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Abstract 
 
In higher plants a variable number of peripheral LHCII trimers can strongly (S), moderately (M) or loosely (L) 
associate with the dimeric PSII core (C2) complex via monomeric Lhcb proteins to form PSII-LHCII 
supercomplexes with different structural organizations.  
By solubilizing isolated stacked pea thylakoid membranes either with the 
detergent n-dodecyl-D-maltoside, followed by sucrose density ultracentrifugation, we previously showed that 
PSII-LHCII supercomplexes of type C2S2M2 and C2S2, respectively, can be isolated [S. Barera et al., Phil. 
Trans. R Soc. B 67 (2012) 3389 3399]. Here we analyzed their protein composition by applying extensive 
bottom-up and top-down mass spectrometry on the two forms of the isolated supercomplexes. In this way, 
we revealed the presence of the antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, 
PsbQ and PsbR exclusively in the C2S2M2 supercomplex. Other proteins of the PSII core complex, common 
to the C2S2M2 and C2S2 supercomplexes, including the low molecular mass subunits, were also detected and 
characterized. 
To complement the proteomic study with structural information, we performed negative stain transmission 
electron microscopy and single particle analysis on the PSII-LHCII supercomplexes isolated from pea 
thylakoid membranes solubilized with n-dodecyl- -D-maltoside. We observed the C2S2M2 supercomplex in 
its intact form as the largest PSII complex in our preparations. Its dataset was further analyzed in silico, 
together with that of the second largest identified sub-population, corresponding to its C2S2 subcomplex. In 
this way, we calculated 3D electron density maps for the C2S2M2 and C2S2 supercomplexes, approaching 
respectively 30 and 28 Å resolution, extended by molecular modelling towards the atomic level.  
 
Keywords: thylakoids; PSII-LHCII supercomplex; proteomics; transmission electron microscopy; single 
particle analysis; structure  
 
Abbreviations: BN-PAGE, blue native polyacrylamide gel electrophoresis; Chl, chlorophyll; 1D/2D SDS-
PAGE, mono-dimensional/bi-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis; 3D, 
three-dimensional; -DM, n-dodecyl- -D- -DM, n-dodecyl- -D-maltoside; FEG, field emission 
gun; FSC, Fourier shell correlation; LC-ESI-MS/MS, liquid chromatography electrospray ionization tandem 
mass spectrometry; LHC, light harvesting complex; LMM, low molecular mass; MALDI-TOF/TOF, matrix-
assisted laser desorption/ionization-time of flight/time of flight; MS, mass spectrometry; OEC, oxygen 
evolving complex; PS, photosystem; PTM, post translational modification; RC, reaction centre; TEM, 
transmission electron microscopy 



1. Introduction 
 
Photosystem II (PSII) is one of the key protein complexes of the light reactions of photosynthesis, carrying 
out the conversion of solar energy into electrochemical potential energy required to drive the water splitting 
reaction which it catalyzes, together with the production of reducing equivalents needed for driving CO2 
fixation. In plants and green algae, the PSII core complex has associated with it membrane-bound light-
harvesting antenna complexes (LHCII), to form large macromolecular complexes called PSII-LHCII 
supercomplexes. The LHCII complexes, functioning as peripheral solar energy collectors, absorb most of the 
sunlight subsequently directed to the photochemical reaction centre (RC) of PSII. 
In plants and green algae the PSII core complex is mainly embedded in the stacked regions of the thylakoid 
membranes where it is organized as a dimer, each monomer consisting of several proteins including: 1) D1 
and D2, making up the photochemical RC; 2) CP47 and CP43, acting as inner antenna proteins; 3) several 
low molecular mass subunits (LMM subunits, <10 kDa), accounting for more than half of the entire complex 
and playing a role in stabilizing the binding of cofactors to the PSII core; and 4) the extrinsic polypeptides 
PsbO, PsbP, PsbQ and PsbR, forming the oxygen evolving complex (OEC) on the lumenal side of the 
membrane (for a recent review see [1]). Up to now the highest resolution structure available for the plant 
PSII core complex has been obtained by electron crystallography [2,3], which led to the assignment of the 
major subunits and location of their transmembrane helices. Moreover, crystal structures have been 
determined for the isolated extrinsic polypeptides PsbP [4] and PsbQ [5,6]. 
The most abundant PSII-associated LHCII complex - or hetero-trimers of 
Lhcb1, Lhcb2 and Lhcb3 polypeptides, usually occurring in a ratio of about 8:3:1 [7 9], whose high-
resolution structures have been solved by X-ray crystallography [10,11]. According to these studies, all 
LHCIIs have three membrane-spanning regions connected by both stromal and lumenally-exposed loops 
and bind a total of 14 chlorophyll (Chl) molecules (8 Chl a and 6 Chl b) plus 4 carotenoid molecules. In 

minor LHCII antenna polypeptides, termed Lhcb4 (CP29), Lhcb5 (CP26) and 
Lhcb6 (CP24), which usually occur in monomeric form. So far, among the minor LHCII antenna proteins, the 
three-dimensional (3D) structure is available at high resolution only for Lhcb4 [12], revealing three 

