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ABSTRACT

Context. The interface between the dead zone and the inner active zone in a protoplanetary disk provides a promising region where
the inward migration of planets may be halted owing to the existence of strong corotation torques. Recent work has indicated that this
region may be prone to supporting a vortex cycle, during which vortices form at the dead-active zone interface and migrate into the
active region before being destroyed, after which a new vortex forms and the cycle repeats.

Aims. The aim of this paper is to examine the interaction between migrating planets and this vortex cycle, and to determine the
conditions under which planets are able to remain trapped at the dead-active zone interface.

Methods. We use the magnetohydrodynamics (MHD) codes PLUTO and RAMSES to perform 2D viscous disk simulations and 3D
MHD simulations of protoplanetary disks containing migrating planets. A temperature switch is used to control the effective viscosity
at the dead-active zone interface.

Results. We find that both low mass and non-gap forming higher mass planets are able to escape from the planet trap at the inner edge
of the dead zone as a result of their interaction with the migrating vortices, whereas intermediate mass planets remain trapped for the
duration of simulation run times.

Conclusions. Our results indicate that the vortex cycle causes the dead zone inner edge to act as an effective and mass-dependent

planet filter, allowing some planets to pass through this region and others to remain there over long timescales.

Key words. accretion, accretion disks — hydrodynamics — planet-disk interactions — protoplanetary disks

1. Introduction

At the time of writing there are almost 2000 confirmed extrasolar
planets that have been discovered by a variety of techniques, and
more than 3000 unconfirmed candidate planets that have been
detected by the Kepler spacecraft!. Among the most interesting
of these exoplanets are the short-period systems, such as the hot
Jupiters exemplified by 51 Peg b (Mayor & Queloz 1995), hot
Neptunes such as Gliese 436b (Butler et al. 2004), and the nu-
merous compact systems of super-Earths and Neptunes discov-
ered by radial velocity measurements and by the Kepler space-
craft such as Gliese 581 (Udry et al. 2007; Mayor et al. 2011) and
Kepler 11 (Lissauer et al. 2011). Given the difficulties of form-
ing such planets in situ, either because the high temperatures
do not favour the existence of planetary building blocks in solid
form during the epoch of planet formation or because the amount
of solid material required to explain some of the planetary sys-
tems is significantly larger than would be expected to occur lo-
cally in most protoplanetary disk models, it is generally believed
that these planets formed at larger orbital radii and migrated into
their currently observed orbits. If this migration occurred while
the protoplanetary disk was present then the planets would have
likely migrated through disk regions where the dynamical evo-
lution of the disk displayed highly diverse properties.
Disk-driven migration occurs in two basic flavours (e.g. Kley
& Nelson 2012). Type II migration occurs for planets that are
massive enough to form deep gaps, and these planets migrate

! See the exoplanet catalogues hosted by the websites exoplanet.eu

and exoplanets.org for further information.

Article published by EDP Sciences

at speeds close to the viscous evolution rate of the disk (Lin &
Papaloizou 1986; Ward 1997; Nelson et al. 2000). Type I migra-
tion occurs for low mass planets that cannot form deep gaps, and
is driven by a combination of Lindblad and corotation torques
(Goldreich & Tremaine 1980), the former arising through the
excitation of spiral waves at Lindblad resonances and the latter
from interaction with material that undergoes horseshoe orbits
in the planet coorbital zone (Ward 1991; Masset et al. 2006a).
Recent work has focussed on the question of how entropy and
vortensity gradients in a protoplanetary disk can prevent the very
rapid inward migration of protoplanets by balancing the neg-
ative Lindblad torque experienced by the planet with the pos-
itive corotation torque (Masset 2001, 2002; Baruteau & Lin
2010; Baruteau et al. 2011; Pierens et al. 2012; Masset et al.
2006a; Paardekooper & Mellema 2006; Kley & Crida 2008;
Paardekooper et al. 2011; Pierens et al. 2012).

The concept of a planet trap was introduced by Masset et al.
(2006b), where a disk location with a positive gradient in the
surface density can trap a migrating planet because the vorten-
sity related corotation torque is expected to have a large posi-
tive value in such a region. There are a number of hypothetical
reasons why a planet trap may arise within a protoplanary disk,
but an oft cited one is that regions between orbital radii 0.5 <
R < 10 au are expected to host a dead zone where the effective
disk viscosity is small due to poor coupling between the gas and
magnetic fields (e.g. Gammie 1996), whereas regions closer to
the star maintain a large effective viscosity because thermal ion-
isation of gas-phase potassium and thermoionic emission from
grains allows strong coupling between the gas and magnetic
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fields (Umebayashi & Nakano 1988; Desch & Turner 2015).
These more highly ionised regions are likely to sustain vigorous
magnetohydrodynamics (MHD) turbulence driven by the mag-
netorotational instability (MRI) (Balbus & Hawley 1991), and
the larger inward mass flow in this inner region is expected to
create a sharp change in the surface density profile that can act
as a planet trap.

The presence of density jumps or bumps at disk interfaces,
such as at opacity transitions or in transitions between flow
regimes (turbulent to laminar as described above), has been
the subject of significant research because of its promise as a
method to stop or slow down rapid planet migration (Matsumura
et al. 2007; Hasegawa & Pudritz 2011; Bitsch et al. 2014, 2015;
Baillié et al. 2015). In particular, the accretion mismatch at
the inner edge of the dead zone and the subsequent formation
of a density maximum has been intensively studied in the last
few years using both hydrodynamic (Varniere & Tagger 2006;
Lyra et al. 2008; Regdly et al. 2012) and MHD simulations
(Dzyurkevich et al. 2010, 2013). It appears that the flow around
the density bump is not stable, but is prone to the Rossby wave
instability (RWI; Lovelace et al. 1999), which produces large
coherent vortices (Li et al. 2000; Meheut et al. 2010; Lin 2012;
Lyra & Mac Low 2012). While a full understanding of the stabil-
ity of giant vortices remains elusive (Lesur & Papaloizou 2009;
Chang & Oishi 2010; Mizerski & Lyra 2012), these structure are
thought to play an important role in planet formation (Barge &
Sommeria 1995; Tanga et al. 1996; Johansen et al. 2004; Klahr &
Bodenheimer 2006; Inaba & Barge 2006; Meheut et al. 2012a,b).
This interest has intensified since the discovery of asymmetric
features in high angular resolution imaging of protoplanetary
disks (Brown et al. 2009; Casassus et al. 2012; van der Marel
et al. 2013; Isella et al. 2013; Pérez et al. 2014); in particular,
models able to account for the observed orbital location of these
structures remain to be found.

Moreover, it has been demonstrated (Faure et al. 2015) that
vortices, which are supposed to stay at the top of the density
bump where they formed (Paardekooper et al. 2010b), are in fact
subject to inward migration in a non-locally isothermal context.
In MHD simulations of disk regions covering the dead zone in-
ner edge, the migrating vortex is seen to be mass loaded (by
virtue of arising at a density maximum) and to penetrate inside
the turbulent region. It survives over a great distance as soon as
the feedback of temperature onto the ionisation fraction is taken
into account. The vortex is finally destroyed by turbulent fluctu-
ations, and this releases its mass back into the disk, which then
spreads to form a new pressure maximum and vortex at the initial
formation location. The second generation vortex will follow the
same cycle as its predecessor. It has been argued that the vortex
cycle may have strong consequences on the planetesimal forma-
tion scenario via the gas friction onto small dust grains, but the
potential effect of the cycle on planet migration at the interface
has not yet been explored.

