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1 Introduction

The law of one price (LOP), as generally understood, follows from the assumption that

individuals and �rms will not systematically ignore opportunities to pro�t from risk-free

arbitrage. In the absence of transactions costs or institutional barriers, it should not be

possible to buy a commodity at one price and immediately sell it for a higher price. On

the contrary, so the argument goes, the very possibility of arbitrage will eliminate such

price di¤erences. Like many core ideas in economics the LOP is easy to state but by

no means easy to verify empirically. To help account for the frequent rejection of the

LOP, Pippenger and Phillips (2008, p.916) identify four confounding factors in studies

of commodity prices: use of retail prices, ignoring transport costs, ignoring time, and

pricing non-identical products. The �rst three factors directly a¤ect potential arbitrage,

which requires the goods being traded to be resaleable, while the fourth is obviously

fundamental. Many studies that challenge the empirical validity of the LOP, it is argued,

fail to attend adequately to one or more of these details. On the other hand, when the

data employed are not contaminated in this way, support for the LOP improves, a

good example being the analysis of data from various multi-national internet traders by

Cavallo, Neiman and Rigobon (2014). At any given time, there is always some observed

price dispersion; consequently, many studies investigate whether prices can be shown to

be converging to the LOP, and if so, how rapidly. The picture here is complicated by the

underlying price dynamics: in many markets prices are non-stationary, and so following

Johansen and Juselius (1992), testing for the presence of cointegration between two or

more price series has become routine, with rejection interpreted as evidence against PPP

or the LOP.

Closer in scope to the present work are studies that evaluate the size of international

or internal border e¤ects, or rates of price convergence within countries. In the �rst

case it is necessary to distinguish between cross-border distance e¤ects, which may be

magni�ed by political boundaries, on the one hand, and inter- and intra-jurisdictional

price distributional di¤erences which may confound these. Surveying numerous North

American studies, from Engel and Rogers (1996) onwards, Gorodnichenko and Tesar

(2009) argue that much of the US-Canada border impact identi�ed may be a side-e¤ect of

the greater price dispersion within the US. This line of argument demonstrates that price

dispersion, per se, is not taken as evidence against the LOP. Studies of price convergence

at the sub-national scale typically suppose that systems of states, regions or cities exhibit

movement around a common trend, the point being to establish convergence towards

such a trend. In an in�uential paper, Cecchetti, Mark and Sonora (2002) "believe that
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studying the behavior of prices across U.S. cities will help us in understanding the

likely nature of in�ation convergence in the Euro area." They work with relative price

indices, arguing that it is the behaviour of such aggregates that is of primary concern

to monetary policy makers. Their headline result is that city relative price indices

do not have unit roots, but that convergence is very slow, with a half-life of about

9 years, attributed to the di¢ culty in trading some goods. They found that relative

prices between distant cities were signi�cantly more dispersed than those between near

neighbours, while convergence between cities that were closer together was faster, but

not signi�cantly so (op. cit. p.1090 Table 3). Earlier, Parsley and Wei (1996) had also

shown that the variability of relative commodity prices between U.S. cities was related to

the distance separating them, while a unit root in relative prices was similarly rejected.

Noting that both Cecchetti et al, and Parsley and Wei, and others, could only secure

rejection of the crucial unit root null hypothesis by adopting panel unit root tests, that

gloss over any individual series that might be non-stationary, Sonora (2008) repeats the

analysis using a new generation of more powerful univariate tests. He �nds in favour

of stationarity in a majority of cases, and detects faster convergence rates than in the

previous studies.

The common �nding that relative price dispersion observed over time at pairs of

locations increases with their physical separation suggests to us that spatial e¤ects should

be incorporated into the model, rather than being investigated separately. Although the

in�ation convergence literature stimulated by the creation of the Eurozone has a vigorous

regional strand, and there are a number of studies of price dispersion between U.S. cities,

space is generally introduced at a second stage of the analysis. In this paper, therefore,

dynamic and spatial interactions in U.S. city-level prices are integrated via a panel data

model with explicit spatial dependence. There are currently at least two alternative

approaches to the modeling of such panels, and so the next section describes these

brie�y to provide some context. Section 3 introduces the model in detail, and Section 4

presents the estimation method and the asymptotic properties of the estimates. Section

5 gives a description of the data and empirical results, and �nally Section 6 comments

on the implications. Proofs of the theorems are set out in a separate section.

2 Estimating dynamic spatial panel models

Kelejian and Prucha (1999) propose a generalised method of moments (GMM) estimator

for a static cross-section model with spatially correlated errors. This set-up is further

developed by Kapoor et al (2007) and Mutl (2006) who introduce GMM estimators for
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stationary dynamic panel models with temporal and spatial correlation in the distur-

bance handled via random e¤ects. Baltagi et al (2014) propose a GMM estimator for

a model that also includes a temporal and spatial lag of the dependent variable, while

Mutl and Pfa¤ermayr (2011), develop a test of the random e¤ects assumption in a sta-

tic Cli¤-Ord type model. Similarly, Baltagi and Liu (2011) propose generalized least

squares (GLS) estimators for panel data with �xed or random e¤ects for a generalized

spatial error components panel data model and develop a Hausman speci�cation test.

Lee and Yu (2010) review both static and dynamic spatial panel data models, providing

a concise guide to recent developments in this rapidly expanding �eld. Following Yu, de

Jong and Lee (2012) (YJL) the dynamic spatial panel model underlying this strand of

work can be written as

Yn;t = �0WnYn;t + 
0Yn;t�1 + �0WnYn;t�1 +Xn;t�0 + cn;0 + �t;01n +Vn;t (1)

in which Yn;t = [y1;t; :::; yn;t]
0 is observed at the n locations for each time period, Xn;t is

an n � k matrix of exogenous covariates, cn;0 a vector of location-speci�c �xed e¤ects,

�t;0 a panel-wide time e¤ect, and Vn;t an independent, identically distributed (IID)

disturbance. In this structure, the vector of current endogenous variables Yn;t is seen

to be in�uenced by its own past, and also by a contemporaneous spill-over e¤ect via

the vector of weighted neighbouring values, WnYn;t: To discuss the dynamics implicit

in (1), �rst assume that the matrix, [In � �0Wn] = Sn is invertible, and then write,

An = S
�1
n [
0In + �0Wn]: With this notation the reduced form may be written,

Yn;t = AnYn;t�1 + S
�1
n [Xn;t�0 + cn;0 + �t;01n +Vn;t] (2)

from which we obtain the Error Correction Model (ECM) representation

�Yn;t = [An � In]Yn;t�1 + S
�1
n [Xn;t�0 + cn;0 + �t;01n +Vn;t]:

It is now easy to see that the dynamics of Yn;t are determined by the dynamics of

Xn;t; �t;0; and the eigenvalues of An: IfWn is obtained from a symmetric matrix of non-

negative constants by row-normalisation, the interesting cases identi�ed by YJL are (i) if

all the eigenvalues of An have magnitude smaller than 1 the process may be stationary,

(ii) if all the eigenvalues of An are equal to 1 we may have a pure unit root process

without cointegration, and (iii) if some of the eigenvalues of An are equal to 1 we may

have the case of "spatial cointegration". We say "may" here, because YJL assume that

Xn;t is non-stochastic, while as they note, various further possibilities arise according to
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how �t;0 evolves. However, with the speci�cation (1), the common time e¤ect may be

eliminated by a simple transformation, as is the case for our model introduced in Section

3. After some manipulation, YJL (2012, p. 30) show that the endogenous variable may

be expressed as the sum of three components:

Yn;t = Y
unit
n;t +Y

sta
n;t +Y

�
n;t (3)

where Yunit
n;t is a non-stationary vector process, Ysta

n;t is a stationary component, and

Y�
n;t =

1
1��01n

tX
h=0

�t�h;0 is a common trend. Furthermore, in the "spatial cointegration"

case that is of greatest interest, two of these components are eliminated by the transfor-

mation, (Wn�In); it can be shown that both (Wn�In)Yunit
n;t = 0 and (Wn�In)Y�

n;t = 0

so that (Wn� In)Yn;t is stationary, revealing that the rows of (Wn� In) are cointegrat-
ing vectors, and that the rank of this matrix is the cointegrating rank of the system of

related sites, in the sense that these vectors de�ne linear combinations of the Y values

observed at di¤erent locations that are stationary.

