of a small but finite residual viscosity in the
dead zone decreases the importance of GI soon after initial
infall phase, and is responsible for thermally driven accretion
outbursts instead of GI + MRI-driven bursts with zero αrd. Our
results emphasize the importance of following the propagation
of waves into innermost disk radii for predicting the resulting
accretion luminosity as a function of time and thus addressing
the protostellar luminosity problem.

2. METHODS

2.1. Basic Equations

We use the FARGO-ADSG code (Baruteau & Masset 2008)
in 2D (R, φ) cylindrical coordinates. In addition to the hydro-
dynamic equations in the public version, we add infall, heating
sources, and radiative cooling:

∂Σ
∂t

+ ∇ · (Σv) = Σ̇in, (1)

Σ
(

∂v

∂t
+ v · ∇v

)
= −∇P − Σ∇Φ + ∇ · Π + Fin, (2)

∂E

∂t
+ ∇ · (Ev) = −P∇ · v + Q+ − Q− + Ėin . (3)

In the above equations Σ is the surface density, v is the velocity,
P is the vertically integrated pressure, Φ is the gravitational
potential including the disk self-gravitational potential, Π is
the viscous stress tensor, E is the vertically integrated thermal
energy per unit area, and Q+ and Q− are the total heating and
cooling rates, respectively. The terms Σ̇in, Fin, and Ėin indicate
the changes in the equations due to the infall model.

Since the main purpose of this paper is to compare the driving
of accretion outbursts in 2D with the results from our previous
1D models (Paper I), in the following we compare the equations
we solved to illustrate differences when applicable.

2.2. Mass Conservation

We use the infall model introduced in Paper I, which is based
on the model of Cassen & Moosman (1981) with modifications:
(1) mass flux per unit distance is assumed to be constant over
radius in order to avoid a singularity at the centrifugal radius
and (2) envelope material does not fall onto the disk inside
20% of the centrifugal radius in order to mimic the effect of
collimated jets and outflows to prevent low angular momentum
material from being added to the system. The basic idea of
the infall model comes from an assumption of infall from
a uniformly rotating, spherically symmetric cloud; thus, the
axial matter has little angular momentum and falls at small

radii, while material originally in (near) the equatorial plane
has the maximum angular momentum per unit mass and thus
defines the instantaneous outer radius of infall to the disk
(i.e., the centrifugal radius). In addition to the modifications,
we apply a 10% m = 2 density fluctuation to infalling
material. While the m = 2 perturbation is chosen to consider
possible non-axisymmetric infall from a filamentary envelope,
we emphasize that the manner perturbations applied is not
crucial for generating spiral structures as well as triggering
outbursts. This is because disk rotates fast enough so that
the perturbations smear out. We additionally test with 10%
of random perturbations in each azimuthal grid zone and find
no noticeable changes in outcome. However, it turns out that
without any non-axisymmetric perturbations infalling material
does not generate asymmetric instabilities/spiral features. The
mass infall rate of the modified model is

Σ̇in(R, t) = Ṁin

2πRc(t)R
[1 + 0.1 cos(2φ)] if 0.2 Rc " R " Rc

(4)
and

Σ̇in(R, t) = 0 if R < 0.2 Rc or R > Rc, (5)

where Rc(t) denotes the centrifugal radius at time t and Ṁin =
0.975c3

s /G is the constant total infall mass rate at a given cloud
isothermal sound speed for the singular sphere solution (Shu
1977). The term 1 + 0.1 cos(2φ) in Equation (4) accounts for the
m = 2 density perturbation in the infall, where φ is the angle
around the rotational axis of the disk.

With this infall model, the radial component of the mass
conservation equation becomes

2πR
∂Σ
∂t

− ∂Ṁ

∂R
= 2πRΣ̇in, (6)

where the radial mass flux Ṁ is defined as Ṁ ≡ −2πRΣvR .
Using Equations (4) and (5), this results in the same form
as the mass conservation equation used in Paper I (see their
Equation (1)).

2.3. Momentum Conservation

Since infalling material arrives at the disk surface with
different radial and azimuthal velocities from those of the disk
material, there exists a shear force. This can be written as
FR,in = Σ̇in(vR,in − vR,disk) and Fφ,in = Σ̇in(vφ,in − vφ,disk) and
added to Equation (2), where vR,in and vφ,in are the velocities of
the infalling material (see Equations (A7) and (A9)) and vR,disk
and vφ,disk are the velocities of the disk, respectively.

To facilitate mass and angular momentum transport, we adopt
an α disk model (Shakura & Sunyaev 1973) where the disk
viscosity is calculated as

ν = α
c2
s

Ω
. (7)

Here, α is a dimensionless parameter characterizing the effi-
ciency of mass transport and energy dissipation and cs and Ω
denote the sound speed and the angular velocity, respectively.
In this study, the α parameter accounts for mass transport and
energy dissipation through the MRI (αMRI), GI if a non-zero αGI
is included in the model, and possible hydrodynamic turbulence
in the dead zone (αrd, see below).

As our simulations evolve the disk as a single layer that
represents the full vertical column density of the disk, while
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assuming that the underlying disk model has two layers in the
vertical direction (an active layer and a dead zone), we introduce
an effective viscosity parameter αeff defined as

αeff = Σaαa + Σdαd

Σ
, (8)

where Σa is the surface density of the active layer, Σd is the
surface density of the dead zone, and Σ = Σa + Σd is the total
surface density. αa and αd are total viscosity parameters in the
active layer and the dead zone, respectively, which are calculated
as αa = αMRI,a +αGI,a and αd = αMRI,d +αGI,d +αrd. We explain
each term below.

In the model of Gammie (1996) and later treatments of disk
structure, the ionization level is not vertically uniform, but varies
in a way that it decreases toward the disk midplane with a
possible sharp transition. This transition may separate a disk
into the magnetically active surface region (i.e., active layer) and
the magnetically inert region around the midplane (i.e., dead-
zone). In our fiducial models we assume that the active layer
can contain ΣA = 100 g cm−2 at maximum via non-thermal
ionization (Gammie 1996). The MRI viscosity parameter in the
active layer (αMRI,a) and the dead zone (αMRI,d ) are assumed to
have a fixed value αMRI = 0.01 only if a region can sustain the
MRI. Thus, αMRI,a is always set to αMRI by its definition. On
the other hand, αMRI,d becomes αMRI only if the azimuthally
averaged midplane temperature exceeds the MRI activation
temperature TMRI = 1500 K so that the collisional ionization
of alkali metals (e.g., potassium), or dust sublimation, produces
a sufficient ionization level for the dead zone to thermally sustain
the MRI. Otherwise, αMRI,d is set to zero. We use azimuthally
averaged midplane temperatures when activate the MRI in order
to be conservative since our treatment for the MRI activation
is crude.