The gravitational interaction between a massive vortex and a
planetary mass body has been addressed by Regaly et al. (2013),
Ataiee et al. (2014). They found that under some circumstances
a vortex can capture a planet at its front or at its back and cause it
to migrate with the vortex. This result, combined with the vortex
cycle, may reduce the ability of the dead zone inner edge to trap
planets.

In this paper we calculate directly the effect of the vortex cy-
cle on planet migration within a non-locally isothermal viscous
disk. As expected from Ataiee et al. (2014), we find that the vor-
tex drags the planet with it during its migration, and when the
vortex is destroyed it leaves the planet at some radius closer to
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the star. The subsequent evolution then depends on the planet
mass and the disk mass, providing an effective filter for planets
arriving at the dead zone inner edge. One of the main aims of this
paper is to delineate the planet behaviour and explain the physi-
cal reasons for the different modes of planet evolution observed
in the simulations. Using the simulation results we identify re-
gions of parameter space where planets are able to remain in the
planet trap zone, and parameters for which we expect planets to
escape from this zone.

The paper is organised as follows. We describe our viscous
disk model, the evolution equations, and list the physical ingre-
dients required to reproduce the vortex cycle in Sect. 2. In Sect. 3
we present the results of the simulations, and describe the mu-
tual influence of the vortex and the planet as a function of model
parameters. In Sect. 4 we use customised simulations to examine
in detail the nature of the interaction that maintains the joint evo-
lution of the planet and the vortex, and identify the main physical
mechanisms that have an impact on the fate of the planet. From
this understanding we are able to derive a simple scaling for the
range of planet masses that are stopped by the dead zone inner
edge. We finally present a validation of these results using an
MHD simulation of the dead zone inner edge region including a
planet. The important implications and perspectives introduced
by the results presented here are summarised in Sect. 5.

2. Simulation setup

We undertake hydrodynamic simulations to examine the interac-
tion between a migrating planet and a vortex cycle. As discussed
in the introduction, the vortex cycle is induced in the inner re-
gions of a protoplanetary disk where there is a transition be-
tween the dead zone and the inner active zone. The inner active
zone exists because the temperature there is high enough for gas-
phase potassium to be ionised, hence allowing the development
of magnetorotational turbulence. This transition leads to the for-
mation of a surface density transition, and a pressure bump that
is unstable to the formation of a vortex because of the RWI. In
the non-locally isothermal situation, the vortex migrates inwards
towards the hotter turbulent region. The vortex, however, keeps
its temperature cooler than the surrounding medium and below
the ionization temperature such that the MRI cannot develop in-
side. This protection from internal disruption enables its pene-
tration deep inside the active zone. During the migration phase,
the change in flow regime at the vortex edge drives a mass inflow
such that the initial density bump is significantly modified. The
vortex is at the same time eroded at its surface by the turbulent
fluctuations. The vortex cycle arises because the vortex is finally
destroyed and releases its mass into the disk, which then reforms
the surface density transition, pressure bump, and migrating vor-
tex. It has been demonstrated by Faure et al. (2015) that this
vortex cycle can be reproduced in simple 2D simulations of a
viscous disk model, and this allows us to take advantage of their
low computational cost (compared to 3D MHD simulations) so
that a full parameter survey can be undertaken. In this section we
describe the 2D viscous disk model we use to investigate the ef-
fect of the vortex cycle on the dynamics of low and intermediate
mass planets at the dead zone inner edge.

2.1. Disk model equations

The evolution of the disk model described below is calculated
using the PLUTO code (Mignone et al. 2007). We used the cylin-
drical coordinates (R, ¢) with units vectors (eg, eg) to solve the
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following set of equations

‘Z—f +V-(50) =0 M
% +V-(Sw) + VP = —-SVO + Vr 2)
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where v is the velocity, 7 the Navier-Stokes stress tensor, and
Y the disk surface density. The quantities P and E are the verti-
cally integrated pressure and total energy (the sum of the kinetic
and thermal energy). The parameter @, is the gravitational po-
tential of the star. In the cylindrical approximation, it is given by
@, = -GM, /R, where G is the gravitational constant and M, is
the stellar mass. When present, the planet exerts a gravitational
force on the gas according to the potential

GM,
Pp =- 2 2
R* + Ry1” — 2RRp cos(¢p — ¢p1) + €
GM, ZdR’
+ —LRRy+G f “RR (5)
Ry s R

where § is the simulation domain surface, My, is the planet mass,
Ry = (Rp1, ¢p1) is its position, and € = 0.2H(R) is the softening
length. As we are mainly interested in studying the influence of a
surface density transition and its associated corotation torque on
planet migration, we neglect the thermal diffusion process that
is required to unsaturate the entropy contribution to the corota-
tion torque (Paardekooper & Mellema 2006; Kley & Crida 2008;
Paardekooper et al. 2011; Pierens et al. 2012). The second and
third terms in the planet potential are indirect terms that arise
because we work in a frame of reference centred on the host star
(Nelson et al. 2000). All the details of the evolution of the planet
through the disk action are given in Sect.2.2.1. We use a perfect
gas equation of state to close the above set of equations. The ver-
tically integrated thermal energy is related to P via the relation
E; = P/(y — 1) in which v = 1.4. We use the same gas cooling
function £ as in Faure et al. (2015),

L=3c(T* =T}, (6)

where T is temperature and Ty, is the temperature associated
with radiative equilibrium. We use the viscous prescription as
a crude model of both turbulent angular momentum transport
and heating. The kinematic viscosity radial profile is calibrated
by the result of an identical 3D ideal MHD simulation of a fully
turbulent disk model (without a dead zone) of Faure et al. (2015),

v = {amuphic /Q, (7

where (@myp): 1s the stress tensor normalised by local pressure
(Trg/P) azimuthally, vertically, and time averaged over 200 or-
bits. The viscosity parameter takes the value {(@mpup); =~ 0.04 at
the inner edge of the domain and decreases to {(amup): =~ 0.015
at the outer edge of the active region. Here, ¢ and Q are the local
sound speed and the orbital angular frequency.

In all simulations the computational domain is R € [Ry, 8 Ry]
and ¢ € [0, 2n] and has a resolution of [480, 640]. To limit the
reflection of waves at the domain boundaries, we add two buffer
zones (de Val-Borro et al. 2006) extending on R € [Ry, 1.5 Ro]
and R € [7.7Ry, 8 Ry] where physical quantities are damped to-
wards their initial radial profile.

2.2. Notation and units

In the following X, denotes the value of any quantity X at the
inner edge of the domain. Units are identical to those defined in
Faure et al. (2014) and chosen such that

GM, =Ry=Qy=30=To =1,

where Q stands for the gas angular velocity. Time is measured
in units of the inner orbital period.

Density and temperature profiles are initialised with radial
power laws,

RY R\’
Y= 20(170) , T= TO(R—O) , ¥

where p = —1.5 and ¢ = —0.75.

In the cooling function, Eq. (6), we chose o to fix the disk
aspect ratio to the desired value. In order to ease the comparison
between the results presented here and the results of the MHD
simulations of Faure et al. (2015), we chose Hy/Ry ~ 0.12 in our
two main cases. This corresponds to a disk cooling time of about
25 local orbits. This large value of Hy/Ry is required to resolve
the magnetorotational turbulence in MHD simulations.

2.2.1. Planet evolution

The evolution equation of the planet position is

dszl G(M, + Mpl)
= - Ry — VO, 9)
dt2 Rp13 13
where the gravitational potential of the disk is given by
MpX MpXdR’
Oy=-G | =———dR"+G | —=—R'-R 10
! s IR =Ry s K7 oo U0

and Mp is a dimensionless parameter that scales the disk mass.
The second term of the disk potential is the indirect term.
Equation (9) is integrated explicitly at each time step. The gas
surface density considered here is the averaged density ¥ =
(Z(?) + Z(t + dr))/2 over the time step duration dr.

