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Abstract

As robots are increasingly being viewed as social entities to be integrated

in our daily lives, social perceptive abilities seem a necessary requirement

for enabling more natural interaction with human users. In this paper, we

present an interaction scenario where user play chess with an iCat robot

and propose an affect recognition system that uses computational models

to automatically extract visual features allowing the detection of the level of

engagement with a social robot that acts as a game companion. Experimental

results show that the multimodal integration of head direction information

with facial expressions displayed by the user improves the recognition of the

user’s affective states.
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1. Introduction

The design of an affect recognition module based on the interpretation of

the user’s behaviour is the first step towards the generation of a high quality

Human-Robot-Interaction (HRI). Interactive companions are an example of
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social embodiments which may benefit from the integration of such a “affect

recognition module”. Interactive companions can be useful in many applica-

tions: they can be employed as personal assistants in smart environments,

as interactive toys for therapy and rehabilitation purposes, they can pro-

vide additional functionalities to assist carers, healthcare workers, etc. For

these companions to be able to cover these roles it is necessary that they

are endowed with social capabilities and are sensitive to what happens in

the external world, with a special attention to what the user feels or com-

municates. While significant advances have been made in the field of affect

recognition over the past decade [1][2] the design of such a module to be

integrated in a HRI framework has not been extensively addressed yet. The

need for artificial companions to work in the user’s own social settings and to

create long-term relationships with humans requires then research on affect

recognition to be taken beyond the state of the art.

Many of the affect recognition systems described in the literature mainly

focused on the recognition of basic emotions (e.g., joy, sadness, disgust, sur-

prise, fear, anger, etc.) [3]. While the automated recognition of more complex

states has started to receive some attention only lately [4], research on ar-

tificial companions requires the design of an affective framework in which

the companion’s affect sensitivity goes beyond the ability to recognise proto-

typical emotions, and allows for more variegated affective signals conveying

more subtle states such as, boredom, interest, frustration, agreement, etc.,

to be captured. It is important to stress that the inclusion of affect repre-

sentation into a framework for affect recognition is of primary importance.

Incorporating models and paradigms developed by psychologists for the clas-
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sification of affective states [5] is a pressing need, but is still a challenging

issue. Strengthening the connection with psychological models would allow

for the first steps towards the detection of more complex affective states

(e.g., appraisals, blends of emotions, preferences, mood, attitudes, etc.) to

be undertaken.

The design of most existing affect recognition systems was largely based

on databases of acted affective expressions [6]. While acted affective expres-

sions, contrary to spontaneous expressions, can be defined precisely, allow

for the recording of several affective expressions for the same individual,

and can be characterised by very high quality, they often reflect stereotypes

and exaggerated expressions, not genuine affective states, and they are often

decontextualised [1]. The design of an artificial companion would certainly

benefit from the development of affect detectors which are trained and tested

with spontaneous, real-life expressions. Collection of facial behaviour in nat-

uralistic contexts involves several issues, such as the difficulty of recording

several emotional reactions for the same individual. Nevertheless, this is an

issue that must be addressed in the design of an affect sensitive companion,

in which personalisation plays an important role.

Another important issue for affect sensitive artificial companions is the

need for a multimodal affect recognition system. It is expected that a com-

panion is endowed with the ability to analyse different types of affective

expressions, depending on the specific scenario of interaction with the user.

Fusing different affective cues can allow for a better understanding of the

affective message communicated by the user to be achieved. The develop-

ment of novel methods for multimodal fusion should take into consideration
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what are the underlying relationships and correlation between the feature

sets in different modalities [1], how different affective expressions influence

to each other and how much information each of them provides about the

communicated affect.

Artificial companions have to be designed so as to be able to work in the

users’ own settings. This requires a companion’s affect recognition system to

be robust in real world conditions: face detectors and body and facial features

tracking systems which are robust to occlusions, illumination changes, non-

rigid head motions, etc., are some of the most important requirements for a

companion to successfully work in real environments [7]. Real world scenarios

means that the companion must infer the user’s state in real-time. This

poses several issues, such as, for example, the segmentation and the analysis

of the temporal dynamics of face or body gestures and expressions, since the

possibility for a user’s affective state to start at any time is a crucial factor

in real-time affect recognition [8][9].

