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ABSTRACT

Context. The vertical shear instability is one of several known mechanisms that are potentially active in the so-called dead zones
of protoplanetary accretion disks. A recent analysis of the instability mechanism indicates that a subset of unstable modes shows
unbounded growth – both as resolution is increased and when the nominal lid of the atmosphere is extended. This trend suggests that,
possibly, the model system is ill-posed.
Aims. This research note both examines the energy content of these modes and questions the legitimacy of assuming separable
solutions for a problem whose linear operator is fundamentally inseparable.
Methods. The reduced equations governing the instability are revisited and the generated solutions are examined using both the
previously assumed separable forms and an improved non-separable solution form that is introduced in this paper.
Results. Reconsidering the solutions of the reduced equations by using the separable form shows that, while the low-order body modes
have converged eigenvalues and eigenfunctions (for both variations in the model atmosphere’s vertical boundaries and radial numerical
resolution). It is also confirmed that the corresponding high-order body modes and the surface modes indeed show unbounded growth
rates. The energy contained in both the higher order body modes and surface modes diminishes precipitously due to the disk’s
Gaussian density profile. Most of the energy of the instability is contained in the low-order modes. An inseparable solution form is
introduced to filter out the inconsequential surface modes, leaving only body modes (both low- and high-order ones). The analysis
predicts a fastest growing mode with a specific radial length scale. The growth rates associated with the fundamental corrugation and
breathing modes match the growth and length scales observed in previous nonlinear studies of the instability.
Conclusions. Linear stability analysis of the vertical shear instability should be done assuming non-separable solutions, especially for
settings involving boundaries in the radial direction. We also conclude that the surface modes are relatively inconsequential because
of the little energy they contain, and are artifacts of imposing specific kinematic vertical boundary conditions in isothermals disk
models.
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1. Introduction

The vertical shear instability (VSI; Urpin 2003; Urpin &
Brandenburg 1998; Arlt & Urpin 2004; Nelson et al. 2013;
McNally & Pessah 2015; Stoll & Kley 2015), also known as
the Goldreich Schubert Fricke instability (Goldreich & Schubert
1967; Fricke 1968) is a linear instability of axisymmetric inertial
modes that relies on the vertical shear of the basic near-Keplerian
flow state. This instability may be active in non-magnetized
parts of protoplanetary accretion disks and is perhaps discernible
in their dead zones (Turner et al. 2014). Nelson et al. (2013,
NGU13 hereafter) and Stoll & Kley (2014) demonstrate that the
instability can generate a modest amount of turbulence, with ef-
fective disk ↵ ranging somewhere between 4 ⇥ 10�4 and 10�3.
In both studies, the basic background setting is that of a locally
isothermal disk with a radial temperature gradient arising either
from some external imposition (NGU13) or appearing naturally,
as a result of radiative transfer e↵ects (Stoll & Kley 2014).

A satisfactory linear stability analysis is still missing for the
disk setting. While the basic essence of the instability has been
sketched out using a local point analysis (Goldreich & Schubert
1967; Fricke 1968; Urpin 2003), the way the instability mani-
fests itself in a global or semi-global disk setting is di�cult to as-
sess because the basic linear stability problem is non-separable1

even in the simplest model reduction (NGU13; Barker & Latter
2015, BL15 hereafter). NGU13 and BL15 present a similar lin-
ear stability analysis using a reduced model set, and they show
that, while the low-order modes that go unstable are consistent
with the time scales of the instability seen in the numerical ex-
periments, there are some serious shortcomings associated with
the analysis that cast doubt on whether it accurately describes
the physical manifestation of the VSI, especially when analyzed
in the locally isothermal disk setting.

1 In the usual sense where a function f (x, y) may or may not be written
as a product of functions purely of x and purely of y.
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The mode analyses done by NGU13 and BL15 show that if
one assumes radially propagating traveling waves, there are two
classes of modes loosely referred to as body modes and surface
modes. The surface modes come into existence if one imposes
no-flow boundary conditions like an impenetrable lid at posi-
tions above and below the disk midplane (usually at least a few
local disk scale heights or higher). The body modes are present
irrespective of the kinematic conditions in the vertical, so long as
their kinetic energies decay far enough away from the midplane
(see below). BL15 also point out that the surface modes mulitply
as the radial disturbance wavelengths become shorter. BL15 and
NGU13 show that, for a given value of the radial wavenumber,
there is a mode with the fastest growth rate, which corresponds,
generally, to a surface mode.

However, there are three troubling features:

1. As the nominal lid of the atmosphere is extended to infinity,
the fastest growing eigenmodes have growth rates that be-
come similarly unbounded, growing like

p
m for integer m

representing the number of vertical nodes in the disturbance
(BL15).