In most of the cases, the planet mass is set to a small enough
value to prevent the formation of a gap in the disk. Only a few
runs of our parameter survey (Sect.3.3) included a planet able
to open a small gap with relative density perturbation less than
10%. None of the planets considered are able to carve a deep gap
since, for the most massive case

_ 3, 50v
ARuin  (MJ™ /M )QuR?,

~1+509, (11)

where € is the rotation frequency at R = R and Ry is the
Hill radius of the planet (Crida et al. 2006). The individual num-
bers on the right hand side of Eq. (11) show the contributions
of the viscous and pressure-related terms. For gap formation we
require P < 1.

For the smallest planet mass considered (M = 1.5 X 107%),
the horseshoe half-width is (Paardekooper et al. 2011)

X, = 1.1(0.4/(ye/ H)'* \|My /M, R/H = 0.15R,.

This is then resolved by about 10 cells in the radial direction,
similar to the resolution used in studies of the corotation region
(Baruteau & Lin 2010; Baruteau et al. 2011; Pierens et al. 2012;
Paardekooper 2014). In our fiducial run Mp = 1.8 x 107*. That
sets the disk mass within 100 au equal to 2.3% of the stellar mass
if R() =1 au.

(12)

A105, page 3 of 16



A&A 586, A105 (2016)

2.3. Disk model

In our viscous disk model, the feedback loop between angular
momentum transport via viscosity and temperature is included
by imposing

WT) = {(aMHD>tC§/Q if T>Twri (13)

0 otherwise.
The temperature threshold Ty is a free parameter that sets the
location of the transition between the viscous region and the
inviscid region (Latter & Balbus 2012; Faure et al. 2014). We
choose Trr = 0.41, which places the dead zone inner edge
around Rpz = 3.4Ry. The inner edge location is put far from
the outer boundary of the domain to limit the wave reflection.
Indeed, the reflection on the inner boundary of the domain of
waves emitted by a planet or a vortex located at the dead zone
inner edge is not an issue since waves propagating inside the
active region are damped by viscosity. This is not the case for
outward propagating waves that are only damped by shocks and
numerical diffusion.

At the viscous jump, a density bump forms with a growth rate
similar to the growth measured in MHD simulations of Faure
etal. (2015). As soon as the density bump has reached five times
the initial local density (which occurs at = 3000), we add a ran-
dom velocity perturbation at the position of the bump to trigger
the RWI. The perturbation amplitude equals 10% of the sound
speed. A vortex forms at the top of the density perturbation in a
few tens of orbits and the vortex cycle is established. The average
temperature radial profile when we introduce the perturbation is
shown by the black dashed line in Fig. 2. The temperature ex-
ceeds the temperature threshold at R ~ 3.2, slightly closer to the
star than expected from looking at the initial profile. The average
temperature radial profile outside the vortex in the middle of a
cycle (red dashed line in Fig. 2) shows that the dead zone inner
edge does not move during the vortex migration. The tempera-
ture radial profile at the same time (red plain line in the same
figure) indicates that the vortex interior is not prone to the MRI
since its temperature is kept below Tyr;. We also ran a simula-
tion of an identical disk model except that we used the locally
isothermal approximation. The viscosity then becomes a func-
tion of position only. In this context, Faure et al. (2015) have
shown that vortices formed at the dead zone inner edge do not
migrate and, consequently, the vortex cycle does not develop.

3. Planet orbital evolution at the dead-active zone
interface

The planet is introduced during the middle of the 4th vortex cy-
cle at (R, = 3.5, ¢, = n/4). Two different planet masses have
been considered: M = 1.5 X 10~* (case A) and Mp =3 X% 107
(case B). These two planets are much lighter than the vortices
observed in the simulations (by about an order of magnitude).
The orbital evolution of the heavy planet is shown in the bottom
panel of Fig. 1, while the lighter case is shown in the top panel.
Surprisingly, the planets are not trapped at the dead zone inner
edge as predicted by Masset et al. (2006b). However, the orbital
evolution of the same planet in the locally isothermal disk model,
where the vortex cycle does not develop, is consistent with the
trapping of planets at the dead zone inner edge. This strongly
suggests that the vortex cycle plays a major role in the dynam-
ics of planets at the dead zone inner edge. In this section, we
study both the vortex and the planet dynamics and their mutual
interaction.
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3.1. The two phases of the planet-vortex interaction

Our analysis of the mutual influence of the planet and the vortex
is based on the determination of the vortex characteristics (mass,
size, and position) and the background density profile (Xpg).
They are deduced from the fit (Xg,) of the average radial density
profile for each output. The reader interested in the technical de-
tails of the analysis procedure is invited to refer to Appendix A.
An example of a density radial profile and its fit is given in
Fig. 3. The green solid line shows the corresponding density
background Xpg that is composed of the initial power law and
what remains of the density bump after the formation of the vor-
tex. The determination of the vortex size and location in this
example at t = 4242 (1242 orbits after planet introduction) can
be seen in the map of density perturbation (£ — Zgg) in Fig. 4.
We also highlight two other coherent overdensities in this fig-
ure. They are in fact smaller vortices following the same in-
ward migration as the primary vortex. This figure reveals an al-
most axisymmetric distribution of material behind the vortex,
suggesting a sheared-out trailing tail following the vortex rota-
tion. We call this density perturbation to the background density
outside the vortex the vortex tail density perturbation. Figure 3
shows that the vortex tail changes the average radial surface
density structure and in particular creates a steep positive den-
sity gradient. In this example, the mass of the primary vortex is
M, =26 x107M,.

The Hill radius associated with the vortex when considered
as a point mass of mass M, is indicated by the blue shaded area
in Fig. 1; it is about one scale height H at r = 4242. It roughly
indicates the gravitational sphere of influence of the vortex, and
as such it also represents the radii where a planet orbiting in the
disk is likely to experience horseshoe dynamics when interact-
ing gravitationally with the vortex. The grey area in Fig. 1 shows
the width of the positive total torque region associated with the
positive density gradient produced by the vortex tail. This posi-
tive torque arises because of a strong corotation torque. The total
torque is evaluated using our fit Zg; to the density profile and the
formula (47) given by Paardekooper et al. (2010a) where 8 = 0
and

_ olog(Zg) )
dlog(R)

(14)

The extension of the positive torque region at the 4242th orbit
of case A is shown by the grey shaded area in Fig. 3. The the-
oretical migration of planet B calculated using the formula (47)
but taking 8 = —¢ = 0.75 and @ = —p = 1.5 is shown in Fig. 1,
and agrees well with the simulation results when the planet is
observed to be undergoing inward migration in the absence of a
vortex.

It is clear in both panels of Fig. 1 that the planet migra-
tion is changed when the vortex approaches. We distinguish two
regimes:

— When the planet is below the inner border of the positive
torque region (R < Rpr), the influence of the vortex is weak
and the average density profile is close to the initial power
law profile. In this case the planet migrates as in a power law
disk without a dead zone.

— When the planet orbital radius is inside the region of width
equal to the vortex Hill radius, the vortex and planet migrate
together with the same velocity.