An important issue to be considered in the design of an affect recognition

system for artificial companions is represented by taking into consideration

the context in which an affective expression is displayed (e.g., characteristics

of the person expressing the emotion, environment in which the emotion

is displayed, what the person is doing (i.e., their task), underlying mood,

behaviour displayed by the companion, presence of other people, etc.). As

suggested by [7], there can be as many emotions as the patterns of appraisal

results. This highlights the importance of the evaluation of a stimulus event

for the generation of the emotional response. In the same way, artificial

companions must be able to evaluate how the recognised affective state relates
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Figure 1: A user playing chess with the iCat.

with the conditions external to an individual that elicited the emotional

response. In this paper we focus on a specific interaction scenario where user

play chess with an iCat robot [10] as depicted in Figure 1 and we propose an

affect recognition system that uses computational models to automatically

extract contextual information and visual features allowing the detection of

the level of engagement with a social robot that acts as a game companion.

Built on a 3D distribution of facial features extracted by faceAPI we can track

a face and recover the valence and interest towards the game companion

to infer the player’s emotional state. The feeling index fuses data on the

facial expression and head direction information to accurately and robustly

predict the engagement of the player with the companion. Experimental

results show that the multimodal integration of head direction information

with facial expressions displayed by the user improves the recognition of the

user’s affective states.
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2. Modalities and Affect Recognition Framework

Contractions of facial muscles induced movements of the facial skin and

changes in the appearance of facial features such as eyebrows, nose and

mouth. Their shape and location can alter immensely with facial expres-

sions and head pose variations. To be able to reason about the shown ex-

pression and the facial muscle actions that produce it, one must first detect

the current appearance of the facial features. To do so, we track a set of

facial points illustrated in Figure 2, the locations of which alter as the cur-

rent appearance of the facial features changes with facial expressions and

head pose variations. A standard webcam, positioned in front of the user

captures the nonverbal behaviour displayed by the children during the game

and the interaction with the robot. The system performs tracking of head

movements and salient facial points via faceAPI, a real-time face tracking

toolkit from Seeing Machines1, and estimates the gaze direction of the user

based on head direction and rotation data. Furthermore, geometrical facial

features extracted from the tracked facial points are used to detect users

affective behaviour.

2.1. Parameters for AU Detection

Although muscle actions are of high importance one is unable to track

them analytically without resorting to explicit sensors [11]. However, a sub-

set of them can be deduced from their visual results, that is, the deformation

of the facial tissue and the movement of some facial surface points. This rea-

soning resembles the way that humans visually perceive emotions, by noticing

1http://www.seeingmachines.com/product/faceapi
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Figure 2: Facial feature tracking.

specific features in the most expressive areas of the face, the regions around

the eyes and the mouth [12]. In our study, we are confined in these three

components and then determine 3D distributions of the facial feature points

which are representative of the boundary between these components and skin.

By using the symmetry of the human face we have optimized the number of

facial features used by 23 [13]. Figure 3 shows the facial feature points that

we use in our research. αi, a vector expressing the coordinate of a feature

point, is introduced and is described as:

αi = (xi, yi, zi), i = 1.1, 1.2, · · · , 5.3 (1)

The origin of X-Y-Z coordinate system is assigned to be the tip of the nose.

The information of the 23 facial feature points is used to calculate the 3D

distances corresponding to the respective 3D faces. The coordinates of the

facial feature points are transformed into a common coordinate system by

subtracting the coordinates of the origin, denoted by the tip of nose (depicted

as 4.1) . The transformed ith, coordinate, βi can be calculated by:

βi = αi − origin, i = 1.1, 1.2, · · · , 5.3 (2)
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Figure 3: Facial feature points.