-helices with 13 Chls binding sites (8 assigned as Chl a sites, 4 as Chl b sites and 1 
putative mixed site occupied by both Chl a and Chl b) and 3 carotenoid binding sites.  
A variable number of LHCII can associate with the dimeric PSII core complex to form different types of PSII-
LHCII supercomplexes, named according to their composition [13]. The dimeric PSII core complex (C2) 
strongly binds two copies of the monomeric Lhcb4 and Lhcb5 and two LHCII trimers (S-trimer) in order to 
form the C2S2 supercomplex [14], which can be regarded as a basic building block of PSII in vivo. Larger 
PSII-LHCII supercomplexes, containing two extra copies of the monomeric Lhcb6 with two additional LHCII 
trimers (M-trimer) moderately bound to the dimeric PSII core complex via Lhcb4 and Lhcb6, are known as 
C2S2M2 and have been found to represent the basic organization of the PSII in Arabidopsis thaliana thylakoid 
membranes [13,15]. Occasionally even larger supercomplexes have been observed in isolated spinach 
thylakoids fragments, with one or two additional LHCII trimers (L-trimer) even more loosely bound to the 
dimeric PSII core complex via Lhcb6, and are known as C2S2M2L1-2 [16].  
Note that the classification of LHCII trimers within the PSII-LHCII supercomplexes in strongly (S), moderately 
(M) or loosely (L) bound to the PSII dimeric core complex is based on susceptibility to solubilization by 



detergent. Thus the typology and composition of the isolated supercomplexes reflect the mildness of the 
detergent(s) used and the overall conditions of solubilization. By solubilizing isolated stacked pea thylakoid 
membranes either with the n-dodecyl-D-maltoside (DM), followed by 
sucrose density ultracentrifugation, we isolated PSII-LHCII supercomplexes with different molecular masses, 
shown to be respectively of type C2S2M2 and C2S2, demonstrating the milder detergent action of -DM with 

-DM [17].  
In order to gain insights into the primary and tertiary structure of the isolated C2S2M2 and C2S2 PSII-LHCII 
supercomplexes, we applied extensive multiple approaches of mass spectrometry (MS), combining bottom-
up and top-down methods. Bottom-up MS techniques involve approaches where the intact protein is 
enzymatically cleaved to peptides before measurements via tandem MS; top-down MS targets intact proteins 
rather than peptides for analysis, with the aim to define the protein primary structure by providing highly 
accurate structural assignment of MS/MS fragments. In this way, we obtained a detailed overview of the 
proteins in the isolated PSII-LHCII supercomplexes of different organization, revealing the presence of the 
antenna proteins Lhcb3 and Lhcb6 and of the extrinsic polypeptides PsbP, PsbQ and PsbR exclusively in 
the C2S2M2 supercomplex. Other proteins of the PSII core complex, common to the C2S2M2 and C2S2 
supercomplexes, including the LMM subunits, were also detected and characterized. Conversely, the LHCII-
like PsbS protein was not detected in either the C2S2M2 or C2S2 supercomplex. 
To date, the only 3D structure available of a PSII-LHCII supercomplex has been obtained at 17 Å resolution 
by cryo-transmission electron microscopy (cryo-TEM) and single particle analysis of C2S2 isolated particles 
containing only one LHCII trimer (S-trimer) per RC core and lacking the minor antenna Lhcb6 [18 20]. For 
the supercomplex of type C2S2M2 only 2D projection maps obtained by TEM analysis of negatively stained 
single particles derived either from fully or partially solubilized thylakoids are available [15 17,21]. In this 
paper we show 3D electron density maps, derived from negatively stained samples, for the C2S2M2 
supercomplex as well as for its C2S2 subcomplex from pea (Pisum sativum), with resolutions respectively of 
30 and 28 Å, subsequently extended by molecular modelling towards atomic level.  
 
2. Material and methods 
 

2.1. PSII-LHCII supercomplexes isolation 
 
Stacked thylakoid membranes were isolated from pea plants according to [22]. By solubilizing thylakoid 

- -DM, followed by sucrose density gradient ultracentrifugation, PSII-LHCII 
supercomplexes of different size were isolated, attributable to the C2S2M2 and C2S2 organization, 
respectively, as described in our previous paper [17]. Sucrose bands, containing PSII-LHCII 
supercomplexes, were carefully removed using a syringe and, if necessary, concentrated by membrane 
filtration with Amicon Ultra 100 kDa cut-off devices (Millipore) and then stored at -80°C. The Chl 
concentration was determined spectrophotometrically after extraction in 80% (v/v) acetone according to [23].  
 
2.2. Gel electrophoresis and western blotting 
 



PSII-LHCII supercomplexes were analyzed in native conditions by using the blue-native polyacrylamide gel 
electrophoresis (BN-PAGE) system according to [24], with a 3-12% acrylamide separating gel and a 4% 
acrylamide stacking gel. Prior to loading, samples were supplemented with a one-sixteenth volume of the 
loading buffer (750 m - amino caproic acid, 5% (w/v) Coomassie G250) and incubated for 10 min on ice. 
After centrifugation at 21,000xg for 10 min, the supernatants were loaded onto the 20 cm gradient gel and 
run for 7 h at a constant voltage of 70 V, using as anode buffer a solution made of 50 mM Bis-Tris-HCl pH 
7.0 and as cathode buffer a solution made of 50 mM Tricine, 15 mM Bis-Tris-HCl pH 7.0, and 0.02% (w/v) 
Coomassie G250. After two-thirds of the run, the cathode buffer containing Coomassie G250 was replaced 
by a buffer with the same composition but devoid of Coomassie G250 and run overnight at a constant 
voltage of 60 V. For molecular mass markers, a mixture of lyophilized standard proteins (Amersham, high 
molecular weight calibration kit (code 17-0445-01), GE Healthcare) was used. For bi-dimensional sodium 
dodecyl sulphate polyacrylamide gel electrophoresis (2D SDS-PAGE), bands corresponding to C2S2M2 and 
C2S2 PSII-LHCII supercomplexes resolved on BN-PAGE were cut out and equilibrated in a buffer made of 66 
mM Na2CO3, 2% (w/v) SDS and 0.66% (v/v) 2-mercaptoethanol at 25°C for 30 min and subjected to 15% 
acrylamide SDS-PAGE containing 6 M urea using system [25].  
Mono-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D SDS-PAGE) was 
performed on a linear gradient gel (18-22% acrylamide) containing 6 M u system [26], to 
improve the resolution of LMM subunits.  
The proteins separated in 1D or 2D SDS-PAGEs were either stained by 0.25% (w/v) Coomassie R250 for 1 
h in a solution made of 50% (v/v) methanol and 10% (v/v) acetic acid, and destained by a solution made of 
25% (v/v) methanol and 7.5% (v/v) acetic acid, or transferred onto nitro-cellulose membrane and 
immunodetected with a specific antiserum against the PsbS polypeptide, by using the alkaline phosphatase 
conjugate method, with 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium as chromogenic 
substrates (Sigma-Aldrich). 
 
