
Nonphotochemical Chlorophyll Fluorescence Quenching: Mechanism and

Effectiveness in Protecting Plants from Photodamage.
Ruban, AV

 

 

 

 

 

“The final publication is available at http://www.plantphysiol.org/content/170/4/1903.short”

 

 

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/12041

 

 

 

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/12041


 

1 

Topical review  1 

 2 

Non-photochemical chlorophyll fluorescence quenching: mechanism and effectiveness in 3 
protection against photodamage 4 

Alexander V. Ruban 5 

School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, 6 
London E1 4NS, UK 7 

 8 

One-sentence summary: A review of the current state of the knowledge of the mechanism and 9 
protective effectiveness of non-photochemical chlorophyll fluorescence quenching is presented. 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

Footnotes: The author acknowledges the Royal Society Wolfson Research Merit Award, The 31 
Leverhulme Trust grant RPG-2012-478 and a grant from Biotechnology and Biological Sciences 32 
Research Council BB/L019027/1.   33 



 

2 

Abstract  34 

The mechanism of non-photochemical chlorophyll fluorescence quenching, NPQ, and its role in 35 
protecting plants against photoinhibition is reviewed. An introduction to the phenomenon, a brief 36 
history of the major milestones, definitions, and a discussion of quantitative measurements of 37 
NPQ have been presented. The up-to-date knowledge and unknown aspects in the NPQ scenario 38 
that includes proton gradient (ΔpH) – trigger, the photosystem II (PSII) light harvesting antenna 39 
(LHCII) – site; changes in the antenna induced by ΔpH – change leading to creation of the 40 
quencher have been discussed. It is concluded that the minimum requirement for NPQ in vivo 41 
consists of ΔpH, LHCII complexes and the PsbS protein. The most important unknown in the 42 
NPQ scenario is highlighted to be the mechanism of PsbS action upon the LHCII antenna. A novel 43 
emerging technology for the assessment of the photoprotective ‘power’ of NPQ has been reviewed 44 
and its insightful outcomes are explained using several examples.          45 

  46 
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            “Real knowledge is to know the extent of one’s ignorance.” 47 

Confucius 48 

Non-photochemical chlorophyll fluorescence quenching (NPQ) refers to a process of 49 

increased absorbed light energy dissipation into heat that takes place in the photosynthetic 50 

membrane of plants, algae and cyanobacteria (Demmig-Adams et al., 2014). Early photosynthetic 51 

organisms facing the problem of shady environments evolved the light harvesting antenna that 52 

collect the dilute energy of light for the photosynthetic reaction centres (Clayton, 1980; 53 

Blankenship, 2002). However, high light exposure in this case causes rapid saturation of the 54 

photosynthetic reaction centres and their eventual closure, leading to a reduction in the fraction of 55 

energy utilized in photosynthesis and the subsequent build-up of harmful excess excitation energy 56 

in the photosynthetic membrane (Björkman and Demmig-Adams, 1995). This energy can damage 57 

the most delicate part of the photosynthetic apparatus, the photosystem II (PSII) reaction centre 58 

(RCII) that drives water splitting and oxygen evolution (Powles, 1984; Barber, 1995; Ohad et al., 59 

1984). A RCII repair mechanism does exists but the process occurs on the time scale of hours 60 

(Barber and Andersson, 1992; Aro et al., 1993; Nixon et al., 2010; Nath et al., 2013). In addition, 61 

excess light can potentially be harmful to the antenna pigments (Fleming et al., 2012). This can 62 

lead to a sustained decline in photosynthetic efficiency and in extremes to the death of the 63 

photosynthetic cell, tissue or organism.  64 

Evolution supplied a range of solutions to the problem of high light exposure that vary in 65 

efficiency, level of action and promptness of response (Gall et al., 2011; Niyogi and Truong, 66 

2013; Ruban, 2014; Demmig-Adams et al., 2014; Goss and Lepetit, 2015). There are adaptations 67 

to control light absorption capacity as well as adaptations that deal with the light energy that has 68 

already been captured (Chow et al., 1988; Koller, 1990; Ruban, 2009; Cazzaniga et al., 2013; Xu 69 

et al., 2015). At the molecular level there is both long-term (acclimation) and short-term 70 

(regulatory mechanisms) control of the input of light energy into RCs. The first type is 71 

predominantly developmental in nature, and is the result of light-dependent regulation of complex 72 

gene expression, occurring on transcriptional, translational and post-translational levels (Anderson 73 

et al., 1988). However, since the response time of acclimation is long, it limits photoprotective 74 

efficiency while at the same time consuming energy and resources. On its own it is insufficient 75 

since profound damage to the RCII can occur within minutes of excess light exposure (Tyystjarvi 76 

and Aro, 1996).   77 

NPQ is a molecular adaptation that represents the fastest response of the photosynthetic 78 

membrane to the excess light (Demmig-Adams et al., 2014). The NPQ process directly or 79 

indirectly relates to the processes of light harvesting by the photosynthetic antenna complexes, 80 
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their structure, captured energy transfer to reaction centers, electron transport, proton translocation 81 

across the membrane, ATPase activity and carbon assimilation (Walker, 1987; Ruban, 2013; 82 

Demmig-Adams et al., 2014). At various times NPQ research progressed through new 83 

developments in the fields of defining and quantifying this protective process (Papageorgiu and 84 

Govindjee, 1968; Murata and Shugahara, 1969; Schreiber, 1986; Oxborough and Horton, 1988; 85 

Weis and Berry, 1987), the structure of the photosynthetic antenna complexes (Nield and Barber, 86 

2006; Liu et al., 2004) and their organisation in the membrane (Dekker and Boekema, 2005; 87 

Ruban and Johnson, 2015), dynamics of the antenna complexes (Garab et al., 1988; Ruban et al., 88 

1994; Miloslavina et al., 2008; Krüger et al., 2012, Liguori et al., 2015) pigment compositions 89 

(Rees et al., 1989; Demmig-Adams, 1990) and dynamics in the membrane (Demmig-Adams and 90 

Adams III, 1992; Matsubara et al., 2001; Jahns et al., 2009), excitation energy transfer and 91 

dissipation (van Amerongen et al., 2000; Polivka and Sundstrom, 2004; Renger and Holzwarth, 92 

2008; Cheng and Fleming, 2009; Scholes et al., 2011). It was a long and often convoluted path 93 

towards the complete understanding of the molecular mechanism. Indeed, it took some time to 94 

define and separate NPQ, to learn how to measure and quantify it, to obtain molecular insights 95 

into antenna structure, to learn its dynamic nature and understand its role in protection. Recent 96 

years witnessed a great emergence of review articles on various aspects of NPQ. A recent 97 

collection of which have been published in the 40th volume of the series Advances in 98 

