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ABSTRACT

In the recent work of Nakariakov et al. (2004), it
has been shown that the time dependences of den-
sity and velocity in a flaring loop contain pronounced
quasi-harmonic oscillations associated with the 2nd
harmonic of a standing slow magnetoacoustic wave.
That model used a symmetric heating function (heat
deposition was strictly at the apex). This left out-
standing questions: A) is the generation of the 2nd
harmonic a consequence of the fact that the heating
function was symmetric? B) Would the generation
of these oscillations occur if we break symmetry? C)
What is the spectrum of these oscillations? Is it con-
sistent with a 2nd spatial harmonic? The present
work (and partly Tsiklauri et al. (2004b)) attempts
to answer these important outstanding questions.
Namely, we investigate the physical nature of these
oscillations in greater detail: we study their spec-
trum (using periodogram technique) and how heat
positioning affects the mode excitation. We found
that excitation of such oscillations is practically in-
dependent of location of the heat deposition in the
loop. Because of the change of the background tem-
perature and density, the phase shift between the
density and velocity perturbations is not exactly a
quarter of the period, it varies along the loop and is
time dependent, especially in the case of one foot-
point (asymmetric) heating. We also were able to
model successfully SUMER oscillations observed in
hot coronal loops.

Key words: Sun: flares — Sun: oscillations — Sun:
Corona — Stars: flare — Stars: oscillations — Stars:
coronae .

1. INTRODUCTION

Magnetohydrodynamic (MHD) coronal seismology
is one of the main reasons for studying waves in
the solar corona. Such studies also are impor-
tant in connection with coronal heating and solar

wind acceleration problems. Observational evidence
of coronal waves and oscillations in EUV are nu-
merous (e.g. (Ofman_ et all, 1999; Ofman & Wang,
2002; Wang ef. all, 2002, 2003)). Radio band ob-
servations also demonstrate various kinds of oscilla-
tions e% the quasi-periodic pulsations, or QPP, see
) for a review), usually with peri-

ods from a few seconds to tens of seconds. Decimetre
and microwave observations show much longer peri-
odicities, often in association with a flare. For ex-
ample, Wang & Xid (2000) observed QPP with the
periods of about 50 s at 1.42 and 2 GHz (in as-
sociation with an M4.4 X-ray flare). Similar pe-
riodicities have been observed in the X-ray band
bi ' i emision. assotiats
)) and in the white- hght emission associated
with the stellar flaring loops (Mathioudakis ef. all,
2003). A possible interpretation of these medium
period QPPs may be in terms of kink or torsional

modes (Zaitsev & Stepano, [1989).

In our previous, preliminary study
(Nakariakov et all, 2004), we outlined an alter-
native, simpler, thus more attractive mechanism for
the generation of long-period QPPs. That model
used a symmetric heating function (heat deposition
was strictly at the apex). This left the outstanding
questions: A) is the generation of the 2nd harmonic
a consequence of the fact that the heating function
was symmetric? B) Would the generation of these
oscillations occur if we break symmetry? C) What
is the spectrum of these oscillations? Is it consistent
with a 2nd spatial harmonic? The present work
(and partly [Tsiklanri et all (2004H)) attempts to

answer these important outstanding questions.

We also were able to model successfully SUMER, os-
cillations observed in hot coronal loops.

The paper is organised as follows: in sect. 2
we present the numerical results, with subsec-
tion 2.1 dedicated to the case of apex (symmet—
ric) heatmg which completes the work started in

(2004), and subsection 2.2 sum-
marising our findings in the case of single footpoint
(asymmetric) heating. In sect.3 we present some pre-
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liminary results of modelling of SUMER oscillations
observed in hot coronal loops. We close with conclu-
sions in sect. 4.

2. NUMERICAL RESULTS

The model that we use to describe plasma dynam-
ics in a coronal loop is outlined in INakariakov ef. all
(2004); Msiklauri et all (20044). Here we just add
that, when numerically solving the 1D radiative hy-
drodynamic equations (infinite magnetic field ap-
proximation), and using a 1D version of the La-
grangian Re-map code (Arber et al. 2001) with the
radiative loss limiters, the radiative loss function was
specified as in [Tsiklauri et all (20044) which essen-
tially is the [Rosner et all (1978) law extended to a
I%r temperature range (Peres et all, [1982; [Priestl,
).