As an aside, we note that the idea of an active layer accreting
viscously has been challenged by Bai & Stone (2013) and
Bai (2013, 2014), who find that the inclusion of ambipolar
diffusion limits the effectiveness of viscous transport and argue
that magnetically driven winds from upper layers are ultimately
responsible for accretion at radii of the order of 1 to 10–20 AU.
As long as there is some mechanism of mass transport other
than GI that results in accretion rates less than the infall rate to
the disk, the main features of our models should remain relevant
and mass will still pile up to produce outbursts.

We consider cases with either zero or non-zero residual
viscosity αrd in the dead zone. This is motivated by recent
three-dimensional (3D) magnetohydrodynamic simulations
suggesting that the dead zone can have some non-zero resid-
ual viscosity, which can be as large as ∼10−5–10−3, due to
hydrodynamic turbulence driven by the Maxwell stress in the
active layer (Okuzumi & Hirose 2011; Gressel et al. 2012). In
the non-zero αrd case, we use αrd = 10−4. We note that the
mass accretion rate of the dead zone cannot exceed that of the
active layer (Ṁd " Ṁa) if the non-zero αrd is due to turbulence
propagated from the active layer. Therefore, we limit αrd as

αrd = min
(

10−4,αMRI
Σa

Σd

)
. (9)

To isolate the effects of using a local prescription for the GI
from the use of 2D vertically averaged models, we compute
some models with an αGI prescription of

αGI = e−Q2
, (10)

where Q ≡ πGΣ/Ωcs is the Toomre parameter. In the models
where disk self-gravity is explicitly solved (hereafter self-
gravity models), αGI is set to zero.

The azimuthal component of the momentum equation be-
comes

2πR
∂

∂t
(ΣRvφ) − ∂

∂R
(ṀRvφ) = 2π

∂

∂R
(R2ΠRφ)

+ 2πR2Σ̇invφ,in, (11)

where we use Equation (6) and axisymmetry is assumed. If
we use vφ = RΩ and the infall model given in Equations (4)
and (5), the momentum equation also has the same form as in
Paper I (see their Equation (2)). The only concern here is the
viscous stress tensor ΠRφ because it has viscosity terms in it
that vary between the active and dead layers in our underlying
model. However, if the stress is defined in terms of α, one can
easily show that ΠRφ = ΠRφ,a + ΠRφ,d by using the effective
α parameter introduced in Equation (8), assuming the disk is
vertically isothermal and the two layers share the same velocity
field. In this case, the momentum equations for the two layers
can be added linearly.

2.4. Energy Conservation

We assume that the infalling material has the same tem-
perature as the disk surface (i.e., active layer) at the time of
its addition. Thus, we add the corresponding thermal energy
Ėin = kΣ̇inTa/(γ − 1)µmH to the disk, where Ta denotes the
active layer temperature. We note that Ėin accounts only for
the thermal energy of infalling material. The heat produced by
kinetic energy of infalling material will be discussed below.

The thermal energy of a disk is determined by the bal-
ance between total heating and radiative cooling. Heating in-
cludes the internal viscous heating, the external irradiation,
the infall heating while it exists, the compressional heat-
ing (i.e., PdV work), and the artificial viscosity given by
the prescription in VonNeumann & Richtmyer (1950). The
von Neumann–Richtmyer viscosity constant, measuring the
number of grid zones over which the artificial viscosity spreads
a shock, is set to the default value in FARGO-ADSG code, 1.4.

The viscous heating Qvis,i is defined as

Qvis,i = 1
2νiΣi

(
Π2

RR,i + Π2
Rφ,i + Π2

φφ,i

)
+

2νiΣi

9
(∇ · v)2, (12)

where νi is viscosity calculated as νi = αic
2
s /Ω and ΠRR,i ,

ΠRφ,i , and Πφφ,i are components of the viscous stress tensor.
The subscript i denotes either the active layer (“a”) or the dead-
zone (“d”). Note that velocity and temperature are assumed
to be the same over the two layers while the surface density
and viscosity parameter vary when calculating the viscous
dissipation.

The external irradiation flux Qirr is the sum of the fluxes from
the central star, accretion luminosity, and the envelope:

Qirr ≡ σT 4
irr = f∗L∗

4πR2
+

faccLacc

4πR2
+ σT 4

env. (13)

Here, Tirr is the temperature corresponding to the external ir-
radiation flux, L∗ and Lacc are the stellar and the accretion lu-
minosity, and Tenv is the envelope temperature. The coefficients
f∗ and facc account for the non-normal irradiation of the disk
surface and both are set to 0.1 in this study. We increase the
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stellar luminosity as the central star accretes mass, following
the mass–luminosity relation

log10

(
L∗

L⊙

)
= 0.20 + 1.74 log10

(
M∗

M⊙

)
, (14)

which is an approximate power-law fit to the mass–luminosity
relation, using the luminosities and effective temperatures from
Kenyon & Hartmann (1995) for Taurus pre-main-sequence stars
and the Siess et al. (2000) evolutionary tracks to convert the
H-R diagram positions to masses. The accretion luminosity is
calculated as

Lacc = GM∗Ṁ

2R⊙
, (15)

where we assume a typical T Tauri stellar radius of two
solar radii.