Photosynthesis and Respiration 2014 (Demmig-Adams et al., 2014). Hence, the aim of this review 99 

is to provide a complementary information highlighting the most recent known and unknown 100 

aspects of the most investigated mechanism of NPQ that takes place in plants. This article also 101 

discusses emerging work on quantitative approaches to assessing the effectiveness of NPQ in 102 

protection against photoinhibition.  103 

DEFINITION OF NPQ 104 

NPQ was introduced as a reflection of the processes that arise in the photosynthetic 105 

membrane that are not photochemical in origin. Indeed, the activity of the RCII causes a 106 

significant decrease, or quenching, of chlorophyll fluorescence, since it consumes light energy that 107 

otherwise could be released through fluorescence, interconversion or intersystem crossing 108 

(Duysens and Sweers, 1963; Govindjee and Papageorgiu, 1971; Myers, 1974). However, it was 109 

also discovered that fluorescence can be quenched in conditions when all RCII are closed, hence 110 

not consuming any absorbed light energy (Papageorgiu and Govindjee, 1968; Murata and 111 

Shugahara, 1969; Wright and Crofts, 1970). This was achieved first by using the PSII acceptor site 112 

inhibitor DCMU added to chloroplasts constantly illuminated by actinic light. The inhibitor 113 

caused the closure of RCII’s within the first second of illumination, quickly reversing the 114 
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photochemically quenched fluorescence while the remaining part of the quenched fluorescence 115 

reversed on a much slower time scale (Papageorgiu and Govindjee, 1968). This slowly relaxing 116 

quenching was called ‘non-photochemical quenching’, or energy-dependent quenching qE 117 

(Wright and Crofts, 1970). The term qE still remains popular and is considered to be the major 118 

part of NPQ (Figure 1A).  119 

In the 1980’s the introduction of the pulse amplitude modulated (PAM) fluorescence 120 

technique opened up a powerful opportunity for the detailed study of NPQ (Shereiber, 1986; 121 

Oxborough and Horton, 1988). Figure 1A depicts a typical PAM induction measurement assessing 122 

the state of PSII in the dark, the Fo fluorescence level, when all RCIIs are open and the Fm level, 123 

when all of them are closed by the high intensity pulse (normally of 0.5-1.0 s duration). From this 124 

simple start one can calculate the quantum efficiency of PSII as ΦPSII = (Fm-Fo)/Fm. In fact this is 125 

actually the relative amount of fluorescence that was photochemically quenched due to the activity 126 

of the reaction centres. It is interesting to note that the fluorescence does not immediately return to 127 

the initial Fo level which is due to the fact that the acceptor site of the PSII stays reduced for some 128 

time. This can be accelerated by the use of far red light that preferentially excites photosystem I 129 

(PSI), causing faster oxidation of the Cytb/f complex and the pool of mobile electron carriers, 130 

plastoquinones (PQ), that removes electrons from PSII (Hill and Bendall, 1960; Blankenship, 131 

2002). Then the actinic light illumination was applied for about 5 min. During this time saturating 132 

light pulses are used every minute to determine the level of Fm. It can be clearly seen that this 133 

level is being progressively quenched and stabilises at the end of the illumination period. The 134 

quenched Fm is termed Fm’. Hence the level of NPQ can be calculated as (Fm-Fm’)/Fm’. Another 135 

parameter called qN is used to calculate non-photochemical quenching: qN = (Fm-Fm’)/Fm. This 136 

effectively gives a percentage of quenching in a similar manner to ΦPSII. The NPQ calculation 137 

reflects the ratio of the rate constant of NPQ to the sum of the rest of the constants reflecting all 138 

other dissipation pathways in the membrane, such as fluorescence, internal and interconversion 139 

(Krasuse and Weis, 1991). qE is defined in the context of this analysis as the rapidly-reversing 140 

component of qN or NPQ (Figure 1A). Normally this component is considered to recover within 5 141 

minutes of switching off the actinic light. It is worth noting that the trigger of qE, ΔpH, usually 142 

collapses within 10-20 s (Ruban, 2013). Hence, it was proposed in the early days of NPQ research 143 

that the process involved some conformational changes within the photosynthetic membrane that 144 

respond to ΔpH.  As shown on the figure, qE appears to be the major component of NPQ. The rest 145 

used to be termed qI or the irreversible NPQ component related to photoinhibition/damage to RCII 146 

(Krause and Weis, 1991). Later, it was discovered that the formation of zeaxanthin is closely 147 

related to the NPQ mechanism (Demmig-Adams et al., 1989; Demmig-Adams, 1990; Demmig-148 

Adams and Adams III, 1992; for review see Demmig-Adams et al., 2014) and as such a part of qI 149 
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is often termed qZ to reflect the long-term quenching effect that correlated with the presence of 150 

this pigment (Nilkens, 2010). In addition, other sustained components of NPQ have been reported 151 

that were triggered by low temperature acclimation (Verhoeven, 2013), prolonged illumination in 152 

the presence of zeaxanthin (Ruban and Horton, 1995), slow proton equilibration between different 153 

membrane compartments (Ruban and Horton, 1995; Joliot and Finazzi, 2010) or simply by 154 

formation of large levels of NPQ in some types of photosynthetic material (Ruban et al., 1993; 155 

Ruban et al., 2004; Ware et al., 2015). Hence qI appeared to be a very complex component of 156 

NPQ that remained difficult to interpret and the temporal criterion for quantification of qE is 157 

rather ambiguous. Hence, we will use here the term protective NPQ (or just NPQ) instead of qE, 158 

meaning that the former includes all moderately or slowly reversible components that are not 159 

related to photoinhibition (see for details in PROTECTIVE EFFECTIVENESS OF NPQ).  160 

 161 

MECHANISM OF NPQ  162 

NPQ resides in the antenna (Bassi and Caffarri, 2000; Fleming et al., 2012; Ruban et al., 163 

2012; Wilk et al., 2013) (site) that undergoes a change triggered by ΔpH (trigger) (Horton et al., 164 

1996; Strand and Kramer, 2014). As a result of this change the quencher pigment(s) start 165 

receiving and dissipating the energy harvested by the LHCII antenna into heat. Hence ΔpH 166 

provides a feed-back control over light harvesting efficiency in the photosynthetic membrane 167 

(Ruban et al., 2012; Strand and Kramer, 2014).   168 

Trigger: protons 169 

NPQ is triggered by ΔpH either directly by protonation of antenna components or 170 

indirectly by the xanthophyll cycle(s) activity (Ruban et al., 2012). It also makes sense to refer to 171 

the proton gradient as the trigger since in some organisms like diatom algae where large levels of 172 

NPQ can be induced and sustained in the dark or upon addition of uncouplers in the absence of 173 