At the end of a cycle, the vortex leaves the planet at the radius
where it is destroyed. When a new vortex forms its migration is
faster and it catches up with the planet during its inward motion.
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Fig. 2. Red dashed line: average density radial profile at t = 4242 in
the simulation of case A outside the vortex. Red plain line: temperature
profile at the vortex azimuth at the same time. Black plain line: initial
temperature profile; black dashed line: steady state temperature radial
profile before the introduction of the velocity perturbation. The tem-
perature threshold Ty, is indicated by the vertical blue line. The two
hatched areas show the buffer zones used in the simulation, the inner
and outer regions where physical quantities are damped to the initial
power law profile.

The planet is pulled back when it enters the positive torque re-
gion of the vortex tail (when R = Rpr), and its evolution becomes
locked to the vortex orbital evolution again.

3.2. Planet-vortex concomitant migration

The details of the interaction between the planet and the vortex
when they become locked together can be seen in Fig. 5. The
oscillations of the planet orbit around the vortex orbit (top panel)
evoke the horseshoe motion of a small body (the planet in that
case) interacting with a heavy body (the vortex). At this stage
of the simulation, the mass ratio M /M, ~ 0.1. However, the
range of the planet-vortex angular distance A¢ = ¢, —¢, (bottom
panel) never approaches 27 as would be expected for the pure
restricted three-body problem. The planet never follows an entire
horseshoe orbit. It is always truncated before the planet reaches
the other side of the vortex.

A close look at a plot of the coorbital evolution of the planet
and the vortex reveals that the planet slowly moves outward af-
ter each U-turn in front of the vortex (associated with fast inward
motions). To identify the physical origin of this outward migra-
tion, we ran two additional test simulations called RELAX-1
and RELAX-2. These are simulations of a similar disk model
including planet A, but where the density is relaxed to either the
density background profile (Zgg, RELAX-1) and the density fit
(Zgt, RELAX-2) measured at r = 4242 of the simulation of case
A (see Fig. 3). In these simulations, the temperature threshold
switch is also turned off in order to get fully viscous disks. The
two steady radial density profiles obtained in these two simula-
tions are shown in Fig. 3. The planet experiences a positive the-
oretical torque for both density distributions and migrates out-
wards in the two disks. The orbital evolution of planet A in the
simulations RELAX-1 and RELAX-2 is shown on the top panel
of Fig. 5.
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Fig. 3. Red line: average density radial profile at t = 4242 in the simu-
lation of case A. Black plain line: fit (X5,) of the average density profile.
Green plain line: density background profile (Zpg) deduced from the fit.
Green dashed line and black dashed lines: average equilibrium density
radial profiles reached in the simulations RELAX-1 and RELAX-2, re-
spectively. The grey area shows theoretical positive total torque region
considering the reconstructed density profile with the density fit. The
position of the inner boundary of this area (Rpr) is indicated by a verti-
cal blue line. The two hatched areas show the buffer zones used in the
simulation: the inner and outer regions where physical quantities are
damped to the initial power law profile.

The comparison of the orbital evolutions shows that the out-
ward migration is much faster than expected in a disk with an
average density radial profile corresponding to Xgg described
above. It is, in fact, as fast as the migration in a disk with an
average density radial profile given by Xg,. We deduce that the
horseshoe motion in azimuth of the planet in the frame of the
vortex rotation is shortened by the outward migration induced
by the vortex tail.

The vortex tail is thus the positive torque region that pulls
the planet back during every cycle, and also enables the planet-
vortex concomitant migration. In case B the outward migration
of the planet is consistently faster and its horseshoe motion is
shortened even more. In summary, we can see that the strongly
coupled orbital evolution of the planet and vortex is assisted by
the strong outward migration of the planet. The differential mi-
gration of planet and vortex in these cases leads to a shorter syn-
odic period that reduces the azimuthal drift associated with the
horseshoe motion. This reduced horseshoe motion is illustrated
in the lower panel of Fig. 5.

3.3. The planet’s fate: parameter study

The mutual influence between the vortex and planet found in
the previous section raises a question about the actual efficiency
of the dead zone inner edge trap. In this section we investigate
the effect of varying the planet and disk masses on the ability
of the planet to cross the dead zone inner edge border and es-
cape the planet trap altogether.

In the previous runs, when the planets approached the inner
boundary of the domain, their migration is polluted by bound-
ary effects, preventing us from drawing any firm conclusion
about their fates. For this parameter survey, we have therefore
moved the dead zone inner edge outwards (Rpz = SRy) setting
Twvrr = 0.2. Finally, we limited the vortex migration distance
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Fig. 4. Map of density perturbation Z—Xpgg at t = 4242 of the simulation
of case A. The vortex contour is delimited by the black line and the vor-
tex position is is indicated by the black cross. The white cross indicates
the planet position. The two squares indicate the secondary vortices.

by tuning the viscosity for two reasons: 1) we want the planet
to stay far from the inner boundary and 2) shortening the vortex
cycle period means that a planet will experience more vortex cy-
cles for the same computational time. We then scaled the {amup)
parameter such that the viscosity interior to R = Rpy is about 1.5
times larger than the viscosity in the disk model with the dead
zone inner edge close to the inner boundary. This sets the vortex
migration distance between formation and destruction around
AR ~ 1.6R) ~ 4H(4Ry). The average vortex cycle period fcycle is
found to be about 550 inner orbits. The average vortex migration
velocity over one cycle is then Vy = AR/tcycle ~ 4.6 X 107 Ry Q.
We note that the migration speed may vary by 20% from one cy-
cle to another. The planet is introduced at the beginning of the
second cycle (cases starting at t = 3500) and/or at the end of the
second cycle (cases starting at t = 4000).

All cases run are listed in Table 1. For a visual represen-
tation, see Fig. 6 where each run is shown by a point on the
(Mpi1/Mp, My X Mp) plane. We have numbered six runs that
will be used below to discuss the simulation outcomes. The
stars in Fig. 6 indicate the (M /Mp, M, X Mp) runs corre-
sponding to cases A and B of the previous section. To account
for the stochastic component in the evolution of these exper-
iments, we ran the same simulation changing only the initial
relative position of the planet and the vortex for a few of the
(My1/Mp, My, X Mp) cases (see the relevant runs in the Table 1).
Red points indicate runs for which the planet does not escape
before the integration is stopped. On the other hand, a param-
eter set (Mp/Mp, My X Mp) for which at least one simulation
exhibits an escaping planet is denoted by a black dot. In this
last situation, the point size is a function of the time the planet
spends following the vortex cycle before escaping from the dead
zone inner edge trap (f.sc). When multiple runs with different ini-
tial conditions for the same physical parameters (My, Mp) were
realised, the escaping time is the averaged value over the escap-
ing cases only. In cases where no planets escape the planet trap,
the point size is set by the simulation run time fg,. This gives
a lower limit on the time the planet is captured in those specific
cases.

22}
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Fig. 5. Evolution of the planet orbit (green curve, top panel), the ra-
dial position of the density perturbation maximum (vortex orbit, red
line, top panel), and the planet-vortex angular distance (bottom panel)
in the simulation of planet A. The black dashed and plain lines show
the orbital evolution of the same planet in the RELAX-1 and RELAX-2
simulations, respectively.

Our lightest planet case (labelled #6 in Fig. 6) is the smallest
planet mass we can reasonably consider. In this case, the reso-
lution is such that the horseshoe width extends over seven cells.
We noticed in a test simulation of the viscous disk model where
the viscous jump has been inhibited that a small gap develops
with a density perturbation below 10% through the action of the
planet labelled #1 in Fig. 6.

We compute the theoretical planet migration speed (assum-
ing the planet remains on a circular Keplerian orbit)

dRpl _ 1131/2 Iﬁpl
0 dr RyQ Alp

in our power law disk (without dead zone) using the expres-
sion (47) given by Paardekooper et al. (2010a) of the total torque
acting on the planet (I'y) withf = —g = 0.75and @ = —p = 1.5:

(15)

~1/2
o _ gy MoMoZoRoHRy (16)
My M3 (H/R)?
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Table 1. List of all runs of the parameter study sample.

