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Nonlinear model predictive control of a wave energy converter based on
differential flatness parametrization

Guang Lia

aSchool of Engineering and Material Sciences Queen Mary, University of London, Mile End Road, London E1 4NS, United
Kingdom

Abstract

This paper presents a fast constrained optimization approach, which is tailored for nonlinear model pre-
dictive control of wave energy converters (WEC). The advantage of this approach relies on its exploitation
of the differential flatness of the WEC model. This can reduce the dimension of the resulting nonlin-
ear programming problem (NLP) derived from the continuous constrained optimal control of WEC using
pseudospectral method. The alleviation of computational burden using this approach helps to promote an
economic implementation of nonlinear model predictive control strategy for WEC control problems. The
method is applicable to nonlinear WEC models, nonconvex objective functions and nonlinear constraints,
which are commonly encountered in WEC control problems. Numerical simulations demonstrate the efficacy
of this approach.
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1. Introduction

Sea wave energy extraction is an immature yet promising technology that has received increasing inter-
ests from control communities in recent years. The associated control problem is widely acknowledged as
challenging due to the unconventional control requirements and the harsh sea conditions, etc.

Sea wave energy converters (WECs) are the devices used to harness wave energy. The control objective
of a WEC is to extract the maximum time average power and reduce the risk of device damage, so that
the unit cost of the generated electricity can be decreased. Conventional WEC control methods are mainly
based on the principle that the maximum energy output is reached when the resonant frequency of the WEC
matches the dominant frequency of the incoming waves. These include the impedance matching method
by tuning the dynamic parameters of the devices [1–4], the latching control by locking the body at some
moments to keep its oscillation in phase with the excitation force [5–10], and the declutching control by
declutching the float from the generator at appropriate moments for the same reason. These control methods
were developed in idealized cases for monochromatic wave excitations and inactive physical constraints, and
can become too complicated to be implemented in realistic scenarios.

Recent works show that the WEC control can be formulated as a constrained optimal control problem:
maximizing the energy output subject to physical constraints due to safety considerations. The constrained
optimal control of WECs is a non-causal control problem, which needs to be combined with a real-time wave
prediction algorithm. This necessitates the online implementation of the optimization problem using the
model predictive control (MPC) strategy to calculate a optimal control trajectory at each instant subject to
the changing wave profile. The effectiveness of the MPC of WEC has been confirmed under different scenarios
by numerical simulations, e.g. [11–14]. However, the computational burden for solving the constrained
optimization of WEC control problem can be heavy enough to invalidate the online implementation of MPC
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scheme economically. The computational difficulties are mainly from the following factors. First, different
from the conventional MPC for tracking or regulation problems, the optimization objective of WEC control
is to maximize the energy output, which normally results in a nonconvex optimization problem [14–16].
Second, the WEC model can be nonlinear due to the WEC designs, nonlinear power take off (PTO) and the
significant nonlinear hydrodynamic effects caused by large incoming waves. Furthermore, the constraints
imposed on the WEC control can also be nonlinear and nonconvex, e.g., the constraint for one directional
power transfer from the WEC to the grid is nonlinear. All these invalidate the direct implementation of the
MPC using the mature convex quadratic programming (QP) optimization algorithms.

To cope with the computational problems associated with the MPC of WECs, different optimization
methods have been proposed. In [14], the constrained optimization problem is solved by forward dynamic
programming (FDP), which can handle nonlinear models and nonconvex optimization problems; however,
the computational speed is only acceptable for low order model. In [15], a modified objective function is
proposed, which leads to a convex QP; this method is efficient for dealing with high order linear model and
is extended to MPC of an array of WECs [17], but it cannot cope with nonlinear constraints and nonlinear
models. Nonlinear MPC (NMPC) of a WEC based on discretization of the nonlinear model is reported in
[18, 19]. But the computational burden can be heavy for online implementation.

In this paper, a computationally efficient optimization approach is proposed for online implementation of
NMPC on WECs. The advantages of applying this approach in WEC control are reflected in three aspects:

i) It can directly cope with the nonconvex objective function originally formulated from WEC energy
extraction, which is different from other approaches based on convex optimization of approximated
objective functions , e.g. [13, 15].

ii) It can tackle nonlinear WEC models and nonlinear constraints effectively. Nonlinearities can be com-
monly encountered in WEC dynamics in many scenarios. Nonlinear constraints can also be present in
some cases, e.g. unidirectional power delivery.

iii) It has remarkable computational efficiency even for a high order model, which facilitates its online
implementation using economic computational hardware.