A somewhat di¤erent approach that introduces dependence and dynamics via ob-

served and unobserved common factors, building on the work of Pesaran (2006), is

developed in recent papers by Kapetanios, Pesaran and Yamagata (2011), Chudik, Pe-

saran and Tosetti (2011), and Pesaran and Tosetti (2011), who introduce a model of the

form,

yit = �
0

idt + �
0

ixit + 

0

ift + eit (4)

in which dt is an md � 1 vector of observed common e¤ects (such as time trends, or
aggregate prices), xit is a k�1 vector of observed regressors, for individual i at time t, ft
is an mf � 1 vector of unobservable common factors (mf < n) and eit is the ith element

of the disturbance vector, et. The primary object to be estimated is the mean of the �i
coe¢ cients. To allow for both spatial and serial autocorrelation in et the �xed matrix

Rt is introduced, and the stationary process "t such that

et = Rt"t

"it =
1X
s=0

ais�i;t�s

with �is � IID(0; 1) with �nite 4th moments. Evidently, the YJL and the Pesaran et al.

models are di¤erent but related. Since (4) is a �nal form equation, their connections and
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di¤erences can be seen by comparing it with the �nal form of YJL, (3). First consider

the treatment of unobservables. In (4) both the disturbance, et and the mf -dimensional

dynamic factors, ft are unobserved, and in practice, the latter are proxied by augmenting

the right-hand-side with cross-section means of both y and x in order that the mean of the

�i may be estimated. Furthermore, there are two possible sources of spatial dependence

in the unobservables: via the factor loadings, 
0i and via Rt: In YJL�s treatment of (3) on

the other hand, the common Y�
n;t sequence is eliminated by subtraction of cross-section

means, and the spatial dependence is introduced via a cross-sectional autoregression in

the observables. Because Pesaran and Tosetti�s paper is mostly addressed to estimation

of and inference about the mean of the �i; the presence of possible spatial correlation in

the unobservables is essentially an inconvenience. Non-stationary dynamics may appear

in the errors (in the unobserved ft which are merely proxied by cross-sectional means)

or in the common observed e¤ects, dt. In this set-up, cointegration across space, in

the sense of possible existence of (linear) combinations of the yit that are stationary

even when the yit themselves have unit roots, is of no particular interest because, "the

nature of the factors does not matter for inferential analysis of the coe¢ cients of the

observed variables." (Kapetanios et al 2011, p. 327) and it is these coe¢ cients that are

the objects of interest. Indeed, as is clear from (4), if the exogenous regressors, xit are

assumed to be stable, (in Pesaran and Tosetti their sums of squares converge at rate

T in time and n in space) then cross-sectional cointegration requires the existence of

vectors, g such that g0Yt depends only on Xt and stable components of dt and ft which

have been left unspeci�ed.

However, potentially non-stationary dynamics arising from the combination of spa-

tial and temporal dependence are centre-stage in the discussion of YJL, whose model is

therefore necessarily more tightly structured. This is apparent from (3), in which the

spatial weights matrix explicitly de�nes the cointegration space. Notice, however, that

the dynamic structure in (2) is quite restrictive, being a �rst-order spatial VAR(X). In

sum, then, it is not easy to compare these approaches as they have di¤erent purposes.

However, when the �i of (4) are homogeneous, �i = �; and the 
i = 0 for all i but the

shocks are spatially correlated an interesting special case emerges. Pesaran and Tosetti

(2011, p. 186, Theorems 3 and 4) give the asymptotic distributions of the mean group

and pooled estimators of � under these conditions. These asymptotic distributions are

of course a¤ected by the presence of the spatial and serial correlation in the shocks, and

the estimators that do not exploit the spatial structure will not be fully e¢ cient. To

construct valid inference, the covariance matrix of �̂ must use the spatial heteroscedas-

ticity and autocorrelation consistent (SHAC) estimator of Kelejian and Prucha (2007),

6



or some other method that accounts for the spatial structure, as Pesaran and Tosetti

observe. Thus it is not possible to avoid entirely the need to specify or estimate a spatial

structure, and given this, when both cross-section and time dimension are small, it could

be important not to lose e¢ ciency. Our model to be introduced in Section 3 is formally

a special case of that described by Pesaran and Tosetti. However, our treatment of the

spatial structure has more in common with the approach of YJL. Rather than handling

the stationary dynamics and spatial dependence non-parametrically, essentially only to

permit inference about �, we are interested in estimating the dynamic and spatial de-
pendence parameters themselves; in this respect our approach is similar in spirit to that

of Moscone et al (2014) but for the fact that in our model the cross-section dimension

is �nite, leading to a di¤erent treatment of the asymptotics.

Our model is built around an unobserved common trend. To allow for uncertainty

about the existence of a common stochastic trend in city-level CPI documented by Chen

and Devereux (2003) and potential changes in the mean rate of in�ation, as discussed for

example by Bierens (2000), we employ a general speci�cation that permits the trend to

be stochastic or deterministic with possible breaks or other nonlinearities. Using a vector

error correction model (VECM) representation for the deviation of city-speci�c in�ation

rates from the trend, the common trend may be removed from the model, in similar

fashion to YJL. We allow for spatially correlated idiosyncratic shocks, and, in pursuit of

e¢ ciency, �rst describe an infeasible GLS procedure for estimating the slope parameters

of the model, employing a within estimator. Since the GLS procedure is infeasible when

the spatial correlation parameter is not known, we then incorporate the GLS moment

conditions into a GMM framework and estimate all parameters simultaneously.

Our estimate of the spatial dependence parameter in the model is signi�cantly di¤er-

ent from zero, con�rming that relative distance has a strong in�uence on short run price

dynamics. Location therefore should not be neglected in an analysis of city-level price

movements. We �nd that prices are slowly converging to an equilibrium, and shocks to

city prices have half-life of approximately nine years, in agreement with Cecchetti, Mark

and Sonora (2002).

3 The model

The model we propose is built around a logarithm of a price level, p�t , which is not

directly observed but which has time-series properties that characterize the movements

of the n observable series pit, the logarithm of the price index for city i at time t (n = 17

7



for our data). This is described by the equation

pit = p�t + ci + zit; i = 1; : : : ; n, t = 1; : : : ; T; (5)

where zit are I(0) processes for which E(zit) = 0 for all t and i = 1; : : : ; n and such that,

for zt = (z1;t; : : : ; zn;t)
0, the matrix E (ztz0t) is positive de�nite. We also assume that the

�xed e¤ects sum to zero,
Pn

i=1 ci = 0.

Equation (5) implies that the expected growth rate of prices is shared across cities,

E (�pit) = E (�p�t ). The departures from the price level p�t , pit � p�t , follow a set of

stationary equilibrium-correction model equations,

�(pit � p�t ) = �i+�1�
�
pit�1 � p�t�1

�
+: : :+�k�1�

�
pit�k+1 � p�t�k+1

�
�

�
pit�1 � p�t�1

�
+uit

(6)

for i = 1; : : : ; n, where �i = 
ci. Coe¢ cient 
 measures the speed of adjustment to the

equilibrium p�t + ci.

The vector of shocks in the VECM form (6), ut = (u1t; : : : ; unt)
0 follows the �rst

order spatial autoregression

ut = �Wut + vt; t = 1; : : : T; (7)

whereW is a known weighting matrix and vt is an independent, identically distributed

vector process with E (vt) = 0 and E (vtv0t) = �2In. The weight matrix W = fwijg
is obtained by row-normalizing a symmetric matrix with non-negative components and

with zero diagonal, so that
Pn

j=1wij = 1 for i = 1; : : : ; n; wij � 0 and wii = 0 for

i = 1; : : : ; n.