During the infall phase, kinetic energy carried by the infalling
material is dissipated in two ways: immediate shock dissipation
at the disk surface and readjustment process within the disk.
While both processes are accompanied by corresponding energy
release, the readjustment process, which is due to smaller
specific angular momentum of the infalling material than that
of the disk material at the same radius, is taken care in the code
by adding the proper shear force in the momentum equation as
explained in Section 2.3. The shock heating by infalling material
(see the Appendix for details) corresponding to the infall model
outlined in Equations (4) and (5) is

Qin = GM∗Ṁin

4πR3
c

2 − (R/Rc)
(R/Rc)2

[1 + 0.1 cos(2φ)]

if 0.2 Rc " R " Rc (16)

and
Qin = 0 if R < 0.2Rc orR > Rc. (17)

The dissipation of kinetic energy at the shock is treated as an
external heating source since it happens near the disk surface
(Cassen & Moosman 1981). The infall heating term is thus
added at the surface of the disk (see below).

The radiative cooling rate Q− is simply

Q− = 2σT 4f (τ ), (18)

where T and τ are temperature and optical depth at the region
where the cooling rate is calculated. In Equation (18), f (τ ) is
defined as

f (τ ) = 8
3

τ

1 + τ 2
, (19)

which is chosen to accommodate both optically thin and thick
cooling (Johnson & Gammie 2003; Zhu et al. 2010b, 2012). The
optical depth is calculated as τ = Σκ/2 where the Rosseland
mean opacity κ is taken from Zhu et al. (2009).

While the mass and momentum conservation equations can
simply be compared to those in Paper I, the comparison of energy
equations is more complicated. The task is to relate the vertically
integrated thermal energy per unit area E to the disk midplane
temperature. In order to do this, we first assume that the active
layer and the dead zone has their own vertically isothermal
temperatures Ta and Td. If only the active layer exists (because
either the dead zone has been enlivened or surface density is
low enough), the energy equation simply becomes

∂E

∂t
+ ∇ · (Ev) = −P∇ · v + Qvis,a + Qinf (τa)

+ 2σT 4
irrf (τa) − 2σT 4

a f (τa) + Ėin, (20)

and we can relate the midplane temperature (Ta in this case) to
the vertically integrated thermal energy E. Here, f (τ ) is defined
as in Equation (19).

If both the active layer and dead zone exist, then we can write
down an energy equation for each separate layer:

∂Ea

∂t
+ ∇ · (Eav) = −Pa∇ · v + Qvis,a + Qinf (τa)

+ 2σT 4
irrf (τa) − 2σT 4

a f (τa) + 2σT 4
d f (τd )

− 2σT 4
a f (τd ) (21)

and

∂Ed

∂t
+ ∇ · (Edv) = −Pd∇ · v + Qvis,d

+ 2σT 4
a f (τd ) − 2σT 4

d f (τd ) + Ėin. (22)

We note that the above two equations are equivalent to the
energy equations used in the layered model of Paper I (see their
Equations (12) and (13)). Then, the change in total thermal
energy E can be written by adding the two equations:

∂E

∂t
+ ∇ · (Ev) = −Pa∇ · v − Pd∇ · v + Qvis,a

+ Qvis,d + Qinf (τa) + 2σT 4
irrf (τa)

− 2σT 4
a f (τa) + Ėin. (23)

From Equation (21), we can express the term 2σT 4
a as

2σT 4
a = [f (τa) + f (τd )]−1

[
− Pa∇ · v + Qvis,a + Qinf (τa)

+ 2σT 4
irrf (τa) + 2σT 4

d f (τd ) − ∂Ea

∂t
− ∇ · (Eav)

]
.

(24)

Then, by substituting Equation (24) into Equation (23) we obtain

∂E

∂t
+ ∇ · (Ev) = − f (τd )

f (τa) + f (τd )
Pa∇ · v − Pd∇ · v

+
f (τd )

f (τa) + f (τd )
Qvis,a + Qvis,d

+
f (τa)f (τd )

f (τa) + f (τd )
Qin +

f (τa)f (τd )
f (τa) + f (τd )

2σT 4
irr

− f (τa)f (τd )
f (τa) + f (τd )

2σT 4
d + Ėin

− f (τa)
f (τa) + f (τd )

[
∂Ea

∂t
+ ∇ · (Eav)

]
(25)

≈ − f (τd )
f (τa) + f (τd )

Pa∇ · v − Pd∇ · v

+
f (τd )

f (τa) + f (τd )
Qvis,a + Qvis,d

+
f (τa)f (τd )

f (τa) + f (τd )
Qin +

f (τa)f (τd )
f (τa) + f (τd )

2σT 4
irr

− f (τa)f (τd )
f (τa) + f (τd )

2σT 4
d + Ėin. (26)

We find that the last term in Equation (25) generally can be
neglected in the quiescent state, and is also unimportant during
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Table 1
Parameters and Results

αrd αMRI ΣA M∗a Mdisk
a Mburst

b Ṁmax
b ∆tburst

b Dc DT
d

(g cm−2) (M⊙) (M⊙) (M⊙) (M⊙ yr−1) (yr)

0 0.01 100 0.76/0.90 0.24/0.06 1.97 × 10−2 6.19 × 10−5 880 0.031 0.007
10−4 0.01 100 0.78/0.93 0.22/0.03 3.73 × 10−3 1.43 × 10−5 480 0.058 0.016

Notes.
a Masses are taken at the end of infall (0.24 Myr) and at the end of calculations (1 Myr).
b Outburst quantities are averaged over the T Tauri phase.
c Duty cycle for the entire calculation.
d Duty cycle during the T Tauri phase.

outbursts when the thermal energy change is dominated by that
in the dead zone.

In the limiting case of τa, τd ≫ 1, the above equation is
simplified to

∂E

∂t
+ ∇ · (Ev) = −τa

τ
Pa∇ · v − Pd∇ · v +

τa

τ
Qvis,a + Qvis,d

+
1
τ

Qin +
2
τ

σT 4
irr − 2

τ
σT 4

d + Ėin, (27)

where τ ≡ τa + τd .

2.5. Boundary Conditions

A transition is expected in the inner disk from a layered
structure to a fully viscous disk at a radius close enough to
the central star that stellar irradiation produces high enough
temperatures so the MRI can be thermally activated. This
transition should occur at a smaller radius (∼0.05–0.1 AU) than
our inner boundary Rin = 0.2 AU, but taking a smaller inner
radius results in excessive computational times. We therefore
mimic the approximate effect of such a transition by assuming
that the disk inner boundary is always MRI-active and αMRI,d
varies smoothly over the transition region ∆Rtrans = 0.1 AU as

αMRI,d (R) = αMRI,d (R = Rin + ∆Rtrans)

+
[
αMRI − αMRI,d (R = Rin + ∆Rtrans)

]

×
[
1 − sin

(π

2
R − Rin

∆Rtrans

)]
. (28)

We then apply standard open boundary conditions at the inner
and outer boundaries: the radial velocity at the inner boundary
is set to be the same as that of the first computation zone if the
radial velocity is inward, otherwise it is set to 0 in order to avoid
any possible inflow.

