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Abstract

The ability to recognize people is a key element for im-
proving naturalistic human-robot and human-computer in-
teraction systems. In this paper, we propose a binary non-
subsampled contourlet transform (B-NSCT) based illumi-
nation robust face representation. Faces are transformed
into multi-scale and multi-directional contour information
where the intrinsic geometrical structures are used for char-
acterising facial texture. Experiments on the Yale B and
CMU PIE databases illustrate that B-NSCT is highly insen-
sitive to illumination variation.

1 Introduction

The ability to recognize and remember individuals is a
fundamental requirement for complex interactions among
people and represents a key element to improve naturalis-
tic human-robot and human-computer interaction systems.
Imprecise human identification will lead to the insufficient
interactions. Therefore, it is necessary to recognize hu-
man faces with a high accuracy. Although various meth-
ods for face recognition have been proposed such as eigen-
faces [14], fisherfaces [2] and Bayesian faces [11], the
performance of most existing algorithms is highly sensitive
to environmental illumination.
As the use of face recognition systems expands towards less
restricted real-time approaches, illumination robust face
representation becomes important. Previous studies proved
that illumination variations are more significant than the in-
herent differences between individuals for face recognition
[4, 3]. Extracting illumination invariant features or illumi-
nation insensitive measure is an effective approach to solve
this problem. In general, classical and effective methods
for varying lighting face recognition mainly include multi-
scale retinex (MSR) [10], self quotient image (SQI) [15],
logarithmic total variation (LTV) [5], multi-scale principal
contour direction (MPCD) [6] and logarithmic nonsubsam-
pled contourlet transform (LNSCT) [16].
In the MSR model, illumination variations are dealt with
using the difference between an original image and its
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smoothed version in logarithm domain by combining sev-
eral low-pass filters with different cut-off frequencies. But
the halo effect of MSR is serious. The illumination effect
is normalized by division over a smoothed version of im-
age itself in the SQI model. However, the weighted Gaus-
sian filter they used has trouble keeping sharp edges in low
frequency illumination fields. LTV improves the SQI by
adopting the total variation model which utilizes the edge
preserving capability and simplify the parameter selection
but has quite high computational expense.
The above methods lack the capabilities of multi-scale and
multi-directional analysis. This limits their abilities in cap-
turing multi-scale and multi-directional structures of face
images. In order to address this problem MPCD is proposed
for extracting illumination invariant features by applying
multi-scale contour analysis. The method has demon-
strated better recognition rates than the above mentioned
ones by considering both spectrum and phase information.
However, its parameter selection is usually empirical and
complicated. Recently, LNSCT is proposed to estimate
the reflectance component using nonsubsampled contourlet
transform (NSCT) in logarithm domain. However, it was
noted that the computational complexity limits LNSCT for
real-time applications.
In this paper, we propose a novel representation based on a
binary nonsubsampled contourlet transform (B-NSCT) for
illumination robust face recognition. Grey scale images are
transformed into multi-scale and multi-directional contour
information where the intrinsic geometrical structures are
used for characterising facial texture. Experimental results
on Yale B and CMU PIE databases demonstrated that B-
NSCT based face representation is effective, speedy and
highly insensitive to illumination variation.
The rest of this paper is organized as follows. In Section 2,
we explain the B-NSCT based methodology for illumina-
tion robust face representation. A variety of experimental
results are presented in Section 3. Finally, the conclusion is
give in Section 4.