The trend in (5) is generic. A leading example is the case of a common stochastic

trend,

p�t = c+ p�t�1 + z�t ; t = 1; : : : ; T;

say, where p�0 is a �nite random variable and where the increment, z�t , is a zero mean

I (0) process, that is a process whose spectral density is �nite and strictly positive. In

this case the elements of the n + 1 dimensional vector (p1t; :::; pnt; p�t )
0 are cointegrated

and the cointegration rank is n and the ECM representation (6) can be replaced by

�pit = �i + �1�pit�1 + : : :+ �k�1�pit�k+1 � 

�
pit�1 � p�t�1

�
+ uit; i = 1; : : : ; n:

A similar model has been employed by Hall et al. (1992) in their analysis of the term
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structure of US treasury bills.

The term p�t may also have a common linear trend, p
�
t = c0 + ct + z�t , as discussed

by Chapman and Ogaki (1993). In this case, the series p1t; :::; pnt are cotrending. Other

polynomial trends, such as quadratic trends, are possible. The price level p�t may also be

subject to a break, p�t = c0+ c
�I (t � Ta + 1)+ z

�
t , where c

� 6= 0, and p1t; :::; pnt are then
cobreaking, a concept examined by Hendry and Massmann (2007). More generally, p�t
may be characterized as a non-linear, non-parametric trend, p�t = c (t=T ) + z�t , a case

analyzed by Bierens (2000).

All the examples cited above suggest that (p1t; :::; pnt; p�t )
0may have a common fea-

ture, as de�ned in Engle and Kozicki (1993). See Urga (2007) for further examples. In

our case, however, it is not strictly necessary that p�t is a common feature. Price level p
�
t

may be an unobserved common factor, as previously noted, and p�t = 0 is also admitted.

When p�t characterizes long term dynamics such as a stochastic or a deterministic

trend, possibly with breaks or other nonlinearities, p�t + ci can be seen as an equilibrium

level, and (5) implies that departures from long run equilibrium, zit, are short-lived and

that the long run dynamics of pit are driven by the trend p�t .

Notice also that p�t cannot be a weighted average of the prices of the various cities.

Had p�t been a weighted average of the prices of the various cities, E (ztz
0
t) would not be

positive de�nite and this would con�ict with the belief that each city has an idiosyncratic

in�ation component. In fact, we prefer to view p�t as a shared price trend. As Beck et

al. (2009) argue, this trend could be determined by national monetary policy as well as

by international factors such as oil price and exchange rate dynamics.

Equation (6) is a standard VECM, and coe¢ cient 
 can be used to compute the

half-life of a shock which is de�ned as � (ln 2) = ln (1 + 
).

We include the �xed e¤ects in (5) and then in (6) for two reasons. First, the price

indices obtained from the Bureau of Labor Statistics measure relative city price levels,

that is the CPI for each city has the same base year. This means the CPI series has been

multiplied by an individual constant for each city. An additive constant in the model in

logarithms controls for the arbitrary base year. Second, the �xed e¤ects account for the

heterogeneity among cities leading to long-term di¤erences in relative prices.

In (7) we explicitly assume that the disturbances are spatially autocorrelated, further

assumptions to ensure invertibility of I��W being in Assumption 3 below.

With the model in place, we wish to estimate the parameters in equations (6) and

in (7). If p�t was observable, we could estimate the parameters directly. Since p
�
t is

unobservable, in order to estimate the parameters in (6) and in (7) we must either

approximate p�t or eliminate it. If the number of observational units is increasing, n !
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1, it is possible to estimate p�t consistently by a cross-sectional average (as is done
implicitly in the common factors approach). For example, we have from (5) that

1

n

nX
i=1

pit = p�t +
1

n

nX
i=1

zit

in which n�1
nP
i=1

zit
p! 0 by a law of large numbers. In this approach the condition that

n ! 1 is necessary. In general, panel data techniques for the treatment of a common

factor also require n!1.
On the other hand, and consistently with the dimension of our dataset, in which

n = 17 and T = 94, we view n as �xed. Since p�t is present in each of the n equations

in (6), it may be removed by subtracting a weighted average of the equations from

each equation. Stacking all the equations in (6) as an equation for an n dimensional

vector, we take an n�n matrixM of rank n� 1 with the property thatM1 = 0, where
1 = (1; : : : ; 1)0, and premultiply both sides of (6) byM, obtaining an estimable equation

M�pt =M�+ �1M�pt�1 + : : :+ �k�1M�pt�k+1 � 
Mpt�1 +Mut (8)

where � = (�1; : : : ; �n)
0, pt = (p1t; : : : ; pnt)

0.

Examples of eligible matrices areM =M1 = I� 1
n
110, where the weights across cities

are equal, andM = I�W, where the weights are given by the weighting matrixW.

In the next Section, we estimate our parameters of interest, �1, ..., �k�1, 
, � by

GMM. For this purpose, we also assume:

Assumption 1 Let pit be as in (5). The �xed e¤ects are such that
Pn

i=1 ci = 0,

whereas the idiosyncratic shock, zit, is an I(0) process, with E (zt) = 0 and E (ztz0t)

positive de�nite.

Assumption 2 The price deviations follow the model (6). For �1; : : : ; �k de�ned as

�1 = 1 + �1 � 
; �s = �s � �s�1, s = 2; : : : ; k � 1, �k = ��k�1 (9)

the solutions of 1� �1z � : : :� �kz
k = 0 are outside the unit circle.

Assumption 3 The vector of shocks ut follows the model (7), where W has ele-

ments wij so that
Pn

j=1wij = 1 for i = 1; : : : ; n; wij � 0 and wii = 0 for i = 1; : : : ; n,

and �1=j�(W )minj < � < 1 where �(W )min is the smallest eigenvalue ofW. The inno-

vations vt follow an independent, identically distributed vector process with mutually
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independent components, E (vt) = 0 and E (vtv0t) = �2In, and cumulant

cum (vit; vjt; vkt; vlt) =

(
� <1 i = j = k = l;

0 otherwise.

(cumulants and moments are related, and note in particular that cum (vit; vit; vit; vit) =

E (v4it)� 3E (v2it)).

4 Estimation method

4.1 Infeasible fully e¢ cient GLS

Since the matrixM is singular, premultiplying both sides of (6) byM induces a spatial

moving average unit root which cannot be eliminated by inversion. This e¤ect is akin

to the e¤ect of over-di¤erencing a time series. As a consequence, while the parameters

of (8) can be estimated consistently by OLS under T ! 1, the OLS estimator is
not e¢ cient. Let B = (I� �W)�1. The variance matrix of the error term in (8) is

varMut = �2MBB0M0 6= �2I. Theorem 8 of Magnus and Neudecker (1999, p. 272�

273) implies that the best unbiased linear estimator of parameters in (8) can be obtained

by premultiplying (8) by the Moore-Penrose generalized inverse (MB)+ of matrixMB,

(MB)+M�pt = (MB)
+M�+ �1 (MB)

+M�pt�1 + : : :+ �k�1 (MB)
+M�pt�k+1

� 
 (MB)+Mpt�1 + (MB)
+Mut; (10)

and estimating the parameters of (10) by OLS. For example, when M =M1B
�1 then

(MB)+M =M1B
�1, or whenM =M1 then (MB)

+M =(M1B)
+M1.

The two steps of transforming equation (6) and estimating the transformed equation

(10) by OLS can be seen as a generalized least squares (GLS) procedure in a model where

the covariance matrix of errors is singular. The variance of the term (MB)+Mut in

(10) is var
�
(MB)+Mut

�
= �2 (MB)+MB (MB)0 (MB)+0 = �2 (MB)+MB = �2M1

independently of matrixM. The last equality can be seen by noting that the matrixMB

is of rank n�1 and has a singular value decompositionMB = R�T0 whereR and T are
n�(n� 1) matrices such that R0R = T0T = In�1 and � is an (n� 1)�(n� 1) diagonal
matrix with positive diagonal elements. The fact that MB1 = 0 implies that T01 = 0

and so TT0 =M1, therefore indeed (MB)
+MB = T��1R0R�T0 = TT0 =M1.