2.6. Initial Conditions and Parameters

We cannot treat the initial collapse phase forming the pro-
tostellar core, so we begin the calculations with a 0.2 M⊙
central protostar, using a small surrounding disk of mass
0.007 M⊙ with an initial surface density distribution of Σ(R) =
100(R/AU)−1 g cm−2 to avoid numerical problems (the choice
of stellar and disk masses agrees well with those of a recently
observed Class 0 protostellar system L1527; Tobin et al. 2012.).
In addition, we assume an 1 M⊙ envelope cloud having uni-
form angular velocity of Ωc = 1.15 × 10−14 rad s−1 and tem-
perature of Tenv = 20 K. This yields a net constant infall rate
of ∼3.4 × 10−6 M⊙ yr−1 for the first ∼0.24 Myr of calcula-
tions, adding 0.8 M⊙ to the central star + disk in total. We
use inner and outer boundaries of 0.2 AU and 100 AU, with

128 logarithmically spaced radial grid-cells and 128 linearly
spaced azimuthal grid-cells. With this choice, ∆R/R is constant
to 0.05 and grid-cells have comparable radial and azimuthal
size at all radii. We performed short runs with higher numerical
resolutions which are restarted at the end of infall phase, and
found that the triggering of accretion outbursts is not affected by
the resolution.

In the standard model (Section 3.1), we use αMRI = 0.01,
ΣA = 100 g cm−2, and αrd = 0. In a companion model
(Section 3.2), we test the effect of non-zero dead-zone residual
viscosity with αrd = 10−4. Model parameters and outcomes are
summarized in Table 1.

3. RESULTS

3.1. Standard Model (αrd = 0)

3.1.1. αGI Model

We begin with the αGI model. Figure 1 presents the mass
accretion rate and masses of the central star, the disk, and the
envelope as a function of time. The overall behavior is similar to
that seen in the 1D calculation of Paper I, with outbursts of about
10−4 M⊙ yr−1 superimposed on a roughly steady accretion rate
of ∼10−6 M⊙ yr−1 for the first 0.05 Myr, where this background
“quiescent” rate reduces to ∼10−8 M⊙ yr−1 at later times.

Looking in more detail at the behavior during an outburst
(Figure 2(a)), the current model does not have such a high
initial, short-lived peak in accretion as in the 1D model. This
is because radial pressure gradients were not captured in the
1D calculations which in the 2D case help smooth out the
burst. In addition, the 1D calculations showed a short-lived
drop in the mass accretion rate during the main outburst from
∼3 × 10−5 M⊙ yr−1 to 10−6 M⊙ yr−1 which is not seen in the
2D model.

Figure 2 illustrates the physical conditions which produce
the outbursts, which are basically the same as in the 1D
case. Viscous heating through the MRI and external irradiation
provide comparable amounts of heating at R ! 1 AU. At
R # 20 AU where disk surface density is low, viscous heating
is reduced while external irradiation dominates. At intermediate
radii (1 ! R ! 20 AU), material piles up due to limited mass
transport in the dead zone. Dissipation by the GI dominates
the heating as mass builds up and the outburst is eventually
triggered at ∼2 AU due to the temperature rise driven by the GI
heating. The MRI-active front then propagates inward, raising
the viscosity in the inner disk. The midplane temperature steeply
increases over 104 K at the inner !0.5 AU due to the thermal
instability. These features are essentially the same as in 1D.

We note that since disk self-gravity is not explicitly included
in the αGI model, no evident spiral structure develops and
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Figure 1. (Top) Mass accretion rate and (bottom) masses of the central star
(solid curve), the disk (dashed curve), and the envelope cloud (dotted curve) as
a function of time for the standard αGI model.

Figure 2. (a) Mass accretion rate as a function of time during a single outburst
in the standard αGI model. (b) Surface density and (c) midplane temperature
distributions at the onset (solid curves), at the peak (dashed curves), and at the
end (dash-dotted curves) of the outburst. The horizontal dotted line in panel (c)
represents the MRI activation temperature TMRI = 1500 K. (d) Contributions
of various heating sources at the midplane at the onset of the outburst; external
irradiation (solid curve with dots), viscous heating through the MRI (solid
curve), GI heating (dashed curve), and infall heating (dash-dotted curve). Radial
distributions presented in panels (b)–(d) are taken along the φ = 0 direction.

therefore compressional heating and artificial shock heating are
negligible at all radii.

3.1.2. Self-gravity Model

Figure 3 shows the time evolution of the mass accretion rate
and the masses of central star, disk, and envelope for the full
2D self-gravity model. While the overall behavior for the first
0.1 Myr is nearly identical to that of the αGI case, at later times
the self-gravity case exhibits more smaller bursts of accretion
that are more irregularly spaced in time. This is due to the more
complex disk structure resulting from the propagation of spiral
waves through the disk. The stellar and disk masses at the end
of infall phase are 0.76 M⊙ and 0.24 M⊙, which give Mdisk/M∗
of 0.32.

Figure 3. (Top) Mass accretion rate and (bottom) masses of the central star
(solid curve), the disk (dashed curve), and the envelope cloud (dotted curve) as
a function of time for the standard self-gravity model. The drops in accretion
rate (shown in this figure and other accretion rate plots) are due to the outflow
boundary condition adopted and are not physically realistic.

Figure 4. (a) Mass accretion rate as a function of time during a single outburst in
the standard self-gravity model. (b) Surface density, (c) midplane temperature,
and (d) the Toomre Q parameter distributions during quiescent phase (solid
curves), at the onset (dashed curves), and at the peak (dotted curves) of the
outburst. The horizontal dotted line in panel (c) represents the MRI activation
temperature TMRI = 1500 K. In panel (d), the dotted line indicates Q = 1.
Radial distributions are taken along the φ = 0 direction, but the Toomre Q
parameter is azimuthally averaged.