Each βi value is normalized, β̂i , by dividing it by the width of the eye(distance

between points 2.1 and 2.5) in order to compensate the distance effect be-

tween client faces. Thus we obtain the information β̂i for each facial expres-

sion of client.

ω = β2.1 − β2.5 (3)

β̂i = βi/ω (4)

Moreover, in order to cancel out an individual variation and reflect the facial

feature points movement more vividly, we calculate the 3D Distance Vectors

depending on several facial feature points. Distance between two feature

points is defined by:

(β̂i − β̂j) = ‖β̂i − β̂j‖ (5)

Six different distances, which are used to form the distance vector for the

facial expression recognition, are given from Eq.6 - Eq. 11. In Eq. 6, the
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average of the three distances (between points 2.2−2.8, 2.3−2.7, and 2.4−2.6)

is used in order to minimize the effect of a possible erroneous feature location

that may contribute to the respective distance. This approach is adopted in

Eq. 7, Eq. 8 and Eq. 11 respectively.

Openness of eyes:

∆1 =
1

3
[( ˆβ2.2 − ˆβ2.8) + ( ˆβ2.3 − ˆβ2.7) + ( ˆβ2.4 − ˆβ2.6)] (6)

Height of eyebrows:

∆2 =
1

3
[( ˆβ1.3 − ˆβ2.2) + ( ˆβ1.2 − ˆβ2.3) + ( ˆβ1.1 − ˆβ2.4)] (7)

Openness of mouth:

∆3 =
1

3
[( ˆβ3.2 − ˆβ3.8) + ( ˆβ3.3 − ˆβ3.7) + ( ˆβ3.4 − ˆβ3.6)] (8)

Width of mouth:

∆4 = ( ˆβ3.5 − ˆβ3.1) (9)

Stretching of lip:

∆5 = ( ˆβ2.5 − ˆβ3.1) (10)

Openness of jaw:

∆6 =
1

3
[( ˆβ5.1 − ˆβ3.8) + ( ˆβ5.2 − ˆβ3.7) + ( ˆβ5.3 − ˆβ3.6)] (11)

We transform the calculated distances into a set of Action Units (AUs) de-

scribing the facial expressions captured in the image sequence. We use a set

of temporal rules and a fast 3D distance based procedure to encode 10 AUs

occurring alone or in combination in an input face image sequence. Table 1

provides the list of the utilized rules.
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Table 1: Rules for detecting AUs from a face image sequence. The value of ε and γ have

been decided based upon the threshold description provided by the relevant rule.

AU1

rule 1

Pulls the eyebrows’ inner corners upward, causes the skin of the

centre forehead to wrinkle horizontally.

IF ∆2 > ε AND (β1.3 − β2.2) > γ THEN AU1 is in action

AU2

rule 2

Pulls the eyebrows’ outer corners upward, causes the skin of the

lateral forehead to wrinkle horizontally.

IF ∆2 > ε AND (β1.1 − β2.4) > γ THEN AU2 is in action

AU4

rule 3

Pulls the eyebrows closer together, produces a bulge between the

eyebrows, and lowers the eyebrows slightly.

IF ∆2 < ε AND (β1.2 − β2.3) < γ THEN AU4 is in action

AU5

rule 4

Raises the upper eyelid and widens the eye opening.

IF ∆1 > ε AND (β2.3 − β2.7) > γ THEN AU5 is in action

AU6

rule 5

Raises the cheeks and narrows the eye opening.

IF ∆5 < ε AND ∆1 < γ THEN AU6 is in action

AU7

rule 6

Raises the lower eyelid and narrows the eye opening.

IF ∆1 < ε AND (β1.2 − β2.3) < γ THEN AU7 is in action

AU12

rule 7

Pulls the lip corners upward obliquely.

IF ∆5 < ε AND ∆4 > γ THEN AU12 is in action

AU17

rule 8

Pushes the chin boss and lower lip upward and stretches the skin

on the chin boss.

IF ∆6 < ε AND (β3.3 − β3.7) < γ THEN AU18 is in action

AU23

rule 9

Tightens the lips slightly making the lips appear narrower.