ΔpH (Ruban et al., 2004; Lepetit et al., 2012). It was also established that acidification of the 174 

incubation buffer can induce fluorescence quenching that possessed features similar to NPQ (Rees 175 

et al., 1992). This finding provided a justification of the use of acidification technique in studies of 176 

fluorescence quenching in isolated antenna complexes (Ruban et al., 1994; Bassi and Caffarri, 177 

2000). Importantly, since ΔpH build-up is generated as a result of electron transport, a variety of 178 

pathways contribute to its amplitude and the reader is referred to the most recent comprehensive 179 

review (Strand and Kramer, 2014). In addition, ATPase by consuming protons exerts a 180 

modulatory effect upon ΔpH. Also, a recent report showed that not only ATPase but a specialised 181 

proton/potassium antiporter can influence the rate of NPQ relaxation at low light by accelerating 182 

the collapse of ΔpH (Armbruster et al., 2014). In fact, the trigger is kept under control too (Figure 183 
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1B, regulatory points 1&2). It appears that cyclic electron transport around PSI is the major 184 

contributor to the component of ΔpH that triggers the larger part of NPQ (Munekage et al., 2004). 185 

Recent work by Sato and co-workers (2015) discovered that the cyclic electron transport-186 

generated ΔpH contributes 60-80% to NPQ formation. Therefore, the ratio between PSII and PSI 187 

defined, for example, in the course of acclimation is likely to affect the trigger and therefore the 188 

amplitude of NPQ (Brestic et al., 2015). Remarkably, chloroplasts from plants grown on 189 

lincomycin, and have therefore lost almost all of PSII and 80% of PSI, were found to form levels 190 

of ΔpH close to those from the control plants as well as to form very large levels of NPQ (Belgio 191 

et al., 2012; Belgio et al., 2015). The modulation of ΔpH by artificial proton shuttles such as 192 

diaminodurene (DAD) has recently been successfully used to provide vital mechanistic clues 193 

about the sensitivity of responses of antenna components to lumen acidification during the 194 

induction of NPQ (see below in Site: LHCII antenna and PsbS). Lumen protons target three key 195 

components involved in NPQ: violaxanthin de-epoxidase (Figure 1B, target point 3) (Jahns et al., 196 

2009), the PsbS protein (Figure 1B, target point 4) (Li et al., 2004) and the LHCII antenna (Figure 197 

1B, target point 5) (Ruban et al., 1994; Walters et al., 1994; Ruban et al., 1996; Liu et al., 2008; 198 

Belgio et al., 2013). The pK of the lumen-exposed side of the thylakoid membrane is as low as 4.1 199 

(Åkerlund et al., 1979). The estimates of the in vivo lumen acidification as a result of ΔpH 200 

formation give pH 5.5 (Noctor et al., 1991; Kramer et al., 1999). The pK for NPQ in chloroplasts 201 

devoid of zeaxanthin is 4.7 and pK of the quenching in the isolated major LHCII complex without 202 

zeaxanthin is about 4.5 (Wentworth et al., 2001) but is 1-2 units of pH higher in the presence of 203 

zeaxanthin or in monomeric LHCII, CP26 (Ruban and Horton, 1999; Wentworth et al., 2001). The 204 

pK for PsbS according to the study by Dominici and co-workers (2002) should be in the region of 205 

6.0-6.5. A similar pK for the violaxanthin de-epoxidation was reported by Jahns and co-workers 206 

(2009). Hence, it appears that the most lumen pH sensitive components of the thylakoid 207 

membrane are PsbS, violaxanthin de-epoxidaze, monomeric antenna complexes and LHCII that 208 

bind zeaxanthin produced by de-epoxidase (Ruban at al., 2012). Therefore, for the LHCII antenna 209 

to respond to lumen pH (Figure 1B, target point 5) and become quenched it is important to achieve 210 

activation of de-epoxidase (target point 3) in order to produce zeaxanthin and activation of the 211 

PsbS protein (target point 4). Both LHCII and PsbS contain a number of lumen exposed residues 212 

that can receive protons. Two of them have been identified for monomeric LHCII and two for 213 

PsbS using DCCD labelling and site-directed mutagenesis (Walters et al., 1996; Li et al., 2004). 214 

However, tritium labelling of LHCII in vivo suggested that each monomer can sequester up to 17 215 

protons (Zolotareva et al., 1999). It may well be possible that since monomeric antenna receive 216 

protons at lower levels of ΔpH they are the primary sites for the quenching that eventually spreads 217 

into the bulk of LHCII trimers. The idea that the minor antenna are the site for NPQ is currently 218 
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being the most supported by the work of groups of Fleming and Bassi (Ahn et al., 2008; Avenson 219 

et al., 2009).   220 

There was never an easy way to measure the proton gradient. The use of 9-aminoacridine 221 

was a most common way to assess it in thylakoids or chloroplasts (Ruban, 2013). However, it 222 

appears not to be an easy task to do this on leaves and the only method was the indirect 223 

measurement using the light-induced absorption change at 518 nm that is believed to reflect the 224 

electrochromic shift of carotenoids (Kramer et al., 1999). However, this method was recently 225 

subjected to a critical reassessment that claimed that the observed steady-state component of the 226 

518 nm absorption change that was used as a measure of the proton gradient (Kramer et al., 1999) 227 

was due to the interference with the NPQ-associated absorption at 535 nm (for more detailed 228 

discussion see Johnson and Ruban, 2013). This work has also cast doubt that the electric field 229 

gradient Δψ makes a noticeable contribution to the proton motive force in photosynthesis. The 535 230 

nm change is tightly related to NPQ and, since the latter is triggered by ΔpH, measurements of 231 

absorption at 518 nm would reflect to a certain extent the amplitude of NPQ and therefore, 232 

indirectly, ΔpH. Therefore development of accurate, direct and non-destructive ways to measure 233 

ΔpH in vivo would be a crucial step towards monitoring the dynamics of this important parameter 234 

in a course of light and metabolic alterations in order to find the causes of altered NPQ levels.    235 

Site: LHCII antenna and PsbS 236 

Some 25 years ago modelling of the relationship between NPQ and the PSII yield 237 

prompted a point towards the involvement of the PSII antenna in NPQ (Genty et al., 1989). 238 

Indeed, the NPQ quencher was found to decrease not only Fm but Fo fluorescence (see Figure 1A) 239 

(Horton and Ruban, 1993). The quencher persisted at 77K and preferentially quenched major 240 

LHCII complex bands at 680 and 700 nm (Ruban et al., 1991). Early fluorescence lifetime 241 

analysis was consistent with quenching taking place in the PSII antenna (Genty et al., 1992). Later 242 

this type of spectroscopy revealed similarities between decay-associated spectral changes upon the 243 

transition into the quenching state in both isolated LHCII complexes and intact chloroplasts 244 