2.3. Mass spectrometry 
 
For liquid nano chromatography electrospray ionization tandem mass spectrometry (nanoLC-ESI-MS/MS) 
analysis, spots from the 2D SDS-PAGE and bands from the 1D SDS-PAGE were cut out and proteins were 
digested in-gel with trypsin (Roche), as described in Hellmann et al. [27]. NanoLC-ESI-MS/MS data from 
each protein sample were obtained by using a Q-star XL (AB SCIEX) as previously described [28]. 
Mascot.dll v 1.4804.0.22 (Matrix Science/AB SCIEX) was used to generate Mascot (.mgf) files with peak lists 
from the Analyst QS 2.0 (.wiff) files; the default parameters were used (http://www.matrixscience.com). The 
principal parameter settings for the Mascot search were as follows: UniProtKB/Swiss-Prot 
(http://www.expasy.ch) release 2013_02. Common variable modifications such as methionine oxidation and 
cysteine carbamidomethylation were considered. A tolerance of 60 ppm and 0.3 Da, respectively for 
precursor ion mass and fragment masses, was allowed for identification.  
For matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and matrix-assisted laser 
desorption/ionization-time of flight/time of flight (MALDI-TOF/TOF) MS analyses, the isolated PSII-LHCII 
supercomplexes were initially dialyzed for 18 h against 5% (v/v) acetic acid, using a 12-14 kDa cut-off 
membrane (Spectra/Por, SpectrumLabs), and further concentrated to 1/10 of the initial volume by membrane 



filtration with Amicon Ultra 100 kDa cut-off devices (Millipore). 1 µl of each concentrated sample was mixed 
with 9 µl of saturated matrix (sinapic acid, Laser Biolabs) solution which consists of 60% (v/v) acetonitrile and 
0.1% (v/v) trifluoroacetic acid. After drying droplets of sample onto a target plate, MALDI-TOF and MALDI-
TOF/TOF MS analyses were performed using respectively the mass spectrometers Voyager-DE PRO 
MALDI-TOF (AB SCIEX) and MALDI-TOF/TOFTM 5800 System (AB SCIEX). 
The MALDI-TOF mass spectrometer was operated in linear mode at 25 keV accelerating voltage, grid 
96.5%, guide wire 0.05% and 800 ns ion extraction delay; the nitrogen laser working at 337 nm and 3 Hz. 
Two hundred laser shots were accumulated per spectrum over a m/z range of 3,500 10,000. Internal 
calibration was performed on the samples premixed with Calibration mixture 2 of the Peptide Mass 
Standards Kit for Calibration of AB SCIEX MALDI-TOF Instruments. 
MALDI TOF-TOF spectra were acquired using the AB SCIEX TOF/TOFTM 5800 system operated with 
positive ionization either in linear mode, to determine the average molecular weight, or in reflector mode, to 
analyze the fragments. An internal calibration was performed on the samples premixed with polyethylene 
glycol (PEG4000). MS/MS was carried out on the top precursors. Between twenty thousand and two 
hundred thousand shots were accumulated to get the best S/N, with laser frequency of 1 kHz, acceleration 
voltage of 2 keV and using air as collision gas. The MS/MS spectra, obtained from the main proteins peaks 
in MS, were analyzed in Mascot Distiller (ver. 2.3.2.0) by the de novo sequencing function coupled with MS-
Blast (http://dove.embl.de/Blast2/msblast.html) search at EMBL http://www.embl.de/ [29], using default 
parameter values. 
 