To implement this approach, letG = (MB)+M, letXt =
�
�pt�1; : : : ;�pt�k+1;�pt�1

�

11



and write � = (�1; : : : ; �k�1; 
)
0 to write model (10) as

G�pt = G�+GXt� +Gut:

Vector � contains n parameters that are usually not of primary interest, so in order to

obtain a within estimator of parameters �1; : : : ; �k�1 and 
 in (10), we subtract time

averages from both sides of this equation and obtain

�Gept = �1�Gept�1+ : : :+�k�1�Gept�k+1�
Gept�1+Geut; t = k+1; : : : ; T; (11)

where here and in what follows, for generic n�m matrices Yk+1; : : : ;YT , matrix eYt is

de�ned as eYt = Yt �
1

T � k

TX
t=k+1

Yt; t = k + 1; : : : ; T:

Denoting �Yt = GeYt, equation (11) can be written as

��pt = �1��pt�1 + : : :+ �k�1��pt�k+1 � 
�pt�1 + �ut; t = k + 1; : : : ; T: (12)

The OLS estimator of �1; : : : ; �k�1 and 
 in (12) is consistent and e¢ cient as long as n

is �nite and T !1. However, the above estimator is infeasible because � is not known.

4.2 Feasible GMM estimation

We can however estimate parameters �1; : : : ; �k�1; 
; � and �2 simultaneously using the

generalized method of moments (GMM). Note that for any n � n matrix 
 such that

10
 = 0 and 
1 = 0, the following moment conditions hold,

E
�eX0

tG
0Geut� = O

�
T�1

�
;

E (eu0t
eut) = �2 tr (B0
B)

�
1� 1

T � k

�
:

Let �0 = (�1; : : : ; �k�1; 
; �; �2)
0 be the vector of true values of parameters in the model

and let � = (b1; : : : ; bk�1; g; r; s2)
0. De�ne

ut (�) =�pt � �� b1�pt�1 � : : :� bk�1�pt�k+1 + g(pt�1 � p�t�11)

12



so that

Meut (�) =M�ept � b1M�ept�1 � : : :� bk�1M�ept�k+1 + gMept�1
and Meut (�0) = MBevt for any matrix M such that M1 = 0. While errors ut (�) are

unobservable, errors Meut (�) can be observed. Noting that G0G = (B�1)
0
M1B

�1 for

anyM such thatM1 = 0, we let B (r) = (I� rW)�1 and de�ne moment function emt

emt (�) =

0BBBB@
eX0
t (B

�1 (r))
0
M1B

�1 (r) eut (�)eu0t (�)
1eut (�)� s2 tr
�
B (r)0
1B (r)

� �
1� 1

T�k
�

...eu0t (�)
qeut (�)� s2 tr
�
B (r)0
qB (r)

� �
1� 1

T�k
�

1CCCCA
for t = k + 1; : : : ; T , where q � 2 and 
1; : : : ;
q are n� n matrices such that 10
i = 0
and 
i1 = 0, i = 1; : : : ; q.

Let

eS (�) = 1

T � k

TX
t=k+1

emt (�) emt (�)
0 ;

eD (�) = 1

T � k

TX
t=k+1

@ emt (�)

@�0
;

and denote S = plimT!1
eS (�0) and D = plimT!1

eD (�0). Let � be a set such that

� � Rk+2. For � 2 �, we de�ne loss function eq� as
eq�(�) =  1

T � k

TX
t=k+1

emt (�)
0

!
�T

 
1

T � k

TX
t=k+1

emt (�)

!

where �T is a weighting matrix that may depend on data and on sample size T . We

de�ne the GMM estimator of �0 as

�̂ =argmin
�2�

eq�(�) (13)

We introduce the following assumption:

Assumption 4 S is positive de�nite and D has full column rank, �0 is interior to

�, � is compact, Emt (�) = 0 only if � = �0 and �T
p! � where matrices �T and �

are positive de�nite.

Assumption 4 ensures that S�1 and (D0�D)�1 exist, that function plimT!1 eq� has
13



a unique minimum, and that
p
T
�
�̂ � �0

�
has limit normal distribution. Then, as

stated in Theorem 1 below,
p
T
�
�̂ � �0

�
is asymptotically normal with covariance ma-

trix (D0�D)�1D0�S�D (D0�D)�1. The asymptotic variance matrix of
p
T
�
�̂ � �0

�
is

minimized when � = S�1. In practice, optimal GMM estimation requires a preliminary

consistent estimation of S. We estimate S by Ŝ = eS�e�� where
e� = argmin

�2�
eqI(�) = argmin

�2�

 
1

T � k

TX
t=k+1

emt (�)
0

! 
1

T � k

TX
t=k+1

emt (�)

!
.

The asymptotic properties of estimator �̂ are summarized in the following theorem.

Theorem 1 Let �̂ be the GMM estimator de�ned in (13). Under Assumptions 1�4, as

T !1, p
T
�
�̂ � �0

�
d! N

�
0; (D0�D)

�1
D0�S�D (D0�D)

�1
�
.

When the weighting matrix is �T = eS�1 �e�� then
p
T
�
�̂ � �0

�
d! N

�
0; (D0�D)

�1
�
:

In order to obtain critical values for the asymptotic distribution of �̂, matrix D can

be estimated by D̂ = eD��̂� = (T � k)�1
PT

t=k+1

@ emt(�̂)
@�0 where

@ emt (�)

@�0
= �

0BBBB@
eX0
t (B

�1 (r))
0
M1B

�1 (r) eXt
eX0
tH (r) eut (�) 0eu0t (�) (
1 +


0
1)
eXt s2C1 (r) E1 (r)

...
...

...eu0t (�) �
q +
0
q

� eXt s2Cq (r) Eq (r)

1CCCCA
and

H (r) = � @

@r

��
B�1 (r)

�0
M1B

�1 (r)
�
=W0M1 (I� rW) + (I� rW0)M1W;

Ci (r) = �
@

@r
tr
�
B (r)0
iB (r)

��
1� 1

T � k

�
;

= � tr
�
B (r)0 (
i +


0
i)B (r)WB (r)

��
1� 1

T � k

�
;

Ei (r) = tr
�
B (r)0
iB (r)

��
1� 1

T � k

�
; i = 1; : : : ; q:

14



The following theorem shows that matrices eS�e�� and eD�e�� are consistent estimators
of S and D.

Theorem 2 Under Assumptions 1�4,

eS�e�� p! S and eD�e�� p! D:

Proofs of Theorems 1 and 2 can be found in Section 7.

When the number of moment conditions exceeds the number of parameters that

are being estimated, the model is overidenti�ed and it is possible to test whether the

corresponding sample moments (T � k)�1
PT

t=k+1 emt

�
�̂
�
are statistically close to 0, see

for example Newey and McFadden (1994, p. 2231). If there are ` overidentifying

moments in the moment function emt, then under the null that E ( emt (�0)) = 0 and

Assumptions 1�4,

J = (T � k) eq� ��̂� d! �2` .

In the remainder of the paper, we refer to this test as the overidenti�cation test.

5 Empirical results

The data employed are annual observations of CPI in 17 cities in the US: Atlanta,

Boston, Chicago, Cincinnati, Cleveland, Detroit, Houston, Kansas City, Los Angeles,

Minneapolis, New York, Philadelphia, Pittsburgh, Portland, San Francisco, Seattle, St.

Louis. The data are from the Bureau of Labor Statistics (http://www.bls.gov) and span

the years 1918-2011 inclusive, for a total of 94 observations of each series.

The time path of the logarithms of the series is shown in Figure 1.

Figure 1 here

Figure 2 here

The series appear to trend upwards. The slope of the trend may have changed over time

and it may have been steeper during World War II and during the oil shock. In Figure

2, which plots changes of the logarithm as approximation of in�ation, it can be seen that

in some periods, for example the years of World War II and the oil price shock, in�ation

has been higher than usual.

The price level series seem to follow a single common trend. If prices share a common

trend and departures from this trend are stationary, then centering the price series

15



around that trend should render all series stationary. We estimate the trend as the

average of logarithms of prices for each period and subtract the estimated trend from

each price series. Figure 3 displays the centered series. The panel data unit root test

of Im et al. (2003) applied to the panel of centered series strongly rejects the null

hypothesis of unit root. The plot of the series and the result of the unit root test suggest

that a model in which there is a single common trend underlying all price series is highly

plausible.