(Johnson and Ruban, 2009). Plants lacking a majority of LHCII antenna complexes displayed 245 

strongly reduced NPQ (Jahns and Krause, 1994; Havaux et al., 2007). The remaining quenching in 246 

the chlorina mutants or intermittent light grown plants was attributed to the presence of some 247 

minor LHCII antenna complexes (Jahns and Krause, 1994; Havaux et al., 2007) as was previously 248 

proposed (Andrews et al., 1995). NPQ was also found to be modulated by cross-linkers, tertiary 249 

amines, antimycin A, DCCD and magnesium in the same way as the quenching in isolated LHCII 250 

antenna complexes (Ruban et al., 1994; Ruban et al., 1996; Ruban et al., 1992; Johnson and 251 

Ruban, 2009). The latter was induced at the detergent concentration below cmc and led to the 252 



 

9 

aggregation of the complex. Hence, the hypothesis of the in vivo aggregation of the LHCII 253 

antenna as a mechanism underlying NPQ has been put forward (Horton et al., 1991) (for 254 

discussion see Change: LHCII aggregation and other). Moreover, discovery that the xanthophyll 255 

cycle carotenoids were localised exclusively in LHCII antenna complexes (Thayer and Thornber, 256 

1992; Bassi et al., 1993) and later that NPQ was entirely dependent upon the xanthophylls 257 

zeaxanthin and lutein (Pogson et al., 1998; Niyogi et al., 2001) caused little doubt that the NPQ 258 

site was the LHCII antenna (for more details read Ruban et al., 2012). 259 

The evolving knowledge of PSII antenna composition, structure and organisation in the 260 

photosynthetic membrane revealed its structural and functional heterogeneity (Boekema et al., 261 

1995; Jansson, 1994; Dekker and Boekema, 2005; Caffarri et al., 2009; Kouřil et al., 2011; Kouřil 262 

et al., 2013). The current structure proposes that the LHCII antenna is built of three monomeric 263 

LHCII antenna complexes, CP24, CP26 and CP29, collectively called the minor LHCII antenna 264 

and several trimeric LHCII known as the major LHCII antenna. The minor LHCII antenna build 265 

the structural and apparently functional (Dall'Osto et al., 2014) bridge between the major trimeric 266 

LHCII complexes and the core antenna in the PSII supercomplex dimer (Figure 2). Three types of 267 

LHCII trimers are distinguished based on their binding strength to the PSII supercomplex: S, M 268 

and L, strongly, medium and loosely bound, respectively. Only the localisation of S and M trimers 269 

have been identified. It is supposed that loosely bound trimers are relatively free to diffuse in the 270 

membrane, therefore it is difficult to predict their localisation. There can be 2 to 4 and sometimes 271 

more loosely bound trimeric LHCII complexes per one PSII monomer (Melis and Anderson, 272 

1983; Kouřil et al., 2012; Wientjes et al., 2013). Work on DCCD binding, in vitro quenching and 273 

carotenoid binding work on the monomeric LHCII complexes CP26 and CP29 showed that they 274 

are both capable acceptors of protons as well as able to attain large levels of quenching and are 275 

enriched in xanthophyll cycle carotenoids (Walters et al., 1994; Walters et al., 1996; Ruban et al., 276 

1996; Ruban et al., 1997; Bassi and Caffarri, 2000). It allowed researchers to put forward a 277 

proposal that the site of NPQ is localized in the monomeric LHCII complexes (Bassi and Caffarri, 278 

2000; Ahn et al., 2008; Avenson et al., 2009). This opinion was weakened by the fact that 279 

antisense and knockout mutants of Arabidopsis lacking one or even two of the three monomeric 280 

LHCII (CP24/29 double mutant) possessed significant levels of NPQ (Andersson et al., 2001; de 281 

Bianchi et al., 2008). In addition, the efficiency of violaxanthin de-epoxidation located in the L2 282 

site (Pan et al., 2011) was found to be very low in the minor antenna complexes, particularly in 283 

CP29, due to a strong binding into the site (Duffy and Ruban, 2012) implying that they cannot 284 

bind any significant amounts of the postulated quencher zeaxanthin in this site. However, it may 285 

well be that the quenching in the monomeric LHCII antenna complexes proceeds by the same 286 

mechanism (Mozzo et al., 2008) as that suggested for the major trimeric LHCII (Ruban et al., 287 
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2007). Now, further clarification of the role of monomeric LHCII complexes in NPQ is expected 288 

to come from a study of the already reported triple minor antenna knock-out mutant (NOM) 289 

(Dall’Osto et al., 2014). 290 

Another component that was discovered to play a crucial role in enabling the rapidly-291 

reversible component of NPQ, qE, is the PsbS protein (Li et al., 2000). Structural work on the 292 

localisation of this protein in the photosynthetic membrane suggested that it is not a part of the 293 

PSII supercomplex (Nield et al., 2000). Biochemical work convincingly showed that PsbS does 294 

not specifically bind pigments (Bonente et al., 2008). Recently the atomic structure of PsbS has 295 

been solved (Fan et al., 2015). The structure of the protein is a dimer that is more stable at low pH. 296 

Acidification was suggested to cause a conformational change associated with alteration in 297 

lumenal intermolecular interactions. Hence, it appears that PsbS acts rather like a switch that is 298 

triggered by ΔpH and not a quenching site. Therefore, this switch has to be localised closer to the 299 

LHCII antenna in order to prompt it into the NPQ state or make it sensitive to protonation (Ruban 300 

et al., 2012). It seems to be appropriate to use the term “sensitive” here since it was shown that qE 301 

can actually form without PsbS provided ΔpH is high enough (Johnson and Ruban, 2011). Hence, 302 

the model in Figure 1B draws a straight line from the trigger to site (LHCII antenna) (action point 303 

5) bypassing PsbS and zeaxanthin and putting them rather as components of modulation. These 304 

components are actually important for physiological adjustment of NPQ (see in Change: LHCII 305 

aggregation and other). Since PsbS was not found in the PSII supercomplex it has got to be 306 

localised somewhere in the domains of the LHCII antenna (Figure 2). The recent report that 307 

biochemically probed the site of PsbS binding in PSII in the moss Physcomitrella patens proposed 308 

that in the dark the protein binds to several Lhcb proteins with preferential binding to the 309 

periphery of the LHCII M trimer of the PSII supercomplex (Gerotto et al., 2015). Hence this work 310 

has pointed out that the likely NPQ site is trimeric rather than monomeric LHCII complexes. 311 