2. Where no-flow boundary conditions are imposed in the ver-
tical direction, the number of unstable surface modes (with
increasingly finer length scales) increases with higher radial
resolution, possibly suggesting that the fundamental problem
in the model VSI setup itself could be ill-posed – at least with
respect to these surface modes (BL15).

3. As the wavelength of the radially propagating traveling wave
becomes larger, the growth rate similarly increases in an un-
bounded way.

With regards to the third feature, both numerical simulations of
NGU13 and Stoll & Kley (2014) indicate that a radial scale of
maximum linear growth exists, yet neither of the analyses of the
asymptotically reduced equations examined by NGU13 or BL15
allow for such a trend. Is it possible that the reason for this is
the breakdown in the validity of the reduced equations, which
hinges on the assumption of radial geostrophy in the dynam-
ics, or might this be a problem with the assumption of radial
traveling waves? These questions are reviewed in more detail in
Sect. 2.

In Sect. 3, we argue that the first two of the troubling fea-
tures listed does not lead to any serious deficiency in either the
reduced set of equations or in the robustness/validity of the VSI
itself. This is because both the surface modes and the other high
nodal modes (i.e. high m) carry very little of the total vertical
kinetic energy of the system. For the third feature, we consider
this pathology to be a shortcoming of adopting a traveling wave-
like solution and not a deficiency of the reduced set of equations.
This, in turn, is intimately related to incorrectly assuming sep-
arable solution forms for a problem that is inherently insepara-
ble2. We present an improved approximation in Sect. 4, where
we adopt a relatively tractable, non-separable solution form and
reanalyze the reduced equations. We find that there are maxi-
mally growing disturbances at some finite radial length scale and
that they, in turn, match the growth rates and fastest growing ra-
dial scales reported in NGU13. In Sect. 5 we briefly discuss our
findings.

2 Another way of viewing this is to say that adopting boundary con-
ditions that permit simple traveling waves solutions are probably not
physically relevant to a disk.

2. Background

In both NGU13 and BL15, the following asymptotic reduced
set of equations governing the dynamics of the VSI was shown
to be appropriate for describing the linear development of the
instability of axisymmetric disturbances:

0 = 2⌦0v �
@⇧̃

@x
, (1)

@v

@⌧
= � 1

2⌦0 ũ � ⌦0

2
qzw, (2)

@w

@⌧
= �@⇧̃

@z
, (3)

0 =
@u
@x
+
@w

@z
� zw, (4)

with ⌦0 the local rotation rate of the disk section at a distance R0
from the parent star, the above set was obtained assuming that
the spatial and temporal scales of motion are related to one an-
other according to the following: temporal dynamics are given
by O �

1/✏⌦0

�
, radial dynamic scales x are O

⇣
✏2R0

⌘
, and the ver-

tical scales z are on the scale height H0 = O (✏R0), in which the
small parameter ✏ ⌘ H0/R0 measures the relative thinness of the
disk (which is usually taken to be approximately 0.05 in most
theoretical studies, including the ones cited above). The scaled
radial and vertical velocities are u and w, respectively, while v is
the deviation azimuthal velocity with respect to the background
near-Keplerian flow, and ⇧̃ is the scaled pressure perturbation.
These equations model disk inertial modes with very short ra-
dial wavelengths. The degree of the vertical shear, which varies
with disk height z, is controlled by the parameter q (where no
vertical shear is equivalent to q = 0). In both NGU13 and Stoll
& Kley (2014), the value of q = �1 is adopted. Equation (1)
states that the disturbances are largely in radial geostrophic bal-
ance. Equations (2), (3) are the azimuthal and vertical momen-
tum equations while Eq. (4) is the anelastic equation of state.
See both NGU13 and BL15 for further details regarding the
derivation of this set of reduced equations. Because the equa-
tions have been appropriately non-dimensionalized, we hence-
forth set ⌦0 = 1 on all of the Coriolis and vertical shear terms
appearing in Eqs. (1), (2).

This simplified model may then be combined into a sin-
gle partial di↵erential equation (PDE) for the scaled pressure
perturbation

� @
2

@t2
@2⇧̃

@x2 +
@2⇧̃

@z2 +

 
1 + q

@

@x

!
z
@⇧̃

@z
= 0. (5)

Assuming normal mode solutions ⇧̃ = ⇧̂(x, z) e�i!t + c.c. trans-
forms the above PDE into the simpler one:

!2 @
2⇧̃

@x2 +
@2⇧̃

@z2 +

 
1 + q

@

@x

!
z
@⇧̃

@z
= 0. (6)