Figure 3 here

We de�ne the matrix W using distances in minutes between cities, taken from

googlemap
TM
. The table of distances between the cities is shown in Table 3. We model

the spatial weights as declining with the inverse squared distance between cities. De-

noting the distance in minutes between cities i and j as dij, we put

wij =

1
d2ijPn
j=1

1
d2ij

; i 6= j, i; j = 1; : : : ; n; (14)

and wii = 0. This weighting scheme has been used by Ertur and Koch (2007).

We �rst estimate a given model with �ve lags of ��pt, then drop insigni�cant lags of

��pt and reestimate the model. We set q = 3 and 
1 =M1, 
2 = (I�W)0M1 (I�W)

and 
3 =M1 (I�W). We chose 
i primarily focussing on M1 and combining it with

other matrices. The matrix M1 seems a natural choice, because it generates mean

correction as in a within group regression. We considered three matrices 
i to have an

overidenti�ed model and therefore to be able to assess the validity of the orthogonality

conditions by means of the J test.

Our estimate of model (12) using GMM de�ned in (13) is

��pt = 0:252
(0:029)

��pt�1 + 0:066
(0:028)

��pt�3 � 0:067
(0:009)

�pt�1 + but; (15)

but = 0:370
(0:044)

W but + bvt, b�2 = 11:06� 10�6
(1:02�10�6)

; J = 3:236;

where for estimates b�1; : : : ; b�k�1,b
, we let but = ��pt�b�1��pt�1�: : :�b�k�1��pt�k+1+b
�pt�1.
Here estimated standard errors of coe¢ cient estimates are reported in parentheses and

J is the overidentifying test statistic.

The estimated value of the coe¢ cient 
 of �pt�1 in model (15) is negative and small,

indicating slow reversion to the equilibrium implied by the law of one price. The esti-

mated half-life of a shock, computed as � ln 2= ln(1 + b
), is therefore just above nine
16



years. This is similar to the half-life of nearly nine years found by Cecchetti et al. (2002,

page 1081), and larger than the half-life of almost �ve years estimated by Chen and De-

vereux (2003, page 220). The estimate of � is signi�cantly di¤erent from 0, suggesting

that there is a strong spatial e¤ect in the short term dynamics of in�ation, in the sense

that idiosyncratic shocks tend to be correlated in cities that are closely located.

With q = 3, there is one overidentifying moment in the moment function. The

asymptotic null distribution of J is therefore �21 and the null that E ( emt (�)) = 0 is not

rejected on the 5% signi�cance level.

Parameters �1; : : : ; �k�1 and 
 in model (8) can be estimated by OLS: this is conve-

nient, as no spatial assumption need be imposed in (7) and may thus give a qualitative

feel of the reliability of the GMM estimate under that additional assumption. The within

OLS estimates withM =M1 andM = I�W, respectively, are

��pt = 0:271
(0:024)

��pt�1 + 0:084
(0:023)

��pt�3 � 0:066
(0:008)

�pt�1 + but; b�2 = 11:70� 10�6;

��pt = 0:222
(0:024)

��pt�1 + 0:046
(0:023)

��pt�3 � 0:073
(0:008)

�pt�1 + but; b�2 = 11:79� 10�6;

where the �gures in brackets are the standard errors of the estimated coe¢ cients com-

puted assuming mistakenly that there is no correlation of disturbances across cities.

Not surprisingly, failing to account for the spatial dependence in the estimation of the

standard errors of the estimates results in underestimated standard error of estimated

coe¢ cients on��pt�1, ��pt�3 and �pt�1. It can also be seen that the parameter estimates

are sensitive to the choice of averaging matrixM as should be expected.

In the de�nition of the weight matrix, we assume that the decline of the strength

of interaction is proportional to the inverse of square distance. However, the choice of

W is bound to be arbitrary to a degree. We therefore examine the robustness of our

results to the choice ofW by verifying that alternative speci�cations ofW do not lead

to substantially di¤erent conclusions.

We consider several types of weights employed by practitioners. First, we consider

weights declining slower with distance than in (14), namely decreasing with the inverse of

distance, wij = d�1ij =
�Pn

j=1 d
�1
ij

�
for i; j = 1; : : : ; n and i 6= j, as proposed by Robinson

(2010). The result of this estimation is reported in column II of Table 1. For comparison,

the estimated parameters of the preferred model (15) are summarized in column I of the

table. The estimated parameters for �1, �3 and 
 are very similar in both speci�cations,

although the estimated standard errors are slightly larger when squared distances are

used. The spatial correlation parameter �̂ is larger in column II than in column I

and strongly signi�cant. We also examine exponentially decreasing weights considered

17



I II III IV V
baseline inverse exponential nn nearest cut-o¤
model distance decrease neighbors distance

�̂1 0:252
(0:029)

0:251
(0:027)

0:262
(0:030)

0:261
(0:028)

0:276
(0:033)

�̂3 0:066
(0:028)

0:066
(0:025)

0:062
(0:028)

0:075
(0:026)

0:067
(0:026)


̂ �0:067
(0:009)

�0:071
(0:008)

�0:066
(0:009)

�0:071
(0:009)

�0:071
(0:009)

�̂ 0:370
(0:044)

0:841
(0:079)

0:233
(0:031)

0:367
(0:039)

0:394
(0:052)b�2 � 106 11:06

(1:02)
12:05
(1:11)

10:89
(1:00)

11:08
(0:93)

11:36
(1:05)

J 3:236 0:283 3:606 1:152 2:435

Table 1: Check of robustness to various speci�cations of weighting matrixW

by Ertur and Koch (2007), that is, wij = exp(�adij)=
�Pn

j=1 exp(�adij)
�
for i 6= j.

Estimates for the case of a = 0:2 are summarized in Column III of Table 1. Again the

spatial correlation parameter is signi�cant and estimates �̂1, �̂3 and 
̂ are close to their

counterparts in the baseline model estimate.

Further, we estimate the model using a weight matrix based on nearest neighbors,

with 1=dij set to 1 only for nn nearest neighbors and 0 otherwise. This type of weighting

matrix has been employed by Baltagi and Liu (2011), among others. We carry out

estimation for nn = 1; : : : ; 8. The estimates for nn = 3 are reported in Column IV

of Table 1. The results for other values of nn are qualitatively similar. In addition,

we examine the weighting matrices where only cities within a certain cut-o¤ distance

are considered as neighbors. We set 1=dij to 0 if dij exceeds the cut-o¤ value and to 1

otherwise. We allow the cut-o¤ point to vary between 750 to 1250 minutes of distance.

In Column V of Table 1 we report the estimates for the cut-o¤point set to 1000 minutes.

The results here are consistent with the previous results in that the estimated values of

parameters �1, �3 and 
 are similar to the estimates from the baseline model (15) andb� is signi�cantly di¤erent from zero.

In the majority of cases discussed above, the test of overidentifying restrictions cannot

reject the null of moment restrictions being satis�ed. For cases summarized in Table 1,

the J statistic is reported in the last row of the table.

As a �nal check, since the distances in minutes are taken from googlemap where they

are changing frequently, we analyze the robustness to moderate changes in the distances

between cities. We generate an n�n matrix of independent random numbers distributed
uniformly on [0:95; 1:05] or [0:90; 1:10] and multiply the matrix of distances dij by this
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matrix element by element. MatrixW is then constructed using (14). We generate 1000

replications of matrixW, each time estimating parameters of the overidenti�ed model

(15). Table 2 reports intervals containing 90% and 95% values of parameter estimates,

using 5% and 95%, and 2.5% and 97.5% sample quantiles, respectively. Estimated

Sample quantile intervals
original �5% perturbation �10% perturbation
estimates 5%� 95% 2:5%� 97:5% 5%� 95% 2:5%� 97:5%

�̂1 0:252 (0:251; 0:253) (0:251; 0:253) (0:250; 0:254) (0:250; 0:255)

�̂3 0:066 (0:065; 0:067) (0:065; 0:068) (0:064; 0:068) (0:064; 0:069)
�
̂ 0:067 (0:067; 0:068) (0:067; 0:068) (0:066; 0:068) (0:066; 0:069)
�̂ 0:370 (0:363; 0:377) (0:363; 0:379) (0:357; 0:384) (0:354; 0:386)

�̂2 � 106 11:06 (10:95; 11:14) (10:93; 11:15) (10:86; 11:23) (10:81; 11:27)

Table 2: Check of robustness to �5% and �10% perturbation of distances

values of parameters �1, �3 and 
 tend to be concentrated around their estimates from

the model (15). The intervals for �̂ are slightly wider but still narrow.