The advantages of this approach can be accredited to the combination of two techniques: pseudospectral
method and differential flatness, which are specifically tailored for the WEC control problem. Originally
developed for numerical solutions of differential equations, spectral method or pseudospectral method has
become an efficient tool to solve optimal control problems [20–23]. This method transforms a continuous
optimization problem to a nonlinear programming problem (NLP), so that well-developed optimization al-
gorithms, such as sequential quadratic programming, interior-point method and active-set method, can be
applied directly. Here we use this optimization method in an MPC framework to generate the optimal
control sequence. The advantage of using pseudospectral method is that it provides a direct optimization
approach to cope with nonlinearities, nonconvex objective functions and nonlinear constraints in an effi-
cient way. Pseudospectral method is used in [24] for offline WEC design, which is not intended for online
implementation.

To further expedite the computational speed for online implementation purpose, this paper exploits the
differential flatness property of the WEC model, which is used to reduce the dimension of the NLP. The
concept of differential flatness can be regarded as an extension of the controllability of a linear system to that
of the nonlinear system [25], and it has been used in optimization, trajectory planning and control design,
e.g. [26–30]. Using flatness property, only one variable, called flat output, needs to be parameterized, while
all the other state and input variables can be represented by functions of the flat output and its derivatives.
The use of the least number of parameterized variables can significantly reduce the computational time.

To show the usage and efficacy of this approach, this paper uses the control of a typical type of a point
absorber as a demonstration example, shown in Fig. 1, which roughly corresponds to the power buoy PB150,
designed by OPT Inc. A point absorber’s horizontal dimension is much less than a nominal wave length.
The current researches on WEC control based on MPC are mainly for this type of device. A nonlinear
model is used to describe the dynamics of this device. The nonlinearities of a WEC model can come from
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Figure 1: Schematic diagram of the point absorber

different sources, such as hydrodynamic wave-body interaction, the mechanical design, PTO mechanism,
and the mooring cables, etc. Here we are assuming that the major nonlinear effect is from the buoyancy
force due to the nonconstant radius of the cylindrical float, which is a typical design of the PB150. We use
this nonlinearity mainly for the purpose of demonstrating the efficacy of the proposed approach and it can
be extended for coping with other types of nonlinearities associated with WECs. Although the focus of this
paper is not on the influence of the nonlinearities on the WEC performance, the method can be used as an
efficient tool for the investigations of the nonlinearity effects related to WEC design and control.

The structure of the paper is as follows. The WEC modeling and control problem is set up in section
2. The optimization based on psuedospectral method and the flatness is presented in section 3. Numerical
simulation result is shown in section 4 and the paper is concluded in section 5.

2. WEC model and control

The point absorber is shown in Fig. 1. Its modelling and constrained optimal control for a linear model
representation have been presented in our earlier work [14, 15]. In this section, we first briefly describe this
device then establish its nonlinear model.

On the sea surface is a float, which is a cylinder with a variational radius, which is different from the
assumption of a constant radius cylinder in our previous works [14, 15]. Below the float is a vertically
installed hydraulic cylinder. The cylinder is attached at the bottom to the seabed, or an anti-heave plate
which is assumed motionless compared with the float, as the design of PB150. The heave motion of the float
drives the pistons inside the hydraulic cylinders to produce a liquid flow, which drives a hydraulic motor
attached to a synchronous generator. From here, the power reaches the grid via back-to-back AC/DC/AC
converters; see [31] for more details related to the power electronics. Here zw is the water level, zv is the
height of the mid-point of the float. The control input is the q-axis current in the generator-side power
converter, to control the electric torque of the generator [32]. The generator torque is proportional to the
force fu acting on the pistons from the fluid in the cylinder. Since the motion of the float imposes a velocity
v = żv on the piston, the extracted power P (t) at time t is expressed as

P = −fuv (1)

The extracted energy over a period [0, T ] is therefore

−
∫ T

0

fuvdt (2)

For safety considerations, two constraints have to be considered in a WEC. One concerns the relative
motion of the float to the sea surface (it should neither sink nor raise above the water and then slam), which
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Figure 2: The schematic diagram of the float for the calculation of nonlinear hydraulic stiffness.

