

Macroevolutionary patterns of sexual size dimorphism in copepods.

Hirst, AG; Kiørboe, T

• "The final publication is available at http://rspb.royalsocietypublishing.org/content/281/1791/20140739.short"

For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/6960

Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact scholarlycommunications@qmul.ac.uk

Macroevolutionary Patterns of Sexual Size Dimorphism in Copepods

Journal:	Proceedings B
Manuscript ID:	RSPB-2014-0739.R2
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Hirst, Andrew; Queen Mary University of London, School of Biological and Chemical Sciences Queen Mary Kiorboe, Thomas; Technical University of Denmark, Centre for Ocean Life
Subject:	Ecology < BIOLOGY, Evolution < BIOLOGY, Taxonomy and Systematics < BIOLOGY
Keywords:	Sexual size dimorphism, Allometry, Sex Ratio, Copepoda
Proceedings B category:	Evolutionary Biology

SCHOLARONE[™] Manuscripts

1	Macroevolutionary Patterns of Sexual Size Dimorphism in Copepods
2	
3	Andrew G. Hirst ^{1,2} , Thomas Kiørboe ²
4	
5	1 School of Biological and Chemical Sciences, Queen Mary University of London,
6	London, E1 4NS, UK
7	
8	2 Centre for Ocean Life, National Institute for Aquatic Resources, Technical
9	University of Denmark, Kavalergården 6, 2920 Charlottenlund, Denmark
10	
11	
12	Correspondence to: <u>a.g.hirst@qmul.ac.uk</u>)
13	
14	
15	
16	
17	
18	

19 Summary

20 Major theories compete to explain the macroevolutionary trends observed in sexual 21 size dimorphism (SSD) in animals. Quantitative genetic theory suggests that the sex 22 under historically stronger directional selection will exhibit greater interspecific 23 variance in size, with covariation between allometric slopes (male to female size) and 24 the strength of SSD across clades. Rensch's Rule also suggests a correlation, but one 25 in which males are always the more size variant sex. Examining free-living pelagic 26 and parasitic Copepoda, we test these competing predictions. Females are commonly 27 the larger sex in copepod species. Comparing clades that vary by 4 orders of 28 magnitude in their degree of dimorphism, we show that isometry is widespread. As 29 such we find no support for either Rensch's Rule or for covariation between allometry 30 and SSD. Our results suggest that selection on both sexes has been equally important. 31 We next test the prediction that variation in the degree of SSD is related to the adult 32 sex ratio. As males become relatively less abundant it has been hypothesised that this 33 will lead to a reduction in both inter-male competition and male size. However, the 34 lack of such a correlation across diverse free-living pelagic families of copepods 35 provides no support for this hypothesis. By comparison, in sea-lice of the family 36 Caligidae there is some qualitative support of the hypothesis, males may suffer 37 elevated mortality when they leave the host and rove for sedentary females, and their 38 female-biased SSD is greater than in many free-living families. However, other 39 parasitic copepods which do not appear to have obvious differences in sex-based mate 40 searching risks also show similar or even more extreme SSD, therefore suggesting 41 other factors can drive the observed extremes.

42

43 Key words: Sexual size dimorphism, allometry, sex ratio, Copepoda

45 **1. Introduction**

46	The different reproductive roles of males and females of a species act as strong sexual
47	selection agents that can lead to dimorphism [1]. Dimorphic attributes can include
48	behaviour, morphology and body size. Differences in body size, termed Sexual Size
49	Dimorphism (SSD), are commonly observed in the plant and animal kingdoms [2]
50	and can be measured with a Sexual Dimorphic Index (SDI). Female-biased SSD,
51	where females are larger than the males, tends to predominate in ectothermic
52	invertebrate and vertebrate species, while male-biased SSD is common in many birds
53	and mammals [3, 4]. Various rules and theories have been proposed to explain
54	variation in SSD, both within and between species. Some of these focus on how the
55	relative size ratio of the sexes of individual species change from small to large species
56	within specific clades [5-9]; other theories focus on how the availability for mating
57	and the mortality of the sexes impact the strength of mate competition and SSD [1].
58	Being able to test these various hypotheses and ultimately explain macroevolutionary
59	patterns in SSD is important in resolving which models have predictive power, and
60	what the ultimate drivers are.
61	

Rensch's rule (RR) states that male body size varies more than female body size among species [5, 6]. One prominent general hypothesis (i.e. evolutionary mechanism) potentially generating RR is when, over evolutionary time, directional (primarily sexual) selection for large male size is overall stronger than directional (primarily fecundity) selection for large female size. The demonstration that females are the more variant sex (or indeed that there is no difference in degree of variation, i.e. isometry) in a range of taxa has led to the generality and utility of the rule being

69	questioned [7, 8]. As an alternative, quantitative genetic theory predicts that greater
70	interspecific variance in size occurs in the sex which has historically been under
71	stronger directional selection [8, 9]. Zeng's (1988) [9] model predicts that the sex
72	under more intense direct selection will be the more divergent phenotypically. It has
73	been suggested that because both sexual size dimorphism and allometry within a
74	single clade represent a history characterized by different intensities of selection on
75	male and female body size, allometric slopes may covary with the degree of SSD
76	across clades [8]. Female-biased SSD may evolve through negative directional
77	selection on male body size, or positive directional selection on female body size. A
78	positive correlation between allometric slopes and SDI among related clades would be
79	the expectation when direct selection on males is driving both (see fig. 1). Conversely,
80	a negative correlation between allometric slopes and SDI would be the expectation
81	when direct selection on females is driving both. Testing for covariation between
82	allometry and the degree of sexual dimorphism allows us to assess whether sex-
83	specific selection generates macroevolutionary patterns [see 8]. Indeed, a recent
84	analysis of amphibians has shown that females become the more size-variant sex
85	across species in a family as the magnitude of SSD in that family increases. The
86	suggestion being that selection on females drives both allometry and SSD in this case
87	[8]. Whether such covariation is widespread clearly needs further attention. Moreover,
88	there has been a general lack of testing of these patterns where there is a female-
89	biased SSD. As copepods commonly have such female-bias sizes (e.g. 10, 11, 12),
90	and demonstrate a huge range in the degree of SSD, they provide an excellent
91	opportunity to do this.