2 Methodology

2.1 Nonsubsampled countourlet transform

In [8], Do and Vetterli proposed contourlet transform (CT)
to represent two dimensional singularities, which is com-
posed of Laplacian pyramid and directional filter bank. The
transform can represent curve more sparsely due to its di-



rectionality and anisotropy. NSCT, based on the theory of
CT, is a kind of multi-scale, multi-directional computation
framework of discrete images. The whole course of NSCT
is still composed of two stages, including multi-scale analy-
sis and multi-directional analysis, which are similar to those
of CT. The main difference lies in that, in the course of
decomposition and reconstruction, traditional upsamplers
and downsamplers in CT do not exist in NSCT any more,
so that the NSCT is a fully multi-scale, multi-directional,
good time-frequency property and shift invariant expan-
sion. NSCT falls into two phases, including nonsubsam-
pled pyramid (NSP) and nonsubsampled directional filter
bank (NSDFB). The former phase ensures the multi-scale
property by using two-channel nonsubsampled filter bank,
and a low-pass image with a band-pass one can be pro-
duced at each NSP decomposition stage. The subsequent
NSP decomposition stages are carried out to decompose
the low-pass component available iteratively to capture the
singularities in the image. As a result, NSP can result in
k + 1 subband images including one low-pass image and
k band-pass images, whose sizes are all the same as that
of the source image, where k denotes the number of de-
composition stages. Figure 1 gives the NSP decomposi-
tion with k = 3 stages with a 2-D low-pass filter is repre-
sented by its z-transform H0(z) where z = [z1, z2]

T and
H1(z) = 1 − H0(z). The filters for subsequent stages are
obtained by upsampling the filters of the first stage. This
gives the multi-scale property without the need for addi-
tional filter design.

Figure 1: Three-stage NSP decomposition

The NSDFB, constructed by combining the directional fan
filter banks devised by Bamberger and Smith [1], is two-
channel nonsubsampled filter banks. NSDFB allows the
direction decomposition with l stages in band-pass images
from NSP at each scale and produces 2l directional sub-
band images which have the same size as the source im-
age. Thus, the NSDFB endows the NSCT with the multi-
direction property and we can benefit a lot from the NS-
DFB because it provides us with more precise directional
detail information. A four-channel NSDFB, constructed
with two-channel fan filter banks and parallelogram filters
without downsamplers and upsamplers, is illustrated in Fig-
ure 2. Note that in the second level, the upsampled fan

filters Ui(z
Q), i = 0, 1 have checker-board frequency sup-

port, and when combined with the filters in the first level
give the four directional frequency decomposition. In our
paper, the ‘maxflat’ filters and ‘dmaxflat7’ filters are, re-
spectively, selected for NSP and NSDFB. The concrete fil-
ter banks construction methods and more NSCT details can
be found in [7].

Figure 2: Four-channel nonsubsampled DFB

2.2 Binary nonsubsampled contourlet transform.

NSCT differs from other multi-scale analysis methods in
that contourlet transform allows for different and flexible
number of directions at each scale. According the direc-
tion information contours are obtained by directional filter
bank concatenated the neighbouring singular points into lo-
cal contours in the frequency domain. By combination of
NSP and NSDFB, NSCT is constructed as a fully shift in-
variant, multi-scale, and multi-direction expansion that has
better directional frequency localization and a fast imple-
mentation.
It is worth to note that shift invariance is very important.
Being shift invariant, each pixel of the transform subbands
corresponds to that of the original image in the same spatial
location. Therefore, we gather the geometrical information
pixel by pixel from the NSCT coefficients. All directional
contour subbands can be expressed as:

{Cm,d}, m = 1, 2, . . . k, d = 1, 2, . . . lm,
k ∈ (1, 2, . . . N), lm = 2N .

(1)

where m and d are the scale and direction of the decom-
position respectively, k is the number of contour decom-
position scale, lm is the number of contour decomposition
directions of mth scale and {Cm,d} is the coefficient at the
dth directional subband of the mth scale. As mentioned
above directional contour subbands of NSCT only includes
spectrum information and keeping the the most significant
coefficients will directly lead to improvement in feature ex-
traction [12]. We observe that in the NSCT domain, the
illumination component corresponds to those pixels with
positive coefficient points and the reflectance component
mainly corresponds with negative coefficient points. Since
the reflectance component is considered as the intrinsic fa-
cial features, it can be directly used for face recognition.
Based on this observation binary nonsubsampled contourlet
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Figure 3: Example of constructing illumination invariant representation with three scales and four directional subbands in
each scale.