However, it would be interesting to apply this approach to the higher plant PSII in both dark-312 

adapted and NPQ states. Interestingly, plants that grew on lincomycin (mentioned above) and 313 

possessed very few RCII retaining trimeric and some reduced amounts of monomeric LHCII 314 

complexes, also contained PsbS protein (see above) (Belgio et al., 2012; Belgio et al., 2015). NPQ 315 

in these plants was modulated by PsbS (Ware et al., 2015) suggesting that the site of NPQ is 316 

LHCII antenna and PsbS together. However, this work did not prove that the monomeric LHCII 317 

was not involved, but it produced a simpler model system for NPQ studies. It looks like only ΔpH, 318 

the LHCII antenna and PsbS are required for NPQ in vivo. It is likely that PsbS is needed to make 319 

the LHCII antenna more rapidly responsive to natural levels of ΔpH. The structural arrangement 320 

of the LHCII antenna and PsbS around PSII does not seem to matter for the quenching to be 321 

observed, provided they are in the membrane. However, the core complex may play a role in 322 
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tuning NPQ kinetically by initiating the reassembly of the antenna around it in the dark (Dong et 323 

al., 2015; Ware et al., 2015). The notion that the RCII core complex is not essential for quenching 324 

is consistent with a recent work on reconstitution of PsbS and the major LHCII complex into 325 

liposomes (Wilk et al., 2013). Interestingly the liposomal system did not contain any minor 326 

antenna complexes suggesting that LHCII trimers are sufficient partners for PsbS interaction and 327 

formation of the quencher.  328 

 329 

Change: LHCII rearrangements/aggregation and formation of the NPQ quencher  330 

The requirement for the change in the LHCII antenna triggered by ΔpH was first proposed 331 

by the work of Horton’s group (Horton et al., 1991). This was the hypothesis that stated that the 332 

proton gradient triggered LHCII antenna aggregation that was required to establish the NPQ state. 333 

Indeed, isolated major LHCII complex was shown to aggregate at low detergent concentration that 334 

was greatly enhanced by acidification of the incubation buffer and this process was followed by a 335 

fluorescence quenching that was strong enough to explain any levels of NPQ observed in nature 336 

(Ruban et al., 1994). Another attractive physiological implication of this hypothesis was that 337 

LHCII antenna aggregation was modulated by xanthophyll cycle carotenoids the fact that 338 

explained NPQ with and without zeaxanthin as well as the concept of ‘plant illumination memory’ 339 

and the effect of hysteresis (Horton et al., 1996; Ruban et al., 2012). Xanthophyll cycle 340 

carotenoids have been discovered to be localised in peripheral binding site V1 of the major LHCII 341 

complex (Ruban et al., 1999; Liu et al., 2004) and it is not excluded that they are also bound 342 

peripherally to the minor antenna complexes (Ruban et al., 1999; Xu et al., 2015). This peripheral 343 

localisation and ability to regulate LHCII antenna aggregation has been explained by different 344 

hydrophobicity/polarity of violaxanthin and zeaxanthin (Ruban and Johnson, 2010; Ruban et al., 345 

2012). Presence of zeaxanthin was suggested to slow down reversibility of NPQ and promote the 346 

sustained component qZ due to the tuning of LHCII antenna into aggregation that is slowly-347 

reversible (Noctor et al., 1991; Ruban and Horton, 1999). In addition, violaxanthin de-epoxidation 348 

was reported to alter LHCII antenna aggregation state in vivo as well as energy transfer pathways 349 

within LHCII antenna bringing minor LHCII antenna complexes such as CP29 to a closer contact 350 

with LHCII trimers (Ilioaia et al., 2013).    351 

Although the LHCII antenna aggregation hypothesis for NPQ prompted much of research 352 

around LHCII complexes and many attempts to link it to NPQ using indirect biochemical and 353 

spectroscopic methods (for the recent review see Ruban et al., 2012) it lacked crucial direct proof 354 

of in vivo aggregation or rearrangements of LHCII antenna triggered by ΔpH and explanation of 355 

the role of PsbS protein in the proposed rearrangements (Ruban et al., 2012). To address these 356 

important points recently several groups have undertaken a number of approaches (Miloslavina et 357 
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al., 2008; Holzwarth et al., 2009; Betterle et al., 2009; Johnson et al., 2011; Ware et al., 2015). 358 

Although indirect, however, novel spectroscopic in vivo evidence emerged suggesting that upon 359 

formation of NPQ a part of the major LHCII complexes undergo separation from the PSII 360 

supercomplex and aggregation (Miloslavina et al., 2008; Holzwarth et al., 2009). Further, a 361 

biochemical and structural evidence has been obtained suggesting that in NPQ PsbS controlled the 362 

dissociation of a part of the PSII–LHCII supercomplex containing LHCII, CP24 and CP29 and 363 

that the average distances between PSII core complexes became shorter (Betterle et al., 2009). 364 

Later, freeze-fracture electron microscopy studies revealed similar alterations in PSII distances 365 

and most importantly clustering of LHCII antenna particles on the protoplasmic fracture face of 366 

the stacked thylakoid membrane (PFs) (Johnson et al., 2011; Ruban et al., 2012). This clustering 367 

was found to be promoted by the presence of zeaxanthin and PsbS protein (Johnson et al., 2011; 368 

Goral, 2012). Further, overexpression of PsbS caused massive LHCII antenna aggregation, even in 369 

the absence of RCII complexes (Ware et al., 2015). It was also shown that the antenna 370 

composition has a strong effect upon NPQ and the dynamics of the related rearrangements 371 

triggered by ΔpH (Goral et al., 2012). Therefore, these advances provided a first direct 372 

experimental confirmation of the LHCII antenna aggregation hypothesis of NPQ. Moreover the 373 

data showed the common nature of qE and zeaxanthin-dependent qZ NPQ components as 374 

manifestations of the same LHCII aggregation phenomenon. Crucially the observed structural 375 

alterations induced by illumination occurred on a timescale consistent with the formation and 376 

relaxation of qE (Johnson et al., 2011).   377 

Despite all of this progress many details of the change that leads to the establishment of 378 

the quenched state are not agreed upon or not known at all. Although there is no denial that the 379 

LHCII antenna undergoes reorganisation into the NPQ state, recent data suggest that it does not 380 

uncouple energetically from RCII (Johnson and Ruban, 2009; Belgio et al., 2014) as was 381 

previously proposed (Holzwarth et al., 2009) and in total agreement with the earlier established 382 

and experimentally confirmed relationship between the yield of PSII and NPQ (Genty et al., 383 

1989). Moreover it was shown that NPQ protects closed, not open, RCII which makes this 384 

protective strategy economic, not allowing much competition between NPQ and RCII traps for 385 

energy when light intensity is low or moderate (Belgio et al., 2014).  Figure 3A depicts a model of 386 

the fragment of the grana membrane that shows arrangement of PSII core and LHCII complexes. 387 