We have used the same heating function as in
[Tsiklauri et all (2004d). The choice of the tempo-
ral part of the heating function is such that at all
times there is a small background heating present
(either at footpoints or the loop apex) which ensures
that in the absence of flare heating (when «, which
determines the flare heating amplitude, is zero) the
average loop temperature stays at 1 MK. For easy
comparison between the apex and footpoint heating
cases we fix @), flare heating amplitude, at a differ-
ent value in each case (which ensures that with the
flare heating on when o = 1 the average loop tem-
perature peaks at about the observed value of 30 MK
in both cases).

In the numerical runs in sect.2, 1/(202) was fixed
at 0.01 Mm~2, which gives a heat deposition length
scale, 05 = 7 Mm. This is a typical value de-
termined from the observations (Aschwanden et all,
2007). The flare peak time was fixed in all numeri-
cal simulations at 2200 s. The duration of the flare,
o, was fixed at 333 s. The time step of data visu-
alisation was chosen to be 0.5 s. The CFL limited
time-step used in the simulations was 0.034 s.

2.1. Case of Apex (Symmetric) Heating

In this subsection we complete the analysis started
in Nakariakov et all (2004), namely for the same nu-
merical run we study the spectrum of oscillations at
different spatial points.

As was pointed out in INakariakov et all (2004), the
most interesting fact is that we see clear quasi-
periodic oscillations, especially in the second stage
(peak of the flare) for the time interval t = 2500 —
2800 s (cf. Fig. 1 in Nakariakov et all (2004)). Such
oscillations are frequently seen during the solar flares
observed in X-rays, 8-20 keV, (e.g gm
(2002)) as well as stellar flares observed in white-light
(e.g. Mathioudakis ef. all (2003)).
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Figure 1. Case of apex (symmetric) heating: Peri-
odogram (spectrum) of the velocity and density oscil-
latory component times series outputted in the fol-
lowing three points: loop apex (solid curve), 1/4
(dash-dotted curve) and 1/6 (dashed curve) of the ef-
fective loop length (48 Mm), i.e. at s =0,—12,—16
Mm.

Before discussing the physical nature of these oscilla-
tions, it is worth recalling for completeness the sim-
ple 1D analytic theory of standing sound waves. For
1D, linearised, hydrodynamic equations with con-
stant unperturbed (zero order) background variables,
the solutions for density, p, and velocity, V.., can be
easily written as

nmCly . /nm
Va(s,t) = Acos (Tt) sin <TS) , (1)

_ Apo . (nrCy nmw
p(s, t) = — . sin < T t) cos (fs) , (2)

where Cy is the speed of sound, A is wave ampli-
tude, L is loop length, n = 1,2,3,... is the har-
monic number, and s is the distance along the loop.
Note the (relative) phase shift between V, and p
is AP/P = —(n/2)/(2r) = —1/4, where P is the
standing wave period, while this ratio is zero for
a propagating wave. Also, Eqs.(3) and (4) from

(2004) are missing a factor of 2,
while our Eqs.(1) and (2) correct this previous omis-
sion.

In Fig. 1 we present a periodogram (which here we
use interchangeably with the (power) spectrum, al-
though strictly speaking the power spectrum is a the-
oretical quantity defined as an integral over contin-
uous time, and of which the periodogram is simply
an estimate based on a finite amount of discrete data
(cf. Scargld (1982) and his Eq.(10) in particular)) of
the velocity and density time series outputted at the
three points: loop apex, 1/4 and 1/6 of the effective
loop length (48 Mm), i.e. at s = 0,—12,—16 Mm.
The first two points are chosen to test whether the
simple analytic solution for 1D standing sound waves
(see below) is relevant in this case. The third point
(1/6) was chosen arbitrarily (any spatial point along
the loop where density and velocity of the standing
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Figure 2. Case of apex (symmetric) heating: os-
cillatory components of time series outputted at +6
Mm and £18 Mm in the time interval of 2500-2800
s. The solid curve shows plasma number density in
units of 101t ¢m™3. The dashed curve shows velocity
normalised to 400 km s~ 1.

waves does not have a node would be equally ac-
ceptable). As expected for a 2nd spatial harmonic of
a standing sound wave in the velocity periodogram
there are two clearly defined peaks and the largest
peak corresponds to 1/4 of the effective loop length,
while the smaller peak corresponds to 1/6. Note that
at the loop apex the periodogram gives 0 (solid line is
too close to zero to be seen in the plot). The density
periodogram shows the opposite behaviour to that of
the velocity with the largest peak corresponding to
the loop apex, while 1/6 of the effective loop length
corresponds to a smaller peak, and 1/4 is close to
zero. The locations of the peaks are at about 0.0155
Hz i.e. the period of the oscillation is 64 s. The pe-
riod of a 2nd spatial harmonic of a standing sound
wave should be