transform (B-NSCT) of an image can be defined as:

Bm,d(x, y) =

{
1, if {Cm,d(x, y)} > 0
0, if {Cm,d(x, y)} ≤ 0

m = 1, 2, . . . k, d = 1, 2, . . . lm.
(2)

where {Cm,d(x, y)} is the coefficient point (x, y) at the jth
directional subband of ith scale. After extracting the intrin-
sic geometrical information by this simple binarization pro-
cess, the illumination invariant representation can be recon-
structed from the B-NSCT coefficients, {Bm,d(x, y)}, by
inverse NSCT. Figure 3 shows an example of constructing
illumination invariant by using contourlet transform with
three scales and four directional subbands in each scale.

3 Experimental Results

In our experiments, the proposed B-NSCT system has been
evaluated on Yale B [9] and CMU-PIE [13] databases. In
the phase of recognition, dimensionality reduction is per-
formed by PCA and the nearest neighbour classifier based
on Euclidean distance is used for classification. The results
yielded by our method were compared with state-of-the-
art algorithms including MSR [10], SQI [15], LTV [5],
MPCD [6] and LNSCT [16]. Quality of results is quan-
titatively evaluated by recognition rates. In the proposed
method, we use three-scale NSCT decomposition and four
directional subbands in each scale.

3.1 Experiments on the Yale B face database

The Yale B database contains 10 individuals under 64 dif-
ferent lighting conditions for 9 poses. Since we only fo-
cus on the illumination problem in this paper, only frontal

Method Subset 2 Subset 3 Subset 4 Subset 5
MSR 99.17% 98.33% 92.86% 90.00%
SQI 99.17% 98.33% 93.57% 94.21%
LTV 100.00% 99.17% 97.86% 95.79%

MPCD 100.00% 100.00% 100.00% 99.47%
LNSCT 100.00% 100.00% 100.00% 99.47%
B-NSCT 100.00% 100.00% 100.00% 100.00%

Table 1: Recognition accuracy (%) of various methods
when using images of subset 1 as training set.

face images under varying illumination conditions are cho-
sen as samples. All the images are manually cropped by
the positions of the eyes and the mouth and resized to 192
× 168, which include only the face with as little hair and
background as possible. According to illumination angle,
the cropped images fall into five subsets, i.e. subset 1 (0◦

– 12◦), subset 2 (13◦ – 25◦), subset 3 (26◦ – 50◦), subset
4 (51◦ – 77◦) and subset 5 (above 77◦). Figure 4 shows
five images for each subset for one person and correspond-
ing illumination invariants obtained by the proposed B-
NSCT methodology. Performance evaluation is performed
by choosing one of the five subsets as training and the re-
maining subsets for testing, respectively. The number of
principal components retained for each method is 45. The
recognition rates on different subsets tabulated in Table 1-5
illustrate the effectiveness of the proposed methodology.

3.2 Experiments on the CMU PIE face database

The CMU PIE has 68 subjects with different poses, illu-
minations and expressions. Only frontal face images un-



Figure 4: Original images and corresponding illumination invariant obtained by B-NSCT methodology.

Method Subset 1 Subset 3 Subset 4 Subset 5
MSR 99.17% 96.67% 93.57% 94.21%
SQI 99.17% 98.33% 98.57% 99.47%
LTV 100.00% 98.33% 99.29% 99.47%

MPCD 100.00% 100.00% 100.00% 99.47%
LNSCT 100.00% 100.00% 100.00% 99.47%
B-NSCT 100.00% 100.00% 100.00% 100.00%

Table 2: Recognition accuracy (%) of various methods
when using images of subset 2 as training set.

Method Subset 1 Subset 2 Subset 4 Subset 5
MSR 100.00% 99.17% 98.57% 98.42%
SQI 100.00% 100.00% 98.57% 99.47%
LTV 100.00% 100.00% 99.29% 99.47%

MPCD 100.00% 100.00% 100.00% 99.47%
LNSCT 100.00% 100.00% 100.00% 100.00%
B-NSCT 100.00% 100.00% 100.00% 100.00%

Table 3: Recognition accuracy (%) of various methods
when using images of subset 3 as training set.