The arrangement of cores and C2S2M2 supercomplexes (orientation and distances) that contained 388 

core dimer, all monomeric LHCII, S and M trimers have been taken from Kouřil et al. (2011). The 389 

L trimers were added randomly (positions and orientations) to match the LHCII trimer/RCII ratio 390 

of 5. The localisation of PsbS is considered unknown, however the paper of Gerotto et al. (2015) 391 

hinted it can be anywhere in the LHCII antenna with a slight preference for the M trimer (Figure 392 
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2) although this still needs to be demonstrated for higher plants. In the NPQ state clustering of 393 

PSII and LHCII complexes has been displayed schematically adapting the work by Johnson et al. 394 

(2011) (Figure 3B). Note that the major assumption here is that the structure of the C2S2 395 

supercomplex is preserved. However, this is not certain (Dong et al., 2015) and has to be verified 396 

along with the localisation of PsbS. It was found that this protein changes its conformation (Fan et 397 

al., 2015) that can alter, for example, its affinity of binding within the LHCII antenna that could 398 

trigger the observed rearrangement. But what is the mechanism of this PsbS effect, its interaction 399 

with the LHCII antenna and its specificity? Is the interaction promoted by altered hydrophobicity 400 

or potentiated by promotion of N-terminal interactions?  If the scheme on the Figure 1B is correct 401 

why does PsbS make the LHCII antenna more sensitive to lumen pH? Is it because it somehow 402 

enhances hydrophobicity of the environment of proton-receiving aminoacids that can certainly 403 

make their pK higher? (Mehler et al., 2002; Thurlkill et al. 2006). Also, while both PsbS and 404 

zeaxanthin promote rapid formation of NPQ (Li et al., 2000; Demmig-Adams et al., 1989), why 405 

has the former an acceleratory and the latter an inhibitory effect on its recovery as well as opposite 406 

effects on chlorophyll excited state relaxation dynamics (Sylak-Glassman et al., 2014)?   407 

Another aspect of the change is LHCII antenna clustering a primary cause of the 408 

quenching or is it simply a thermodynamic consequence of the inner conformational change 409 

within each trimer or monomer that actually creates the quencher?  First evidence that isolated 410 

LHCII complexes can be quenched without significant aggregation has been obtained by using 411 

high hydrostatic pressure or polymerising it into the polyacrylamide gel and gradual removal of 412 

detergent (van Oort et al., 2007; Ilioia et al., 2008). The features of this quenching were similar to 413 

those of the aggregated low-pH-quenched LHCII. It began to emerge that the LHCII 414 

monomer/trimer undergoes some kind of conformational change into the quenching state that 415 

involved specific changes in some of the xanthophyll (neoxanthin and lutein) and chlorophyll 416 

pigments as was previously observed on LHCII aggregates (Robert et al., 2004; Ilioaia et al., 417 

2011). There exists, however, only the structure of the quenched conformation of trimeric LHCII 418 

(Lui et al. 2004; Pascal et al., 2005). Recently a few attempts have been made to understand the 419 

scale and possible specificity of the conformational transition into the quenched state. Exciton 420 

annihilation experiments along with the high hydrostatic pressure work revealed very small 421 

volume alteration of the quenched trimeric LHCII (van Oort et al., 2007; Rutkauskas et al., 2012). 422 

NMR studies and accompanying theoretical analysis revealed subtle alterations in some 423 

chlorophyll a pigments and their interactions with neoxanthin and lutein 1 and 2 (Pandit at al., 424 

2013: Duffy et al., 2014). These observations were consistent with the discovered role of the 425 

lumenal loop of trimeric LHCII that is localised close to neoxanthin domain in modulation of 426 

quenching in vitro (Belgio et al., 2013). This notion was recently confirmed by the first molecular 427 
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dynamics study that revealed significant flexibility of trimeric LHCII mostly in neoxanthin and 428 

lutein 1 (terminal emitter) domains (Liguori et al., 2015).  429 

In parallel to the structural work on the LHCII antenna, novel single molecule fluorescence 430 

spectroscopy of all types of LHCII, trimeric and monomeric, has been intensely applied in recent 431 

years (Krüger et al., 2012; 2013; 2014). The rapidly fluctuating levels of the LHCII fluorescence, 432 

known as fluorescence intermittency or blinking, has been found to be modulated by the 433 

xanthophyll cycle composition as well as low pH treatments and therefore closely related to NPQ. 434 

The blinking was found to reflect local conformational fluctuations within the complex thermally 435 

accessing distinct conformational states that have strong quenching (lutein 1 and 2 domains) or 436 

red-shifted fluorescence properties (around 700 nm) (Krüger et al., 2014).  437 

All above mentioned studies on the intrinsic dynamics of the LHCII complexes were 438 

absolutely essential in the search of the possible NPQ quencher(s). The quencher is simply ‘born’ 439 

out of the change in conformation triggered by protonation. Currently there are several theories 440 

proposing the identity and the physical mechanism of the quenching process. Since this falls out of 441 

the scope of this review the reader is referred to the most recent account of the state of the 442 

knowledge on the physics of NPQ quencher (Duffy and Ruban, 2015). In brief, pigments 443 

zeaxanthin, lutein and chlorophyll a have been proposed as possible NPQ quenchers. Zeaxanthin 444 

as a quencher was suggested some time ago (Frank et al., 1996; for review see Demmig-Adams, 445 

1990) and recently received strong insightful support from the group of Fleming, Niyogi and Bassi 446 

who proposed the quencher localization within the minor LHCII antenna complex CP29 (Holt et 447 

al. 2005, Ahn et al., 2008). Lutein bound to the major and minor LHCII as a quencher has also 448 

been proposed by several groups (Ruban et al., 2007; Avenson, 2009). Whilst there exist only one 449 

theory about the zeaxanthin action as a quenching – a radical cation formation with chlorophyll 450 

(Holt et al., 2005), there are several theories explaining how lutein (and other xanthophylls) can 451 

quench the excess energy that include coherent and incoherent energy transfer pathways from 452 

chlorophyll to xanthophyll (Duffy and Ruban, 2015). Whilst there is some evidence of how 453 

zeaxanthin is being activated as a quencher (Holt et al., 2005; Ahn et al., 2008) there is a pool of 454 

reports attempting to explain the changes in protein and lutein making this pigment a quencher as 455 

well as modelling work assessing the effectiveness of this quencher in taking excess excitation 456 

energy from chlorophyll a (Ilioaia et al., 2013; Duffy et al., 2013a; 2013b; 2014; Chmeliov et al., 457 

2015). Formation of quenching chlorophyll-chlorophyll dimers has also been recently advocated 458 

(Müller et al., 2010). It is worth to note that this multiplicity of the identity and physics of the 459 