The task still remains to construct solutions to this system and
determine the eigenvalue! that, in turn, determines the temporal
response. Inspection of the above form shows that this system is
inseparable when q , 0, which introduces a number of problems
with regards to linear stability analyses that we discuss briefly
below.
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One might continue to analyze this system assuming an
approximate separable form3. For instance, as was done by
BL15, one can consider the relatively tractable traveling-wave
ansatz as

⇧̂ = Z(z)eikx. (7)

Equation (6) can then be simplified further to

�k2!2Z +
@2Z
@z2 +

�
1 + iqk

�
z
@Z
@z
= 0, (8)

where Z(z) is an, as yet undetermined, vertical structure function.
The above equation, which is explicitly the same form as appear
in BL15, is in the form of Hermite’s equation. One solution of
this system that admits tractable analytic results is to allow per-
turbations to show (at most) algebraic growth as |z| ! 1, in
which case

Z(z) = Hem(z) (9)

is an acceptable solution, where m is a positive index and Hem
is the Hermite polynomial of order m. The index m counts the
number of vertical nodes in the pressure eigenfunction, and is
thus referred to as indicating this quality throughout the rest of
this Research Note. When inserted into Eq. (6), we find that this
solution form is an actual solution, provided the following rela-
tionship holds:

! =

p
m

k

p
1 + ikq. (10)

As discussed in BL15, the growth rate associated with this
form increases without bound as k ! 0. We agree that this
is pathological for a number of reasons, the following two be-
ing most prominent: (i) the approximation of radial geostrophy
most likely breaks down when the horizontal wavelengths be-
come large; and (ii) because, as we show in the next section, the
traveling wave ansatz is also deeply flawed. This solution is also
problematic because the growth rates increase without bound,
both as the integer m increases and as k decreases. Nonetheless,
this simplest solution indicates that the system is ill-posed as
higher-order vertical modes (increased m) are included in the
analysis.

We note that this solution ansatz cannot recover surface
modes for the obvious reason that no kinematic boundary con-
ditions are either imposed or enforced in the vertical. We also
observe the following: that since both the atmosphere density
drops o↵ as a Gaussian (i.e. ⇢0 ⇠ exp�z2/2) and that eigen-
modes have zm structure, the e↵ect of adopting a free vertical
boundary condition is to imply that kinetic energies of all modes
decay to zero as z! ±1.

Another approach is the one taken by NGU13 and BL15 in
which Eq. (8) is solved with no-normal-flow boundary condi-
tions at the vertical boundaries at z = ±H (we note that H refers
to the height of the solution domain and H0 refers to the disk

3 If the calculation domain is on a uniform rectangular grid, a sure
way to guarantee an unambiguous determination of eigenvalues and
eigenmodes is to apply a finite di↵erence discretisation of Eq. (6).
With Nz and Nx discretisation points in the vertical direction and ra-
dial direction, the resulting eigenvalue system requires inversion of
(NxNz) ⇥ (NxNz) sized (relatively) sparse matrices. High resolution
in both the radial and vertical direction are desirable and, therefore,
Nz ⇡ 150, Nx ⇡ 100 are preferred resolutions, which means construct-
ing matrices that are prohibitively large to invert and challenging to
reconfigure into known sparse matrix formulations.
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Fig. 1. Growth rates, Im(!), and frequencies, Re(!), of solutions of
Eq. (8) subject to no-normal-flow boundary conditions at z = ±H,
where H is in units of scale heights. Top panel: distribution shown for
k = 2, and H = 5 (diamonds), and H = 7 (open circles). As H increases,
more surface modes become activated and high-order body modes have
increased growth rates. In both cases shown, the frequency and growth
rates of low-order body modes (labeled m1,m2,m3) remain unchanged.
The surface modes generally appear in pairs as indicated by labeling
the topmost surface mode with the superscript S ±1 . This panel confirms
the trends reported by BL15. Bottom panel: distribution of the complex
frequencies shown for di↵ering values of k with fixed H = 5: k = 5
(crosses), k = 2 (diamonds), k = 0.5 (open circles). The growth rates
increase without bound as k is decreased, with the same trend identified
in the problem with no vertical boundaries as found in Expression (10).
As k is increased, the number of surface modes increases, including
the maximum growth rates which also confirms the results reported
in BL15.

scale height in this paper), which amounts to stating that @z⇧̃ = 0
at z = ±H provided ! , 0, which follows from the normal mode
form of Eq. (3). The general solution of (8) is given by

Z(z) = A He�(z) + B� 1F1

 
��

2
,

1
2
,

z2(1 + iqk)
2

!

where 1F1 is a confluent hypergeometric function of the first
kind and where � is the usual separation constant which is de-
termined through the application of boundary conditions. The
second of these special functions does not o↵er very much in the
form of analytical insight (NGU13) except in the guise of certain
asymptotic limits (BL15), and as such, it is more convenient to
numerically solve Eq. (8) directly.