Figure 4(a) shows the mass accretion rate during a single
outburst, which increases at the beginning of the burst by
three orders of magnitude and then gradually increases to
4.1 × 10−5 M⊙ yr−1 at its peak; the outburst lasts for 1000 yr
over which time a total mass of 0.01 M⊙ is accreted. The burst
is about a factor of 2–3 lower in peak accretion rate than the
αGI model, lasts about two-thirds as long, and exhibits a more
“rounded” form. These differences can be traced to differences
in the way the outburst is triggered. As shown in Figure 4, in
the self-gravity case the outburst is triggered at smaller radii
and at smaller surface densities, which result in a weaker and
shorter accretion episode. The lower maximum accretion rate
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Figure 5. Radial velocity profiles along φ = 0 (a) during quiescent phase, (b) at the onset, and (c) at the peak of the outburst presented in Figure 4. The velocity
profiles show the propagation of GI-induced spiral waves.

Figure 6. Surface density (upper) and midplane temperature (lower) distributions of the inner 10 AU of the disk (left) during quiescent phase before the outburst
presented in Figure 4 occurs, and (middle) at the onset and (right) at the peak of the outburst.
(A color version of this figure is available in the online journal.)

also results in a failure to trigger the thermal instability, which
in turn does not produce the very sharp initial peak in mass
accretion seen in Figure 2.

The outburst is triggered differently in the self-gravity case
by the propagation of spiral waves into inner disk regions which
are formally GI-stable (Figure 5). The velocity perturbations
of the order of 0.5 km s−1 propagate inward and trigger ther-
mal activation of the MRI. Two-dimensional distributions of
surface density and midplane temperature before, at the on-
set, and at the peak of the outburst are presented in Figure 6,
which also show the propagation of spiral density waves and
consequent outburst triggering. Thus, the essentially non-local
aspect of GI produces a quantitative difference in the behavior of
the outburst.

Figure 7 presents contributions of heating sources during the
quiescent phase and at the onset of an outburst. During the
quiescent phase, external irradiation and viscous heating via the
MRI provide comparable amounts of heat, and dominate disk
heating at all radii but the outer disk (R # 10 AU) where external
irradiation dominates. The disk is gravitationally stable during
the quiescent phase, and thus compressional heating through
PdV work and shock dissipation are less important than other
heating sources. As the disk becomes gravitationally unstable,
spiral density waves are generated accompanying a rapid inward
accretion at inner disk. In this example, the inward radial
velocity peaks at ∼2 AU inside of which radii the compressional
heating dominates (dvR/dR < 0). We emphasize that PdV work
is the dominating heating source at the radii providing orders
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Figure 7. Contributions of various heating sources at the midplane (a) during quiescent phase and (b) at the onset of an outburst: external irradiation (solid curve
with dots), viscous heating through the MRI (solid curve), compressional heating (dashed curve), and shock dissipation (dotted curve). Compressional and shock
dissipation heatings are time-averaged over 1000 yr.

Figure 8. (Top) Mass accretion rate and (bottom) masses of the central star
(solid curve), the disk (dashed curve), and the envelope cloud (dotted curve) as
a function of time for the αGI model with αrd = 10−4.

of magnitude greater heat than viscous heating and external
irradiation heating. It is also worth noting that rarefactional
cooling occurs at ∼2–10 AU because dvR/dR > 0 over the
region.

3.2. Effect of Non-zero Residual Viscosity
in the Dead Zone (αrd = 10−4)

3.2.1. αGI Model

Figure 8 shows the mass accretion rate and the masses of the
central star, the disk, and the envelope cloud as a function of
time. As in the standard model, the overall evolution shows a
qualitative resemblance to the αGI model in 1D (see Figure 6 in
Paper I). However, we note that the outbursts have higher peaks
than in the 1D case, which results in faster depletion of the disk.

To compare outburst behaviors, we plot the mass accretion
rate during a single outburst in Figure 9. Radial profiles of
surface densities and midplane temperatures at the onset, peak,
and end of the outburst, as well as contributions of various
heating sources to the midplane temperature are also plotted
in the same figure. In the non-zero αrd model, the dead-zone
residual viscosity generates a significant amount of heating
which dominates at R ! 3 AU. It is greater than the external

Figure 9. Same as Figure 2 but for the αGI model with αrd = 10−4. In panel (d),
the solid curve includes viscous heating through the MRI and hydrodynamic
turbulence in the dead zone (i.e., non-zero αrd) as well.

irradiation over these radii by as much as two orders of
magnitude. GI heating is significant at 2 ! R ! 20 AU due
to large mass in the dead zone, but outbursts are thermally
triggered near the disk inner edge before enough material piles
up for GI to initiate outbursts.

3.2.2. Self-gravity Model

In Figure 10, we plot the mass accretion rate for the non-zero
αrd model as a function of time. The mass accretion rate main-
tains a value of 10−8–10−7 M⊙ yr−1 in between bursts, which is
in agreement with the zero αrd model, but the outbursts generally
have a smaller peak accretion rate ∼10−6–10−5 M⊙ yr−1 than
the ones in the zero αrd model. At the end of infall phase, stellar
and disk masses are 0.78 M⊙ and 0.22 M⊙ giving Mdisk/M∗
of 0.28.

8



The Astrophysical Journal, 795:61 (14pp), 2014 November 1 Bae et al.

Figure 10. (Top) Mass accretion rate and (bottom) masses of the central star
(solid curve), the disk (dashed curve), and the envelope cloud (dotted curve) as
a function of time for the self-gravity model with αrd = 10−4.

Figure 11. (a) Mass accretion rate as a function of time for an outburst occurred
during the infall phase (t ∼ 0.23 Myr) when disk self-gravity is important.
Radial distributions of (b) surface density, (c) midplane temperature, and (d)
the Toomre Q parameter at the beginning of the outburst are plotted as well.
Horizontal dotted line in panel (c) indicates the MRI activation temperature
TMRI and the one in panel (d) shows where Q = 1. The vertical dashed lines
present the radii between which infalling material from the envelop cloud falls
on at this time. Radial distributions are taken along the φ = 0 direction, but the
Toomre Q parameter is azimuthally averaged.