93	Vollrath and Parker [1] developed a model to explain multiple aspects of SSD which
94	they tested against spiders. They argued that adult mortality may impact optimal size
95	(age) at maturation; high mortality of the adult males leads to a female-biased
96	Operational Sex Ratio (OSR) and hence relaxation of male-male competition for
97	mates. Conversely, a low male mortality results in intensified competition for females
98	and a larger male size. OSR is the ratio of the number of fertilizable females to
99	sexually active males at any one time [13]. Extremes can occur where females are
100	sedentary and males rove, this being linked to the extreme dwarfing seen in male
101	spiders, barnacles, angler fish Ceratias, and the parasitic crab Danalia curvata [1].
102	These predictions do not relate to the allometry of SSD, but rather the degree of
103	dimorphism being dependent upon mate finding behaviour and its impact upon
104	mortality rate.

106 In order to test multiple theories based around predicting the causes of SSD and its 107 variation we need animal and plant groups in which extensive and accurate data on 108 body size exist, and in which body size, life history and behaviour are diverse. As we 109 will show, copepods provide an excellent test case and allow quantitative examination 110 of major SSD-based theory. The subclass Copepoda, which are members of the class 111 Maxillopoda, are crustaceans and possibly the most abundant animal group on earth 112 [14]. The striking variability in mate seeking behaviours (including sedentary and 113 roving types in some parasitic families) and sex ratios allows for quantitative and 114 qualitative tests of model predictions [1]. Male planktonic copepods often develop 115 faster [15] and mature at a smaller size than females [16]. Some copepod families 116 (within the Diaptomoidea) require repeat mating since they are unable to store sperm 117 and often have near equitable sex ratios [17, 18]. Others (many non-Diaptomoidea

118	families) are able to store sperm [19] and can produce multiple batches of eggs from a
119	single copulation event [14, 20]. Higher rewards from single mating events may lead
120	males to high mortality risk when mate searching. This has been used to explain the
121	greater adult male mortality and female-biased adult sex ratios in this latter group [15,
122	17]. Copepods present an opportunity to test Volrath and Parker's [1] model more
123	widely, if male-male competition were an important factor then large differences
124	observed across copepod families may be expected to drive variation in SSD.
125	
126	While many advances in understanding the patterns in sex ratios and dynamics of
127	mate encounter have been made in pelagic copepods over the last few years [e.g. 15,
128	17], no attempt has been made to link such aspects to size dimorphism. We take the
129	opportunity to do this here. The main objectives of this paper are therefore to test the
130	following hypotheses:
131	1. Male body size varies more than female body size among species (Rensch's
132	rule).
133	2. Allometric slopes are >1 and covary positively with female-biased SSD across
134	related clades, indicating selection on male size has been more intense.
135	Conversely, allometric slopes are <1 and covary negatively with female-
136	biased SSD, indicating selection on female size as been more intense (both
137	predicted by quantitative genetic theory).
138	3. Female-biased SSD increases with increasing female-biased OSR (following
139	the model of Vollrath and Parker).
140	
141	2. Material and Methods
142	Copepod Data:

143	In order to test various theories of sexual size dimorphism we compiled SSD data for
144	over 400 species from more than 40 families and several dominant orders within the
145	Copepoda. We included species with diverse life styles, including: pelagic free-living,
146	host associated (i.e. Sapphirinidae and Lubbockiidae) and fully parasitic forms (i.e.
147	Chondracanthidae, Monstrillidae and Caligidae). Chondracanthidae (order
148	Poecilostromatoida) consists of highly modified copepods which are parasitic on
149	many marine fishes; in some of these parasites the male may derive nourishment from
150	the female to which they are attached [11]. Males may attach to young immature
151	females at the second copepodite stage [21] and complete development on the female,
152	remaining attached until death. The Monstrillidae (order Monstrilloida) are poorly
153	described biologically and ecologically, but are parasites of marine benthic
154	invertebrates, especially on polychaetes and gastropods [22]. In Monstrilloida only the
155	1st nauplius and adult stages are free-swimming; the other larval stages are highly
156	modified internal parasites. The adults emerge from their hosts to reproduce [23] and
157	are incapable of feeding. Finally, the family Caligidae (order Siphonostomatoida)
158	commonly termed sea lice, are free-living until the copepodid stage, whereupon both
159	sexes settle as ectoparasites on fish hosts, and feed on their mucus, epidermal tissue,
160	and blood. The female's ability to store sperm reduces the need for repeat mating,
161	while in some species the adult males are known to leave the host and rove for mates
162	more readily than do the females [24, 25].
163	
164	Species-specific prosome (body length excluding the urosome) or total lengths of
165	adult male and female copepods were extracted from the published literature. We
166	included values from either the upper size of a range or the mean, but always used the

167 same for both sexes in a single species from a single reference. For Chondracanthidae

168	we used an extensive compilation of body lengths [16]. At maturation, copepods do
169	not continue to moult, although they can accumulate mass to some degree [26], any
170	length change will be highly restricted. Some parasitic species are an exception to this
171	as the adult female can continue to enlarge their body with an expandable
172	exoskeleton. For such taxa we use the reported sizes with no correction. All species
173	identities were confirmed and ascribed to family and order using the World Registry
174	of Marine Species (WoRMS) [27].
175	
176	The taxonomic level at which patterns in SSD are examined has important
177	implications to the outcome [7, 8], hence we consider this carefully. In order to
178	examine allometry of SSD we divided species into clades. Such divisions were made
179	on a taxonomic basis, by family and order, as is common practice, but with additional
180	consideration of distinctive life styles and SSD for the latter. Hence, the orders
181	included were: Calanoida, Cyclopoida, Harpacticoida, Monstrilloida.
182	Siphonostomatoida, and Poecilostomatoida. In the final order we excluded the family
183	Chondracanthidae which has a radically different SSD from the other members (fig.
184	2). All our data are available on Dryad (doi:10.5061/dryad.1556p).
185	
186	Data treatment:
187	To allow examination of allometry of sexual size dimorphism within a clade, log_{10}
188	male lengths were regressed against log_{10} female lengths (Table 1). Reduced Major
189	Axis (RMA) regressions [using software from reference source 28] were applied, and
190	slopes (β) and 95% confidence intervals (CI) determined. This regression model does
191	not infer a dependent and independent variable, and is most commonly applied in
192	such SSD analysis. Using OLS regressions produces slightly shallower slopes, but