The numerical eigenvalues determined by this procedure re-
cover the surface modes as well as the body modes of the VSI.
The low-order body modes (the fundamental and first over-
tone breathing and corrugation modes) are also recovered with
eigenvalues consistent with the numerical results of NGU13.
However, this system introduces apparent pathologies, which
are shown in Fig. 1. There are generally three branches of so-
lutions: one associated with low-order body modes with rel-
atively low frequencies, another branch of body modes with
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higher frequencies and a third short branch consisting of sur-
face modes. The high-frequency branch of body modes shows
decreasing growth rates as the mode frequency increases, while
the low-order body modes show an increasing growth rate with
increasing frequency.

However, as BL15 demonstrate, when the location of the ver-
tical height is increased, the following occurs: (a) The growth
rates of the high-frequency branch increases; (b) the growth rates
of the surface body modes also increase; while (c) the growth
rates and frequencies of the low-order body modes remain un-
changed, and (d) as the lid of the atmosphere is raised to ±1,
the low- and high-order body modes line up with the frequen-
cies and growth rates expressed in Eq. (10). This corresponds
to the response predicted assuming the ansatz found in Eq. (7).
While it would seem that imposing vertical no-flow boundary
conditions removes the ill-posed nature of the model problem,
the system’s ill-posedness appears to manifest itself as H ! 1,
since the growth rates in the high-order body modes and surface
modes correspondingly increase, once again seemingly without
bound. This is problematic and suggests that the model problem
may be ill-posed after all.

The situation deteriorates even further if we consider the be-
havior of the surface modes, as BL15 indicate: an increase in the
radial resolution (larger k) causes the number of surface modes
attached to the upper and lower no-flow boundaries to prolifer-
ate, as the second panel of Fig. 1 clearly illustrates. Raising the
position of the lid in the model also increases the growth rate of
the fastest-growing surface modes, which is also indicative of an
ill-posed model.

Moreover, another serious shortcoming implied by the re-
sults of the linear stability solutions developed in NGU13 and
BL15, is that they do not predict finite, non-zero maximally
growing radial wave disturbances, something that is observed in
the numerical experiments of NGU13 and Stoll & Kley (2014).
This suggests that assuming wavelike modes in the radial direc-
tion is either flawed or, at the very least, not physically relevant.

3. Mode kinetic energies

In spite of these troublesome features, these approximate theo-
retical solutions reveal a lot about the physical nature of the de-
veloping instability, especially in relation to the high frequency
body modes and the proliferating surface modes. For example,
they provide information on the relative energy content for each
mode. The low-order body modes carry most of the inertia of the
disk disturbances since their amplitudes are greatest near z = 0
(NGU13, BL15). Because these are also locations where most
of the disk mass is concentrated, the energy contained in these
low-order body modes dominate the corresponding energy con-
tained in the higher order body and surface modes. This has a
direct consequence on the interpretation of the VSI, even in the
context of this somewhat incomplete analysis.

To illustrate this quantitatively, Fig. 2 shows a comparison of
the relative energy densities contained in representative modes,
labeled in the top panel of Fig. 1, which corresponds to solutions
of Eq. (8) with H = 5 and k = 2. From Eq. (3) it follows that
each eigenmode Z(z) generates a corresponding vertical velocity
eigenfunction w = i!�1@zZ. We normalize each vertical velocity
eigenfunction so that
Z H

�H
|w|dz = 1. (11)

Since the reduced equations represent an isothermal atmosphere,
the steady-state density is given by ⇢0 = exp

� � z2/2
�
. We also
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Fig. 2. Vertical kinetic energy density plots, Ez, plotted for the modes
labeled in the top panel of Fig. 1, which corresponds to solutions of
Eq. (8) with H = 5 and k = 2. Each corresponding vertical velocity
eigenfunction w is normalized, such that

R 5
�5 |w|dz = 1. Shown here:

a) low-order body modes m1,m2 (solid and dashed lines respectively);
b) low-order body mode m3; c) fastest growing surface modes, S +1 , S

�
1

(solid and dashed lines respectively), and d) a high-order body mode,
m13 . The lowest order body mode, m1 is the fundamental corrugation
mode that dominates the energy density, contained in the high-order
body modes and the surface modes by, at least a factor of 103. The
energy density contained in the fundamental breathing mode (m2) is a
factor 10 less than the mode m1.

recall that this instability is one in which the perturbation vertical
kinetic energy density dominates over the radial and azimuthal
kinetic energy densities (NGU13, Stoll & Kley 2014). As such,
we consider the vertical kinetic energy density Ez of each of the
corresponding modes defined by Ez(z) ⌘ 0.5⇢0|w|2. “m1” labels
the fundamental corrugation mode (FCM), while “m2” labels the
fundamental breathing mode (FBM) so that, for example, the ex-
pression Ez(z,m1) corresponds to the energy density of the FCM,
and so on. For each mode we also define a total vertically inte-
grated density Ez ⌘

R H
H 0.5⇢0|w|2dz (i.e., a surface energy den-

sity). When we refer to the surface energy density of a particular
mode, we write, for example, Ez(m1) to indicate the surface en-
ergy density of the FCM, and so on.