Figure 11 shows the accretion rate of an outburst that occurred
during the infall phase and the radial profiles of surface density,
midplane temperature, and the Toomre Q parameter at the
beginning of the outburst. During the infall phase when the disk
is fed by infalling material, the outburst-driving mechanism
is similar to that of the standard model: spiral density waves
propagate inward starting from the gravitationally unstable outer
disk, triggering the MRI in the dead zone through compressional
heating. However, after infall stops the inner disk is viscously
heated and thermally driven bursts are triggered before material
piles up at larger radii. The transition between the GI + MRI-
driven outbursts and the thermally driven outbursts occurs soon
after the mass feeding from the envelop cloud is ceased, at
t ∼ 0.3 Myr. Figure 12 shows the accretion rate and radial

Figure 12. Same as Figure 11 but for an outburst that occurred during the
“T Tauri phase” (t ∼ 0.41 Myr after infall has stopped) when disk self-gravity
becomes negligible. We note that the whole disk is gravitationally stable (Q > 1)
and there is no signature of spiral waves propagating in the surface density and
midplane temperature distributions.

profiles of surface density, midplane temperature, and the
Toomre Q parameter at the initiation of an outburst occurring
after the infall phase. As shown, the outburst is thermally
triggered near the disk inner edge before the outer disk becomes
gravitationally unstable. We note that there is no signature
of spiral waves at the initiation of the burst. Contributions
from various heating sources at the onset of thermally driven
outburst are plotted in Figure 13. As can be seen, the inner disk
(R ! 10 AU) is mainly heated by viscous heating in the dead
zone and heating from PdV work and shock dissipation is less
important.

4. DISCUSSION

4.1. GI-induced Spiral Density Waves

As we have described, the propagation of GI-induced spiral
density waves plays a crucial role in triggering accretion
outbursts and thus in the evolution of protoplanetary disks.
Figure 14 illustrates the spatial distribution of perturbations to
the surface density δΣ/⟨Σ⟩ in the φ– log R plane at the onset of
the GI + MRI-driven outburst presented in Figure 4. As seen in
the figure, m = 2 trailing spiral density waves are dominant.
They originate at ∼7 AU where the disk is gravitationally
most unstable, while extending over a range of disk radii from
∼0.4 AU to ∼15 AU.

In order to measure the strength of the GI-induced stress, we
calculate the gravitational shear stress in terms of an effective α
(Lynden-Bell & Kalnajs 1972; Gammie 2001) as

αsg = −
(

d ln Ω
d ln R

)−1
〈 ∫ ∞

−∞ gRgφ/(4πG)dz
〉

〈
Σc2

s

〉 , (29)

where gR and gφ are self-gravitating acceleration in the R and
φ directions and the brackets denote the azimuthal average.
The vertical integration in the above equation is numerically
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Figure 13. Contributions of various heating sources at the midplane at the onset
of the thermally driven outburst presented in Figure 12: external irradiation
(solid curve with dots), viscous heating through the MRI plus dead-zone
residual viscosity (solid curve), compressional heating (dashed curve), and
shock dissipation (dotted curve). Compressional and shock dissipation heatings
are time-averaged over 1000 yr. Note that the internal viscous heating dominates
at R ! 10 AU with the help of non-zero αrd.

done in the FARGO-ADSG code by changing B2 to B2 + η2 in
Equations (A1) and (A3) of Baruteau & Masset (2008), where
η is defined as z = ηR (see Appendix A of Baruteau et al.
2011). We vary η evenly by 0.01 from 0 to 1 for the integration
(C. Baruteau 2014, private communication). In addition to the
stress directly generated from the gravitational field, GI also
produces density and velocity fluctuations that contribute to
mass transport and heat dissipation. This can be quantified using
the Reynolds stress calculated as

αrey = −
(

d ln Ω
d ln R

)−1 ⟨ΣδvRδvφ⟩〈
Σc2

s

〉 , (30)

where δvR = vR − ⟨vR⟩ and δvφ = vφ − ⟨vφ⟩.
The azimuthally averaged radial profiles of αsg and αrey are

plotted on the right panel of Figure 14. At the initiation of the
outburst, gravitational stress αsg is 0.004 at the radius where
the spiral waves are generated. However, the GI-induced spiral
waves generate additional hydrodynamic turbulence across a
broader region. In terms of αrey, the stress is as large as 0.01
at ∼10 AU. Also, we note that while gravitationally stable at
R ! 1 AU the propagating spiral waves provide ∼10−3 of αrey
in the region. We note that the mass transport through the MRI
across this inner region is limited (αeff ∼ 10−4) because of
relatively large mass in the dead zone.

In Figure 15, we present the time variation of the radial
αsg and αrey profiles in the standard self-gravity model over
t = 0.2–0.5 Myr. We emphasize that the disk repeatedly
produces GI-induced stresses which are not constant over time
or gradually increasing/decreasing, but are rather sporadic. This
sporadic feature can be understood as a self-regulation process
of a disk that stabilizes itself by redistributing mass through the
action of spiral waves.

Figure 14. Left: spatial distribution of surface density enhancement/deficit δΣ/⟨Σ⟩ on the φ– log R plane at the onset of the outburst presented in Figure 4. Right:
azimuthally averaged radial profiles of αsg, αrey, and αeff are plotted. The total stress induced by GI (αsg + αrey) is also plotted with red crosses.
(A color version of this figure is available in the online journal.)
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Figure 15. Radial profiles of (left) the stress generated directly from the self-gravitating acceleration field αsg and (right) the total stress induced by self-gravity
αsg + αrey in logarithmic scale during t = 0.2–0.5 Myr for the self-gravity model with zero αrd. Red triangles on the left panel indicates the time at which outbursts
occurred.
(A color version of this figure is available in the online journal.)

In terms of the generic α viscosity, this study shows that the
total stress driven by GI, while it is a function of time and radius,
becomes as large as ∼0.01 locally. This is comparable to the
previously used α treatments of disk self-gravity, where an αGI
of 0.01–0.03 (Lin & Pringle 1987, 1990; Armitage et al. 2001;
Zhu et al. 2010a, 2010b; Martin & Lubow 2011; Martin et al.
2012; Bae et al. 2013a) is locally assumed for a gravitationally
unstable disk region with Q = 1.