193	does not alter our findings in any significant way. Regressions were only performed
194	on clades with 5 or more values, consequently allometries of 27 diverse families were
195	determined. Slopes were defined as departing from isometry (i.e. from a value of 1) if
196	the 95% CIs did not bound 1 (fig. 3 and table 1). We do not undertake phylogenetic
197	correction when determining slopes because appropriate data for many families
198	considered here are incomplete or uncertain. We note however, that where this had
199	been undertaken for sub-sets of the data presented here it did not significantly alter the
200	outcome [16].
201	
202	Sexual Size Dimorphism was also quantified using the widely utilised SDI index of
203	[29], where:
204	SDI = (mass of larger sex / mass of smaller sex) - 1 (1.1)
205	
206	This index has an advantage of providing symmetrical results around zero regardless
207	of which sex is larger [29]. We followed the convention that the index is given as a
208	positive value when females are the larger sex, and as negative value when males are
209	larger. SDI values were derived on each species and then averaged to obtain the clade
210	specific value. We derived mass as a proxy, simply from the cube of the compiled
211	lengths [see 30].
212	
213	We wished to test whether sexual size dimorphism is influenced by the degree of
214	male-male competition in pelagic free-living copepods [1]. In order to do this we
215	assume that differences in sex ratio and reproductive strategy (sperm storage by
216	females) should reflect the relative degree of such competition: a male-biased
217	(operational) sex ratio and the ability to store sperm would both intensify the male-

218	male competition for females. We used the adult sex ratios as compiled by Hirst and
219	Kiørboe [18]. This extensive set of male to female adult field abundance ratios
220	includes both families within and outside of the Diaptomoidea (data presented in Fig
221	4a). The data set includes sex ratios from \sim 35 species with almost 4000 individual
222	measurements. In many cases animals were sampled with vertically towed nets
223	covering all or most of the depth range of the species. In some instances sampling was
224	over discrete depth ranges, but we do not consider this will produce important errors
225	given the degree of averaging. Of course, making an inference that adult sex ratios
226	reflect adult mortality is dependent upon the recruitment of the sexes into this stage,
227	specifically that these recruit equally, which when tested has been shown to occur [as
228	examined in 15]. We are therefore confident that the large variation observed in adult
229	sex ratios across families reflects gross differences in adult mortality rates. We
230	undertook a correlation between mean family SDI values and corresponding adult sex
231	ratios to test the prediction that male-male competition may determine SSD [1].
232	

3. Results

234 In the vast majority of copepod families females are larger than their conspecific 235 males (figs 2 and 4). Mean SDI values in free-living families span a range from -0.15 236 to 1.27 (Table 1), which compared with the parasitic copepods is very narrow (figs. 3 237 and 4). Across all 27 families only 3 have negative SDI values (i.e. with larger males 238 on average), while no order level comparison shows a male size bias. The families 239 with negative SDI values are Heterorhabdidae, Sapphirinidae and Lubbockiidae. 240 While there are a diverse range of life-styles and feeding types in free-living 241 copepods, Sapphirinidae and Lubbockiidae are somewhat distinctive, having an

- ecology strongly tied to living on the surface of salps. Heterorhabdidae include manycarnivorous species, but are free-living.
- 244

245	The fully parasitic copepods show striking sexual size dimorphism, varying markedly
246	from one another and from the many free-living families. The parasitic
247	Chondracanthidae has a mean SDI of 1833 (Table 1), while the mean is 4.49 for
248	Monstrillidae and 1.51 in Caligidae. Species within Chondracanthidae are massively
249	body size skewed, more so than any other copepod family, with females commonly
250	being >1,000 times larger in mass (as approximated from length herein) than
251	conspecific males (fig. 2c). The females of Chondracanthidae are larger on average
252	than those of the free-living species, whereas their males are smaller [13] (fig. 2). By
253	contrast, parasitic Monstrillidae and Caligidae both tend to have males and females
254	which are at the larger end of the range represented by free-living species.
255	
256	Isometry in SSD is found in 22 of the 27 families examined. Only in the families
257	
237	Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1,
258	Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6
258 259	Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β -values are statistically indistinguishable from isometry, including in the
258 259 260	Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β -values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida.
258259260261	 Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β-values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida. However, we should caution that the final two only include data from single families.
258 259 260 261 262	 Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β-values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida. However, we should caution that the final two only include data from single families. The only order to diverge from this is Poecilostomatoida, having positive allometry,
 258 259 260 261 262 263 	 Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β-values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida. However, we should caution that the final two only include data from single families. The only order to diverge from this is Poecilostomatoida, having positive allometry, which is largely driven by Sapphrinidae that commonly have male-biased SSD (fig.
 258 259 260 261 262 263 264 	 Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β-values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida. However, we should caution that the final two only include data from single families. The only order to diverge from this is Poecilostomatoida, having positive allometry, which is largely driven by Sapphrinidae that commonly have male-biased SSD (fig. 3). Mean β-values for all clades (including family and order) fall between ~0.8 and
 258 259 260 261 262 263 264 265 	Arietellidae, Augaptilidae and Sapphirinidae are β values significantly greater than 1, while in Calanidae and Oithonidae they are significantly less than 1. In 5 of the 6 orders β -values are statistically indistinguishable from isometry, including in the Calanoida, Cyclopoida, Harpacticoida, Monstrilloida and Siphonostromatoida. However, we should caution that the final two only include data from single families. The only order to diverge from this is Poecilostomatoida, having positive allometry, which is largely driven by Sapphrinidae that commonly have male-biased SSD (fig. 3). Mean β -values for all clades (including family and order) fall between ~0.8 and 1.4 (fig. 3), even though the index of size dimorphism (<i>SDI</i>) in these same groups