Figure 2 plots the energy densities Ez for the various modes
admitted by the system with parameter values k = 2,H = 5,
in which each vertical velocity normal mode is normalized ac-
cording to Eq. (11). Here, we see that the relative energy den-
sity content is greatest with FCM and that it dominates the FBM
by a factor of 10. The energy density distribution in the other
higher order body modes are reduced by at least a factor of
100 compared to the FCM. The energy density contained in the
two fastest growing surface modes is diminished by a factor of
1000 compared to the FCM.

A comparison of the total vertically integrated energies in
these various modes emphasizes further the relative unimpor-
tance of the high-order body and surface modes. To express this
quantity, relative to the vertically integrated energy density of the
FCM (Ez(m1)), the following selected modes are used: for the
FBM, Ez(m2) ⇡ 0.11Ez(m1); for the first overtone corrugation
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mode frequency: Re(ω)

Ez/Ez(m1)
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body modes

high order
body modes

surface mode
stem

m1

m13

m3

S±
1

m2

Fig. 3. Total vertically integrated vertical kinetic energies Ez as a func-
tion of mode frequencies, Re(!), which correspond to solutions of
Eq. (8) with H = 5 and k = 2. Ez is shown, normalized to the cor-
responding vertically integrated energy of the fundamental corrugation
mode, i.e. Ez(m1). The relative weakness in the power of the surface
modes located in the frequency windows 1.2 and 1.3. The labeled modes
displayed in Fig. 2 are also labeled here.

mode, Ez(m3) ⇡ 8.3 ⇥ 10�3Ez(m1); the selected high-order body
mode m13 : Ez(m13 ) ⇡ 1.3 ⇥ 10�3Ez(m1); and for the two surface
body modes, both of which have the same amount of vertically
integrated energy contained within, Ez(S ±1 ) ⇡ 2.2 ⇥ 10�4Ez(m1).
Together with the first 50 vertical eigenmodes, the resulting
trends are plotted in Fig. 3, which clearly shows that the en-
ergy contained in the modes drops with increased values of m.
We similarly plot the relative vertically integrated kinetic en-
ergy densities for models where H = 7, k = 2 (Fig. 4) and
H = 8, k = 5 (Fig. 5), and we see how, by increasing the res-
olution (going to larger k) and by extending the atmosphere lid,
the low-order modes become increasingly populated (as BL15
point out) and how the Ez energies, contained in the correspond-
ing surface and high-order body modes, diminish even further.

Most importantly we confirm the trend, reported by BL15m
in which the energy in the low-order body modes remains steady
as H is increased. This is especially true for the FCM and FBM
but also becomes a characteristic feature of increasing overtones
as H increased. With reference to Fig. 3, all the body modes to
the left of the triple junction, where the surface mode branch
meets the low-order and high-order body modes, display ener-
gies that remain unchanged as H increases. Increasing H, how-
ever, moves the location of the triple junction toward higher or-
der body modes, whereas the energies of the low-order body
modes (i.e., those left of the triple junction) do not change with
increased H.

The relatively weak energy carrying potential of both the
high-order body modes and the branch of surface modes comes
about because the corresponding kinetic energy associated with
them is severely diminished as a result of the Guassian drop-o↵
that is associated with the mean density field ⇢0 . This is despite
their relatively large velocity amplitudes for large values of |z|.

4. An improved approximate solution

While we cannot address all of the concerns listed in Sect. 2,
we o↵er an improved solution ansatz to the eigenvalue prob-
lem posed by Eq. (6). The simulations presented in NGU13 and
Stoll & Kley (2014) employ a numerical set-up in which radial
boundaries are enforced. These boundaries introduce e↵ects that
alter the growth rates and character of the low-frequency body
modes, which are the very ones that have been observed to carry
the instability into the nonlinear regime. We demonstrate here
that (a) the unbounded growth predicted by assuming wavelike

100 101

10−5

100

mode frequency: Re(ω)

Ez/Ez(m1)

low order
body modes

high order
body modes

surface mode
stem

m1

Fig. 4. As in Fig. 3 except with H = 7. The power contained both in the
surface and high-order body modes is diminished as the atmosphere lid
is set farther away. Note that the energy in the low-order body modes
remain unchanged, especially the FCM and FBM.