NPQ quencher(s) may well reflect the complex nature of the process involving formation of a 460 

variety pigment-pigment interactions. Therefore the existence of multiple types of quenchers that 461 
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include xanthopohylls as well as chlorophylls was recently contemplated (Holzwarth et al., 2009; 462 

Liguori et al., 2015).    463 

PROTECTIVE EFFECTIVENESS OF NPQ 464 

The attention to the details of the mechanism of NPQ has been and remains enormous. In 465 

contrast, not much is actually known how quantitatively efficient NPQ is in protecting the 466 

photosynthetic membrane against photodamage and how to separate its protective component. In 467 

addition, there are reports that claim that NPQ plays little or no role in photoprotection of PSII 468 

against photodamage (Santabarbara et al., 2001). However, the majority of in vivo studies reported 469 

observations that clearly established a crucial role of NPQ protection against photoinhibition that 470 

led to early senescence and reduction in plant growth and fitness (Niyogi et al., 1998; Verhoeven 471 

et al., 2001; Külheim et al., 2002; Niyogi and Truong, 2013). However, a quantitative aspect of 472 

protective effectiveness of NPQ and the determination of the critical light intensity plants can 473 

tolerate without showing signs of photoinhibition required the development of new approaches. 474 

As it was mentioned at the beginning of this review, qE is a rather inaccurate parameter since 475 

there are less readily reversible but also protective parts of NPQ different from the qI that reflects 476 

photoinhibition. Existing and commonly used measures for photoinhibition include the dark-477 

adapted Fv/Fm ratio or the yield of PSII, O2 evolution or D1 protein degradation. Whilst these have 478 

been effective for assessing the threshold for the damage they have drawbacks for physiological 479 

analyses especially where lab-based biochemical analysis is required (D1 turnover). In addition 480 

these methods require disruption of the light treatment, either by destructive sampling or 481 

imposition of a sustained dark period. The length of the dark period used for Fv/Fm measurements 482 

itself can be ambiguous. Recently we developed a novel principle of NPQ analysis that enables a 483 

better understanding and quantification of the effectiveness of the protective action of NPQ. In 484 

this approach the extent of photochemical quenching (qP) measured in the dark was used to 485 

monitor the state of active PSII reaction centres, enabling detection of the early signs of 486 

photoinhibition (Ruban and Murchie, 2012; Ruban and Belgio, 2014). It is important to notice that 487 

both NPQ/qE and photodamage to RCIIs diminish the quantum yield of PSII. This can be 488 

illustrated by the following formula derived by Ruban and Murchie (2012): 489 

ΦPSII = qP x (Fv/Fm) / [1 + (1 – Fv/Fm) x NPQ],              (1) 490 

where qP is the photochemical quenching. Fv/Fm is the yield of PSII before illumination. qP is 491 

defined as (Fm’-Fo’act.)/(Fm’-Fo’calc.), where Fo’act. is a measured dark fluorescence level and Fo’calc. 492 

is a dark fluorescence level calculated using Fm’ (Oxborough and Baker, 1988). When formula (1) 493 

was applied to leaves that had been exposed to gradually increasing light intensity, like in light 494 

saturation curves but for longer periods of illumination with short periods of darkness in order to 495 
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assess qP levels (Figure 4A), it perfectly matched the experimental data (Figure 4B) up to a 496 

certain high actinic light intensity, above which the experimentally determined yield started to 497 

decrease more steeply with NPQ than the theoretical value Figure 4B). This discrepancy in the 498 

measured and calculated yield came from the fact that qP started to show values lower than 1 499 

(Figure 4B). This is because the measured values of Fo started to become higher than the values of 500 

Fo predicted using Fm’ amplitude (Oxborough and Baker, 1988) (Figure 4A). This discrepancy 501 

comes from the fact that when RCII become closed due to photoinhibition, they stay closed in the 502 

dark, hence they cannot photochemically quench fluorescence causing an increase in Fo’ in a 503 

similar way to the increase in Fo’ that would be caused by the addition of DCMU or illumination 504 

making this level effectively Fs. Therefore, at this conditions Fo’ becomes less appreciably 505 

quenched in relation to Fm’ that manifests in the observed deviation of the experimental from 506 

predicted Fo’ levels and hence brings qP level down from 1. This qP was called qPd to indicate 507 

that it was always measured in the dark in the routine of the gradually increasing actinic light 508 

intensity (Ruban and Murchie, 2012; Ruban and Belgio, 2014). Critical work has been undertaken 509 

to ensure that the novel method is free from artefacts of PSI contribution to the novel PAM 510 

fluorescence measurements (Giovagnetti et al., 2015) and that the fluorescence parameter qPd is 511 

in good correlation with the electron transport rates measured by oxygen evolution techniques 512 

(Giovagnetti and Ruban, 2015).  513 

Application of the described approach enabled the obtaining of a number of important 514 

parameters without the need to use the dark relaxation step: a) amplitude of all protective 515 

components of NPQ, pNPQ; b) the maximum tolerated light intensity at which all RCIIs remain 516 

functional; c) the minimum pNPQ sufficient to protect against the unit of light intensity; d) the 517 

amount of potentially wasteful pNPQ: e) the light tolerance curves for a particular type of plant 518 

(Ruban and Belgio, 2014; Ware et al., 2014). As a result of this development the highest light 519 

intensity tolerated by 50% of various tested plants has been obtained (Figure 4C). One important 520 

conclusion of this work is that regardless of the type of mutation, the light tolerance was solely 521 

determined by the amplitude of pNPQ (Ruban and Belgio, 2014; Ware et al., 2014). Hence, pNPQ 522 

of about 1 in Arabidopsis was capable of protecting plants exposed to about 400 µmol m-2s-1 PAR. 523 

This was an almost linear relationship, meaning that in order to tolerate 1600 µmol m-2s-1 PAR of 524 

light intensity, almost the highest attainable on the planet (total light intensity of ~3200 µmol m-2s-525 
1), plants have to develop pNPQ of about 4, which is probably the top of reported values for this 526 

species. As was expected, plants acclimated to low light showed lower light tolerance (Ware et al., 527 

2015). Formation of larger antenna caused higher excitation pressure hence changing the 528 

steepness in the relationship between NPQ and tolerated light intensity. Also different plant 529 

species differ in their sensitivity to light and therefore the requirement for pNPQ may vary 530 
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significantly (Ruban, 2015). In addition, in low light acclimated plants part of the large LHCII 531 

antenna was uncoupled from RCII. Interestingly, this uncoupling was associated with increased 532 

levels of Fo quenching. However, this additional quenching did not contribute to light tolerance 533 

implying that if uncoupled LHCII indeed participated in NPQ process, like was suggested before 534 