can be expressed as
|zw − zv| ≤ zmax. (3)

The other constraint is on the control signal set by limitations on the allowable converter current. This
constraint can be expressed as

|fu| ≤ umax. (4)

The control objective is to maximize the extracted energy subject to the constraints (3) and (4).
The governing equation for the float is

msz̈v = fs − fr − ff + fu (5)

where ms is the mass of the float; fs is the buoyancy force; the radiation force is

fr = m∞z̈v +

∫ t

−∞
hr(τ)[żv(t− τ)− żw(t− τ)]dτ (6)

where m∞ is the added mass dependent on frequency, but here it is approximated by its value at the infinite
frequency; the friction force is

ff = Df żv (7)

with Df as the friction coefficient. fu is the control force. The buoyancy force is a nonlinear function of the
relative difference between the heave of the float and the water level. The nonlinearity considered is caused
by the nonconstant cross sectional radius of the float. This nonlinearity can be calculated according to Fig.
2, where it is assumed that the draught of the float in static water is at the medium of the height of the
float without loss of generality. By straightforward calculation, this nonlinear force can be derived as

fs = κ(z) =

 κ0h2 + κn(z), if h2 < z ≤ h1;
κ0z, if |z| ≤ h2;
−κ0h2 + κn(−z), if −h1 ≤ z < −h2.

(8)

where z := zw − zv, κ0 := ρgh1, with ρ as the density of sea water, g as standard gravity and

κn(z) = πgρ

[
(tan θ)2

4
(z − h2)

4 − d1
3

tan θ(z − h2)
3 +

d21
8
(z − h2)

2

]
with

tan θ =
d1 − d2

2(h1 − h2)
.

See Fig. 2 for notation meaning of d1, d2, h1, h2 and θ, and Fig. 3 for the plot of the buoyancy force when
h1 = 1.2 m, h2 = 0.6 m. Note that a simplified expression is used in [14].

Substituting (8), (6) and (7) into (5) gives

msz̈v = κ(z)−m∞z̈v −
∫ t

−∞
hr(τ)[żv(t− τ)− żw(t− τ)]dτ −Df żv + fu (9)
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Figure 3: Nonlinear buoyancy force (h1 = 1.2 m, h2 = 0.6 m).

Here the convolution kernel hr(τ) can be calculated using commercial software packages for fluid dynamics,
and the convolution term can be represented by a state space model

ẋr = Arxr +Br(żv − żw) (10a)

yr = Crxr (10b)

such that yr :=
∫ t

−∞ hr(τ)[żv(t− τ)− żw(t− τ)]dτ .

If we choose the state vector as x = [x1, x2, xr]
T ∈ Rn, then the state space model is

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (11a)

y(t) = Cyx(t) (11b)

z(t) = Czx(t) (11c)

with x1 := zw − zv, x2 := żv, u := fu, w := żw, y := żv and

A =

 0 −1 01×nr

κ(·)/m −Df/m −Cr/m
0nr×1 Br Ar

 Bu =

 0
1/m
0

 Bw =

 1
0

−Br


Cy =

[
0 1 01×nr

]
Cz =

[
1 0 01×nr

]
Note that (11) describes a nonlinear WEC model due to the presence of the nonlinearity κ(z) in matrix A.
If the radius of the float keeps constant, then (11) becomes a linear model, c.f. [15].

3. Pseudospectral method and flatness

The MPC strategy for WEC is to resolve online the following optimization problem formulated from
current time t0 to the future time tf :

min
u(t)

t∈[t0,tf ]

∫ tf

t0

u(t)y(t)

s.t. ẋ(t) = Ax(t) +Buu(t) +Bww(t)

|z(t)| ≤ zmax, |u(t)| ≤ umax, ∀t ∈ [t0, tf ]

(12)

where the wave profile information w(t) needs to be predicted at time t0 for the period [t0, tf ] using some
wave prediction algorithm, such as deterministic sea wave prediction (DSWP) algorithm [33]. The solution
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of (12) is the optimal control trajectory u∗(t). The control input is the optimal control input at t0, i.e.
u∗(t0). In some existing MPC strategies developed for WEC control, the optimization problem (12) is
discretized at a fixed sampling time in [t0, tf ], which is then approximated by a QP, see e.g. [13, 15]. In
this paper, the optimization problem (12) is parameterized by polynomials based on the pseudospectral
method to result in a NLP. This is a direct optimization method, which has been adopted to resolve optimal
control problems, and recently applied to WEC optimal design [24]. However, the computational load of
implementing this direct optimization method online can be demanding especially for a high order model.
To increase the computational efficiency while not losing the solution accuracy, we employ the concept of
flatness by exploiting the structure of the WEC model in this section.