268	Male to female adult sex ratios span a 7-fold range across the free-living species, with
269	mean values by family being from 0.16 to 1.10 (fig 4a). There are important
270	differences between the non-Diaptomoidea (and Oncaea) families versus those that
271	need to constantly re-mate, the Diaptomoidea. The latter have a more equitable sex
272	ratio. Regressing family-specific mean SDI values against their respective male to
273	female adult sex ratios we find no significant relationship ($r^2 = 0.03$, n = 11, P >
274	0.10). Furthermore, SDI values are not significantly different between the
275	Diaptomodea and the non-Diaptomoidea groups (Welch two sample t-test, $t = 0.0871$,
276	df = 6.788, p-value = 0.933), while male to female sex ratios do differ significantly
277	(Welch two sample t-test, $t = -5.478$, $df = 4.736$, p-value = 0.003). In conclusion, we
278	find no evidence that sex ratios (and therefore the inferred degree of male-male
279	competition) relates to SSD or gross reproductive behaviours (as defined broadly by
280	the Diaptomoidea vs. non-Diaptomoidea categories).
281	
282	4. Discussion

283 Allometry of Sexual Size Dimorphism

284 We begin by addressing our first two hypotheses (see Introduction), i.e., whether 285 copepods support Rensch's rule, and whether they demonstrate covariation between 286 the degree of sexual dimorphism and degree of allometry. In pelagic copepods 287 females of the species are commonly larger than the males (figs. 2 and 4). Across the 288 diverse copepod clades considered here β values indicate that isometry is almost 289 universal (fig. 3), hence we find little to support Rensch's rule. Previous studies on a 290 range of taxa have frequently found the degree of SSD to vary with body size. These 291 patterns have been reviewed for Mammalia, Aves, Reptilian, Amphibia, Arachnida

292	and Insecta [3]. In most instances these follow Rensch's rule, i.e. $\beta > 1$, and
293	exceptions to this only occurred when females were the larger sex. An extensive
294	comparison across birds found that Rensch's rule is commonly broken where female-
295	biased SSD occurs within a clade [7]. Recently, Blankenhorn et al. [31] evaluated the
296	evidence for Rensch's rule in a range of insect orders: the rule was found to apply
297	consistently to Diptera and Heteroptera, but not to any of the other insect groups
298	examined. This led them to conclude that the mechanisms causing the pattern are
299	unevenly distributed among taxa; our results further support this conclusion.
300	
301	If Rensch's rule was general, and selection on males is the main driver of the
302	evolution of SSD, then allometric slopes should increase as the SDI increases across
303	clades. By contrast, if the evolution of size dimorphism were primarily driven by
304	selection on female size, then allometric slopes should decrease as the magnitude of
305	SDI increases (fig. 1, compare to fig. 3). As no significant relationships exist between
306	β and $\log_{10} SDI$ (the latter was logged to accommodate the skew) we find no support
307	for either of these predictions. The fact that relationships are commonly not
308	distinguishable from being isometric in many copepod clades suggests that selection
309	on each of the sexes may have been near equally important. Most previous empirical
310	assessments of allometry have focused on either vertebrates or invertebrates with
311	male-biased SSD (3, 6, 7, cf. 8) and in many of these studies the allometric slope
312	within clades often decreases as the magnitude of SSD increases (see fig. 2 of
313	reference [3]), this would tend to support selection on male size being a common
314	cause for the evolution of both positive allometry ($\beta > 1$) and male-biased SSD. By
315	contrast, analyses of clades that exhibit female-biased SSD indicate no clear patterns
316	to their allometry (no consistency in either female-divergent or male-divergent

allometry), indeed our analysis on copepods further reinforces this. Across related
clades when females are the larger sex, there is not strong evidence to support the
predictions of quantitative genetic theory [cf. 8].

320

321 Life-History and SSD

322 Kiørboe and Hirst's [32] model of size at maturation in free-living copepods shows 323 that high juvenile mortality favors early maturation at a smaller size, while late 324 maturation at a larger size becomes increasingly favored the steeper the increase in 325 reproductive output is with size. This prediction is consistent with classical life 326 history theory [33]. The balance between survival probability and reproductive 327 success determines the size and age at maturation. Vollrath and Parker [1] extended 328 such an argument by demonstrating that adult mortality may also impact optimal size 329 (age) at maturation; high mortality of the adult males leads to a female-biased 330 population, a relaxation of competition for females, and in turn this leads to earlier 331 maturation of males at a smaller size. Conversely, a low adult male mortality results 332 in intensified competition for females, in which circumstance larger male size is more 333 favorable. Importantly, rather than the numerical sex ratio being the relevant 334 parameter in these descriptions, it is the Operational Sex Ratio (OSR) [34]. The OSR 335 is the ratio of receptive females to ready-to-mate males, or the female/male sex ratio 336 corrected for 'time-outs', i.e., the fraction of time that each sex cannot mate because 337 they need to release one or several batches of eggs (females), or generate a new 338 spermatophore (males). In copepods the female time-outs are typically much longer 339 than male time-outs, and in some species the females need to be mated only once to 340 have sufficient sperm for the rest of their reproductive career. The question is

- therefore whether inter-male competition for females is relevant or prevalent incopepods, and hence whether the Vollrath and Parker model [1] applies.
- 343

344 Free-living copepods

345 The suggestion that OSR may account for SSD [1] appears unable to explain the 346 general lack of pattern in size dimorphism across the free-living copepod families, or 347 indeed the similarity in size ratios between Diaptomoidea and non-Diaptomodea (fig. 348 4). The sedentary vs roving dichotomy [1] is partly equivalent to ambush feeding 349 cyclopoid copepods, such as in the genus *Oithona*: in this example the female is an 350 ambush feeder and relatively non-motile, while the males spend $\sim 1/3$ rd of their time 351 swimming at high speed in search for females [35]. As a result, the males have much 352 higher mortality, and adult sex ratios are strongly female-biased, typically with a male 353 to female ratio of 1:10 [15, 36]. However, timeout-ratios are strongly female-biased 354 because the females need to be mated only once, while the males can mate several 355 times per day, and OSR is likely less skewed than the sex ratio would suggest (fig. 4). 356 The other extreme can be represented by genera such as *Acartia*, in which males and 357 females have very similar mate finding behaviors [37] and mortalities, and adult sex 358 ratios near 1:1 (fig. 4); they may also have similar time-outs, because the males can 359 produce one to a small number of spermatophores each day, and females produce a 360 batch of eggs per day [38]. In *Acartia* male-male competition may potentially be 361 stronger and SSD would be predicted to be less skewed following Vollrath & Parker's 362 model [1], yet there are no obvious differences in the degree of SSD between Acartia 363 and *Oithona* (fig. 4). Our results therefore question the ability of their model [1] to 364 predict or explain patterns in SSD in copepods, and hence its generally universality.