(Holzwarth et al., 2009) it would contribute little to protection – a fact rendering the existence of 535 

two uncoupled sites for NPQ totally unnecessary. In addition, an interesting trend in light 536 

tolerance has been observed during ontogenetic development (Carvalho et al., 2015). Seedlings of 537 

1 week old were almost 20 times less tolerant to light than established 8 week old plants. This 538 

indicates that the most significant high light damage occurs in young plants or developing leaves. 539 

Therefore, the major focus of plant physiologists, ecologists and breeders has to be directed 540 

towards monitoring and improving light tolerance specifically at early stages of plant 541 

development.    542 

The novel method of NPQ assessment should be very useful in order to evaluate the real 543 

effectiveness of NPQ in protection for example in cyanobacteria, diatoms and other classes of 544 

photosynthetic organisms. It has got to be realised that the fact of the existence of NPQ is 545 

apparently not enough. Modern times require understanding of its value in doing the protective job 546 

by analysing in parallel NPQ amplitude and efficiency of photochemistry.      547 
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 554 

Figure legends 555 

 556 

Figure 1. A. Typical PAM fluorescence measurement of Arabidopsis leaf showing induction and 557 

relaxation of NPQ. Fm and Fo maximum and minimum fluorescence levels in the dark before 558 

actinic light illumination (1000 µmol m-2s-1). Fs is a steady state fluorescence level. Fm’ is 559 

maximum fluorescence during actinic light illumination. Pulses of light (10000 µmol m-2s-1) are 560 

applied to close all RCII and estimate Fm and Fm’. qE and qI are quickly- and slowly-reversible 561 

components of NPQ.  B. The course of NPQ development, scenario, showing key factors 562 

triggering and regulating the process (for more details see the text). The formula for the minimum 563 

component requirement for NPQ is shown under the diagram.  564 
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Figure 2. The structure of PSII antenna components. S, M and L are the major LHCII strongly, 565 

medium and loosely bound to the RCII core trimers. CP24, 26 and 29 are the minor monomeric 566 

antenna complexes. PSII core dimer is shown in red. PsbS dimer is shown with the dashed line 567 

pointing to the putative preferential interaction cite in the dark. 568 

Figure 3.  The schematic representation of the putative PSII arrangements in the grana membrane 569 

in the dark (A) and NPQ (B) states. A. 18 PSII C2S2M2 complexes (outlined by yellow lines) 570 

with peripheral LHCII trimers (L trimers) (after Kouřil et al., 2011). Total LHCII trimer to RCII 571 

monomer ratio is approx. 5. B. 18 PSII core dimers rearranged/clustered intro the NPQ state 572 

(following Johnson et al., 2011). C2S2 structure is shown (outlined with the dashed red line, see 573 

the inset) preserved in the 3 supercomplexes shown in the tip left corner. A mix of unquenched 574 

(black contour) and quenched (red contour) S, M and L trimers and monomers of the minor 575 

antenna (not specified here) is shown. The localisation and interactions of PsbS protein are 576 

unknown.    577 

Figure 4.  A. A fragment of the gradually increasing illumination procedure in PAM measurement 578 

on Arabidopsis leaf. The formula on the top shows how qPd was calculated. Fo’act. and Fo’calc. are 579 

the measured and calculated (Oxborough and Baker, 1997) dark fluorescence levels.  P1, 2, 3 are 580 

saturating pulses. AL and FR are actinic and far red light, respectively. 625 and 820 are intensities 581 

of actinic light in µmol m-2s-1. B. The relationships between the PSII yield, qPd and NPQ in the 582 

dark in the course of the gradually increasing actinic light intensity procedure (Ruban and Belgio, 583 

2014). The formula shows the relationship between PSII yield, qP and NPQ. C. Light intensity (in 584 

µmol m-2s-1) tolerated by 50% of tested various types of Arabidopsis mutant plants: –Zea (npq1); -585 

PsbS (npq4); +PsbS (wt) and ++PsbS (PsbS overexpressor, L17).    586 
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Figure 1. A. Typical PAM fluorescence measurement of Arabidopsis leaf showing 

induction and relaxation of NPQ. Fm and Fo maximum and minimum fluorescence 

levels in the dark before actinic light illumination (1000 µmol m-2s-1). Fs is a 

steady state fluorescence level. Fm’ is maximum fluorescence during actinic light 

illumination. Pulses of light (10000 µmol m-2s-1) are applied to close all RCII and 

estimate Fm and Fm’. qE and qI are quickly- and slowly-reversible components of 

NPQ.  B. The course of NPQ development, scenario, showing key factors 

triggering and regulating the process (for more details see the text). The formula 

for the minimum component requirement for NPQ is shown under the diagram.  
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Figure 2. The structure of PSII antenna components. S, M and L are the 

major LHCII strongly, medium and loosely bound to the RCII core 

trimers. CP24, 26 and 29 are the minor monomeric antenna complexes. 

PSII core dimer is shown in red. PsbS dimer is shown with the dashed 

line pointing to the putative preferential interaction cite in the dark. 
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Figure 3.  The schematic representation of the putative PSII arrangements in the 

grana membrane in the dark (A) and NPQ (B) states. A. 18 PSII C2S2M2 complexes 

(outlined by yellow lines) with peripheral LHCII trimers (L trimers) (after Kouřil et 

al., 2011). Total LHCII trimer to RCII monomer ratio is approx. 5. B. 18 PSII core 

dimers rearranged/clustered intro the NPQ state (following Johnson et al., 2011). 

C2S2 structure is shown (outlined with the dashed red line, see the inset) preserved 

in the 3 supercomplexes shown in the tip left corner. A mix of unquenched (black 

contour) and quenched (red contour) S, M and L trimers and monomers of the minor 

antenna (not specified here) is shown. The localisation and interactions of PsbS 

protein are unknown.    
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Figure 4.  A. A fragment of the gradually increasing illumination procedure in PAM 

measurement on Arabidopsis leaf. The formula on the top shows how qPd was 

calculated. Fo’act. and Fo’calc. are the measured and calculated (Oxborough and Baker, 

1997) dark fluorescence levels.  P1, 2, 3 are saturating pulses. AL and FR are actinic 

and far red light, respectively. 625 and 820 are intensities of actinic light in µmol m-2s-

1. B. The relationships between the PSII yield, qPd and NPQ in the dark in the course 

of the gradually increasing actinic light intensity procedure (Ruban and Belgio, 2014). 

The formula shows the relationship between PSII yield, qP and NPQ. C. Light 

intensity (in µmol m-2s-1) tolerated by 50% of tested various types of Arabidopsis 

mutant plants: –Zea (npq1); -PsbS (npq4); +PsbS (wt) and ++PsbS (PsbS 

overexpressor, L17).    
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