IF ∆4 > ε AND (β3.3 − β3.7) < γ THEN AU23 is in action

AU27

rule 10

Parts the lips but does not stretch the mouth.

IF ∆3 > ε AND ∆4 < γ THEN AU27 is in action
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3. Experiments

3.1. AU Detection Results

For evaluating AU detection area underneath (A′) the receiver-operator

characteristic (ROC) curve is used. ROC curve is obtained by plotting true

positive against the false alarm rate as the decision threshold varies. We

have adopted a common statistic s =
√

A′(1−A′)
min{np,nn} [14]. To maximise the

amount of training and testing data, we have used leave-one-subject-out cross

validation. We identify the thresholds of, ε and γ for each AU rule from CK+

database [6]. The CK+ database consists of 593 FACS coded sequences

from 123 subjects eliciting posed facial expressions. In our experiments we

focused on the detection of AUs(1, 2, 4, 5, 6, 7, 12, 17, 23 and 27). The

thresholds were selected that granted at true-positive rate of 80% and a false-

positive rate of 10%. The results of AU detection for 3D distance vector based

approach is given in Table 2. From the results it can be seen that proposed

geometrical distance based features achieve very good detection accuracy.

Even though the performance is slightly low for some AUs 4, 7 and 23, this

is due to small variations in the geometrical orientations of the features.

3.2. Affect recognition

The Inter-ACT corpus [15] has been developed to be a comprehensive

repository of naturalistic and contextualised, task-dependent data for train-

ing and evaluation of an affect recognition system in an educational game

scenario. The Inter-ACT corpus contains 156 six-second videos of the inter-

action between children and an iCat robot that play chess. It is an important

advantage of the model that AUs are objective representations of human ex-
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Table 2: Results showing the area underneath the ROC curve for 3D geometrical based

features for AU detection.

Action Unit Number of Occurrences Detection Rate (%)

AU1 173 92.3 ± 2.2

AU2 116 95.8 ± 1.9

AU4 191 82.1 ± 3.1

AU5 102 97.6 ± 1.6

AU6 122 91.3 ± 2.7

AU7 119 80.3 ± 3.9

AU12 111 96.3 ± 2.1

AU17 196 90.1 ± 1.9

AU23 59 82.3 ± 4.3

AU27 81 97.3 ± 1.1

pressions and are independent from any assigned interpretation, thus allowing

further high level decisions and processing.

In many application domains the knowledge about the view direction of

the eyes is more important than the orientation of the head, respectively the

face. But the measurements relying on the eyes and the head are usually

related to each other. For simplicity and reducing computational complexity

we defined gaze-tracking as head-direction recognition. By recognising where

a users head is directed we can infer the direction of their gaze. This may

be sufficient to identify whether they are looking at the game companion in

our 3D environment or distinguish between gaze directed at the chess board

or elsewhere. This means that the system knows very accurately where the

user is looking and when they are looking there. In the proposed framework,
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Table 3: Affect descriptions in terms of facial action units and head direction

Affect State AU criteria Head Direction

Engaged {AU6,AU12} Looking at iCat

Avoidance {AU1,AU2,AU5,AU27} or {AU1,AU2,AU4} Looking at iCat

Aggressive {AU4,AU5,AU7} Looking at iCat

Calm {AU17} or {AU23} or No AUs in action Looking at iCat

Pleasant {AU12} Looking at board

Confused {AU1,AU2,AU4} or {AU5} Looking at board

Unpleasant {AU4} or {AU17} Looking at board

Thinking {AU23} or No AUs in action Looking at board

Relax {AU12} Looking elsewhere

Not Engaged {AU5} or {AU27} Looking elsewhere

Tense {AU4} Looking elsewhere

Tired/Bored {AU17} or {AU23} or No AUs in action Looking elsewhere

the FACS model and direction of the head are used in real-time to detect

complex behavioural states as listed in Table 3.