365 Clearly more tests of this type across other taxa are needed to examine the degree to366 which the predictions hold.

367

368 Another question is: how would male-male competition materialize in the pelagic 369 environment inhabited by free-living copepods? Combat competition is not an option 370 in copepods, but scramble competition is. Mate guarding by physically clasping the 371 female has been observed in a small number of copepod species [39], but is certainly 372 not widespread. Sperm competition may occur, but we have no direct evidence for 373 this as yet in the free-living pelagic species (although we note that there is evidence 374 for this in parasitic species). It is more likely that females become more or less choosy 375 depending on the availability of males, but importantly it is the absolute density of the 376 opposite sex rather than the relative densities that decides the intensity of choosiness 377 [40]. In the case of a low male density, when it is difficult for a female to find an 378 alternative mate, the female may mate indiscriminately. In several species large males 379 have a higher chance of fertilizing a female (and a larger female a higher chance of 380 being fertilized), and these differences are due to mate choice [37, 41, 42]. 381 382 Evidence that reduced male-male competition can lead to stronger SSD [1], as 383 expected when adult sex ratio is female-biased, is weak or non-existing in free-living 384 pelagic copepods. However, size-dimorphism may simply arise when the advantage 385 of delayed maturation differs between genders [32]. In fact, there is no reason to 386 expect that the advantages of delayed maturation should be the same between the

- 387 sexes. In females, egg production may increases with size [32], and larger females
- have a higher chance of being fertilized [38, 41]. These factors favor late maturation
- and larger adult size, to the exact extent that it balances juvenile mortality. For males

390	we similarly know that larger males produce larger spermatophores and these contain
391	more spermatozoa [42]. Larger males also have a greater chance of fertilizing a
392	female [38, 41], which will act to select for later maturation in males to the extent that
393	this is balanced against juvenile mortality risk. Gamete production between males and
394	females appear to be very differently limited however. While females can produce
395	eggs at a daily rate equivalent to their own body mass [43, 44], males can produce
396	only a few spermatophores per day [45] each with rather few sperm cells [42].
397	Although such difference do not demonstrate differences in the relative advantage of
398	late maturation, they are suggestive of this.
399	
400	The Sapphirinidae, Lubbokiidae and Heterorhabdidae are the only families in which
401	males are on average larger than the females. Sapphirinidae and Lubbockiidae are
402	commonly associated with feeding on pelagic invertebrate hosts such as salps [46].
403	Given the aberrant nature of SDI in these three families (Table 1) a better
404	understanding of differences in the life history of their sexes may be illuminating with
405	respect to understanding drivers of SSD and the strong differences to free-living
406	copepods.
407	
408	Parasitic Copepods
409	Vollrath and Parker's explanation for dwarf males are in part supported by their
410	occurrence in a wide range of species where the female is relatively sedentary, while
411	the males rove and suffer higher mortality [1, 47]. In Caligidae, including the well-
412	known sea-lice, the males can mature somewhat earlier than females, but they settle at
413	a similar development stage [48]. Some species in this family have males which are

414 more mobile, and more likely than the females to disperse as adults in the absence of

415	the opposite sex [24, 25]. As Connors et al [25] point out, 'Male fitness is therefore
416	dependent on access to mates, whereas female fitness is contingent on access to
417	resources for egg production. The resulting asymmetry in reproductive investment
418	likely underlies sex-specific benefits of dispersal as lice approach sexual maturity'.
419	'Roving' behaviour, which includes leaving the host, may represent significant
420	mortality risk for the male (and this is dissimilar to that of the attached female) given
421	that being attached will afford protection from high levels of mortality which small
422	pelagic organisms typically suffer [18]. The markedly smaller size of males in the
423	parasitic Calaigidae, and the observation that females are relatively sedentary while
424	males rove, qualitatively supports Volrath and Parker's predictions. By contrast,
425	Chondracanthidae males may be dwarf parasites on the parasitic females [11], and
426	their size reduction given their likely sedentary nature may be driven more by their
427	direct coupling to the female rather than adult mortality. Through most of the life of
428	Monstrilloida (other than first nauplii and adults) the larvae are an internal parasite of
429	benthic organisms [22, 49]. We have no evidence of difference in risks between the
430	males and females of Monstrilloida and their SDI values are intermediate between the
431	two other parasitic families included here [see also 12, 50]. Therefore, while we find
432	that many parasitic taxa may display much larger females than males, we do not have
433	evidence that males always have a risky mate roving strategy. Differences in mortality
434	between the sexes in parasitic copepods are needed in future in order to explore this
435	issue more fully.
436	

437 Dwarf males have been linked to reduced male-male competition [1]. Intriguingly,

438 precocious coupling and precopulatory mate guarding by the males of some Caligidae

439 [48, 51, 52] would rather suggest strong male-male competition. This is further

440	suggested by males having spermatophores which can block further mating by
441	females for some time [24, 53]. Mate guarding by males has been considered to be
442	more marked when there is a male-biased sex ratio, and hence high inter-male
443	competition [54, 55]. Many males of benthic and even parasitic harpacticoid copepods
444	also show some degree of mate guarding, and those which do often have strong
445	female-biased SSD, e.g. Tisbe [56]. There are therefore clear contradictions here.
446	Pelagic environments may be unconducive to mate guarding in free-living copepods
447	because of increased predation risk from such a strategy [39], even when male
448	competition is strong. The degree to which mate-guarding may be associated with
449	dwarfing by males is in need of exploration both within the copepods and within other
450	groups of organisms too. To build and test quantitative models of SSD in future we
451	will need information on the role of body size in determining male fertility, and data
452	on the sex- and stage-dependent mortality across families with contrasting life-
453	histories.