Summarizing our results we conclude that the values of estimated parameters may

change when variations in the weighting matrix are considered, but the main message

remains unchanged. The reversion of city-level prices to an equilibrium is slow and

spatial correlation in errors is present.

6 Conclusions and comments

An unobserved common trend model with spatially correlated idiosyncratic shocks was

introduced and applied to study relative movements in the CPI of 17 US cities. The

model was estimated by GMM. The estimated half-life of a shock is approximately 9

years which is at the upper end of the range that has been reported in the literature.

Strong evidence of spatial e¤ects was found. Our estimate of the spatial error auto-

correlation parameter, �̂ = 0:37, is signi�cantly di¤erent from zero. In cases like this,

if spatial structure is ignored, the estimated standard errors routinely associated with

OLS regression may underestimate the e¤ective dispersion of the estimates.

The structure we adopt seems to be novel and may have a variety of potential ap-

plications not con�ned to the law of one price literature. The method could be applied

in a range of practical situations, including the modelling of income or output in dif-

ferent regions or other cases in which the "distance" a¤ecting the correlation between

19



idiosyncratic shocks may be in a dimension other than space, such as relative maturities

applied to a vector of interest rates. The proposed detrending therefore applies in many

setups.

7 Proofs of technical results

Before proceeding to prove Theorems 1 and 2, we introduce some additional notation,

and note some properties of the moment function mt.

For any matrixM such thatM1 = 0, equation (8) can be rewritten as

Mpt =M�+
kX
`=1

�`Mpt�` +Mut

where the coe¢ cients �1; : : : ; �k are de�ned in (9).

By Assumption 2, zk � �1z
k�1 � : : :� �k�1z � �k 6= 0 if jzj � 1, and it follows from

Theorem 4�of Hannan (1970, p. 14) that Mpt is second order stationary and can be

written as

Mpt =
1

1� �1 � � � ��k
M�+

1X
j=0

 jMut�j =
1



M�+	(L)Mut

where  0 = 1,  j = O (cj) for 0 < c < 1, L is the backshift operator and 	(L) =

 0 +  1L+  2L
2 + : : :.

Let Pt and Vt be n � (k + 1) matrices de�ned as Pt = (pt;pt�1; : : : ;pt�k), Vt =

(vt;vt�1; : : : ;vt�k), F be a (k + 1)� k matrix de�ned as

F =

0BBBBBBBBBB@

0 0 � � � 0 0

1 0
... �1

�1 1
... 0

�1 . . . 0
...

. . . 1 0

0 �1 0

1CCCCCCCCCCA
;

and � and d be (k + 1) � 1 vectors de�ned as � = (1;��1; : : : ;��k)0

= (1;�1� �1 + 
; : : : ; �k�1)
0 and d = (1;�1� b1 + g; : : : ; bk�1)

0.
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For any matrixM such thatM1 = 0, we write

eXt = ePtF; eut (�) = ePtd; MePt =MB	(L) eVt:

We further de�ne


0 (r) =
�
B�1 (r)

�0
M1B

�1 (r) ;

A0 (r) = B
0
0 (r)B;

Ai (r) = B (r)
0
iB (r) i = 1; : : : ; q;

and denote Ai = Ai (�). The moment function emt can now be written as

emt (�) =

0BBBB@
em0t (�)em1t (�)em2t (�)em3t (�)

1CCCCA =

0BBBBBB@
F0
�
	(L) eVt

�0
A0 (r)

�
	(L) eVt

�
d

d0
�
	(L) eVt

�0
A1

�
	(L) eVt

�
d� s2 trA1 (r)

�
1� 1

T�k
�

...

d0
�
	(L) eVt

�0
Aq

�
	(L) eVt

�
d� s2 trAq (r)

�
1� 1

T�k
�

1CCCCCCA :

We de�ne vector function mt as

mt (�) =

0BBBB@
m0t (�)

m1t (�)

m2t (�)

m3t (�)

1CCCCA =

0BBBB@
F0 (	 (L)Vt)

0A0 (r) (	 (L)Vt)d

d0 (	 (L)Vt)
0A1 (	 (L)Vt)d� s2 trA1 (r)

...

d0 (	 (L)Vt)
0Aq (	 (L)Vt)d� s2 trAq (r)

1CCCCA
so that

mt (�0) =

0BBBB@
F0 (	 (L)Vt)

0B0
0ut

u0t
1ut � �2 trA1

...

u0t
qut � �2 trAq

1CCCCA :

Since ut is an independent process and 	(L)VtF is independent of ut, mt (�0) is a

martingale di¤erence process.

Let  (j) =
P1

`=0  ` `+jjj and let 	 be a (k + 1) � (k + 1) matrix with elements
	ij =  (i� j). From Theorems 2 and 3 of Hannan (1970, p. 203�204) we can deduce
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that for any n� n matrix 
,

1

T � k

TX
t=k+1

	(L)Vt
p! 0; (16)

1

T � k

TX
t=k+1

(	 (L)V0
t)
 (	 (L)Vt)

p! �2 tr (
)	; (17)

because vt are independently and identically distributed, Evtv0t < 1 and
P1

j=0  
2
j �

C
P1

j=0 c
2j <1 where C is a �nite positive constant.

For any n� n matrix 
 such that 10
 = 0 and 
1 = 0, we have

EX0
t
ut (�) = �2 tr (B0
B)F0	d+

1




�
1� g




�
�0
�ek

Eu0t (�)
ut (�) = �2 tr (B0
B)d0	d+

�
1� g




�2
�0
�;

where ek = (0; : : : ; 0; 1)
0 is a k � 1 vector. This implies that

EX0
t
ut (�0) = �2 tr (B0
B)F0	�;

Eu0t (�0)
ut (�0) = �2 tr (B0
B) �0	�;

and since EX0
t
ut = 0 and Eu

0
t
ut = �2 tr (B0
B) by Assumptions 1-3, it can be seen

that

F0	� = 0; �0	� = 1: (18)

Proposition 1 For any sequence f��g1T=1 satisfying ��
p! �0, as T !1,

eS (��) p! S;

where

S = Emt (�0)mt (�0)
0 =

 
S1 0

0 S2

!
with S1 = (n� 1)�4F0	F and (S2)ij = �4 tr

�
Ai

�
Aj +A

0
j

��
+ �

Pn
`=1 (Ai)`` (Aj)`` for

i; j = 1; : : : ; q.

Proof. Let �� =
�
��1 ; : : : ; �

�
k�1; 


�; ��; (��)2
�0
. Denote em�

t = emt(�
�), m�

t = mt(�
�) and
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mt =mt (�0). We �rst show that

eS (��) = 1

T � k

TX
t=k+1

mtm
0
t + op (1) :

Let the matrix norm be de�ned as kAk = (trA0A)
1
2 . By the Schwarz and triangle

inequalities,






eS (��)� 1

T � k

TX
t=k+1

mtm
0
t






 � 2 (aT + bT ) + 2
h
a
1
2
T + b

1
2
T

i 1

T � k

TX
t=k+1

kmtk2
! 1

2

where aT = (T � k)�1
PT

t=k+1 k em�
t �m�

tk
2 and bT = (T � k)�1

PT
t=k+1 km�

t �mtk2. We
denote �� =

�
1;�1� ��1 + 
�; : : : ; ��k�1

�0
and write em�

t�m�
t = ( em�0

0t �m�0
0t; em�

1t �m�
1t; : : : ;em�

qt �m�
qt

�0
where

em�
0t �m�

0t = F
0
�
	(L) eVt

�0
A0 (�

�)
�
	(L) eVt

�
���F0 (	 (L)Vt)

0A0 (�
�) (	 (L)Vt) �

�;

em�
it �m�

it = ��0
�
	(L) eVt

�0
Ai

�
	(L) eVt

�
�� � ��0 (	 (L)Vt)

0Ai (	 (L)Vt) �
� i = 1; : : : ; q:

By the triangle and Schwarz inequalities, the term aT is bounded by

C k��k2
 
kFk2 kA0 (�

�)k2 +
qX
i=1

k��k2 kAik2
!