4.2. Accretion Outbursts as a Potential
Solution to the Luminosity Problem

As mentioned in the Introduction, time-variable protostel-
lar accretion might help resolve the luminosity problem in
low-mass star formation. To address the implications of our
calculations, in Figure 16 we plot the fractional distributions
of the mass accretion rate for the infall phase, during which
time the central protostar is still embedded. The highest peak at
∼10−8 M⊙ yr−1 represents the quiescent disk accretion phase in
between outbursts; this accounts for roughly two-thirds of the
total time during infall; the peak at ∼10−6 M⊙ yr−1 corresponds
to the early phase of quasi-steady disk accretion at the singular
isothermal sphere infall rate, corresponding to about one quarter
of the protostellar phase; and the broad peak at #10−5 M⊙ yr−1

is due to outbursts, which corresponds to about 7% of the infall
phase in the zero αrd and about 14% of the time in the non-
zero αrd model. For typical mass–radius relations, accretion at
!10−7 M⊙ yr−1 produces sufficiently low luminosities to be
compatible with observations (Kenyon et al. 1990; Offner &
McKee 2011).

While our models illustrate the possibility of outburst be-
havior to help resolve the luminosity problem by having pro-
tostars spend most of the infall phase accreting slowly, a real
test would require constructing a luminosity function for an en-
tire population of protostars weighted by the stellar mass func-
tion (e.g., Offner & McKee 2011; Dunham & Vorobyov 2012).
In addition, the distribution of initial angular momenta among
the different mass protostellar clouds would be an important

parameter. The quasi-steady accretion phase, where infall to
the inner disk produces high enough temperatures for the MRI
to be activated and thus the disk accretes at roughly the same
rate as the matter falls onto the disk, can be problematic if it
persists for too large a fraction of the infall phase. In turn, the
fraction of time spent in the quasi-steady phase is a function
of the initial angular momentum, because slower rotation leads
to more mass being accreted at small disk radii. Conversely,
large initial angular momenta produce large disks with accretion
strongly modulated by outbursts, as in the models of Vorobyov
& Basu (2005, 2006, 2010). Further progress on this problem
would be strongly aided by observational constraints on the
angular momentum distributions among protostellar cores of
differing masses.

We note that our models, as in those of Zhu et al. (2010a),
also exhibit outbursts in the post-infall or T Tauri phase, for
which there is little observational evidence. The mechanisms
producing outbursts in the models are sensitive to the amount
of radiative trapping of dissipated energy, which thus depends
upon the surface density and dust opacity; lowering either of
these makes it much more difficult to trigger outbursts. Thus,
over T Tauri lifetimes, removal of mass by photoevaporation
(e.g., Owen et al. 2011) and dust growth (e.g., Miotello et al.
2014) can reduce the disk opacity and thus radiative trapping of
thermal energy in the disk becomes less efficient, lessening the
number of outbursts or even preventing them all together.

4.3. Comments on Other Possible
Outburst-driving Mechanisms

Thermal instability was one of the first proposed mechanisms
aiming to explain the accretion outbursts of FU Ori (e.g.,
Bell & Lin 1994). The basic idea is that disk opacity steeply
increases between ∼2000 K and few 104 K due to the ionization
of hydrogen. However, raising the disk temperature to such high
values to initiate thermal instability is limited only to small radii
(few R⊙). Zhu et al. (2007) used radiative transfer modeling of
FU Ori and found that the hot inner disk must extend out to
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Figure 16. Distributions of mass accretion rate during the infall phase with logarithmic bins for self-gravity models with (left) zero and (right) non-zero αrd. The
histograms can be divided into three phases as indicated by the vertical dotted lines; the early quasi-steady accretion phase, outbursts, and quiescent phase in between
bursts. The percentages show fractional time spent in each phase.

∼1 AU, concluding the fit is inconsistent with a pure thermal
instability model. Therefore, while the thermal instability model
should not be completely ruled out, we conjecture the model
seems to work better when combined with other mechanisms
rather than in isolation.

Vorobyov & Basu (2005, 2006, 2010) suggest that outer
disks can fragment and form dense clumps which then migrate
inward and eventually accrete onto the central star. Vorobyov
& Basu (2010) included the effect of radiative cooling, viscous
and shock heating, stellar and background irradiation and solve
disk self-gravity to study protostellar evolution starting from the
initial collapse phase. They found disks fragment at several tens
to hundreds AU, whereas we do not see any disk fragmentation
in our calculations. We conjecture this is mainly attributable to
the different initial angular momenta assumed in the models.
In terms of angular velocity of collapsing core, this study used
Ωc = 1.15 × 1014 rad s−1 which is the median value inferred by
Bae et al. (2013b), who reproduced observed disk frequencies
as a function of age where disk dispersal by photoevaporation is
assumed. In contrast, the reference model of Vorobyov & Basu
(2010) assumed Ωc ∼ 9 × 1014 rad s−1, which is about an order
of magnitude greater than ours. It is also worth to compare the
ratio of rotational to gravitational energy β = Erot/|Egrav|. In
this study, we use a two-component density profile for the initial
Bonnor–Ebert sphere which is described as

ρ = ρc at ξ < ξc (31)

and
ρ = 2ρcξ

−2 at ξc < ξ < 6.5, (32)

where ρc is the central density and ξ = r/(c2
s /4πGρc)1/2 is the

non-dimensional radial distance. Note that the density profile
beyond ξ = ξc has the same profile as the singular isothermal
model, and ξ = 6.5 corresponds to the critical Bonnor–Ebert
sphere radius. As our initial conditions assume the flat, inner part
of the Bonnor–Ebert is collapsed to 0.2 M⊙ central protostar
leaving outer 1 M⊙ of envelope cloud, the corresponding ξc

becomes 1.78. With this initial setup β = 3.0 × 10−4, which is

smaller than the one used in the reference model of Vorobyov
& Basu (2010) by a factor of ∼40.