455 Acknowledgements

456 We wish to thank Geoff Parker for early discussions on this topic, and Curtis Horne

457 for comments on an earlier version of the paper. Wolf Blanckenhorn and an

458 anonymous reviewer helped us to improve this paper. The Centre for Ocean Life is a

459 VKR Centre of Excellence funded by the Villum Foundation.

460

461 Appendix

462 Our data are available as an online appendix on Dryad (doi:10.5061/dryad.1556p).

463

464 **References**

465	1.	Vollrath F, Parker G. 1992 Sexual dimorphism and distorted sex ratios in
466		spiders. Nature 360, 156-159.
467	2.	Darwin C. 1874 The descent of man and selection in relation to sex.
468		Humboldt, NY
469	3.	Fairbairn DJ. 1997 Allometry for sexual size dimorphism: pattern and process
470		in the coevolution of body size in males and females. Annu Rev Ecol Syst 28,
471		659-687.
472	4.	Blanckenhorn WU, Dixon AFG, Fairbairn DJ, Foellmer MW, Gibert P, van
473		der Linde K, Meier R, Nylin S, Pitnick S, Schoff C, Signorelli M, Teder T,
474		Wiklund C. 2007 Proximate causes of Rensch's rule: does sexual size
475		dimorphism in Arthropods result from sex differences in development time?
476		Am Nat 169, 245-257.
477	5.	Rensch B. 1960 Evolution above the species level. Columbia University Press,
478		NY.
479	6.	Abouheif E, Fairbairn DJ. 1997 A comparative analysis of allometry for
480		sexual size dimorphism: assessing Rensch's rule. Am Nat 149, 540-562.
481	7.	Webb TJ, Freckleton RP. 2007 Only half right: species with female-biased
482		sexual size dimorphism consistently break Rensch's Rule. PLoS ONE 2, e897.
483		doi:10.1371/journal.pone.0000897
484	8.	De Lisle SP, Rowe L. 2013 Evolution of allometry and sexual dimorphism
485		across higher taxa. Am Nat 182, 630-639.
486	9.	Zeng Z-B. 1988 Long-term correlated response, interpopulation covariation,
487		and interspecific allometry. Evolution 42, 363-374.

488	10. Hirst AG, Sheader M, Williams JA. 1999 Annual pattern of calanoid copepod
489	abundance, prosome length and minor role in pelagic carbon flux in the Solent,
490	U.K. Mar Ecol Prog Ser 177, 133-146.
491	11. Østergaard P, Boxshall GA. 2005 Giant females and dwarf males: a
492	comparative study of nuptial organs in female Chondracanthidae (Crustacea:
493	Copepoda). Zool Anz 243, 65-74.
494	12. Poulin R. 1996 Sexual size dimorphism and transition to parasitism in
495	copepods. <i>Evolution</i> 50 , 2520-2523.
496	13. Emlen ST, Oring LW. 1977 Ecology, sexual selection, and the evolution of
497	mating systems. Science 197, 215-223.
498	14. Ohtsuka S, Huys R. 2001 Sexual dimorphism in calanoid copepods:
499	Morphology and function. Hydrobiol 453/454, 441-466.
500	15. Hirst AG, Bonnet D, Conway DVP, Kiørboe T. 2010 Does predation control
501	adult sex ratios and longevities in marine pelagic copepods? Limnol Oceanogr
502	55 , 2193-2206
503	16. Østergaard P, Boxshall GA, Quicke DLJ. 2005 Dwarfs or giants? Sexual size
504	dimorphism in Chondracanthidae (Copepoda, Poecilostomatoida).
505	<i>Crustaceana</i> 78 , 397-408.
506	17. Kiørboe T. 2006 Sex, sex-ratios, and the dynamics of pelagic copepod
507	populations. Oecologia 148, 40-50.
508	18. Hirst AG, Kiørboe T. 2002 Mortality of marine planktonic copepods: global
509	rates and patterns. Mar Ecol Prog Ser 230, 195-209.
510	19. Barthélémy R-M, Cuoc C, Defaye D, Brunet M, Mazza J. 1998 Female genital
511	structures in Diaptomoidea (Copepoda Calanoida). Phil Trans Roy Soc
512	London B 353 , 721-736.

513	20. Marshall SM, Orr AP. 1952 On the biology of <i>Calanus finmarchicus</i> . VII.
514	Factors affecting egg production. J Mar Biol Assoc UK 30, 527-547.
515	21. Heegaard P. 1947 Contribution to the phylogeny of the Arthropods.
516	Copepoda. Spolia Zool Mus Haun 8, 1-236.
517	22. McAlice BJ, Jaeger GB. 1982 Seasonality of Monstrilla helgolandica Claus,
518	1863 (Copepoda, Monstrilloida) and the occurrence of the other monstrillids
519	in Maine. J Crust Biol 2, 45-47.
520	23. Thompson PKM. 1973 Occurrence of Cymbasoma longispinosus (Copepoda:
521	Monstrilloida) from the Indian seas. J Mar Biol Ass India 15, 616-620.
522	24. Hull MQ, Pike AW, Mordue AJ, Rae GH. 1998 Patterns of pair formation and
523	mating in an ectoparasitic caligid copepod Lepeophtheirus salmonis (Kroyer
524	1837): implications for its sensory and mating biology. Philos Trans R Soc
525	Lond B Biol Sci 353 , 753-764.
526	25. Connors BM, Lagasse C, Dill LM. 2011 What's love got to do with it?
527	Ontogenetic changes in drivers of dispersal in a marine ectoparasite.
528	Behavioral Ecology. doi:10.1093/beheco/arr024
529	26. Hirst AG, McKinnon AD. 2001 Does egg production represent adult female
530	copepod growth? A call to account for body weight changes. Mar Ecol Prog
531	Ser 223, 179-199.
532	27. WoRMS Editorial Board. 2014 World Register of Marine Species. Available
533	from http://www.marinespecies.org at VLIZ. (Accessed 2014-03-11).
534	28. Bohonak AJ, van der Linde K 2004 RMA: software for Reduced Major Axis
535	regression, Java version. Available from
536	http://www.kimvdlinde.com/professional/rma.html.