2.4. Transmission electron microscopy and 3D single particle image analysis  
 
PSII-LHCII supercomplexes isolated -DM were negatively stained with 2% uranyl acetate, as described 
previously [17], and imaged at a calibrated magnification of 50,000x and an acceleration voltage of 200 keV 
with a Philips CM200 transmission electron microscope equipped with a field emission gun (FEG) at the 
Electron Microscopy Centre, Imperial College London, UK. A total of 600 CCD images were recorded under 
low dose conditions (electron dose of approximately 20 electrons/Å2) on a 4,096 x -
scan CCD camera TemCam-F415MP (TVIPS, Germany), leading to a final pixel size corresponding to 1.76 
Å at the specimen level. Imaging conditions were optimised, in terms of defocus and astigmatism, to ensure 
the first minima of the power spectrum to be within a range of 10 to 25 Å, equivalent to an underfocus range 
of 0.5 to 1.5 µm. Particles were floated out into boxes using EMAN2 [30]. All subsequent image processing 
was performed within the IMAGIC-V software (Imagic Science, Berlin, Germany) environment [31], at a 
sampling frequency of 7.04 Å per pixel, until the final reference-free alignment [32] iteration reverted back to 
1.76 Å per pixel. A dataset of 15,563 negatively stained single particle images were obtained by picking all 
discernible single particles present. Several sub-populations of particles, differing in size and shape, were 
identified. The two largest sub-populations, corresponding to the C2S2M2 and the C2S2 PSII-LHCII 
supercomplexes, were in turn analysed as separate datasets, with the reference free alignment giving the 
initial class averages necessary for multi-reference alignment. Relative orientations were determined for the 
class averages by the angular reconstitution technique [33] and initial 3D reconstructions gained from 
implementation of the exact back projection technique [34]. Reprojections were taken from each 3D model 
and used to identify additional atypical views and further refine the class averages within each sub-



population dataset. Through iterative refinement the data converged to give the best 3D reconstructions 
shown. Resolution was determined by calculating the Fourier shell correlation (FSC) 
between two independent 3D reconstructions [35]. Relevant crystallographic co-ordinate atom data (PDB 
identifiers: 3ARC, 2BHW, 3PL9) were modelled into molecular maps derived from the sub-populations using 
PyMOL (The PyMOL Molecular Graphics System, Version 1.1r1, Schrödinger, LLC) and UCSF Chimera [36] 

 
 
3. Results and discussion 
 
3.1. Different protein composition of PSII-LHCII supercomplexes of type C2S2M2 and C2S2 
 
PSII-LHCII supercomplexes isolated from pea thylakoid membranes - -DM, and shown 
previously to be of type C2S2M2 and C2S2 respectively [17], were extensively subjected to in-depth proteomic 
analyses in order to detect specific proteins (i.e., peripheral antenna proteins, extrinsic polypeptides, and 
LMM subunits) that may be related to the presence of the additional LHCII M-trimers associated with the 
C2S2 basic supercomplex of PSII.  
To investigate the association of the LHCII proteins with the dimeric PSII core complex, in the two differently 
isolated PSII-LHCII supercomplexes, BN-PAGE followed by 2D SDS-PAGE, coupled with nanoLC-ESI-MS/MS 
analysis, were performed. In Fig. 1A the BN-PAGE profile of the PSII-LHCII supercomplexes isolated from pea 

- -DM (lane 2) shows, in the former case, a 
predominant green band, attributable to the C2S2M2 supercomplex, with a higher molecular weight with respect 
to that of the band observed in the latter, and attributable to the C2S2 supercomplex. The difference in mass 
(~300 kDa) between these two bands is indicative of the retention, by the C2S2M2 supercomplex, of two 
additional LHCII M-trimers. The two green bands corresponding to the C2S2M2 and C2S2 supercomplexes were 
cut out from the native gel and subsequently separated by denaturing 2D SDS-PAGE, whose profile, after 
Coomassie staining, shows the two corresponding maps of spots derived from their membrane polypeptide 
components (Fig. 1B). After in-gel trypsin digestion of all the spots, nanoLC-ESI-MS/MS analysis of the 
digested peptides revealed the identity of the RC core subunits CP47, CP43, D2 and D1, and of the six Lhcb 
antenna proteins (Lhcb1-6) (Table S1), allowing their positioning on the 2D SDS-PAGE maps to be identified 
(Fig. 1B). From these analyses, it was found that the antenna proteins Lhcb3 and Lhcb6 are present only in 
the C2S2M2 supercomplex, in line with findings suggesting Lhcb3 as an exclusive subunit of the LHCII M-trimer 
present in the C2S2M1-2 supercomplexes [16] and Lhcb6 functioning as a linker for this trimer to the C2S2 
supercomplex [15,17]. 
In lane 1 of Fig. 1A, however, two additional faint bands were detected below the predominant one: the one 
with higher molecular weight corresponds to C2S2 supercomplexes and the second, with lower molecular 
weight (~150 kDa), to free trimers of LHCII. Despite care taken during the PSII-LHCII isolation process, the 
presence of these complexes -DM indicates a degree of instability of the 
isolated C2S2M2 supercomplex and the easy detachment of LHCII M-trimers from the C2S2M2 supercomplex.  
In order to determine the exact protein composition of the C2S2M2 and C2S2 supercomplexes, also in terms of 
extrinsic polypeptides and LMM subunits, we performed a separation of their proteins in 1D SDS-PAGE 
according to the system of Kashino and co-authors [26], shown in Fig. 2A. This electrophoretic system, in 



combination with nanoLC-ESI-MS/MS analysis (as for proteins separated through 2D SDS-PAGE), allowed 
the detection and identification of the extrinsic polypeptides PsbO, PsbP, PsbQ and PsbR (Table S1, Fig. 2A). 
The level of PsbO appeared to be less sensitive, compared to the other OEC subunits, to perturbation during 
the solubilization with both forms of DM. The relative stability of PsbO in both isolated PSII-LHCII 
supercomplexes is due to the interaction of its N-terminal region with several PSII RC subunits, including 
CP47, CP43, D1 and D2, as shown in the cyanobacterial crystal structure [37 39]. Moreover, numerous cross-
linking studies have indicated that the PsbO protein may be cross-linked to CP47 in higher plants [40 42]. The 