M /M, Planet introduction time-orbit-angular position ~ Mp/Mx fese/tsm  Escape Run #
1.5x 1073 4000-4.5-7/4 1073 2000 Y 1
3500-4.5-7/4 3000 Y
1073 4000-4.5-7/4 1073 1.3x10° N 2
4000-4.5-57/4 2.x 10* N
3500-4.5-rt/4 10° N
3500-4.5-57/4 5.7 % 10* Y
8.x 107 3500-4.5-7/4 1073 7.x 10* Y 3
4.x 107 4000-4.5-7/4 1073 5500 Y 4
4000-4.5-57/4 3.8x10* Y
3500-4.5-n/4 1.5x 10* Y
1074 4000-4.5-7/4 1073 8000 Y 5
4000-4.5-57/4 8000 Y
3500-4.5-7/4 10° Y
3500-4.5-57/4 3.4 x10* Y
5.x 107 3500-4.5-r/4 1073 5380 Y 6
3500-4.5-rt/4 11104 Y
6.71 x 1073 3500-4.5-7/4 6.71x10™* 1.1x10° Y NONE
1.7x 1073 3500-4.5-nt/4 6.9x 107 3024 Y NONE
1.05x 1073 4000-4.5-/4 1073 5.2x 10* Y NONE
1.2x1073 3500-4.5-nt/4 1.2x1073 3000 Y NONE
1.2x 1073 4000-4.5-rt/4 1073 2500 Y NONE
1073 4000-4.5-7/4 2.x 1073 3000 Y NONE
3.x1073 4000-4.5-7/4 3.x1073 ~0 Y NONE
3.x 107 4000-4.5-/4 1073 6400 Y NONE
1073 4000-4.5-7/4 3.x1073 3410 Y NONE
9.x 1073 3500-4.5-rt/4 5.x107%  2.5x10* Y NONE
3500-4.5-57/4 6.2 x 10* Y
23 %107 3500-4.5-7/4 6.9x10™ 1.5x10* Y NONE
4000-4.5-7/4 1.6 x 10* Y
3500-4.5-57/4 7.1 x 10* Y
3.35%x 107 3500-4.5-rt/4 1.34x 107 2.57 x 10° N NONE
6.32x 107* 3500-4.5-7/4 6.32x107* 1.1x10° N NONE
3500-4.5-57/4 2.3 % 10 N
1073 3500-4.5-nt/4 4.x10%  12x10° N NONE
3500-4.5-nt/4 2.3 %10 N
1.5x107° 3500-4.5-7/4 3.x10-4 2.8x10° N *
10~ 4000-4.5-7/4 3.x10™ 10° N NONE
3500-4.5-n/4 2.5%10° N
2.53x 107 3500-4.5-7/4 6.32x10* 33x10° N NONE
4.x 10 3500-4.5-7t/4 4.x 10 12x10° N NONE
3500-4.5-57/4 23x10° N
3.x 107 4000-4.5-7/4 3.x10™ 10° N *

This migration speed of a planet, free from the vortex influence,
equals the average vortex migration speed at the dead zone inner
edge if

My x Mp = 5.8 x 107°(H/R)* M3, (17)

that is to say My x Mp = 3.7x 107" M2 and My = 2.1x107% M,
in our main disk model. The parameter space is then divided
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horizontally into two parts: points above the broad green region
in Fig. 6 refer to simulations where the theoretical planet migra-
tion in a power law disk is faster than the vortex, while points
below the region are simulations where the planet migration is
theoretically slower than the vortex. The thickness of the green
region arises because of the observed variation of the vortex mi-
gration speed between cycles.
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Fig. 6. Synthetic summary of runs that sam-

M, xMp,

ple the parameter space. The point size is di-
rectly related to the planet escaping time by
sp = ;ff /4 + 15. Red points denote runs that
have been stopped before the planet escapes.
The size is set by the simulation time instead of
escaping time. Numbered points refer to the run
# in Table 1. Starred points correspond to the
two main cases (A and B) described in Sect. 3.1
and displayed in Fig. 1. The parameter space
region where the theoretical migration speed of
a planet in a power-law disk equals the vortex

M,/ Mp

In this figure, it appears that planets in the highest parts of
the diagram (M, x Mp > 107°M,,) all escape from the trap very
rapidly. It also seems that planet capture is favoured on the right
side of the plane (higher My, /Mp), while planets escape faster
when moving to the left side.

The red line of constant Mp = 1073 on the sample map
crosses the parameter space from the bottom left to the top right
corner. We take the simulations 1, 2, 3, 4, 5, and 6, spread along
this line to illustrate the different behaviours of the planet-vortex
evolution in the different parts of this diagram. The co-evolution
of the planet and the vortex migration in these cases is shown in
Fig. 7.

For these six cases, and all others in the simulation sample,
we recover the two phases described above: most of the time, the
planet and the vortex are locked and migrate together. When the
vortex is destroyed, the planet is free to migrate inward. A few
differences between these cases deserve to be highlighted here.

— First of all, as shown in Table 1 and Fig. 6, the escaping time
is not a monotonic function of planet mass.

— The fluctuations of the planet orbits induced by density fluc-
tuations in the disk (see below) are stronger for the two light-
est planets. The planets escape in simulations #5 and #6 be-
cause these fluctuations kick the planets out of the positive
torque region.

— The vortex migration distance is shorter for higher planet
masses.

— For the most massive cases (#1, #2, and #3), the migration
after vortex destruction is slower than expected theoretically
in a power law disk. When the migration is compatible with
the “theoretical free migration”, it is in general too late to
outrun the new vortex. In case #3, the planet finally manages
to escape after a long vortex cycle that leaves it deep inside
the viscous region. In case #1, and all other cases with such
a high mass, the altered migration velocity is faster than the
vortex migration speed and so the planet escapes at the end
of the first cycle.

migration speed (criterion Eq. (17)) is coloured
in green. Isocontours of normalised torque de-
viation given by Eq. (21) are drawn in black.

— Case #4 lies at the bottom of the green region in Fig. 6. This
planet escapes during a slower cycle where the planet migra-
tion speed exceeds the vortex migration speed.

4. Discussion
4.1. The vortex tail and planet-vortex locking

We have suggested that the planet-vortex locking mechanism
can be modelled by a gravitational interaction between two
point masses (the planet and the vortex) plus a positive coro-
tation torque exerted by the quasi-axisymmetric vortex tail on
the planet. The shape of the tail suggests that its origin is due to
mass being expelled by the mass-loaded vortex that forms at the
peak of the pressure bump. Mass spreading by internal viscous
dissipation is probably too slow because the viscosity inside the
vortex is null. Indeed, the temperature in the vortex core is below
the temperature threshold for switching on viscosity, and the vor-
tex is only eroded by viscous processes at its edge (Faure et al.
2015).

To test the validity of our two point mass model, we realised
a few additional test simulations of a simple inviscid disk model
with a flat temperature and density background (p = g = 0). In
this disk, the energy equation is replaced by a polytropic evolu-
tion equation,

-1
(Z) _ pa-(T=Dp

>
with I' the polytropic index that is a free parameter. To generate
a vortex, a vorticity perturbation ¢ w is introduced as a patch of
circular perturbation of velocity and density. In order to maintain
the vortex mass close to the initial value, we found it necessary
to introduce density relaxation

(18)

d_Z _JE-kZp)/(2r/Q) if 6w < -0.37 (inside the vortex)
dr | -Zp) x3/(2n/Q) otherwise.