3.1. Flat system

A nonlinear dynamic system ẋ = f(x, u) with x ∈ Rn and u ∈ Rm is differentially flat if

(i) there exists a flat output ξ ∈ Rm which can be represented by a function of the state x

ξ = η(x, u, u̇, . . . , u(a)), (13)

with the mapping η : Rn+(a+1)m 7→ Rm, and

(ii) the state x and input u can be expressed in terms of the flat output ξ and a finite number of its
derivatives

x = φx(ξ, ξ̇, . . . , ξ
(b−1)) (14a)

u = φu(ξ, ξ̇, . . . , ξ
(b)) (14b)

where the mappings φx : Rbm 7→ Rn and φu : R(b+1)m 7→ Rm.
Exploiting the dynamic structure of a flat system can significantly reduce the dimension of the opti-

mization problem converted from the direct method and thus expedite the computational speed. Instead
of parameterizing the trajectories along each dimension of x and u, we only parameterize the trajectory of
the flat output z, while the trajectories of x and u can be derived by combinations of a limited number of
derivatives of the flat output through (14). When using this method on WEC optimal control problem, the
predicted wave trajectory, treated as a measured disturbance, needs to be incorporated. This is distinguished
from the existing flatness based optimization methods. In the remaining section, we present the procedure
of using the flatness property together with pseudospectral method to convert (12) to a low dimension NLP.

3.2. WEC optimal control based on flatness

In the pseudospectral method the numerical integration based on Gauss quadrature interpolation holds
for the interval [−1, 1]. Thus the following relation is needed to transform integral approximations between
t ∈ [t0, tf ] and τ ∈ [−1, 1]

t =
(tf − t0)τ + (tf + t0)

2
(15)

Suppose the state space realization (Ar, Br, Cr) of (10) is in controllable canonical form, such that

ẋr,i = xr,i+1 with i = 1, . . ., nr − 1, (16a)

ẋr,nr =

nr∑
i=1

αixr,i + x2 − w (16b)

yr =

nr∑
i=1

βixr,i (16c)
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where xr :=
[
xr,1, xr,2, . . . , xr,nr

]T
. Then a linear transformation of (11) from t ∈ [t0, tf ] to τ ∈ [−1, 1] using

(15) gives

Teẋ1(τ) = −x2(τ) + w(τ) (17a)

Teẋ2(τ) =
κ(x1(τ))

m
− Df

m
x2(τ)−

1

m

nr∑
i=1

βixr,i(τ) +
1

m
u(τ) (17b)

Teẋr,i(τ) = xr,i+1(τ) with i = 1, . . ., nr − 1, (17c)

Teẋr,nr (τ) =

nr∑
i=1

αixr,i(τ) + x2(τ)− w(τ) (17d)

with Te := 2
tf−t0

. In the following, we can transform the continuous infinite dimensional optimization

problem (12) into a finite dimensional NLP using the pseudospectral method and differential flatness.
We choose the collocation points (τ1, . . . , τN ) within the interior of the interval (−1, 1) and two non-

collocated points τ0 = −1 and τf = 1. The collocation points are the roots of the Nth order Legendre
polynomial PN (τ), and are called Legendre-Gauss (LG) points.

xk(τ) with k = 1, . . ., n are approximated by

xk(τ) ≈ xk(τ) =

N∑
j=0

Lj(τ)xk(τj) (18)

where the basis function Lj(τ) is the Lagrangian polynomial

Lj(τ) =

N∏
i=0
i ̸=j

τ − τi
τj − τi

(19)

with the property

Lj(τl) =

{
1 if l = j
0 if l ̸= j.

(20)

Thus we have xk(τj) = xk(τj) from (18) and (20). The input u(τ) can also be parameterized in a similar
way with u(τ1), . . ., u(τN ) as the collocation points.