-DM as the solubilizing agent also facilitated the retention of the extrinsic subunits PsbP, 
PsbQ and PsbR in the C2S2M2 supercomplex. These polypeptides were not present in the C2S2 supercomplex, 
indicating that they are not absolutely required to stabilize the binding of LHCII S-trimers to the PSII RC core. 
On the other hand, their presence in the C2S2M2 supercomplex suggests their possible involvement, as 
individual subunit or in cooperation, in the binding of the LHCII M-trimers and/or in the overall organization and 
stabilization of this very large macromolecular PSII complex. This is in agreement with recent findings by 
Allahverdiyeva et al. [43] attesting to the important role played by the PsbQ and PsbR subunits in PSII-LHCII 
supercomplex macro-organization. Of note is the fact that the isolated C2S2M2 supercomplex also retains the 
PsbP extrinsic subunit, which was not found in a similar preparation obtained from the thylakoid membranes of 
Arabidopsis thaliana solubilized with -DM by Caffarri et al. [15].  
The Lhcb-like PsbS protein seems to play a role in the distribution of light to the PSII RC by regulating non-
photochemical quenching [44]. It has been argued that it does so by controlling PSII-LHCII supercomplex 
macro-organization [45]. Our MS analyses did not reveal the presence of this protein in either isolated 
C2S2M2 or C2S2 supercomplexes, in agreement with previous reports [15,46]. As this protein is believed to be 
present in non-stoichiometric amounts compared with other PSII proteins, we undertook a sensitive 
immunological analysis using an antibody with strong reactivity to PsbS in pea thylakoid membranes. This 
analysis did not detect the PsbS protein in any of the isolated supercomplexes (Fig. 2B), and showed that 
the protein co-migrated with the free LHCII band in the sucrose density gradient step adopted in the isolation 
of supercomplexes (data not shown). This finding contrasts with that of Caffarri et al. [15], who concluded 
that PsbS co-migrated with the C2S2M2 supercomplex in their sucrose density gradient. 
 
3.2. Common content in LMM subunits in PSII-LHCII supercomplexes of type C2S2M2 and C2S2 
 

[26], especially appropriate for the low molecular 
masses, allowed for the separation of the LMM subunits present in the C2S2M2 and C2S2 
PSII-LHCII supercomplexes. After in-gel trypsin digestion of all bands with masses <10 kDa, nanoLC-ESI-
MS/MS analysis of the digested peptides revealed the presence of PsbE and PsbH (Table S1, Fig. 2A) in 
both supercomplexes, but failed to detect PSII components with lower molecular weights. This was likely due 
to the higher hydrophobicity of these transmembrane proteins, almost completely embedded in the 
membrane, due to their short length, which lowers the accessibility of trypsin enzyme and the number of 
tryptic cleavage sites present in their sequences. On the contrary, by applying MALDI-TOF and MALDI-
TOF/TOF MS directly to the isolated C2S2M2 and C2S2 supercomplexes, it was possible to identify most of 
the expected LMM subunits present in the two samples: PsbX, PsbTc, PsbJ, PsbI, PsbK, PsbL, PsbF, 
PsbW, and PsbE (Fig. 3, Table 1).  



It is worth noting that MALDI-TOF measurements performed on three independent preparations of C2S2M2 
and C2S2 supercomplexes were highly reproducible, and that in both types of samples corresponding peaks 
were observed at coincident m/z values, given a mass tolerance of 50 ppm (the MALDI TOF technique is 
accurate to a 100 to 50 ppm average error, achieved by internal calibration). The overlapping of MALDI-TOF 
mass spectra for the C2S2M2 and C2S2 samples in the range of m/z below 10,000 confirmed the common 
composition in LMM subunits of the two isolated supercomplexes (Fig. 3). In this range of m/z, several peaks 
were detected, most of which have been identified as follows: 3,986.2 ± 0.2 as PsbX, 4,064.1 ± 0.2 as 
PsbTc, 4,161.9 ± 0.2 as PsbJ, 4,213.4 ± 0.2 as PsbI, 4,289.1 ± 0.2 as PsbK, 4,355.3 ± 0.2 as PsbL, 4,399.7 
± 0.2 as PsbF, 5,932.1 ± 0.3 as PsbW, 9,265.3 ± 0.5 as PsbE (Fig. 3, Table 1).  
The identification of the proteins PsbX, PsbTc, PsbJ, PsbK and PsbF was assigned by MS/MS analysis on 
the corresponding selected precursor main peaks combined with de novo sequencing and homology 
searching (see Table S2, and Figs. S1-S5). Among these five assignments:  
1) the observed m/z values for PsbK and PsbF are in good agreement with m/z values measured on these 
isolated proteins from pea, spinach and barley [47 49], and also with expected molecular masses calculated 
from the corresponding genomic sequences from pea, taking into account, in the case of PsbF, the Met1 
removal and Thr2 acetylation suggested as post translational modifications (PTMs) by Sharma et al. [47]; 
2) the observed m/z value obtained for PsbTc is respectively higher than that measured for this protein 
isolated from spinach by Zheleva et al. [48] and lower than that experimentally found for its homolog from 
barley by Plöscher et al. [49]. This can be explained by the different length of the protein sequence among 
the three plants: 35 amino acid residues in pea, 33 in spinach and 38 in barley (accession numbers in the 
UniProtKB database: Q8HS25, P61840 and P69669, respectively). Moreover, the mass difference between 
the observed value and that expected from the calculated corresponding genomic sequence from pea, could 
indicate a formyl-methylation as PTM, as found for this protein in spinach by Zheleva et al. [48];  
3) in the literature there are measured values of m/z for PsbX and PsbJ proteins purified only from barley for 
comparison [49]. The observed value of m/z for PsbJ is higher than that measured for its homolog in barley. 
Despite the same length of the protein sequence in pea and barley, the different m/z value observed in the 
two plants can be explained by the presence of five amino acid substitutions (Asn3 vs Asp3, Ile12 vs Leu12, 
Val20 vs Pro20, Ile25 vs Val25, Leu27 vs Val27) in the sequence from pea with respect to barley (accession 
numbers in the UniProtKB database: P13555 and P20175, respectively). The m/z value observed for PsbJ 
closely matches the expected mass calculated from the corresponding genomic sequence, with a slight 
difference possibly linked to a N-acetylation suggested as PTM by Plöscher et al. [49] in barley. In the case 
of PsbX, the experimental m/z, that is slightly lower than that measured for its homolog in barley, accounts 
for less than a half of the expected mass calculated from its genomic sequence and the sequence obtained 
by de novo sequencing for this protein covers the C-term portion of the amino acid sequence present in the 
UniProtKB database (Table 1 and Table S2).  
The putative assignment of PsbI, PsbL, PsbW and PsbE was done by comparing the experimental m/z 
measured by MALDI-TOF either with results obtained by ESI MS/MS and/or MALDI-TOF MS and N-terminal 
amino acid sequencing present in the literature for these LMM subunits purified from higher plants [47 49], 
or with protein masses calculated from the corresponding nucleotide sequences from pea (Table 1). For 
PsbI, PsbW and PsbE both correlations were good; in case of PsbL, the measured m/z closely matched that 
obtained for this subunit in spinach and barley [48,49], and the difference observed between the measured 