19)

with k a free parameter. After one vortex orbit (¢ ~ 5), the vor-
ticity perturbation has relaxed to a quasi-steady state. The fact
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Fig.7. Same as Fig. 1 for the six cases highlighted in Fig. 6. They are
ordered from top to bottom by increasing number (or equivalently by
decreasing planet mass).

that mass has to be added constantly to the vortex to maintain
its quasi-steady structure implies that the vortex expels mass or
loses it via the action of residual numerical dissipation. The main
differences between this disk model and the disk including a
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Fig. 8. Density map of perturbation to the flat background density at
t = 150 of the inviscid simulation where I' = 1.4 and k = 2.
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Fig. 9. Evolution of the planet orbit (fop panel) and the planet-vortex an-
gular distance (bottom panel) in simulations of the inviscid disk model.
Red line: MI1 case, green line MI2 case, and blue line MI3 case. The
dashed area indicates the first U-turn of the planet in the MI1 case and in
the MI2 case (respectively from left to right). The horizontal dashed line
indicates the vortex orbital distance and the vertical line shows when the
planet crosses the vortex orbit in the MI1 case.

dead zone is the absence of the background density bump and
the absence of explicit viscosity.

First we ran a batch of simulations without a planet with
various k and polytropic indexes: 1.4 (locally adiabatic case),
1 (locally isothermal case), and 0.6. We discovered that, in most
cases, vortices are not stable structures; they eventually split into
a big vortex and a few smaller child-vortices because of the
vortex mass loading. As an example, we show the density map
(Fig. 8) of the disk with I = 1.4 and k = 2 at t+ = 150. At this
stage, two child-vortices have detached from the primary one. It
seems that the timescale associated to the vortex splitting is very
sensitive to the vortex mass perturbation k and the disk thermo-
dynamics. In fact, this phenomenon of vortex-splitting is also
observed in the viscous simulations where the viscosity gradient
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at the vortex edge drives a mass inflow inside the vortex (Faure
etal. 2015). These simulations show that the vortices do not nec-
essarily require viscous erosion at their edges to eject the mass
needed to build up a tail. However, the viscous process, that is
more efficient on smaller structures, may ease the formation of
the tail by dissipating child-vortices on short timescales.

While most simulations have shown that child-vortices are
not massive enough to significantly affect the planet angular mo-
mentum, they may have an indirect impact on the planet migra-
tion by increasing the mass in the tail. Addressing the detailed
reasons for the splitting of the vortices goes beyond the scope of
this paper, but will be addressed in future work.

After choosing a disk model with a relatively long-lived vor-
tex (described below), we ran three simulations with different
initial locations of the planet My = 3 x 107* that is introduced
five orbits after the beginning of the simulation:

— Case MI1: the planet initially leads the vortex in azimuth by
A¢ = 1.7, and orbits further from the star than the vortex
with R — Ry = 0.4.

— Case MI2: The planet initially leads the vortex in azimuth
(A¢ = 1.7), and the planet and vortex orbit at the same dis-
tance from the star.

— Case MI3: The planet and vortex orbit initially at the same
distance from the star, but now the vortex leads the planet in
azimuth with A¢ = 5.

We chose k = 1.2 for these simulations. This leaves a window
of a few hundred orbits to study the interaction between vortices
and planets before vortices start to split. Choosing Mp = 6. X
10~*M,., we get a vortex mass about two times higher (M, ~ 6 x
10~ M,) than the planet mass (Mp =3x 1074 M,.). We also opt
for a locally isothermal disk model (I" = 1) to prevent the vortex
migration (Paardekooper et al. 2010b; Faure et al. 2015), as our
intention here is to focus on the horseshoe dynamics. We note,
however, that the planet is able to migrate relative to the vortex
and this plays an important role in the evolution. The evolution
of the planet in these cases is shown in Fig. 9.

For the run MI1, the planet is initially further from the star
than the vortex is, and leads in azimuth. The vortex orbits faster
and catches up with the planet. When the planet enters the grav-
itational influence of the vortex, it makes a U-turn at ¢ = 20 or-
bits, such that it orbits closer to the star than the vortex does.
The planet now orbits faster than the vortex and runs away from
it. At t ~ 75, when the planet has a conjunction with the vor-
tex, the gravitational effect on the planet is weak since the planet
orbital distance from the vortex is greater than the Hill sphere
radius of the vortex by virtue of the planet’s inward migration.
The planet thus escapes from vortex influence and continues mi-
grating inwards.

Case MI2 is identical, except that the planet initially orbits
closer to the star than the vortex does. It runs away from the
vortex without experiencing a U-turn. When it has a conjunc-
tion with the vortex the migration has moved it outside of the
horseshoe region and it continues to migrate inwards.

In the last case (MI3), the planet is constantly following the
vortex rotation. When the planet approaches the vortex, it makes
a U-turn that places it on an orbit that is further from the star than
the vortex is. Because of its inward migration, it then catches up
the vortex again, and the cycle repeats without end (or at least
for the lifetime of the vortex). This demonstrates how migration
can shorten the horseshoe motion in azimuth. The planet remains
captured behind the vortex.

These numerical experiments confirm that the planet initi-
ates horseshoe motion when it encounters the vortex, just as a

small body enters the gravitational sphere of influence of a larger
one orbiting around the star. Consistently with our model for the
planet-vortex locking, the outward motion of the planet after a
vortex-planet encounter has not been observed in the MI simu-
lations since the vortex tail is damped by our density relaxation
(so a strong positive corotation torque is not present). However,
the simulation MI3 shows that a vortex migrating slower than
a planet can capture the planet behind it. By symmetry, this
suggests that a vortex migrating inwards faster than the planet
should be able to capture the planet in front of it, with the migra-
tion speed difference playing the role of the vortex tail in short-
ening the horseshoe motion in azimuth.

4.2. Planet filtering

From the parameter study presented in section 3.3 it seems that
either low mass planets or more massive planets escape from the
planet trap, while intermediate mass planets remain trapped at
the inner edge of the dead zone.

Apparently planets are able to fully escape from the trap dur-
ing a vortex cycle as soon as they can migrate across this zone
before the vortex created in the next cycle attracts them back. In
other words, the planet migration has to be faster than that of the
vortex. This translates into the criterion Eq. (17) involving the
product of the disk and planet mass. Taking that the vortex mi-
gration speed scales with R™/2 (as the Keplerian velocity) and
with (H/R)? (Paardekooper et al. 2010b), we can rewrite the cri-

terion as
5R 1/2(H)4M 5
3.5Rpz R/

Hence, for reasonable values of disk scale height (H/R = 0.05),
disk mass (Mp = 1073, Mg« ~ 10%M,), and dead zone inner
edge position (Rpz = 0.5 au), the limiting mass is M}, = 107* M,
(i.e. approximately Neptune’s mass).

The lower mass limit where fluctuations free the planet from
the inner edge trap cannot be estimated so easily. These fluc-
tuations reflect the torque variability induced by density waves
(excited by the vortex) and small structures in the disk that arise
when a vortex is disrupted at the end of a cycle. We have mea-
sured the standard deviation of the torque for different disk and
planet masses. As expected, the torque fluctuations linearly de-
pend on the disk mass. This is not the case for the planet mass
dependence as shown in Figs. 10 and 11. The measure of the
torque deviation on case #6 is very uncertain since the planet
escapes rapidly. Measurement errors indicated in the Fig. 11
have been taken into account. We fitted the data with a power
law to obtain a scaling of the torque fluctuation amplitude with
the planet mass. We found that the torque deviation scales with
planet mass as

My X Mp = 5. % 10—7( (20)

6Ty = 2.8 ¥ 10‘3Ml;10‘464. (21)
Isocontours of the torque deviation normalised by that measured
in case #6 (6 I'pi46) are shown in Fig. 6. Reasons for the depen-
dence of the fluctuating torque on the planet mass are described
below.