537	29. Lovich JE, Gibbons JW. 1992 A review of techniques for quantifying sexual
538	size dimorphism. Growth Dev Aging 56, 269-281.
539	30. Hirst AG. 2012 Intra-specific scaling of mass to length in pelagic animals:
540	ontogenetic shape change and its implications. Limnol Oceanogr 57, 1579-
541	1590.
542	31. Blanckenhorn WU, Meier R, and Teder T. 2007 Rensch's rule in insects:
543	patterns among and within species. In: Sex, Size and Gender Roles
544	evolutionary studies of sexual size dimorphism. eds. Fairbairn DJ,
545	Blanckenhorn WU, Székely T. Oxford University Press, Oxford.
546	32. Kiørboe T, Hirst AG. 2008 Optimal development time in pelagic copepods. Mar
547	<i>Ecol Prog Ser</i> 367 , 15-22.
548	33. Stearns SC. 1992 The evolution of life histories. Oxford University Press,
549	Oxford.
550	34. Clutton-Brock TH, Vincent ACJ. 1991 Sexual selection and the potential
551	reproductive rates of males and females. Nature 351, 58-60
552	35. Kiørboe T. 2007 Mate finding, mating, and population dynamics in a
553	planktonic copepod Oithona davisae: There are too few males. Limnol
554	<i>Oceanogr</i> 52 , 1511-1522.
555	36. Hirst AG, Ward P. 2008 Spring mortality of the cyclopoid copepod Oithona
556	similis in polar waters. Mar Ecol Prog Ser 372, 169-180.
557	37. Bagøien E, Kiørboe T. 2005 Blind dating-mate finding in planktonic
558	copepods. III. Hydromechanical communication in Acartia tonsa. Mar Ecol
559	<i>Prog Ser</i> 300 , 129-133.

560	38.	Ceballos S, Kiørboe T. 2010 First evidence of sexual selection by mate choice
561		in marine zooplankton. Oecologia 164, 627-635. DOI 10.1007/s00442-010-
562		1755-5
563	39.	. Titelman J, Varpe Ø, Eliassen S, Fiksen Ø. 2007 Copepod mating: chance or
564		choice? J Plankton Res 29, 1023-1030.
565	40	. Kokko H, Monnagha P. 2001 Predicting the direction of sexual selection. Ecol
566		<i>Lett</i> 4 , 159-165.
567	41	Ceballos S Kiørboe T. 2011 Senescence and sexual selection in a pelagic
568		copepod. PLoS ONE 6. e18870. doi:10.1371/journal.pone.0018870
569	42	Sichlau MH, Kiørboe T. 2011 Age- and size-dependent mating performance
570		and fertility in a pelagic copepod, Temora longicornis. Mar Ecol Prog Ser
571		442 , 123-132.
572	43	Hirst AG, Bunker AJ. 2003 Growth in marine planktonic copepods: global
573		rates and patterns in relation to chlorophyll <i>a</i> , temperature, and body weight.
574		<i>Limnol Oceanogr</i> 48 , 1988-2010.
575	44	Bunker AJ, Hirst AG. 2004 Fecundity of marine planktonic copepods: global
576		rates and patterns in relation to chlorophyll <i>a</i> , temperature and body weight.
577		<i>Mar Ecol Prog Ser</i> 279 , 161-181.
578	45	. Escaravage V, Soetaert K. 1993 Estimating secondary production for the
579		brackish Westerschelde copepod population Eurytemora affinis (Poppe)
580		combining experimental data and field observations. Cah Biol mar 34, 201-
581		214.
582	46	Heron AC. 1973 A specialized predator-prey relationship between the
583		copepod Sapphirina angusta and the pelagic tunicate Thalia democratica.
584		<i>JMBA UK</i> 53 , 429-436.

-50577. Vollaul 1. 1990 D wall males. INEE 13, 199-105.

- 586 48. Costello MJ. 2006 Ecology of sea lice parasitic on farmed and wild fish.
 587 *Trends in Parasitology* 22, 475-483.
- 58849. Oliveira Dias C. 1996 Monstrilloida (Copepoda) off the Brazilian coast.
- 589 *Hydrobiol* **324**, 253-256.
- 50. Poulin R. 1995 Clutch size and egg size in free-living and parasitic copepods:
 A comparative analysis. *Evolution* 49, 325-336.
- 592 51. Anstensrud M. 1992 Mate guarding and mate choice in two copepods,
- 593 *Lernaeocera branchialose* (L.) (Pennellidae) and *Lepeophtheirus pectoralis*
- 594 (Muller) (Caligidae), parasitic on Flounder. *J Crust Biol* **12**, 31-40.
- 595 52. Todd CD, Stevenson RJ, Reinard H, Ritchie MG. 2005 Polyandry in the
- 596 ectoparasite copepod *Lepeophtheirus salmonis* despite complex precopulatory
 597 and postcopulatory mate-guarding. *Mar Ecol Prog Ser* 303, 225-234.
- 598 53. Ritchie G, Mordue AJ, Pike AW, Rae GH. 1996 Observations on mating and
 599 reproductive behaviour of *Lepeophtheirus salmonis*, Kroyer (Copepoda:
- 600 Caligidae). *J Exp Mar Biol Ecol* **201**, 285-298.
- 54. Grafen A, Ridley M. 1983 A model of mate guarding. J Theor Biol 102: 549-567.
- 55. Elwood RW, Dick JTA. 1990 The amorous *Gammarus*: the relationship
 between precopula duration and size-assortative mating in *G. pulex. Anim*
- 605 Behav **39**, 828-833.
- 56. Dürbaum J. 1995 Discovery of postcopulatory mate guarding in Copepoda
 Harpacticoida (Crustacea). *Mar Biol* 123, 81-88.
- 608

609	Table 1. Results from RMA regressions of \log_{10} male versus \log_{10} female size for
610	Copepoda by order and family, where β is the slope, <i>a</i> the intercept and r the
611	correlation coefficient. Analyses were only completed when $n \ge 5$. Those rows in bold
612	indicate that β differs significantly from 1 (hence is not isometric). Mean <i>SDI</i> values
613	are also given for each clade. Where data is available for only one family within an
614	order, this family is indicated in brackets. Poecilostomatoida excludes
615	Chondracanthidae because of the extreme divergence of this family from the
616	remaining species (see text for details). The orders Monstrilloida and
617	Siphonostomatoida include single families here, which are identified within the
618	brackets. In all cases regressions were highly significant (P <0.005), except in the
619	family Paracalanidae, in which P is significant at <0.02.