P=1L/Cy=L/(1.52x10°VT), (3)

where T is plasma temperature measured in MK,
while L is in meters. If we substitute an effective loop
length L = 48 Mm (see Fig. 2 in (Nakariakov et all,
2004)) and an average temperature of 25 MK (see
top panel in Fig. 1 in [Nakariakov et all (2004) in the
range of 2500-2800 s — the quasi periodic oscillations
time interval we study) we obtain 63 s, which is close
to the result of our numerical simulation. Such a
close coincidence is surprising bearing in mind that
the theory does not take into account variation of
background density and velocity over time, while we
see from Fig. 1 inNakariakov et all (2004) that even
within a short interval of a flare, i.e. 2500-2800 s, all
physical quantities vary significantly with time. To
close our investigation of the physical nature of the
oscillations we study the phase shift between the ve-
locity and density oscillations and compare our simu-
lation results with analytic theory. In Fig. 2 we plot
time series, outputted at +6 and +18 Mm, of the
plasma number density in units of 101! em ™3 and
velocity, normalised to 400 km s~!'. These points
were selected so that one symmetric (with respect to

the apex) pair (£6 Mm) is close to the apex, while
another pair (£18 Mm) is closer to the footpoints.
We choose these pairs because we wanted to compare
how the phase shift is affected by spatial location.
One would expect stronger upflows close to foot-
points (due to chromospheric evaporation), which in
turn alters the phase shift. Note that phase shift be-
tween the density and velocity is different (see below)
for standing and propagating (with flows) acoustic
waves). We gather from the graph that: (A) clear
quasi-periodic oscillations are present; (B) they are
shifted with respect to each other in time; (C) near
the apex (£6 Mm) the phase shift is close to that
predicted by 1D analytic theory; (D) close to the
footpoints (£18 Mm) the phase shift is somewhat dif-
ferent from the one predicted by 1D analytic theory.
In the last case the discrepancy can be attributed to
the presence of flows near the footpoints. The main
reason for the overall deviation is due to the fact that
analytic theory does not take into account variations
of background density and velocity in time and that
density gradients in the transition region are not pro-
viding perfect reflecting boundary conditions for the
formation of standing sound waves.

Another interesting result is that even with the wide
variation of the parameter space of the flare, its dura-
tion, peak average temperature, etc., we always ob-
tained a dominant 2nd spatial harmonic of a stand-
ing sound wave with some small admixture of 4th
and sometimes 6th harmonics. Our initial guess was
that this is due to the symmetric excitation of these
oscillations (recall that we use apex heat deposition).
In order to investigate the issue of excitation further
we decided to break the symmetry and put the heat-
ing source at one footpoint, hoping to see excitation
of odd harmonics 1st, 3rd, etc.

2.2.  Case of Single Footpoint (Asymmetric)
Heating

For single footpoint heating we fix s = 30 Mm in
Eq.(1) inINakariakov et all (2004), i.e. (spatial) peak
of the heating is chosen to be at the bottom of the
transition region (top of chromosphere). Initially we
run a code without flare heating, i.e. we put a =0
(in this manner we turn off flare heating). Ey = 0.02
erg cm 3 57! was chosen such that in the steady
(non-flaring) case the average loop temperature stays
at about 1 MK. Then, we run the code with flare
heating, i.e. we put @ = 1, and fix Q, at 1 x 10%, so
that it yields a peak average temperature of about
30 MK. The results are presented in Fig. 3. Dur-
ing the flare the apex temperature peaks at 38.38
MK while the number density at the apex peaks at
3.11x 10" cm 3. In this case, as opposed to the case
of symmetric (apex) heating, the velocity dynamics
is quite different. Since the symmetry of heating is
broken there is a non-zero net flow through the apex
at all times. However, as in the symmetric heating
case, we again see quasi-periodic oscillations super-
imposed on the dynamics of all physical quantities
(cf time interval of ¢ = 2400 — 2700 in Fig. 3).
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Figure 3. Case of single footpoint (asymmetric) heat-
ing: Average temperature, temperature at apex, and
number density at the apex as functions of time.