Planets on the left part of the (My/Mp, My X Mp) plane
are more prone to being kicked out of the planet trap region
by torque fluctuations. Taking the torque fluctuations amplitude
measured in case #4 (isocontour 6 I'1/0 46 = 0.385) as the
limit below which the planet always escapes, whatever its mi-
gration speed, we can derive a lower mass limit for the fiducial
disk model mentioned above. We obtain M,; = 3. x 107> M,
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Fig. 10. Torque evolution (top panel) and its standard deviation to av-

erage value (bottom panel) in runs 2, 4, 5, and 6 (red, blue, green, and
black curves, respectively).
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Fig.11. Variation of the average torque standard deviation with
planet mass for the late escaping planets of the sample (more than
10000 orbits): red crosses. The black dot with error bars corre-
sponds to case 6. The green curve shows the best fit by a power law:
6Ty =2.8x107° Ml;lo'““.

(i.e. about ten times Earth’s mass). Since the vortex lifetime and
(more importantly) the fragments lifetime should be shortened
by an interior residual viscosity, the stochastic torque given by
our calculations is sensitive to numerical resolution that sets the
dissipation in the inactive regions. Hence, this tentative result of
the minimum mass should be confirmed by simulations with the
appropriate higher resolution of a disk model with an explicit
low viscosity inside the dead zone.

Hence, only intermediate mass planets can be kept at the in-
ner edge of the dead zone; low mass planets are ejected by torque
fluctuations at vortex destruction and high mass ones migrate too
fast (provided they cannot form a gap).

Moreover, the maximum mass criterion seems to be elevated
for higher M, /Mp ratios because more massive planets desta-
bilise the vortex. This effect can be seen in plots of the evolution
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of relative maximum density for different planet masses. We
show an example for cases #2 (higher mass) and #4 (lower mass)
in Fig. 12. The vortex cycle in case #2 is always interrupted pre-
maturely. The vortex is cut into fragments as the density map
of Fig. 13 shows. No real primary vortex can be identified, each
element has roughly the planet mass. The vortical structure is
broken by the waves emitted by the planet, which are stronger
for heavier planets. The breaking is observed in lighter planet
cases, but at a later stage when viscosity has weakened the vor-
tex sufficiently. The planet interacts with all the pieces of the
broken vortex, delaying its free migration. However, the viscous
spreading of the vortex mass is speeded up significantly because
it breaks up, and this shortens the vortex cycle. A new cycle will
begin as soon as this material has viscously spread back to the
dead zone inner edge. In order to escape from the planet trap,
these more massive vortex-destroying planets need the vortex
cycle to be sufficiently prolonged that they can migrate inwards
faster than a single coherent vortex. The feedback of the planet
onto the vortex behaviour is more and more pronounced mov-
ing towards the right in the (M}/Mp, M, X Mp) plane shown
in Fig. 6: the more massive the planet, the more exceptional the
cycle has to be. A second consequence is that the vortex in the
small planet case has time to grow so that it becomes increas-
ingly mass loaded. When the vortex breaks up at the end of the
vortex migration cycle then the vortex fragments are themselves
more massive and induce stronger torque fluctuations that can
kick the low mass planets out of the trap region before a new
vortex forms and migrates. This is the origin of the relation be-
tween planet mass and torque fluctuation amplitude discussed
above. This also implies that the torque fluctuations amplitude
is probably a function of the disk H/R. This has, however, been
ignored in the estimation of the lower limit planet mass in a fidu-
cial disk.

Finally, we ran the locally isothermal counterparts for most
simulations in our sample, where vortex migration and the vortex
cycles do not occur. We find that all planets stay at the dead zone
inner edge. This highlights the fact that the vortex cycle inhibits
the dead zone inner edge trapping capability for either low mass
planets and more massive planets. This result complements the
predictions for planet trapping from Masset et al. (2006b).

4.3. Role of the vortex gravitational potential

The planet trapping by the vortex can be partly interpreted by
viewing it in the context of the restricted three-body problem
since the planet is considerably lighter than the vortex in the sim-
ulations presented here. The vortex is consequently quite mas-
sive while its gravitational influence on the rest of the disk has
been neglected (self-gravity ignored). The most massive vortices
have been found in the viscous simulations denoted as A and B.
In this section, we evaluate a posteriori the potential influence of
the vortex on the disk itself.
We first compute the Toomre number Q

csQ

QOdisk = -

for disk stability. An example of Q-values obtained in the sim-
ulations is shown in Fig. 14. Even in the vortex, where the ro-
tation is slower and the density higher, the minimum value is
Quisk = 9.04. We then calculated the average value of the Toomre
number Q for the vortex itself, treating the vortex as a local sub-
disk to test against internal fragmentation

(22)

CsQvort
nGX

Qvorl = (23)
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Fig. 12. Evolution of the maximum of the density perturbation in cases 2 (red line) and 4 (green line) of the sample.

with a rotation frequency evaluated from vorticity perturbation

Quort = W — wg (24)
where wg is the Keplerian vorticity at the vortex centre. In
the example, the 4242nd orbit of case A, the average value is
(Ovort) = 5.4. At all times of the viscous simulations, the values
of Quisk and {(Qyorr) remain above unity.

We finally evaluate the possibility for the vortex to open a
gap since that would change the picture presented above com-
pletely. Using Eq. (11), we checked that $, > 1 for all outputs
in the two viscous simulations with a dead zone inner edge close
to the inner boundary. P, = 4.886 at t = 4242 in the simulation
of case A.

We conclude that the disk and the vortex are gravitationally
stable, and the vortex is also not massive enough to carve a deep
gap if the self-gravity is included. For the simulations of the disk
model with a dead zone inner edge located further from the in-
ner boundary and a high disk mass Mp = 1 x 1073, the vortex
remains lighter than in the simulations of cases A and B since it
forms in a less dense region.

4.4. Runs with MHD turbulence

The last effect on the trapping of planets that has not yet been
mentioned is the viscosity value we used. Viscosity weakens the
vortex during its migration and sets the cycle maximum ampli-
tude. This effect is very sensitive. We ran a single 3D MHD
simulation of a turbulent version of our disk model to test the
validity of our results.

This simulation was performed using a uniform grid version
of the code RAMSES (Teyssier 2002; Fromang et al. 2006). We
solved the MHD equations in cylindrical coordinates (R, ¢, Z)
with units vectors (eg, €4, €;)

op _

o5 V-(ov) =0, (25)
% + V(oo — BB) + VP = —pVO, (26)
O

el [(E + P - B(B-v) + )| = —pv- VO - L, 27)
OB

i VX x B) = -Vx(VxB), (28)
O =D, + Dy, (29)
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Fig. 13. Map of relative density perturbation to the azimuthal average
density at t = 4780 of the 2nd simulation of the sample. The vortex
contour is delimited by the black line and the vortex position is located
at the black cross. The planet position is shown by a white cross.

where p is the volume density, v is the velocity, and B is the mag-
netic field. The extensive variables (like P, E, L) are the volu-
metric version of the 2D quantities with the same name. The
magnetic diffusivity is denoted by 7 and is responsible for the
resistive flux ¥, that appears in Eq. (27) (see Balbus & Hawley
1998). We captured the turbulent heating by solving the equa-
tion of total energy conservation. The initial magnetic field con-
figuration is purely toroidal. Its vertical profile is such that the
integrated magnetic flux through a vertical slice of the disk van-
ishes. The computational domain is R € [Ry, 8 Ry], ¢ € [0, 2x],
and Z € [-0.3 Ry, 0.3 Ry] and has a resolution of [480, 640, 80].
In this simulation, a resistive buffer extends over AR = 0.5 on
both sides of the domain to damp the magnetic fluctuations at
the boundary and ensure numerical stability. A viscous buffer
extends between the inner edge of the domain and R = 2. This
has been found necessary by Faure et al. (2015) to ensure the
continuity of angular momentum transport at the inner boundary
of the domain.
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Fig. 14. Map of the Toomre number for the disk gravitational stability
at t = 4242 of the simulation of case A. The vortex contour is delimited
by the black line and the vortex position is located at the black cross.