100 101
10−10

10−5

100

mode frequency: Re(ω)

Ez/Ez(m1)

low order
body modes

high order
body modessurface mode

stem

m1

Fig. 5. As in Fig. 3, except that H = 8 and k = 5. The diminished
energy-carrying capacity of both the surface modes and the high-order
body modes when the lid of the atmosphere is made larger and when
higher radial resolution modes are considered. The energy of the low-
order body modes, especially the FCM, FBM and the first overtone cor-
rugation mode remain unchanged compared to their energies for lower
values of H, depicted in the two previous figures.

disturbances in the radial direction, is an artifact created by as-
suming radially-traveling wave solutions and (b) that this pathol-
ogy is removed by the imposition of some kind of fixed radial
boundary condition. Furthermore, the imposition of boundary
conditions selects the fastest mode with radial length scales and
growth rates that match those found in the aforementioned nu-
merical experiments.

To represent the e↵ect of radial boundaries, the following
non-separable ansatz is assumed:

⇧̂ = Pm(z, x) =
mX

n=0

Pn,m (x)znm (12)

where m is a positive integer, and Pn,m (x) a set of unknown func-
tions of x4. This solution form is one borrowed from singu-
lar value decomposition methods, and has been used in other
disk studies (e.g., Lubow & Pringle 1993). We note already that
the ansatz found in Eq. (12) builds unbounded algebraic spa-
tial growth into the solutions as |z| ! 1, which will predict the
same kind of unbounded growth in which Im(!) ⇠ pm, just as
the simple solution shown in Eq. (10). But, as we already note
in Sect. 2, this means that these solutions are ones where the
kinetic energies always decay as z ! ±1. On a positive note,
these solutions are not burdened by the introduction of surface
modes.

4 This ansatz form is non-separable for all integer values of m � 2, and
it is separable only for the m = 1 mode.
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Based on the above, we adopt this solution form and insert
it into Eq. (6). Separating out like-orders of powers of z turns
this system into O

⇣
m+1

2

⌘
nested ODEs for the unknown func-

tions Pn,m . For n = m we have the so-called “top” equation

!2 @
2Pm,m

@x2 + m
 
Pm,m + q

@Pm,m

@x

!
= 0, (13)

while for 0  n < m we have the remaining so-called “slaved”
equations

!2 @
2Pn,m

@x2 + n
 
Pn,m + q

@Pn,m

@x

!
=

�(n + 2)(n + 1)Pn+2,m. (14)

The above system has even and odd symmetries associated with
it, so that there are so-called breathing modes (even m) and cor-
rugation modes (odd m). The fundamental corrugation mode
(FCM) corresponds to m = 1 while the fundamental breathing
mode (FBM) is associated with m = 2.

For this particular demonstration, we assume no-normal-
flow boundary conditions at particular inner and outer radial po-
sitions, i.e., u = 0 at x = ±Lx, where Lx > 0. In terms of the
variables we use, the expression of this condition is found by
rewriting Eq. (2) in terms of the normal mode ansatz

�i!
@⇧̃

@x
+

qz
i!
@⇧̃

@z
= 0. (15)

Given the solution form (12) and since the polynomials zn are
linearly independent with respect to one another (for integer n),
each function Pn,m must separately satisfy

@Pn,m

@x
+

qn
!2 Pn,m = 0 (at x = ±Lx). (16)

The method for solving the full problem is now straightforward:
(i) solve the “top” Eq. (13) subject to boundary conditions and
then (ii) solve the “slaved” Eqs. (14) subject to the boundary
conditions expressed in Eq. (16) for each Pn,m. This should be
done by decreasing values of n (by 2) until one terminates either
at n = 0 (breathing modes) or n = 1 (corrugation modes). A
detailed depiction of the full solution will be the subject of a
future study. Of concern to us here, however, is the fact that the
top equation yields the eigenvalue !. In fact, it is straightforward
to show that

Pm,m =
⇣
Aj sin kj x + Bj cos kj x

⌘
exp

✓
� qm

2!2 x
◆
, (17)

is a solution to Eq. (13) provided ! = !(k j) satisfies

!2

m
=

1 ±
q

1 � k2
j q

2

2k2
j

(18)

together with k = k j ⌘ j⇡/2Lx, where j is any integer in-
cluding zero. When j is an odd integer, then Aj = k j, Bj =

�qm/2!2. However, when j is an even integer (including zero)
Aj = �qm/2!2, Bj = �k j.