 1

T � k

T�kX
t=1

	(L)Vt







2

�

0@tr 1

T � k

T�kX
t=1

(	 (L)Vt)
0 (	 (L)Vt)

!
+






 1

T � k

T�kX
t=1

	(L)Vt







2
1A :

Matrices F, ��, A0 (�
�) and A1; : : : ;Aq have �nite norms. It follows from (16) and (17)

that aT = Op (T
�1).

We further write m�
t �mt =

�
m�0
0t �m0

0t;m
�
1t �m1t; : : : ;m

�
qt �mqt

�0
and note that

m�
0t �m0t = F

0 (	 (L)Vt)
0 (A0 (�

�)�A0 (�)) (	 (L)Vt) (�
� � �)

+ F0 (	 (L)Vt)
0 (A0 (�

�)�A0 (�)) (	 (L)Vt) �

+ F0 (	 (L)Vt)
0A0 (�) (	 (L)Vt) (�

� � �) ;

m�
it �mit = (�

� � �)0 (	 (L)Vt)
0Ai (	 (L)Vt) (�

� � �)

+ (�� � �)0 (	 (L)Vt)
0 (Ai +A

0
i) (	 (L)Vt) �

� (��)2 trA1 (�
�) + �2 trA1 (�) i = 1; : : : ; q:
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By the triangle and Schwarz inequalities, the term bT is bounded by

C
�
kA0 (�

�)�A0 (�)k2
�
k�� � �k2 + k�k2

�
+ kA0 (�)k2 k�� � �k2

�
� kFk2 1

T � k

TX
t=1

k	(L)Vtk4

+ C
�
k�� � �k4 + k�� � �k2 k�k2

� qX
i=1

kAik2
1

T � k

TX
t=1

k	(L)Vtk4

+ C

qX
i=1

�
(��)2 trAi (�

�)� �2 trAi (�)
�2
: (19)

Matrices F, M1 and A1; : : : ;Aq have �nite norms. By assumption, �� � � = op (1). By

the Schwarz inequality,

E k	(L)Vtk4 =
nX
i=1

k+1X
j=1

nX
`=1

k+1X
m=1

E (	 (L) vi;t�j+1)
2 (	 (L) v`;t�m+1)

2

� n (k + 1)
nX
i=1

kX
j=1

E (	 (L) vi;t�j+1)
4 <1

because

E (	 (L) vi;t�j+1)
4 =

1X
p;q;r;s=0

 p q r sEvi;t�j+1�pvi;t�j+1�qvi;t�j+1�rvi;t�j+1�s

= �
1X
p=0

 4p + 3�
4

1X
p;q=0

 2p 
2
q <1

where the last inequality is due to the fact that  j is square summable and that the

fourth moments of vt are �nite. Therefore (T � k)�1
PT

t=k+1E k	(L)Vtk4 < 1 and

the �rst two terms in (19) are op (1). Functions A0 (r) and s2 trAi (r), i = 1; : : : ; q, are

continuous in s2 and r, and (��)2
p! �2 and ��

p! � by assumption, therefore by the

continuous mapping theorem all terms in (19) are op (1). It follows that bT = op (1).

To complete the proof of the present proposition we show that (T � k)�1
PT

t=k+1mtmt
0

p! S. To show this, it is su¢ cient by Theorem 2.19 of Hall and Heyde (1980) to demon-

strate that
1

T � k

TX
t=k+1

E (mtm
0
tjFt�1)

p! S (20)
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because mtm
0
t is a strictly stationary process. We have

E (m0tm
0
0tjFt�1) = �2F0 (	 (L)V0

t)M1 (	 (L)Vt)F;

E (m0tmitjFt�1) = F0 (	 (L)V0
t)M1E (vtv

0
tAivt) ; i = 1; : : : ; q;

E (mitmjtjFt�1) = �

nX
l=1

(Ai)ll (Aj)ll + �4 tr
�
Ai

�
Aj +A

0
j

��
; i; j = 1; : : : ; q:

Limit statements in (16) and (17) imply that the convergence in (20) holds and that

therefore eS (��) p! S.

Proposition 2 For any sequence f��g1T=1 satisfying ��
p! �0, as T !1,

eD (��) p! D

where

D = E
@mt (�0)

@�0
= �

0BBBB@
�2 (n� 1)F0	F 0 0

0 �2C1 (�) trA1

...
...

...

0 �2Cq (�) trAq

1CCCCA :

Proof. We de�ne matrix D (�) as D (�) = (T � k)�1
PT

t=k+1
@mt(�)
@�0 , so that

D (��) = �

0BBBB@
F0 1

T�k
PT

t=k+1 (	 (L)Vt)
0A0 (�

�) (	 (L)Vt)F DH (�
�) 0

��0 1
T�k

PT
t=k+1 (	 (L)Vt)

0 (A1 +A
0
1) (	 (L)Vt)F (��)2C1 (�

�) trA1 (�
�)

...

��0 1
T�k

PT
t=k+1 (	 (L)Vt)

0 �Aq +A
0
q

�
(	 (L)Vt)F (��)2Cq (�

�) trAq (�
�)

1CCCCA
where DH = �F0 1

T�k
PT

t=k+1 (	 (L)Vt)
0B0H (��)B (	 (L)Vt) �

�. We have




eD (��)�D (��)


2
� C






 1

T � k

TX
t=k+1

	(L)Vt







4 
kFk4 kA0 (�

�)k2 + k��k2 kFk2
 

qX
i=1

kAik2 + kBk4 kH (��)k2
!!

:

Since matrices F, A0 (�
�), ��, A1; : : :Aq, B and H (��) have �nite norms, it follows from

(16) that eD (��) = D (��) + op (1). Therefore to prove the statement of the proposition

it is su¢ cient to show that D (��)
p! D. By the continuous mapping theorem and (17),

the bottom right q�2 submatrix of D (��) converges in probability to the corresponding
submatrix of D because (s�)2

p! �2 and ��
p! � and functions s2Ci (r) and trAi (r),
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i = 1; : : : ; q, are continuous in s2 and r. For the top left 1 � (k + 1) block of matrix
D (��), we can write

1

T � k

TX
t=k+1

(	 (L)Vt)
0
0 (�

�) (	 (L)Vt)

=
1

T � k

TX
t=k+1

(	 (L)Vt)
0
0 (	 (L)Vt)

+
1

T � k

TX
t=k+1

(	 (L)Vt)
0 (
0 (�

�)�
0) (	 (L)Vt) : (21)

The �rst term of (21) converges in probability to �2 (n� 1)	 by (17). The norm of the

second term of (21) is bounded by k
0 (��)�
0k (T � k)�1
PT

t=k+1 k	(L)Vtk2 which
is op (1) because ��

p! � and function 
0 (r) is continuous in r, and E k	(L)Vtk2 <1.
Using similar arguments, we can see that since ��

p! � by assumption, the left column

of blocks of D (��) converges in probability to

�

0BBBB@
�2 (n� 1)F0	F
�2 tr (A1) �

0	F
...

�2 tr (Aq) �
0	F

1CCCCA = �

0BBBB@
�2 (n� 1)F0	F

0
...

0

1CCCCA
because by (18), �0	F = 0. The convergence of the remaining block DH (�

�) to 0 can

be shown in a similar way. We can conclude that eD (��) p! D.