The first derivative of xk(τ) in terms of τ at the collocation points τi can be obtained by differentiating
(18)

ẋk(τi) =
N∑
j=0

L̇j(τi)xk(τj) (21)

which can be expressed in a compact matrix form as

Ẋk = D0xk(τ0) +DNXk (22)

where Xk :=
[
xk(τ1), xk(τ2), . . . , xk(τN )

]
, D = [D0, DN ] = [L̇j(τi)] ∈ RN×(N+1) with i = 1, . . . N and

j = 0, . . . , N , D0 ∈ RN×1 and DN ∈ RN×N .
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Using the equation (22), (17a) - (17d) can be written as

TeDNX1 = −TeD0x1(τ0)−X2 +W (23a)

TeDNX2 = −TeD0x2(τ0) +
1

m
κ̄(X1)−

Df

m
X2 −

1

m

nr∑
i=1

βiXr,i +
1

m
U (23b)

Xr,i =
i−1∑
j=1

T i−j
e Di−j−1

N D0xr,j(0) + T i−1
e Di−1

N Xr,1

with i = 1, . . ., nr − 1, (23c)

TeDNXr,nr = −TeD0xr,nr (τ0) +

nr∑
i=1

αiXr,i +X2 −W (23d)

where κ̄(X1) :=
[
κ(x1(τ1), κ(x1(τ2), . . . , κ(x1(τN )

]T
, U := [u(τ1), u(τ2), . . . , u(τN )]

T
andW := [w(τ1), w(τ2), . . . ,

w(τN )]
T
comprises the wave profile w(τ) at the collocation points.

Choose x1(τ) as the flat output. Then after some straightforward manipulations of equations (23a) -
(23d), X2 and U can be expressed by X1, the initial states, and the wave prediction W as

X2 =− TeD0x1(τ0)− TeDNX1 +W (24a)

U =

[
nr−1∑
i=1

(βiIN + βnrαiSa)T
i−1
e Di−1

N − Te(βnrSa + Sb)DN

]
X1

− κ̄(X1)− [SbmD0 + βnrSa]D0x1(τ0) +mTeD0x2(τ0)

+

nr−1∑
i=1

(βiIN + βnr
αiSa)

i−1∑
j=1

T i−j
e Di−j−1

N D0xr,j(τ0)

− βnr
TeSaD0xr,nr

(0) + SbW (24b)

where Sa := (TeDN + αnrIN )−1, Sb := mTeDN +DfIN and identity matrix IN ∈ RN×N .
The objective function in (12) can be approximated by∫ tf

t0

u(t)y(t) ≈ tf − t0
2

N∑
i=1

wg(τi)u(τi)x2(τi) =
tf − t0

2
XT

2 WgU (25)

where Wg := diag(wg(τ1), wg(τ2), . . . , wg(τN )) is a weight matrix with

wg(τi) :=
2

1− τ2i

[
ṖN (τi)

]2 .
Here ṖN is the derivative of Legendre polynomial with degree N .

The constrained optimal control can thus be formulated as a NLP

min
X1

tf − t0
2

XT
2 WgU (26a)

s.t. − Umax ≤ U ≤ Umax (26b)

− Zmax ≤ X1 ≤ Zmax (26c)

where Umax :=
[
umax, . . . , umax

]T ∈ RN , and Zmax :=
[
zmax, . . . , zmax

]T ∈ RN . Therefore, aN -dimmensional
NLP with only X1 as the optimization variable by substituting (23a) and (24b) into (26a) and (26b). This
reduction of dimension can increase the computational speed significantly, compared with the dimension of
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N×n of the corresponding equation derived from using pseudospctral method alone. This difference is more
obvious for higher order model. Note that the equality constraints for the dynamics are not needed in (26),
since all the dynamic information has already been involved in the input U through (24b).

If the power can only be delivered from the WEC to the grid, then N extra quadratic constraints must
be imposed to the NLP problem:

X2 ⊙ U ≽ 0 (27)

where ⊙ denotes element-wise product, ≽ denotes element-wise inequality, and 0 is a n× 1 zero vector.