Since all the k j are real and their multitude are controlled by
Lx, we can consider the set of k j as part of a continuum of real
values given as k, and we can analyze these results accordingly.
It follows that unstable solutions exist only if |kq| > 1, and after
a little algebra it implies that the growth/decay rate is given by

Im(!) = ±pm

p|kq| � 1
2k

· (19)

This solution states that there is a wavelength of maximal growth
kmax and corresponding growth rate �max , which are given by

|kmax | =
2
|q| , �max =

p
m
|q|
4
· (20)

Restoring these results in terms of the physical scalings of the
disk, this indicates a maximally growing wavelength ⇤max with
corresponding growth rate ⌃max expressed as

⇤max = ⇡✏
2|q|R0 = ⇡|q|

H2
0

R0
,

⌃max = ✏
p

m
|q|
4
⌦0 =

p
m
|q|
4

H0

R0
⌦0 , (21)

of which the latter is given as ⌃max = 0.5✏
p

m|q|⇡ orb�1, ex-
pressed in units of local disk orbit times (orb = 2⇡/⌦0 ).

5. Discussion

The analysis developed in Sect. 4 is an improvement over previ-
ous ones reported in the literature (namely NGU13 and BL15).
Below we itemize some relevant observations regarding this
analysis.

1. In the numerical experiments reported in NGU13, it is shown
that in model disks where ✏ = 0.05 and q = �1, the growth
rate of the perturbation kinetic energy during the early phase
(between 10 and 25 orbits of the inner disk) of the grow-
ing VSI is about 0.25 orb�1 (see righthand panel of Fig. 1
of NGU13). Closer inspection of the dynamical response
during this phase (see Fig. 3 of NGU13) primarily shows a
breathing mode character in the vertical velocity. The radial
wavelength of the response near the left boundary indicates
a size of about 0.009R0. (This corresponds to approximately
17 grid points, resolving the fastest growing radial mode.)
According to the theory developed in the previous section,
the radial scale and growth rate of the fundamental breath-
ing mode (FBM, m = 2) is given by Eq. (21), which pre-
dicts ⇤max ⇡ 0.0079R0, together with ⌃max ⇡ 0.11 orb�1.
However, the growth rate in the kinetic energy is equal to
2⌃max ⇡ 0.22 orb�1. These predictions, based on this im-
proved approximation, compare favorably with the results of
the numerical simulations.

2. Similarly, for the same simulation reported in NGU13, after
about 25 orbit times the simulations indicate slower growth,
and the corresponding figures indicate that, in this latter
phase, the disk response is primarily that of the FCM. For
the FCM with k as given, the theory predicts a growth rate
in the kinetic energy of about 2⌃max (m = 1) ⇡ 0.15 orb�1,
which approximately matches the decelerated growth seen
in the kinetic energy growth rates displayed in Fig. 1
of NGU13.

3. The analysis developed here, using the solution ansatz in
Eq. (12), only captures the essence of the low-order body
modes and cannot say anything about the surface modes.
This is because no vertical boundary conditions are applied.
However, based on our reflections in Sect. 3 regarding the
kinetic energy density content of these modes, the surface
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modes are probably ephemeral, with no significant dynami-
cal e↵ect upon the development of the VSI in the bulk inte-
rior, where most of the disk inertia is contained.

4. Despite the improved theoretical construction embodied in
the ansatz of Eq. (12), especially in relation to the correct be-
havior predicted for a fastest growing radial mode, the theory
still indicates unbounded growth as the vertical node num-
ber sm increases. Is this indicative of a profound flaw in the
ansatz or is it a real e↵ect? Based on our reflections upon the
lack of energy contained in high-order body modes and sur-
face modes (Sect. 3), it is possible that the theoretical pre-
dictions are actually valid, and that, despite the unbounded
growth predicted for increasing m, the main instability and
turbulent development in nonlinear calculations is driven pri-
marily by the fundamental breathing and corrugation modes.
The concomitant fast-growing high-order body modes and
surface modes likely have little e↵ect upon the overall devel-
opment of the VSI primarily because they contain so little
energy in comparison to the fundamental modes.

5. We have compared the energy contained in each mode as-
suming a white-noise spectrum in the initial velocity field.
Because the density field decays like a Gaussian in the ver-
tical, the relative energy content in modes with many nodes
in the vertical is shown to be very small. Just as the system
evolves into the turbulent regime, so too will the correspond-
ing energy/velocity spectrum and the relative energy con-
tent contained in each mode. Given the behavior observed in
the numerical simulations reported in the literature to date,
whereby energy appears to drain into low-order (vertical) m
modes through nonlinear processes, the assumption and dis-
cussion of the modal energy content taking on a white spec-
trum in the velocity field is a conservative assumption and
gives us an upper bound as to the real energy content in
a simulation of well-developed turbulence. Of course, the
meaning and physical structure of the linear modes will also
probably change into the nonlinear regime, since the basic
state upon which they are constructed also changes as the
system evolves into the nonlinear regime.