Furthermore, we divided each facial action into four temporal segments:

the neutral(no action), onset(beginning), apex(peak), and offset(ending) as

depicted in Figure 4. We define each temporal rule for AU detection in a a

unique way according to relevant rule and using statistical information of the

last 8 consecutive frames of the image sequence. To minimize the the effects

of noise and inaccuracies in facial feature tracking and to enable detection of

the temporal dynamics of displayed AUs, we consider coefficient of variance,

C (e.g. C > 0.05 indicates variance in the 3D distance vector is greater

than 5%), for each 3D distance vector. We identify the thresholds of , ρ, for

each AU rule from Inter-ACT corpus. Incited by the research findings that
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Figure 4: Temporal rules for AU detection

suggested that temporal changes in neuromuscular facial activity may last

from 1/4 of a second to several minutes [11], the temporal domain has been

determined empirically based on a video frame rate of the input sequence

(i.e., 8 frames approximately have a duration of 1/4 of a second for 30 fps).

The confusion matrix of the average case for the user looking at the game

companion is 95.9% as shown in Table 4. Note that most of the expressions

are detected with high accuracy and the confusion is larger with the Ag-

gressive and Calm behaviours. One reason why Aggressive is detected with

only 92.8% is that in general these behaviour is eyebrow dependent and con-

fusion with Calm is much larger than with the other behaviour as one can

easily observe from naturalistic face images. Results for user looking at the

chess board is presented as a confusion matrix in Table 5. It can be seen

that the highest misclassification occurs between the expressions of Unpleas-

ant and Thinking. The decrease in these recognition rates is attributed to

their similarity especially in low intensities. The main difference between the

Unpleasant and Thinking behaviours lies mostly on the configuration of the

eyebrows, which cannot be effectively captured using depth (at least with
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Table 4: Confusion matrix of affect recognition for “Looking at the iCat”

Engaged Avoidance Aggressive Calm

Engaged 98.6 0.0 0.0 1.4

Avoidance 0.0 100.0 0.0 0.0

Aggressive 0.0 0.0 92.8 7.2

Calm 1.2 0.0 6.7 92.1

Table 5: Confusion matrix of affect recognition for “Looking at the chess board”

Pleasant Confused Unpleasant Thinking

Pleasant 96.7 0.0 0.5 2.8

Confused 0.0 99.3 0.0 0.7

Unpleasant 0.0 2.1 88.5 9.4

Thinking 1.7 0.0 8.1 90.2

our point correspondence technique) especially in low intensities, where the

difference is so subtle even for a human eye. Confusing matrix for user look-

ing elsewhere is shown in Table 6. Since both Tense and Tired/Bored tighten

the lips causes misidentification of Tired/Bored when the mouth corners are

tracked. Note that Tense and Tired/Bored are also often confused by hu-

mans. Hence, the distinction between these two behaviours may be more

amenable to appearance features than to geometrical features.

4. Conclusions and Future Work

In this paper, we have presented an initial computational model for the

recognition of engagement with a robotic game companion in an educational

scenario. The proposed approach is based on the automatic analysis of af-
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Table 6: Confusion matrix of affect recognition for “Looking elsewhere”

Relax Not Engaged Tense Tired/Bored

Relax 99.1 0.0 0.6 0.3

Not Engaged 0.0 99.2 0.0 0.8

Tense 0.0 5.4 82.1 12.5

Tired/Bored 1.2 2.9 9.2 86.7

fective states. Differently from many systems proposed in the literature, our

approach is based on vision-based on real-time extraction of facial features

from videos capturing users behaviour from a non-posed facial behaviour in

naturalistic environment. This allows for the dynamics of facial behaviour to

be analysed in a more comprehensive manner. The evaluation conducted in

the same interaction scenario of the final application suggests that patterns

of facial behaviour with the head direction information can be used to accu-

rately predict the engagement of the children with the robot. Experimental

results highlighted the key role played by the temporal dynamics of neuro-

muscular actions in automatic engagement recognition. The high recognition

accuracy achieved with the computational model makes our approach suit-

able for integration into an affect recognition system for a game companion

in a naturalistic scenario.