Proposition 3 Let �̂ be the GMM estimator de�ned in (13). Under Assumptions 1-4,

as T !1,
�̂

p! �0.

Proof. We �rst prove that (T � k)�1
PT

t=k+1 emt (�)
p! Emt (�) uniformly in � 2 �. We

show that

sup
�2�






 1

T � k

TX
t=k+1

( emt (�)�mt (�))






 = Op
�
T�1

�
and (22)

sup
�2�






(T � k)�1
TX

t=k+1

mt (�)� Emt (�)






 = op (1) : (23)
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Expression (T � k)�1
PT

t=k+1 ( emt (�)�mt (�)) is equal to

�

0BBBBBB@
F0
�

1
T�k

PT
t=k+1	(L)Vt

�0
A0 (r)

�
1

T�k
PT

t=k+1	(L)Vt

�
d

d0
�

1
T�k

PT
t=k+1	(L)Vt

�0
A1

�
1

T�k
PT

t=k+1	(L)Vt

�
d+ 1

T�ks
2 trA1 (r)

...

d0
�

1
T�k

PT
t=k+1	(L)Vt

�0
Aq

�
1

T�k
PT

t=k+1	(L)Vt

�0
d+ 1

T�ks
2 trAq (r)

1CCCCCCA :

Using the triangle and Schwarz inequalities, we bound



(T � k)�1

PT
t=k+1 ( emt (�)�mt (�))




2
by

C

 
kFk2 kdk2 kA0 (r)k2 + kdk4

qX
i=1

kAi (r)k2
!




 1

T � k

TX
t=k+1

	(L)Vt







4

+
Cs4

(T � k)2

qX
i=1

(trAi (r))
2

where C is a �nite positive constant. Since the parameter space � is compact, matrices d

andAi (r) have �nite norms. By a central limit theorem, (T � k)�1=2
PT

t=k+1	(L)vt�j =

Op (1) (see for example Eicker 1967), therefore (22) holds.

We now show that (23) holds. For any �nite n�nmatrix
 we haveE (	 (L)Vt)
0
 (	 (L)Vt) =

�2 tr (
)	, so

Emt (�) =

0BBBB@
�2 tr (A0 (r))F

0	d

�2 trA1d
0	d� s2 trA1(r)

...

�2 trAqd
0	d� s2 trAq(r)

1CCCCA : (24)

The i-th element of vector (T � k)�1
PT

t=k+1m0t (�)� Em0t (�) is equal to

k+1X
p;s=1

nX
q;v=1

Fpi (A0 (r))qv ds

 
1

T � k

TX
t=k+1

(	 (L) vq;t�p+1) (	 (L) vv;t�s+1)� �2Iqv	ps

!

where I is an n� n identity matrix. The expression in the parentheses is op (1) by (17),
therefore

sup
�2�






 1

T � k

TX
t=k+1

m0t (�)� Em0t (�)






 � C sup
�2�

kFk kA0 (r)k kdk op (1) = op (1)

because � is compact, function A0 is continuous and (
Pn

i=1 ai)
2 � n

Pn
i=1 a

2
i . In a
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similar way, it can be shown that sup�2�



 1
T�k

PT
t=k+1mit (�)� Emit (�)




 = op (1) for

i = 1; : : : ; q. We have therefore that sup�2�



 1
T�k

PT
t=k+1mt (�)� Emt (�)




 p! 0 and

consequently

sup
�2�



q� (�)� Emt (�)
0�Emt (�)



 p! 0

by the continuous mapping theorem.

Consistency now follows by standard arguments, see for example Theorem 2.6 of

Newey and McFadden (1994).

It is worth checking that the parameters of the model are identi�ed, that is that

Emt (�) = 0 if and only if � = �0. Regarding the expression F0	d in (24), matrix F0	

is k�(k + 1) and has rank k, and since by (18) F0	� = 0, the one-dimensional null space
of F0	 is spanned by vector �. Vectors d are normalized to have the �rst component

equal to 1, therefore vector � is the unique vector d for which F0	d = 0 and also for

which �2 tr (A0 (r))F
0	d = 0 because �2 tr (A0 (r)) > 0 for r 2 (�1; 1). The parameter

vector � = (1;��1; : : : ;��k)0 = (1;�1� �1 + 
; : : : ; �k�1)
0 is therefore identi�ed.

A su¢ cient condition for parameters � and �2 to be identi�ed is that

Em1t (�) = � � � = Emqt (�) = 0 (25)

if and only if s2 = �2 and r = �. Conditions (25) imply that

tr (B0
iB)

tr (B0
jB)
=
tr
�
B (r)0
iB (r)

�
tr
�
B (r)0
jB (r)

� for any i; j = 1; : : : ; q (26)

because �0	� = 1 by (18). For 
1 =M1 and 
2 = (I�W)0M1 (I�W) equation (26)

has a unique solution r = �, therefore parameter � is identi�ed and from (24) it can be

seen that parameter �2 is also identi�ed.

Proof of Theorem 1. By the mean value theorem,

1

T � k

TX
t=k+1

emt

�
�̂
�
=

1

T � k

TX
t=k+1

emt (�) +�
�
�̂
��

�̂ � �0

�

where the i-th row of matrix �
�
�̂
�
is the i-th row of matrix eD (��i ) for some ��i ,
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j��i � �0j �
����̂ � �0

���, i = 1; : : : ; k + q. We have

@eq� ��̂�
@�

= 2eD0
�
�̂
�
�T

1

T � k

TX
t=k+1

emt

�
�̂
�

= 2eD0
�
�̂
�
�T�

�
�̂
��

�̂ � �0

�
+ 2eD0

�
�̂
�
�T

1

T � k

TX
t=k+1

emt (�0) :

Proposition 3, bound (22) and continuity of @eq� (�) =@� imply that @eq� ��̂� =@� = 0

with probability approaching 1 as T !1. Using (22) we obtain

p
T
�
�̂ � �0

�
= �

�eD0
�
�̂
�
�T�

�
�̂
���1 eD0

�
�̂
�
�T

 
1p
T � k

TX
t=k+1

mt (�0) +Op
�
T�1=2

�!
:

By Propositions 3 and 2, eD��̂� p! D and eD (��i ) p! D, i = 1; : : : ; k + q, and by the

continuous mapping theorem also �
�
�̂
�

p! D. Since (T � k)�1=2
PT

t=k+1mt (�0)
d!

N (0;S) as we show below, we can conclude that

p
T
�
�̂ � �0

�
d! N

�
0; (D0�D)

�1
D0�S�D (D0�D)

�1
�
:

If we set �T = eS�1 �e��, then by Proposition 1, �T
p! S�1 and

p
T
�
�̂ � �0

�
d!

N
�
0; (D0S�1D)

�1
�
.

We now show that (T � k)�1=2
PT

t=k+1mt (�0)
d! N (0;S). Denote mt = mt (�0).

Pick an (k + q)�1 vector � such that 0 < k�k <1. Sincemt is a zero-mean martingale

di¤erence sequence and E (�0mt)
2 = �0S� <1, Theorem 1 of Scott (1973) implies that

(T � k)�1=2
PT

t=k+1 �
0mt converges in distribution to a N (0; �0S�) random variable if

1

T � k

TX
t=k+1

(�0mt)
2 p! �0S�; (27)

1

T � k

TX
t=k+1

E
�
(�0mt)

2
1
�
j�0mtj � "T 1=2

��
! 0 for all " > 0; (28)

where 1 (�) is the indicator function. Condition (27) is implied by the fact that
(T � k)�1

PT
t=k+1mtm

0
t

p! S as shown in the proof of Proposition 1. Sincemt are identi-

cally distributed, condition (28) is equivalent to E (�0mt)
2 1
�
j�0mtj � "T 1=2

�
! 0 which

holds because E (�0mt)
2 < 1. We have shown that (T � k)�1=2

PT
t=k+1 �

0mt (�0)
d!
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N (0; �0S�) and, since � is arbitrary, that (T � k)�1=2
PT

t=k+1mt (�0)
d! N (0;S) by the

Cramér-Wold device.

Proof of Theorem 2. Theorem 2 follows from Propositions 1�3.
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