and the expected molecular mass calculated from its genomic sequence from pea, can be likely due to the 
Met1 removal, a PTM found in its corresponding analog in spinach and barley [48,49]. 
Despite the reproducible signal strength of peaks at m/z 4,028.6 ± 0.2 and 7,744.9 ± 0.4, it was not possible 
to assign a specific identity to these masses by MS/MS. However, the measured m/z value at 7,744.9 can be 
tentatively assigned to PsbH, due to the identification of this subunit by nanoLC-ESI-MS/MS analysis in both 
PSII-LHCII supercomplexes (Table S1, Fig. 2A), and the good correlation between the measured weight and 
the expected molecular mass calculated from its genomic sequence in P. sativum (accession number in the 
UniProtKB database Q9XQR3, calculated average mass after Met1 removal 7,726.95). 
 
3.3. 3D reconstructions of the PSII-LHCII supercomplexes of type C2S2M2 and C2S2 revealed by TEM single 
particle analysis and angular reconstitution 
 
Negative stain TEM from the sucrose density gradient fraction containing PSII-LHCII supercomplexes 
obtained by solubilizing pea -DM provided for a single particle dataset of 15,563 
images, as described previously [17]. In the current study, this dataset was re-subjected to more intensive 
computer-based purification analyses, so that more rigorously defined sub-populations of particles might be 
identified prior to the application of the 3D reconstruction technique of angular reconstitution [34]. In so 
doing, sub-populations of 4,760 and 1,868 particles were identified relating to the largest complexes, in 
terms of surface area with two-fold symmetry. These were attributed to the C2S2M2 and C2S2 PSII-LHCII 
supercomplexes respectively. Following de novo reference-free alignments, the relative angular orientations 
of the particles observed within each sub-population were strongly biased towards top and side views; 
however, subsequent iterative refinements were able to identify a small amount of slightly tilted views which 
aided in the calculation of the final 3D electron density maps. 
In Fig. 4A the 3D electron density map of the C2S2M2 supercomplex is represented in green mesh as viewed 
from the top lumenal side and the C2S2 3D electron density map has been incorporated within, surface-
rendered in light blue. The C2S2M2 map has maximum dimensions of 375 Å length by 210 Å width by 105 Å 
height, with a two-fold axis and an approximate resolution of 30 Å. The C2S2 map is also shown with two-fold 
imposed symmetry, having dimensions of 340 Å length by 200 Å width by 105 Å height with a resolution 
approaching 28 Å. To interpret these 3D electron density maps, we compared their internal density 
distribution with surface-rendered X-ray structures (see Fig. 4B) of the PSII dimeric core of cyanobacteria at 
1.9 Å [39], the LHCII trimeric complex of pea at 2.5 Å [11] and the monomeric Lhcb4 of spinach at 2.8 Å [12]. 
The latter was extrapolated to represent densities we attributed previously to the Lhcb5 and Lhcb6 subunits 
[17], whose X-ray structures have yet to be solved. Modelling the co-ordinates within the two molecular 
envelopes was done by visual inspection using the internal densities (not shown) as a guide, starting 
centrally with the C2S2 model of Nield and Barber [20], treated as a rigid whole, and extending out to include 
two Lhcb6 subunits and two LHCII M-trimers. The entire modelling environment encompassed a depth of 
130 Å and this thickness is shown in full in Fig. 4A-B. The cyanobacterial PSII dimeric core X-ray co-
ordinates (excluding those of PsbV and PsbU), when shown surface-rendered (Fig. 4B), are able to 
emphasise the key differences between the cyanobacterial lumenal surface and our molecular envelopes 
from pea. However, the prevalence of top and side views, coupled with the availability of only a few tilted 
views, due to the negative stain methodology employed, was found in this particular work to suppress the 



density expected for the lumenally-exposed polypeptides of the OEC and therefore limit our maps' 
interpretability in this regard. Reducing the slabbed area to 65 Å in Fig. 4C-D enabled the visualisation of the 
entire membrane domain, the interactions between the LHCII antennae proteins with specific subunits of the 
PSII core complex and the relative overall positioning of the additional LHCII M-trimers and the Lhcb6 
subunits present in the C2S2M2 supercomplex (the latter two in 1:1 stoichiometry with the PSII monomeric 
core which they bind). In Fig. 4D the C2S2 map was removed from the modelling environment and, noting an 
approximate 10 Å wide boundary for the detergent shell (yellow line) encompassing the TEM-derived C2S2M2 
green mesh, the major domains of the largest PSII- -DM solubilized 
pea thylakoids can be interpreted more readily. 
 