6. Related to the previous point, we believe that the VSI
develops robustly and independently of the high-order and
surface modes � even if artificial boundary conditions are
emplaced on the upper and lower parts of a numerically mod-
eled disk. This will not be true if, by conspiracy, most of
the initial energy is placed in these same high-order modes
and surface modes. This would be like stirring the low den-
sity parts of the disk with very large velocity perturbations,
a scenario hard to imagine for a realistic disk. We agree with
BL15 when they say that adding a bit of artificial viscosity, or
possibly a sponge (an artifice commonly used in atmosphere
GCMs) should either erase or strongly diminish these modes
from a numerical calculation. We note that in both numerical
experiments of NGU13 and Stoll & Kley (2014), the veloc-
ity fields are shown as timed snapshots of the instability as it
develops, and they show a strong initial development in the
velocity field near the boundaries that is primarily due to the
fast growth rate of the surface modes. Nevertheless, the ki-
netic energy densities contained in disturbances high up in
the atmosphere are diminished by a factor of e�12, as a result
of the vanishingly small densities up there. It is hard to imag-
ine that the ensuing instability within the bulk of the disk
is dependent upon these surface modes and we view them
as inconsequential as far as the long-term development of

the VSI is concerned, including its aggregate turbulent trans-
port. This can be verified by new numerical experiments in
which, for instance, one replaces the upper hard boundary by
a sponge or something similar.

7. In simulations, the VSI manifests itself as very short ra-
dial wavelength disturbances. BL15 have suggested that this
trend may be interpreted as the radial scale of the instabil-
ity is being controlled by the action of viscosity. If this is
the case, then the length scale of the fastest growing mode
ought to change when the actual physical viscosity is low-
ered or when the e↵ective numerical viscosity is reduced.
We ran a very high resolution simulation that replicated the
results displayed in Fig. 11 of NGU13, but with three times
as many grid points in the radial direction (all other quanti-
ties remained fixed). These simulations were controlled by
numerical viscosity alone and, because of this, an increased
resolution e↵ectively lowers the associated numerical dissi-
pation. Essentially, we find no di↵erence between these high
resolution runs and the aforementioned results in Fig. 11
of NGU13. Furthermore, we confirm that during the early
phases of the linear instability, the FBM gets expressed first,
as predicted by theory.

8. The results of the previous section show that enforcing
boundary conditions at the inner and outer radial positions
controls the growth of the VSI and selects for a fastest grow-
ing radial structure. As such, we see the unbounded growth
rates resulting from the radial traveling wave ansatz (Sect. 2)
as the result of the ansatz itself, which (we contend) is in-
appropriate to describe the dynamics in simulations with
boundaries, and is not a result of a breakdown in the validity
of the assumptions underpinning the equation set (1) to (4),
namely the approximation of radial geostrophy of Eq. (1).

This last point naturally begets the following question: what are
the appropriate boundary conditions to use in such disk models?
How robust is the VSI to di↵erent radial boundary conditions,
and how do these vouch for the true conditions of protoplanetary
disk dead zones?

As observed by Urpin (2003) and Arlt & Urpin (2004), the
local growth rates of the VSI scale approximately by ✏⌦0 . While
it has not yet been theoretically established to what degree the
VSI is active in disk regions that also support the MRI, it is
worthwhile noting that the growth rate of the VSI (when ac-
tive in the absence of the MRI) is a factor of ✏ slower than the
MRI underscoring the di↵ering timescales of the two instabil-
ities. Furthermore, there is also a disparity in the length scales
on which the two instabilities operate, since the MRI is dynam-
ically more potent on vertical disturbances with length scales
that are comparable to the scale height H0, together with very
little if no radial structure, whereas the VSI requires very short
radial scales, ⇠✏H0. It is quite conceivable that the two may op-
erate concurrently in a given disk section, but so far there are
no theoretical studies illustrating how the one modifies the other
when they transition into the nonlinear regime, either separately
or together.

The character of the turbulent state achieved by the VSI
is di↵erent than in traditional turbulent cascades. Preliminary
indications of the turbulent development of the VSI (NGU13,
Stoll & Kley 2014, aforementioned unpublished studies) point
to a complex expression including quasi-steady vertical vortices,
as well as radially alternating vertical velocity fields with ape-
riodic interfacial roll-up, as well as attendant small scale un-
steady fluctuations concentrated at about one scale height from
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the midplane. An analysis of the achievable outcome states of
the VSI remains to be examined.
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