Future work to further validate the proposed approach will include a

more comprehensive evaluation with a larger number of video samples to

train the automatic recognition models, as well as the design of a framework

for fusion with other modalities (e.g., contextual information) of interest for

this scenario.

16



5. Acknowledgments

This work was supported by the EU FP7 ICT-215554 project LIREC

(LIving with Robots and intEractive Companions).

References

[1] M. Pantic, N. Sebe, J. F. Cohn, T. Huang, Affective multimodal human-

computer interaction, in: Proceedings of the 13th annual ACM interna-

tional conference on Multimedia, MULTIMEDIA ’05, ACM, New York,

NY, USA, 2005, pp. 669–676.

[2] F. De la Torre, T. Simon, Z. Ambadar, J. F. Cohn, Fast-facs: a

computer-assisted system to increase speed and reliability of manual

facs coding, in: Proceedings of the 4th international conference on Af-

fective computing and intelligent interaction - Volume Part I, ACII’11,

Springer-Verlag, Berlin, Heidelberg, 2011, pp. 57–66.

[3] Z. Zeng, M. Pantic, G. Roisman, T. Huang, A survey of affect recogni-

tion methods: Audio, visual, and spontaneous expressions, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 31 (2009) 39–58.

[4] A. Vinciarelli, M. Pantic, H. Bourlard, Social signal processing: Survey

of an emerging domain, Image and Vision Computing Journal 27 (2009)

1743–1759.

[5] K. R. Scherer, Psychological models of emotion, Oxford University

Press, Oxford/New York, j. borod (ed.) edition, pp. 1337–166.

17



[6] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews,

The extended cohn-kanade dataset (ck+): A complete dataset for ac-

tion unit and emotion-specified expression, in: Workshop on Human

Communicative Behaviour Analysis in conjunction with CVPR.

[7] R. S. Aylett, G. Castellano, B. Raducanu, A. Paiva, M. Hanheide, Long-

term socially perceptive and interactive robot companions: challenges

and future perspectives, in: Proceedings of the 13th international con-

ference on multimodal interfaces, ICMI ’11, ACM, New York, NY, USA,

2011, pp. 323–326.

[8] M. Yeasin, B. Bullot, R. Sharma, Recognition of facial expressions and

measurement of levels of interest from video, IEEE Transactions on

Multimedia 8 (2006) 500–508.

[9] A. Yazdani, J.-S. Lee, J.-M. Vesin, T. Ebrahimi, Affect recognition

based on physiological changes during the watching of music videos,

ACM Trans. Interact. Intell. Syst. 2 (2012) 7:1–7:26.

[10] A. J. N. van Breemen, X. Yan, B. Meerbeek, icat: an animated user-

interface robot with personality, in: 4th International Joint Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2005), July

25-29, 2005, Utrecht, The Netherlands, pp. 143–144.

[11] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for

the Measurement of Facial Movement., Consulting Psychologists Press,

Palo Alto, 1978.

18



[12] H. Soyel, H. Demirel, Facial expression recognition using 3d facial fea-

ture distances, in: M. Kamel, A. Campilho (Eds.), Image Analysis

and Recognition, volume 4633 of Lecture Notes in Computer Science,

Springer Berlin / Heidelberg, 2007, pp. 831–838.

[13] H. Soyel, H. Demirel, 3D facial expression recognition with geometri-

cally localized facial features, in: Proceedings of the 23rd International

Symposium on Computer and Information Sciences, ISCIS’08, pp. 1–4.

[14] C. Cortes, M. Mohri, Confidence Intervals for the Area under the ROC

Curve, in: Advances in Neural Information Processing Systems (NIPS

2004), volume 17, MIT Press, 2005.

[15] G. Castellano, I. Leite, A. Pereira, C. Martinho, A. Paiva, P. W.

McOwan, Inter-act: an affective and contextually rich multimodal video

corpus for studying interaction with robots, in: Proceedings of the in-

ternational conference on Multimedia, MM ’10, ACM, New York, NY,

USA, 2010, pp. 1031–1034.

19