In Fig. 4 we present time-distance plots of veloc-
ity and density for the time interval 2400-2700s,
where the quasi-periodic oscillations are most clearly
seen. Here we again subtracted the slowly vary-
ing background (with respect to oscillation period).
The picture is quite different from the case of apex
(symmetric) heatirﬁﬁompare it with Fig. 2 in

i , )). This is because now the
node in the velocity (at the apex) moves back and
forth periodically along the apex, and at later times
(t > 2550 s) stronger flows are now present. How-
ever, the physical nature of the oscillations remains
mainly the same. i.e. a 2nd spatial harmonic of a
sound wave, but now with an oscillating node at the
apex.

To investigate this further we plot in Fig. 5 a peri-
odogram (spectrum) of the velocity and density os-
cillatory component time series outputted at the fol-
lowing three points: loop apex, 1/6 and 1/4 of the
effective loop length. We gather from the graph that
the periodogram (spectrum) is more complex than in
the case of apex (symmetric) heating. In the veloc-
ity periodogram at the apex there is a peak with a
frequency higher than that of 2nd spatial harmonic
of a standing sound wave. This is the frequency with
which the node of the velocity oscillates (see discus-
sion in the previous paragraph). It has nothing to
do with the standing mode, but is dictated by the
excitation conditions of the loop which acts as a dy-
namic resonator. Let us analyse now how this pe-
riodogram compares with 1D analytic theory. The
peak in the periodogram corresponding to 1/6 of the
effective loop length (dashed line) corresponds to a
frequency of about 0.017 Hz, i.e. the period of os-
cillation is 59 s. Again, the period of a 2nd spatial
harmonic of a standing sound wave should be cal-
culated from Eq. (3). If we substitute the effective
loop length L = 48 Mm (see Fig. 4) and an average
temperature of 26 MK (see top panel in Fig. 3 in the
range of 2400-2700 s) we obtain 62 s, which is close
to the result of our numerical simulation (59 s).

Next, we studied the phase shift between velocity

Velocity Density

-20 -10 0 10 20 -20 -10 O 10 20

Distance [Mm] Distance [Mm]

Figure 4. Time-distance plots of the wvelocity and
density oscillatory components in the time interval
of 2400-2700s for the case of single footpoint (asym-
metric) heating.
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Figure 5. As is Fig. 1 but for the case of single foot-
point (asymmetric) heating. Time interval here is
2400-2700s.

and density oscillations, and compare our simulation
results with the 1D analytic theory. In Fig. 6 we pro-
duce a plot similar to Fig. 2, but for the case of asym-
metric heating. The deviation, which is greater than
in the case of apex (symmetric) heating, can again
be attributed to the over-simplification of the 1D an-
alytic theory, which does not take into account time
variation of the background physical quantities and
imperfection of the reflecting boundary conditions
(see above). More importantly, in the asymmetric
case strong flows are present throughout the flare
simulation time. Thus, if linear time dependence is
assumed, which is relevant within the short interval
2400-2700 s of the flare, then Egs.(1)-(2) would be
modified such that phase shifts would vary secularly
in time. This is similar to that seen in Fig. 6.

Yet another interesting observation comes from the
following argument: in a steady 1D case analytic the-
ory predicts that the phase shift between the density
and velocity should be (A) zero for for a propagat-
ing acoustic wave and (B) quarter of a period for
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Figure 6. As in Fig. 2, but for the case of single
footpoint (asymmetric) heating. Time interval here
is 2400-2700s.
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Figure 7. Case of apex (symmetric) heating: Aver-
age temperature, temperature at apex, number den-
sity at the apex, and velocity at the apex as functions
of time.

the standing acoustic wave. Since in the asymmet-
ric case strong flows are present, we see less phase
shift between the velocity and density in Fig. 6 as
one would expect.

Thus, the results of the present study (and partly
Tsiklauri et all (2004H)) provide further, and more
definitive proof than in [Nakariakov et all (2004) that
these oscillations are indeed the 2nd spatial harmonic
of a standing sound wave. However, the present work
also reveals that in the case of single footpoint (asym-
metric) heating the physical nature of the oscillations
is more complex, as the node in the velocity oscillates
along the apex and net flows are present.