Method Subset 1 Subset 2 Subset 3 Subset 5
MSR 97.14% 98.33% 99.17% 98.42%
SQI 99.17% 98.57% 99.17% 97.90%
LTV 100.00% 100.00% 100.00% 99.47%

MPCD 100.00% 100.00% 100.00% 100.00%
LNSCT 100.00% 100.00% 100.00% 100.00%
B-NSCT 100.00% 100.00% 100.00% 100.00%

Table 4: Recognition accuracy (%) of various methods
when using images of subset 4 as training set.

Method Subset 1 Subset 2 Subset 3 Subset 4
MSR 87.14% 92.50% 96.67% 98.57%
SQI 97.14% 94.17% 98.33% 97.14%
LTV 100.00% 94.17% 99.17% 98.57%

MPCD 100.00% 100.00% 100.00% 100.00%
LNSCT 100.00% 100.00% 100.00% 100.00%
B-NSCT 100.00% 100.00% 100.00% 100.00%

Table 5: Recognition accuracy (%) of various methods
when using images of subset 5 as training set.

der different illumination conditions are used. Face images
in the experiments are all cropped in the same way as the
Yale B and resized to 128 × 128. Figure 5 gives 20 im-
ages for one subject under different illumination conditions,
and corresponding illumination invariants obtained by the
proposed B-NSCT methodology. In this experiment, 6 im-
ages per person are randomly chosen for training and the
remaining 15 for testing. We run the simulation 60 times
and average the results over them. The number of princi-
pal components is set to 165. The corresponding average
recognition rates of various methods listed in Table 6 show
that the proposed method is superior to others.

Experimental results verified that proposed method gets
the highest recognition rate on all of the selected face
databases, and significant improvements obtained in some
challenging cases. Since the variations of lighting in CMU
and the Set 1-2 of Yale B are relatively small, the perfor-
mance discrepancy among the compared techniques is not
too much notable. However, under the challenging lighting
conditions, e.g. on the Set 3-5 of Yale B, the performances



Figure 5: Original images and corresponding illumination invariant obtained by B-NSCT methodology.

Method Recognition rate
MSR 90.73%
SQI 91.11%
LTV 94.04%

MPCD 99.04%
LNSCT 99.51%
B-NSCT 99.82%

Table 6: Average recognition rates (%) of various methods
when randomly choosing six images per person as training
set.

of the MSR, SQI and LTV drop dramatically, whereas B-
NSCT can attain invariant recognition results. It is mainly
because of the multi-scale and multi-directional analysis of
NSCT, so that B-NSCT can still effectually extract intrin-
sic geometrical information from the face images with large
variations in illumination.
Furthermore, proposed methodology does not require any
parameter selection and on a PC with Intel Due Core 2.66
GHz CPU and 4 GB RAM, B-NSCT costs on average of
1.85s to decompose a 192 × 168 into directional subbands
and to reconstruct illumination invariant representation us-
ing Matlab∗. Hence, B-NSCT can be easily applied for a
naturalistic real-time application.

4 Conclusion
In this paper, we proposed a binary nonsubsampled con-
tourlet transform (B-NSCT) based illumination robust face
representation. The proposed method can extract illumina-
tion invariant from multi-scale and multi-directional space.
Experimental results on the Yale B and CMU-PIE databases
verified that binary representation of the intrinsic geomet-
rical information extracted from directional contour coeffi-
cients is quite efficient, effective and speedy. In addition,

∗The contourlet toolbox used in this paper can be downloaded
at http://www.mathworks.com/matlabcentral/fileexchange/10049-
nonsubsampled-contourlet-toolbox.

compared with other methods B-NSCT can be directly ap-
plied in a naturalistic human-robot or a human-computer in-
teraction system without any preprocessing and conditions.
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