3.3. Linear model case

If the WEC model is linear, then a quadratic programming (QP) problem can be derived. In this case
study, the linear WEC model can be derived by assuming the float is a cylinder with a constant radius r1,
so that the stiffness is a constant K. With this assumption, the equation (24b) can be written concisely as

U = MxX1 +M0x(τ0) + SbW (28)

where Mx and M0 can be derived from (24b) straightforwardly after replacing κ̄(X1) by KX1.
Substituting (28) into the NLP (26), we have a QP

min
X1

1

2
XT

1 HX1 +XT
1 F (29a)

s.t. − Umax ≤ U ≤ Umax (29b)

− Zmax ≤ X1 ≤ Zmax (29c)

with

H := He(TeD
T
NWgMx)

F = MT
x Wg(W − TeD0x1(τ0))− TeD

T
NWg(M0x(τ0) + SbW )

Here He(M) := M +MT for a square matrix M .

3.4. Online implementation of NMPC

The optimization method developed in this section needs to be implemented online at each sampling
instant in a receding horizon manner. The necessity of implementing the optimization online instead of
offline comes from the following concerns: first incoming wave profile changes constantly, which needs to
be predicted online by a separate wave prediction algorithm; second, online implementation introduces
feedback mechanism, which helps strengthen the inherent robustness of the WEC control system. The
online implementation is realized in the following steps:

Step 1: At sampling instant k, the wave profile W is predicted. The optimization (26) (or (29) for linear
case) is resolved.

Step 2: An optimal control sequence U∗ is calculated using (24b) (or (28) for linear case). The first
element of the sequence, u∗(τ1) is implemented as the control input for a sampling period.

Step 3: At the next sampling instant k + 1, the procedure repeats.

4. Numerical simulation

The numerical parameters of the WEC are mostly adopted from those used in [15], and are summarized
in Table 1. Note that the parameters do not reflect the real parameters used in PB150, and they are mainly
used for demonstration purpose. The frequency dependent added damping is

D̂(jω) =
1.5× 104 × (jω + 0.01)(jω + 0.02)

(jω + 0.1)(jω + 0.2)2
(30)
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Table 1: Parameters used for the WEC model
Description Notation Values
Density of sea water ρ 1025 kg/m3

Gravity g 9.8 N/kg
Float radius r 4.5 m
Damping (friction) Df 2× 103 Nm/s
Float mass ms 1× 104 kg
Added mass ma 7× 104 kg
Total mass m 8× 104 kg
Stiffness K 6.39× 105 N/m
Input force limit umax 3× 105 N
Float heave limit h1 1.2 m
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Figure 4: A 50 seconds period of wave profile (wave elevation and its derivative) gathered off the coast of Cornwall, England
is used in simulations.
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Its maximum damping coefficient is 90 dB at 0.2 rad/sec; this roughly matches the magnitude of a constant
damping coefficient term D = 2× 105 Nm/s in the second order model used in [14]. The order of the model
used in the simulation is n = 5. A real wave profile of 50 seconds, gathered off the coast of Cornwall, UK is
used. Its heave motion amplitude and its first derivative are shown in Figure 4.

The WEC constrained optimal control problem is formulated using the approach proposed in section 3.
The numerical simulations are run on a PC with Intel© Core�i7 CPU at 2.10 GHz. At each time instant
k, a NLP is resolved by the sequential quadratic programming (SQP) method using the MATLAB�routines
fmincon for the nonlinear model or quadprog for the linear model.

Two scenarios about energy flow direction are simulated. In the bidirectional energy flow scenario, the
power generated from the WEC can be delivered to the grid; or conversely, the power from the grid can
flow back to the WEC. One of the possible realization of this bidirectional power flow is reported in [? ].
In the unidirectional energy flow scenario, the energy can only be generated by the WEC and delivered to
the grid. Compared with the bidirectional flow, the unidirectional flow design can be less costly and easier
to achieve; however, its energy output can be smaller for an extra constraint on energy flow P (t) ≥ 0 is
imposed on the optimization.

The control input constraint is |u| ≤ umax with umax = 3 × 105 N; the constraint on the difference
between the heave motion of the float and the elevation of the water is |z| ≤ zmax with zmax = h1 = 1.2 m.
The dimensions of the float in Figure 2 are r1 = 4.5 m, r2 = 2 m, h1 = 1.2 m and h2 is chosen as different
values for testing. The power flow is assumed to be bidirectional.