3. SUMER OSCILLATIONS OF HOT
CORONAL LOOPS

Recently hot (T = 6.3 MK and T' = 8 MK) coro-
nal loop oscillations were observed with SUMER (cf.
for review [Wang et all (2003)). These were inter-
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Figure 8. As in Fig. 7, but with with subtracted
slowly varying background.

preted as standing acoustic waves |Ofman & Wang
(2002). So far only highly simplified models (isother-
mal, no stratification, no Helium presence, no ex-
ternal heating input, no transition region or chro-
mosphere, etc.) were used to study these oscilla-
tions. Excitation of the standing waves was done
artificially perturbing velocity of plasma, globally,
along the loop and then their evolution (rapid de-
cay) was modelled numerically with heat conduction
being dominant factor (Ofman & Wang (2002). Here
we use much more sophisticated model, as described
above, to self-consistently excite these oscillations by
adding external heat input. In a similar manner as
in previous sections we use apex (symmetric) heat-
ing. Parameters of the heating function were chosen
such the average temperature peaks at about 8 MK.
The time dynamics of various quantities are shown
in Fig.7. In Fig. 8 we plot the same quantities
with subtracted slowly varying background. This
shows clear, periodic, decaying oscillations are ex-
cited. Loop length was fixed at L = 350 Mm.

From Fig. 8 it follows that the period of oscillations
is about 800 s &~ 13 min, which is similar to the
observed range of 17.6 = 5.4 min SUMER oscilla-
tions (based on 54 Doppler-shift cases (Wang et all,
2003)). Moreover, the same result is obtained from
the simple 1D analytic theory when loop length
L = 350 Mm and temperature of 8 MK is substi-
tuted into Eq.(3). Thus, our model seems to describe
adequately essential observed features of these oscil-
lations. Parametric study showed that in the case
SUMER oscillations heating function should have
fairly short temporal width (about 1 minute). The
main difference from previous models is that we self-
consistently deal with the excitation problem.

Note also that in this simulation period of the oscilla-
tions is increased. This can be attributed to two fac-
tors: (A) decrease of backround tempreature (which
would not be observed by SUMER, because it looks
at lines with fixed temperatures (7' = 6.3 MK and
T = 8 MK)), and (B) dissipative effects (mainly heat
conduction). It seems that the increase in period ob-
served by SUMER should be attributed to the latter



effect (B).

4. CONCLUSIONS

Initially we used a 1D radiative hydrodynamics
loop model which incorporates the effects of grav-
itational stratification, heat conduction, radiative
losses, added external heat input, presence of he-
lium, hydrodynamic non-linearity, and bulk Bra-
ginskii viscosity to simulate flares (Tsiklauri et all,
2004d). As a byproduct of that study, in prac-
tically all the numerical runs quasi-periodic os-
cillations in all physical quantities were detected
(Nakariakov et all, 12004). Such oscillations are fre-
quently seen during the solar flares observed in
X-rays, 8-20 keV (e.g. [Terekhov et all (2002)) as
well as stellar flares observed in white-light (e.g.
Mathiondakis et all (2003)). Our present analy-
sis (and partly [Tsiklauri et all (2004H)) shows that
quasi-periodic oscillations seen in our numerical sim-
ulations bear many similar features compared to ob-
servational datasets. In this work we tried to an-
swer important outstanding questions (cf. Introduc-
tion section) that arose from the previous analysis
(Nakariakov et all, 2004).

In summary the present study (and [Nakariakov et al’
(2004); [Msiklanri et all (2004H)) established the fol-
lowing features:

e We show that the time dependences of density
and temperature in a flaring loops contain well-
pronounced quasi-harmonic oscillations associ-
ated with standing slow magnetoacoustic modes
of the loop.

e For a wide range of physical parameters, the
dominant mode is the second spatial harmonic,
with a velocity oscillation node and the density
oscillation maximum at the loop apex. This re-
sult is practically independent of the positioning
of the heat deposition in the loop.

e Because of the change of the background tem-
perature and density, and the fact that den-
sity gradients in the transition region are not
providing perfect reflecting boundary conditions
for the formation of standing sound waves, the
phase shift between the density and velocity per-
turbations is not exactly equal to a quarter of a
period.

e We conclude that the oscillations in the white
light, radio and X-ray light curves observed dur-
ing solar and stellar flares may be produced
by slow standing modes, with the period deter-
mined by the loop temperature and length.

e For a typical solar flaring loop the period of os-
cillations is shown to be about a few minutes,
while amplitudes are typically of a few percent.

e Our model seems to describe adequately essen-
tial observed features of SUMER oscillations.

Parametric study showed that in this case heat-
ing function should have fairly short temporal
width (about 1 minute).

The novelty of this study is that by studying the
spectrum and phase shift of these oscillations we pro-
vide more definite proof that these oscillations are in-
deed the 2nd harmonic of a standing sound wave, and
that the single footpoint (asymmetric) heat position-
ing still produces 2nd spatial harmonics, although it
is more complex than the apex (symmetric) heating
as the node in the velocity oscillates along the apex
and net flows are also present.
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