4. Conclusions 
 
By means of bottom-up and top-down MS we have conducted an in-depth characterization of the polypeptide 
composition of PSII-LHCII supercomplexes of type C2S2M2 and C2S2 isolated from pea thylakoid membranes 
by one- - -DM detergents, respectively, as described previously [17]. Their protein 
composition, spanning from RC and LMM intrinsic subunits to antennae proteins and extrinsic polypeptides, 
was revealed. In addition to a common composition in the main PSII RC proteins, the C2S2M2 and C2S2 
supercomplexes showed an identical set of LMM subunits. Thus, we conclude that none of the LMM 
subunits are specifically required for the binding of the additional LHCII M-trimers to the basic C2S2 unit. In 
contrast to the LMM subunits, the two isolated supercomplexes revealed basic differences in their Lhcb 
antennae polypeptides: Lhcb1, Lhcb2, Lhcb4 and Lhcb5 were found in both the C2S2M2 and C2S2 
supercomplexes, whereas Lhcb3 and Lhcb6 were present only in the largest supercomplex, suggesting that 
Lhcb3 acts as an exclusive subunit of the LHCII M-trimer and Lhcb6 is functioning as a linker for this LHCII 
trimer to the C2S2. The Lhcb-like PsbS protein was not found to be associated with the isolated 
supercomplexes, indicating that this subunit does not influence the interaction between the PSII core and the 
outer Lhcb antenna system. Due to the high hydrophobicity of this protein, its absence from the isolated 
supercomplexes and abundance in the free LHCII trimers (LHCII band in the sucrose density gradient 
adopted in the isolation of supercomplexes), suggests that its location is in the peripheral boundary of the 
PSII-LHCII supercomplexes or in the LHCII-enriched domains of the thylakoid membranes. The proteomic 
data indicate that, in addition to the PsbO subunit, which is stably bound to the PSII RC core in both types of 
supercomplexes, the C2S2M2 supercomplex retains the PsbP, PsbQ and PsbR subunits. These polypeptides 
were not present in the C2S2 supercomplex, indicating a dispensable role in the stable binding of LHCII S-
trimers to the PSII dimeric core, while suggesting their possible involvement in the overall macromolecular 
organization and/or stabilization of the larger C2S2M2 PSII-LHCII supercomplex. 
A pseudo-atomic 3D structural model of the spinach C2S2 supercomplex, based upon a cryo-TEM molecular 
envelope calculated at 17 Å resolution, was previously reported by Nield and Barber [20]. However, for the 
larger C2S2M2 supercomplex, only 2D projection maps obtained by TEM of negatively stained single particles 
have been published to date [15 17,21]. 
Here we report the first 3D structural model of an isolated C2S2M2 supercomplex obtained by single particle 
analysis of negatively stained samples as imaged by TEM. The resolution of the model was estimated to be 
approximately 30 Å according to FSC criterion, being restricted partly by the relatively low size of the 



dataset used for the analysis and the lack of sufficient random orientations of the complex on the TEM grid. 
Both of these limitations reflect the use of samples prepared for TEM by negative staining and can, in 
principle, be overcome by using unstained vitrified samples and associated cryo-TEM techniques, as shown 
for the C2S2 supercomplex [18,19]. Nonetheless, this is the first time that such a large PSII-LHCII 
supercomplex has been shown in 3D from solubilized thylakoids in pea (P. sativum). The 3D reconstructions 
presented here once more confirm the central positioning of the C2S2 supercomplex within the larger volume 
of the C2S2M2 molecular envelope and the relative positioning of various major subunits. The density for the 
OEC proteins was not fully resolved, hence making it difficult at this stage to suggest the location of the 
PsbP, PsbQ and PsbR subunits, albeit these polypeptides are present within the C2S2M2 particles analyzed. 
An improved dataset, ideally derived from cryo-TEM, will be required to resolve and assign the OEC 
proteins. 
 
Appendix A. Supplementary data 
 
Short legends for supporting information 
 
Table S1  
List of PSII RC core subunits, extrinsic polypeptides, LMM subunits and LHCII proteins identified by nanoLC-
ESI-MS/MS present in the isolated C2S2M2 and C2S2 PSII-LHCII supercomplexes as shown in Figs. 1-2. 
The table reports: sequences of peptides obtained by nanoLC-ESI-MS/MS (third column) with their 
corresponding precursor ion mass (second column); for each identified protein (first column), the calculated 
molecular mass (Mr, fourth column), the accession number and the database in which the protein was found 
(fifth column), and the percentage of residue identities with Pisum sativum, when available, or the homolog 
Arabidopsis thaliana (sixth column). Underlined amino acid residues (third column) indicate modifications 
such as methionine or asparagine oxidation (M, N) and cysteine carbamidomethylation (C). 
 