To show the influence of the nonlinear effect on the computational time, we use the ratio γ = h2/h1 to
indicate the degree of the nonlinear effect of the hydrostatic stiffness. The nonlinear effect diminishes when
γ → 1. By fixing the number of collocation points N = 10, the prediction horizon tf = 2 s, h1 = 1.2 m
and changing h2, we plot the average computational time per optimization versus the ratio γ in Figure 5.
It shows that the computational burden decreases dramatically with the degree of the nonlinear effect when
γ is small and this tendency becomes moderate when γ → 1. If the float is assumed to be a cylinder with
constant radius, i.e. r1 = r2 = 4.5 m and h1 = h2 = 1.2 m, then the hydrostatic stiffness is a constant value,
K = ρgh1πr

2
1 = 6.39 × 105 N/m. In this case, the WEC model becomes a linear model and the quadratic

programming can be used to resolve the problem. For the case of N = 10, the average computational time
per optimization is 0.03 s for solving a QP. Due to the alleviated computational burden using a QP, it
is preferable to consider using a MPC based on a linear model to control a WEC if its nonlinearities are
trivial. However, for the plant with significant nonlinearities, using the linear MPC can cause performance
degradation, in terms of energy output reduction and constraint violation due to the model mismatch.

Next we demonstrate the influence of the number of collocation points on the average computational
time and power output by fixing h2 = 1.0 m, which corresponds to a moderate nonlinear effect. Figure 6
shows that the average computational time per optimization increases linearly with the number of collocation
points. Figure 7 shows that the average power output increases with the collocation points dramatically
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Figure 6: Average computational time versus number of collocation points (h1 = 1.2 m, h2 = 1.0 m, tf = 2.0 s).

when N ≤ 10, and the average power output starts oscillating after N > 14. This means increase of the
collocation points beyond 14 cannot obviously further improve energy output. Considering the ever growing
computational burden with N from Figure 6, the benefit of choosing a very big N (e.g. 20) for larger energy
output is compromised by the added computational burden. Thus for this simulation scenario, a choice of
N = 10 ∼ 14 is a reasonable tradeoff. For other scenarios, the value of N can be changing and needs to be
selected carefully after a series of simulations.

To demonstrate the effectiveness of handling constraints, we only show one case where N = 10, tf = 2
s, h2 = 1.0 m. The power constraint is also imposed by assuming a one directional flow from the WEC
to the grid, i.e. P (t) ≥ 0. Figure 8 shows that all the constraints are strictly satisfied with the presence
of active constraints. The time average power output with the constraint P (t) ≥ 0 is P̄ = 307 kW, which
is approximately a 5% reduction of energy generation compared to the case of bidirectional power flow
(P̄ = 323 kW). Since the bidirectional design can be relatively more costly, it might be interesting to
evaluate the tradeoff between the bidirectional and unidirectional designs when using the control strategy
proposed in this paper in the future work, which is beyond the scope of this paper.

Finally, we have the following remarks. The average computational time for solving one optimization
using the approach based on flatness is fast enough for online MPC implementation purposes. The benefit of
using this method is significant for high order and nonlinear WEC model. Since the average computational
time varies when different computers and different optimization software packages are used, the simulation
in this paper is mainly for the purpose of demonstrating the effectiveness of the flatness approach. For
the real time application, the computational time is supposed to be even much faster if the optimization
algorithm can be programmed in C specifically for the WEC control problem rather than using the generic
optimization routines in MATLAB.

5. Conclusion

An efficient optimization approach based on the pseudospectral method exploiting the flatness property
is developed for nonlinear model predictive control of a point absorber. This approach is more efficient than
the optimization based on pseudospectral method alone, while still enjoys the benefits of coping with more
complicated optimization problem than quadratic programming. In this paper, we demonstrate its efficacy
for NMPC of a typical point absorber described by a nonlinear model, with non-convex objective function
and nonlinear constraints. The nonlinearity comes from the buoyancy force due to non-constant radius of
the float. The method developed in this paper can be potentially extended to other nonlinear WEC models
in a straightforward manner.
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Figure 7: Average power output versus number of collocation points (h1 = 1.2 m, h2 = 1.0 m, tf = 2.0 s).
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Figure 8: (a) Difference between float heave and water elevation, x1 (zmax = 1.2m); (b) Control input, u (umax = 3× 105 N);
(c) Power output (P ≥ 0).
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