We also note that while the suggested process in Vorobyov
& Basu (2005, 2006, 2010) seems plausible, it is uncertain
whether the clumps created at relatively large radii eventually
accrete onto the central star and lead to a rise in the accretion rate
given their placement of the inner boundary at a relatively large
radius (Rin = 5 AU). For instance, it may be possible that the
clumps are tidally destroyed as they migrate (Zhu et al. 2012).
With such a large inner boundary one can also miss important
physics including GI + MRI and thermal triggering of outbursts
at smaller radii as we show in this paper. We tested our model
with an inner boundary of Rin = 5 AU and not surprisingly
found that neither GI + MRI-driven nor thermally driven
outbursts occur.

5. CONCLUSIONS

In this paper, we explicitly solve disk self-gravity to inves-
tigate the triggering of accretion outbursts in two dimension
starting from the collapse of an isothermal, uniformly rotating
core. We find that gravitationally unstable disks generate spiral
density waves that heat disks via compressional heating and can
trigger accretion outbursts by activating the MRI in the disk
dead zone. We emphasize that the GI-induced spiral waves can
propagate well inside of the gravitationally unstable region be-
fore they trigger outbursts at R ! 1 AU; this feature cannot be
reproduced with the previously used local αGI treatments. As
suggested in our previous 1D calculations (Paper I), we further
confirm that the presence of a small but finite αrd of 10−4 trig-
gers thermally driven bursts of accretion soon after mass feeding
from envelope cloud is ceased, instead of GI + MRI-driven out-
bursts. We argue that the episodic mass accretion during proto-
stellar evolution can qualitatively help explain the low accretion
luminosities seen in low-mass protostars, while allowing the
protostars to grow in mass on the requisite timescales, although
a proper test will require calculations for differing final proto-
stellar masses as well as some constraint on the distribution of
angular momenta as a function of protostellar core mass.
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Our current models include only a very crude treatment of
the activation of the MRI, and this can strongly affect the de-
tailed nature of the outbursts in the inner disk. Better predic-
tions of accretion luminosities will require 3D magnetohydro-
dynamic simulations which can treat the MRI activation in the
innermost disk.

This work was supported in part by NADA grant
NNX11AK53G, and computational resources and services pro-
vided by Advanced Research Computing at the University of
Michigan, Ann Arbor. Z.Z. acknowledges support by NASA
through Hubble Fellowship grant HST-HF-51333.01-A awarded
by the Space Telescope Science Institute, which is operated by
the Association of Universities for Research in Astronomy, Inc.,
for NASA, under contract NAS 5-26555.

APPENDIX

INFALL HEATING

Here, we derive the infall heating by shock dissipation given
in Equation (16). Assuming an axisymmetric infall model for
simplicity, mass, angular momentum, and energy equations in
cylindrical coordinates are

R
∂Σ
∂t

− 1
2π

∂Ṁ

∂R
= RΣ̇in, (A1)

R
∂

∂t
(ΣR2Ω) − 1

2π

∂

∂R
(ṀR2Ω) = ∂

∂R
(R2ΠRφ) + R2Σ̇invφ,in,

(A2)
and

R
∂

∂t
(ΣE) − 1

2π

∂

∂R
(ṀE) = RQ+ − 2RσT 4. (A3)

In the above equations, Σ is the surface density, Ṁ is the
radial mass flux defined as Ṁ ≡ −2πRΣvR , Σ̇in is the infall
rate defined as Σ̇in = Ṁin/2πRcR, Ω is the angular velocity,
ΠRφ is R–φ component of the viscous stress tensor, M∗ is
the stellar mass, Rc is the centrifugal radius, E is the total
energy per unit mass except thermal energy, Q+ includes
all heating sources except the infall heating, and T is the
disk temperature. Assuming instantaneous centrifugal balance
and ΠRφ = RΣνdΩ/dR, Equations (A1) and (A2) can be
simplified to

Ṁ = 6πR1/2 ∂

∂R
(R1/2Σν) +

2πR2Σ
M∗

∂M∗

∂t

− 4πR2Σ̇in

[(
R

Rc

)1/2

− 1

]

. (A4)

For the next, combining Equations (A1) and (A3) gives

Σ
∂E

∂t
= Q+ − Σ̇inE +

Ṁ

2πR

∂E

∂R
− 2σT 4. (A5)

From now on, let us focus on the terms induced from infall only.
By substituting Ṁ in Equation (A5) with Equation (A4), we get
the total heating due to infall as follows:

Qin,total = −Σ̇inE − 2RΣ̇in

[(
R

Rc

)1/2

− 1

]
∂E

∂R
. (A6)

Figure 17. Normalized infall heating as a function of radius. The total infall
heating is plotted with a solid curve while heating through the instantaneous
shock dissipation and the readjustment process are plotted with a dashed and a
dotted curve, respectively. At the centrifugal radius Rc infalling material arrives
at the disk surface nearly horizontally with the Keplerian azimuthal velocity, so
all the kinetic energy is dissipated through shocks.

When it arrives at the disk surface, infalling material has a
velocity of

vR = −
(

GM∗

R

)1/2

, (A7)

vθ =
(

GM∗

R

)1/2

cos θ0, (A8)

vφ =
(

GM∗

R

)1/2

sin θ0, (A9)

where θ0 is the angle between the orbital plane and the rotation
axis of the system and sin2 θ0 = R/Rc at the disk surface
(Cassen & Moosman 1981). Thus, infalling material brings zero
total energy (Etot = Ekin + Epot = GM∗/R − GM∗/R = 0),
while disk material has total energy of −GM∗/2R assuming a
Keplerian disk. Using Equation (A6) the total infall heating that
corresponds to the additional energy of infalling material is

Qin,total = GM∗Ṁin

4πR3
c

3 − 2(R/Rc)1/2

(R/Rc)2
. (A10)

At the disk surface, only the kinetic energy corresponding to the
vR and vθ component of the infall is released instantaneously
through the shock, which is (2 − R/Rc)GM∗/2R. The heat
dissipated through the shock dissipation is then

Qin,shock = GM∗Ṁin

4πR3
c

2 − (R/Rc)
(R/Rc)2

. (A11)
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The rest of the additional energy is taken care by the code with
a proper shear force term in the momentum equation, which
would correspond to

Qin,readjust = GM∗Ṁin

4πR3
c

1 + (R/Rc) − 2(R/Rc)1/2

(R/Rc)2
. (A12)

The normalized infall heating profile as a function of radius
is presented in Figure 17 to show their relative importance at
each radius.
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