Table S2 
Assignments of LMM subunits in the isolated C2S2M2 and C2S2 PSII-LHCII supercomplexes based on MS/MS 
spectra (shown in Figs. S1-S5), de novo sequencing and homology searching. 
 
Fig. S1. De novo sequencing results obtained through Mascot Distiller on the MS/MS spectrum 
corresponding to the experimental precursor at m/z 3,982.2. 
 
Fig. S2. De novo sequencing results obtained through Mascot Distiller on the MS/MS spectrum 
corresponding to the experimental precursor at m/z 4,059.2. 
 
Fig. S3. De novo sequencing results obtained through Mascot Distiller on the MS/MS spectrum 
corresponding to the experimental precursor at m/z 4,156.3. 
 
Fig. S4. De novo sequencing results obtained through Mascot Distiller on the MS/MS spectrum 
corresponding to the experimental precursor at m/z 4,283.3.  



 
Fig. S5. De novo sequencing results obtained through Mascot Distiller on the MS/MS spectrum 
corresponding to the experimental precursor at m/z 4,393.4. 
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Tables and figures captions 
 
Table 1 
Proposed identification of measured m/z peaks in PSII-LHCII supercomplexes of type C2S2M2 and C2S2 
isolated from pea thylakoid membranes. The table reports the reproducible m/z values measured by MALDI-
TOF (first column) on three independent preparations of C2S2M2 and C2S2 supercomplexes (similar values 
for both types of samples were obtained. See text for details and Fig. 3), assigned by de novo sequencing 
and homology searching (second column) on MS/MS data (see Table S2 and Figs. S1-S5), or putatively 
assigned (third column) according to matches with referenced values (fourth column). For each identified 
subunit, expected mass values of unprocessed precursors and processed proteins (sequences from 
UniProtKB-Swiss Prot), including annotated PTMs, are reported (fifth column), along with referenced 
masses, when available (fourth column). 
 
Fig. 1. BN/2D SDS-PAGE profiles of PSII-LHCII supercomplexes isolated from pea thylakoid membranes. A. 
BN-PAGE of PSII- -DM 
(lane 1) -DM (lane 2) g Chl per lane). Protein marker (Native high molecular weight, GE 
Healthcare) positions indicated on the right. B. 2D SDS-PAGE separation of C2S2M2 and C2S2 
supercomplexes, after Coomassie staining. Protein marker (Precision plus, Bio-Rad) positions indicated on 
the right.  
 



Fig. 2. 1D SDS-PAGE and western blot analysis of PSII-LHCII supercomplexes isolated from pea thylakoid 
membranes. A. Profiles of protein composition of C2S2M2 and C2S2  per lane) 
resolved by 1D SDS-PAGE according to [26]. Protein standards (Precision plus, Bio-Rad) are loaded on lane 
M. B. Western blot analysis using the antibody against PsbS. Pea thylakoid membranes (Thyl) loaded as 
control (10 on each lane). 
 
Fig. 3. MALDI-TOF mass spectra of PSII-LHCII supercomplexes of type C2S2M2 (green line) and C2S2 (red 
line) isolated from pea thylakoid membranes. A. Peaks with m/z values between 3,500 5,000. B. Peaks with 
m/z values between 5,000 10,000. Denoted above the peaks, names of proteins in bold refer to LMM 
subunits identified by MS/MS analysis and de novo sequencing (see Table S2), those in italics refer to 
putative assignments based on good correlation between observed m/z and referenced values for masses 
measured on isolated LMM subunits from pea, spinach and barley [47-49]. 
 
Fig. 4. Top lumenal views of 3D reconstructions of the C2S2M2 and C2S2 PSII-LHCII supercomplexes isolated 
from pea thylakoid membranes, derived from TEM and single particle analysis, with modelled high-resolution 
X-ray structures of the PSII dimeric core from cyanobacteria [39] (PDB: 3ARC; subunits D1, D2, CP47, CP43 
and PsbO are in yellow, orange, red, sandy brown and purple, other subunits in grey, respectively; PsbU and 
PsbV have been omitted from the PDB file), the LHCII trimer [11] (PDB: 2BHW; in blue) and Lhcb4 [12] 
(PDB: 3PL9; in pale green), the latter two from higher plants. A. Top lumenal view of the C2S2M2 3D electron 
density map (green mesh), with the C2S2 3D electron density map, inset, surface-rendered in light blue. 
Maximum dimensions (in plane) of the 3D maps, inclusive of the detergent shell, are 375 Å (length) x 210 Å 
(width) for C2S2M2 and 340 Å (length) x 200 Å (width) for C2S2 supercomplexes. Scale bar for all panels 
represents 5 nm. B. As per panel A, with the cyanobacterial PSII dimeric core present, highlighting lumenal 
surface differences, together with LHCII trimer and monomeric Lhcb atomic co-ordinates shown as surface-
rendered spheres (coloured as described above). C. The modelling environment, cut away by 65 Å, to reveal 
its lower half, also 65 Å thick, thus emphasising the position of the X-ray co-ordinates (surface-rendered and 
coloured as described above). D. The C2S2M2 3D cat away map (as in C) on its own with modelled subunits 
labelled (surface-rendered and coloured as described above), its membrane domain also shown as a 65 Å 
thick slab from the lumenal top view. The Lhcb5 and Lhcb6 atomic co-ordinates, whose structures have not 
yet been solved, are assumed to be similar to that of Lhcb4. A delineating boundary (yellow line) represents 

-DM detergent shell, approximately 10 Å within the outer edge of the C2S2M2 three-dimensional mesh. 
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Figure 2
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