622	Taxa	n	SDI	β [95%CI range]	a	r
623	By Order:					
624	Calanoida	252	0.529	0.989 [0.965-1.013]	-0.007	0.98
625	Cyclopoida	11	1.034	0.909 [0.731-1.087]	0.176	0.97
626	Harpacticoida	9	0.931	0.948 [0.747-1.149]	0.069	0.97
627	Poecilostromatoida	71	0.276	1.180 [1.114-1.246]	-0.598	0.97
628	Siphonostomatoida (Caligidae)	29	1.511	1.230 [0.923-1.537]	-0.895	0.77
629	Monstrilloida (Monstrillidae)	8	4.487	0.851 [0.548-1.154]	0.287	0.93
630						
631	By Family:					
632	Acartiidae	17	0.521	0.887 [0.527-1.247]	0.294	0.67
633	Aetideidae	19	0.201	1.204 [0.971-1.437]	-0.838	0.93
634	Arietellidae	7	0.470	1.124 [1.054-1.194]	-0.485	1.00
635	Augaptilidae	24	0.927	1.359 [1.154-1.564]	-1.399	0.94
636	Calanidae	15	0.569	0.857 [0.765-0.949]	0.438	0.98
637	Candaciidae	11	0.230	1.041 [0.814-1.268]	-0.167	0.96
638	Centropagidae	15	0.326	1.006 [0.931-1.081]	-0.059	0.99
639	Chondracanthidae	40	1833	0.837 [0.634-1.040]	-0.291	0.68
640	Clausocalanidae	9	0.370	0.982 [0.638-1.326]	0.019	0.92

641	Corycaeidae	18	0.634	0.931 [0.795-1.067]	0.152	0.96
642	Euchaetidae	12	0.597	0.891 [0.638-1.144]	0.358	0.92
643	Heterorhabdidae	12	-0.149	0.966 [0.819-1.113]	0.136	0.98
644	Lubbockiidae	13	-0.080	0.972 [0.586-1.358]	0.095	0.80
645	Lucicutiidae	14	0.212	1.022 [0.988-1.056]	-0.102	1.00
646	Metridinidae	13	0.485	1.138 [0.968-1.308]	-0.536	0.97
647	Oithonidae	10	1.104	0.799 [0.622-0.976]	0.480	0.96
648	Oncaeidae	19	1.271	0.890 [0.748-1.032]	0.207	0.95
649	Paracalanidae	7	0.347	0.792 [0.343-1.241]	0.573	0.87
650	Phaennidae	9	0.489	1.001 [0.807-1.195]	-0.050	0.98
651	Pontellidae	11	0.404	1.044 [0.868-1.220]	-0.198	0.97
652	Pseudocyclopiidae	6	0.061	0.987 [0.661-1.313]	0.031	0.97
653	Sapphirinidae	21	-0.710	1.189 [1.031-1.347]	-0.602	0.96
654	Scolecitrichidae	12	0.256	0.896 [0.788-1.004]	0.337	0.99
655	Stephidae	5	0.185	0.924 [0.667-1.181]	0.211	0.99
656	Temoridae	10	0.451	0.977 [0.611-1.343]	0.026	0.89

658 659

662	Figure 1. The covariation of allometric slopes (log male versus log female size)
663	against the Sexual Dimorphic Index (SDI), in this example the case of female-biased
664	SDI is given. If Rensch's rule is general and selection on males is a main driver of the
665	evolution of SSD then looking across related clades the allometric slopes will increase
666	as the magnitude of SDI increases (denoted by dashed line). Alternatively, if the
667	evolution of SSD is driven primarily by selection on female size then allometry will
668	become female divergent (the allometric slope will decrease) as the magnitude of SDI
669	increases (solid line) across clades. Plot adapted from De Lisle and Rowe [8].
670	
671	Figure 2. Pelagic copepod sizes (prosome or total lengths) in matched species-
672	specific pairs. Upper panels, male versus female lengths, with RMA regressions
673	through each identified clade: a. Calanoida, b. Cyclopoida, Harpacticoida, and
674	Poecilostomatoida (excluding Chondracanthidae), c. Chondracanthidae, Monstrillidae
675	and Caligidae. Data are available for only one family within these last two orders.
676	Plots d-f give female to male length ratios versus female length for the species from
677	the respective panels above. Dashed lines indicate equal female to male lengths (and
678	hence isometry) across all graphs.
679	
680	Figure 3. Allometric slopes (β) versus mean <i>SDI</i> by: a. by family, and b. by order
681	(also including Chondracanthidae for comparison). Dashed horizontal lines indicates
682	isometry. Error bars represent 95% CIs of slope values. Filled symbols indicate a
683	significant difference from isometry, while for open symbols there is no difference.

- 684 Note that the very high *SDI* value for Chondracanthidae which falls off the scale is
- 685 indicated.

Figures:

687	Figure 4. Sexual characteristics of marine copepods by family: a. Adult male to
688	female sex ratios, open circles give individual study means, filled circles family
689	means (data from Hirst and Kiørboe 2002). b. Adult female to male length ratios,
690	free-living families and associated families indicated. c. Adult female to male length
691	ratios in the parasitic families. Note scale change between panels b and c. Means
692	(±95% CI) (in panels b and c) are only shown where $n \ge 3$. The symbols +, o and -
693	indicate whether female to male size ratios are significantly greater, less than, or not
694	significantly different from 1 respectively.

Figure 1