We first ran an ideal MHD simulation of this disk model
(n=0) that sets the initial conditions for our non-ideal
MHD runs we discuss below. A dead zone (or resistive region)
is introduced in the disk when the turbulence has developed into
a steady state and the temperature has reached a stable profile.
We then take into account the feedback of the temperature on the
ionization fraction setting,

no if T <Twuri
n(T) = {0 otherwise, (30)

as we did previously for the viscosity in the viscous disk model.
The temperature threshold and the dead zone inner edge posi-
tion are set to identical values as in the cases A and B of our
viscous disk: Tyrr = 0.41 and Rpz = 3.4Ry. As in the vis-
cous simulations, a vortex forms and starts to migrate through
the active region. Figure 15 shows the orbital evolution of the
vortex and the planet (M, = 1.5 x 107#) that is introduced at
the beginning of the first vortex cycle. While the planet orbit is
occasionally shifted up, the planet closely follows the vortex mi-
gration. In this simulation, the turbulent fluctuations of density
are not strong enough to disrupt the vortex-planet coupled evo-
lution and stop their concomitant migration.

While the vortex migration distance is very sensitive to the
value of aypgp in the viscous simulations, the vortex cycle ob-
tained in the MHD simulation shows that the turbulence self-
adjusts to enable the vortex penetration in the active zone over a
large distance.

5. Conclusion

In this paper we have presented a series of simulations of viscous
disk models, centred on the vicinity of the dead zone inner edge,
with embedded migrating planets. Previous work (Faure et al.
2015) has shown that the dramatic change in the effective viscos-
ity at this interface leads to the formation of a sharp transition in
the surface density, the formation of a pressure bump that is un-
stable to the formation of a vortex, and a repeating vortex-cycle
that is driven by the migration, destruction, and reformation of
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Fig. 15. Radial position of the density perturbation maximum (red
curve, vortex position) and orbital evolution of the planet (green curve).

the vortex. The main aim of this work is to examine in detail the
interaction between the planet and the vortex cycle, and to deter-
mine its influence on the ability of the dead zone inner edge to
act as a planet trap (Masset et al. 2006b). The main results and
conclusions to be drawn from this study can be summarised as
follows:

— The interaction between the planet and the inward migrating
vortex always causes the planet to be dragged inwards by
the vortex. In agreement with Ataiee et al. (2014), we find
that this occurs because the planet and vortex undergo horse-
shoe interaction that causes the vortex and planet to migrate
together.

— The inward migration of the vortex into the inner viscous
region of the disk causes its eventual destruction, and this re-
leases the planet. The subsequent evolution can then result in
the planet remaining trapped in the region of the dead zone
inner edge or completely escaping from this region by mi-
grating inwards. The outcome depends on the planet mass.

— Massive (but non-gap forming) planets tend to escape from
the planet trap. This is because they migrate inwards and
away from the planet trap region rapidly when released by
the vortex.

— Low mass planets also tend to escape from the planet trap
because they experience strong stochastic torques from both
the spiral waves excited by the migrating vortex and from the
vortex fragments when it is disrupted, and these tend to kick
the planet out of the planet trap region.

— Intermediate mass planets migrate too slowly to escape the
influence of the next incoming vortex in the cycle, and so
remain trapped in the region centred on the dead zone inner
edge through horseshoe interaction with the subsequent gen-
erations of vortices. These planets are also less affected by
the stochastic torques that are responsible for allowing the
low mass planets to escape the trap. Consequently, we find
that the vortex cycle causes the dead zone inner edge to act
as a mass-dependent planet filter.

— We estimate that the range of masses for which the planet
trap operates effectively is approximately in the range 3 X
10°M, < My < 107*M,, although we caution that this
needs to be confirmed by more sophisticated MHD simula-
tions than we have presented here.
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The simulations that we have presented are by necessity simpli-
fied 2D viscous disk simulations that employ a rather unsophis-
ticated temperature dependent switch to model the transition be-
tween the dead zone and the magnetically active inner region of
the disk. Performing a suite of 3D MHD simulations to exam-
ine this problem, with the requirement of undertaking a parame-
ter study in order to understand the physics of the vortex-planet
interaction, would require computational resources that are be-
yond those that we have at our disposal. Nonetheless, the study
presented here provides a clear proof of concept that the inter-
action between planets and vortices at the dead zone inner edge
is important, and should be taken into account when modelling
the migration of short period planets. Future work will focus on
developing more sophisticated models to validate those that we
have presented here, including the effects of MHD turbulence,
non-ideal MHD effects, and the heating of the disk by stellar
irradiation and turbulent dissipation so that the physics of the
dead zone inner edge are captured more accurately. The effect of
planet growth should also be investigated since the results pre-
sented above involve planets already massive enough to undergo
gas accretion. These models will automatically incorporate the
stochastic torques from the MHD turbulence as well as the dis-
rupting vortex, hence placing firmer limits on which planets re-
main at the planet trap and which ones can escape inwards.

Finally, we note that the vortex-planet interactions that we
have examined in this work may also be relevant for regions of
the disk that lie far beyond the dead zone inner edge. It has been
suggested that planet traps may arise at large orbital radii from
the star, such as at the location of the ice line(s) (e.g. Ida & Lin
2008; Lyra et al. 2010; Hasegawa & Pudritz 2011; Kretke & Lin
2012), and it is clear that if vortices located at these radii form
and migrate then the processes that we have examined in this
work may also be relevant in this broader context. It is clear that
the interaction between planets and vortices in regions of proto-
planetary disks where pressure bumps lead to vortex formation
is likely to play an important role in the migration history of
forming planets.
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Appendix A: Analysis procedure and definitions

In order to evaluate the vortex mass and position, for each output
we fit the average of the radial profile of density perturbation to
the initial power law by a two-Gaussian function,

(R-Rpg)*

_ _(R-Rp)?*
foauss = Apge  va

+Aje o

(A1)

where Apg, Rg, 0BG, Ans Ry, and o, are free parameters of
the fit. An example of a density radial profile reconstructed (Xg;)
with such a fit is given in Fig. 3, black curve.

We define the vortex position and the vortex size using the
density perturbation 6 X = X — Xg.. The vortex position is the
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location of the maximum of the density perturbation 6 £ where
we also excluded the density perturbation inside the planet’s Hill
sphere. The vortex contour is given by § £ = max(é X)/2. For the
example of + = 4242, we show the vortex contour and position
on the density maps of Fig. 4.

We call the background density Xpg at time ¢ the recon-
structed density profile from the fit without the density perturba-
tion associated with the vortex (6 Z, = A, exp(—(R — R,)*/c,)).

Following these analysis steps, we can finally deduce the
vortex mass M,. It is defined as the total gas mass inside the
vortex contour reduced by the background density.



